
WWU
MÜNSTER

p-AdicWeilGroupRepresentations

MarkFeldmann

2018

wissen leben

WWUMünster

Fachbereich 10

Mathematik und

Informatik





Mathematik

p-adic Weil group representations

Inauguraldissertation

zur Erlangung des akademischen Grades eines Doktors

der Naturwissenschaften durch den Fachbereich

Mathematik und Informatik

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Mark Feldmann

aus Oelde

- 2018 -



Dekan: Prof. Dr. Xiaoyi Jiang

Erster Gutachter: Prof. Dr. Peter Schneider

Zweiter Gutachter: Prof. Dr. Urs Hartl

Tag der mündlichen Prüfung: 06.09.2018



Abstract

We study Weil group representations over the coe�cient �eld Qp and es-
tablish certain equivalences of categories in the �avor of Fontaine's classi-
�cation of p-adic representations of the absolute Galois group. If we restrict
to crystalline (or de-Rham) Weil group representations, we can describe the
category of these Weil group representations in terms of generators. More
precisely it is generated as an abelian tensor category by the full subcate-
gory of Galois group representations and �nite unrami�ed inductions of the
character Qp(| · |) given by Artin's reciprocity law.
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4.1 Lifting Maps from Z to Ẑ . . . . . . . . . . . . . . . . . . . . 51

4.2 Identifying the Galois Group Representations . . . . . . . . . 54

4.3 Decomposition of Weil Group Representations . . . . . . . . . 58

4.4 Generators of Abelian Tensor Categories . . . . . . . . . . . . 63

4.5 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

i



ii

5 (ϕ,Γ, F )-Modules 69
5.1 (ϕ, F )-Modules and Mod-p-Representations . . . . . . . . . . . 70
5.2 (ϕ,Γ, F )-Modules and Mod-p Representations . . . . . . . . . 73
5.3 Reality Check . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 (ϕ, F )-Modules and p-adic Representations . . . . . . . . . . . 79
5.5 (ϕ,Γ, F )-Modules and p-adic Representations . . . . . . . . . 82

Appendices 85

A Divided Powers 87
A.1 Universal Enveloping Divided Power Ring . . . . . . . . . . . 88
A.2 Divided Power Envelopes . . . . . . . . . . . . . . . . . . . . . 89
A.3 Compatibility with Tensor Products . . . . . . . . . . . . . . . 90

B Slope �ltrations 97
B.1 Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.2 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.3 Dieudonné-Manin Classi�cation . . . . . . . . . . . . . . . . . 103

Bibliography 111



Introduction

Let p be a prime, K/Qp a �nite �eld extension with ring of integers OK and
residue �eld k, denote by K an algebraic closure of K. It is a fundamen-
tal problem in Number Theory to understand the structure of the (local)
absolute Galois group GK := Gal(K/K). An usual strategy in many �elds
of mathematics to understand the structure of a group is the study of its
representation theory. The (local) Langlands program suggests that there is
a deep connection between the representations of GK and representations of
reductive groups. Over time several approaches were made to give this idea
a concrete incarnation. The classical local Langlands correspondence pro-
vided by Harris-Taylor [HT01] and Henniart [Hen00] for GLn relates certain
(more precisely: irreducible admissible) representations of GLn(K) over C
and certain n-dimensional (more precisely: semisimple Weil-Deligne) repre-
sentations of WK over C, where the Weil group WK is (as an abstract group)
the subgroup of GK consisting of all automorphisms whose restriction to the
residual Galois group Gk is an integral power of the Frobenius automorphism.
Due to Grothendieck's (l-adic) Monodromy Theorem [Tat79, �4] the latter
category of Weil-Deligne representations of WK over C is equivalent to usual
l-adic representations of WK where l 6= p. In contrast to the l-adic case
p-adic Hodge theory only deals with Galois representations instead of Weil
group representations, which raises the natural question how both concepts
can be linked. In this thesis we will study the di�erence between categories
of Galois group representations and Weil group representations over the co-
e�cient �eld Qp.

More precisely we modify Fontaine's classi�cation of p-adic Galois rep-
resentations (given in [Fon90] and [Fon94a]) with the intention to �t Weil
group representations into the picture. If we restrict the problem to de-Rham
representations, we receive enough structure on the corresponding modules
to completely describe the Weil group representations as subquotients of Ga-
lois group representations twisted by induced representations of the character
given by Artin's reciprocity law.

iii
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In chapter 1 we collect general statements about Weil group represen-
tations. It is pointed out that Weil group representations are the same as
Galois group representations over the coe�cient rings Fp,Fp and Zp. If one
considers representations with coe�cients in Qp, this is false. The charac-
ter given by Artin's reciprocity law Qp(| · |) is a Weil group representation
but can't be extended to a Galois group representation. We introduce an
axiomatic setting in which we adjust the theory of B-admissible represen-
tations (e.g. given in [BC09]) to our purposes. In particular we de�ne a
B-admissible Weil group representation by requesting that the restriction to
a representation of the inertia group is B-admissible. Afterwards we prove
that the category of B-admissible Weil group representations is equivalent
to the category of pairs (D,F ) where D is the object consisting of "linear
algebra data" Fontaine associates to representations of the inertia group
and F is a semilinear operator satisfying certain extra conditions (see Axioms
1.1 to 1.5), essentially the linearization of F has to de�ne an isomorphism.

In chapter 2 we introduce the period rings, which are required in order
to de�ne crystalline, log-crystalline (i.e. semistable) and de-Rham represen-
tations. We use the language introduced by Scholze [Sch11] of perfectoid
�elds and tilts in order to reduce the wild amount of notation to a minimum.
During this excursion we recapitulate the basic facts about these rings. We
explicitly calculate the Gal(K/F )-invariants of BdR (see Theorem 2.16) and
Bst (see Lemma 2.35) for an algebraic extension F/K such that F̂ ⊆ Cp is a
perfectoid �eld.

In chapter 3 we apply the theory of B-admissible representations devel-
oped in chapter 1 to the period rings mentioned in chapter 2. By checking
that the axioms formulated before hold in this situation we receive several
equivalences of categories, which describe certain categories of B-admissible
(e.g. crystalline, log-crystalline, de-Rham) Weil group representations in
terms of linear algebra data. These equivalences (see Theorem 3.12 and
Theorem 3.20) are based on the well-known equivalences of categories for
(crystalline, log-crystalline, de-Rham) p-adic representations of the inertia
group IK . We endow the objects of linear algebra data with an additional
operator F that is highly compatible with the given structures and mimics
a lift of the Frobenius in WK ⊆ GK .

In chapter 4 we give a complete treatment of the case of (potentially)
log-crystalline representations, which is by the p-adic Monodromy Theorem
(see [Ber02]) the same as dealing with de-Rham representations. It turns out
that a Weil group representation can be lifted to a Galois group representa-
tion if and only if the corresponding (admissible �ltered ϕ-)module (D,F )
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has Newton slope 0 with respect to F (see Theorem 4.7). Hence we decom-
pose the module (D,F ) along the semilinear map F via the Classi�cation
Theorem of Dieudonne-Manin. This is possible since such a decomposition is
compatible with the additional structures (see Theorem 4.19) on the module
D. In the last step we take powers of every summand and then "tilt" it to
Newton slope 0 by forming the tensor product with a representation induced
from Qp(| · |). This leads to the main result (see Theorem 4.25): The cat-
egory of (potentially) log-crystalline Weil group representations is generated
(as a tensor category) by the full subcategory of Galois group representations
and induced representations of the character Qp(| · |).

In chapter 5 we treat the case of general p-adic representations. We
use the main result from chapter 1 once again to construct categories of
linear algebra data which classify (general) mod-p representations of WK

(see Theorem 5.7). This construction works out in a similar way in the case
of p-adic Weil group representations (see Theorem 5.11).
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Chapter 1

Weil Group Representations

Once and for all we �x the following Notations: We denote by

� k the �nite �eld with q = pf elements.

� Gk
∼= Ẑ the absolute Galois group of k.

� K0 the fraction �eld of the ring of Witt vectors W (k).

� K/K0 a purely rami�ed �nite Galois extension contained in a �xed
algebraic closure K of K.

� OK ⊆ K the ring of integral elements with maximal ideal (π).

� GK the absolute Galois group of K.

� degK : GK → Gk
∼= Ẑ the canonical projection.

� IK := ker(degK) the absolute inertia group of K.

� Knr :=
⋃
r∈NK(µpr−1) the maximal unrami�ed extension of K.

� P0 the completion of the maximal unrami�ed extension of Qp.

� σK an element of GK such that degK(σK) = 1.

� σ the continuous automorphism of P0 such that σ(x) ≡ xp mod p.

� K∞ the algebraic extension of K given by adjoining all p-power roots
of unity to K.

� W (·) the functor that attaches to a ring R the ring of (unrami�ed)
Witt vectors W (R). We denote (multiplicative) Teichmüller map by
τR : R→ W (R) and neglect the index if no confusion is possible.

1



2 CHAPTER 1. WEIL GROUP REPRESENTATIONS

1.1 Trivia about the Weil Group

We callWK := deg−1
K (Z) the Weil group of K and consider it as a topological

group endowed with the coarsest topology such that:

� the subspace topology on IK is the usual (pro�nite) topology of IK .

� IK is open in WK .

Then

1→ IK
⊆−→ WK

degK−−−→ Z→ 1

is an exact sequence of topological groups, where Z is endowed with the
discrete topology. WK is a dense subset of GK since Z is dense in Ẑ ∼= Gk.
The Weil group naturally embeds into the context of local class �eld theory in
the following way. For a �nite abelian extension L/K the local norm residue
symbol

(·, L/K) : K× → Gal(L/K)

is an epimorphism of topological groups with kernel NL/K(L×) [Neu86, Chap-
ter III, Theorem (2.1)], which maps O×K onto I(L/K) and the group 1 +mn

K

onto the n-th rami�cation group Gn(L/K) with respect to the upper num-
bering [Neu86, Chapter III, Theorem (8.10)]. Let Kab denote the maximal
abelian extension of K. By passing to the projective limit we obtain that
(O×K , Kab/K) ⊆ I(Kab/K) is dense but since O×K is compact this actually an
equality. Consider the following commutative diagram with exact rows:

1 // O×K
(·,Kab/K)
��

⊆ // K×

(·,Kab/K)
��

νK // Z
=

��

// 0

1 // I(Kab/K)
⊆ //W ab

K

degK // Z // 0

.

Since the outer vertical maps are surjective we obtain that the inner verti-
cal arrow maps onto W ab

K . By the existence theorem [Neu86, Chapter III,
Theorem (3.1)] ⋂

L/K �nite abelian

NL/K(L×) ⊆
⋂
f,n

(πfK)× 1 + mn
K = {1}.

Hence the map (·, Kab/K) : K×
∼=−→ W ab

K is an isomorphism of topological
groups. We call its inverse

rK : W ab
K → K×

the reciprocity law of local class �eld theory.
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1.2 p-adic Representations

De�nition 1.1 Let G be a locally compact topological group and E be a
normed �eld. An E-representation of G is a �nite dimensional vector space
V over E together with a continuous group homomorphism ρ : G→ AutE(V )
(where AutE(V ) ∼= GLn(E) is endowed with the topology induced by the norm
on E, which is independent of the choice of the base of V ). We de�ne a mor-
phism of E-representations of G to be an E-linear map that is G-equivariant
and denote the corresponding category by RepE(G). The category RepQp(G)
of p-adic representations of G will be denoted by Rep(G).

An important lemma in the case where G is a pro�nite group is the
following.

Lemma 1.2 Let R be a valuation ring with �eld of fractions E. For any
pro�nite group G and each object V of RepE(G) there exists a G-stable R-
lattice M ⊆ V .

We (literally) imitate the proof of [BC09, Lemma 1.2.6.].

Proof: Let ρ : G → AutE(V ) be the continuous group homomorphism that
de�nes V . Take an arbitrary R-lattice M0 ⊆ V and obtain the commutative
diagram

AutR(M0)

∼=
��

� � // AutE(V )

∼=
��

GLd(R) �
� // GLd(E),

where d = dimE(V ). Since GLd(R) is an open subgroup of GLd(E) the
preimage G0 := ρ−1(AutR(M0)) is open in G, in particular G/G0 is �nite.
Therefore

M :=
∑

gG0∈G/G0

ρ(g)(M0)

is a well-de�ned R-lattice in V that is G-stable. �

Example 1.3 Consider the continuous homomorphism of groups given by

ρ : WK � W ab
K

rK−→ K×
|·|K−−→ pZ ⊆ Q×p ,

where the �rst arrow is the canonical projection. This de�nes a one-dimensional
p-adic representation of WK, which we will denote by Qp(| · |K) in the fol-
lowing. The map ρ does not extend (continuously) to a map ρ̂ : GK → Q×p .
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Assume this would be the case. As a pro�nite group GK is compact and thus
its image ρ̂(GK) ⊆ Q×p would be compact, in particular bounded. But ρ̂(GK)
would contain pZ which is unbounded. For another way to see this, we apply
Lemma 1.2. Since there is an element σK ∈ WK such that ρ(σK) = p−1 there
can be no Zp-lattice which is invariant under a (hypothetical) action of GK.

Remark 1.4 Let E be a normed �eld. Then any E-representation of GK

restricts to an E-representation of WK since the topology on WK is �ner than
the subspace topology on WK inherited from GK. On the other hand any E-
representation of WK that extends to an E-representation of GK does this in
an unique way since WK is dense in GK. Therefore we consider RepE(GK)
as a full subcategory of RepE(WK). By the preceding example these categories
are not equivalent via restriction in the case of E = Qp.

1.3 Mod-p- and Zp-Representations
Let E now be a local �eld with �nite residue �eld. We remark that both
exact sequences in the commutative diagram

1 // IE
⊆ //

=

��

WE

⊆
��

degE // Z
⊆
��

// 0

1 // IE
⊆ // GE

degE // Ẑ // 0

split via choosing an element σE ∈ deg−1
E (1). We see that

GE = IE o Ẑ and WE = IE o Z

as topological groups. This emphasizes the signi�cance of the following state-
ment [Bou71, III, Prop. 28], which will be used to prove that certain actions
of WE extend continuously to GE-actions if the corresponding Z-action ex-
tends continuously to a Ẑ-action.

Proposition 1.5 Let L,N be topological groups and τ : L→ Aut(N) a group
homomorphism such that

N × L→ N, (x, y) 7→ τ(y)(x)

is continuous (with respect to the product topology on the source). For con-
tinuous group homomorphisms f : N → G and g : L → G into a topological
group G, such that f(τ(y)(x)) = g(y)f(x)g(y−1) holds for all x ∈ N and
y ∈ L, the group homomorphism N o L → G given by (x, y) 7→ f(x)g(y)
is continuous. In particular N o L endowed with the product topology is a
topological group.
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According to [RZ00, Chapter 4] (or more generally Lemma 4.1) every
group homomorphism Z→ G into a pro�nite group G extends continuously
to a group homomorphism Ẑ→ G. This has the following consequences.

Corollary 1.6 Let q be a power of p. The forgetful functor

F : RepFq(GE)→ RepFq(WE)

is an equivalence of categories.

Proof: It is enough to show that any representation ρ : WE → AutFq(V ) ∼=
GLd(Fq) can be lifted to a representation of GE. Choose σE ∈ deg−1

E (1)
and obtain a group homomorphism f : Z → GLd(Fq) given by 1 7→ ρ(σE).

Since GLd(Fq) is �nite f extends to a continuous homomorphism f : Ẑ →
GLd(Fq) and we use Proposition 1.5 to extend ρ via f to a continuous group
homomorphism ρ̂ : GE → GLd(Fq). �

Let R be a complete discrete valuation ring with �nite residue �eld and
maximal ideal (t). We remark that the functor GLd from the category of rings
to the category of sets is representable and therefore preserves projective
limits by [ML78, V.4. Theorem 1]. Then the same argument as above still
works if we consider free R-representations (i.e. �nitely generated free R-
modules equipped with a continuous linear action of GE) since

GLd(R) ∼= lim←−
n

GLd(R/(t
n)) (as topological groups)

is pro�nite. (Hence any group homomorphism Z → GLd(R) lifts to a con-
tinuous group homomorphism Ẑ→ GLd(R), see for example [RZ00, �4.1.]).

Corollary 1.7 The forgetful functor

F : RepR(GE)→ RepR(WE)

is an equivalence of categories.

This holds for R = Zp in particular.

1.4 Formalism of Admissibility

In this section we extend the formalism of admissibility (see e.g. [BC09, I.5.])
in order to extend it to representations of Weil groups.
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Let G denote a pro�nite group, I ⊆ G a closed normal subgroup such that
G/I ∼= Ẑ and denote by deg : G � Ẑ the composition of this isomorphism
with the canonical projection G� G/I. Choose an element

ς ∈ deg−1(1) ⊆ G.

The group homomorphism

Z→ Aut(I) given by n 7→ (u 7→ ςnuς−n)

is continuous. Set W := I o Z (with respect to the map above), which we
understand as a subgroup of G via (u, n) 7→ uςn, and endow it with the
product topology of I (which carries the topology inherited by G) and Z
(which carries the discrete topology).

Let (F, σ) denote either the pair (Fps , σ̄), where σ̄ : x 7→ xp
r
is the r-

th power of the usual Frobenius map, or the pair (W (Fps)[1
p
], σ), where σ =

W (σ̄)[1
p
] for some N 3 r ≤ s ∈ N∪{∞}. Assume that B ⊇ F is a topological

ring that carries an action of G such that BG ⊂ BI are �elds endowed with a
Frobenius endomorphism σ which extends the Frobenius on F and commutes
with the action of G. In the following the term ϕ-module refers to modules
endowed with a σ-semilinear map ϕ.

Now we want to introduce the concept of admissibility (with respect to
an (E,G)-regular ring B). Hence let E be the �xed �eld of F with respect to
σ and B be an (E,G)-regular ring, i.e. B ⊇ F is an E-domain that carries an
action of G such that Frac(B)G = BG is a �eld and for all b ∈ B such that E ·b
is G stable we have b ∈ B×. We also assume B to be (E, I)-regular. Recall
[BC09, �5.2.] that an E-representation of G (resp. I) is called admissible if

dimBG(B ⊗E V )G = dimE(V ) (resp. dimBI (B ⊗E V )I = dimE(V )).

For the group W we vary this kind of de�nition for our purposes as follows.

De�nition 1.8 An E-representation V of W is called B-admissible if the
restriction V |I is a B-admissible representation of I. We denote the full
subcategory of RepE(W ) containing only the B-admissible E-representations
of W by RepBE(W ).

One may consider the assignments V 7→ (B ⊗E V )G (resp. V 7→ (B ⊗E
V )I) as functors from the category RepBE(G) (resp. RepBE(I)) to the category
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of ϕ-modules over BG (resp. BI). As usual we denote the "comparison
morphisms" as follows. Let

α̃′• : B ⊗BI (B ⊗E (•))I → B ⊗E (•)

denote the natural transformation given by

α̃′V :
∑
i,j

bi ⊗ bij ⊗ vj 7→
∑
j

(
∑
i

bibij)⊗ vj

for all objects V in RepBE(I) and let

β̃′• : B ⊗BI (B ⊗BI (•))ϕ=id → B ⊗BI (•)

denote the natural transformation given by

β̃′M :
∑
i,j

bi ⊗ bij ⊗mj 7→
∑
j

(
∑
i

bibij)⊗mj

for all ϕ-modules M over BI . These are natural transformations of E-linear
additive tensor functors which means the following:

De�nition 1.9 Let C and D be E-linear abelian tensor categories and let
F,G : C → D denote E-linear additive tensor functors. We call a natural
transformation t• : F 99K G a natural transformation of E-linear additive
tensor functors if the diagram

F (X1 ⊗C X2)

∼=
��

tX1⊗CX2 // G(X1 ⊗C X2)

∼=
��

F (X1)⊗D F (X2)
tX1
⊗DtX2 // G(X1)⊗D G(X2)

of vector spaces over E commutes for all objects X1 and X2 in C. (The
vertical arrows are given by the natural isomorphisms making the functors F
and G tensor functors.)

Denote by j• the (canonical) natural injective transformation

idRepBE(I) 99K B
ϕ=id ⊗ (•)

which is given by jV (v) = 1⊗ v.

We adopted the de�nitions and notations from [DM82] and assume that
the following axiom holds:
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Axiom 1.1 There exists an E-linear abelian tensor category CI together with
an E-linear faithful additive tensor functor

T : CI → (ϕ-modules over BI)

such that there exist two mutually inverse E-linear additive tensor functors

D̃B : RepBE(I)→ CI and ṼB : CI → RepBE(I),

in particular there exist natural isomorphisms of E-linear additive tensor
functors

α̃• : ṼB ◦ D̃B

∼=
99K idRepBE(I)

and
β̃• : D̃B ◦ ṼB

∼=
99K idCI .

