
SQUEEZING AND HIGHER ALGEBRAIC K-THEORY

ARTHUR C. BARTELS

Abstract. We prove that the Assembly map in algebraic K-
theory is split injective for groups of finite asymptotic dimension
admitting a finite classifying space.

1. Introduction

It is well known that the Novikov conjecture on the homotopy in-
variance of higher signatures is equivalent to rational injectivity of the
assembly map H∗(BΓ; L(Z)) → L∗(ZΓ). However, there are also other
important assembly maps, e.g. in algebraic K-theory and the Baum-
Connes map for topological K-theory. A technique that has been very
successful in studying these assembly maps is controlled topology. Yu
[Yu98] used a C∗-algebra version of this technique to prove the Novikov
conjecture for groups of finite asymptotic dimension (cf. Section 6)
admitting a finite classifying space. In fact, he proved injectivity of
the Baum-Connes map for this class of groups, which also implies the
Novikov conjecture. The purpose of this paper is to give a proof of the
corresponding result in algebraic K-theory.

Theorem 1.1. Let R be an associative ring with unit and Γ be a group
of finite asymptotic dimension admitting a finite BΓ. Then the assem-
bly map

H∗(BΓ; K−∞R) → K∗(RΓ)

is split injective.

In fact, the result holds for coefficients in any additive category (see
6.5). This is very much in the spirit of [CP95] and there is also an
L-theory version (7.2). For more information on groups of finite as-
ymptotic dimension see for example [DJ99] and [BD01].

Very roughly, Yu proceeds as follows to prove his result. Controlled
constructions are used to set up an obstruction group to the injectivity
of the Baum-Connes map. This obstruction group comes with the
additional notion of control, i.e. elements are r-controlled for some
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r > 0. The crucial step is then to prove that there is some ε > 0
such that all r-controlled elements with r < ε in the obstruction group
vanish. Such a result is often referred to as a squeezing result. Finite
asymptotic dimension is then used to prove that every element in the
obstruction group is arbitrarily small controlled.

Our proof of 1.1 is parallel to Yu’s approach. The main difference is,
that while there are squeezing theorems for K1 (cf. [Qui82]) there is a
priori no obvious analogue for higher K-theory. The main contribution
of this paper is the formulation of a somewhat different result (4.1),
that works for higher K-theory and can be used similarly to squeezing
(cf. 4.3) to prove vanishing results.

It should be noted that Yu proved the Novikov conjecture in [Yu00]
for the class of groups admitting a uniform embedding into Hilbert
space and a finite BΓ. Here a version of Bott periodicity is used and it
is at present not clear if this result can also be carried over to algebraic
K-theory. Groups of finite asymptotic dimension admit such a uniform
embedding by [HR00]. Later on the Novikov conjecture was estab-
lished for groups of finite asymptotic dimension ([Hig00]) and groups
admitting a uniform embedding ([STY02]), irrespective of finiteness or
otherwise of BΓ. Thus it seems to be an important question whether
the finite-BΓ hypothesis can be removed from 1.1. Without any geo-
metric assumptions rational injectivity of the algebraic K-theory as-
sembly map for the ring Z is known under the rather weak finiteness
assumption that the homology of Γ is finitely generated in every degree
by [BHM93]. The referee informed me that the recent PhD thesis of
Wright [Wri02] contains another proof of Yu’s result along lines similar
to those of this paper.

This paper is organized as follows. Section 2 briefly recalls the prop-
erties of K-theory needed in this paper. Section 3 reviews controlled
algebra. We collect various results from the literature and slightly ex-
pand some of them. Using the abstract language of coarse structures
from [HPR97] will be useful in formulating and proving the squeez-
ing result in Section 4. In Section 5 we recall the descent principle
from [CP95]. This identifies K∗A(Jb(EΓ)) as the obstruction group in
question. Section 6 contains the proof of our main result. The paper
concludes with a very brief discussion of L-theory.

I want to thank Holger Reich for fruitful discussions on controlled
algebra and Lipschitz homotopy and the referee for his detailed and
helpful report.
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2. K-theory

We will use the non-connected K-theory functor K−∞ from (small)
additive categories to spectra. Applied to the category of finitely gen-
erated free R-modules its homotopy groups give the higher K-theory
K∗R of Quillen in positive degrees and Bass’ negative K-theory in
negative degrees. This functor has been constructed by Pedersen and
Weibel in [PW85]. A crucial property of this functor is its behavior
with respect to Karoubi filtrations ([Kar70, 1.5]). For a proof of the
following result see for example [CP97].

Theorem 2.1. If A is a Karoubi filtration of the the category B, then
there is a fibration sequence of spectra

K−∞A → K−∞B → K−∞A/B.
�

We will mostly be interested in the homotopy groups of K−∞. We
state further well known properties of K-theory used in this paper.

Theorem 2.2.

(i) Eilenberg swindle. If A is flasque, i.e. there is an additive functor
S : A → A together with a natural equivalence id⊕S ∼= S, then
K∗A = 0.

(ii) Equivalence of categories. Naturally equivalent functors induce
the same maps of K-groups.

