Wilf's conjecture by multiplicity

Winfried Bruns

FB Mathematik/Informatik
Universität Osnabrück

wbruns@uos.de

Conference in memoriam Ragnar-Olaf Buchweitz

Münster, March 2019

Joint work with

Pedro García-Sánchez (Granada)
 Christopher O'Neill (San Diego)
 Dane Wilburne (York)

Ragnar's semigroup

Ragnar-Olaf Buchweitz, Zariski's criterion for equisingularity and non-smoothable normal curves, Preprint 1980:

The smallest example of a semigroup not satisfying $2 g(\Gamma) \geq d_{D}\left(C_{\Gamma}\right)$ is the semigroup of genus 16 whose gaps are $\{1, \ldots, 12,19,21,24,25\}$.

To terminate we would like to point out what the above results mean for the existence problem of Weierstraß-points
on a compact surface. Recall that on a compact Riemann

Wilf's question

A numerical semigroup is a subset $S \subset \mathbb{N}$ such that

$$
0 \in S, S+S \subset S
$$

- there exists d such that $n \in S$ for all $n \geq d(\Longleftrightarrow \operatorname{gcd}(S)=1)$
S is has a unique minimal system A of generators. $e(S)=|A|$ is the embedding dimension of S. Usually S given by its generators:

$$
S=\left\langle a_{1}, \ldots, a_{e}\right\rangle=\left\{b_{1} a_{1}+\cdots+b_{e} a_{e}: b_{1}, \ldots, b_{e} \in \mathbb{N}\right\}
$$

$\Gamma(S)=\mathbb{N} \backslash S$ is the set of gaps of $S . F(S)=\sup \Gamma(S)$ is the Frobenius number, $c(S)=F(S)+1$ is the conductor, and the genus is $\gamma(S)=|\Gamma(S)|$.
Wilf's question (1978):

$$
\frac{\gamma(S)}{c(S)} \leq 1-\frac{1}{e(S)} ?
$$

An example

$$
S=\langle 6,10,15\rangle, e(S)=3
$$

Gaps in red:

$$
\begin{array}{lccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
m(S)=6 & 7 & 8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15 & 16 & 17 \\
18 & 19 & 20 & 21 & 22 & 23 \\
24 & 25 & 26 & 27 & 28 & 29=F(S) \\
c(S)=30 & 31 & 32 & 33 & 34 & 35
\end{array}
$$

Wiff's inequality:

$$
\frac{\gamma(S)}{c(S)}=\frac{15}{30} \leq 1-\frac{1}{3}=1-\frac{1}{e(S)}
$$

The blue numbers form the Apéry set to be defined later.

Wilf's question promoted

- $\Sigma(S)=\{x \in S: x<F(S)\}$ is the set of sporadic elements,
- $\sigma(S)=|\Sigma(S)|$ is their number.

Wilf's question reformulated and promoted:

Conjecture

For any numerical semigroup S one has $c(S) \leq e(S) \sigma(S)$.
Finally:

- $m(S)=\min \{x \in S: x>0)\}$ is the multiplicity of S,

Our goal:

- Show that the conjecture can be decided efficiently for fixed m by polyhedral methods and
- describe an algorithm by which we have verified it for $m \leq 17$.

The Apéry set

View S as a "module" over the subsemigroup $\mathbb{N} m, m=m(S)$:

$$
S=\bigcup_{i=0}^{m-1}\{x \in S: x \equiv i \bmod m\}=\bigcup_{i=0}^{m-1} b_{i}+\mathbb{N} m
$$

with $b_{i} \in S, b_{i} \equiv i \bmod m$.

Definition

The Apéry set of S is $\operatorname{Ap}(S)=\left\{b_{0}=0, \ldots, b_{m-1}\right\}$.
$\operatorname{Ap}(S) \backslash\{0\}$ poset: $b_{i} \prec b_{j} \Longleftrightarrow b_{j}-b_{i} \in S\left(\Longleftrightarrow b_{j}-b_{i} \in \operatorname{Ap}(S)\right)$

- $\operatorname{Min}_{\prec} \operatorname{Ap}(S) \cup\{m\}$ is the minimal system of generators.
- $\operatorname{Max}_{\prec} \operatorname{Ap}(S)$ is the socle of S. Its cardinality is the type $t(S)$.