We furthermore require these data to satisfy the following properties:

� There exists an injective natural transformation of E-linear additive
tensor functors

η• : ṼB 99K (B ⊗BI T (•))ϕ=id

� and there exists a natural isomorphism of E-linear additive tensor func-
tors

ξ• : T ◦ D̃B

∼=
99K (B ⊗E (•))I

such that

α̃′′• := (α̃′•)
ϕ=id ◦ (B ⊗BI ξ•)ϕ=id ◦ ηD̃B(•) : ṼB(D̃B(•)) 99K (B ⊗E (•))ϕ=id

is an injective natural transformation of E-linear additive tensor functors
satisfying j• ◦ α̃• = α̃′′• and

β̃′′• := (β̃′•)
I ◦(B⊗E η•)I ◦ξṼB(•) : T (D̃B(ṼB(•)))

∼=
99K (B⊗BI T (•))I (

∼=
99K T (•))

is a natural isomorphism of E-linear additive tensor functors satisfying

T (β̃•) = β̃′′• .

Remark 1.10 T (HomCI (D1, D2)) ⊆ Homϕ-mod./BI (T (D1), T (D2)) is an E-
subspace since T is E-linear and faithful.
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Remark 1.11 Let (D,ϕ) be a ϕ-module over BI . We de�ne (BI , ς) to be
the BI-module which is BI as an abelian group and scalar multiplication is
given by µ.b := ς(µ) · b for all µ, b ∈ BI . Set

ς∗(D) := BI ⊗BI ,ς D := (BI , ς)⊗BI D.

We receive a map

ς∗(ϕ) : ς∗(D)→ ς∗(D), µ⊗ d 7→ σ(µ)⊗ ϕ(d).

Since σ commutes with the G-action on B the map is well-de�ned and it is
σ-semilinear:

ς∗(ϕ)(µ ·
∑
i

µi ⊗mi) = ς∗(ϕ)(
∑
i

µµi ⊗mi)

=
∑
i

σ(µ)σ(µi)⊗ ϕ(mi)

= σ(µ) · ς∗(ϕ)(
∑
i

µi ⊗mi)

holds for all
∑
i

µi ⊗mi ∈ ς∗(D) and µ ∈ BI . This construction is functorial.

Take a morphism
f : (D1, ϕ1)→ (D2, ϕ2)

of ϕ-modules over BI and de�ne

ς∗(f) : ς∗(D1)→ ς∗(D2), µ⊗ d 7→ µ⊗ f(d).

This map is BI-linear and satis�es ς∗(f) ◦ ς∗(ϕ1) = ς∗(ϕ2) ◦ ς∗(f), hence ς∗

is a self-equivalence of categories. Furthermore

ι(D) : ς∗(D)→ D, 1⊗ d 7→ d

induces a ς−1-semilinear bijection and for all µ ∈ BI and d ∈ D

ι(D)(ς∗(ϕ)(µ⊗ d)) = ι(D)(σ(µ)⊗ ϕ(d))

= (ς−1 ◦ σ)(µ)ϕ(d)

= (σ ◦ ς−1)(µ)ϕ(d)

= ϕ(ς−1(µ)d)

= ϕ(ι(D)(1⊗ ς−1(µ)(d)))

= ϕ(ι(D)(µ⊗ d))

holds, i.e. ι(D) ◦ ς∗(ϕ) = ϕ ◦ ι(D) has been veri�ed. In the same manner we
check

ι(D2) ◦ ς∗(f) = f ◦ ι(D1). (1.1)
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Lemma 1.12 Let (D,ϕ) be a ϕ-module over BI . Then there exists an iso-
morphism ς∗(σ∗(D)) ∼= σ∗(ς∗(D)) of vector spaces.

Proof: Consider the linear map given by

ς∗(σ∗(D))→ ((ς ◦ σ)−1)∗(D), λ⊗ µ⊗ d 7→ λς(µ)⊗ d.

This is well-de�ned and the inverse is given by x ⊗ d 7→ x ⊗ 1 ⊗ d. One
receives an isomorphism σ∗(ς∗(D)) ∼= ((σ ◦ ς)−1)∗(D) by interchanging the
roles of σ and ς. But σ and ς commute and we obtain the claim. �

In order to modify the category CI such that it captures the structure of
RepBE(W ) instead of RepBE(I) we need the following axiom.

Axiom 1.2 Assume that ς∗ lifts to an equivalence of categories on CI , i.e.
there exists an equivalence of categories from CI to itself which we also denote
by ς∗ making the diagram

CI
T
��

ς∗ // CI
T
��

(ϕ-mod. over BI)
ς∗ // (ϕ-mod. over BI)

commutative.

This allows us to state the following de�nition.

De�nition 1.13 Denote by CW the following category:

� The objects are pairs (D,F ), where D is an object of CI and F is a
self-map of T (D) such that F lin,ϕ := F ◦ ι(D) lifts (uniquely) to an
isomorphism F lin in CI , i.e. T (F lin) = F lin,ϕ holds.

� A morphism (D1, F1)→ (D2, F2) in CW consists of a morphism f : D1 →
D2 in CI such that f ◦ F lin

1 = F lin
2 ◦ ς∗(f) holds.

� The composition of morphisms is the usual composition of maps.

In order to de�ne a functor from the category RepBE(W ) to CW we need
to de�ne a self-map FV of T (D̃B(V )) for any object V of RepBE(W ). Let FV
be the map determined by the commutative diagram

T (D̃B(V ))

ξV∼=
��

FV // T (D̃B(V ))

ξV∼=
��

(B ⊗E V )I
FϕV // (B ⊗E V )I
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where the bottom map is given by

Fϕ
V :
∑
i

bi ⊗ vi 7→
∑
i

ς.bi ⊗ ς.vi.

Remark that this map is well-de�ned since I is a normal subgroup of W and
hence

u.Fϕ
V (x) =

∑
i

(u ◦ ς).bi ⊗ (u ◦ ς).vi = Fϕ
V ((ς−1 ◦ u ◦ ς).x) = Fϕ

V (x)

for all u ∈ IK and x =
∑
i

bi ⊗ vi ∈ (B ⊗E V )I . Furthermore

(ϕ ◦ Fϕ
V )(x) =

∑
i

ϕ(ς.bi)⊗ ς.vi

=
∑
i

ς.ϕ(bi)⊗ ς.vi

= (Fϕ
V ◦ ϕ)(x)

holds for all x =
∑
i

bi ⊗ vi ∈ (B ⊗E V )I . Let F lin,ϕ
V := FV ◦ ι(D̃B(V )) denote

the linearization of FV . In order to show that this construction is indeed
functorial we need to enforce the existence of a (unique) lift of F lin,ϕ

V :

Axiom 1.3 Assume that there exists a (unique) lift F lin
V ∈ IsomCI (D̃B(V ))

such that T (F lin
V ) = F lin,ϕ

V for any object V in RepBE(I).

Now consider a morphism f : V1 → V2 in RepBE(W ). We see that

(Fϕ
V2
◦ (B ⊗E f)I)(x) = Fϕ

V2
(
∑
i

bi ⊗ f(vi))

=
∑
i

ς.bi ⊗ ς.f(vi)

=
∑
i

ς.bi ⊗ f(ς.vi)

= ((B ⊗E f)I ◦ Fϕ
V1

)(x)
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holds for all x =
∑
i

bi ⊗ vi ∈ D̃B(V1). Hence one obtains

T (D̃B(f) ◦ F lin
V1

= T (D̃B(f)) ◦ F lin,ϕ
V1

= ξ−1
V2
◦ (B ⊗E f)I ◦ ξV1 ◦ FV1 ◦ ι(D̃B(V1))

= ξ−1
V2
◦ (B ⊗E f)I ◦ Fϕ

V1
◦ ξV1 ◦ ι(D̃B(V1))

= ξ−1
V2
◦ Fϕ

V2
◦ (B ⊗E f)I ◦ ξV1 ◦ ι(D̃B(V1))

= FV2 ◦ T (D̃B(f)) ◦ ι(D̃B(V1))

(1.1)
= FV2 ◦ ι(D̃B(V2)) ◦ ς∗(T (D̃B(f)))

= T (F lin
V2
◦ ς∗(D̃B(f)))

and therefore D̃B(f) ◦ F lin
V1

= F lin
V2
◦ ς∗(D̃B(f)) holds since T is faithful.

For the case that η• is not surjective (i.e. no natural isomorphism), we
need to assume two more axioms. In the cases where this natural transfor-
mation is a natural isomorphism these axioms are satis�ed automatically.

Axiom 1.4 Assume that for all object D in CI there exists a (unique) bijec-
tive map ς̂D making the following diagram commutative:

ṼB(D)

ηD
��

ς̂D // ṼB(D)

ηD
��

(B ⊗BI T (D))ϕ=id
ς̂ϕD // (B ⊗BI T (D))ϕ=id

where the bottom map is given by

ς̂ϕD :
∑
i

bi ⊗ di 7→
∑
i

ς.bi ⊗ di.

Remark 1.14 The latter axiom makes sense since the bottom map is well-
de�ned:

ϕ(ς̂ϕD(x)) = ϕ(
∑
i

ς.bi ⊗ di)

=
∑
i

ϕ(ς.bi)⊗ ϕ(di)

=
∑
i

ς.ϕ(bi)⊗ ϕ(di)

= ς̂ϕD(ϕ(x)) = ς̂ϕD(x),

holds for all x =
∑
i

bi ⊗ di ∈ (B ⊗BI T (D))ϕ=id. If η• is a natural isomor-

phism the axiom is satis�ed automatically.
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Axiom 1.5 Assume that for all objects (D,F ) in CW there exists a (unique)
bijective map F̂D making the following diagram commutative:

ṼB(D)

ηD
��

F̂D // ṼB(D)

ηD
��

(B ⊗BI T (D))ϕ=id
F̂ϕD // (B ⊗BI T (D))ϕ=id

where the bottom map is given by

F̂ϕ
D :
∑
i

bi ⊗ di 7→
∑
i

bi ⊗ F (di).

Remark 1.15 The latter axiom makes sense since the bottom map is well-
de�ned:

ϕ(F̂ϕ
D(x)) = ϕ(

∑
i

bi ⊗ F (di))

=
∑
i

ϕ(bi)⊗ (ϕ ◦ F )(di)

=
∑
i

ϕ(bi)⊗ (F ◦ ϕ)(di)

= F̂ϕ
D(ϕ(x)) = F̂ϕ

D(x),

holds for all x =
∑
i

bi ⊗ di ∈ (B ⊗BI T (D))ϕ=id. If η• is a natural isomor-

phism the axiom is satis�ed automatically.

We need the following relations in order to prove the theorem below.

Remark 1.16 Let (D,F ) denote an object of CW . The following relations
are immediate from the de�nitions:

� ς̂ϕD ◦ F̂
ϕ
D = F̂ϕ

D ◦ ς̂
ϕ
D holds and hence we also have ς̂D ◦ F̂D = F̂D ◦ ς̂D.

� F̂D(ux) = u.F̂D(x) for all u ∈ I and x ∈ ṼB(D).

� ς̂(ux) = (ςuς−1).ς̂D(x) holds for all x ∈ ṼB(D).

Now we are set to prove that the category CW constructed above is indeed
equivalent to RepBE(W ).
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Theorem 1.17 The additive E-linear tensor functor

RepBE(W )→ CW given by V 7→ (D̃B(V ), FV ),

provides an equivalence of categories.

Proof: Let (D,F ) be an object of CW . We set V := ṼB(D), which is then
an E-representation of I. In order to de�ne a W -action on V let

W × V → V be given by (g, v) 7→ g.v := (F̂D ◦ ς̂D)deg(g)(u.v).

For all v ∈ V and g1 = ςdeg(g1) · u1, g2 = ςdeg(g2)u2 ∈ W such that u1, u2 ∈ I
we have

g1.(g2.v) = g1.((F̂D ◦ ς̂D)deg(g2)(u2.v))

= (F̂D ◦ ς̂D)deg(g1)(u1.(F̂D ◦ ς̂D)deg(g2)(u2.v))

= (F̂D ◦ ς̂D)deg(g1g2)((ς− deg(g2)u1ς
deg(g2)u2).v)

= (g1g2).v (1.2)

since g1g2 = ςdeg(g1g2)(ς− deg(g2)u1ς
deg(g2)u2) holds. Thus we indeed de�ned an

W -action and it remains to check that the map above is continuous. By
assumption its restriction to I × V → V is continuous and I is open in W .
Hence I × V is open in W × V and W × V → V is therefore continuous. We
claim that this procedure de�nes a functor which we also denote by ṼB by
slight abuse of notation. Consider a morphism f : (D1, F1)→ (D2, F2) in CW
and for sake of brevity write

f ∗ := (B ⊗BI T (f))ϕ=id.

For all v =
∑
i

bi ⊗ di ∈ (B ⊗BI T (D1))ϕ=id and g ∈ W we have:

f ∗(g.v) = f ∗(
∑
i

g.bi ⊗ F deg(g)
1 (di))

=
∑
i

g.bi ⊗ (f ◦ F deg(g)
1 )(di)

=
∑
i

g.bi ⊗ (F
deg(g)
2 ◦ f)(di)

= g.f ∗(v).
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This enables the following calculation:

(ηD2 ◦ ṼB(f))(g.v) = (f ∗ ◦ ηD1)(g.v)

= f ∗ ◦ ηD1 ◦ (F̂D1 ◦ ς̂D1)deg(g)(u.v)

= f ∗ ◦ (F̂ϕ
D1
◦ ς̂ϕD1

)deg(g)(u.ηD1(v))

= f ∗(g.ηD1(v))

= g.((f ∗ ◦ ηD1)(v))

= g.(ηD2 ◦ ṼB(f))(v)

= (F̂ϕ
D2
◦ ς̂ϕD2

)deg(g)(u.(ηD2 ◦ ṼB(f))(v))

= ηD2 ◦ (F̂D2 ◦ ς̂D2)deg(g)(u.ṼB(f)(v))

= ηD2(g.ṼB(f)(v))

holds for all g = ςdeg(g)u ∈ W and v ∈ ṼB(D1) and since ηD2 is injective we
have

ṼB(f)(g.v) = g.ṼB(f)(v)

in particular. Thus ṼB(f) is E[W ]-linear indeed. In the last step of the proof
we show that D̃B and ṼB are quasi-inverse functors (between RepBE(W ) and
CW ). It su�ces to check that the comparison isomorphisms from Axiom 1.1
lift to isomorphisms in the current situation, i.e. we need to prove E[W ]-
linearity of the E[I]-linear natural isomorphism

α̃• : ṼB ◦ D̃B

∼=
99K idRepBE(I)

and compatibility with F of the natural isomorphism

β̃• : D̃B ◦ ṼB

∼=
99K idCI .

We begin with the latter. For sake of brevity we denote the map (B⊗E ηD)I

by η∗D. Then take an element x =
∑
i

bi ⊗ vi ∈ (B ⊗E ṼB(D))I , expand the
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image ηD(vi) =
∑
j

bij ⊗ dj ∈ (B ⊗E (B ⊗BI T (D))ϕ=id)I and obtain:

(β̃′D)I ◦ η∗D ◦ F̂
ϕ

ṼB(D)
(x) = (β̃′D)I ◦ η∗D(

∑
i

ς.bi ⊗ ς.vi)

= (β̃′D)I(
∑
i

ς.bi ⊗ ηD(ς.vi))

= (β̃′D)I(
∑
i

ς.bi ⊗ ηD(F̂D ◦ ς̂D)(vi)))

= (β̃′D)I(
∑
i

ς.bi ⊗ (F̂D ◦ ς̂D)(ηD(vi))︸ ︷︷ ︸
=
∑
j
ς.bij⊗F (dj)

)

=
∑
i,j

ς.biς.bijF (dj)

= (F ◦ (β̃′D)I ◦ η∗D)(x).

Now we can conclude that β̃D is a morphism in CW :

T (β̃D) ◦ FṼB(D) = (β̃′D)I ◦ η∗D ◦ ξṼB(D) ◦ F̂ṼB(D)

= (β̃′D)I ◦ η∗D ◦ F̂
ϕ

ṼB(D)
◦ ξṼB(D)

= F ◦ (β̃′D)I ◦ η∗D ◦ ξṼB(D)

= F ◦ T (β̃D)

implies

T (β̃D ◦ F lin
ṼB(D)

) = T (β̃D) ◦ FṼB(D) ◦ ι(D̃B(V ))

= F ◦ T (β̃D) ◦ ι(D̃B(V ))

(1.1)
= F ◦ ι(D̃B(V )) ◦ ς∗T (β̃D)

= T (F lin
ṼB(D)

◦ ς∗β̃D).

Therefore β̃D ◦ F lin
ṼB(D)

= F lin
ṼB(D)

◦ ς∗β̃D holds since T is faithful. It is left to

check that α̃V is E[W ]-linear for any V in RepBE(I). Since jV is E[W ]-linear
and injective it su�ces to show that α̃′′V is E[W ]-linear. Take an element
x ∈ (ṼB ◦ D̃B)(V ), write ηD̃B(V )(x) =

∑
i

bi ⊗ di ∈ (B ⊗BI T (D̃B(V )))ϕ=id as

well as ξV (di) =
∑
j

bij ⊗ vj ∈ (B⊗EV )I and abbreviate ξ∗V := (B⊗BI ξV )ϕ=id.
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Then we have

α̃′′V (ς.x) = ((α̃′)ϕ=id ◦ ξ∗V ◦ ηD̃B(V ))(ς.x)

= ((α̃′)ϕ=id ◦ ξ∗V ◦ F̂
ϕ

D̃B(V )
◦ ς̂ϕD̃B(V )

(
∑
i

bi ⊗ di)

= ((α̃′)ϕ=id ◦ ξ∗V (
∑
i

ς.bi ⊗ FV (di))

= ((α̃′)ϕ=id(
∑
i

ς.bi ⊗ (ξV ◦ FV )(di))

= ((α̃′)ϕ=id(
∑
i

ς.bi ⊗ (FV ◦ ξV )(di))

= ((α̃′)ϕ=id(
∑
i,j

ς.bi ⊗ ς.bij ⊗ ς.vj)

= ς.(
∑
i,j

bibijvj)

= ς.(α̃′)ϕ=id(
∑
i,j

bi ⊗ bij ⊗ vj)

= ς.α̃′′V (x).

We conclude that α̃ is an E[W ]-linear isomorphism which �nishes the proof.
�

Example 1.18 Take E = Fp (i.e. r = 1) and B = Fp. Then Theorem 1.17
recovers the fact that Galois group representations over Fp are just the same
as Weil group representations over Fp as follows:

RepFp(WFp) ∼ CWFp
∼ (ϕ-modules over Fp) ∼ RepFp(GFp).

The equivalence in the middle is given by D 7→ DF=id in one direction and
by given by M 7→ (Fp⊗FpM,F ) in the opposite direction where F is given by∑

i

µi ⊗mi 7→
∑
i

σ(µi)⊗mi

for all x =
∑
i

µi ⊗mi ∈ Fp ⊗Fp M .
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Chapter 2

Period Rings

In this chapter we will introduce the so called period rings constructed by
Fontaine (see for example [Fon94a]) that serve well in order to give a hi-
erarchy of p-adic Galois representations. We will give a slight generalization
by constructing these period rings from a perfectoid �eld F that is contained
in Cp rather than just starting with Cp itself. It will be proven that this vari-
ation behaves well with taking invariants under Aut(Cp/F ) (see Proposition
2.34 and 2.16).

2.1 Perfectoid Fields

De�nition 2.1 Let L be a valued �eld with respect to a nonarchimedian
absolute value | · | : L→ R≥0. We call L perfectoid if the following conditions
are satis�ed:

1. L is complete and the value group |L×| is dense in R>0.

2. The ring homomorphism OL/p→ OL/p, x̄→ x̄p is surjective.

We call this ring homomorphism the "mod p"-Frobenius of L.

Example 2.2 Let µl ∈ Qp denote the subgroup of l-th roots of unity for any
l ∈ N.

� The completion Cp of Qp is perfectoid.

� The completion of Qp,∞ :=
⋃
n≥1 Qp(µpn) is perfectoid.

� The completion of Qp(p
p−∞) :=

⋃
n≥1 Qp(p

1
pn ) is perfectoid.

19
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� The completion of Qnr
p := Frac(W (Fp)) is not perfectoid, since its value

group is discrete.

� The completion of Qtr
p :=

⋃
p-eQnr

p (p
1
e ) is not perfectoid, since the "mod

p"-Frobenius is not surjective.

� The completion of of the separable closure of Fp((t)) is perfectoid.

� The completion of Fp((t))(tp
−∞

) :=
⋃
n≥1 Fp((t))(t

1
pn ) is perfectoid.

Remark 2.3 Any perfectoid �eld is perfect.

2.2 Tilting

The concept of tilting was basically already introduced by Fontaine in
[Fon94a]. It turned out that this construction gives a deep connection be-
tween �nite Galois extensions of perfectoid �eld in mixed characteristic (0, p)
and their 'tilts' in equal characteristic p (compare Theorem 2.7). We will stick
to the notations introduced by Scholze in [Sch11] who denoted the tilting
functor by F 7→ F [. A detailed exposition can be found in [Sch17].

