
Group rings and topological rigidity

Arthur Bartels

WWU Münster

Graz, September 2009



Two topological spaces

S2 := 2-sphere Y := S2 ∪ little flag

'

We can deform Y to S2 by shrinking the flag, so Y and S2 are homotopy
equivalent: S2 ' Y .
But they are not homeomorphic: S2 6∼= Y .



Manifolds

S2 Y

6∼=

In fact S2 and Y are even locally different:

I Every point in S2 has a neighborhood that is homeomorphic to R2.

I The base of the flag in Y has no such neighborhood.

Definition
A compact topological space is called a closed n-manifold if every point
has a neighborhood homeomorphic to Rn.

I S2 is a 2-manifold.

I All n-manifolds are locally homeomorphic.



Topological rigidity

In general: X ' Y 6=⇒ X ∼= Y .

Definition
A closed manifold M is said to be topologically rigid if any other closed
manifold N which is homotopy equivalent to M is even homeomorphic to
M. (So: ' =⇒ ∼=.)

I The n-sphere Sn is topologically rigid. (Poincaré conjecture.)

I The n-sphere Sn is in general not smoothly rigid. (Exotic spheres.)

I All 1- and all 2-dimensional manifolds are rigid.
I Not all closed manifolds are rigid:

I Lens spaces are in general not rigid. (Reidemeister torsion.)
I Products of spheres are in general not rigid. (Rational Pontrjagin

classes.)



The fundamental group

The fundamental group π1(X ) of a topological space measures how many
homotopically different maps S1 → X there are.

There are also higher homotopy groups πn(X ) that measure how many
homotopically different maps Sn → X there are.



Aspherical manifolds

Definition
A connected topological space X is said to be aspherical if every
continuous map Sn → X , n ≥ 2 is homotopic to a constant map, i.e., if
πn(X ) = 0 for all n ≥ 2.

I X aspherical ⇐⇒ universal cover X̃ is contractible (' pt).

I M closed n-Riemannian manifold of non-positive sectional curvature
=⇒ M̃ ∼= Rn =⇒ M aspherical.

(The converse fails.)

I All surfaces of genus ≥ 1 are aspherical.

I For X and Y aspherical we have: X ' Y ⇐⇒ π1(X ) ∼= π1(Y ).

I For any group G , there is an aspherical space BG , whose fundamental
group is G .



The Borel conjecture

Conjecture

Closed aspherical manifolds are topologically rigid.

This conjecture holds for example if

I dim M ≥ 5 and M is flat (Farrell-Hsiang),

I dim M ≥ 5 and M has non-positive sectional curvature
(Farrell-Jones),

and

Theorem (B-Lück)

Let M be a closed aspherical manifold of dimension ≥ 5. If π1(M) is
Gromov-hyperbolic or a CAT (0)-group, then M is topologically rigid.



Surgery theory

Browder-Novikov-Sullivan-Wall
Kirby-Siebenmann-. . . -Ranicki-. . .

⇓
Classification of manifolds of dimension ≥ 5

Knowlege about K - and L-theory of the group ring Z[G ]
+

with fundamental group G



Group rings

Let R be a ring and G be a group.
The group ring R[G ] is obtained by adding a unit to R for every element
of G . Formally

R[G ] =

{∑
finite

ri · gi

∣∣∣∣ ri ∈ R, gi ∈ G

}
,

multiplication is defined by (r · g) · (s · h) := (rs) · (gh).

Examples

I G infinite cyclic. Then R[G ] ∼= R[t, t−1].
This ring contains for n ∈ Z the unit tn.

I G cyclic of order n. Then R[G ] ∼= R[t]/(tn − 1).



Units in group rings

I r 7→ r · eG defines an inclusion R ↪→ R[G ] of rings. Thus
R× ⊆ R[G ]×.

I g 7→ 1R · g defines an inclusion G ↪→ R[G ]×.
((1R · g)−1 = (1R · g−1).)

I If v ∈ R is nilpotent (vn = 0, say) and g ∈ G , then

(1− v · g)−1 = 1 + v · g + · · ·+ (v · g)n−1.

I If g ∈ G and g 5 = eG , then

(1− g − g 4)−1 = (1− g 2 − g 3).

Units of the form u · g , with u ∈ R×, g ∈ G are said to be canonical.



Unit question

Let G be a torsion-free group and R be an integral domain.
Are then all units in R[G ] canonical?



The Whitehead group

Definition
For a ring define K1(R) := GL(R)ab.

There is a canonical map R× → K1(R), that sends a unit u ∈ R× to the
class of the 1×1-matrix whose entry is u.

Definition (Whitehead group)

Wh(G ) := K1(Z[G ])/{[±g ] | g ∈ G}.

Conjecture

If G is torsion-free, then Wh(G ) = 0.

Via the s-cobordism theorem the Whitehead group plays a crucial role in
topology and in particular in the classifiction of manifolds.



Separation of variables

K∗(R[G ])

K∗(R) H∗(G )

More precisely, there is the assembly map:

αK : H∗(BG ; KR)→ K∗(R[G ])



Example

If R = Z, ∗ = 1 then

H1(BG ; KZ) ∼= H1(BG ; K0(Z))⊕ H0(BG ; K1(Z))
∼= H1(BG )⊗K0(Z)⊕ H0(BG )⊗K1(Z)
∼= G ab ⊕ Z×

∼= {[±g ] | g ∈ G}.