We transfer the partial order: $\mathcal{P}(S)=\{1, \ldots, m-1\}$ with $i \prec j \Longleftrightarrow b_{i} \prec b_{j}$.

Known cases of Wilf's conjecture

There are many conditions that imply Wilf's inequality:
(1) $e(S)=2$
(2) $m(S)=e(S)$ (maximal embedding dimension, Dobbs and Matthews)
(3) $e(S)>t(S)$ (Fröberg, Gottlieb, and Häggkvist)
(9) $2 e(S) \geq m(S)$ (Sammartano) (Eliahou: $3 e(S) \geq m(S)$?)
(3) $c(S) \leq 3 m(S)$ (Eliahou, using Macaulay's theorem on Hilbert functions)
(0) $\gamma(S) \leq 60$ (Fromentin and Hivert)

For $\gamma(S) \rightarrow \infty$ the probability of $c(S) \leq 3 m(S)$ goes to 1 (Zhai).
One can say: Wilf holds with probability 1.
In (1) and certain cases of (2) Wilf holds with =. It is unknown whether these are the only cases.

The Kunz polyhedron

We fix $m=m(S) . S$ has Kunz coordinates $\left(x_{1}, \ldots, x_{m-1}\right)$ with

$$
b_{i}=x_{i} m+i, \quad i=1, \ldots, m-1
$$

By the definition of $\operatorname{Ap}(S)$ they satisfy the inequalities

$$
\begin{aligned}
x_{i}+x_{j} \geq x_{i+j} & \text { for } i+j<m, \\
x_{i}+x_{j}+1 \geq x_{i+j} & \text { for } i+j>m .
\end{aligned}
$$

These inequalities define the Kunz polyhedron $P_{m} \subset \mathbb{R}^{m-1}$. The Kunz cone C_{m} is defined by the associated homogeneous system.

Theorem (Kunz 1987, Rosales et al. 2002)

The semigroups of multiplicity m are in 1-1 correspondence with the integer points in P_{m} that have coordinates ≥ 1.

Identify S with $\left(x_{1}, \ldots, x_{m-1}\right)$. Note: $\gamma(S)=x_{1}+\cdots+x_{m-1}$.

Faces of the Kunz poyhedron

There exists a unique face $\operatorname{Face}(S)$ of P_{m} such that S lies in its interior Face $(S)^{\circ}$.

Lemma

$\operatorname{Face}(S)=\operatorname{Face}\left(S^{\prime}\right) \Longleftrightarrow \mathcal{P}(S)=\mathcal{P}\left(S^{\prime}\right)$
Among the inequalities defining P_{m} we pick the subset $E(S)$ that hold in S with $=$ and therefore define Face (S).

Let p be the number of x_{i} appearing on the LHS of any inequality in $E(S)$ and n their number on the RHS. Then:

$$
e(S)=m(S)-n \quad t(S)=m(S)-1-p
$$

So Face $(S)=\operatorname{Face}\left(S^{\prime}\right) \Longrightarrow e(S)=e\left(S^{\prime}\right), t(S)=t\left(S^{\prime}\right)$.
But Face $(S)=\operatorname{Face}\left(S^{\prime}\right) \nRightarrow c(S)=c\left(S^{\prime}\right)$.

Wif's conjecture for fixed m in finitely many steps

Strategy for (dis)proving Wilf's conjecture for fixed $m=m(S)$:

- Compute the face lattice of P_{m} (equivalently, of C_{m})
- Select the "bad" faces ($\sim 0.4-1 \%$) satisfying $e(S) \leq t(S)$ and $2 e(S)<m(S)$: both necessary for a counterexample
- Subdivide each bad face into subpolyhedra Q_{i} such that x_{i} deternines $c(S)$ (system of linear inequalities for each i)
- Add $x_{j} \geq 1$ for all j
- Add the linear inequality saying that Wilf is violated
- Check the critical subpolyhedra for lattice points

For $m \leq 17$ no lattice point was found. Even more: the critical subpolyhedra are all empty!
\Longrightarrow Wilf's conjecture holds for $m \leq 17$