(iii) Colimits. If A is the union of subcategories A1 ⊂ A2 ⊂ . . . then
K∗(A) = colim K∗(Ai).

�

3. Controlled algebra

We will use the concept of a coarse structure from [HPR97].

Definition 3.1 (Coarse structure). By a coarse structure on a topo-
logical space X we mean a collection E of subsets of X ×X satisfying
the following conditions

(i) For E,E ′ ∈ E their union E ∪ E ′ is contained in some E ′′ ∈ E.
(ii) For E,E ′ ∈ E their composition (as relations) E ◦E ′ is contained

in some E ′′ ∈ E.
(iii) For E ∈ E its inverse Eop := {(x, y) | (y, x) ∈ E} is contained in

some E ′ ∈ E.
(iv) For E ∈ E and K ⊂ X compact the closure of

{x | (k, x) or (x, k) ∈ E for some k ∈ K}
is also compact.
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The sets E are called entourages in [HPR97].

Definition 3.2. Let S be a collection of subsets of a topological space
X that is closed under finite unions. Let E be a coarse structure on
X. Let p1, p2 : X ×X → X denote the projections onto the first and
second factor. Let ∆ : X → X ×X denote the diagonal embedding.

(i) We define the domain of E as

dom(E) := {F ⊂ X | ∆(F ) is contained in some E ∈ E}.

E is called unital if X ∈ dom(E).
(ii) The restriction of E to S is defined by

ES := {E | E ⊂ E ′, p1(E), p2(E) ⊂ F for some E ′ ∈ E, F ∈ S}.

It is again a coarse structure.
(iii) We define the E-enlargement of S by

〈S〉E := {p1(E ◦∆(F )) | E ∈ E, F ∈ S}.

Definition 3.3 (Coarse map). Let EX and EY be coarse structures on
topological spaces X and Y . A map f : X → Y is said to be coarse
(w.r.t. EX ,EY ) if the following two conditions are satisfied.

(i) For every EX ∈ EX there is EY ∈ EY such that f(EX) ⊂ EY .
(ii) For F ∈ S(EX) and K ⊂ Y compact, the closure of F ∩ f−1(K)

is compact.

Geometric modules are a useful tool from controlled topology. In
our case the control conditions will come from a coarse structure as in
[HPR97].

Definition 3.4 (Geometric modules and morphisms over X). Let A
be a small additive category and X be a topological space. Let E be a
coarse structure on X.

(i) A geometric A-module over X consists of a collection of objects
Mx ∈ A for x ∈ X, such that the support

supp(M) := {x | Mx 6= 0}

is a locally finite subset of X.
(ii) A morphism φ : M → N between geometric A-modules over X is

given by a collection of morphisms φx,y : My → Nx such that for
fixed x (resp. fixed y) φx,y 6= 0 for only a finite number of y (resp.
x). Define

supp(φ) := {(x, y) | φx,y 6= 0} ⊂ X ×X.
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Composition is matrix multiplication, i.e.

(φ ◦ ψ)x,y =
∑

z

φx,z ◦ ψz,y.

(iii) The category A(E) has as objects geometric modules M with
supp(M) contained in some F ∈ S(E). Morphisms in A(E) are
required to have support contained in some E ∈ E.

Remark 3.5 (Functoriality). Let f : X → Y be a coarse map (w.r.t.
coarse structures EX ,EY ). This induces a functor f∗ : A(EX) → A(EY )
as follows. Given a module M in A(EX), we define the module f∗M by
(f∗M)y := ⊕x∈f−1(y)Mx. Note that this sum is finite by 3.3 (ii). Given
a morphism φ in A(EX), the morphism f∗φ is defined by φy,y′ = ⊕φx,x′

where we sum over all (x, x′) ∈ (f × f)−1(y, y′).
This defines the functor f∗ only up natural equivalence (cf. [CP95,

1.16]). Following Weiss [Wei, Section 2], the problem can be solved
by equipping every module over a space by choices of all these finite
sums, i.e. a module is then a functor defined on the category of finite
subsets of the space. We will simply ignore this matter to simplify the
presentation.

Karoubi filtrations appear very naturally with geometric modules,
cf. [CP95, 1.29]. Here they will relate A(E) and A(ES). The proof of
the following lemma is immediate from the definitions.

Lemma 3.6. Let E be a coarse structure on X. Let S be a family of
subsets of X that is closed under finite unions. Denote 〈S〉E by S.

(i) We can consider A(ES) in an obvious way as a subcategory of
A(E). This is a Karoubi filtration. We denote the quotient by
A(E)/S.

(ii) The canonical inclusion A(ES) → A(ES) is an equivalence of
categories.

�

Remark 3.7. Let us describe the quotient category A(E)/S. It has
the same set of objects as A(E). Let M and N be geometric modules
in A(E). Then HomA(E)/S(M,N) is the quotient of HomA(E)(M,N)
by the following equivalence relation: morphisms φ, ψ : M → N are
identified whenever their difference factors over an object in A(E〈S〉E).
Equivalently: supp(φ− ψ) is contained in F × F for some F ∈ 〈S〉E.