Let L be a perfectoid �eld such that K ⊆ L and $ ∈ L a pseudo uni-
formizer, i.e. $ satis�es |π| ≤ |$| < 1. Furthermore we set

OL := {x ∈ L | |x| ≤ 1}.

De�nition 2.4 The map

φ : OL/$OL → OL/$OL given by x̄ 7→ x̄q

is a ring homomorphism and we obtain a projective system (OL/$OL, φ)n.
We de�ne

OL[ := lim←−
n

(OL/$OL, φ)n and L[ := Frac(OL[)

and call L[ the tilt of L. For α = (αi)i ∈ OL[ choose representatives ai ∈ OL
and set

α] := lim
i→∞

aq
i

i ∈ OL.

Denote the composition of ] and | · | by

| · |[ : OL[ → R≥0, α 7→ |α]|.

It is not yet clear if all de�nitions make sense but this is covered by:
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Theorem 2.5 1. α] is independent of the choices of liftings of the αi's.

2. OL[ is a valuation ring with respect to | · |[.

3. L[ is a perfect and complete nonarchimedian �eld with respect to | · |[
of characteristic p.

Proof: [Sch17, Proposition 1.4.7.] �

Example 2.6 � The tilt of the completion of Qp(p
p−∞) is isomorphic to

the completion of Fp((t))(tp
−∞

).

� The tilt of a perfectoid �eld of characteristic p is the �eld itself.

Theorem 2.7 There is a bijection

{K̂∞ ⊆ L ⊆ Cp | L perfectoid } ↔ {K̂[
∞ ⊆ F ⊆ C[

p | F perfectoid }

given by
L 7→ L[.

Furthermore any �nite extension L1/L is mapped to a �nite extension L[1/L
[

of the same degree, i.e. [L1 : L] = [L[1 : L[].

Proof: [Sch17, Theorem 1.4.24.] and [Sch17, Proposition 1.6.8.]. �

2.3 The map θ

Theorem 2.8 The map

θL : W (OL[)→ OL (resp. ΘL : W (OL[)⊗Zp Qp → L)

given by ∑
n≥0

τ(αn)pn 7→
∑
n≥0

α]np
n

is a surjective homomorphisms of Zp-algebras (resp. Qp-algebras) and its
kernel is a principal ideal.

Proof: [Sch17, Lemma 1.4.18],[Sch17, Lemma 1.4.19] and [Sch17, Proposition
2.1.19.]. �
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2.4 The Crystalline Period Ring (Bcrys)

For the remainder of chapter 2 let L be an intermediate �eld K̂∞ ⊆ L ⊆ Cp

such that L is a perfectoid �eld. We denote by Ľ the intermediate �eld
K∞ ⊆ Ľ ⊆ K such that the completion of Ľ is L.

De�nition 2.9 Let Acrys(Cp) denote the p-adic completion of the divided
power envelope of W (OL[) with respect to the ideal ker(θCp) over Zp. In
formulas:

A0
crys(Cp) := D(Zp,(p),γ)(W (OC[p), ker(θCp))

and
Acrys(Cp) := lim←−

n

A0
crys(Cp)/p

n.

We denote
B+
crys(L) := (Acrys(Cp)⊗Zp Qp)

Gal(Qp/Ľ)

and abbreviate Acrys := Acrys(Cp) and B+
crys := B+

crys(Cp).

For the de�nition of the divided power envelope see section A.2. Since
this de�nition is rather abstract we will give an explicit description.

Lemma 2.10 Let c be a generator of ker(θCp). Then we have

A0
crys(Cp) = {

l∑
m=0

bm
cm

m!
| l ∈ N, bm ∈ W (OC[p) for all 0 ≤ m ≤ l}.

In particular A0
crys(Cp) is an integral domain containing W (k).

Proof: [BC09, �9.1.]. �

Proposition 2.11 Let m ≥ 1 be an integer. Then there exists an exact
sequence

0→ Km ↪→
m⊕
n=0

W (OC[p) ·X
n s−→Mm → 0,

where

Mm :=
m∑
n=0

W (OC[p)
cn

n!
⊆ A0

crys(Cp)

and Km ⊆ W (OC[p)[X] denotes the W (OC[p)-submodule generated by

cXn−1 − nXn for 1 ≤ n ≤ m.

The map s is given by Xn 7→ cn

n!
. In particular Mm is of �nite presentation.
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Proof: We have s(Km) = 0 since

s(cXn−1 − nXn) = c
cn−1

(n− 1)!
− nc

n

n!
= 0

holds for any 1 ≤ n ≤ m. Take an element

a =
m∑
n=0

rnX
n ∈

m⊕
n=0

W (OC[p) ·X
n such that s(a) = 0.

One obtains

r0 = −
m∑
n=1

rn
cn

n!

and hence

m!a =
m∑
n=1

rn
m!

n!
(n!Xn − cn) ∈ Km

by the relation

n!Xn − cn ≡ (n− 1)!cXn−1 − cn ≡ · · · ≡ cn − cn ≡ 0 mod Km.

We claim that Km is Z-saturated and conclude a ∈ Km. Without loss of
generality we take p · f ∈ Km and remark that

m∑
n=1

an(cXn−1 − nXn) = pf ≡ 0 mod p

for some a1, . . . , am ∈ W (OC[p). Comparing coe�cients in the residue ring

OC[p [X] delivers
a1c ≡ 0 mod p

and
an+1c ≡ ann mod p

for all 1 ≤ n ≤ m− 1. Since c /∈ pW (OC[p) and OC[p is a domain, we see that

p | an for all 1 ≤ n ≤ m by induction, hence f ∈ Km. �

Corollary 2.12 Every �nitely generated W (OC[p)-submodule of A0
crys(Cp) is

contained in a �nitely presented submodule.

Remark 2.13 A0
crys(Cp) is p-adically separated by [BC09, Explanation after

(9.1.2.)]. Therefore we have inclusions

W (k) ⊆ W (OC[p) ⊆ A0
crys(Cp) ⊆ Acrys(Cp).

Hence B+
crys(L) is a K0-algebra. If the residue �eld of L is algebraically closed

the same argument shows that B+
crys(L) is a P0-algebra.
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Another feature of the ring B+
crys(L) is that there exists a GK-equivariant

Frobenius endomorphism Φ on B+
crys(L) which extends the natural Frobenius

endomorphism
Φ: W (OL[)→ W (OL[)

coming from the theory of Witt vectors [Sch17, Section 1.1.].

Proposition 2.14 There exists a GK-equivariant Frobenius endomorphism
on Acrys(Cp) extending Φ.

Proof: [BC09, Lemma 9.1.7.] �

2.5 The Ring of p-adic Periods (BdR)

De�nition 2.15 Let B+
dR(L) denote the ker(ΘL)-adic completion of W (OL[)

localized with respect to the element p. Or short:

B+
dR(L) := lim←−

n

(W (OL[)[
1

p
])/ ker(ΘL)n.

We abbreviate B+
dR := B+

dR(Cp). Furthermore we call BdR(L) := Frac(B+
dR(L))

the (�eld of) p-adic periods with respect to L and BdR := BdR(Cp) the p-adic
periods.

Proposition 2.16
B+
dR(Cp)

GĽ ∼= B+
dR(L)

Proof: W (OL[)[1
p
] ∩ ker(ΘCp)

n = ker(ΘL)n holds for all n ≥ 1 by the com-

mutative diagram after [Sch17, Lemma 1.4.19.]. Thus we obtain a canonical
inclusion B+

dR(L) → B+
dR by the universal property of the projective limit.

We have g.(ker(ΘCp)) ⊆ ker(ΘCp) for all g ∈ GK since ΘCp is GK-equivariant.
Thus we obtain an injective map

ιn : W (OL[)[
1

p
]/ ker(ΘL)n → (W (OCp[)[

1

p
]/ ker(ΘCp)

n)GĽ

for each n ≥ 1. It is enough to prove surjectivity of this map and we do this
by induction on n. For n = 1 we proceed as follows. Take x ∈ W (OCp[)[

1
p
]

such that g.x − x ∈ ker(ΘCp) for all g ∈ GĽ. Then g.ΘCp(x) − ΘCp(x) = 0

for all g ∈ GĽ, i.e. ΘCp(x) ∈ CGĽ
p = L. Since ΘL is surjective we receive an

y ∈ W (OL[)[1
p
] such that ΘCp(x) = ΘL(y). Hence

ι1(y + ker(ΘL)) = y + ker(ΘCp) = x+ ker(ΘCp)
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and ι1 is surjective. Now consider the case n ≥ 1 and the commutative
diagram with exact columns

0

��

0

��
ker(ΘL)n−1W (OL[)[1

p
]/ ker(ΘL)n

��

∼= // (ker(ΘL)n−1W (OCp[)[
1
p
]/ ker(ΘCp)

n)GĽ

��
W (OL[)[1

p
]/ ker(ΘL)n

��

ιn // (W (OCp[)[
1
p
]/ ker(ΘCp)

n)GĽ

��
W (OL[)[1

p
]/ ker(ΘL)n−1

��

ιn−1 // (W (OCp[)[
1
p
]/ ker(ΘCp)

n−1)GĽ

0

,

where the vertical arrows are the canonical maps. The top arrow is an iso-
morphism by the case n = 1 since ker(ΘL) is a principal ideal and hence

ker(ΘL)n−1W (OL[)[
1

p
]/ ker(ΘL)n ∼= W (OL[)[

1

p
]/ ker(ΘL)

holds. The bottom arrow is an isomorphism by induction and therefore ιn is
an isomorphism by the �ve lemma. �

Proposition 2.17 B+
dR(L) is a complete discrete valuation ring with residue

�eld L and (B+
dR(L))× contains W (OL[)[1

p
] \ {0}.

Proof: This is literally [BC09, Proposition 4.4.6.] if one replaces Cp with L
since the proof does not use that Cp is algebraically closed. �

An immediate consequence of this is that there exists a multiplicative
GK-equivariant Teichmüller map

τdR : (L[)× → (B+
dR(L))×

given by
a

b
7→ τ(a)τ(b)−1

for all a, b ∈ OL[ and b 6= 0.
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Proposition 2.18 There exists a GĽ-equivariant section

sdR,Ľ : Ľ→ B+
dR(L)

of the GĽ-equivariant projection map

ΘdR,L : B+
dR(L)� L.

Via this section B+
dR(L) contains a unique copy of Ľ as a sub�eld over K0

and the action of GK0 is compatible with this inclusion.

Proof: For the case L = Cp see [BC09, Lemma 4.4.10.], then take Gal(Qp/Ľ)-
invariants. �

Warning: The section sdR,Qp is not continuous and therefore it does not

extend to a GK-equivariant section Cp → B+
dR(Cp). By [Ser79, Chapter II,

�4, Theorem 2] there exists an isomorphism B+
dR(Cp) ∼= Cp[[T ]] of rings but

this map is neither GK-equivariant nor continuous.

Proposition 2.19 There exists a continuous GK-equivariant isomorphism
of rings from Acrys(Cp) to the subring

{
∑
n≥0

bn ·
cn

n!
∈ B+

dR(Cp) | (bn)n sequence in W (OC[p) converging to 0}

of B+
dR(Cp) which is compatible with the inclusion W (OC[p)[

1
p
] ⊆ B+

dR(Cp).

Proof: [BC09, �9.1.] �

2.6 The Tilted p-adic Logarithm

First of all we give a short reminder about the usual versions of p-adic loga-
rithms.

De�nition 2.20 Let B be a complete valuation ring of characteristic 0 and
denote the valuation on B by νB. We call B logarithmic if

lim
n→∞

nγ − νB(n) =∞

holds for all γ ∈ ν(B) \ {∞} such that γ > 0.
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Lemma 2.21 Let B be a logarithmic valuation ring and let mB denote its
maximal ideal. Then

logB : 1 + mB → B, x 7→
∑
n≥1

(−1)n+1 (x− 1)n

n

is a continuous group homomorphism.

Proof: Since B is complete we only have to check that (x−1)n

n
converges to

zero but this is covered by de�nition. �

Example 2.22 1. OK is logarithmic (see [Neu99, Chapter II, Proposi-
tion (5.4)]) and we can extend logOK uniquely to a continuous group
homomorphism

logK : K× → K

such that logK(p) = 0.

2. OĽ does not need to be logarithmic since it is not necessarily complete
but every element of Ľ is contained in a �nite extension of K. Thus
we obtain a Gal(Ľ/Qp)-equivariant group homomorphism

logOĽ : 1 + mĽ → OĽ

which can be uniquely extended to a Gal(Ľ/Qp)-equivariant group
homomorphism

logĽ : Ľ× → Ľ

such that logĽ(p) = 0 (see [BC09, Lemma 9.2.6.]).

3. OL is logarithmic (see [Was82, Proposition 5.4]) and we can extend
logOL uniquely to a continuous group homomorphism

logL : L× → L

such that logL(p) = 0. Furthermore this map is GK-equivariant since
each g ∈ GK extends to a continuous automorphism of Cp. We call

logp := logCp : C×p → Cp

the p-adic logarithm. Furthermore ker(logp) = pQ · µ holds by [Was82,
Proposition 5.6], where µ ⊆ C×p is the multiplicative subgroup consisting
of roots of arbitrary roots of unity.
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4. B+
dR(L) is logarithmic since νdR(n) = 0 for all n ∈ N and we denote

logdR := logB+
dR

(L) : 1 + mB+
dR

(L) → B+
dR(L).

We now give a construction of a tilted version of the usual p-adic logarithm
logp following [BC09, �9.2.]. Since a map de�ned by the logarithm formula

can't have values in a �eld (or ring) of characteristic p we substitute C[
p with

the ring of p-adic periods B+
dR. Therefore we construct more generally a

GK-invariant group homomorphism

log[L : L[ → B+
dR(L).

Lemma 2.23 Each element in (L[)×/(OL[)× can be represented by an ele-
ment z such that z] ∈ Ľ×.

Proof: By [Sch11, Lemma 3.4.] we know that νL(L×) = ν[L((L[)×) and since
completing a non-archimedian �eld does not change the value group we have
νĽ(Ľ×) = νL(L×). Therefore we obtain

(L[)×/(O×
L[

) ∼= L×/O×L ∼= Ľ×/O×
Ľ
.

�

Proposition 2.24 Let κL[ denote the residue �eld of L[. The map

log[crys,L : O×
L[
∼= κ×

L[
× 1 + mL[ → B+

crys(L)

given by

(λ, x) 7→
∑
n≥1

(−1)n+1 (τ(x)− 1)n

n

is a GK-equivariant group homomorphism.

Proof: For L = Cp this is [BC09, Lemma 9.2.2.], then take Gal(Qp/Ľ)-
invariants. �

Fix an element ε ∈ O×
L[

such that ε] = 1 and (ε1/p)] 6= 1. Then the action
of GK on ε is given by g.ε = χ(g) · ε for all g ∈ GK , where

χ : GK → Z×p
is the cyclotomic character. Now apply the tilted p-adic logarithm to obtain
an element

t := log[L(ε) ∈ B+
crys(L)

and
g.t = log[L(g.ε) = log[L(χ(g) · ε) = logZp(χ(g)) + t

for all g ∈ GK by the GK-equivariance of log[L.
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De�nition 2.25 We de�ne Bcrys(L) := B+
crys(L)[1

t
] and Bcrys := Bcrys(Cp).

Proposition 2.26 There exists an unique injective continuous GK-equivariant
map

j : Acrys(Cp)→ B+
dR(Cp)

such that the diagram

A0
crys(Cp)

⊆
��

⊆ //W (OC[p)[
1
p
]

⊆
��

Acrys(Cp)
j // B+

dR(Cp)

commutes. In particular Bcrys(L) may be viewed as a subring of BdR(L).

Proof: The map j is unique since A0
crys(Cp) is dense in Acrys(Cp). The ex-

istence is proven in [BC09, �9.1.] which gives an inclusion of Bcrys(Cp) into
BdR(Cp). For the relative case take Gal(Qp/Ľ)-invariants and apply Propo-
sition 2.16. �

Proposition 2.27 The map

K ⊗K0 Bcrys(L)→ BdR(L), λ⊗ b 7→ λ · b

is injective. If the residue �eld κL of L is algebraically closed the map

(K · P0)⊗P0 Bcrys(L)→ BdR(L), λ⊗ b 7→ λ · b

is also injective.

Proof: Bcrys(L) is a K0-algebra (resp. P0-algebra if κL is algebraically closed)
by Remark 2.13. The case L = Cp is known due to [Fon94a, Théorème
4.2.4.] resp. [BC09, Theorem 9.1.5.]. Take Gal(Qp/Ľ)-invariants and apply
Proposition 2.16 to obtain the relative statement. �

From all above we obtain the commutative diagram

OL[
τ //

] $$

W (OL[)
⊆ //

θL
��

B+
dR(L)

ΘdR,L

��

Ľ
sdR,Ľoo

⊆
||

OL
⊆ // L

(2.1)

and with Lemma 2.23 we are ready to de�ne the tilted p-adic logarithm as
follows.
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Theorem 2.28 Let z be an element of (L[)×. By Lemma 2.23 we can write
z = u · y with u ∈ O×

L[
and y ∈ (L[)× such that y] ∈ Ľ. Then the map

log[L : (L[)× → B+
dR(L)

given by

z = u · y 7→ logdR(
τdR(y)

sdR(y])
) + sdR(logĽ(y])) + log[crys,L(u)

is a GK-equivariant group homomorphism that extends log[crys. We call

log[p := log[Cp

the tilted p-adic logarithm.

Proof: The �rst thing we have to check is τdR(y)
sdR(y])

∈ 1 + mdR but

ΘdR(
τdR(y)

sdR(y])
− 1) =

y]

y]
− 1 = 0

holds by (2.1). For further details consult [BC09, Lemma 9.2.7.]. �

This gives us the following commutative diagram:

O×
L[

log[crys,L //

⊆
��

B+
crys(L)

⊆
��

(L[)×
log[L // B+

dR(L).

(2.2)

2.7 GK-Invariants of Period Rings

With the diagram (2.2) in mind we are now able to calculate the Galois
invariants of Bcrys(L). We assume that the residue �eld of L is algebraically
closed to assure that BdR(L) contains P0.

Proposition 2.29 The element t is an uniformizer in B+
dR(L).

Proof: [BC09, Proposition 4.4.8]. �

Proposition 2.30 BdR(L)GK = K and BdR(L)IK = K · P0.
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Proof: The GK-action on BdR(L) is compatible with the �ltration

{ti · B+
dR(L) | i ∈ Z}

since ΘL is GK-equivariant. We take GK-invariants of the sequence

0→ ti+1B+
dR(L)→ tiB+

dR(L)→ Cp(i)→ 0

and obtain that the induced sequence

0→ (ti+1B+
dR(L))GK → (tiB+

dR(L))GK → (Cp(i))
GK

is exact for all i ∈ Z. But (Cp(i))
GK = 0 for all i ∈ Z \ {0} by the Theorem

of Tate and Sen [Tat67, �(3.3), Theorem 2]. Hence

(ti+1B+
dR(L))GK = (tiB+

dR(L))GK

holds for all ∈ Z \ {0}. Since B+
dR(L) is a complete and separated discrete

valuation ring we have⋂
i≥1

tiB+
dR(L)GK ⊆

⋂
i≥1

tiB+
dR(L) = 0

and therefore (tiB+
dR(L))GK = 0 for all i ≥ 1. Hence BdR(L)GK = B+

dR(L)GK

and for i = 0 the second exact sequence implies B+
dR(L)GK ⊆ CGK

p = K. But
since B+

dR(L) contains K we have B+
dR(L)GK = K. We replace GK with IK

in the argument and obtain BdR(L)IK = K · P0 as well. �

Proposition 2.31 Bcrys(L)GK = K0 and Bcrys(L)IK = P0.

Proof: We have inclusions K0 ⊆ Bcrys(L) ⊆ BdR(L) and taking GK-invariants
gives us Bcrys(L)GK ⊆ K. By Proposition 2.27 we obtain

dimK0(Bcrys(L)GK ) = 1.

Again, replace GK by IK and receive Bcrys(L)IK = P0 as well. �

2.8 The Log-crystalline Period Ring (Bst)

Originally the term "semistable" was used instead of "log-crystalline", since
one may de�ne this property as being semistable with respect to the di�erence
slope given by the degree function tH− tN (see [CF00, �3.4. & Theoreme A])
in the sense of Appendix B. Since the terms "stable" or "semistable" are used
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to oblivion in many contexts (see for example Appendix B), we will stick to
the notation 'log-crystalline' (as in [FF11]). However, in order to avoid an
increase of names for certain rings, we will keep the name Bst (instead of
switching to Blog).

Fix an element p[L ∈ OL[ such that |(p[L)]|L = |p|L. Such an element exists
by [Sch11, Lemma 3.4.(ii)] and set

uL := log[L(p[L) ∈ B+
dR(L).

