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Ragnar’s semigroup

Ragnar-Olaf Buchweitz, Zariski’s criterion for equisingularity and
non-smoothable normal curves, Preprint 1980:
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Wilf’s question

A numerical semigroup is a subset S ⊂ N such that

0 ∈ S , S + S ⊂ S ,

there exists d such that n ∈ S for all n ≥ d (⇐⇒ gcd(S) = 1)

S is has a unique minimal system A of generators. e(S) = |A| is
the embedding dimension of S . Usually S given by its generators:

S = 〈a1, . . . , ae〉 =
{
b1a1 + · · ·+ beae : b1, . . . , be ∈ N

}
.

Γ(S) = N \ S is the set of gaps of S . F (S) = sup Γ(S) is the
Frobenius number, c(S) = F (S) + 1 is the conductor, and the
genus is γ(S) = |Γ(S)|.

Wilf’s question (1978):

γ(S)

c(S)
≤ 1− 1

e(S)
?
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An example

S = 〈6, 10, 15〉, e(S) = 3

Gaps in red:
0 1 2 3 4 5

m(S) =6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22 23
24 25 26 27 28 29= F (S)

c(S) =30 31 32 33 34 35
. . .

Wilf’s inequality:

γ(S)

c(S)
=

15

30
≤ 1− 1

3
= 1− 1

e(S)

The blue numbers form the Apéry set to be defined later.
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Wilf’s question promoted

Σ(S) = {x ∈ S : x < F (S)} is the set of sporadic elements,

σ(S) = |Σ(S)| is their number.

Wilf’s question reformulated and promoted:

Conjecture

For any numerical semigroup S one has c(S) ≤ e(S)σ(S).

Finally:

m(S) = min{x ∈ S : x > 0)} is the multiplicity of S ,

Our goal:

Show that the conjecture can be decided efficiently for fixed
m by polyhedral methods and

describe an algorithm by which we have verified it for m ≤ 17.
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The Apéry set

View S as a “module” over the subsemigroup Nm, m = m(S):

S =
m−1⋃
i=0

{
x ∈ S : x ≡ i mod m

}
=

m−1⋃
i=0

bi + Nm.

with bi ∈ S , bi ≡ i mod m.

Definition

The Apéry set of S is Ap(S) = {b0 = 0, . . . , bm−1}.

Ap(S) \ {0} poset: bi ≺ bj ⇐⇒ bj − bi ∈ S (⇐⇒ bj − bi ∈ Ap(S))

Min≺ Ap(S) ∪ {m} is the minimal system of generators.

Max≺ Ap(S) is the socle of S . Its cardinality is the type t(S).

We transfer the partial order: P(S) = {1, . . . ,m − 1} with
i ≺ j ⇐⇒ bi ≺ bj .
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Known cases of Wilf’s conjecture

There are many conditions that imply Wilf’s inequality:

1 e(S) = 2

2 m(S) = e(S) (maximal embedding dimension, Dobbs and
Matthews)

3 e(S) > t(S) (Fröberg, Gottlieb, and Häggkvist)

4 2e(S) ≥ m(S) (Sammartano) (Eliahou: 3e(S) ≥ m(S) ?)

5 c(S) ≤ 3m(S) (Eliahou, using Macaulay’s theorem on Hilbert
functions)

6 γ(S) ≤ 60 (Fromentin and Hivert)

For γ(S)→∞ the probability of c(S) ≤ 3m(S) goes to 1 (Zhai).
One can say: Wilf holds with probability 1.

In (1) and certain cases of (2) Wilf holds with =. It is unknown
whether these are the only cases.
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The Kunz polyhedron

We fix m = m(S). S has Kunz coordinates (x1, . . . , xm−1) with

bi = xim + i , i = 1, . . . ,m − 1.

By the definition of Ap(S) they satisfy the inequalities

xi + xj ≥ xi+j for i + j < m,

xi + xj + 1 ≥ xi+j for i + j > m.

These inequalities define the Kunz polyhedron Pm ⊂ Rm−1. The
Kunz cone Cm is defined by the associated homogeneous system.

Theorem (Kunz 1987, Rosales et al. 2002)

The semigroups of multiplicity m are in 1-1 correspondence with
the integer points in Pm that have coordinates ≥ 1.