Remark 3.8. In the situation of 3.6 the sequence

A(ES) → A(E) → A(E)/S



6 ARTHUR C. BARTELS

induces a long exact sequence of K-groups (using 2.1 and 2.2(ii)). We
will call such a sequence a Karoubi sequence.

Next we define the coarse structures that will be relevant in this
paper.

Definition 3.9. Let X be a topological space and Z be a proper metric
space.

(i) Continuous control. A subset E of (X × [0, 1))×2 is said to be
continuously controlled if for every x ∈ X and every neighborhood
U of (x, 1) in X × [0, 1] there is a neighborhood V such that
(X × [0, 1] − U) × V and V × (X × [0, 1] − U) do not intersect
E. The set of all continuously controlled E that satisfy also 3.1
(iv) form the continuously controlled coarse structure J(X) on
X × [0, 1).

(ii) Bounded control. Let B(Z) consist of all subsets E ⊂ Z × Z
satisfying the following: there is R = R(E) such that d(x, y) < R
whenever (x, y) ∈ E.

(iii) Continuous control with bounded control in Z-direction. The coarse
structure Jb(Z) (on Z× [0, 1)) consists of all E ∈ J(Z) that satisfy
in addition the following: there is R = R(E) such that d(x, y) < R
whenever ((x, t), (y, s)) ∈ E.

Continuous control was introduced in [ACFP94] to study homology
with coefficients in the K-theory spectrum of A (cf. 3.12). Bounded
control only captures large scale properties of Z. In particular, A(B(Z))
is equivalent to A whenever Z is compact. The mixture of continu-
ous control with bounded control in (iii) is particular suited for non-
compact Z. Let us note the functorial behavior of our different notions
of control.

Remark 3.10 (Functoriality). Each example in 3.9 describes a functor
from an appropriate category of topological or metric spaces to the
category of coarse spaces. We fix first some terminology. We will call
a map f : X → Y proper if the closure of f−1(K) in X is compact
for any compact subset K of Y . (Here proper maps are not necessary
continuous.) A metric space is proper if any closed ball of finite radius
is compact. A proper map f : X → Y between metric spaces will be
called metrically coarse if it satisfies the following growth condition:
for all R > 0 there is S > 0 such that

dX(x, y) < R =⇒ dY (f(x), f(y)) < S.

Using this terminology, the construction 3.9(i) is functorial on the cat-
egory whose objects are locally compact Hausdorff spaces and whose
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morphisms are proper, continuous maps; construction 3.9(ii) is functo-
rial on the category whose objects are proper metric spaces and whose
morphisms are metrically coarse maps; construction 3.9(iii) is functo-
rial on the category whose objects are proper metric spaces and whose
morphisms are metrically coarse, continuous maps.

In order to obtain a homology theory from the category A(J(X)) we
have to introduce the germ category.

Notation 3.11. For a topological space X we abbreviate

A(J(X))∞ = A(J(X))/〈{(X × {0})}〉J(X).

This category can be thought of, as obtained from A(J(X)) by taking
germs at X × {1}. Similar, for a metric space Z we abbreviate

A(Jb(Z))∞ = A(Jb(Z))/〈{(Z × {0})}〉Jb(Z).

The first version of the following result is [PW89, 3.1]. In this form
it is proven in [Wei, 3.1,4.2].

Theorem 3.12. The functor X 7→ K∗A(J(X))∞ is a generalized lo-
cally finite homology theory on the category of second countable, locally
compact Hausdorff spaces. �

In particular, the functor X 7→ K∗A(J(X))∞ is homotopy invariant.
Next we study corresponding invariance results for B(X) and Jb(X).

Remark 3.13. Let f, g : X → Y be metrically coarse maps between
proper metric spaces. If

∃C > 0 such that d(f(x), g(x)) < C ∀x ∈ X(3.14)

then it is not hard to see that the functors f∗, g∗ : A(B(X)) → A(B(Y ))
are natural equivalent and induce the same map on K-theory. Maps
satisfying (3.14) are called bornotopic in [HR95]. A bornotopy equiv-
alence f : X → Y is a metrically coarse map that is invertible up to
bornotopy. Clearly, such a bornotopy equivalence induces an isomor-
phism K∗A(B(X)) → K∗A(B(Y )).

We will mostly use the category A(Jb(X)) not A(J(X)). However,
by the next lemma the germ categories agree.

Lemma 3.15. Let X be a proper metric space. The canonical inclusion
A(Jb(X)) → A(J(X)) induces an isomorphism of categories

A(Jb(X))∞ ∼= A(J(X))∞.

In particular, with respect to the equivalence relation that defines the
quotient category A(J(X))∞, every morphism in A(J(X)) is equivalent
to a morphism in A(Jb(X)).
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Proof. We only prove the second statement. The isomorphism follows
easily from this. Let φ be a morphism in A(J(X)). Let

W = {(x, t) | ∃(y, s) such that d(x, y) > 1,

φ(x,t),(y,s) 6= 0 or φ(y,s),(x,t) 6= 0}.

Let ψ be defined by

ψ(x,t),(y,s) =

{
φ(x,t),(y,s) for (x, t) 6∈ W
0 otherwise

.

