Selected topics in RT – Modules with standard filtration II – WS 2005/06

Selected topics in representation theory – Modules with standard filtration II – WS 2005/06

Let A be an Artin algebra, and denote the category of finitely generated left A-modules by mod A.

1 Reminder

Notation. Let $\Theta = \{\Theta(1), \ldots, \Theta(n)\}$ be a sequence of A-modules with $\operatorname{Ext}^1_A(\Theta(j), \Theta(i)) = 0$ for all $j \ge i$. Denote by $\mathcal{F}(\Theta)$ the full subcategory of mod A of modules with filtration factors in Θ .

Theorem (Ringel). The subcategory $\mathcal{F}(\Theta)$ is functorially finite in mod A.

Note that $\mathcal{F}(\Theta)$ is generally *not* closed under direct summands.

Let \mathcal{X} be a full subcategory of mod A, and denote by \mathcal{Y} the full subcategory of mod A of all modules Y with $\operatorname{Ext}_{A}^{1}(X,Y) = 0$ for all $X \in \mathcal{X}$.

Lemma. Let $0 \to Y \to X \xrightarrow{f} M \to 0$ with $X \in \mathcal{X}, Y \in \mathcal{Y}$ be exact. Then f is a right \mathcal{X} -approximation of M.

Lemma. Suppose that \mathcal{X} is closed under extensions and for every $N \in \text{mod } A$ there is an exact sequence $0 \to N \to Y_N \to X_N \to 0$ with $Y_N \in \mathcal{Y}$ and $X_N \in \mathcal{X}$. Then every module $M \in \text{mod } A$ has a right \mathcal{X} -approximation.

The main step in the proof and the construction of the right \mathcal{X} -approximation can be seen already in the following case:

Let $M \in \text{mod } A$. There is an epimorphism $\pi : X \to M$ with $X \in \mathcal{X}$.

Let $K = \ker \pi$. We get a commutative diagram with exact rows and columns (taking the push out sequences):

Then f is a right \mathcal{X} -approximation of M.

Let now $\Theta = \{\Theta(1), \dots, \Theta(n)\}$ be a sequence of A-modules as above, $\mathcal{X} = \mathcal{F}(\Theta)$, and $\mathcal{Y} = \mathcal{Y}(\Theta) = \{Y \in \text{mod } A \mid \text{Ext}^1_A(X, Y) = 0 \ \forall X \in \mathcal{F}(\Theta)\} = \{Y \in \text{mod } A \mid \text{Ext}^1_A(\Theta(i), Y) = 0 \ \forall i = 1, \dots, n\}.$

Lemma. Let $t \in \{1, ..., n\}$, and $N \in \text{mod } A$ such that $\text{Ext}^1_A(\Theta(j), N) = 0$ for all j > t. Then there is an exact sequence $0 \to N \to N' \to Q \to 0$ with $Q = \Theta(t)^{r_N}$ and $\text{Ext}^1_A(\Theta(j), N') = 0$ for all $j \ge t$.

The proof of this Lemma uses universal extensions and a little homological algebra.

The sequence $0 \to N \to N' \to Q \to 0$ is given by the universal extension of N by copies of $\Theta(t)$:

Let $[\varepsilon_1], \ldots, [\varepsilon_{r_N}]$ generate $\operatorname{Ext}^1_A(\Theta(t), N)$ as a left $\operatorname{End}_A(\Theta(t))$ -module. Then the universal extension is given by the exact sequence ε such that the *s*-th inclusion of $\Theta(t)$ into $Q = \Theta(t)^{r_N}$ induces the sequence ε_s for $s = 1, \ldots, r_N$.

Lemma. Let $t \in \{1, ..., n\}$, and $N \in \text{mod } A$ such that $\text{Ext}^1_A(\Theta(j), N) = 0$ for all j > t. Then there exists an exact sequence $0 \to N \to Y \to X \to 0$ with $X \in \mathcal{F}(\{\Theta(1), ..., \Theta(t)\})$ and $Y \in \mathcal{Y}(\Theta)$.¹

For the proof of this Lemma, use the previous Lemma and reverse induction:

$$N = N_{t+1} \xrightarrow{\mu_t} N_t \xrightarrow{\mu_{t-1}} \cdots \xrightarrow{\mu_1} N_1 = Y,$$

w.l.o.g. all μ_i are inclusions for i = 1, ..., t, and set $X = \operatorname{cok} \mu_t \circ \cdots \circ \mu_1$.

Now the theorem follows if we just take the dual constructions to get the left $\mathcal{F}(\Theta)$ -approximations.

Here is an example of a subcategory filtered by some finite set of modules Θ which is *not* functorially finite in mod A.

Example. Let A = kQ with $Q : \circ \bigcirc \circ$.

Any indecomposable module M of length 2 has self extensions. If $\Theta = \{M\}$, then $\mathcal{F}(\Theta)$ is neither covariantly (left approximations) nor contravariantly (right approximations) finite. (Every indecomposable M_n of dimension 2n from the same tube as M is contained in $\mathcal{F}(\Theta)$. Take the preprojective (resp. the preinjective) modules. They do not have left (resp. right) $\mathcal{F}(\Theta)$ -approximations.)

2 Δ - and ∇ -filtered modules

Let $S = \{S_1, \ldots, S_n\}$ denote the set of isomorphism classes of simple A-modules, $\mathcal{P} = \{P_1, \ldots, P_n\}$ the set of isomorphism classes of the corresponding projective A-modules, and $\mathcal{I} = \{I_1, \ldots, I_n\}$ the set of isomorphism classes of the corresponding injective A-modules.

Let U_i be the sum of all images of maps $P_j \to P_i$ with j > i, and $\Delta_i = P_i/U_i$. Let ∇_i be the intersection of all kernels of maps $I_i \to I_j$ with j > i.

We have

$$\operatorname{Ext}_{A}^{1}(\Delta_{j}, \Delta_{i}) = 0 \; \forall j \geq i$$

and

$$\operatorname{Ext}_{A}^{1}(\nabla_{j}, \nabla_{j}) = 0 \,\,\forall j \leq i.$$

Thus, we can apply the Theorem to both $\Delta = \{\Delta_1, \ldots, \Delta_n\}$ and $\nabla = \{\nabla_n, \ldots, \nabla_1\}$. Here is a different description of $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$.

¹Note the special case t = n gives us the "required" sequences, therefore the right $\mathcal{F}(\Theta)$ -approximations for any module $M \in \text{mod } A$.

Let J_i be the sum of the images of all maps $P_j \to_A A$ with $j \ge i$. Then we get a decreasing sequence of ideals

$$A = J_1 \supseteq \ldots \supseteq J_n \supseteq J_{n+1} = 0.$$

We have

$$M \in \mathcal{F}(\Delta) \Leftrightarrow J_i M / J_{i+1} M$$
 is projective as an A / J_{i+1} -module $\forall i = 1, \ldots, n$,

and

$$M \in \mathcal{F}(\nabla) \Leftrightarrow J_i M / J_{i+1} M$$
 is injective as an A / J_{i+1} -module $\forall i = 1, \dots, n$

Hence, both $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ are closed under direct summands.

Using the main theorem by Auslander and Smalø from [1], we get

Theorem. The subcategories $\mathcal{F}(\Delta)$ and $\mathcal{F}(\nabla)$ have (relative) almost split sequences.

References

- M. Auslander, S. O. Smalø: Almost split sequences in subcategories. J. Algebra 69 (1981), no. 2, 426–454.
- [2] C. M. Ringel: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. **208** (1991), no. 2, 209–223.