Wilf's conjecture by multiplicity

Winfried Bruns

FB Mathematik/Informatik Universität Osnabrück wbruns@uos.de

Conference in memoriam Ragnar-Olaf Buchweitz

Münster, March 2019

Joint work with

Pedro García-Sánchez (Granada) Christopher O'Neill (San Diego) Dane Wilburne (York)

Ragnar-Olaf Buchweitz, Zariski's criterion for equisingularity and non-smoothable normal curves, Preprint 1980:

The smallest example of a semigroup not satisfying $2g(\Gamma) \ge d_D(C_{\Gamma})$ is the semigroup of genus 16 whose gaps are {1, ..., 12, 19, 21, 24, 25}.

To terminate we would like to point out what the above results mean for the existence problem of Weierstraß-points on a compact surface. Recall that on a compact Riemann

Wilf's question

A numerical semigroup is a subset $S \subset \mathbb{N}$ such that

• $0 \in S$, $S + S \subset S$,

• there exists d such that $n \in S$ for all $n \ge d$ (\iff $\gcd(S) = 1$)

S is has a unique minimal system A of generators. e(S) = |A| is the embedding dimension of S. Usually S given by its generators:

$$S = \langle a_1, \ldots, a_e \rangle = \{b_1a_1 + \cdots + b_ea_e : b_1, \ldots, b_e \in \mathbb{N}\}.$$

 $\Gamma(S) = \mathbb{N} \setminus S$ is the set of gaps of S. $F(S) = \sup \Gamma(S)$ is the Frobenius number, c(S) = F(S) + 1 is the conductor, and the genus is $\gamma(S) = |\Gamma(S)|$.

Wilf's question (1978):

$$rac{\gamma(S)}{c(S)} \leq 1 - rac{1}{e(S)}$$
 ?

An example

$$S = \langle 6, 10, 15 \rangle$$
, $e(S) = 3$

Gaps in red:

Wilf's inequality:

$$rac{\gamma(S)}{c(S)} = rac{15}{30} \le 1 - rac{1}{3} = 1 - rac{1}{e(S)}$$

The blue numbers form the Apéry set to be defined later.

. . .

ト * 注 * * 注 * 二

æ

- $\Sigma(S) = \{x \in S : x < F(S)\}$ is the set of sporadic elements,
- $\sigma(S) = |\Sigma(S)|$ is their number.

Wilf's question reformulated and promoted:

Conjecture

For any numerical semigroup S one has $c(S) \le e(S)\sigma(S)$.

Finally:

•
$$m(S) = \min\{x \in S : x > 0\}$$
 is the multiplicity of S,

Our goal:

- Show that the conjecture can be decided efficiently for fixed *m* by polyhedral methods and
- describe an algorithm by which we have verified it for $m \leq 17$.

The Apéry set

View S as a "module" over the subsemigroup $\mathbb{N}m$, m = m(S):

$$S = \bigcup_{i=0}^{m-1} \{x \in S : x \equiv i \mod m\} = \bigcup_{i=0}^{m-1} b_i + \mathbb{N}m.$$

with $b_i \in S$, $b_i \equiv i \mod m$.

Definition

The Apéry set of S is
$$Ap(S) = \{b_0 = 0, \dots, b_{m-1}\}.$$

 $\mathsf{Ap}(S) \setminus \{0\} \text{ poset: } b_i \prec b_j \iff b_j - b_i \in S \ (\iff b_j - b_i \in \mathsf{Ap}(S))$

• $Min_{\prec} Ap(S) \cup \{m\}$ is the minimal system of generators.

• $Max_{\prec} Ap(S)$ is the socle of S. Its cardinality is the type t(S). We transfer the partial order: $\mathcal{P}(S) = \{1, \dots, m-1\}$ with $i \prec j \iff b_i \prec b_j$.

Known cases of Wilf's conjecture

There are many conditions that imply Wilf's inequality:

•
$$e(S) = 2$$

- m(S) = e(S) (maximal embedding dimension, Dobbs and Matthews)
- e(S) > t(S) (Fröberg, Gottlieb, and Häggkvist)
- $2e(S) \ge m(S)$ (Sammartano) (Eliahou: $3e(S) \ge m(S)$?)
- c(S) ≤ 3m(S) (Eliahou, using Macaulay's theorem on Hilbert functions)
- $\gamma(S) \leq 60$ (Fromentin and Hivert)

For $\gamma(S) \to \infty$ the probability of $c(S) \leq 3m(S)$ goes to 1 (Zhai). One can say: Wilf holds with probability 1.

In (1) and certain cases of (2) Wilf holds with =. It is unknown whether these are the only cases.

The Kunz polyhedron

We fix m = m(S). S has Kunz coordinates (x_1, \ldots, x_{m-1}) with

$$b_i = x_i m + i, \qquad i = 1, \dots, m - 1.$$

By the definition of Ap(S) they satisfy the inequalities

$$\begin{aligned} x_i + x_j &\geq x_{i+j} & \text{ for } i+j < m, \\ x_i + x_j + 1 &\geq x_{i+j} & \text{ for } i+j > m. \end{aligned}$$

These inequalities define the Kunz polyhedron $P_m \subset \mathbb{R}^{m-1}$. The Kunz cone C_m is defined by the associated homogeneous system.

Theorem (Kunz 1987, Rosales et al. 2002)

The semigroups of multiplicity m are in 1-1 correspondence with the integer points in P_m that have coordinates ≥ 1 .