For the case L = Cp we �x an element p̃ ∈ OC[p such that p̃] = p and set

u := log[L(p̃)

= logdR(
τdR(p̃)

p
) + sdR(logĽ(p)︸ ︷︷ ︸

=0

)

=
∑
n≥1

(−1)n+1

n

(
τ(p̃)

p
− 1

)n
∈ B+

dR.

We remark that the element uL (resp. u) depends on the choice of p[L (resp.
p̃) and the ring Bst(L) will also depend on this choice. Fortunately the image
of Bst in BdR is independent of this choice, see [BC09, �9.2.]. Furthermore

we will show that B
GĽ
st = Bst(L) holds and therefore the image of Bst(L) in

BdR(L) is independent of the choice of uL.

Proposition 2.32 The element u is transcendental over Frac(Bcrys).

Proof: [Fon94a, (Proof of) Théorème 4.2.4.]. �

De�nition 2.33 We de�ne the log-crystalline period ring to be

Bst(L) := Bcrys(L)[uL]

and endow it with an extension of the map ϕ on Bcrys(L) given by

ϕ : Bst(L)→ Bst(L), uL 7→ p · uL.

There is also a natural action of GK on the element uL inherited from B+
dR(L)

given by
g.uL = log[L(g.p[L) = log[L(εcgp[L) = cg · t+ uL

for some cg ∈ Z×p . Furthermore let

N : Bst(L)→ Bst(L) given by
r∑

n=0

bnu
n
L 7→ −

r∑
n=0

nbnu
n−1
L

denote the Monodromy operator on Bst(L). As usual we set Bst := Bst(Cp).
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Proposition 2.34 1. BGĽ
st = Bst(L).

2. uL is transcendental over Frac(Bcrys(L)).

Proof: The fraction p̃

p[L
is contained in O×C[p since it has absolute value

| p̃
p[L
|[p = |( p̃

p[L
)]|p = 1.

Therefore we �nd λ ∈ F×p =
⋃
n µpn−1 ⊆ O×C[p and x ∈ 1 + mC[p such that

p̃

p[L
= λ · x. We obtain

uL = log[L(p[L) = log[p(p̃)︸ ︷︷ ︸
=u

+ log[p(λ)︸ ︷︷ ︸
=0

+ log[p(x)︸ ︷︷ ︸
=:b∈Bcrys

.

This shows that the images of Bcrys[u] and Bcrys[uL] inside BdR are equal and
since GĽ acts trivially on uL we see that

B
GĽ
st = (Bcrys[uL])GĽ = BGĽ

crys[uL] = Bst(L).

The existence of the isomorphism Bcrys[u] ∼= Bcrys[uL] also implies that uL is
transcendental over Frac(Bcrys) and hence transcendental over Frac(Bcrys(L)).

�

Now we are able to give a list of properties of Bst(L) that will be exploited
later on.

Lemma 2.35

� ϕ(g.b) = g.ϕ(b) holds for all b ∈ Bst(L) and g ∈ AutK(Ľ).

� N(g.b) = g.N(b) holds for all b ∈ Bst(L) and g ∈ AutK(Ľ).

� (N ◦ ϕ)(b) = p · (ϕ ◦N)(b) holds for all b ∈ Bst(L).

� The map K ⊗K0 Bst(L)→ BdR(L) given by λ⊗ b 7→ λ · b is an injective
GK-equivariant map.

� The map (K · P0) ⊗P0 Bst(L) → BdR(L) given by λ ⊗ b 7→ λ · b is an
injective IK-equivariant map.

� Bst(L)GK = K0 and Bst(L)IK = P0.
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Proof: The �rst three properties are standard calculations. The map

K ⊗K0 Bst(L)→ BdR(L), λ⊗ b 7→ λ · b

(resp. (K · P0)⊗P0 Bst(L)→ BdR(L), λ⊗ b 7→ λ · b)

is injective since the statement is true for L = Cp (compare [Fon94a, Théorème
4.2.4.]) and taking GĽ-invariants preserves the injectivity. Thus Bst(L)GK

(resp. Bst(L)IK ) is a one-dimensional vector space over K0 (resp. P0) and
contains K0 = Bcrys(L)GK (resp. P0 = Bcrys(L)IK ) by Proposition 2.31. We
conclude Bst(L)GK = K0 (resp. Bst(L)IK = P0). �

2.9 A Two-Dimensional Representation of GK

We now discuss [BC09, Example 9.2.8] in detail since it gives a tangible ex-
ample of a non-trivial p-adic Galois representations obtained from the period
rings de�ned above.

Lemma 2.36 Let V be a (�nite dimensional) representation of GK over Qp

and B be a (not necessarily �nite dimensional) vector space over Qp with GK

acting on it. Then the usual isomorphism

B ⊗Qp V
∗ ∼= HomQp(V,B)

restricts to
(B ⊗Qp V

∧)GK ∼= HomQp[GK ](V,B)

where V ∧ is the vector space V ∗ with the GK-action given by

g.f(v) := f(g−1v) for all g ∈ GK , v ∈ V.

For the remainder of this section we assume that µp(Qp) 6⊆ K.

Lemma 2.37 Fix the notations

Kn := K(µpn) and ∆n := Gal(Kn/K).

Then an element b ∈ K× \ (K×)p has order pn in the group K×n /(K
×
n )p

n
.

Proof: For every algebraic extension L/K and k ≥ 0 we know by Kummer's
theory that

H1(GL, µk) ∼= L×/(L×)k.
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Consider the in�ation-restriction sequence associated to the normal subgroup
GKn in GK and the module µpl := µpl(Qp). We obtain exactness of

1→ H1(∆n, (µpl)
GKn )→ H1(GK , µpl)→ H1(GKn , µpl)

∆n → H2(∆n, (µpl)
GKn ).

But H2(∆n, (µpl)
GKn ) ∼= Ĥ0(∆n, (µpl)

GKn ) = 1 and since (µpl)
GK is a �nite

module the Herbrand quotient h(∆n, (µpl)
GKn ) = 1. By using the argument

from Kummer's theory above we obtain

K×/(K×)p
l ∼= (K×n /(K

×
n )p

l

)∆n for all l ≤ n.

By [Neu99, Chapter II, Proposition 5.7] we obtain the following isomorphism
for any �nite extension L/Qp of degree d with residue �eld Fq.

L× ∼= Z× Z/(q − 1)Z× Z/pmZ× Zdp

where m := max{k ≥ 0 | µpk ⊆ L}. In our special case we have

K×n
∼= Z× Z/(q − 1)Z× Z/pnZ× Zdp

and therefore K×n /(K
×
n )p

n
is isomorphic to a �nite direct sum of copies of

Z/pnZ. Being no pl-th power in K×n therefore implies that the residue class
of b has order pn in K×n /(K

×
n )p

n
. �

Lemma 2.38 Let a ∈ 1 +mK be no root of unity. Then the Galois group of
K∞({a

1
pn | n ≥ 1})/K is not abelian.

Proof: It is enough to show that the Gn := Gal(Kn(a1/pn)/K) is not abelian
for some n. Without loss of generality we may assume that a /∈ (K×)p,
otherwise replace a by a1/p which is still contained in 1 + mK and no root of
unity. We abbreviate

Nn := Gal(Kn(a1/pn)/Kn)

and
Hn := Gal(Kn(a1/pn)/K(a1/pn)).

By Lemma 2.37 we know that ord(a(K×n )p
n
) = pn, i.e. al /∈ (K×n )p

n
for

all 1 ≤ l < pn. This leads to [Kn(a1/pn) : Kn] = pn in the following way.
Assume that Xpn − a is divided by some f in Kn[X]. There exists k < pn

and i1, . . . , ik ∈ Z such that

f =
k∏
j=1

X − ξijpna
k
pn with ξpn ∈ µpn primitive .
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Examining the constant term of f we conclude ak/p
n ∈ Kn, i.e. a

k ∈ (K×n )p
n

which contradicts the preceding argument. This means that Nn is a cyclic
group of order pn. The usual theory of p-power unit roots (e.g. [Neu99,
Chapter II, (7.13)]) tells us thatHn is cyclic of a degree d dividing p

n−1(p−1).
Gn is a semidirect product of Hn and Nn which is not direct. In order to see
this we are left to show that the map

Hn → Aut(Nn), h 7→ (n 7→ hnh−1)

is not the identity. Assume that n is chosen such that |Hn| 6= 1 6= |Nn| and
take generators τ ∈ Hn and η ∈ Nn as well as a primitive pn-the root of unity
ξpn ∈ Kn. Then

τητ−1(a1/pn) = τη(a1/pn) = τ(ξpna
1/pn) = τ(ξpn)a1/pn 6= ξpna

1/pn = η(a1/pn)

shows the claim for suitable n. Therefore Gn is not abelian for some n. �

Corollary 2.39 Let a ∈ 1 + mKab such that a1/pi ∈ Kab for all i ≥ 1. Then
a is a p-power root of unity.

Example 2.40 Let a ∈ 1 + mK be no root of unity and denote by α an
element of OC[p such that α] = a. Set

v1 := logcrys(τ(α)) =
∑
n≥1

(−1)n+1 (τ(α)− 1)n

n
∈ B+

crys and v2 := t ∈ B+
crys.

Investigating the GK-action on v1 delivers the following:

g.v1 = logcrys(τ(gα)) = logcrys(τ(
gα

α
)) + logcrys(τ(α)).

But (gα
α

)] = ga
a

= 1 and therefore we have

gα

α
= εc(g) for some (unique) c(g) ∈ Zp.

Claim: c(g) satis�es c(gh) = c(g) + χ(g)c(h) for all g, h ∈ GK. This is due
to:

εc(gh) =
(gh)α

α
=
g(εc(h)α)

α
= εc(h)χ(g) gα

α
= εc(g)+χ(g)c(h).

Therefore we get

g.v1 = logcrys(τ(α)) + logcrys(τ(εc(g))) = v1 + c(g) · v2
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and
g.v2 = g · t = χ(g) · t

which implies that Va := Qpv1+Qpv2 is a representation of GK. We claim that
Va is two-dimensional. Assume that there is an λ ∈ Q×p such that v1 = λv2

and obtain for all g ∈ GK

λ · χ(g)v2 = g(λv2) = gv1 = v1 + c(g)v2 = λv2 + c(g)v2.

Thus c(g) = λ(χ(g) − 1) = 0 for all g ∈ GK∞ and gα = α, i.e. a
1
pn ∈

K∞ which contradicts Lemma 2.38. We wish to show that Va is crystalline.
Therefore we make use of Lemma 2.36 and obtain

HomQp[GK ](Va, Bcrys) ∼= (Bcrys ⊗Qp V
∧
a )GK = Dcrys(V

∧
a ).

Since dimK0Dcrys(Va) = dimK0Dcrys(V
∧
a ) ≤ dimQp(Va) it is enough to show

that there exists two Qp[GK ]-linear maps Va → Bcrys which are linear inde-
pendent. But

ι : Va → Bcrys

the canonical inclusion and

π : Va → Va/Qpv2
∼= Qp

the canonical projection are such maps. Using that Va is crystalline we can
determine the Hodge polygon and Newton polygon associated to Da. Let xπ
and xι denote the elements of (Bcrys ⊗Qp V

∧
a )GK corresponding to π and ι.

Then we obtain:

xπ = 1⊗ v∗1 and thus ϕ(xπ) = ϕ(1)⊗ v∗1 = 1⊗ v∗1 = xπ

xι = v1 ⊗ v∗1 + v2 ⊗ v∗2 and thus ϕxι = p · xι
since ϕ(logcrys(τ(x))) = logcrys(τ(xp)) = p · logcrys(τ(x)) for all x ∈ OC[p.
Therefore D∧a decomposes as a ϕ-module and the Newton polygon is given by

PN(D∧a ) = {(0, 0), (1, 0), (2, 1)}.

The admissibility of D∧a implies that tH(D∧a ) = 1 and since xπ /∈ Fil1(D∧a )K
we conclude

PH(D∧a ) = PN(D∧a ).
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Chapter 3

(B-)Admissible Representations

Notation: We will use the following way to denote a pair (F ,G) of quasi-
inverse functors between two categories A and B:

F : A
 B : G,

where F : A → B and G : B → A satisfy G ◦ F ∼= idA and F ◦ G ∼= idB.

3.1 Fontaine's Equivalences of Categories

In order to state Fontaine's Theorems we need to de�ne the relevant cate-
gories initially.

De�nition 3.1 The category of Bst-admissible (resp. Bcrys-admissible) rep-
resentations of GK is denoted by Repst(GK) (resp. Repcrys(GK)) and we
call it the category of (p-adic) log-crystalline (resp. crystalline) representa-
tions of GK. Similarly we denote the category of Bst-admissible (resp. Bcrys-
admissible) representations of IK by Repst(IK) (resp. Repcrys(IK)) and call
it the category of (p-adic) log-crystalline (resp. crystalline) representations
of IK.

De�nition 3.2 Let F be a �eld that contains K0. A vector space V over F
is called K-�ltered if the scalar extension VK := K ⊗K0 V is a �ltered vector
space over K, i.e. VK carries a decreasing exhaustive and separated �ltration
Fil• (for details, see [BC09, De�nition 4.1.1.]). A morphism f : (V1,Fil

•
1)→

(V2,Fil
•
2) of K-�ltered vector spaces over F is a F -linear map f : V1 → V2

such that the induced map fK := f ⊗K0 K satis�es fK(Fili1(VK)) ⊆ Fili2(VK)
for all i ∈ Z.

39
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Warning: Let F be a �eld that contains K0. The category of K-�ltered
vector spaces over F is not abelian.

De�nition 3.3 Let (W,Fil•) be a �ltered vector space over K. We de�ne
the Hodge number

tH(W ) := tH(W,Fil•) :=
∑
i∈Z

i · dimK(Fili(W )/Fili+1(W )).

De�nition 3.4 We de�ne the category of K-�ltered (ϕ,N)-modules over K0

(resp. P0) as follows:

� The objects are tuples D = (D,Fil•, ϕ,N), where

� (D,Fil•) is a K-�ltered vector space over K0 (resp. P0),

� (D,ϕ) is a ϕ-module over K0 (resp. P0) in the sense of section 1.4,

� N : D → D is a K0-linear (resp. P0-linear) endomorphism,

� Nϕ = pϕN holds,

� A morphism f : (D1,Fil
•
1, ϕ1, N1)→ (D2,Fil

•
2, ϕ2, N2) ofK-�ltered (ϕ,N)-

modules over K0 (resp. P0) is a K0-linear (resp. P0-linear) map
f : D1 → D2 such that f is a morphism of K-�ltered vector spaces
over K0 (resp. P0) and f ◦ϕ1 = ϕ2 ◦f as well as f ◦N1 = N2 ◦f holds.

� The composition is the usual composition of maps.

De�nition 3.5 We call a K-�ltered (ϕ,N)-module D = (D,Fil•, ϕ,N) over
K0 (resp. P0) admissible if tN(D) = tH(DK) and tN(D′) ≥ tH(D′K) holds
for all subobjects D′ ⊆ D. (The Newton Number tN(D) of a ϕ-module is
explained in De�nition B.12.)

Remark 3.6 The full subcategory consisting of admissible objects in the cat-
egory of K-�ltered (ϕ,N)-modules over K0 (resp. P0) is an abelian tensor
category. This is a Theorem, see [BC09, Theorem 8.2.11.].

Due to the work of Fontaine [Fon94a, Theorem 5.3.5.] we have the
following:

Theorem 3.7 There are two pairs of quasi-inverse functors:

Dst : Rep
st(GK)
 (admissible K-�ltered (ϕ,N)-modules over K0) : Vst

V 7→ (Bst ⊗Qp V )GK
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Fil0(Bst ⊗K0 D)ϕ=id,N=0 ←[ D

and

D̃st : Rep
st(IK)
 (admissible K-�ltered (ϕ,N)-modules over P0) : Ṽst

V 7→ (Bst ⊗Qp V )IK

Fil0(Bst ⊗P0 D)ϕ=id,N=0 ←[ D.

In particular we have the following comparison isomorphisms

αV : Bst ⊗K0 Dst(V ) ∼= Bst ⊗Qp V, (3.1)∑
i,j

bi ⊗ bj ⊗ dj 7→
∑
i,j

(bi · bj)⊗ dj

βD : Bst ⊗Qp Vst(D) ∼= Bst ⊗K0 D, (3.2)∑
i,j

bi ⊗ bj ⊗ vj 7→
∑
i,j

(bi · bj)⊗ vj

in the �rst case and

α̃V : Bst ⊗P0 D̃st(V ) ∼= Bst ⊗Qp V, (3.3)

β̃D : Bst ⊗Qp Ṽst(D) ∼= Bst ⊗P0 D (3.4)

in the second case with maps in the same �avor as in the �rst case. Let V
be a log-crystalline (p-adic) representation of GK . Then

D̃st(V ) = (Bst ⊗Qp V )IK

αV∼= (Bst ⊗K0 (Bst ⊗Qp V )GK )IK

= P0 ⊗K0 Dst(V )

shows that the diagram

Repst(GK)

F
��

Dst // (adm. K-�lt. (ϕ,N)-mod./K0)

·⊗K0
P0

��
Repst(IK)

D̃st // (adm. K-�lt. (ϕ,N)-mod./P0)

(CD1)

is commutative, where F denotes the forgetful functor. In particular ev-
ery log-crystalline representation of GK is automatically log-crystalline as a
representation of IK . The converse is also true:
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Lemma 3.8 Let V be a representation of GK. V is log-crystalline as a
representation of GK if and only if it is log-crystalline as a representation of
IK.

Proof: Assume that V is log-crystalline as a representation of IK and let
D := D̃st(V ) denote the module corresponding to V . Then

Dst(V ) = ((Bst ⊗Qp V )IK )Gk = DGk .

But since H1
cont(Gk,GLn(P0)) is trivial for any n ≥ 1 [BC09, Proof of The-

orem 2.4.6.] we obtain an isomorphism P0 ⊗K0 D
Gk ∼= D of vector spaces

over P0 for any P0-representation of Gk. This implies that dimK0(DGk) =
dimP0(D) = dimQp(V ). �

3.2 Log-crystalline Weil Group Representations

De�nition 3.9 A (p-adic) representation V of WK is called log-crystalline
(resp. de Rham, crystalline) if its restriction V |IK is log-crystalline (resp. de
Rham, crystalline). We denote the full subcategory of Rep(WK) consisting of
the log-crystalline (resp. de Rham, crystalline) representations by Repst(WK)
(resp. RepdR(WK), Repcrys(WK)).

Remark 3.10 By Lemma 3.8 and Remark 1.4 the category Repst(GK) is a
full subcategory of Repst(WK).

Let V denote a log-crystalline representation of WK and D := D̃st(V )
the corresponding �ltered (ϕ,N)-module. We de�ne the following bijective
self-map on Bst ⊗Qp V :

FV = F :
∑
i

bi ⊗ vi 7→
∑
i

σK .bi ⊗ σK .vi

Since IK E GK is a normal subgroup the linear maps F restricts to a σf -
semilinear (over P0) bijective self-map of D. In particular F is independent
of the choice of σK .

We now want to use the additional datum F to construct a category of
linear algebra data that is equivalent to Repst(WK) in the �avor of Theorem
1.17. Hence we need to check the assumptions made in Section 1.4 for B =
Bst, E = Qp (i.e. r = 1), G = GK , I = IK and ς = σK .

The category CWK
from Section 1.4 is then the following.



3.2. LOG-CRYSTALLINE WEIL GROUP REPRESENTATIONS 43

De�nition 3.11 We de�ne the category of admissible K-�ltered (ϕ,N, F )-
modules over P0 as follows:

� The objects are pairs (D,F ), where D is an admissible K-�ltered (ϕ,N)-
module over P0 and F : D → D is a bijective, σf -semilinear map, that
is strictly compatible with the �ltration on DK and commutes with ϕ
and N .

� As morphisms we take the morphisms in the category of K-�ltered
(ϕ,N)-modules over P0 that commute with F .

� The composition of morphisms is the usual composition of maps.

We need to check the axioms 1.1-1.4 from Section 1.4:

� ϕ commutes with the action of GK on Bst and B
GK
st = K0 resp. B

IK
st =

P0 (compare Lemma 2.35) are �elds. Furthermore Bst is (GK ,Qp)- and
(IK ,Qp)-regular [BC09, Proposition 9.2.11].

� We need to check Axiom 1.1. The forgetful functor

T : (adm. K-�ltered (ϕ,N, F )-mod. over P0 )→ (ϕ-mod. over P0).

The natural transformations ξ• and η• are given by

ξV : (T ◦ D̃st)(V )
=−→ (Bst ⊗Qp V )I

by the identity for any log-crystalline representation V and

ηD : Ṽst(D) = (Bst ⊗Qp T (D))ϕ=id,N=0,Fil0 ↪→ (Bst ⊗Qp T (D))ϕ=id

is given by the canonical inclusion for any admissible K-�ltered (ϕ,N)-
module D over P0. Take the restrictions of the comparison isomor-
phisms in (3.3) resp. (3.4) for α̃• resp. β̃•. Then Axiom 1.1 is satis�ed
by Theorem 3.7.

