HIGHER DIMENSIONAL LINKS ARE SINGULAR SLICE
ARTHUR BARTELS

ABSTRACT. We show that for n > 2 all links of embedded n-spheres in $”*? are singular
slice, i.e. bound pairwise disjoint (but not embedded) n + 1-disks in D"*3. The proof
relies on a careful analysis of immersions in codimension two, that allows us to work in
a nilpotent setting.

1. INTRODUCTION

An n-dimensional link £ is a smooth embedding S™II---I1.5™ « S"*2, [ is said to be
slice if there are slice disks for £, namely an embedding f : D"*' I ... IT D"t s pDn¥3
that extends £. In the classical dimension (n=1) the linking number detects examples of
non-slice links. For example the Hopf link is not slice. The linking number obstructs even
more: there are no singular slice disks for the Hopf link. A link £ is called singular slice
if there are singular slice disks for £, namely a link map f: D" II...1I D"t — Dn+3
extending £. (A link map is a map that keeps different components disjoint in the image.)
More examples of such links are detected by Milnor’s g-invariants (with non-repeating
indices), see [13]. For example the Borromean rings have non-vanishing p(1,2,3) and are
thus not singular slice.

In [5], Cochran shows that certain proposed generalizations of the p-invariants to
higher dimensional (embedded) links vanish. He used a result of Bousfield and Kan on
the homology of nilpotent quotients of the free group (compare 2.3). This is also an
important ingredient in the proof of our result:

Theorem 1.1. All links of dimension n > 2 are singular slice.

A link homotopy is a motion that keeps different components disjoint, i.e. a homotopy
through link maps. Link homotopy was introduced by Milnor in [13] to study classical
links. He constructed a certain nilpotent quotient of the fundamental group of the link
complement, later known as the Milnor group, which is invariant under link homotopy.
A classical link is homotopically trivial if and only if its Milnor group is isomorphic to
the Milnor group of the trivial link. Another way of formulating this result is to consider
p-invariants (with non-repeating indices). Then a classical link is homotopic to the trivial
link if and only if all of these invariants vanish. Note that homotopically trivial links
are singular slice. In fact the two notions are equivalent: singular slice links are also
homotopically trivial. For n > 2 this result is due to Teichner [17]. For n = 2 a proof of

his result can be found in [1], but the general case is yet unpublished. [1] also contains
1
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our theorem for n = 2. The following consequence of Teichner’s result together with
Theorem 1.1 is in contrast to the classical situation.

Corollary 1.2. All links of dimension n > 2 are homotopically trivial.

It should be noted that link homotopy makes sense for link maps S™II---I1 5" — S§7+2
that are not necessary embeddings. The first example of a link map S? IT S? — S* that
is homotopically essential was constructed by Fenn and Rolfsen in [8]. Link homotopy is
not restricted to codimension two. A generalisation of p-invariants to link maps S?* I
- IT.SPr — S™ is due to Koschorke ([11]). The vanishing of these invariants on the links
studied here has been conjectured by Kaiser.

It is known that all even dimensional knots are slice (see [9]), but there are non-slice
knots in all odd dimensions (see [12]). In [3], boundary links are studied, leading to
examples of links in odd dimensions that are not slice, even though all their components
are slice as knots. The question of wether all even dimensional links are slice is still open.
An approach to this question is to use surgery to build a slice complement, for example
see [4]. For a link £ let X be obtained from S"*? by surgery on all components of
L. Then L is slice if and only if X, bounds a manifold (namely the slice complement)
satisfying certain conditions. The main problem here is to find both a suitable model
space and a map from the link complement to the model that controls the surgeries.
For example, the canonical slice complement of the trivial link (W from Section 2) is
homotopy equivalent to a wedge of circles, and constructing a suitable map boils down
to group theory. In this way, one can prove that boundary links of even dimensions are
slice (compare also [3]). An obvious consequence of 1.2 is the following: invariants that
could detect non-slice links cannot be invariant under link homotopy.

The proof of Theorem 1.1 uses the technique sketched above for the slice problem: we
construct the link map f by building its complement in D", To find a suitable model
the following statement about the trivial link £y is essential.

Proposition 1.3. There are immersed singular slice disks f; : D" 11 ... II D"t o
D3 for Lo such that their complement has a nilpotent fundamental group and nilpotent
homotopy groups (over the fundamental group) in dimensions < n/2.

In fact, the nilpotent fundamental group will be MF, the Milnor group of the trivial
link. Assuming Proposition 1.3 we construct our nilpotent model MOD and maps into it
in Section 2. In particular, we find maps comparing MOD with the Eilenberg-MacLane
spaces K, for nilpotent quotients of the free group. In order to construct maps into
our nilpotent model we have to control only obstructions in cohomology with untwisted
coefficients. To control these obstructions we will use the consequence of Bousfield’s and
Kan’s result that was obtained in [5]. For a given link £ we construct in Section 3 a
potential boundary of a singular slice complement, a closed manifold Y;. Recall that
X, is obtained from the link complement by adding II*D"*! x S'. To construct Y,
we replace IT" D! x S1 by a more complicated manifold ¥ F', reflecting the presence of
selfintersections. In fact, the choice of X F fixes the structure of selfintersections of the
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singular slice disks we are looking for. The next step is to construct a manifold A with
boundary Y, and a suitable map A — MOD. If n is even we can then obtain the desired
complement of singular slice disks by surgery on A. In the case of odd dimensional links,
a surgery obstruction (echoing the existence of non-slice links) complicates the situation.
An additional geometric construction (symmetric surgery from [18]) is needed in Section 4
to finish the proof for this case. In [18] it was used to show that all boundary link maps
are homotopically trivial. This construction introduces further selfintersections into the
singular slice disks.

The remaining sections of the paper contain the proof of the above proposition. In
Sections 5 and 6 we study immersions M % N, describing in particular how certain
moves can be used to change the selfintersections and simplify the homotopy type of the
complement N—M (6.9). Here we use the language of stratified handles from [17]. Finally
Section 7 provides the necessary algebra to finish the proof of 1.3. We construct nilpotent
quotients of modules over the Milnor group MF'. These quotients will be realized using
the moves from Section 6 to obtain nilpotent homotopy groups in the construction of f;.
We work in the smooth category.

Our proof generalizes the argument from [1] where the moves involved are only finger
moves and where the nilpotent model is the classifying space for the Milnor group MF.

This paper is essentially the author’s Ph.D. thesis, that was written under the guidance
of Peter Teichner at UC San Diego. It is a pleasure to thank him for countless valuable
discussions. I thank Bob Edwards for pointing out a missing argument.

2. THE MODEL

Let n > 2 and Lo : S”IT--- 11 S™ < S™*2 be the trivial link with v components. Let
fo: D"THIT ... T D™ < D™ be standard slice disks for Lo and let f; be the singular
slice disks for Ly from 1.3. We denote by F' the free group on v generators and by F, the
r-th term of its lower central series (compare Section 7). Let ﬁ) YD+ x D% s Dt
and fl : IV D™ x D? 9 D™ be thickenings of fo and f; which agree on I1¥5™ x D?.
Denote by int(D?) the interior of D?. We will need the following manifolds:

Wets = DS (I D™ x ant(D?))
Wit = DS (I D™ < ant(D?))
W= WO Usn2_ 7, (v 57 xint(D2)) W
SH™ = [(IVD < D?)