This is a morphism in A(Jb(X)).
For z ∈ X let Uz be the product of the open ball with radius 1 around

z with [0, 1]. Then there is an open subset Vz ⊂ X × [0, 1] containing
(z, 1) such that φ(x,t),(y,s) = 0 whenever (x, t) ∈ Vz and (y, s) 6∈ Uz. In
particular, W ∩ Vz = ∅. We can choose a locally finite set Z ⊂ X such
that

X × {1} ⊂
⋃
z∈Z

Vz.

Then

E = {((x, t), (x, 0)) | (x, t) 6∈ Vz ∀z ∈ Z}

is an entourage in J(X). Now {((x, t), (x, 0)) | (x, t) ∈ W} ⊂ E and
therefore W ⊂ p1(E ◦∆(X × {0})). This implies that φ and ψ define
the same morphism in A(J(X))∞. �

In order to get invariance results for the functor X 7→ K∗A(Jb(X))
the notion of homotopy has to strengthened to continuous Lipschitz
homotopy as follows.

Definition 3.16. Let X and Y be proper metric spaces. Let f, g :
X → Y be two metrically coarse maps. A metrically coarse map
H : X × [0,∞) → Y is called a Lipschitz homotopy (from f to g), if
the following conditions are satisfied.

(i) H(x, 0) = f(x).
(ii) For every compact K ⊂ X there is tK such that H(k, t) = g(k)

for k ∈ K, t > tK .
(iii) If K ⊂ Y is compact, then the set {x | H(x, t) ∈ K for some t}

is also compact.

If f, g and H are continuous maps, then we call H a continuous Lips-
chitz homotopy.

The following result is from [HPR97, 11.3].
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Proposition 3.17. Let X be a proper path-length metric space. Lips-
chitz homotopic maps induce the same maps

K∗A(B(X)) → K∗A(B(Y )).

�

Remark 3.18. In [HPR97], this result is stated for a weaker notion of
Lipschitz homotopy. However, this is incorrect, and the proof given in
[HPR97] in fact only works for the stronger notion formulated above.
(Condition (iii) is formulated weaker, to the effect that the identity and
the absolute value map R → R are Lipschitz homotopic. But A(B(−))
applied to the absolute value map is trivial in K-theory.)

Corollary 3.19. Let X be a proper geodesic space. Continuously Lip-
schitz homotopic maps induce the same maps

K∗A(Jb(X)) → K∗A(Jb(Y )).

Proof. First assume that f is a continuous Lipschitz homotopy equiv-
alence (in the obvious sense). Consider the Karoubi sequence

A(B(−)) → A(Jb(−)) → A(Jb(−))∞

for − = X, Y . The functor f∗ induces an isomorphism on the K-theory
of the first term by 3.17 and on the third term by 3.12 and 3.15. Now
the long exact sequence 3.8 and the 5-Lemma imply that f∗ induces an
isomorphism on K∗A(Jb(−)).

For the general case we use the notation from 3.16. Let ϕ : X →
[0,∞) be a continuous map such that ϕ(x) > tK for x ∈ K. Let

X0 = X × {0}
X1 = {(x, ϕ(x)) | x ∈ X}
Z = {(x, t) | x ∈ X, 0 ≤ t ≤ ϕ(x)}

be equipped with the induced path-length metric from X × [0,∞).
Consider the following commutative diagrams (cf. [HPR97, 11.2]).

X0
i0 //

id   B
BB

BB
BB

B Z

p

��

X1
i1oo

q

~~||
||

||
||

X0

id
��

i0 // Z

H|Z
��

X1
i1oo

q

��
X X

f
// Y Xg
oo

Observe now that i0 and i1 are both continuous Lipschitz homotopy
equivalences. The general case follows, since p∗ is the inverse of (i0)∗.

�

It is often easy to see that categories of geometric modules are
flasque. We review a well known example.
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Remark 3.20. Let ∗ denote the one point space. Let f : [0, 1) → [0, 1)
be defined by

f(t) = t+ (1− t)/2.

Then f induces a functor Sh : A(J(∗)) → A(J(∗)). Clearly Sh is
naturally equivalent to id. Moreover, the functor

S =
∞⊕
i=1

Sh i

is well defined and S is natural equivalent to S⊕ id. Therefore, A(J(∗))
has trivial K-theory. Cf. 2.2 (i).

4. Squeezing

The metric spaces we will consider are usually simplicial complexes
with the spherical metric. Let us review the definition of this metric,
cf. [HR95, 3.1]. We consider the standard n-simplex ∆n as the set
of points of Sn ⊂ Rn+1 with nonnegative coordinates. The Riemann-
ian metric on Sn induces the standard spherical metric on ∆n. The
spherical metric dQ on a simplicial complex Q is the path metric whose
restriction to each simplex is the standard spherical metric. (Thus,
the distance between points in different path components is defined to
be ∞.) Let us agree that all simplicial complexes in this section are
assumed to be locally finite.

The main result of this section is the following proposition. We will
discuss its relation to squeezing later on.

Proposition 4.1. Let Qn be a sequence of simplicial complexes of uni-
formly bounded dimension. Let Y be the disjoint union

Q1 qQ2 qQ3 q . . . .

