Selected topics in RT – Modules with standard filtration I – WS 2005/06

# Selected topics in representation theory – Modules with standard filtration I – WS 2005/06

Let A be an Artin algebra, and denote the category of finitely generated left A-modules by mod A.

## **1** Approximations

Let  $\mathcal{X}$  be a full subcategory of mod A, and  $M \in \text{mod } A$ .

**Definition.** A right  $\mathcal{X}$ -approximation of M is a map  $f: X \to M$  with  $X \in \mathcal{X}$  so that for any map  $f': X' \to M$  with  $X' \in \mathcal{X}$  there is a map  $g: X' \to X$  such that  $f' = f \circ g$ .



Dually, define a left  $\mathcal{X}$ -approximation of M to be a map  $f: M \to X$  with  $X \in \mathcal{X}$  so that for any map  $f': M \to X'$  with  $X' \in \mathcal{X}$  there is a map  $g: X \to X'$  such that  $f' = g \circ f$ .



A subcategory  $\mathcal{X}$  of mod A is called *functorially finite* if every  $M \in \text{mod } A$  has both a right and a left  $\mathcal{X}$ -approximation.

Notation. Let  $\Theta = \{\Theta(1), \ldots, \Theta(n)\}$  be a sequence of A-modules with  $\operatorname{Ext}^1_A(\Theta(j), \Theta(i)) = 0$  for all  $j \ge i$ . Denote by  $\mathcal{F}(\Theta)$  the full subcategory of mod A of modules with filtration factors in  $\Theta$ .

### 2 Main Theorem

One of the theorems in [2] is the following:

**Theorem (Ringel).** The subcategory  $\mathcal{F}(\Theta)$  is functorially finite in mod A.

There is also another theorem which assures then the existence of (relative) AR-sequences for a certain full subcategory of mod A (see [1]):

**Theorem (Auslander, Smalø).** A functorially finite subcategory which is closed under extensions and direct summands has relative AR-sequences.

We denote by  $\mathcal{X}(\Theta)$  the full subcategory in mod A of all modules which are direct summands of modules in  $\mathcal{F}(\Theta)$ . Since  $\mathcal{X}(\Theta)$  is closed under extensions and direct summands and it is also functorially finite in mod A, we obtain immediately:

**Corollary.** The category  $\mathcal{X}(\Theta)$  has almost split sequences.

Note that  $\mathcal{F}(\Theta)$  is generally *not* closed under direct summands.

**Example.** Consider the quiver  $Q = {}_{1}^{\circ} \longrightarrow {}_{2}^{\circ} \longleftarrow {}_{3}^{\circ}$  and its path algebra kQ. Take  $\Theta = \{I(2), P(2)\}$ . Then  $P(1), P(3) \in \mathcal{X}(\Theta)$ , but  $P(1), P(3) \notin \mathcal{F}(\Theta)$ . (Here, P(i)

Take  $\Theta = \{I(2), P(2)\}$ . Then  $P(1), P(3) \in \mathcal{X}(\Theta)$ , but  $P(1), P(3) \notin \mathcal{F}(\Theta)$ . (Here, P(i) (resp. I(i)) denotes the indecomposable projective (resp. injective) kQ-module corresponding to the point i.)

## 3 Proof of the Theorem

Let  $\mathcal{X}$  be an arbitrary full subcategory of mod A, and denote by  $\mathcal{Y}$  the full subcategory of mod A of all modules Y with  $\operatorname{Ext}_{A}^{1}(X, Y) = 0$  for all  $X \in \mathcal{X}$ .

**Lemma.** Let  $0 \to Y \to X \xrightarrow{f} M \to 0$  with  $X \in \mathcal{X}, Y \in \mathcal{Y}$  be exact. Then f is a right  $\mathcal{X}$ -approximation of M.

*Proof.* Suppose there is a map  $f': X' \to M$  with  $X' \in \mathcal{X}$ . Taking the pull back, we obtain the following commutative diagram with exact rows:

The induced exact sequence splits, since  $Y \in \mathcal{Y}$  and  $X' \in \mathcal{X}$ . So there is a map  $g: X' \to X$  with  $f' = f \circ g$ .