SEH? = ONH — fo(I1YS™ x int(D?)).

These manifolds come with some corners, but all of them can be smoothed, essentially
by some application of Figure 5. We will ignore this matter for now. Note that Wy, W,
and Y H inherit a framing (of stable tangent bundles) as codimension 0 submanifolds
of D"*?. These framings induce framings of ¥ F and W. There is a unique framing of
D"t x St that extends to a framing of D"t x D?. Tt is this framing that the components
of IT" D™+ x S' inherit as part of the boundary of W. The following space will be used to
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FIGURE 1. A schematic picture of W.

model the complement of singular slice disks for an arbitrary link: let MOD be obtained
from W; by attaching cells of dimension > n/242 such that #x(MOD) = 0 for k > n/2+1.

Proposition 2.1. There is a sequence of spaces and maps
MOD ~ 7, — Zpy_1 — -+ — 71 = K(m(MOD), 1)

such that the Z;.1 — Z; are fibrations with fiber K(G;,1;) where m(Z;) = w1 (MOD)
acts trivially on G;. Here [; > 2. In particular, to lift a map X — K(7(MOD), 1) to
a map X — MOD only obstructions in ordinary cohomology as opposed to cohomology
with twisted coefficients have to be considered.

Proof. From 1.3 and the construction of MOD we know that only a finite number of
its homotopy groups are nonzero and that they all are nilpotent as modules over the
(nilpotent) fundamental group. Thus, MOD is a nilpotent space and its Postnikov tower
has a refinement as stated, see [2, [1.4.7]. O

Lemma 2.2. The inclusion map Wy — MOD extends to a map W — MOD.

Proof. Note that Wy is simply the boundary connected sum of v copies of S x D"*2, Up
to homotopy equivalence, we can obtain W from W; by adding cells of dimensions n + 2
and n + 3. But by construction, m,42(MOD) and 7,435(MOD) are trivial; hence we can
extend our map over the additional cells. O
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We will need a consequence of a result of Bousfield and Kan [2, p.123] stating that the
tower

is protrivial. Let K, be an Eilenberg-MacLane space for F/F, that is constructed by
adding cells of dimension > 2 to Wy. This form of K, will be used later to extend maps
from Wy to K, see 2.4 below. Let J. be obtained from K, by attaching 2-cells to the
v meridians in Wy. Thus, the J, are 1-connected and satisfy Hy(J,) = Hy(F/F,) for
k > 2. For ' > r, the maps K,» — K, induced by the projections F'/F,, — F'/F, can be
extended to maps J,» — J,. The following result is now a consequence of the eventual
Hurewicz theorem from [5]. (Compare also [6].)

Theorem 2.3. For any r and k there is an integer v’ > r such that the map from the
k-skeleton of J. to J, is null-homotopic.

Note that 2.2 gives a map Wy — MOD.

Lemma 2.4. For sufficiently large v the map Wy — MOD can be extended to a map
K, — MOD.

Proof. By 1.3 71(MOD) is nilpotent. Hence there is an [ such that the map induced by
Wy — MOD on fundamental groups factors as

F—F/F.,— F/F, — 7(MOD)
for all v" > r > [. This gives a commutative diagram:
Wy MOD

| |

K, — K, — K(m(MOD), 1)

We will now use the notation of 2.1. From the exact sequences of the pairs (K,, Wy) and
(K., Wy), we see that

HY YK, Wo Gy) =2 HVTY (K, Gy HYYY K, W Gy) =2 HP Y (K5 G).

Let u € H'""Y(K,, Wy; G1) be the obstruction to lift K, — K (7 (MOD),1) to a map
K, — Z,. By 2.3, we can choose r’ sufficiently large such that u pulls back to 0 €
HY*Y(K,/, Wy). Thus, there is a lift K, — Z,. Repeating this process, we work our way
up the tower of 2.1 and find that there is an extension of Wy — MOD to K, — MOD
for sufficiently large r. O

There are v projections F' — Z coming from the generators. They induce projections
F/F, — 7Z and give maps

- 1
a; t K, — S

fory=1,...,v.
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Let §2. be a generalized homology theory and denote the corresponding reduced theory
by €..

Proposition 2.5. Let r > 2. For any k there is a short exact sequence

0 — P AU(S") = U(K,) = Qu(J,) — 0.
A splitting of this sequence is given by

(s -+ a) : (K,) @Qk ().

Proof. Consider the long exact sequence of the pair (J,, K, ). Observe that

0, K,) @Qk (D?, 5% = éﬁk_l(s )

This provides the long exact sequence

.H@kal — Q(K,) — Q(J @le —

Now (a1« ..., ) splits this into short exact sequences as claimed. O

3. EVEN DIMENSIONAL LINKS

We will continue to use the notation of section 2. Let n > 2 and £: 5710 ..-- I 5" —
S™+2 be a link with v components. We can add locally to each component of L its
respective mirror image, the inverse in the knot concordance group (see [9]). Since knot
maps are null homotopic, this addition can be achieved by a link homotopy taking place
in small disjoint (n + 2)-disks, one for each component (compare [18]). We will from now
on always assume that the components of £ are slice as knots. Note that it is sufficient
to prove Theorem 1.1 for such links, since we can always add a link homotopy to singular
slice disks. This assumption implies in particular that we can extend £ to an immersion

f:D"HID. . T D™ 9s DR,

We can construct f using general position slice disks for the components of £ such that
the restriction of f to each (n+1)-disk gives an embedding. Let f : II* D"*! x D? g5 D"+3
be a thickening of f. Surgery on £ produces the manifold

X2 = 92 F(I1VS" % int(D?)) Unpsn s 117D x S,
Note that X, bounds the manifold
VIS = D" Ul gnype IV D™ x D2,

The immersion f can be used to define a framing of II¥D"™! x D?. This fits with the
standard framing of D"*® and gives a framing of V. As its boundary, X, inherits an
induced framing. Restricted to IT¥D"t! x S this gives again the unique framing that
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extends over IT" D"t x D?. From II¥ D"*t! x S' C W, we have inclusions IT* D"t! x §1 —
K,.

Lemma 3.1. For any r there is a map o, : Xp — K, extending the inclusion 1I¥ D"t x
St — K,.. Forr' > r, this gives a commutative triangle:

Xz

|\

K, — K,

Proof. We find X; — K; since K; is contractible. The fibration K,;; — K, has
K(F,/F,41,1) as its fiber, and m(K,) = F/F, acts trivially on F,/F,41. Thus, the
obstructions to lift our maps lie in H*( X, II* D"t x S') with appropriate untwisted
coeflicients. Now

HQ(X,C,H”D”"’1 X Sl) & H2(5”+2,f(H”S” X DQ))
& Hl(H”S” X DQ)
— 0,
and all obstructions vanish. O

Denote by Q/" the generalized homology theory given by framed bordism. Using the
maps from 3.1 and our framing of X, we have elements [X¢, p,] € Qf;:_z(KT).