Combinatorial data of the Kunz cones - 1987

in E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische Schriften 11, 1987

```
Anhang A. Einige Daten uber }\mp@subsup{P}{m}{}\mathrm{ und }\mp@subsup{P}{m}{*}\mathrm{ *
```


rot: symmetrische Halbgruppen
grün: fastvollständige Durchschnitte

Combinatorial data of the Kunz cones - 2019

Important observation: $(\mathbb{Z} /(m))^{*}$ operates on C_{m} as a group opf automorphisms (but not on P_{m}). "Orbit" refers to this action:

m	ine	extr rays	orbits	bad orbits	faces	bad faces
7	18	30	400	0	2346	0
8	24	47	1,348	0	5,086	0
9	32	122	6,508	54	38,788	324
10	40	225	26,682	74	106,434	292
11	50	812	15,622	178	155,944	1,765
12	60	1,864	169,607	714	669,794	2,791
13	72	7,005	365,881	4,338	$4,389,234$	52,035
14	84	15,585	$3,506,961$	15,251	$21,038,016$	91,394
15	98	67,262	$17,217,534$	180,464	$137,672,474$	$1,441,273$
16	112	184,025	$94,059,396$	399,380	$751,497,188$	$3,184,022$
17	128	851,890	$333,901,498$	$3,186,147$	$5,342,388,604$	$50,977,648$
18	144	$2,158,379$	$? ?$	$? ?$	$? ?$	$? ?$
19	162	$11,665,781$	$? ?$	$? ?$	$? ?$	$? ?$

The Normaliz face lattice algorithm

Every face F is the intersection of the facets $\mathbb{H}(F)=\{H \supset F\}$.
$\mathbb{E}(F)=$ extreme rays through F. C given by $\mathbb{H}(C)$.
Precomputed: $\mathbb{E}(C), \mathbb{E}(H)$ for $H \in \mathbb{H}(C)$

Algorithm (simplified)

```
function FaceLattice (C)
    \(\mathcal{F} \leftarrow \emptyset, \mathcal{W} \leftarrow\{C\}, \mathcal{N} \leftarrow \emptyset\)
    while \(\mathcal{W} \neq \emptyset\) do
    for all \(F \in \mathcal{W}\) do (parallelized)
    \(\mathbb{E}(F)=\bigcap_{H \in \mathbb{H}(F)} \mathbb{E}(H)\)
    for all \(H \in \mathbb{H}(C)\) do
        compute \(G=F \cap H\) and \(\mathbb{H}(G),[G \leftarrow \min \operatorname{orbit}(G)]\)
        if \(G \notin \mathcal{F} \cup \mathcal{W} \cup \mathcal{N}\) then \(\mathcal{N} \leftarrow \mathcal{N} \cup\{G\}\)
        end for
    end for
    \(\mathcal{F} \leftarrow \mathcal{F} \cup \mathcal{W}, \mathcal{W} \leftarrow \mathcal{N}, \mathcal{N} \leftarrow \emptyset\)
    end while
    return \(\mathcal{F}\)
end function
```


Performance

m	preparation	face lattice	bad faces	total time	\approx RAM
11	-	-	-	0.7 s	6 MB
12	-	-	-	2.5 s	35 MB
13	1 s	5 s	17 s	23 s	80 MB
14	3 s	37 s	39 s	$1: 19 \mathrm{~m}$	603 MB
15	19 s	$4: 32 \mathrm{~m}$	15 m	$19: 43 \mathrm{~m}$	2.6 GB
16	65 s	$57: 43 \mathrm{~m}$	37 m	$1: 35 \mathrm{~h}$	12 GB
17	$6: 05 \mathrm{~m}$	$21: 27 \mathrm{~h}$	$17: 13 \mathrm{~h}$	$38: 46 \mathrm{~h}$	48 GB

Most time consuming operations $(m=14)$:

- checking $<_{\text {lex }}$ for subsets of $\mathbb{H}(C)$ or $\mathbb{E}(C)$
- checking \subset

References

围 W．Bruns，P．García－Sánchez．Ch．O’Neill and D．Wilburne， Wilf＇s conjecture in fixed multiplicity，Preprint arXiv：1903．04342．
（1）M．Delgado，Conjecture of Wilf：a survey，Preprint arXiv：1902．03461．
E．Kunz，Über die Klassifikation numerischer Halbgruppen， Regensburger Mathematische Schriften 11， 1987.
雷 J．C．Rosales，P．A．García－Sánchez，J．I．García－García and M． B．Branco，Systems of inequalities and numerical semigroups， J．Lond．Math．Soc．65（3）（2002），611－623．
图 H．Wilf，A circle－of－lights algorithm for the money－changing problem，Amer．Math．Monthly， 85 （1978），562－565．