Identify S with (x_1, \ldots, x_{m-1}) . Note: $\gamma(S) = x_1 + \cdots + x_{m-1}$.

Faces of the Kunz poyhedron

There exists a unique face Face(S) of P_m such that S lies in its interior $Face(S)^{\circ}$.

Lemma

$$\mathsf{Face}(S) = \mathsf{Face}(S') \iff \mathcal{P}(S) = \mathcal{P}(S')$$

Among the inequalities defining P_m we pick the subset E(S) that hold in S with = and therefore define Face(S).

Let p be the number of x_i appearing on the LHS of any inequality in E(S) and n their number on the RHS. Then:

$$e(S) = m(S) - n$$
 $t(S) = m(S) - 1 - p.$

So $Face(S) = Face(S') \implies e(S) = e(S'), t(S) = t(S').$ But $Face(S) = Face(S') \not\Longrightarrow c(S) = c(S').$

Wilf's conjecture for fixed m in finitely many steps

Strategy for (dis)proving Wilf's conjecture for fixed m = m(S):

- Compute the face lattice of P_m (equivalently, of C_m)
- Select the "bad" faces ($\sim 0.4 1\%$) satisfying $e(S) \le t(S)$ and 2e(S) < m(S): both necessary for a counterexample
- Subdivide each bad face into subpolyhedra Q_i such that x_i deternines c(S) (system of linear inequalities for each i)
- Add $x_j \ge 1$ for all j
- Add the linear inequality saying that Wilf is violated
- Check the critical subpolyhedra for lattice points

For $m \leq 17$ no lattice point was found. Even more: the critical subpolyhedra are all empty!

 \implies Wilf's conjecture holds for $m \leq 17$

Combinatorial data of the Kunz cones - 1987

in E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische Schriften **11**, 1987

Important observation: $(\mathbb{Z}/(m))^*$ operates on C_m as a group opf automorphisms (but not on P_m). "Orbit" refers to this action:

m	ine	extr rays	orbits	bad orbits	faces	bad faces
7	18	30	400	0	2346	0
8	24	47	1,348	0	5,086	0
9	32	122	6,508	54	38,788	324
10	40	225	26,682	74	106,434	292
11	50	812	15,622	178	155,944	1,765
12	60	1,864	169,607	714	669,794	2,791
13	72	7,005	365,881	4,338	4,389,234	52,035
14	84	15,585	3,506,961	15,251	21,038,016	91,394
15	98	67,262	17,217,534	180,464	137,672,474	1,441,273
16	112	184,025	94,059,396	399,380	751,497,188	3,184,022
17	128	851,890	333,901,498	3,186,147	5,342,388,604	50,977,648
18	144	2,158,379	??	??	??	??
19	162	11,665,781	??	??	??	??

The Normaliz face lattice algorithm

Every face *F* is the intersection of the facets $\mathbb{H}(F) = \{H \supset F\}$. $\mathbb{E}(F) =$ extreme rays through *F*. *C* given by $\mathbb{H}(C)$.

Precomputed: $\mathbb{E}(C)$, $\mathbb{E}(H)$ for $H \in \mathbb{H}(C)$

Algorithm (simplified)

```
function FACELATTICE(C)
       \mathcal{F} \leftarrow \emptyset. \mathcal{W} \leftarrow \{C\}. \mathcal{N} \leftarrow \emptyset
       while \mathcal{W} \neq \emptyset do
              for all F \in \mathcal{W} do (parallelized)
                     \mathbb{E}(F) = \bigcap_{H \in \mathbb{H}(F)} \mathbb{E}(H)
                      for all H \in \mathbb{H}(C) do
                             compute G = F \cap H and \mathbb{H}(G), [G \leftarrow \min \operatorname{orbit}(G)]
                             if G \notin \mathcal{F} \cup \mathcal{W} \cup \mathcal{N} then \mathcal{N} \leftarrow \mathcal{N} \cup \{G\}
                      end for
              end for
              \mathcal{F} \leftarrow \mathcal{F} \cup \mathcal{W}, \mathcal{W} \leftarrow \mathcal{N}, \mathcal{N} \leftarrow \emptyset
       end while
       return \mathcal{F}
end function
```

Performance

m	preparation	face lattice	bad faces	total time	pprox RAM
11	—			0.7 s	6 MB
12			_	2.5 s	35 MB
13	1 s	5 s	17 s	23 s	80 MB
14	3 s	37 s	39 s	1:19 m	603 MB
15	19 s	4:32 m	15 m	19:43 m	2.6 GB
16	65 s	57:43 m	37 m	1:35 h	12 GB
17	6:05 m	21:27 h	17:13 h	38:46 h	48 GB

Most time consuming operations (m = 14):

- checking $<_{\mathsf{lex}}$ for subsets of $\mathbb{H}(\mathcal{C})$ or $\mathbb{E}(\mathcal{C})$
- \bullet checking \subset

∃ >

References

- W. Bruns, P. García-Sánchez. Ch. O'Neill and D. Wilburne, Wilf's conjecture in fixed multiplicity, Preprint arXiv:1903.04342.
- M. Delgado, *Conjecture of Wilf: a survey*, Preprint arXiv:1902.03461.
- E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger Mathematische Schriften **11**, 1987.
- J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco, Systems of inequalities and numerical semigroups, J. Lond. Math. Soc. 65(3) (2002), 611–623.
- H. Wilf, A circle-of-lights algorithm for the money-changing problem, Amer. Math. Monthly, **85** (1978), 562–565.