Proposition 3.2. [X.,p,] =0 for all r.

Proof. Recall that X; = 0V, and hence [X.,¢,] € ﬁfé:_z([ﬂ). Let K; be the 7-th com-
ponent of £ and denote by L; the link obtained by deleting X'; from £. Then a framed
manifold Vz, can be constructed analogously to Vz by adding v — 1 handles to D", Let
g : D" x D? — D" be the restriction of fto the ¢-th component. Now the framed
manifold U"*3 := V., — g(D"* x int(D?)) bounds X;. Moreover, the meridian to K,
still gives a homology class in H{(U). Hence o; o0 ¢, : Xz — S' can be extended to a
map U — S*. This proves

[X¢,pr] € ker(aq, ..., ),

where (aq,...,q,) is the splitting from 2.5. Let ¢ denote the inclusion K, — J.. We
then have

[Xe,00 0] € im(Q7 () = QL ()
for all v’ > r. Let J"*® denote the (n 4 3)-skeleton of .J.. A consequence of the Atiyah-
Hirzebruch spectral sequence is that Qf;:_z(JT) = Qi:_z(J”H). Hence [X;,c0¢,] =0 by

r

2.3. The splitting of 2.5 implies then [ X, ¢,] = 0. O
Let

YE”"'2 = S — f(I1S™ x int(D?)) Uppgnyst DF.
Recall that we have X F — W; — MOD from Section 2.
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Proposition 3.3. Y bounds a framed manifold A3 such that there is a map A —
MOD which makes the following diagram commutative:

Y: A

.

Y —— W, — MOD

Moreover, the framings which X F inherits from A and from Wy (and X H ) coincide.

Proof. Let r be such that Wy — MOD extends to a map ¢ : K, — MOD (see 2.4). By
3.2 we see, [X;,ho0p,] =0€ Qi:_z(MOD). Therefore, X, is the boundary of a framed
manifold C"™ over MOD. Together with maps and spaces from Section 2, we have the
following commutative diagram:

ITv D+t % St Wo W NF
X,C [(7’ MOD =—— Wl

L

A = C UH”D"‘HXSl W

Let

The framing of C' induces the unique framing on II* D"+ x S that extends over IT¥ D" *1 x
D?. Recall from Section 2 that there is a framing of W with the same property. This

gives the framing of A. The maps from €' and W to MOD can be combined to a map
A — MOD. O

In the following theorem, a link map that is also an immersion is called a link immer-
ston.

Theorem 3.4.

(i) If n =2k is even, then L is singular slice via a link immersion
f:D"II... T D" 9s DR,

(i) If n =2k —1 is odd, then a framed k-connected manifold B"? exists with boundary
OB = 5™ and a link immersion

DI I DM s B,

extending L. Moreover, wpy1(B) = Hiy1(B) has a basis eq, ... e, €}, ... €. salis-
fying the following:
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(a) The intersection form X is given by

AMei e;) =0, Ael,el) =0, )\(ei,e;) = ;.

0%

So the e;, e: form a hyperbolic basis.

7 e yp
(b) Every embedding S**' < B representing one of the ¢; has trivial normal bundle.
(c) All the e;, ¢! can be represented by immersions S**! 9 B missing the image of

f-
Proof. For A — MOD as in 3.3 set
Bn+3(A) =A UEF YH.

Then 0B(A) = S"*?, and the map f; : D" & X H gives a link immersion [ :
1" D"t 95 B(A) extending £. 3.3 provides a framing for B(A). Recall that MOD is
obtained from W, by adding cells of dimension > k + 2 and that W, Usyp XH = D3,
Hence

MOD Usp S H = D" U ( cells of dimension > k +2) =: D*.
After surgery on classes of dimension < k, we may assume that A — MOD is a (k+ 1)-

equivalence. Then we can compare the push-out diagrams
YF——YH YF——%YH
A——= B(A) MOD — D+.
Repeated applications of van Kampen’s Theorem prove that
1 (B(A)) = m(D%) = 1.

Comparing the Mayer-Vietoris sequences of the diagrams, we see that H;(B(A)) = 0 for
J=1,...,k Therefore, B(A) is k-connected. Note that 7;41(A) maps onto the kernel
of Hy41(A) — Hy11(MOD) via the Hurewicz homomorphism.

Try1(A) Tr41 (B(A))

| -

Hy (SF) Hin(SH) @ i (A) i (B(A)) ~C— H,(SF)

- | | -

Hyr (SF) —> Hyy(SH) @ Hyyr (MOD) —> Hyyy (DY) = 0 —> Hy,(SF)

From the above diagram, we see that mp11(A) — 71 (B(A)) is surjective.

Now let n = 2k. It is a classical result of Milnor and Kervaire in [10] that B(A) can be
changed to a contractible manifold by a sequence of surgeries on classes in w41(B(A)).
We just saw that m411(A) maps onto mp11(B(A)), so we can represent these classes by
(k 4 1)-spheres in A (and by general position, embedding these spheres comes for free).
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Thus, we can do surgery to A to obtain A’ such that B(A’) is contractable. We still have
a link immersion f : I"D"t' & B(A’) extending £ : 1VS™ — 5"*? = JB(A’). The
h-cobordism theorem implies B(A’) = D" but the induced diffeomorphism « : 5”2 =
JB(A’) =2 52 can be different from [d|gn+2. However, Id|gn+2 can be extended to a
homeomorphism 3 : B(A’) & D"*3| that is differentiable in the complement of a single
point in B(A’) — f(II*D"*'). Now B o f is the desired link immersion.
Consider n = 2k — 1. Form the connected sum
A= A# — (B(A) Ugnt> D™1?)
such that
B(A") = B(A)# — (B(A) Ugnt> D"1%)

has vanishing signature if £ + 1 is even and vanishing Arf invariant if £ + 1 is odd.
Again, (a) and (b) follow from [10]. As before, mp11(A") — w1 (B(A')) is surjective.
Using immersion theory, we can represent all elements of Hyi1(B(A’)) by immersions

Skl as A" C So(f). This impies (c) and finishes the proof of (ii). O

In the second case general position does not give embeddings S**! <« A’ and we have
to do more work in the next section.

4. ODD DIMENSIONAL LINKS

Let n =2k —1>1and £:S"I--- 11 S* — S"*? be a v-component link. Again
we assume that all its components are slice as knots. By 3.4(ii) there is a k-connected
manifold B"*? with boundary 9B = S™** admitting a link immersion

feDYI. I D s B

extending £. Moreover, a hyperbolic basis €;, €} of 7,41 B can be represented by immer-
sions

o, ol S 9 B — f(ITV D™,
We want to replace these immersions by embeddings
ﬂlvﬂzl : Sk+1 — B

which realize the algebraic intersections from 3.4(ii)(a) as geometric intersections. Thus,
we want 3; N B! to consist of exactly one point for every i, and these points should
be the only intersections among the f;, 3/. The standard procedure for achieving this
is the Whitney trick (see [14] and [15]). The algebraic intersection property 3.4(ii)(a)
implies the following: after possibly introducing further self-intersections to the «;, a/,
we may assume that there are framed Whitney disks W, such that the Whitney moves
along the W; lead from the «;,a! to the embeddings 3;, 3/. Surgery on the j; gives
a (k + 1)-connected manifold (by 3.4(ii)(b) the 3; have trivial normal bundles). By
Poincaré duality and the h-cobordism theorem this manifold is D", see [10]. But the
W, may intersect our link immersion f and so f does not survive the surgeries. This
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FIGURE 2. The Whitney disk W.

very failure is measured by an obstruction in I',43(Z[G] — Z). Similar obstructions
appear in the concordance classification of boundary links in [3] and detect non-slice
links. However, boundary links are still link homotopically trivial (by [18]). The proof
makes use of a procedure called symmetric surgery, and this will be useful in the present
situation. This produces additional self-intersections in our link immersion and kills the
above obstruction. We will use symmetric surgery in disguise of the following result.