**Lemma.** Suppose that  $\mathcal{X}$  is closed under extensions and for every  $N \in \text{mod } A$  there is an exact sequence  $0 \to N \to Y_N \to X_N \to 0$  with  $Y_N \in \mathcal{Y}$  and  $X_N \in \mathcal{X}$ . Then every module  $M \in \text{mod } A$  has a right  $\mathcal{X}$ -approximation.

*Proof.* Let  $M \in \text{mod } A$ .

Case 1: There is an epimorphism  $\pi: X \to M$  with  $X \in \mathcal{X}$ .

Let  $K = \ker \pi$ . We get a commutative diagram with exact rows and columns (taking the push out sequences):



Now,  $X, X_K \in \mathcal{X}$  and  $\mathcal{X}$  is closed under extensions, so  $Z \in \mathcal{X}$ . Use the previous lemma for the second row to obtain that f a right  $\mathcal{X}$ -approximation of M.

Case 2: There is no epimorphism  $X \to M$  with  $X \in \mathcal{X}$ .

Consider the submodule  $M' \subseteq M$  generated by the images of maps  $X' \to M$  with  $X' \in \mathcal{X}$ . Since M is finitely generated, there exists a finite set of maps  $X_i \to M$  with  $X_i \in \mathcal{X}$  such that the images generate M'.

Since  $\mathcal{X}$  is closed under extensions (and therefore under direct sums),  $X = \bigoplus_i X_i \in \mathcal{X}$ , and there is an epimorphism  $X \to M'$  with  $X \in M'$ . Now the conditions in *Case 1* are fulfilled for X and M', and we get a right  $\mathcal{X}$ -approximation for M', say f'. If  $i : M' \to M$ denotes the inclusion map, then  $i \circ f'$  gives a right  $\mathcal{X}$ -approximation of M. (Every map  $\tilde{X} \to M$  with  $\tilde{X} \in \mathcal{X}$  factors via the inclusion i.)

Let now  $\Theta = \{\Theta(1), \dots, \Theta(n)\}$  be a sequence of A-modules as above,  $\mathcal{X} = \mathcal{F}(\Theta)$ , and  $\mathcal{Y} = \mathcal{Y}(\Theta) = \{Y \in \text{mod } A \mid \text{Ext}_A^1(X, Y) = 0 \ \forall X \in \mathcal{F}(\Theta)\} = \{Y \in \text{mod } A \mid \text{Ext}_A^1(\Theta(i), Y) = 0 \ \forall i = 1, \dots, n\}.$ 

**Question.** How can we assure in our case that we have the exact sequences of the form above,  $0 \to N \to Y_N \to X_N \to 0$  with  $Y_N \in \mathcal{Y}$  and  $X_N \in \mathcal{X}$ ?

**Lemma.** Let  $t \in \{1, ..., n\}$ , and  $N \in \text{mod } A$  such that  $\text{Ext}_A^1(\Theta(j), N) = 0$  for all j > t. Then there is an exact sequence  $0 \to N \to N' \to Q \to 0$  with  $Q = \Theta(t)^{r_N}$  and  $\text{Ext}_A^1(\Theta(j), N') = 0$  for all  $j \ge t$ .

*Proof.* Uses universal extensions and a little homological algebra.

**Lemma.** Let  $t \in \{1, ..., n\}$ , and  $N \in \text{mod } A$  such that  $\text{Ext}^1_A(\Theta(j), N) = 0$  for all j > t. Then there exists an exact sequence  $0 \to N \to Y \to X \to 0$  with  $X \in \mathcal{F}(\{\Theta(1), ..., \Theta(t)\})$ and  $Y \in \mathcal{Y}(\Theta)$ .

Note the special case t = n gives us the "required" sequences, therefore the right  $\mathcal{F}(\Theta)$ -approximations for any module  $M \in \text{mod } A$ .

Now the theorem follows if we just take the dual constructions to get the left  $\mathcal{F}(\Theta)$ -approximations.

#### References

- M. Auslander, S. O. Smalø: Almost split sequences in subcategories. J. Algebra 69 (1981), no. 2, 426–454.
- [2] C. M. Ringel: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208 (1991), no. 2, 209–223.