Identify S with (x1, . . . , xm−1). Note: γ(S) = x1 + · · ·+ xm−1.
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Faces of the Kunz poyhedron

There exists a unique face Face(S) of Pm such that S lies in its
interior Face(S)◦.

Lemma

Face(S) = Face(S ′) ⇐⇒ P(S) = P(S ′)

Among the inequalities defining Pm we pick the subset E (S) that
hold in S with = and therefore define Face(S).

Let p be the number of xi appearing on the LHS of any inequality
in E (S) and n their number on the RHS. Then:

e(S) = m(S)− n t(S) = m(S)− 1− p.

So Face(S) = Face(S ′) =⇒ e(S) = e(S ′), t(S) = t(S ′).

But Face(S) = Face(S ′) 6=⇒ c(S) = c(S ′).
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Wilf’s conjecture for fixed m in finitely many steps

Strategy for (dis)proving Wilf’s conjecture for fixed m = m(S):

Compute the face lattice of Pm (equivalently, of Cm)

Select the “bad” faces (∼ 0.4 – 1%) satisfying e(S) ≤ t(S)
and 2e(S) < m(S): both necessary for a counterexample

Subdivide each bad face into subpolyhedra Qi such that xi
deternines c(S) (system of linear inequalities for each i)

Add xj ≥ 1 for all j

Add the linear inequality saying that Wilf is violated

Check the critical subpolyhedra for lattice points

For m ≤ 17 no lattice point was found. Even more: the critical
subpolyhedra are all empty!

=⇒ Wilf’s conjecture holds for m ≤ 17
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Combinatorial data of the Kunz cones – 1987

in E. Kunz, Über die Klassifikation numerischer Halbgruppen,
Regensburger Mathematische Schriften 11, 1987
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Combinatorial data of the Kunz cones – 2019

Important observation: (Z/(m))∗ operates on Cm as a group opf
automorphisms (but not on Pm). “Orbit” refers to this action:

m ine extr rays orbits bad orbits faces bad faces

7 18 30 400 0 2346 0

8 24 47 1,348 0 5,086 0

9 32 122 6,508 54 38,788 324

10 40 225 26,682 74 106,434 292

11 50 812 15,622 178 155,944 1,765

12 60 1,864 169,607 714 669,794 2,791

13 72 7,005 365,881 4,338 4,389,234 52,035

14 84 15,585 3,506,961 15,251 21,038,016 91,394

15 98 67,262 17,217,534 180,464 137,672,474 1,441,273

16 112 184,025 94,059,396 399,380 751,497,188 3,184,022

17 128 851,890 333,901,498 3,186,147 5,342,388,604 50,977,648

18 144 2,158,379 ?? ?? ?? ??

19 162 11,665,781 ?? ?? ?? ??

Winfried Bruns Wilf’s conjecture by multiplicity



The Normaliz face lattice algorithm

Every face F is the intersection of the facets H(F ) = {H ⊃ F}.
E(F ) = extreme rays through F . C given by H(C).

Precomputed: E(C), E(H) for H ∈ H(C)

Algorithm (simplified)

function FaceLattice(C)
F ← ∅, W ← {C}, N ← ∅
while W 6= ∅ do

for all F ∈ W do (parallelized)
E(F ) =

⋂
H∈H(F ) E(H)

for all H ∈ H(C) do
compute G = F ∩ H and H(G), [G ← min orbit(G)]
if G /∈ F ∪W ∪N then N ← N ∪ {G}

end for
end for
F ← F ∪W, W ← N , N ← ∅

end while
return F

end function
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Performance

m preparation face lattice bad faces total time ≈ RAM

11 — — — 0.7 s 6 MB

12 — — — 2.5 s 35 MB

13 1 s 5 s 17 s 23 s 80 MB

14 3 s 37 s 39 s 1:19 m 603 MB

15 19 s 4:32 m 15 m 19:43 m 2.6 GB

16 65 s 57:43 m 37 m 1:35 h 12 GB

17 6:05 m 21:27 h 17:13 h 38:46 h 48 GB

Most time consuming operations (m = 14):

checking <lex for subsets of H(C ) or E(C )

checking ⊂
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