Theorem 4.1. For 1 <j <wv let ijk be the connected sum of D** with a finite number
of copies of S* x S*. Suppose that L extends to a link immersion

g:Vi1II--- 11V, % D",

Let aj,al: S* — Vi I1--- 11V, be representing the union of the standard hyperbolic bases
for the Hy(V;). If there are immersions D*' as D" extending the g o a;,g o ' and
mapping the interior of D*' disjoint from g, then there is a link immersion

f:DVIT.. I D™ gs DR
extending L.

Proof. The arguments of [18, section 3] imply this result as a special case: One starts
with a hyperbolic basis a;, a} for Vi and does symmetric surgery on this first basis using
the corresponding disks. Then one clears the contraction which is a 2k-disk from all
intersections with the remaining (k 4 1)-disks. One repeats this procedure dealing with
one hyperbolic basis at a time. For more details see [18]. O

Theorem 4.2. There is a link immersion
DI ... O D" 9 DR
extending L.

Proof. We have to study the Whitney moves from above in more detail. Let W be a
2-disk with three arcs a,a’, and b as given in Figure 2. Let U := W x R¥* x R¥ C B be
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F R.
[ |
P =
"1 De
| \,‘,,,J“‘AP
o

FIGURE 3. The disks Dp and D).

such that

UN image o;,af = a x RY¥ x {0} (the a-sheet)
U b x {0} x R* (the b-sheet).

We may assume that F':= f(D"*' 11 ... 11 D"*) intersects U in S x R* x R* where S
is a finite set of points in W. Note that we can assume that no point of S belongs to
the selfintersections of f by general position. There are no points of S between a and
b if we choose a’ close to b. Now the Whitney move replaces the a-sheet by the a’-sheet
consisting of

ax (RF = DF) x {0} UW x S¥=! x {0} U d’ x D* x {0}.

(Note that a’-sheet N b-sheet = ().) However, the a’-sheet intersects F'in S x S*=1 x {0}.
For every P € S pick an embedded arc vp in W connecting P with a point )p on «’.
We can assume that the yp are disjoint and meet b in single points Rp. Then

Ap:=~p x SF1 x {0} U {Qp} x D" x {0}

is a k-disk inside the a’-sheet bounding {P} x S*=! x {0}. Now thicken Ap normal to
the a’-sheet to obtain Ap x D' C B. Then we can do ambient surgery on {P} x
Sk=1 % {0} C F and replace dAp x D¥*t by Ap x S*. This changes F' to the connected
sum F#Sk x S%. Note that there are (k + 1)-disks Dp and D% bounding the standard
hyperbolic basis of S* x S* such that Dp N a’-sheet = {Qp} and D’ N b-sheet = {Rp}.
Moreover, except for Qp and Rp the interior of the two disks miss F' and the j3;, 3!. Here
Dp = Qpx D*' C Apx D! and DY is constructed as a subdisk of vp x D¥ x {0} C U,
see Figure 3. Applying this procedure to all our Whitney disks W; and all the intersections
of them with F', we obtain a new link immersion

g:V1I.---Iv,s B
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where the V; are connected sums of D"*! with copies of S¥ x S*. We can now do the
Whitney moves to get from the «;, o) to the 3;,5/. Then ¢ misses the j3;, 3!, and we
have embedded (k + 1)-disks D; bounding the standard hyperbolic basis of @&7V,. The
interior of the D; miss ¢ and intersect the f;, 3! in points. Recall that 3; and /] meet
exactly in one point. Thus, for every intersection point 7' of one of the D; with a 3; we
can add a push-off of the dual sphere 3] to D; joined by a tube around an arc in 3; from
T to 8; N 3. (This is a standard trick in four dimensional topology, see [7].) Therefore,
we find new immersed disks F; for the hyperbolic basis that miss the 3;. (Of course, we
produce a lot of intersections among the F;.) Finally, we can do surgery on the f; and

change B to a contractable manifold B’. Since the f3; are disjoint from ¢, we still have
g:ViII---11V, % B

Moreover, we find the E; again in B’. Using the argument that finished the proof of
3.4(i) we can arrange B’ = D"*3. The statement follows now from 4.1. 0

5. STRATIFIED TRIADS

In this section we will set up some notation that will be used to describe stratified
handles. Since a product formalism is used to define these handles, we will discuss to
some extent how to smooth corners in this stratified setting. However, we will allow some
corners because it will make the smoothing simpler in our context.

A smooth n-manifold with corners in codimension k is a Hausdorff space X™ that is
locally modeled on

R?:= (R )* x R"7*,

where Ry = [0,00). In other words, there are charts ¢; : U; — R} defined on an open
cover {U;} of X such that the compositions

ot (U U;) — (U N U;)

are smooth. (A map f : V — R” for V C R} is called smooth if it has a smooth
extension to an open neighborhood of V' in R™.) The product of manifolds with corners
in codimension k£ and £’ inherits the structure of a manifold with corners in codimension
k + k'. There is a more refined notion of manifolds with corners to the effect that
boundaries stay in the same category, but we will not need it here. A manifold with
corners has still a tangent bundle, and so there are notions of embeddings and immersions.

A triad of dimension n is a n-manifold X" with corners in codimension 2 and subspaces
0o X and 01X of X satisfying the following condition: there are charts ¢; : U; — R7 for
an open cover {U;} of X such that

PRy x {0} xR™™2) = §oX NU,
{0} xRy xR™™H) = 9, X NU.

So 0o X and 04 X are (n—1)-manifolds with common boundaries. We will frequently write
(X, 00X, 0, X) for a triad. In this notation, the first example of a triad is (R4, Ry x {0} x
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R™*=2 {0} x Ry x R"7?). Unfortunately, so far we have defined only triads of dimension
> 2. A 0-dimensional triad X is by definition just a collection of points with do X =
/X = 0. A l-dimensional triad is a 1-manifold X with boundary 90X = 9oX U 9, X,
where the union is disjoint. Note that, in particular, every manifold M can be viewed
as a triad by setting doM := M and 9, M := () or vice versa. So everything discussed
below will also apply to manifolds.