I In fact, Wh(G ) is the cokernel of the assembly map
αK : H1(BG ; KZ)→ K1(Z[G ]).

I Since, for example Wh(Z/5Z) 6= 0, this assembly map is in general
not surjective.



Separation of variables (up to finite subgroups)

K∗(R[G ])

K∗(R[F ])

F ≤ G finite

H∗(G )

More precisely, there is the assembly map relative to the family of finite
subgroups:

αK
Fin : HG

∗(EFinG ; KR)→ K∗(R[G ])



The Bass-Heller-Swan formula

If G = Z is infinite cyclic and R is regular, then

K1(R[Z]) ∼= K0(R)⊕ K1(R)
∼= H1(BZ; KR),

but for arbitrary R,

K1(R[Z]) ∼= K0(R)⊕ K1(R)⊕ Nil(R)⊕ Nil(R).

Thus, if Nil(R) 6= 0,

then αK
Fin : HZ

1(EFinZ; KR)→ K1(R[Z]) is not surjective.



Separation of variables (up to virtually cyclic subgroups)

K∗(R[G ])

K∗(R[V ])

V ≤ G virtually cyclic

H∗(G )

More precisely, there is the assembly map relative to the family of virtually
cyclic subgroups:

αK
VCyc : HG

∗(EVCycG ; KR)→ K∗(R[G ])

!
It is no longer easy to find examples for which this map is not
an isomorphism.



L-theory

Everything said so far has (more or less) an analog in L-theory.



The Farrell-Jones Conjecture

Let G be a group and R be a ring. Then the assembly maps

αK
VCyc : HG

∗ (EVCycG ; KR)→ K∗(R[G ])

αL
VCyc : HG

∗ (EVCycG ; LR)→ L∗(R[G ])

are isomorphisms.

I If G is torsion-free and R is regular, then αVCyc
∼= α.

I In particular, the Farrell-Jones Conjecture implies that Wh(G ) = 0 for
torsion-free G .



The Farrell-Jones Conjecture has applications to the following:

I The Borel conjecture (assuming dim M ≥ 5).

I Classification of h-Cobordisms.

I Wall’s finiteness obstruction.

I The Novikov Conjecture on the homotopy invariance of higher
signatures.

I The Bass Conjecture on the Hattori-Stallings rank of finitely
generated projective R[G ]-modules, for R a commutative integral
domain.

I Moody’s induction theorem.

I Kaplansky’s conjecture on idempotents in group rings.



Kaplansky’s conjecture

Conjecture

Let R be an integral domain and G be a torsion-free group. If
p = p2 ∈ R[G ] then p ∈ {0, 1}.

Theorem (B-Lück-Reich)

Let F be a skew-field and let G be a group for which αK
VCyc is an

isomorphism. Assume that one of the following conditions is satisfied:

I F is commutative and has characteristic zero and G is torsionfree,

I G is torsionfree and sofic,

I the characteristic of F is p, all finite subgroups of G are p-groups and
G is sofic.

Then 0 and 1 are the only idempotents in F [G ].



Theorem (B-Farrell-Lück-Reich)

I If G is Gromov-hyperbolic or poly-cyclic, then the Farrell-Jones
Conjecture holds for G .

I If G is a CAT (0)-group or a discrete cocompact subgroup of a
virtually connected Lie group then

I αL
VCyc is an isomorphism;

I αK
VCyc is an isomorphism for ∗ ≤ 0 and surjective for ∗ = 1.



Inheritance properties of the Farrell-Jones Conjecture

I The class of groups for which the Farrell-Jones (with coefficients)
holds is closed under taking subgroups, finite direct products, free
products and directed colimits.

I There are many constructions of groups with exotic properties which
arise as directed colimits of hyperbolic groups. An example are
counterexamples to the Baum-Connes Conjecture with coefficients
(Gromov, Higson-Lafforgue-Skandalis).

! The Farrell-Jones Conjecture holds for these groups.



Controlled topology

Consider again the assembly map

αK : H∗(BG ; KR)→ K∗(R[G ])

I The homology group H∗(BG ; KR) is local in BG .

I The group K∗(R[G ]) is not local in BG . (G = π1(BG ).)

I Controlled topology (Quinn-Pedersen-...) can be used to descibe
H∗(BG ; KR) using small (or controlled) cycles, and to describe
K∗(R[G ]) using bounded cycles.

I The assembly map αK is then described as a ‘forget-control’-map.

! Need a procedure to gain control.



Digression: singular homology

large
simplex

subdivision

small
simplices



Dynamics of the geodesic flow on H2



I Farrell-Jones exploited this dynamic to prove their conjecture for
fundamental groups of non-positively curved manifolds.

I Mineyev constructed a flow space for Gromov-hyperbolic groups
whose dynamics is exploited in the proof of the Farrell-Jones
Conjecture in this case. This flow space is no longer a manifold.

I For CAT (0)-groups a different flow space is used. In this situation the
flow has weaker contracting properties.

I For poly-cyclic groups, the existence of finite but very large index
subgroups is exploited.


