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Selected topics in representation theory
– General representations of quivers and canonical decompositions I –

SS 2006

We consider representations of a quiver Q and would like to find out general properties of
the representations for a fixed dimension vector. The aim of these talks is to investigate how
such “general representations” look like and how they can be obtained. The main reference
for this is [6] (and [4]).

1 Definitions/Preliminaries

We consider representations over a fixed algebraically closed field K.
The vector space rep(Q,d) of representations of a quiver Q = (Q0, Q1, s, t) with dimension

vector d comes along with an algebraic group action of the group GL(d) =
∏

i∈Q0
GL(di)/C,

where C = {(λ · idKdi )i∈Q0 | λ ∈ K∗}, such that the isomorphism classes of representations
are in 1− 1 correspondence with the orbits of GL(d).

Kac has shown in [3] that for a fixed dimension vector d, there is an open dense subset
repcan(Q,d) ⊆ rep(Q,d) such that all representations Rp ∈ repcan(Q,d) decompose as a
direct sum of indecomposable representations Va,p, a ∈ I, and the family of dimension vectors
{dim(Va,p) | a ∈ I} is independent of the chosen representation Rp.

Definition. A general representation of dimension vector d is a representation R ∈ repcan(Q,d).
The decomposition d =

∑
dim(Va,p) (as above) is called the canonical decomposition of d.

Furthermore, we define another open subset of rep(Q,d), namely

rep0(Q,d) = {Vj ∈ GL(d)Vi | Vi ∈ rep(Q,d), dim(GL(d)Vi) is maximal}.

For a quiver Q, let us define a quadratic form 〈−,−〉 on ZQ0 in the following way:

〈−,−〉 : ZQ0 × ZQ0 → Z

〈d1,d2〉 =
∑
i∈Q0

d1id2i −
∑

α∈Q1

d1,s(α)d2,t(α).

By Ringel [5], we know that

〈d1,d2〉 = dim Hom(V,W )− dim Ext1(V,W )

for all representations V and W with dimension vectors dim(V ) = d1 and dim(W ) = d2.
The functions dim Hom(V,W ) and dim Ext(V,W ) are upper semicontinuous functions

on rep(Q,d1) × rep(Q,d2), and their minimal values will be denoted by hom(d1,d2) and
ext(d1,d2), resp.

(Similarly, for a fixed representation V , hom(d, V ), hom(V,d), ext(d, V ), and ext(V,d)
are defined. And it should also be clear what end(d) means.)

Definition. A root d is called a Schur root if end(d) = 1, i. e. there is an indecomposable
representation V with dim End(V ) = 1.

A root is called real if q(d) = 1, where q denotes the Tits form of the underlying graph.
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2 Two theorems of Kac on general representations

The following theorem was proved in [4].

Theorem. Let d ∈ NQ0. d =
∑

a∈I da is the canonical decomposition of d if and only if
all da, a ∈ I, are Schur roots and there exist representations Ua ∈ rep0(Q,da) such that
Ext(Ua, Ub) = 0 for a 6= b. Moreover,

⊕
a∈I Ua ∈ rep0(Q,d) ∩ repcan(Q,d).

If d =
∑

a∈I da is the canonical decomposition of d, then 〈da,db〉 ≥ 0 for all a 6= b.

3 A first necessary condition for canonical decompositions

In [2], Happel and Ringel proved a lemma which has the following consequence:

Lemma. Let V and W be indecomposable representations of a quiver such that Ext(W,V ) =
0. Then any non zero homomorphism f : V → W is injective or surjective.

As a consequence, we get the following:

Theorem. Let {Va | a ∈ I} be a set of non isomorphic indecomposable representations with
dim End(Va) = 1 and Ext(Va, Vb) = 0 for a 6= b. We define a relation a → b if and only if
there exists a non-zero homomorphism Va → Vb. The transitive relation generated by → is a
partial order. In particular, Hom(Va, Vb) = 0 or Hom(Vb, Va) = 0 for a 6= b.