Equip Y with the metric d that restrict to n times the spherical metric
on Qn and satisfies d(Qn, Qm) = ∞ for n 6= m. Let S be the set
consisting of all finite unions Yn := Q1 × [0, 1) q · · · q Qn × [0, 1) ⊂
Y × [0, 1). Then the inclusion

A(Jb(Y )S) → A(Jb(Y ))

induces an isomorphism on K-theory.

Of course, it is crucial here, that we blow up the metric on the Qn

as n increases. We discuss a special case before giving the proof of 4.1.

Lemma 4.2. Suppose that in 4.1 each Qn is a disjoint union of j-
simplices. Then A(Jb(Y )) and A(Jb(Y )S) have vanishing K-theory.
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Proof. Different simplices have infinite distance. Therefore morphisms
in A(Jb(Y )) and A(Jb(Y )S) cannot be nontrivial between different j-
simplices ∆,∆′, i.e. for φ ∈ A(Jb(Y )) we have supp(φ) ∩∆ ×∆′ = ∅.
If we assume for a moment j = 0, then A(Jb(Y )) and A(Jb(Y )S) are
flasque. This can be seen by pushing modules over Y × [0, 1) along
[0, 1) towards 1, cf. 3.20.

For the general case, pick a point on each simplex and let p : Y → Y
the map that projects each simplex to this point. Then p is Lipschitz
homotopic to the identity. On the other hand, p induces the trivial map
in K-theory by the case j = 0. The claim follows now from 3.19. �

Proof of 4.1. We proceed by induction over the skeleta. LetQ
(j)
i denote

the j-skeleton of Qi. Let Y (j) ⊂ Y denote the disjoint union of the Q
(j)
i .

Let S(j) := {(Y (j)∩Yn)×[0, 1) | n ∈ N}. We abbreviate J(j)
b := Jb(Y

(j))

and J(j)
b,f := Jb(Y

(j))S(j) .
Consider first the Karoubi sequence

A(J(0)
b,f ) → A(J(0)

b ) → A(J(0)
b )/S(0).

Note the following: for fixed R there is n such that pairs of different
points in Y (0) with distance less than R must lie in Q1 q · · · q Qn.

This has the consequence that the quotient category A(J(0)
b )/S(0) re-

mains unchanged if we replace the metric d|Y (0) with a metric d∞ that
gives different points always infinite distance, i.e we may assume that
each Qi is just a collection of points. (Use the description in 3.7 of

A(J(0)
b )/S(0) to see this). Thus, by 4.2 and the long exact sequence 3.8

the isomorphism follows for j = 0.
Now consider

A(J(j)
b,f )

//

F1

��

A(J(j+1)
b,f ) //

F2

��

A(J(j+1)
b,f )/S(j)

F3

��

A(J(j)
b ) // A(J(j+1)

b ) // A(J(j+1)
b )/{Y (j)}.

The two rows are Karoubi sequences. By induction we may assume that
F1 gives an isomorphism on K-theory. It will therefore suffice to show
the same for F3 (using 3.8). In the two middle categories morphisms
can be non trivial between different j + 1-simplices. However, as we
move towards Y × {1} this can only happen close to the boundary
of those simplices. More precisely, this can only happen over some
F ∈ 〈S(j)〉J(j+1)

b,f
(resp. F ∈ 〈{Y (j)}〉J(j+1)

b
). In the quotient categories

on the right hand side morphisms that factor over objects with support
in such F are identified with the trivial morphism (cf. 3.7). Therefore,
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we can assume that morphisms in the quotient categories are trivial
between different j+1-simplices. Thus, the quotient categories remain
unchanged if we replace each Qn by the disjoint union of its j + 1
simplices. In this case the two middle terms have vanishing K-theory
by 4.2. By induction we can also in this case assume that F1 is an
K-theory isomorphism and we can conclude that the same holds for
F3. �

The following corollary is the squeezing result we will use in Section 6.

Corollary 4.3. Let Y,Qn be as in 4.1. Let F : B → A(Jb(Y )) be
a functor of additive categories. Denote by Fn : B → A(Jb(Qn)) the
composition of F with the projection A(Jb(Y )) → A(Jb(Qn)). Let a ∈
KiB. Then there is N such that (Fn)∗(a) = 0 for all n > N .

Remark 4.4. The projection functor A(Jb(Y )) → A(Jb(Qn)) in 4.3 is
not induced by a map Y → Qi. It is given by restricting modules M
over Y × [0, 1) to Qi × [0, 1). This gives indeed a well defined functor,
since Qi and Y −Qi have infinite distance and morphism in A(Jb(Y ))
are therefore always trivial between Qi and Y −Qi.

Proof of 4.3. Observe first that A(Jb(Y )S) ∼= colim A(Jb(Q1 q · · · q
Qn)). In particular, by 4.1 there is b ∈ KiA(Jb(Q1 q · · · q QN)) for
some N , that maps to F∗(a) ∈ A(Jb(Y )). The composition

A(Jb(Q1 q · · · qQN)) → A(Jb(Y )) → A(Jb(Qn))

is the trivial functor provided n > N and the claim follows. �

In the remainder of this section we will discuss the relation of Propo-
sition 4.1 and Corollary 4.3 to the classical squeezing of automorphisms
of geometric modules, cf. [Qui82, 4.5]. Let X be a proper metric space.
Recall that an ε-automorphism φ is an automorphism in A(B(X)) such
that the support of φ and φ−1 are contained in

Eε = {(x, y) | d(x, y) ≤ ε}.