� tN(σ∗K(D)) = ν(det(σ∗K(ϕ))) = ν(det(ϕ)) = tN(D) and tH(σ∗K(D)) =
tH(D) holds for all K-�ltered ϕ-modules D = (D,ϕ). Therefore σ∗K(D)
is admissible and Axiom 1.2 is satis�ed.

� The monodromy operator N : Bst → Bst is GK-equivariant (see Lemma
2.35), therefore F ◦N = N ◦ F holds.
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� The injective map ι : K ⊗K0 Bst ↪→ BdR is GK-equivariant (see Lemma
2.35), hence FK := K ⊗K0 F is strictly compatible with the �ltration
on DK , i.e. FK(Fili(DK)) = Fili(DK).

� Axiom 1.3 is satis�ed due to the two preceding points: The self-map
F lin,ϕ
V restricts to Ṽst(D) since F is compatible with the Monodromy

operator N and strictly compatible with the �ltration. We set F lin
V :=

F lin,ϕ
V |Ṽst(D) and obtain T (F lin

V ) = F lin,ϕ
V .

� Using the GK-equivariance of ι and N and the calculation from Re-
mark 1.14 we also receive that the map Ṽst(D) → Ṽst(D) given by∑
i

bi ⊗ di 7→
∑
i

σK .bi ⊗ di is well-de�ned, i.e. Axiom 1.4 holds.

Let (D,F ) be an object of the category we just de�ned. Then the map
Ṽst(D)→ Ṽst(D) given by

∑
i

bi ⊗ di 7→
∑
i

bi ⊗ F (di) is well-de�ned since F

is strictly compatible with the �ltration and commutes with ϕ and N . By
a similar calculation as in Remark 1.15 this is an isomorphism. Therefore
Axiom 1.5 is satis�ed.

Theorem 3.12 There is an equivalence of categories given as follows:

D̃st : Rep
st(WK)
 (admissible K-�ltered (ϕ,N, F )-modules over P0 ) : Ṽst

V 7→ ((Bst ⊗Qp V )IK , FV )

Fil0(Bst ⊗P0 D)ϕ=id,N=0 ←[ (D,F ).

Proof: This is literally a corollary from Theorem 1.17. �

3.3 De Rham Weil Group Representations

At �rst we remark that any log-crystalline representation of GK (resp. IK)
is also de Rham. This comes from the fact (see Lemma 2.35) that there is
an injective morphism of K-algebras (which is GK-equivariant)

K ⊗K0 Bst → BdR

and the following calculation.

K ⊗K0 Dst(V ) = K ⊗K0 (Bst ⊗Qp V )GK

= (K ⊗K0 Bst ⊗Qp V )GK

↪→ (BdR ⊗Qp V )GK = DdR(V ). (3.5)

Thus dimQp(V ) = dimK(K ⊗K0 Dst(V )) ≤ dimK(DdR(V )) ≤ dimQp(V ) (for
the latter inequality, see [BC09, Theoreom 5.2.1.]) and V is de Rham.
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De�nition 3.13 Consider a �nite extension L/K and a representation V
of IK (resp. GK).

� We de�ne a relative version of the functor D̃crys (resp. Dcrys) by

D̃crys,L(V ) := (Bcrys ⊗Qp V )IL

(resp. Dcrys,L(V ) := (Bcrys ⊗Qp V )GL).

� We de�ne a relative version of the functor D̃st (resp. Dst) by

D̃st,L(V ) := (Bst ⊗Qp V )IL

(resp. Dst,L(V ) := (Bst ⊗Qp V )GL).

� In the same fashion we set

D̃dR,L(V ) := (BdR ⊗Qp V )IL .

� We call V potentially crystalline if V |IL (resp. V |GL) is crystalline
for some �nite extension L/K. In the same manner we de�ne V to
be potentially log-crystalline if V |IL (resp. V |GL) is log-crystalline for
some �nite extension L/K

Remark 3.14 Any potentially log-crystalline representation V of GK (resp.
IK, resp. WK) is de Rham. Take a representation V of GK and assume that
dimL0(Dst,L(V )) = dimQp(V ). Without loss of generality we may enlarge L
by its Galois envelope and assume that L/K is Galois. By Galois descent one
obtains an isomorphism

L⊗K (BdR ⊗Qp V )GK ∼= (BdR ⊗Qp V )GL .

Combine this and (3.5) to see that there exists an isomorphism

L⊗L0 Dst,L(V ) ∼= DdR,L(V ) ∼= L⊗K DdR(V ),

in particular dimQp(V ) = dimL0(Dst,L(V )) = dimK(DdR(V )) and V is de
Rham.

The following theorem due to Berger [Ber02, Cor. 5.22.] is called p-adic
Monodromy theorem. Another proof, not using p-adic di�erential equations
can be found in [Fon00, Theo. A].

Theorem 3.15 Let V be representation of GK (resp. IK, resp. WK). Then
V is potentially log-crystalline if and only if V is de Rham.
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This theorem allows us to construct a category of (semi-)linear algebra
data which is equivalent RepdR(GK) (resp. RepdR(IK), RepdR(WK)).

For a potentially log-crystalline representation of IK we set

D := D̃pst(V ) := lim−→
L/K �nite

D̃st,L(V )

and remark that this is a vector space over P0 of dimension dimQp(V ). Then

D̃pst(V ) = D̃st,L(V ) = D̃pst(V )IL (3.6)

for a �nite extension L/K. Hence there is a discrete action of IK on D, i.e.
the action factors through a �nite quotient. This allows us to endow D̃pst(V )
with the usual structure of a (ϕ,N)-module. Furthermore we endow this
object with a K-�ltration:

Fili(DK) := K ⊗L Fili(D̃st,L(V )L).

If we assume L/K to be Galois we obtain

Fili(DK)IL = L⊗K0 Fil
i(DIL)

by Galois descent. The above justi�es the following de�nition.

De�nition 3.16 We de�ne the category of admissibleK/K-�ltered (ϕ,N, IK)-
modules (resp. admissible K/K-�ltered (ϕ,N,GK)-modules) over P0 (resp.
K0) as follows:

� The objects are tuples (D,Fil•, ϕ,N), where

� (D,Fil•) is a K-�ltered vector space over P0 (resp. K0).

� (D,ϕ) is a ϕ-module over P0 (resp. K0).

� N : D → D is a P0-linear (resp. K0-linear) endomorphism.

� IK (resp. GK) acts on D discretely.

� N ◦ ϕ = p(ϕ ◦N) holds.

� ϕ ◦ g = g ◦ ϕ and N ◦ g = g ◦N for all g ∈ IK (resp. g ∈ GK).

� A morphism f : (D1,Fil
•
1, ϕ1, N1)→ (D2,Fil

•
2, ϕ2, N2) is a IK-equivariant

(resp. GK-equivariant) P0-linear (resp. K0-linear) map f : D1 → D2

such that f is a morphism of K-�ltered vector spaces and f ◦ϕ1 = ϕ2◦f
as well as f ◦N1 = N2 ◦ f holds.
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� The composition is the usual composition of maps.

This leads to the equivalence of categories stated in [Fon94b, �5.6.7.]:

Theorem 3.17 There exists an equivalence of categories

D̃pst : Rep
pst(IK)
 (adm. K/K-�lt. (ϕ,N, IK)-mod./P0) : Ṽpst

given by
V 7→ lim−→

L/K �nite

D̃st,L(V )

Ṽpst(D)← [ D

where Ṽpst(D) := {x ∈ Bst⊗P0D | Nx = 0, ϕ(x) = x, 1⊗x ∈ Fil0(Bst⊗D)K}.

Remark 3.18 Let D be an admissible K/K-�ltered (ϕ,N, IK)-module over
P0. By choosing a su�ciently large extension L/K we obtain

D = DIL and Ṽpst(D) = Ṽst,L(D).

In the next step we will generalize this to the case of Weil group repre-
sentations. Let V be a potentially log-crystalline representation of WK and
D := D̃pst(V ). De�ne

FV : D → D by
∑
i

bi ⊗ vi 7→
∑
i

σKbi ⊗ σKvi.

Since we may assume that all L/K are Galois we obtain that IL E GK is a
normal subgroup and therefore F is well-de�ned, bijective and σf -semilinear.
One has to pay attention to the relation between FV and the IK-action. For
all u ∈ IK and d =

∑
i

bi ⊗ vi ∈ D we have

FV (u.d) = FV (
∑
i

u.bi ⊗ u.vi)

=
∑
i

σK .(u.bi)⊗ σK .(u.vi)

=
∑
i

(σKuσ
−1
K ).(σK .bi)⊗ (σKuσ

−1
K ).(σK .vi)

= (σKuσ
−1
K ).FV (d). (3.7)

This justi�es to de�ne the following category.
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De�nition 3.19 We de�ne the category of admissible K/K-�ltered
(ϕ,N, IK , F )-modules over P0 as follows:

� The objects are pairs (D,F ), where D is a K/K-�ltered (ϕ,N, IK)-
module over P0 and F : D → D is a bijective, σf -semilinear map that
is strictly compatible with the �ltration on DK, commutes with ϕ and
N and satis�es F (u.d) = (σKuσ

−1
K ).F (d) for all u ∈ IK.

� A morphism f : (D1, F1)→ (D2, F2) is a morphism f : D1 → D2 in the
category of admissible K/K-�ltered (ϕ,N, IK)-modules over P0 such
that f ◦ F1 = F2 ◦ f holds.

� The composition of morphisms is the usual composition of maps.

Theorem 3.12 leads to:

Theorem 3.20 There exist an equivalence of categories

D̃pst : Rep
pst(WK)
 (adm. K/K-�lt. (ϕ,N, IK , F )-mod./P0) : Ṽpst

given by
V 7→ (D̃pst(V ), FV )

Ṽpst(D)←[ D

Proof: The only signi�cant di�erence in the proofs of this theorem and The-
orem 3.12 is the fact that the group IK acts on Ṽpst(D) diagonally. Hence
we have to check that

ρ̂ : WK × V → V given by (uσnK , v) 7→ (uσnK).v :=
∑
i

(uσnK).bi ⊗ u.F n(di)

for all v =
∑
i

bi ⊗ di ∈ Ṽpst(D), u ∈ IK and n ∈ N de�nes a representation

of WK . Take g1 = u1σ
n1
K , g2 = u2σ

n2
K ∈ WK and v =

∑
i

bi ⊗ di ∈ Ṽpst(D) and

see that

(g1g2).v = (u1σ
n1
K u2σ

−n1
K ).v

=
∑
i

(g1g2).bi ⊗ (u1σ
n1
K u2σ

−n1
K ).F n1+n2(di)

=
∑
i

g1.(g2.bi)⊗ u1.F
n1(u2.F

n2(di))

= g1.(g2.v)

�

Another way to interpret [Fon94a, �5.6.7.] is:
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Theorem 3.21 There exists an equivalence of categories

Dpst : Rep
pst(GK)
 (adm. K/K-�lt. (ϕ,N,GK)-mod./Qnr

p ) : Vpst

given by
V 7→ lim−→

L/K �nite

Dst,L(V )

Vpst(D)← [ D

where

Vpst(D) := {x ∈ Bst ⊗Qnrp D | Nx = 0, ϕ(x) = x, 1⊗ x ∈ Fil0(Bst ⊗D)K}.

This leads to the following commutative diagram of functors:

Reppst(GK)

F
��

Dpst // {adm. K/K-�lt. (ϕ,N,GK)-mod. over Qnr
p }

·⊗Qnrp P0

��

Reppst(WK)
D̃pst // {adm. K/K-�lt. (ϕ,N, IK , F )-mod. over P0}

(CD2)

By Lemma 3.8 the forgetful functor is well-de�ned. Let D be an admis-
sible K/K-�ltered (ϕ,N,GK)-module over Qnr

p . Then the commutativity
follows from

D̃pst(Vpst(D)) = D̃st,L(Vpst(D)GL)

= D̃st,L(Vst,L(DGL))

= P0 ⊗L0 D
GL

= P0 ⊗Qnrp Qnr
p ⊗L0 D

GL︸ ︷︷ ︸
∼=D

∼= P0 ⊗Qnrp D.

F is given by
F (λ⊗ d) = σK(λ)⊗ σK .d

for all u ∈ IK , λ ∈ P0 and d ∈ D.

Remark 3.22 Let D be as above. The action of IK on P0 ⊗Qnrp D is given
by

u.(λ⊗ d) = u(λ)⊗ u.d = λ⊗ u.d

for all u ∈ IK , λ ∈ P0 and d ∈ D. Hence the semilinear action of GK on D
becomes a linear action of IK on P0 ⊗Qnrp D since IK acts trivially on P0.
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Chapter 4

Weil vs Galois group
representations

The �rst aim is to characterize the admissible �ltered (ϕ,N, F )-modules over
P0 that correspond to representations of the absolute Galois group GK .

4.1 Lifting Maps from Z to Ẑ
Our intermediate goal is to show that any group homomorphism Z→ GLr(OP0)
has a continuous extension Ẑ→ GLr(OP0).

Lemma 4.1 Let {Gi}i∈I be a projective system of groups such that each
element g ∈ Gi has �nite order for all i ∈ I. For any homomorphism

ϕ : Z→ lim←−Gi

there exists a unique continuous extension

ϕ̂ : Ẑ→ lim←−Gi

with respect to the projective limit topologies on both sides.

Proof: Set G := lim←−Gi, denote by πi : G → Gi the projection maps and by
eGi the neutral element in Gi. We de�ne mi ∈ N to be the order of πi(ϕ(1))
for all i ∈ I. For i ∈ I denote

Ni := {n ∈ N | mi divides n} = N ∩miZ

and obtain a group homomorphism

ϕn,i : Z/nZ→ Gi, given by 1̄ 7→ πi(ϕ(1))

51
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for all n ∈ Ni. If tij : Gi → Gj is the transition map for i, j ∈ I such that
i ≥ j, we know that tij(πi(ϕ(1))) = πj(ϕ(1)) by the de�nition of a projective
system. In particular

πj(ϕ(1))mi = tij(πi(ϕ(1)))mi = eGj .

Hence mj = ord(πj(ϕ(1))) divides mi and we receive Ni ⊆ Nj. Therefore the
map ϕn is compatible with the transition maps, i.e. tij ◦ ϕn,i = ϕn,j for all
i ≥ j and n ∈ Ni ⊆ Nj. By the universal property of the projective limit we
receive a continuous group homomorphism

ϕ̂ : lim←−
n∈N

(Z/nZ)→ G for N :=
⋃
i∈I

Ni.

But N ⊆ N is a co�nal system and hence we get a continuous group homo-
morphism

ϕ̂ : Ẑ→ G

that extends ϕ.
�

Remark 4.2 Let R be a ring, r ∈ N and I be a totally ordered set such that
R =

⋃
iRi for a family of �nite rings {Ri}i∈I such that Ri ⊆ Rj for all i ≥ j.

Then each element in GLr(R) has �nite order.

Combining Lemma 4.1 and Remark 4.2 has the following immediate con-
sequence. We can modify the proof of Corollary 1.6 and obtain:

Corollary 4.3 Let E be a local �eld with �nite residue �eld. The forgetful
functor

F : RepFp(GE)→ RepFp(WE)

is an equivalence of categories.

Lemma 4.4 Each element of GLr(OP0/p
nOP0) has �nite order.

Proof: Choose a tower of �nite sub-extensions Qp ⊆ L0 ⊆ L1 ⊆ · · · ⊆ Qnr
p

such that Qnr
p =

⋃
i Li. Then OLi/pnOLi is a �nite ring for each i and we

can apply remark 4.2 to⋃
i

OLi/pnOLi = OQnrp /p
nOQnrp .

Hence the elements of GLr(OQnrp /p
nOQnrp ) ∼= GLr(OP0/p

nOP0) are of �nite
order. �
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Corollary 4.5 For each group homomorphism φ : Z → GLr(OP0) there ex-
ists a unique continuous group homomorphism φ̂ : Ẑ→ GLr(OP0) with φ̂|Z =
φ.

Proof: Apply Lemma 4.1 to GLr(OP0) = lim←−
n

GLr(OP0/p
nOP0). �

Example 4.6 Let R be a discrete valuation ring with uniformizer $ and E
its �eld of fractions, e.g. E = Qp or E = P0 and $ = p.

1. Denote by W := E2 be the representation of WK where IK acts trivially
on W and σK has representing matrix(

0 1
1 0

)
∈ GL(R).

We denote all prime numbers with p1, p2, . . . starting with p1 = 3.
Then set cn := pn1p

n
2 · · · pnn ∈ Z and by Bezout's Lemma there exist

sequences (an)n and (bn)n in Z such that 1 = ancn + bn2n. Therefore
z := lim

n→∞
−ancn is an element of Ẑ since

Ẑ ∼=
∏
p∈P

Zp

and zn := −ancn converges to 1 in Z2 and to 0 in Zp for p 6= 2. Now
we see that the element g := σzK acts on W via

ρ(σzK) = lim
n→∞

ρ(σ1+bn2n

K ) =

(
0 1
1 0

)
.

2. On the other hand let W := E2 be the representation of WK where IK
acts trivially on W and σK has representing matrix(

0 1
$ 0

)
∈ GL(R).

Then we can not extend the action of WK to an action of GK via
continuity since

ρ(σzK) = lim
n→∞

ρ(σ1+bn2n

K ) = lim
n→∞

$nbn

(
0 1
$ 0

)
does not exist in GL2(E).
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4.2 Identifying the Galois Group Representa-

tions

The following theorem gives a precise description of the log-crystalline Weil
group representations that can be lifted to a Galois group representation.

Theorem 4.7 Let V be a log-crystalline representation of WK of dimension
r and D̃st(V ) = (D,F ) the corresponding module. The following statements
are equivalent:

1. V is a log-crystalline representation of GK.

2. There exists a basis B of D such that FB ∈ GLr(OP0).

3. There exists a OP0-lattice M ⊆ D such that F (M) = M .

We state the following lemma of topological nature in order to prove the
theorem.

Lemma 4.8 Let (D,F ) be an admissible K-�ltered (ϕ,N, F )-module over
P0 such there exists a OP0-lattice M ⊆ D satisfying F (M) = M . Take a
basis B of D such that FB ∈ GLr(OP0) and de�ne φ̂ : Ẑ → GLr(OP0) to be
the continuous map uniquely determined by 1 7→ FB by Corollary 4.5. Let F z

denote the map represented by φ̂(z) for all z ∈ Ẑ. Then:

1. F z ◦ ϕ = ϕ ◦ F z for all z ∈ Ẑ.

2. F z ◦N = N ◦ F z for all z ∈ Ẑ.

3. F z
K(Fili(DK)) = Fili(DK) for all z ∈ Ẑ.

Proof: Ẑ ∼=
∏

p Zp is metrizable by [Que76, Korollar 10.18] as a countable

product of metric spaces. Therefore we can choose for any z ∈ Ẑ a sequence
(zn)n∈N in Ẑ converging to z. We obtain

F z ◦ ϕ = lim
n→∞

(F zn ◦ ϕ) = lim
n→∞

(ϕ ◦ F zn) = ϕ ◦ F z

for all z ∈ Ẑ. If one replaces ϕ with N we also see that N commutes with
F z for any z ∈ Ẑ. Furthermore F z

K(d) = lim
n→∞

F zn
K (d) ∈ Fili(DK) for all

d ∈ Fili(DK), z ∈ Ẑ and i ∈ Z since Fili(DK) ⊆ DK is closed. �

Now we prove Theorem 4.7.
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Proof: 2. and 3. are equivalent by de�nition. Assume 2. holds. Take a basis
B of D such that FB ∈ GLr(OP0) and de�ne φ̂ : Ẑ → GLr(OP0) to be the
continuous map uniquely determined by 1 7→ FB by Corollary 4.5. Let F z

denote the map represented by φ̂(z) for all z ∈ Ẑ. De�ne the map

ρ̂ : GK × V → V via g.v :=
∑
i

g.bi ⊗ F degK(g)(di)

for v =
∑

i bi ⊗ di. We need to check that this is well-de�ned, i.e. that the
image of the map is contained in V = Fil0(Bst ⊗P0 D)ϕ=id,N=id ⊆ Bst ⊗P0 D.
But this is covered by the formulas in Lemma 4.8 as we see in the following.
Take v =

∑
i bi ⊗ di ∈ V and g ∈ GK and calculate

ϕ(g.v) = ϕ(
∑
i

g.bi ⊗ F degK(g)(di))

=
∑
i

ϕ(g.bi)⊗ (ϕ ◦ F degK(g))(di)

=
∑
i

g.ϕ(bi)⊗ F degK(g)(ϕ(di))

= g.ϕ(v) = g.v

as well as

N(g.v) = N(
∑
i

g.bi ⊗ F degK(g)(di))

=
∑
i

N(g.bi)⊗ (N ◦ F degK(g))(di)

=
∑
i

g.N(bi)⊗ F degK(g)(N(di))

= g.N(v) = 0

For any i we have 1⊗ bi⊗di ∈ Filj(K⊗K0 Bst)⊗K Fil−j(DK) for some j ∈ Z.

g.(bi ⊗ di) =
∑
i

g.bi ⊗ F degK(g)(di)

∈ Filj(K ⊗K0 Bst)⊗ F degK(g)
K (Fil−j(DK))

= Filj(K ⊗K0 Bst)⊗ Fil−j(DK)

Therefore g.(bi ⊗ di) ∈ Fil0(Bst ⊗D) for all i, hence g.v ∈ Fil0(Bst ⊗D) and
overall we have g.v ∈ V . By the same calculation as in (1.2) ρ̂ de�nes a
group action of GK on V . In order to show that this action is continuous we
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would like to apply Proposition 1.5. Hence it is necessary to show that the
map

IK × Ẑ→ IK given by (u, z) 7→ σzuσ−z

is continuous. Take an open subset of U ⊆ IK and we may assume without
loss of generality that U is a normal open subgroup of IK , in particular U is
a normal subgroup of GK . Then the preimage of U under the map above is⋃

z∈Ẑ

σ−zUσz × {z} =
⋃
z∈Ẑ

U × {z} = U × Ẑ ⊆ IK × Ẑ.