Therefore, if d =
∑

da is the canonical decomposition of d and a 6= b, then da = db is a
real Schur root or 〈da,db〉〈db,da〉 = 0.

Proof.

Part 1. • [Reflexivity] Clearly, there is a map Va → Va, namely the identity map.

• [Antisymmetry] Every map Va → Vb is injective or surjective (by the above Lemma).

Now we show that in a sequence of maps Va1

f1→ Va2

f2→ · · · fk−1→ Vak
, it is not possible to

have two consecutive maps fi : Vai → Vai+1 and fi+1 : Vai+1 → Vai+2 where the first one
is surjective, but not injective, and the second one is injective, but not surjective.

The composition would give us a non zero map Vai → Vai+2 which was neither surjective
nor injective, which is not possible (contradiction to the assumption that Ext(Va, Vb) = 0
for all a 6= b and the Lemma by Happel and Ringel).

Let 0 6= vi+1 ∈ Vai+1 . Since fi is surjective, there is a vi ∈ Vai such that f(vi) = vi+1.
Since fi+1 is injective and vi+1 6= 0, fi+1(vi+1) 6= 0, and so there is a vi ∈ Vai such that
fi+1 ◦ fi(vi) = fi+1(vi+1) 6= 0.

The composition fi+1 ◦ fi can be neither surjective nor injective.

This means that, once we have a sequence of maps Va1 → · · · → Vak
→ · · · → Va`

= Va1 ,
in which each single map is non zero, — i. e. a1 → ak and ak → a1 —, all the maps have
to be surjective or all the maps have to be injective. Therefore, Va1

∼= · · · ∼= Vak
∼= · · · ∼=

Va`
, and (by the assumption that all the different Va be non isomorphic) Va1 = Vak

.

• [Transitivity] The relation is transitive by its definition.
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Part 2. Let V be a general representation of dimension vector d. By Kac’s theorem above,
all dimension vectors of the indecomposable direct summands Va of V are Schur roots, and
Ext(Va, Vb) = 0 for all a 6= b.

Suppose there are two isomorphic representations Va and Vb with a 6= b. Then Ext(Va, Va) ∼=
Ext(Va, Vb) = 0. Therefore, the corresponding dimension vector da = db is a real Schur root.
(q(da) = 〈da,db〉 = dim Hom(Va, Vb)︸ ︷︷ ︸

≥1

−dim Ext(Va, Vb)︸ ︷︷ ︸
=0

≥ 1, so da is real.)

Now take from each isomorphism class of the Schur representations exactly one. Then
the conditions of the first part of the theorem are fulfilled for this set of representations, and
hence 〈da,db〉 = dim Hom(Va, Vb) = 0 or 〈db,da〉 = dim Hom(Vb, Va) = 0, which implies that
〈da,db〉〈db,da〉 = 0.

Warning!

The combinatorial part of the theorem of Kac stated above (〈da,db〉 ≥ 0 for all a 6= b) does
not imply that the decomposition is the canonical decomposition.

Counter example. Let

Q =

•

•
• • •

•

•
::tttt

$$JJJ
J

// //
$$JJJ

J

::tttt
.

Take the dimension vector
1
1
3 23

1
1 .

We can decompose it in two ways:

1
1
3 2 3

1
1 =

1
1
222

1
1

regular

+
0
0
100

0
0

simple
regular

+
0
0
001

0
0

simple
regular

=
1
1
212

1
1

regular

+
0
0
111

0
0

regular

The first decomposition is the canonical decomposition, but the second one also satisfies
the combinatorial requirements.

In the first case, all dimension vectors are Schur roots and we can choose representations
V1, V2, and V3 such that Ext(Vi, Vj) = 0 for all i, j ∈ {1, 2, 3} with i 6= j.

In the second case, the dimension vectors are also Schur roots, but there are non zero
homomorphisms between the corresponding representations in both ways. (The Euler form
〈da,db〉 ≥ 0 just measures the difference of the dimensions of the homomorphism spaces and
the Ext-spaces.) Thus, this cannot be the canonical decomposition.
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