Recall that a collection of subspaces V; of a vector space W is said to be in general
position if the diagonal map W — @ W/V; is surjective. An immersion f : X & Y
of triads is said to be generic if for every y € Y the following holds: let zq,...,2,
be the preimages of y under f; then the vector spaces df(T,,) are in general position
in T,Y. Of course, embeddings are generic. A generic immersion f is called proper
if the following is satisfied: for y € 0;Y the preimages zy,...,z, lie in 9;X, and the
subspaces df (1, X ), ..., df(T,,X),T,(0;Y) are in general position in 7Y (here j = 0,1).
If y € 9Y N oY, then df(1,,X),...,df(T,,X),T,(0Y), and T,(9Y) have to be in
general position in T,Y.

A subtriad S of a triad X is a triad S C X such that the inclusion is a proper embed-
ding. A collection {S, X|r =0,...,1} of subtriads of a triad X is called a stratification if
the following hold:

(i) X is the disjoint union of the S, X,
(ii) "X (=S X U---US, X isopen in X for all r =0,...,1L.
S, X is called the stratum of depth r. We will call X = (X,{5,X}) a stratified triad or
an s-triad. Note that this also stratifies Jp X and 0;X. There are more sophisticated
definitions of stratifications, but this one will serve our purposes. An embedding f :
X < Y of s-triads is called stratified or an s-embedding it S, X = f~1(S,Y) for all r.
Let (X,{S,X}) and (Y, {S,Y}) be s-triads. We want to give X x Y the structure of

an s-triad. As spaces we define

6](X><Y) = anXYUanjY fOI’j:O,l,
S(X xY) Ui-l—j:T S, X xS)Y for r > 0.

Note that this comes from the usual definition of the product of pairs. In particular, we
have

(X xV,0,(X xY)) = (X,0,X) x (Y,8;Y) forj=0,1.

The product of the smooth structures on X and Y gives corners in codimension 4. So we
have to smooth some of them. A way to do this is to compose the product charts with
a fixed homeomorphism between R} and R%. We will specify a homeomorphism in the
proof of 5.1 and consider products always with this smooth structure. If f: X & X’ and
g Y & Y’ are proper generic immersions, then fx ¢ : X xY & X' x Y’ is also a proper
generic immersion. However, if f or ¢ fail to be proper, the situation is more complicated.
Note that, even before smoothing, O(X x V) := X x Y — (9o X x doY U1 X x 01Y) is

an s-triad, see Figure 4.
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[0,1)° W

FIGURE 5. Smoothing corners.

Proposition 5.1. Let X and Y be compact s-triads. Then there is an s-embedding ¢ :
X xY — O(X xY). Here ¢ can be taken to be the identity away from an arbitrariy small
neighborhood of X x Y UL X xO Y. If f: X — X' andg:Y — Y' are s-embeddings
where f~HO,X') =g H(Y') =0 fori=0,1, then (f xg)ot: X XY — X' x Y’ is an
s-embedding.
Proof. Let W?* C [0,1)*> —(0,0) and ¥ : [0,1)? — W be a homeomorphism satisfying the
following conditions:
(i) W is diffeomorphic to [0,1) x (0, 1),
(i) Yljo,1)2=(0,0) is a diffeomorphism onto its image,
(iii) ¥ = id outside of [0,0.5)2.
For j=0,1 and Z = X,Y let 9,7 x [0,1) = CJZ C Z be a collar of 9,7 in Z such that
(i) CJZ N dy_; 7 is collar of 00,7,
(ii) CJZ NS, 7 is a collar of §,0;7 x [0,1).
Such collars can be constructed successively over the strata, starting at the deepest

stratum. Here we use the compactness of X and Y. Let Oy := X x Y — JyX x 9pY. In
a first step, we construct a map to : X x Y < Oy and define ¢y on CZF x CF by

Do X x &Y x [0,1)? XY 90X X Y X W
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FIGURE 6. The stratified disk.

conjugated with O x CF = 9,X x Y x [0,1)2. This can be extended to X x Y by
the identity. Note that ¢y respects the stratification. Now define ¢; : Og — O(X x Y) as
follows: On (C;¥ x CY) N Oy we take the restriction of

X x Y x[0,1)? RN X O Y x W

conjugated with C¥ x CY =2 9, X x ;Y x [0,1)%. Again this can be extended by the
identity. Now ¢ := 1 0 (o is the desired map.

We can apply this construction to R3 x R3 (where the collars exist even though R3
is not compact). Then ((R3 x R3) = R3j, which provides homeomorphisms R% = R%. If
we use this to construct smooth product structures, then ¢ : X x YV — O(X x Y) is an
s-embedding. O

6. IMMERSIONS IN CODIMENSION TWO

Given an immersion f : M™ & N"*? one may study its complement N — f(M). In
particular, we are interested in the homotopy groups of the complement and their behav-
ior under certain moves of M in N. We will study these moves using stratified handles
as defined in [17]. Parts of this section are taken from there. Our main contribution is
6.9.

Definition 6.1.

(i) The stratified disk is the triad
D* = (D, {—1}.{1}) x (D;, 0, {~1,1}).
It is stratified by So(D?) := D* — {(0,0)} and S;(D?) := {(0,0)}.

(ii) The handle of index X in dimension n can be considered as the s-triad

with the trivial stratification.
(iii) The stratified handle of index (r,X) in dimension n is the s-triad

"= (DY) x HP7
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Here the index ¢ stands for core, and the index ¢t marks the directions in which we have
to thicken the core to obtain the whole handle. We will use this structure in 6.7. One
can define more general stratified handles, but in codimension 2 these are sufficient.

Let f: X" & Y™ be a proper generic immersion. We can form then the multiple
point stratification of Y by setting

S, (f) :=={y € Y|y has precisely r preimages under f},r > 0.
We will write MPS(f) for Y with this stratification. The points in 5, (f) are called r-fold

points of f. Given generic proper immersions f; : X/ 9 Y™ we can form a %-product
Jox fi: Xox Y1 ITYy x Xy & Yo x V)

where fo* fi = fo X tdy, L edy, x fi. From section 5 we know that fox fi is a proper
generic immersion. Counting preimages, we see that

MPS(fo* f1) = MPS(fs) x MPS(f,).

Let incl : {(0,0)} — D! x D} be the inclusion. Then D* = MPS(incl). Moreover,
HY = MPS(0) — HY), and hence using the x-product all stratified handles are MPS([)

for some proper generic immersion f.

Lemma 6.2. Let f: M™ 9 N2 be a proper generic immersion of compact manifolds.
Ify € S,(f)— 09N, then y has a neighborhood U = (D?)" x D"**=2" This diffeomorphism

respects the stratifications (but there are no triad structures).

Proof. All self-intersections of f(M) are transverse. So y has a neighborhood U = (R?)" x
R™27%" guch that

J(M)NU = O(RQ)j_l x {0} x (R%)™7 x R™F272r,

As D* C R?, D"F272" C R"**7% the product (D?)" x D"*27%" defines a smaller neigh-
borhood of . O

Lemma 6.3. Let X = (X,00X,01X) be any triad. Then
80(D2 X X) = 81(D2 X X),
and the diffeomorphism can be taken to be the identity on dJy(D* x X) = 001(D? x X).

Here we ignore stratifications.

Proof. Let Z := (D},0,{—1,1}) x X. Then D* x X = (D!, {—1},{1}) X Z and hence
D(D* x X) = {=1} x ZUD! x 027,
NW(D*xX) & {1} xZUD: x 7.

