Abstract

The s-tame dimension vectors for stars

A quiver $Q = (Q_0, Q_1, s, t)$ is given by a set of vertices Q_0 and a set of arrows Q_1 and two maps $s, t : Q_1 \to Q_0$ which assign to every arrow $\alpha \in Q_1$ its starting point $s(\alpha)$ and its terminating point $t(\alpha)$. A star Q is a quiver of the following shape:

A subspace representation of a star Q is a collection of vector spaces V_i , $i \in Q_0$, over a particular field K together with K-linear maps $V_{\alpha} : V_{s(\alpha)} \to V_{t(\alpha)}$, $\alpha \in Q_1$, which are all injective. A dimension vector for a representation $(V_i, V_{\alpha})_{i \in Q_0, \alpha \in Q_1}$ is given by $(d_i)_{i \in Q_0}$, where d_i is the dimension of the vector space V_i , $i \in Q_0$.

The Tits form $q: \mathbb{Z}^{Q_0} \to \mathbb{Z}$ for a quiver Q is given by

$$q((d_i)_{i \in Q_0}) = \sum_{i \in Q_0} d_i^2 - \sum_{\alpha \in Q_1} d_{s(\alpha)} d_{t(\alpha)}.$$

In 1999, Magyar, Weyman and Zelevinsky classified all dimension vectors, for which there are only finitely many isomorphism classes of subspace representations.

A dimension vector of a star is called *s*-tame, if there is at least one one-parameter family, but no *n*-parameter family of subspace representations with $n \ge 2$, and it is called *s*-hypercritical, if there is an *n*-parameter family of subspace representations with $n \ge 2$, but there is no proper decomposition as a sum of dimension vectors of subspace representations with an *m*-parameter family of subspace representations with $n \ge 2$, but there is no proper decomposition as a sum of dimension vectors of subspace representations with an *m*-parameter family of subspace representations with $n \ge 2$ for one of the summands.

In the first part of this thesis, the complete lists of all s-tame and s-hypercritical dimension vectors of stars are given, provided the underlying field is algebraically closed. In particular, the following is shown:

Theorem 1. A dimension vector \mathbf{d} of a star is s-tame, if and only if the following conditions are satisfied:

- 1. $q(\mathbf{d}) = 0$, and
- 2. $q(\mathbf{d}') \ge 0$ for all $\mathbf{d}' \le \mathbf{d}$.

Theorem 2. A dimension vector \mathbf{d} of a star is s-hypercritical, if and only if the following conditions are satisfied:

- 1. $q(\mathbf{d}) < 0$, and
- 2. $q(\mathbf{d}') \ge 0$ for all $\mathbf{d}' < \mathbf{d}$.

In the second part of the thesis, the isomorphism classes of the families of indecomposable subspace representations for the s-tame and s-hypercritical dimension vectors are constructed explicitly.