We conclude that we are allowed to apply Proposition 1.5 and V is a con-
tinuous representation of GK . The representation obtained this way is log-
crystalline since it is log-crystalline as a representation of IK by Lemma 3.8.
Now assume 1. holds. Then Gk

∼= GK/IK acts continuously (and diagonally)
on D̃st(V ) = (Bst ⊗Qp V )IK . By Lemma 1.2 there exists an OP0-lattice M
which is invariant under the action of Gk. Now F acts in the same way on
M as the topological generator σK of GK/IK and therefore the image of M
under F is contained in M and F is of slope 0, i.e. F (M) = M . �

An easy reformulation can be given in terms of slopes in the spirit of
section B.3. We stress out that there are two Newton slopes on an admissible
K-�ltered (ϕ,N, F )-module D over P0. On the one hand we have the usual
tN(D,ϕ) := ν(det(ϕ)), which is the Newton number with respect to the map
ϕ. But we also have a Newton slope with respect to F which is characterized
by the Newton number tN(D,F ) := ν(det(F )).

Corollary 4.9 Let V be a log-crystalline representation of WK of dimension
r and D̃pst(V ) = (D,F ) the corresponding module. The following statements
are equivalent:

� V is a log-crystalline representation of GK.

� (D,F ) is isoclinic of Newton slope 0 (with respect to F ).

We obtain the same result for potentially log-crystalline representations
from the following "division with remainder" in Ẑ.

Lemma 4.10 Take two elements z ∈ Ẑ and f ∈ Z. Then there exist two
unique elements β ∈ {0, . . . , f − 1} ⊆ Z and α ∈ Ẑ such that

z = f · α + β.
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Proof: First of all we remark that Ẑ/f Ẑ ∼= Z/fZ holds. Let

prf : Ẑ = lim←−
n

Z/nZ� Z/fZ

denote the projection to Z/fZ. Hence we �nd an unique element β ∈
{0, . . . , f − 1} ⊆ Z such that prf (z) = β + fZ holds. We see that z − β ≡ 0

mod f Ẑ and hence �nd an element α ∈ Ẑ such that z−β = f ·α. If we have
two elements α1, α2 ∈ Ẑ such that z−β = f ·αi, we receive f · (α1−α2) = 0.
But Ẑ is Z-torsion-free and hence α1 = α2. �

Corollary 4.11 Let V be a potentially log-crystalline representation of WK

of dimension r and D̃pst(V ) = (D,F ) the corresponding module. The follow-
ing statements are equivalent:

� V is a potentially log-crystalline representation of GK.

� (D,F ) is isoclinic of Newton slope 0 (with respect to F ).

Proof: We only need to show that the second point implies the �rst. As-
sume that L/K is a �nite Galois extension such that V |L is a log-crystalline
representation of IL, i.e. D

IL = D holds. Hence, by the previous Corollary
4.9, V is a log-crystalline representation of GL. It is left to show that GK

acts on V . By Theorem 3.20 we know that V is already a representation of
IK . Let f := f(L/K) be the inertia index, take an element g ∈ GK and set
z := degK(g) ∈ Ẑ. By Lemma 4.10 we may write z = α · f + β for some
α ∈ Ẑ and β ∈ Z. We de�ne the map

GK × V → V, (σzKu, v) 7→ (σfK)α.(σβK .(u.v)) = (σL)α.(σβK .(u.v))

for z ∈ Ẑ and u ∈ IK . This map is continuous since the GL-action on V is
continuous and GL ⊆ GK is an open subgroup. It is left to show that this
de�nes an action of GK on V . Take g1 = σz1Ku1, g2 = σz2Ku2 ∈ GK and set
ũ1 := σ−z2K u1σ

z2
K ∈ IK . Write z1 = α1 · f + β1 and z2 = α2 · f + β2 such that

α1, α2 ∈ Ẑ and β1, β2 ∈ {0, . . . , f − 1} as in Lemma 4.10. Take sequences
(α1,n)n resp. (α2,n)n in Z converging to α1 resp. α2 to obtain:

(g1g2).v = σα1+α2
L .(σβ1+β2

K .((ũ1u2).v))

= lim
n→∞

σ
α1,n+α2,n

L .(σβ1+β2

K .((ũ1u2).v))

= lim
n→∞

(σ
α1,n

L σβ1

K σ
fα2,n+β2

K ũ1σ
−(fα2,n+β2)
K ).((σ

α2,n

L σβ2

K u2).v))

= (σα1
L σ

β1

K ( lim
n→∞

σ
fα2,n+β2

K ũ1σ
−(fα2,n+β2)
K︸ ︷︷ ︸

=u1

)).((σα2
L σ

β2

K u2).v)) = g1.(g2.v)
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for all v ∈ V . �

The operator F allows us to decompose the objects in the category of
linear algebra data corresponding to the category of representations of the
Weil group. This will be done in the next chapter.

4.3 Decomposition of Weil Group Representa-

tions

We need the following preparations that can be found in [Bou81, chapter
V, �10.4]. Let E be a �eld, Γ ⊆ Aut(E) a subgroup and E0 := EΓ the
Γ-invariants of E. As usual [Bou74, chapter II, �8] an E0-structure on V is
an E0 subspace V0 ⊆ V such that the map

m : E ⊗E0 V0 → V, given by λ⊗ x 7→ λ · x

is bijective. Let V0 ⊆ V be such an E0-structure. For any γ ∈ Γ de�ne V γ

to be the vector space over E with the underlying additive group (E,+) and
scalar multiplication given by

E × V γ → V γ, (λ, v) 7→ γ(λ) · v.

Set X :=
⊕
γ∈Γ

V γ and remark that the scalar multiplication on this E-vector

space is given by

E ×X → X, (λ, x) 7→ (γ(λ) · xγ)γ∈Γ.

We �nally de�ne the map

ψ : E ⊗E0 V → X, given by λ⊗ x 7→ (γ(λ) · x)γ∈Γ.

Then [Bou81, chapter V, �10.4, Proposition 8] tells us:

Proposition 4.12 ψ is injective and it is bijective if Γ is �nite.

Now we will make use of the following re�nement of Fontaine's equiva-
lences of categories which can be found in [Fon00, �4]. Let Qpr := W (Fpr)[1

p
]

be the unique unrami�ed extension of Qp of degree r. Then we have

Gal(Qpr/Qp) = 〈σ〉 ∼= Z/rZ,
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where σ denotes a generator and restricts to the p-th power Frobenius map
on Fpr . Take two vector spaces V and W over Qpr and decompose its tensor
product over Qp via Proposition 4.12:

V ⊗Qp W
∼= V ⊗Qpr (Qpr ⊗Qp W )

∼= V ⊗Qpr (
⊕

0≤m<r

W σm)

∼=
⊕

0≤m<r

V ⊗Qpr,m W,

where

V ⊗Qpr,m W := {x ∈ V ⊗Qp W | (1⊗ λ)x = (σm(λ)⊗ 1)x for all λ ∈ Qpr}.

Assume that Qpr ⊆ K and let W be a log-crystalline Qpr -representation of
IK , i.e. W is log-crystalline as a Qp-representation of IK . Then

D̃st(W ) =
⊕

0≤m<r

(Bst ⊗Qpr,m W )IK

holds and we set D̃st,m(W ) := (Bst⊗Qpr,mW )IK . By [Fon00, �4] the following
diagram is commutative

RepstQpr (IK)

F
��

D̃st,0 // (adm. K-�lt. (ϕr, N)-mod./P0)

·⊗Qp[ϕr ]Qp[ϕ]

��
RepstQp(IK)

D̃st // (adm. K-�lt. (ϕ,N)-mod./P0)

(CD3)

and the horizontal arrows are equivalences of abelian tensor categories. Fur-
thermore let W be a log-crystalline Qpr -representation of WK , i.e. W is
log-crystalline as a Qp-representation of IK . We claim that D̃st,m(W ) is sta-
ble under the map FV we de�ned on D̃st(V ) to establish the equivalence of
categories in Theorem 3.12. Take x =

∑
bi ⊗ vi ∈ D̃st,m(V ) and apply FV to

obtain: ∑
i

σK(bi)⊗ λσK .vi =
∑
i

σK(bi)⊗ σK .λvi

= F (
∑
i

bi ⊗ λvi)

= F (
∑
i

σm(λ)bi ⊗ vi)

=
∑
i

σm(λ)σK(bi)⊗ σK .vi.
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for all λ ∈ Qpr . Hence FV (x) ∈ D̃st,m(V ) and we have veri�ed the claim. We
do the usual business in order to apply the results of section 1.4.

De�nition 4.13 We de�ne the category ofK-�ltered (ϕr, N, F )-modules over
P0 as follows:

� An object is a pair (D,F ), where D is an K-�ltered (ϕr, N)-module
over P0 and

F : D → D

is a bijective σf -semilinear map such that

� ϕr ◦ F = F ◦ ϕr,
� N ◦ F = F ◦N and

� FK(Fili(DK)) = Fili(DK) holds for all i ∈ Z.

� A morphism f : (D1, F1)→ (D2, F2) is a morphism f : D1 → D2 in the
category of K-�ltered (ϕr, N)-modules over P0 such that F2 ◦f = f ◦F1

holds.

� The composition of morphisms is the usual composition of maps.

We call an object (D,F ) of this category admissible if D is admissible in the
category of K-�ltered (ϕr, N)-modules over P0 and denote the full subcategory
consisting of admissible objects by

(adm. K-�lt. (ϕr, N, F )-mod./P0).

In the notation of section 1.4 we are in the following situation:

E = Qpr , ς = σK and B = Bst.

As consequence of Theorem 1.17 we receive:

Theorem 4.14 There is an equivalence of categories given as follows:

D̃st,0 : RepstQpr (WK) ∼ (adm. K-�lt. (ϕr, N, F )-mod./P0) : Ṽst,0

V 7→ (D̃st,0(V ), FV |D̃st,0(V ))

Hom(KP0-�lt. (ϕr, N)-modules over P0)(P0, Bst ⊗P0 D)← [ D.
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Proof: The veri�cation of the axioms in section 1.4 is the same as in sec-
tion 3.2, taking into account that we already checked that FV is well-de�ned.

�

Now we make use of Theorem B.18, i.e. the classi�cation theorem of
Dieudonne and Manin that allows us to decompose the modules (D,F ) as
follows.

Lemma 4.15 Let (D,F ) be an admissible K-�ltered (ϕf , N, F )-module over
P0. We denote the decomposition of D into isoclinic components along F (via
Theorem B.18) by

D =
⊕
q∈Q

Dq.

Then ϕf (Dq) = Dq and N(Dq) ⊆ Dq for all q ∈ Q.

Proof: F−1 ◦ ϕf is a P0-linear automorphism of D, that commutes with ϕ,
and such maps from Dq1 to Dq2 are the zero if q1 6= q2 by Lemma B.14. Thus
F−1 ◦ ϕf (Dq) = Dq for all q ∈ Q, i.e. ϕf (Dq) = F (Dq) = Dq. For the same
reason the P0-linear operator N has to map Dq into itself. �

Lemma 4.16 We make the same assumptions as in the previous lemma and
assume that K/K0 is a �nite Galois extension. Let

D ∼=
⊕
q∈Q

Snqq

denote the decomposition of D along F into standard isocrystals (via Theorem
B.22). Then

Fili(DK) = K ⊗K0

(⊕
q∈Ji

Snq,iq

)
for a �nite subset Ji ⊆ Q, 1 ≤ nq,i ≤ nq for all q ∈ Ji and i ∈ Z.

Proof: By the de�niton of (D,F ) we have FK(Fili(DK)) = Fili(DK) and set
W := Fili(DK)Gal(K/K0). Then the diagram

K ⊗K0 W

⊆
��

∼= // Fili(DK)

⊆
��

K ⊗K0 D
= // DK
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is commutative by Hilbert 90. In particular D = (DK)Gal(K/K0) where D ↪→
DK via d 7→ 1⊗ d. Thus

F (W ) = D ∩ FK(K ⊗K0 W )

= D ∩ FK(Fili(DK))

= D ∩ Fili(DK)

= D
Gal(K/K0)
K ∩ Fili(DK) = W.

Therefore W =
⊕

q∈Ji S
nq,i
q and Fili(DK) = K ⊗K0 (

⊕
q∈Ji S

nq,i
q ). �

Remark 4.17 Let K be a �eld, (D,Fil) a K-�ltered vector space and

D1, . . . , Dn ⊆ D

sub-objects. Then D ∼=
⊕n

i=1Di in the cateogry of K-�ltered vector spaces if
and only if Filj(D) =

⊕n
i=1 Fil

j(Di) for all j ∈ Z. Warning: This condition
may easily fail, even if the Di are endowed with the subspace �ltration of D.
For instance take D = K2,

Fil0(D) = K2 ⊃ Fil1(D) = K(e1 + e2) ⊃ Fil2 = 0

and D1 = K · e1 and D2 = Ke2.

With Lemma 4.16 we excluded this situation. Now we need [CF00, The-
orem 4.3.] to proceed.

Theorem 4.18 Let D be a K-�ltered (ϕ,N)-module over P0 of dimension
h ≥ 1. Then Ṽst(D) has �nite dimension over Qp if and only if tH(D′) ≤
tN(D′) for all sub-objects D′ ⊆ D (in the category of K-�ltered (ϕ,N)-
modules over P0). In this case we have dimQp(Ṽst(D)) ≤ h.

Theorem 4.19 Let (D,F ) be an admissible K-�ltered (ϕf , N)-module of di-
mension h ≥ 1 over P0 and let D =

⊕
q∈QDq denote its decomposition rela-

tive to F into isoclinic components (via Theorem B.18). Then the summands
Dq are admissible.

Proof: By Lemma 4.16 this decomposition is a decomposition of K-�ltered
vector spaces and by Lemma 4.15 it is a decomposition of (ϕf , N)-modules.
D is admissible if and only if Qp[ϕ] ⊗Qp[ϕf ] D is admissible as K-�ltered
(ϕ,N)-module over P0 by de�nition. Apply Theorem 4.18 to

Ṽst(Qp[ϕ]⊗Qp[ϕf ] D) ∼=
⊕
q∈Q

Ṽst(Qp[ϕ]⊗Qp[ϕf ] Dq)
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and obtain

h = dimQpṼst(Qp[ϕ]⊗Qp[ϕf ] D)

=
∑
q∈Q

dimQpṼst(Qp[ϕ]⊗Qp[ϕf ] Dq)︸ ︷︷ ︸
≤dimP0

(Qp[ϕ]⊗Qp[ϕf ]
Dq)

≤ dimP0(Qp[ϕ]⊗Qp[ϕf ] D) = h.

Hence dimQpṼst(Qp[ϕ]⊗Qp[ϕf ]Dq) = dimP0(Qp[ϕ]⊗Qp[ϕf ]Dq) for all q ∈ Q, i.e.
all the Qp[ϕ] ⊗Qp[ϕf ] Dq are admissible. Therefore all the Dq are admissible
in the category of K-�ltered (ϕf , N, F )-modules over P0. �

From the proof we extract the following.

Corollary 4.20 Let V be a log-crystalline (p-adic) representation of WK

that is coming from a Qpf -representation of WK by scalar restriction. Then
D̃st(V ) admits a decomposition into isoclinic components along F in the cat-
egory of admissible K-�ltered (ϕ,N, F )-modules over P0.

Remark that a combination of (CD2) and (CD3) gives us the following
commutative diagram of functors for any r ≤ f :

ReppstQpr (GK)

F
��

Dpst,0 // (adm. K/K-�lt. (ϕr, N,GK)-mod. over Qnr
p )

·⊗Qnrp P0

��

ReppstQpr (WK)
D̃pst,0 // (adm. K/K-�lt. (ϕr, N, IK , F )-mod. over P0)

(CD4)

Corollary 4.21 Let V be a potentially log-crystalline representation of WK

that is coming from a Qpf -representation of WK by scalar restriction. Then
D̃pst(V ) admits a decomposition along F in the category of admissible K/K-
�ltered (ϕ,N, IK , F )-modules over P0.

Proof: This can be proven the same way Theorem 4.19 was proven with
the additional information that any u ∈ IK can be understood as a linear
operator u : D → D and therefore must respect the decomposition along F
into isoclinic components. �

4.4 Generators of Abelian Tensor Categories

Initially we need to give the word "generating" a meaning in our context.
Since we are dealing with abelian tensor categories (even Tannakian cate-
gories) most of the time, it seems reasonable to adopt the usual de�nition
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of a tensor generating family from [DM82, �1, Tensor subcategories]. Never-
theless we re�ne the de�nition to state the results more precisely.

De�nition 4.22 Let C be an abelian tensor category, U be a strictly full
subcategory and (Xi)i∈I a collection of objects in C. We say that:

� U is a tensor subcategory if it is closed under the formation of �nite
tensor products.

� (Xi)i∈I is a tensor generating family of C if every object of C is iso-
morphic to a subquotient of P (Xi) for some P ∈ N[(ti)i∈I ]. (Interpret
multiplication as ⊗ and addtion as ⊕.)

� (Xi)i∈I is a tensor integrally generating family of C if every object of C
is isomorphic to P (Xi) for some P ∈ N[(ti)i∈I ].

� (Xi)i∈I is a tensor rationally generating family of C if every object X
of C satis�es l ·X = X⊕l ∼= P (Xi) for some l ∈ N and P ∈ N[(ti)i∈I ].

Remark 4.23 Clearly any tensor integrally generating family is a tensor ra-
tionally generating family. Take a tensor rationally generating family (Xi)i
in some abelian tensor category C and an arbitrary object X. Consider a
projection pr : X⊕l � X such that X⊕l ∼= P (X1, . . . , Xn) for some ob-
jects X1, . . . , Xn in the tensor integrally generating family. We obtain an
isomorphism X ∼= P (X1, . . . , Xn)/ ker(pr) and therefore (Xi)i is a tensor
generating family in C.

4.5 Generators of the category of Weil group

representations

In this section we will construct a family of Weil group representations that
can't be lifted to Galois group representations. Later on we will see that this
family and the family of Galois group representations are a tensor rationally
generating family of the category Repst(WK).

Let r ∈ N and Kr/K be the unrami�ed extension of degree r and set

σKr := σrK .
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Remark 4.24 Consider the one-dimensional representation Qp(| · |Kr) of
WKr given in Example 1.3. We recall that IKr acts trivially on Qp(| · |Kr).
Then the induction IndWK

WKr
(Qp(| · |Kr) is crystalline since

(Bcrys ⊗Qp (IndWK
WKr

(Qp(| · |Kr)))IK = (Bcrys ⊗Qp (
r−1⊕
i=0

σiK ∗Qp(| · |Kr))IK

= P0 ⊗Qp (
r−1⊕
i=0

σiK ∗Qp(| · |Kr))

∼= S 1
r
,

where S 1
r
denotes the standard isocrystal over P0 with respect to F (compare

De�nition B.20). This justi�es to de�ne

V 1
r

:= IndWK
WKr

(Qp(| · |Kr)) and V− 1
r

:= IndWK
WKr

(Qp(| · |Kr)−1)

for r ∈ N, where Qp(| · |Kr)−1 denotes the character given by the composition

WKr � W ab
Kr

rKr−−→ Kr
× |·|Kr−−→ pZ ⊆ Q×p

x 7→x−1

−−−−→ Q×p .

Warning: The induction of a (log-)crystalline representation will not be
(log-)crystalline in general.

Now we can state the main theorem as follows.

Theorem 4.25 Repst(WK) (resp. Repcrys(WK)) is rationally generated as
an abelian tensor category by Repst(GK) (resp. Repcrys(GK)) and the family
{V 1

r
}r∈Z\{0}.