From here the diffeomorphism is easily produced. O

Lemma 6.4. Let r > 2. There are compact manifolds U™ and V" and proper generic
immersions g; : U & V such that 9;H'T> = MPS(g;) for j = 0,1. Moreover, golor =

g1lau and the diffeomorphism 88]‘7‘(?71'3 = MPS(g;lav) is independent of j.
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Proof. Let f:Y % Hfflh be a proper generic immersion such that Hfflh = MPS(f).
Hence H?XS = D* x HﬁfiA = MPS(inclx f), where

incl« f: {(0,0)} x HH  IID? x ¥ 4 HIEP

For j = 0,1 let
Ui = 0;({(0,0)} x KX} \ I D? X Y)
= O/HE T O;(D? < Y),
Vi = oM
g; = (inclx fly, - U; B V.
By Lemma 6.3, Uy = Uy, Vo = Vi and golsv; = 91]sv;- O

Let M"~! be a manifold and ¢ : 9oHY — M an embedding. Recall that surgery then
produces the manifold

M — o(int(0oHY)) Usa,mp=oa, myp 1 HY .
We will study an analogous procedure in the stratified setting, using the stratified handles
H . Now let M™! be a stratified manifold and
@ OH — M
an s-embedding. We can then form
M? = M —int(0(0H ) Usaomr =00, | OH y,

and the stratifications fit together to form a stratification {S;;} of M. (Here we have
to give M¥ a suitable smooth structure, but this can easily be done using collars, which
respect the stratification.)

Proposition 6.5. Let fo : M™ & N™2 be a proper generic immersion. Let r > 2 and
@ HIT? — MPS(fo) be a stratified embedding. Then a proper generic immersion
fi: M™ o N™ 2 exists such that

MPS(fo)? = MPS(f1).

Proof. We use the notation from 6.4. Thus, ¢ gives an s-embedding MPS(go) —
MPS(fo). On the level of manifolds, we denote this map by ¢ : V — N. Now let
x € U and Oy C U be an open neighborhood of & such that go|o, is an embedding.
Then (go(Ov)) C N — So(fo). Moreover, a dense subset of 1(go(Or)) is contained in
S1(fo). Hence there is a unique open set Oy C M such that ¢ (go(Or)) = fo(Onr). This

gives rise to an embedding U/ — M and the commutative diagram

U—25vy

L

M—N.
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FIGURE 7. The images of ¢ and 7.

By means of 6.4, replacing 99(807‘(?71'3) by 617‘(?7‘;3 has the same effect as replacing gy by

g1 in the above diagram. This defines f;. O
Define o : (D', 5%) — (SoD?, SodoD?) by
(,0) o =1 <t< =05
o(t):=1 (0.5cos2nt,0.5sin27t) : —0.5 <t< 0.5 .
(—t,0) 05 <t < 1

Observe that
(DT—I—A , ST—I—/\—I)
(SoH\: SodoH: )

Define

(Dl , SO)T
(SoD?, SodyD?)"

(D2, 8271
(D2, 5271

({03, 0),
(1)2751—/\—27“7 @)

11211

X X
X X
Qo - (DTHa STH_I) — (SoH;x, Sodo My )

by o” x idpxy x inclipy, composed with the above diffeomorphisms. Let 3y := ag|grr-1.
Similarly we can construct first 7 : (D', 5%) — (SoD?, S0 D?) and then

1 (D" 8P (S Sou ).
Again we set 1 := aq|gn-r—r-1.

Lemma 6.6. There are homotopy equivalences of pairs

(So0oM;!y\ Usy D', SodoHyy) = (SoM s, SodoHy )
(SohHy\ Up, DV S0 M) — (SoHy, Sodh M)

induced by ag and ay.

Proof. For H\ = D? or HY the statement is clearly true. Note for the general case that

(SodoH;\ Uy D™, Sodo M)
= (80801)2 Ug|DO D178080D2)T X (60H§ USA—l D/\,aon)

is just a product of relative CW-complexes. The product of homotopy equivalences (of
pairs) is a homotopy equivalence. This implies the first homotopy equivalence, and the
second follows from the same formalism. 0
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- p(DMlX Sn-k)

FIGURE 8. The disk W in SydoH5 3’

Pick (—=1,0) € D! x D} = D? as a basepoint. Then & gives the meridian to S;D* in
D?, an element [o] € 71(SoD?). From SoD* x {(—1,0)} and {(—1,0)} x SoD? in Sp(D?)?
we have meridians [oy],[02] € 71(So(D?)?). The map o x o : D' x D' — S3(D?)? shows
that [o1] and [o3] commute in 7, (So(D?)?).

Let M™ and N"*? be oriented manifolds and f: M & N a proper generic immersion.
Let U = D* x D™ be a neighborhood of some y € S;(f), compare 6.2. Then, up to
an orientation, a meridian m € 7(So(f)) to y is determined by o : D' — D? and an
arc connecting the basepoints. We can fix orientations of D? and D" to determine the
orientation of m. A double point y € Sa(f) determines two meridians my,mq € m1(So(f))
via a neighborhood U = D* x D* x D"~? of y and an arc connecting the basepoints. Then
we have

[m1,ms] =1 € 71 (So(f))-

We will say that the double point y represents this relation. (Note that this relation
holds for all choices of an arc if it holds for one.)

Pick a basepoint zo € doHy™*. The product of ¢ with our basepoint of D? gives a
basepoint of doH3 ,. Now, Sy := aplgrsr gives an element [Fg] € myiq (SoangA)- We also
find meridians [o1], [02] € 71(So0o ;A) Note that we have 3y = [[o1], [02]] € ™1 (80607‘(72170)
for the stratified handle of index (2,0).

Lemma 6.7. Let A > 1. There exists an embedding p : D' x DM — 80807‘(72%:;3
such that the following hold:

(i)
JOHG T N p(DMH x DV M) = p(DMT x 577,
(i)
[Bo] = (1 = [o1] + [o][o2] — [o2])[W]
€ 7TA+1(8080H§33,8080H§33 — p(DM1 x DALY
where (W] is the class represented by W := p(DM! x {0}), see Figure 8.