Recall also, that elements in K1 of an additive category are equivalence

classes of automorphisms. Let us denote by K
(ε)
1 A(B(X)) the subgroup

{[φ] | φ is an ε-automorphism} ⊂ K1A(B(X)).

The classical squeezing result of Quinn says that there is an ε such
that every ε-automorphism can be deformed to an δ-automorphism for
every δ > 0. Let us phrase this as follows.
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Theorem 4.5. Let Q be a finite dimensional simplicial complex. Con-
sider the spherical metric on Q. Then there is ε > 0 (depending only
on the dimension of Q), such that

K
(δ)
1 A(B(Q)) = K

(ε)
1 A(B(Q)),

for all 0 ≤ δ ≤ ε.

This is immediate from [Qui82, 4.5]. See also [Ped00, 3.7]. (Both
statements give in fact more information.) Using 4.1 we can give a very

simple proof of the following analogue to 4.5. Here K
(ε)
1 A(Jb(X)) is the

obvious analogue toK
(ε)
1 A(B(X)). The difference in the statements can

be attributed to the fact that K1A(Jb(∗)) vanishes, while K1A(B(∗))
is K1A.

Corollary 4.6. Let Q be a finite dimensional simplicial complex. Con-
sider the spherical metric on Q. Then there is ε > 0 (depending only
on the dimension of Q), such that

K
(δ)
1 A(Jb(Q)) = 0,

for all 0 ≤ δ ≤ ε.

Proof. We proceed by contradiction and assume that there is a sequence
Qn of simplicial complexes of dimension ≤ d and 1/n-automorphisms
φn in A(Jb(Qn)) representing nontrivial elements in K1A(Jb(Qn)). Let
Y = Q1 q Q2 q . . . be equipped with the metric from 4.1. Then
φ1 ⊕ φ2 ⊕ . . . can be viewed as an automorphism in A(Jb(Y )). It is
now a consequence of 4.1 that [φn] = 0 for all but finitely many n. �

Remark 4.7. It is a consequence of 4.6 that K
(ε)
1 A(B(Q)) is contained

in the image of the boundary map

∂ : K2A(Jb(Q)∞) → K1A(B(Q))

associated to the Karoubi sequence (5.1). This is an analogue to a
result of Pedersen [Ped00, 3.6] and he deduces the squeezing theorem
from this in [Ped00, 3.7]. Now 4.3 is a higher K-theory version of 4.6.
Hence our squeezing result 4.3 can be viewed as generalizing [Ped00,
3.6]) to higher K-theory.

5. The descent principle

Let X be a proper metric space. We denote the boundary map in
the long exact sequence associate to the Karoubi sequence (cf. 3.8 and
3.11)

A(B(X)) → A(Jb(X)) → A(Jb(X))∞(5.1)
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by

CA : KnA(Jb(X))∞ → Kn−1A(B(X)).(5.2)

In analogy to the coarse Baum-Connes conjecture [Roe93] we can ask
for which metric spaces CA is an isomorphism. This question is relevant
for the assembly map in algebraic K-theory, because of the following
result from [CP95]. For a group Γ let A[Γ] denote the category that
has the same objects as A, but homA[Γ](−,−) = homA(−,−)[Γ]. In
particular, A[Γ] is equivalent to the category of finitely generated free
R[Γ]-modules, provided A is the category of finitely generated free R
modules.

Theorem 5.3 (Descent principle). Let Γ be a discrete group and let
EG→ BG be a model for the universal Γ-bundle. Assume that BΓ is
equipped with a path-length metric inducing a metric on EΓ. If

CA : K∗A(Jb(EΓ))∞ → K∗−1A(B(EΓ))

is an isomorphism, then the assembly map

H∗(BΓ; K−∞A) → K∗A[Γ]

in algebraic K-theory is split injective, provided that BΓ is a finite
CW -complex.

Sketch of proof. In [CP95, Section 2] the map CA is constructed as a
Γ-equivariant map of spectra with Γ-action S → T such that restriction
to Γ-fix points gives the above assembly map. The assumption implies
now that S → T is a homotopy equivalence. Thus we also get a ho-
motopy equivalence on homotopy fix points ShΓ → T hΓ. Also the map
SΓ → ShΓ can be seen to be an isomorphism (using that BΓ is finite).
At this point another property of K-theory is used: it commutes with
infinite products [Car95]. In [CP95] slightly different control conditions
are used: instead of a bounded control assumption a compactification
of EΓ is used. This does not affect the argument. For more details see
[CP95]. �

One way to pass from (possibly discrete) metric spaces to topology
is given by the Rips-complex. Related is the notion of an anti-Čech
system, due to Roe. It gives a systematic way of looking at larger and
larger parts of a metric space. This will be a useful tool to study the
map CA.

Definition 5.4.