Proof: Let V be a (p-adic) log-crystalline representation of WK . Without
loss of generality we assume that V is coming from a log-crystalline Qpf -
representation of WK by considering Qpf ⊗Qp V

∼= V ⊕f instead of V . Use
Corollary 4.20 to decompose

D := D̃st(V ) =
n⊕
i=1

D ri
si

such that D ri
si

is isoclinic of slope si
ri
(reduced fraction such that ri ≥ 1) with

respect of F . Then
D̃i := D si

ri

⊗ S ri−si
ri

⊗ S−1
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is isoclinic of slope 0 (with respect to F ) by Lemma B.21. By Theorem 4.7
D̃i corresponds to an object of Repst(GK). Multiply the equation with S si−ri

ri

and rearrange to obtain

S si−ri
ri

⊗ S1 ⊗ D̃i
∼= D si

ri

⊗ S 0

r2
i︸︷︷︸

∼=P
r2
i

0

∼= D
⊕r2

i
si
ri

.

If ri = si holds we are done. In the case that si > ri holds, take the r
si−ri−1
i -

fold sum on both sides. By Corollary B.23 this leads to

S
⊗(si−ri)
1
ri

⊗ S1 ⊗ D̃i
∼= D

⊕rsi−ri+1
i

si
ri

.

If si < ri holds, take the r
ri−si−1
i -fold sum on both sides and receive

S
⊗(ri−si)
− 1
ri

⊗ S1 ⊗ D̃i
∼= D

⊕rri−si+1
i

si
ri

.

Set l :=
∏n

i=1 r
±(si−ri)+1
i (where ± is the appropriate sign from above de-

pending on the index i) and see that

D⊕l ∼=
n⊕
i=1

(S
⊗±(si−ri)
± 1
ri

⊗ S1 ⊗ D̃i)
⊕l/r±(si−ri)+1

i .

Translating everything back to the category of representations gives the re-
sult. The same proof works for the crystalline case since the representations
V 1
r
are crystalline for all r ∈ Z \ {0} by Remark 4.24. �

We obtain the analogous result for potentially log-crystalline representa-
tions.

Corollary 4.26 Reppst(WK) is rationally generated as an abelian tensor cat-
egory by Reppst(GK) and the family {V 1

r
}r∈Z\{0}.

Proof: Follow the proof above and use Corollary 4.11 as well as Corollary
4.21 in the appropriate places. �

Example 4.27 The following categories are equivalent:

Repst(WK/IK) ∼ Rep(WK/IK) ∼ Rep(Z)

(all the representations are assumed to be vector spaces over Qp). Consider

ρ : Z→ GL(V ) ∼= GL2(Qp)
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given by 1 = σK 7→
(

1 p
0 1

)
as an object of those categories. Then V is

neither decomposable nor irreducible and lifts to a representation of Ẑ since
ρ(1) ∈ GL2(Zp). Then D := D̃st(V ) = P0e1 +P0e2 with F (e1) = e1 +pe2 and
F (e2) = e2. By Theorem B.22 D decomposes as an F -module into standard
isocrystals. Therefore we �nd 0 6= a, b, λ ∈ P0 such that

F (ae1 + be2) = λ(ae1 + be2).

Hence λ = σK(a)
a

and σK(b) = λb− σK(a) · p. One might now think that D is
decomposable which is false:

ϕ(ae1 + be2) = σK(a)e1 + σK(b)e2 = σK(a)e1 + (λb− σK(a)p)e2

implies (by assuming decomposabilty) that there exists µ ∈ P0 such that

σK(a)e1 + σK(b)e2 = σK(a)e1 + (λb− σK(a) · p)e2 = µae1 + µbe2

and therefore µ = σ(a)
a

= λ and hence σK(a) · p = λb − µb = 0 which
contradicts a 6= 0. In particular ϕ does not respect the decomposition along
F into standard isocrystals. Nevertheless it always respects the decomposition
into isoclinic components.
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Chapter 5

(ϕ,Γ, F )-Modules

Inspired by the results in the case of (potentially log-)crystalline representa-
tions we try to obtain similar results for general (p-adic) representations. As
we will see later this approach unfortunately is only successful to a limited
(and minor) extend.

Notations: We adopt the notations from [Sch17] and [BC09] as follows:

� E+
K denotes the image of k[[X]] in OK[

∞
viaX 7→ $ (for the de�nition of

$, see [Sch17, Lemma 1.4.14 and below]), which is a complete discrete
valuation ring with residue �eld k and fraction �eld EK isomorphic to
k((X)).

� EsepK denotes the separable closure of EK in C[
p.

� AK denotes the image of the complete discrete valuation ring

{
∑
i∈Z

aiX
i | ai ∈ W (k) and lim

i→−∞
ai = 0}

with residue �eld k((X)) inW (EK) via a lift of the isomorphism k((X)) ∼=
EK (see [Sch17, Section 2.1]). Therefore AK is a complete discrete val-
uation ring with residue �eld EK and we denote its fraction �eld by
BK , which is isomorphic to

{
∑
i∈Z

aiX
i | {ai}i∈Z ⊆ W (k)[

1

p
] bounded and lim

i→−∞
ai = 0}.

AK is a Cohen ring of EK in the sense of [GD64, Théorème 19.8.6.].

69
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� Anr
K denotes the union of all unrami�ed ring extensions of AK with

respect to the residue �eld EK . Anr
K embeds into W (EsepK ) and the GK-

action on W (EsepK ) preserves Anr
K (see discussion before [Sch17, Remark

3.1.4.]).

� BnrK the fraction �eld of Anr
K . BnrK embeds into W (EsepK )[1

p
] and the GK-

action on W (EsepK )[1
p
] preserves BnrK .

� A denotes the p-adic completion of Anr
K . A is a complete discrete val-

uation ring with prime element p and residue �eld EsepK . A embeds
into W (EsepK ) and the Frobenius map σ as well as the GK-action on
W (EsepK ) preserve A. Furthermore AGal(EsepK /EK) = AK (see [Sch17,
Lemma 3.1.6.]).

� B denotes the fraction �eld of A. From the point above we see that
Bσ=id = Qp as well as BHK = BK .

Note that we slightly di�er from the notation in [Sch17] here. In Schnei-
der's notation the ring AK above is the ring AW (k)[ 1

p
].

The following two sections will seem redundant since we have already seen
that mod-p-representations of GK and WK coincide [Corollary 1.7]. Anyway
we will use the basic calculations later on. In addition this section should
serve as a reality check to see that our rather abstract arguments work out
correctly in a concrete situation.

5.1 (ϕ, F )-Modules and Mod-p-Representations

We use the following abbreviation:

ẼK := EKnr := (EsepK )IEK ∼= Fp((X)).

De�nition 5.1 A ϕ-module D (semilinear w.r.t. σ) over EK (resp. ẼK) is
called etale if the linearization

σ∗(D)→ D given by λ⊗ d 7→ λϕ(d)

is an isomorphism.

Recall the equivalence of abelian tensor categories initially established by
Fontaine [BC09, Theo. 3.1.8.]:
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Theorem 5.2 There are equivalences of abelian tensor categories given by

Dmod : RepFp(GEK )
 (etale ϕ-modules over EK) : Vmod

V 7→ (EsepK ⊗Fp V )GEK

(EsepK ⊗EK D)ϕ=id ←[ D

and
D̃mod : RepFp(IEK )
 (etale ϕ-modules over ẼK) : Ṽmod

V 7→ (EsepK ⊗Fp V )IEK

(EsepK ⊗ẼK D)ϕ=id ←[ D.

In particular we have the following comparison isomorphisms

αV : EsepK ⊗EK Dmod(V ) ∼= EsepK ⊗Fp V, (5.1)∑
i,j

bi ⊗ bj ⊗ dj 7→
∑
i,j

(bi · bj)⊗ dj

βD : EsepK ⊗Fp Vmod(D) ∼= EsepK ⊗EK D, (5.2)∑
i,j

bi ⊗ bj ⊗ vj 7→
∑
i,j

(bi · bj)⊗ vj

in the �rst case and

α̃V : EsepK ⊗ẼK D̃mod(V ) ∼= EsepK ⊗Fp V, (5.3)

β̃D : EsepK ⊗Fp Ṽmod(D) ∼= EsepK ⊗ẼK D (5.4)

in the second case with maps in the same �avor as in the �rst case. These
restrict to natural isomorphisms Vmod ◦ Dmod

∼= id (resp. Ṽmod ◦ D̃mod
∼= id)

and Dmod ◦ Vmod
∼= id (resp. D̃mod ◦ Ṽmod

∼= id).

We obtain the following commutative diagram of functors:

RepFp(GEK )

F
��

Dmod // (etale ϕ-modules over EK)

ẼK⊗EK ·
��

RepFp(IEK )
D̃mod // (etale ϕ-modules over ẼK).

(CD5)

(The ϕ-module structure on the scalar extension ẼK ⊗EK D is given by

ϕ(λ⊗ d) := σ(λ)⊗ ϕ(d)
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for λ ∈ ẼK and d ∈ D.)

Now take V ∈ RepFp(WEK ) and denote D := (EsepK ⊗Fp V )IEK . We �x
an element σK ∈ GEK such that degEK (σK) = 1 and obtain a σK-semilinear
bijective map by

FV : D → D,
∑
i

λi ⊗ vi 7→
∑
i

σK(λi)⊗ σK .vi.

(This map is well-de�ned since IEK is a normal subgroup of GEK .) ϕ is
the p-th power map on ẼK and σK is a ring homomorphism, therefore they
commute on ẼK . This implies

FV ◦ ϕ = ϕ ◦ FV

and motivates the following de�nition.

De�nition 5.3 We de�ne the category of etale (ϕ, F )-modules over ẼK as
follows:

� The objects are pairs (D,F ), where D is an etale ϕ-module over ẼK
and F : D → D is a bijective σf -semilinear map that commutes with
ϕ.

� A morphism f : (D1, F1) → (D2, F2) consists of a morphism f : D1 →
D2 in the category of etale ϕ-modules such that f ◦ F1 = F2 ◦ f holds.

� The composition is the usual composition of maps.

In order to apply the results of section 1.4 we need to check the axioms.
The setup is the following:

B = EsepK , E = Fp, G = GEK , I = IEK = GẼK and ς = σK .

Take the forgetful functor

(etale ϕ-modules over ẼK)→ (ϕ-modules over EK)

for T (this functor is fully faithful), consider the natural isomoprhisms in (5.3)
and (5.4) for α̃• and β̃•. Insert the trivial (identity) natural transformations
for η• and ξ•. Then Axiom 1.1 is satis�ed by Theorem 5.2.

Let (D,ϕ) be an etale ϕ-module over ẼK . Using the functoriality of σ∗K
on the isomorphism σ∗(D) ∼= D we get

σ∗(σ∗K(D)) ∼= σ∗K(σ∗(D)) ∼= σ∗K(D)
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by Lemma 1.12, i.e. σ∗K(D) is an etale σ∗K(ϕ)-module. Hence, the functor
σ∗K extends to a self-equivalence of the category of etale ϕ-modules over ẼK ,
i.e. Axiom 1.2 is satis�ed. Axiom 1.3 holds since T is a fully faithful functor.
Remark 1.14 (resp. Remark 1.15) shows that Axiom 1.4 (resp. Axiom 1.5)
is satis�ed.

From Theorem 1.17 one receives:

Theorem 5.4 There exists an equivalence of abelian tensor categories

D̃mod : RepFp(WEK )
 (etale ϕ-modules over ẼK) : Ṽmod

given by
V 7→ (EsepK ⊗Fp V )IEK

(EsepK ⊗ẼK D)ϕ=id ←[ D.

5.2 (ϕ,Γ, F )-Modules andMod-p Representations

Now we want to transition to mod-p representations of WK . This can be
realized, loosely speaking, by "adding" the action of

Γ := ΓK := IK/H̃K = Gal(K∞K
nr/Knr) ∼= Gal(K∞/K)

on both sides. We use the following abbreviations:

HK := Gal(Qp/K∞) and H̃K := Gal(Qp/K
nrK∞).

By the main theorem of the theory of norm �elds [BC09, Theorem 13.4.3.]
we have

HK
∼= Gal(EsepK /EK) and H̃K

∼= Gal(EsepK /ẼK) (5.5)

as topological groups. Hence we may interpret the element σK from the
previous section as an element σK ∈ HK such that degK∞(σK) = 1.

Lemma 5.5 Let T/K be a Galois extension contained in K.

� WK/WT ↪→ Gal(T/K) is an injective continuous dense group homo-
morphism.

� WK/WT
∼= Gal(T/K) if T/K is totally rami�ed.
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Proof: Consider the commutative diagram

1 //WT
⊆ //

⊆
��

WK

⊆
��

//WK/WT

ι

��

// 1

1 // GT
⊆ // GK

// Gal(T/K) // 1

with exact rows and remark that the left square is cartesian, i.e. WT =
GT ∩WK . By an elementary diagram chase the dotted arrow ι exists and
has dense image since the middle vertical arrow has dense image. If T/K is
totally rami�ed we have IK/IT = Gal(T ·Knr/Knr) = Gal(T/K). Consider
the commutative diagram

1 // IT
⊆ //

⊆
��

IK

⊆
��

// Gal(T/K)

η

��

// 1

1 //WT
⊆ //WK

//WK/WT
// 1

with exact rows. Again the left square is cartesian and hence η exists. ι and
η are inverse to each other. �

Now take V ∈ RepFp(WK) and denote D := (EsepK ⊗Fp V )H̃K . Consider
the σK-semilinear bijective map given by

FV : D → D,
∑
i

λi ⊗ vi 7→
∑
i

σK(λi)⊗ σK .vi

again. We check the compatibility with the action of Γ. Γ acts on D via the
residual action of IK on EsepK ⊗Fp V after taking H̃K-invariants. For u ∈ IK
and d =

∑
λi ⊗ vi ∈ D we have

FV (u.d) =
∑
i

(σK ◦ u)(λi)⊗ (σK ◦ u).vi

= (σK ◦ u ◦ σ−1
K ◦ u

−1).(u.FV (d)).

But σK ◦ u ◦ σ−1
K ◦ u−1 ∈ H̃K and therefore

FV (γ.d) = γ.FV (d)

for all γ ∈ Γ and d ∈ D. ϕ is the p-th power map on ẼK and σK is a ring
homomorphism, therefore they commute on ẼK . This implies

FV ◦ ϕ = ϕ ◦ FV .

This motivates the following de�nition.
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De�nition 5.6 We de�ne the category of etale (ϕ,Γ, F )-modules over ẼK
as follows:

� The objects are pairs (D,F ), where D is an etale (ϕ,Γ)-module over
ẼK and F : D → D is a bijective σK-semilinear map that commutes
with ϕ and the action of Γ.

� A morphism f : (D1, F1) → (D2, F2) consists of a morphism f : D1 →
D2 in the category of etale (ϕ,Γ)-modules such that f ◦ F1 = F2 ◦ f
holds.

� The composition is the usual composition of maps.

From Theorem 5.4 one receives:

Theorem 5.7 There exists an equivalence of abelian tensor categories

D̃mod : RepFp(WK)
 (etale (ϕ,Γ, F )-modules over ẼK) : Ṽmod

given by
V 7→ (EsepK ⊗Fp V )H̃K

(EsepK ⊗ẼK D)ϕ=id ←[ D.

Proof: Denote the canonical projection

WK � WK/H̃K
∼= WK/IK∞

∼= Γ× Z

by g 7→ (γg, zg) for all g ∈ WK . Take a module (D,F ) from the right hand
side and de�ne the map

WK × Ṽmod(D)→ Ṽmod(D), (g, v) 7→ g.v :=
∑
i

g.bi ⊗ γg.F zg(di)

for v =
∑
i

bi ⊗ di ∈ Ṽmod(D) and g ∈ WK . This map is well-de�ned since

ϕ(g.v) = ϕ(
∑
i

g.bi ⊗ γg.F zg(di))

=
∑
i

ϕ(g.bi)⊗ ϕ(γg.F
zg(di))

=
∑
i

g.ϕ(bi)⊗ γg.(ϕ ◦ F zg)(di)

=
∑
i

g.ϕ(bi)⊗ γg.F zg(ϕ(di))

= g.v
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holds for all g ∈ WK and v =
∑
i

bi ⊗ di ∈ Ṽmod(D). Furthermore this de�nes

a group action since

(gh).v =
∑
i

(gh).bi ⊗ γgh.F zgh(di)

=
∑
i

g(h.bi)⊗ (γgγh).F
zg+zh(di)

=
∑
i

g(h.bi)⊗ γg.F zg(γh.F
zh(di))

= g.(h.v)

holds for all g, h ∈ WK and v =
∑
i

bi ⊗ di ∈ Ṽmod(D). It remains to check

that the map, that de�nes the WK-action, is continuous. By assumption its
restriction to IK×V → V is continuous and IK is open inWK . Hence IK×V
is open in WK × V and WK × V → V is therefore continuous. In addition
we need to check that Ṽmod is still a functor after varying the source and
target category. Take a morphism f : (D1, F1) → (D2, F2). For all g ∈ WK

and v =
∑
i

bi ⊗ di ∈ Ṽmod(D) we have

Ṽmod(f)(g.v) = Ṽmod(f)(
∑
i

g.bi ⊗ γg.F zg
1 (di))

=
∑
i

g.bi ⊗ f(γg.F
zg
1 (di))

=
∑
i

g.bi ⊗ γg.F zg
2 (f(di)))

=
∑
i

g.bi ⊗ f(γg.F
zg
2 (di))

= g.Ṽmod(f)(v).
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For a morphism f : V1 → V2 of WK-representations

D̃mod(f)(γ.d) = D̃mod(f)(γ.
∑
i

λi ⊗ vi)

= D̃mod(f)(
∑
i

uγ.λi ⊗ uγ.vi)

=
∑
i

uγ.λi ⊗ f(uγ.vi)

=
∑
i

uγ.λi ⊗ uγ.f(vi)

= γ.D̃mod(f)(d)

holds for all d =
∑
i

λi ⊗ vi ∈ D̃mod(V1) and γ = uγH̃K ∈ Γ. We verify that

the functors above are quasi-inverse to each other. It is enough to show that
the comparison maps

α̃V : Ṽmod(D̃mod(V ))→ V and β̃D : D̃mod(Ṽmod(D))→ D

are isomorphisms in the stated categories. For g ∈ WK , the image γg ∈ Γ of
g and v =

∑
i,j

bi ⊗ bij ⊗ vj ∈ Ṽmod(D̃mod(V )) we have

α̃V (g.v) = α̃V (g.(
∑
i

bi ⊗
∑
j

bij ⊗ vj︸ ︷︷ ︸
∈D̃mod(V )

))

= α̃V (
∑
i

g.bi ⊗ γgF zg
V (
∑
j

bij ⊗ vj))

= α̃V (
∑
i

g.bi ⊗ (
∑
j

g.bij ⊗ g.vj))

=
∑
i,j

g.(bibij)g.vj

= g.α̃V (v).

Hence α̃V is a WK-equivariant linear bijection. For γ = uγH̃K ∈ Γ and
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d =
∑
i,j

bi ⊗ bij ⊗ dj ∈ D̃mod(Ṽmod(D)) we have:

(β̃D ◦ γ)(d) = β̃D(γ(
∑
i

bi ⊗
∑
j

bij ⊗ dj︸ ︷︷ ︸
∈Ṽmod(D)

))

= β̃D(
∑
i

uγ.bi ⊗ uγ.(
∑
j

bij ⊗ dj))

= β̃D(
∑
i

uγ.bi ⊗
∑
j

uγ.bij ⊗ γF deg(uγ)(dj))

=
∑
i,j

uγ.(bibij)⊗ γ(dj))

= (γ ◦ β̃D)(d).

This shows that β̃D is an isomorphism in the category of etale (ϕ,Γ, F )-
modules which completes the proof. �

5.3 Reality Check

We remind that the actions of ϕ and σ := σQp on the �eld k((X)) are given
as follows:

ϕ(f) = fp and σ(f) =
∑
i≥m

apiX
i

for all f =
∑
i≥m

aiX
i ∈ k((X)).

One-dimensional etale (ϕ,Γ)-modules over EQp and ẼQp: We classify
all one-dimensional mod-p-representations of GQp and IQp as follows. Take

k ∈ {Fp,Fp} and let D denote a one-dimensional etale (ϕ,Γ)-module over
k((X)). Fix a generator 0 6= e ∈ D and �nd h ∈ k((X))× such that ϕ(e) =
h · e. We write h = h0T

aH with h0 ∈ k×, a ∈ Z and H ∈ 1 + Xk[[X]]. For
any u ∈ k((X))× we have

ϕ(ue) = ϕ(u)he = ϕ(u)u−1h(ue).

The map k[[X]]× → 1 + Xk[[X]] given by u 7→ uϕ(u)−1 is surjective (a
preimage of an element b is given by

∏∞
j=0 ϕ

j(b)). Thus we �nd u ∈ k[[X]]
such that ϕ(ue) = h0X

a(ue) and we may assume w.l.o.g. (by base change)
that

ϕ(e) = h0X
ae with 0 ≤ a ≤ p− 1.
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Take g ∈ k((X))× and a generator γ ∈ Γ such that γ.e = ge. Apply γ ◦ ϕ =
γ ◦ ϕ on e and obtain:

h0((1 +X)χ(γ) − 1)age = ϕ(g)h0X
ae.