Proof. Let I := ([-1,-0.6),{—1},0) C (D!, {—1},{1}). Thus,
X t= (I (D] D=1 1)) (D 8270) < (D7 0,5777)
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FIGURE 9. The subtriade X in H;‘;S =D? x D? x DcA X D?_A_l

is a subtriad of SoH;H?. Now X = XM2 x X! where

X0 = (1) < (D252 0),
Xp = (LR < (D08,
Therefore,
GoX = X} x ((D})? x Dy~

Do X)H2 x (Dp=M .
Let WL be the (A+1)-disk [—1, —0.8] x {—1} x D} C 9o X *%. The situation is sketched
in Figure 9. The product of the shaded areas is X; the product of the thickened lines and
the disk D} is X2*2. The disk W is given by the product of half of the first thickened
line with D?.
The map p given by

DM DM 2 W DPT C 90X C DpSoHY Y
satisfies (i). Observe that

(o x o xidpy) " (XT?) C (D' x D) x D} = DM?

consists of four disjoint copies of X%, each mapped homeomorphically onto X *% by
oxoxidpx. Hence By (W) € SMY consists of four disks, each mapped homeomorphically
onto W by Bo. In Figure 10, the product of the four shaded squares with D7 represents
the preimage of X2*2. The product of the four thickened vertical lines on the boundary
of D! x D! with D} gives the preimage of W under 3. The boundary of D' x D! maps
to o1 and oy as indicated. Thus we can understand the group elements picked up by arcs
in S*! connecting the four disks to the basepoint. Now the formula in (ii) follows from
the homotopy addition theorem, see [19, IV.6.1]. O

Lemma 6.8. Let f: M™ 9 N"*2 be a proper generic immersion such that the relation

[ma,ma] =1 € m1(So(f))

is represented by a double point y € Sz(fo). If A <n—2 and if U = D* x D* x D"™? is
a netghborhood of y, then a stratified embedding g : 607‘(;33 — U exists such that

(¢o.(oj)) = m;
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01
FIGURE 10. The preimage of ¢ X o x idp in (D' x D) x D>

for 3 =10,1.
Proof. Since A < n — 2, we have
Hy P = HyEE < (D), 0,{—1,1}).

This implies

807-(;33 = 807-(;32 X D%
Let H;;Q s D"% be an embedding. Taking the product with idp> on the first two
factors, we obtain an s-embedding

(IS H;jQ — U

(after smoothing by means of 5.1). Now shrink ¢ slightly in a way that its image is in
the interior of U, and extend ¢|80H;“;2 to an s-embedding

@ : 607‘(;32 x D} — U.

This can be done successively over the strata, starting at the stratum of depth 2. (From

) we have inward directions at every point of JyH,%%.) Again we have to smooth this

map by 5.1. The last statement is clear from the construction. O

Theorem 6.9. Let n > 3 and fo : M™ & N"'2 be a proper generic immersion of
oriented manifolds. Suppose that y € Sa(fo) is a double point representing the relation
[my,ms] =1 € 71(So( fo))-

Choose an embedding v : S* x D"*27F «— Sy(fo) and let [v] € m(So(fo)) be determined by
v and a path connecting v to a basepoint. If 2 <k < (n+1)/2, then a generic immersion
fi: M™ — N"t2 exists such that 7;(So(f1)) = 7;(So(fo)) for j <k and

7k(So(f1)) = 71(So(fo)) /(1 — mq + mymg — m2)[v].

Moreover, all relations in x1(So(fo)) represented by double points of fo are also repre-
sented by double points of fi.
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Proof. Let U = D? x D? x D"% be a neighborhood of y missing v. Set A := k — 1, and
let ¢g : 607‘(;33 < U be an s-embedding as in 6.8. Let p : DM x DM 607‘(;33
and W, B C 607‘(;:;3 be as in 6.7. By 6.7(i), any embedding ¢ : DM x DML s Sy( fo)
that agrees with oo 0 p on a neighborhood of S* x D"~**! and misses wo(B) induces a
new s-embedding ¢ : 607‘(;33 — MPS(fo) such that ¢ o p = ¢. The connected sum of
o 0 p with v inside Sp(fo) along an arc gives the ¢ we want. This implies that

(p[W]) = [v] € me(So( o), SolU).

(Here we choose the image of our basepoint in 807-(;;;3 as the basepoint of So(fy).) Hence
by 6.7(ii) and 6.8 we have

(¢x[Bo]) = (L — ma + mama — ma)[v] € m(So(fo), Sol).
As SoU ~ S x S and hence 74(SplU) = 0, the same equation holds in 7x(So(fo)). By
6.5, there is a generic immersion f; : M % N such that MPS(fo)® =2 MPS(f1). Now
form
Z = So(fo) U@ S()H;;I:\S
Then So(fo) and So(f1) are subspaces of Z. By 6.6, we have
(Z;S0(fo)) (So(fo) Ugess D2, So( fo)),
(Z;So(f1)) (So(f1) Ugopy D", So(f1))-
Since k < (n+1)/2, we haven — A+ 1> A+2=Fk+ 1. So we find
mi(So(f1) = 7(%) 7 (So( fo)) for j <k,
Te(So(f1)) m(Z) Tk(So(fo))/ e[ Bal.

Sa(fo) is of dimension n — 2 > 1. Thus, we can find double points representing relations
in 71(So(fo)) outside of U, and these double points are preserved in the construction. [

~
~

111
1R

Proposition 6.10. Let n > 2 and fo : M™ & N™2 be a proper generic immersion of
oriented manifolds. Pick a meridian m € 71(So(fo)) to a point y € S1(fo) and choose
g € m1(So(fo)) arbitrarily. Then there is a proper generic immersion f; : M™ G N™+2
such that

m1(So(f1)) = m1(So(fo))/[m, m?]
where the relation [m,m?] is represented by a double point y € Sy(f1). Moreover, the
construction preserves double points of fo.
Proof. We will use the stratified handle H;}}S. Here
807-(7;53 = 80(D2 X Dz) X D?_l
= {—1} x D! x D?* x D *
U D? x {—1} x D! x D}~
Thus, 607‘(;7—'63 is just a boundary connected sum of two copies of D? x D". Now let
U = D? x D" be a neighborhood of y. We can produce an s-embedding of 807-(;:'63 as
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follows : start with two disjoint s-embeddings D? x D™ — U and connect them by a tube
to obtain an s-embedding

¢ QoH5E® — MPS(fo).
It our tube follows an arc corresponding to g, then we can arrange that

(pfo) = [m, m7].
As in the proof of Theorem 6.9 we can now use 6.5 and 6.6 to produce a proper generic

immersion f; : M & N such that MPS(fo)? = MPS(f1) and
m1(So(f1)) = 71(So(fo))/[m, m?].

Moreover, we see from D? x D? x S7'™% C 617-(;:'63 that the additional relation [m,m?] is
represented by a double point of f7. O

Of course, the above is just a way of presenting finger moves using the stratified handle
H;:SS. This introduces new double points to an immersion. For A > 1 we have used H}%?
to change the double point set.

7. NILPOTENT MODULES OVER THE MILNOR GROUP

The lower central series of a group G is defined by Gy := G and Gyyq := [G, Gy]
for k > 1. A group G is said to be nilpotent of class < k if Gy = {1}. Let F(n) =
F(x1,...,2,) be the free group on n generators. Let N F(n)<1F(n)be normally generated
by all elements of the form [z;,27]. Here i =1,...,n and g € F(n). Then

MF(n):= F(n)/NF(n)

is the free Milnor group on n generators. A proof of the following result can be found in
Milnor’s paper on link homotopy [13] or in [1].

Proposition 7.1. The free Milnor group MF(n) is nilpotent of class < n. It is finitely
generated by the x; and also finitely presented, i.e. FN(n) is normally generated by a
finite number of commutators of the form [x;, 2] where 1 <1 <n and g € F(n).