(i) ([Roe93, 3.13]) An anti-Čech system for a metric space X is a
sequence U1,U2, . . . of open covers of X such that there is a se-
quence of numbers Rn tending to infinity with the property that
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the diameter of every set in Un is bounded by Rn and the Lebesgue
number of Un is at least Rn−1. The nerve |Un| of Un is the simpli-
cial complex with a vertex for each U ∈ Un and a p-simplex for
every p + 1-tuple U0, . . . , Up ∈ Un having nonempty intersection.
For each set U in Un we can choose a set in Un+1 containing U .
These choices are part of the structure of an anti-Čech system
and determine maps

|U1|
i1 // |U2|

i2 // |U3|
i3 // . . . .

(ii) ([HR95, Section 3]) Given a locally finite homology theory h∗,
the associated functor hx ∗ on metric spaces (a ‘coarse homology
theory) is given by

hx ∗(X) := colim h∗(|Un|),
where the limit is taken over an anti-Čech system for X. A par-
tition of unity subordinate to the cover U1 determines a map
f : X → |U1| and therefore a coarsening map

c : h∗(X) → hx ∗(X).

Note that the map f is by construction metrically coarse.

We recall a result of Higson and Roe, that will be used in Section 6.

Proposition 5.5 ([HR95, 3.9]). Assume that X is a uniformly con-
tractible, bounded geometry complex. Then the coarsening map c :
h∗(X) → hx ∗(X) is an isomorphism. �

Remark 5.6. For the definition of uniformly contractible, bounded ge-
ometry complex see [HR95, Section 3]. Let Q be simplicial complex
endowed with the spherical metric. Assume that Q = EΓ for some
discrete group Γ such that Q/Γ is a finite complex. Then it is not hard
to see that Q is a uniformly contractible, bounded geometry complex.

6. Finite asymptotic dimension

Let X be a proper geodesic space. Let us abbreviate

h∗(X) = K∗A(Jb(X))∞.

Recall from 3.12 that h∗ is a locally finite homology theory. We have
the coarsening map c : h∗(X) → hx ∗(X) from 5.4 (ii). The main goal
of this section is the proof of the following result.

Theorem 6.1. Suppose that X is a proper geodesic space of finite
asymptotic dimension m. Then CA from (5.2) is an isomorphism,
provided the coarsening map c is an isomorphism.
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Recall from [Gro93, p.28] that the asymptotic dimension of X is the
smallest integer n such that for any R > 0, there exists a cover U of
X with the property that the diameter of members in U is uniformly
bounded and every ball of radius R in X intersects at most n + 1
members of U .

A key ingredient in Yu’s proof of the coarse Baum-Connes version of
6.1 is [Yu98, Lemma 6.3]. We will need the following reformulation of
Yu’s lemma.

Lemma 6.2. Let X be a proper metric space of asymptotic dimension
m. Then there is an anti-Čech system Un for X and maps Gn : |U1| →
|Un| such that the following holds

(i) Gn is metrically coarse, proper and continuous.
(ii) Gn is properly homotopic to i1 ◦ · · · ◦ in−1, where the ij come from

the anti-Čech system Un (cf. 5.4 (i)).
(iii) For all S > 0 there is T = T (S) > 0 such that for x, y ∈ |U1| with

d(x, y) ≤ S we have d(Gn(x), Gn(y)) < T/n.
(iv) The dimension of the |Un| is uniformly bounded by m.

Proof. It follows easily from [Yu98, 6.3] that there are U ′
n, G

′
n satisfying

(i),(ii),(iv) and the following version of (iii).

For R > 0 there is K = K(R) such that for x, y ∈ |U ′
1|

with d(x, y) ≤ R we have d(G′
n(x), G′

n(y)) < 1/R if
n > K(R).

Let now j1, j2, . . . be a strictly increasing sequence of integers such
that jR > K(R) for all R. Then Un = U ′

jn
and Gn = G′

jn
satisfy our

claim. �

Lemma 6.2 allows us to use the squeezing result 4.3 to prove the
following vanishing result for elements in algebraic K-theory. This will
be the decisive point in the proof of 6.1.

Proposition 6.3. Let Um, Gm be as in 6.2. For a ∈ K∗A(Jb(|U1|))
there is N such that

(Gn)∗(a) = 0 ∈ K∗A(Jb(|Un|))

for all n ≥ N .

Proof. Let

Y = Q1 qQ2 qQ3 q . . .

where Qn = |Un|. We use the path metric on Y that restricts to
n times the spherical metric on Qn. By 6.2 (iii) the functors (Gn)∗ :
A(Jb(Q1)) → A(Jb(Qn)) can be assembled to a functor F : A(Jb(Q1)) →
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A(Jb(Y )) such that (Gn)∗ is the composition of F with the projection
A(Jb(Y )) → A(Jb(Qn)). The claim follows now from 4.3. �

Proof of 6.1. We use the anti-Čech system Um for X and the maps
Gn from 6.2. Let f1 : X → |U1| induce the coarsening map and set
fm = im−1 ◦ · · · ◦ i1 ◦ f1. Compare the following long exact sequences,
cf. (5.1).

KjA(Jb(X)) //

(fn)∗
��

KjA(Jb(X))∞
CA //

(fn)∗
��

Kj−1A(B(X))

(fn)∗
��

KjA(Jb(|Un|)) // KjA(Jb(|Un|))∞ CA // Kj−1A(B(|Un|))

Now take the colimit over the maps im in the second row. Then the
second and third vertical arrows become isomorphisms: The second one
is the coarsening map c and an isomorphism by assumption. For the
third arrow observe that f1 and the im are bornotopy equivalences (see
3.13) and are therefore isomorphisms. The colimit preserves exactness
and using the 5-Lemma we get an isomorphism

colim(fn)∗ : KjA(Jb(X)) ∼= colim KjA(Jb(|Un|)).(6.4)

On the other hand, by 3.19 and 6.2 (ii) we have

(in)∗ = (Gn)∗ : KjA(Jb(|U1|)) → KjA(Jb(|Un|)).
Therefore 6.3 implies that the map in (6.4) is the trivial map. This
can only happen if KjA(Jb(X)) vanishes and CA is an isomorphism as
claimed. �

The above argument depends on the assumption that X is geodesic:
it has been pointed out by Wright [Wri02] that f1 may not be coarse
for general X.

We can now prove our main result. If we take for A the category
of finitely generated free R-modules we obtain Theorem 1.1 from the
introduction.

Theorem 6.5. Let Γ be a group that is equipped with a word length
metric of finite asymptotic dimension. Assume moreover, that BΓ can
be realized as finite CW -complex. Then the assembly map

H∗(BΓ; K−∞A) → K∗A[Γ]

in algebraic K-theory is split injective.

Proof. Let BΓ be realized as a finite simplicial complex. Then the
universal cover EΓ of BΓ is quasi isometric to Γ equipped with any
word length metric. In particular EΓ has finite asymptotic dimension.
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Now 5.5 allows us to apply 6.1 and our claim becomes a consequence
of the descent principle 5.3. �

7. L-theory

Results in algebraic K-theory have very often analogues in L-theory.
This is also the case for the results of this paper. For an additive
category A with involution Ranicki [Ran92] defines an L-theory spec-
trum with various decorations. Section 4 of [CP95] contains a review
of L-theory that is sufficient for our purposes here. In this sections all
additive categories will have an involution, even if this is not specifi-
cally mentioned. We will mostly be interested in the functor L−∞ from
additive categories (with involutions) to spectra, cf. [CP95, 4.16]. This
functor has properties completely analogous to the properties of K-
theory stated in Section 2. For the fibration sequence associated to a
Karoubi filtration see [CP95, 4.2]. This allows the extension of results
from the previous sections to L-theory. Given an involution on A it is
not hard to construct an involution on A(E), cf. [CP95, Section 5]. We
will denote the homotopy groups of L−∞A by L−∞∗ (A). The squeezing
result 4.3 has the following L-theory analogue. The proof is completely
parallel to the K-theory case.

Proposition 7.1. Let Y,Qn,B, F, Fn be as in 4.3. Let a ∈ L−∞i (B).
Then there is N such that (Fn)∗(a) = 0 for all n > N . �

This in turn can be used to prove the following analogue of 6.5.
Note that this is a corollary to Yu’s result [Yu98] if A is the category
of finitely generated free modules over Z. The assumption on vanishing
of lower K-theory guarantees the analogue of [Car95] for L-theory, that
is needed for the descent principle 5.3.

Theorem 7.2. Let Γ be a group that is equipped with a word length
metric of finite asymptotic dimension. Assume moreover, that BΓ can
be realized as finite CW -complex and that K−jA = 0 for all sufficiently
large j. Then the assembly map

H∗(BΓ; L−∞A) → L−∞∗ A[Γ]

in L-theory is split injective. �

It is explained in [CP95, Section 5] how this can in certain cases be
used to derive splitting results with other decorations than −∞.

There is also an analogue to 4.6. Recall that Lh
nA can be defined

as the bordism classes of n-dimensional quadratic Poincaré complexes
over A, cf. [Ran89]. We will say that such a Poincaré complex (C,ψ)
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over A(Jb(X)) is ε-controlled if all involved morphism (in particular the
homotopy that proves Poincaré duality) have support contained in

{((x, t), (y, s)) | d(x, y) ≤ ε}.

Proposition 7.3. Let Q be a finite dimensional simplicial complex
equipped with the spherical metric. Then there is ε > 0 (depending
only on the dimension of Q), such that every ε-controlled n-dimensional
quadratic Poincaré complex over A(Jb(X)) represents an element in the
kernel of

Lh
nA(Jb(X)) → L−∞n A(Jb(X)).

�

Remark 7.4. There are two slightly different definitions of n-dimensional
quadratic Poincaré complexes (C,ψ) in the literature. In Ranicki’s orig-
inal definition it was required that the chain complex C is concentrated
between dimensions 0 and n. This was given up in later definitions.
However, above we have to use the original definition: in the proof of
4.6 we viewed an infinite direct sum of automorphisms φn as an au-
tomorphism. The corresponding construction for Poincaré complexes
works only if chain complexes involved are concentrated in uniformly
bounded dimensions.
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