Let G be a group and V be a G-module. (We will only consider left actions of G.)
Define [, V] to be the submodule of V' generated by (1 — G)V. Note that [G,V] C W
whenever the action of G on V/W is trivial. Corresponding to the lower central series,
we have then Vj := V and Viyq =[G, Vi] for k > 1. Again V is said to nilpotent of class
< kif Vi = {0}

Let now V be an MF(n)-module. We can then construct a quotient of V' that imitates
the Milnor group. Let NV be the submodule generated by all elements of the form
(1 —2;)(1 —a?)v. Here g € MF(n),v € V and 1 <1¢ < n. Define

MV :=V/NV.

The proof of the following statement is very similiar to the arguments in [13] and [1] that
prove Proposition 7.1.
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Proposition 7.2. As an MF(n)-module, MV is nilpotent of class < n + 1.

Proof. First, suppose n = 1. Then NV = V3, and MV = V/V3 is nilpotent of class < 2.
The general case is done by induction on n. Let A; < MV be generated by (1 —a;, )MV,
and let B; <V be generated by (1 — z;)V. Then

MV/A; 2 VNV + B; = M(V/B;).
However, x; acts trivially on V/B;. Thus, [MF(n), W] = [MF(n — 1), W] for every
submodule W < V/B;. Here we use MF(n—1) 2 MF(n)/ < x; > and thus V/B; is an
MF(n — 1)-module. By induction MV/A; is nilpotent of class < n. Therefore, MV, 44

is contained in the intersection of the A;. Now let v € MV, ;. For any j we can write
v=7>,9(1—x;)v; € Aj for some g; € MF(n),v; € V. Hence
(I —aj)o = (1 —2;)gi(l — zj)vi
2l =) (1 = 2 )givs
= 0e MV

This implies that the generators x; of MF(n) act trivially on MV, 41 and thus MV, .o =
0. O

We will use the fact that the group ring of a finitely generated nilpotent group is
Noetherian. A proof is indicated in [16, p.136].

Proposition 7.3. There are a finite number of elements g; € MF(n) such that NV is
generated by a finite number of elements of the form (1 — x;)(1 — 27 )v with v € V and
1 <@ < n for every finitely generated MF(n)-module V.

Proof. First, consider the Noetherian ring Z[MF(n)]. The left ideal NZ[MF(n)] is gen-

erated by a finite number of elements
fi= (= ai)(1 =),

with 1 <¢; <n, g; € MF(n) and r; € Z[MF(n)]. In the general case V is a Noetherian
Z[MF(n)]-module. Thus, NV is generated by a finite number of elements

(1 — 2, ) (1 — 2% )vy

with 1 <1, <n, hy € MF(n) and v, € V. Now (1 — a;,)(1 — J/'Zf) € NZ[MF(n)] and
this implies that NV is generated by the elements f;vy. O

Let X be a space with Postnikov tower

X, Xi Xo.

Here m¢(X,) = 0 for k > n and m¢(X,) = 7(X) via X — X, for & < n. Moreover,
X, — X,_1 is a fibration with fiber K(7,(X),n). Here K(G,n) denotes an Eilenberg-
MacLane space satisfying 7( K (G, n)) = 0 for k # n and #,,(K (G, n)) = G. Suppose that
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(X)) is nilpotent of class < k as a 71(X)-module. Then X, — X, _; has a refinement
corresponding to the lower central series of m,(X)

X, =XF o xft . X X=X,
where X7 — X/~!is a fibration with fiber K (V;,n). Here V; = m,(X);/mn(X);41, and

71(X) acts trivially on V. There is a similiar refinement of X1 — X if 71(X) is nilpotent.

Proposition 7.4. Let X be a finite CW-complex such that G = 71(X) is nilpotent and
7,(X) is nilpotent as a G-module for k =2,...,r. Then 7,41(X) is finitely generated as
a G-module.

Proof. We will use the above notation and denote universal covers by X, and X. The
cellular chain complex of X consists of Noetherian GG-modules since Z[(] is Noetherian.

Thus, H*()N() is finitely generated as a G-module. Assume that H,;2(X,,) is finitely

generated over Z. Considering X — )N(n as an inclusion, it follows that H, 4o ()?n,)?) is
finitely generated over Z[(7]. From the relative Hurewicz theorem and the isomorphism
7rn_|_2()N(n, )N() N ()?), we see that 7,11(X) is finitely generated as a G-module under
the above assumption.

To finish the proof, it is now sufficient to show that H.(X,) is finitely generated over
Z in every dimension for n = 1,...,r. For n = 1, we have [A:i;*()N(l) = 0. Assuming the
statement for n — 1, we see that ,(.X) is finitely generated as a GG-module. The universal
covers of the above refinement of X,, — X,,_; give

)N(n:)?f;%)?s_l—>---—>)?i—>)w(2:f(n_1,

where )N(?{L — )N(?{_l is a fibration with fiber K(V;,n). Now V; = 7, (X);/7.(X) 41 is
finitely generated (as 7,(.X) is Noetherian). This implies that K (V},n) has dimensionwise
finitely generated homology groups ([19, XIIL.7.12]). An easy application of the Leray-
Serre spectral sequence is the following: if the fiber and the base of a fibration with simply
connected base have finitely generated homology groups in each dimension, then this is
also true for the total space of the fibration ([19, XIIL.7.11]). Applying this argument
k times to our refinement, we can conclude that H*()N(n) is finitely generated in every
dimension. O

Proof of Proposition 1.3. Start with the standard slice disks fo : D" IT - .- IT D"+ for
the trivial link of ¥ components. Note that 71(So(fo)) = F(v). Now introduce self-inter-
sections to obtain m1(So(f)) = MF(v): we use 6.10 to introduce the relations of the
form

[xiv l’f] =1
for ¢ € F(v). Because of 7.1, we can do this in a finite number of steps. Using 6.10
again, we can introduce more double points to obtain f : II*D"* 9 D" such that the
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relations [z, 27] = 1 are represented by double points of f for all ¢ of 7.3. We will now
use 6.9 to introduce relations of the form

(1—z)(1—2a)o=0
to mk(So(f)). Here 2 <k <n/2+1 and v € 74(So(f)). (Note that dim So(f) =n + 3

whereas in 6.9 the ambient dimension was n + 2.) We can represent v by an embedding
Sk — So(f) using general position. Let ¢ be the normal bundle of this embedding and
denote the trivial line bundle by ¢. Then

EDTS* D e=TSy(f)|sr @ e

is trivial because Sp(f) C D"*? is parallelizable. However, T'S* & ¢ is also trivial, and
hence ¢ is stably trivial. In fact, ¢ is trivial since dim ¢ > k.

Suppose that m3(So(f)), ..., 7. (So(f)) are nilpotent as modules over MF(v). Note that
So(f) is homotopy equivalent to a compact manifold and hence to a finite CW-complex.
Then it follows from 7.4 that 7,11(So(f)) is finitely generated over MF(v). By virtue of
7.3 and 7.2, a finite number of applications of 6.9 give us a map f, : [I* D"+ q» D3
such that 7;41(So(f1)) is also nilpotent as an MF(v)-module. We can repeat this until
7k(So(f1)) is nilpotent for all & < n/2 + 1. Each application of 6.10 and 6.9 uses only
one of the disks, and hence f; is still a link map. O
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