Set z := χ(γ) ∈ Z×p and compare the leading coe�cients of the above equa-
tion. One receives

zaXagmX
m = gpmX

pmXa.

This implies m = 0, g0 ∈ F×p and therefore za = 1. Then a = 0 since z 6= 1
and h = h0 ∈ k×. We see that the one-dimensional mod-p-representations
of GQp correspond to elements of F×p × F×p and the one-dimensional mod-p-

representations of IQp correspond to elements of F×p × F×p .

One-dimensional etale (ϕ,Γ, F )-modules over ẼQp: Now we calcu-
late all one-dimensional mod-p-representations of WQp . We can immediately

restrict to the situation k = Fp above and assume now that D is a (ϕ,Γ, F )-
module over k((X)). Take f ∈ k((X))× such that F (e) = fe and apply
F ◦ ϕ = ϕ ◦ F to e and receive

hp0fe = fph0e, i.e. h0f
−1 ∈ F×p .

This implies f = f0 ∈ k× and since taking the (p − 1)-th power on k× is
surjective we �nd u ∈ k× such that σ(u)u−1 = f−1

0 . Then we have

F (ue) = σ(u)f0e = ue.

and we change the base now by e 7→ e′ := ue. Hence ϕ(e′) = ϕ(u)u−1h0 · e′
and we set h

′
0 = h′ := ϕ(u)u−1h0 ∈ k×. Apply F ◦ϕ = ϕ◦F to e′ and obtain

(h
′

0)p · e′ = h
′

0 · e′, in particular h
′

0 ∈ F×p .

We see that the one-dimensional mod-p-representations of WQp correspond
to elements of F×p × F×p as predicted by Corollary 1.6.

5.4 (ϕ, F )-Modules and p-adic Representations

As a start we remark that the theory of (ϕ,Γ)-modules developed by Fontaine
(see [Fon90] or [BC09, �13]) does not require the residue �eld of the p-adic
�eld K ′, which we begin with, to be �nite, hence we are free to start with
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a p-adic �eld K ′ = KP0 with residue �eld Fp. This would now lead to a
category of (ϕ,Γ)-modules classifying the p-adic representations of GK′ but
by the Theorem of Ax-Sen-Tate [Tat67, �(3.3), Theorem 1] we obtain

GK′ = Gal(K ′/K ′) ∼= Autcont(Cp/KP0) ∼= Gal(K/Knr) = IK .

In this situation the following rings matter.

� ÃK denotes a Cohen ring for ẼK which is isomorphic to

{
∑
i∈Z

aiX
i | ai ∈ W (Fp) and lim

i→−∞
ai = 0}

via a lift of the isomorphism Fp((X)) ∼= ẼK . For a precise construction
see [BC09, �13.5].

� B̃K denotes the quotient �eld of ÃK .

From [Sch17, Proposition 1.2.6.] and (5.5) we know that

GEK
∼= HK

∼= Gal(BnrK /BK) and IEK
∼= H̃K

∼= Gal(BnrK /B̃K)

as topological groups.

De�nition 5.8 A ϕ-module D over BK (resp. B̃K) is called etale if there
exists an AK-lattice (resp. ÃK-lattice) M ⊆ D such that the linearization

(σ|AK )∗(M)→M given by a⊗ x 7→ aϕ(x)

(resp. (σ|ÃK )∗(M)→M given by a⊗ x 7→ aϕ(x))

is an isomorphism.

Warning: The meaning of being "etale" depends on the coe�cient ring
of the ϕ-modules. Maybe "ϕ-module containing an etale lattice" would be
the better term but we stick to the literature here.

Recall the equivalence of abelian tensor categories initially established by
Fontaine (see [BC09, Theo. 3.3.4.]):

Theorem 5.9 There are equivalences of abelian tensor categories given by

D : Rep(GEK )
 (etale ϕ-modules over BK) : V

V 7→ (B⊗Qp V )GEK
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(B⊗BK D)ϕ=id ←[ D

and
D̃ : Rep(IEK )
 (etale ϕ-modules over B̃K) : Ṽ

V 7→ (B⊗Qp V )IEK

(B⊗B̃K D)ϕ=id ←[ D.

We immediately obtain the following commutative diagram of functors

Rep(GEK )

F
��

D // (etale ϕ-modules over BK)

·⊗BK B̃K
��

Rep(IEK ) D̃ // (etale ϕ-modules over B̃K).

(CD6)

since B̃K/BK is a Galois extension with group Gk.

De�nition 5.10 We de�ne the category of etale (ϕ, F )-modules over B̃K as
follows:

� The objects are pairs (D,F ), where D is an etale ϕ-module over B̃K
and F : D → D is a bijective σf -semilinear map that commutes with
ϕ.

� A morphism f : (D1, F1) → (D2, F2) consists of a morphism f : D1 →
D2 in the category of etale ϕ-modules such that f ◦ F1 = F2 ◦ f holds.

� The composition is the usual composition of maps.

In order to apply the results of section section 1.4 we need to check the
axioms. The setup is the following:

B = B, E = Qp, G = GEK , I = IEK = GẼK and ς = σK .

Take the forgetful functor for T (which forgets the property of being etale)
and the trivial (identity) natural transformations for η• and ξ•. Then Axiom
1.1 is satis�ed by Theorem 5.9.

Let (D,ϕ) be an etale ϕ-module over B̃K . We set σ∗K(M) := A⊗A,σK M
and verify that σ∗K(M) is an ÃK-lattice in σ

∗
K(D):
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We claim that the canonical map σ∗K(M) → σ∗K(D) given by a ⊗ m 7→
a ⊗m is injective. Take a linearly independent set of elements x1, . . . , xl ∈
σ∗K(M) and b1, . . . , bl ∈ B̃K such that∑

i

bixi = 0.

Since B̃K is a discretely valued �eld with ring of integers ÃK and uniformizer
p, we �nd N � 0 such that pNbi ∈ ÃK . Hence∑

i

pNbixi = 0

and by linear independence over ÃK , we obtain p
Nbi = 0 for all i = 1, . . . , l,

therefore bi = 0 for all i = 1, . . . , l. Now we show that (σ|ÃK )∗(σ∗K(M)) ∼=
σ∗KM . Using the functoriality of σ∗K on the isomorphism (σ|ÃK )∗(M) ∼= M
we get

(σ|ÃK )∗(σ∗K(M)) ∼= σ∗K((σ|ÃK )∗(M)) ∼= σ∗K(M),

by the same argument as in Lemma 1.12, i.e. σ∗K(D) is an etale σ∗K(ϕ)-
module. Hence, the functor σ∗K extends to a self-equivalence of the category
of etale ϕ-modules over B̃K , i.e. Axiom 1.2 is satis�ed.

Axiom 1.3 holds since T is fully faithful. Remark 1.14 (resp. Remark
1.15) shows that Axiom 1.4 (resp. Axiom 1.5) is satis�ed.

From Theorem 1.17 one receives:

Theorem 5.11 There exists an equivalence of abelian tensor categories

D̃ : Rep(WEK )
 (etale (ϕ, F )-modules over B̃K) : Ṽ

given by
V 7→ (B⊗Qp V )IEK

(B⊗B̃K D)ϕ=id ←[ D.

5.5 (ϕ,Γ, F )-Modules and p-adic Representations

Now we extend to representations of WK in the same way as in section 5.2

De�nition 5.12 We de�ne the category of etale (ϕ,Γ, F )-modules over B̃K
as follows:
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� The objects are pairs (D,F ), where D is an etale (ϕ,Γ)-module over
B̃K and F : D → D is a bijective σK-semilinear map that commutes
with ϕ and the action of Γ.

� A morphism f : (D1, F1) → (D2, F2) consists of a morphism f : D1 →
D2 in the category of etale (ϕ,Γ)-modules such that f ◦ F1 = F2 ◦ f
holds.

� The composition is the usual composition of maps.

One replaces the �eld ẼK by B̃K and EsepK by B in section 5.2 and the does
the same with the functors, i.e. we consider Ṽ instead of Ṽmod and D̃ instead
of D̃mod. Then all the modi�ed calculations continue to be valid. Hence one
can imitate the proof of Theorem 5.7 and receive:

Theorem 5.13 There exists an equivalence of abelian tensor categories

D̃ : Rep(WK)
 (etale (ϕ,Γ, F )-modules over B̃K) : Ṽ

given by
V 7→ (B⊗Qp V )H̃K

(B⊗B̃K D)ϕ=id ←[ D.

Proof: Imitate the proof of Theorem 5.7 using the modi�cations explained
above. �

Corollary 5.14 Let V be an object of Rep(WK). The WK-action on V can
be extended continuously to an action of GK on V (i.e. V is an object of
Rep(GK)) if and only if there exists an etale (ϕ,Γ)-module D over BK such
that D̃(V ) ∼= B̃K ⊗BK D. Here the bijective σK-semilinear selfmap F on
B̃K ⊗BK D is given by F (b⊗ d) = σK(b)⊗ d for all b ∈ B̃K and d ∈ D.

Proof: Assume that V is an object of Rep(GK). Then

B̃K ⊗BK D(V ) ∼= B̃K ⊗BK (B⊗Qp V )IK ∼= (B̃K ⊗Qp V )IK = D̃(V ).

Conversely assume that D̃(V ) ∼= B̃K ⊗BK D as above. This implies

D(V ) ∼= (B⊗Qp V )GK = ((B⊗Qp V )IK )Gk ∼= D̃(V )Gk ∼= (B̃K ⊗BK D)Gk ∼= D

and therefore V is a Galois representation. �
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Corollary 5.15 Let V be an object of Rep(GK) ⊆ Rep(WK) and D̃(V ) =
(D,F ) the associated (ϕ,Γ, F )-module over B̃K. Then (D,F ) satis�es

det(F ) ∈ A×K i.e. νBK (det(F )) = 0,

where νBK denotes the discrete valuation on BK.

Now one would wish to apply the methods from chapter 4 to the current
case in order to establish su�cient criteria that distinguish Weil and Galois
group representations. The ring ÃK is a discrete valuation ring with residue
�eld Fp((X)). In general the elements of this residue �eld do not have �nite
order, hence we are not able to lift a morphism Z→ GLd(ÃK) to a morphism
Ẑ→ GLd(ÃK) by using Lemma 4.1. Therefore this technique does not work
out in the present context.
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Appendix A

Divided Powers

The following paragraph is extracted from [BO78].

De�nition A.1 Let A be a ring. We call (I, γ) a divided power structure
on A if I is an ideal in A and γ collection of maps {γi}i≥0 such that the
following properties are satis�ed:

1. γ0(x) = 1, γ1(x) = x, γi(x) ∈ I for all x ∈ I, i ≥ 1.

2. γk(x+ y) =
∑

i+j=k γi(x)γj(y) for all x, y ∈ I.

3. γk(λx) = λkγk(x) for all λ ∈ A, x ∈ I.

4. γi(x)γj(x) = (i+j)!
i!·j! γi+j(x) for all x ∈ I.

5. γp(γq(x)) = (pq)!
p!(q!)p

γpq(x) for all x ∈ I.

We call the triplet (A, I, γ) a divided powers ring which will be abbreviated
by "PD-ring". Similarly we call (I, γ) a divided power ideal, abbreviated by
"PD-ideal", and γ a divided power structure, abbreviated by "PD-structure".
Furthermore we call J ⊆ I a sub PD-ideal if J ⊆ A is an ideal and γi(x) ∈ J
for all x ∈ J and i ≥ 1.

Remark A.2 All rational coe�cients appearing in the de�nition above are
integers.

De�nition A.3 Let (A, I, γ) and (B, J, δ) be PD-rings and f : A → B a
ring homomorphism. We call f a PD-morphism if f(I) ⊆ J and δn(f(x)) =
f(γn(x)) for all x ∈ I.

Example A.4 A PD-ring of our interest will be (Zp, (p), γ) where γn(x) =
xn

n!
. Obviously ((0), γ) is a sub PD-ideal of ((p), γ).
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Lemma A.5 Let (A, I, γ) be a PD-ring and J ⊆ A an ideal. Denote the
canonical projection by π : A → A/J . There exists a unique PD-structure
γ̄ : π−1(I) → π−1(I) such that π : (A, I, γ) → (A/J, π−1(I), γ̄) is a PD-
morphism if and only if J ∩ I ⊆ I is a sub PD-ideal.

Proof: [BO78, Lemma 3.5]. �

A.1 Universal Enveloping Divided Power Ring

Let B be a ring and M be an B-module.

De�nition A.6 We call (UB(M),U+
B (M), µ) universal enveloping PD-ring

of M if it is a PD-ring and there exists a B-module homomorphism

ι : M → U+
B (M)

satisfying the following universal property: For any PD-ring (C, J, δ) over B
and B-module homomorphism Ψ: M → J there is a unique PD-morphism

Ψ̄ : (UB(M),U+
B (M), µ)→ (C, J, δ)

such that Ψ̄ ◦ ι = Ψ. If no confusion is possible we abbreviate

µn(x) := µn(ι(x))

for x ∈M .

Theorem A.7 (UB(M),U+
B (M), µ) exists.

Proof: Set GB(M) := B[{T(x,n) | x ∈ M,n ∈ N}] and consider the following
subsets of GB(M):

E1 := {T(x,0) − 1 | x ∈M}
E2 := {T(bx,n) − bnT(x,n) | x ∈M, b ∈ B, n ∈ N}

E3 := {T(x,n)T(x,m) −
(n+m)!

n!m!
· T(x,n+m) | x ∈M,n,m ∈ N}

E4 := {T(x+y,n) −
∑
i+j=n

Tx,iTy,j | x, y ∈M,n ∈ N}

Let IB(M) denote the ideal generated by E1 ∪ E2 ∪ E3 ∪ E4. There is an
obvious grading on GB(M) given by

GB(M) =
⊕
n≥0

B[T(x,n) | x ∈M ]



A.2. DIVIDED POWER ENVELOPES 89

and IB(M) is a homogenous ideal with respect to this grading. Therefore
UB(M) := GB(M)/IB(M) is a graded ring, i.e.

UB(M) =
⊕
i≥0

U iB(M).

We de�ne

U+
B (M) =

⊕
i>0

U iB(M).

We set x[n] := T(x,n) + IB(M) and

ϕ : M → U+
B (M), x 7→ x[1].

By [BO78, Theorem A9] there exists a unique PD-structure µ such that

µi(x
[1]) = x[i]

for all i ≥ 1 and x ∈ M . Thus (UB(M),UB(M)+, µ) satis�es the universal
property. �

Corollary A.8 The assignment M 7→ (UB(M),U+
B (M), µ) de�nes a functor

from the category of B-modules into the category of PD-rings.

A.2 Divided Power Envelopes

Let (A, I, γ) be a PD-ring, B an A-algebra and J an ideal in B.

De�nition A.9 We say that γ extends to B if there is a PD-structure γ′ on
IB such that ψ : (A, I, γ)→ (B, IB, γ′) is a PD-morphism.

Proposition A.10 If I is principal, γ extends to B.

Proof: [BO78, Proposition 3.15]. �

Proposition A.11 Assume that (J, δ) is a PD-ideal in B. The following
statements are equivalent:

1. γ extends to a PD-structure γ′ on B and γ′(x) = δ(x) for all x ∈ IB∩J .

2. K := ψ(I)B+J has a unique PD-structure δ′ such that ψ : (A, I, γ)→
(B,K, δ′) and idB : (B, J, δ)→ (B,K, δ′) are PD-morphisms.
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3. There is an ideal K ⊆ B with ψ(I)B + J ⊆ K with a PD-structure κ
such that ψ : (A, I, γ) → (B,K, κ) and idB : (B, J, δ) → (B,K, κ) are
PD-morphisms.

If the conditions hold we say that γ and δ are compatible.

Proof: [BO78, Proposition 3.16]. �

De�nition A.12 We call a PD-ring (D,J , η) PD-envelope of (B, J) with
respect to (A, I, γ) if JD ⊆ J , η is compatible with γ and the following
universal property is satis�ed: For any PD-ring (C,K, δ) such that C is a
B-algebra, JC ⊆ K and δ is compatible with γ, there exists a unique PD-
morphism

(D,J , η)→ (C,K, δ)

making the obvious diagram commutative. We denote the PD-envelope of
(B, J) with respect to (A, I, γ) by D(A,I,γ)(B, J).

Theorem A.13 D(A,I,γ)(B, J) exists.

Proof: If I is not contained in J replace J by J + I. Let ι : J → U+
B (J)

be the universal map from Theorem A.7. Since J ⊆ B we can interpret the
elements of J as elements of the B-algebra UB(J). Set

F1 := {ι(x)− x | x ∈ J}

F2 := {µn(ι(y))− γn(y) | y ∈ I}

and let IB,(A,I,γ)(J) denote the ideal in UB(J) generated by F1 and F2. One
can proof that the quotient UB(J)/IB,(A,I,γ)(J) has the required properties,
compare for example [BO78, Theorem 3.19]. �

A.3 Compatibility with Tensor Products

The following is partly extracted from [Rob63].

Let B be an A-algebra and as in the previous section let (A, I, γ) be a PD-
ring, R an B-algebra and J an ideal in B such that the canonical (surjective)
map

R⊗B J → JR given by r ⊗ j 7→ j · r (A.1)
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is an isomorphism. This condition is for example satis�ed if B ⊆ R is a ring
extension of integral domains and J is a principal ideal. It is our aim to show
that

D(A,I,γ)(R, JR) ∼= R⊗B D(A,I,γ)(B, J).

At �rst we need to understand the B-linear homomorphisms from UB(M)
into R. For this purpose we introduce

exp(R) := {f ∈ R[[T ]] | f(0) = 1 and f(T1 + T2) = f(T1)f(T2)}

which is a subgroup of R[[T ]]× and becomes an R-module via r.f(T ) :=
f(rT ).

Lemma A.14 There is a bijection

Map(M,R[[T ]]) ∼= Hom(B−alg)(GB(M), R)

given as follows: Let f : M → R[[T ]] be a map. Then for each x ∈M we can
write

f(x) =
∑
n≥0

cx,nT
n with cx,n ∈ R.

De�ne the image of f as the map ϕ which is uniquely determined by

ϕ(T(x,n)) := cx,n.

Proof: The inverse of the map given above is

ϕ 7→ (x 7→
∑
n≥0

ϕ(T(x,n))T
n).

�

Proposition A.15 The map

Hom(B−alg)(UB(M), R)→ Hom(B−mod)(M, exp(R))

given by

ϕ 7→ (x 7→
∑
n≥0

ϕ(µn(x))T n)

is a bijection.
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Proof: The map de�ned in the assertion is a restriction of the map in Lemma
A.14:

Map(M,R[[T ]])→ Hom(B−alg)(GB(M), R).

Take corresponding elements
f 7→ ϕ

under this bijection. Calculations deliver the following:

� f is additive if and only if ϕ(E4) = 0.

� We have f(ax) = aβ(x) for all a ∈ A, x ∈M if and only if ϕ(E2) = 0.

� We have f(x)(0) = 1 if and only if ϕ(E1) = 0.

� We have f(x)(T1 + T2) = f(x)(T1)f(x)(T2) if and only if ϕ(E3) = 0.

(Ei's as in the proof of Theorem A.7.) This shows the claim since UB(M) is
the quotient of GB(M) by the ideal generated by the Ei's. �

Proposition A.16 We have UR(R⊗B M) ∼= R⊗B UB(M).

Proof: To prove this statement without confusion we �x the following nota-
tion. The PD-structures on

� UB(M) is given by µ.

� UB(R⊗B M) is given by η.

� UR(R⊗B M) is given by η̂.

We de�ne the map

f : R⊗B M → E := exp(R⊗B UB(M))

as the R-linear continuation of

r ⊗ x 7→
∑
n≥0

(rn ⊗ µn(x))T n.

One needs to check that this is well-de�ned. Since we have

f(x)(0) = 1⊗ 1 = 1

it is enough to show that

f(x)(T1 + T2) = f(x)(T1)f(x)(T2)
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for all x ∈ R⊗B M . Take x =
∑

i ri ⊗mi ∈ R⊗B M :

f(x)(T1)f(x)(T2) = (
∏
i

∑
n

(rni ⊗ µn(mi))T
n
1 )(
∏
i

∑
n

(rni ⊗ µn(mi))T
n
2 )

=
∑
n≥0

∑
k+l=n

(
∏
i

(rki ⊗ µk(mi))T
k
1 )(
∏
j

(rli ⊗ µl(mi))T
l
1)

=
∑
n≥0

∑
k+l=n

∏
i

(rk+l
i ⊗ µk(mi)µl(mi))T

k
1 T

l
2

=
∑
n≥0

∑
k+l=n

∏
i

(
(k + l)!

(k!)(l!)
rk+l
i ⊗ µk+l(mi))T

k
1 T

l
2

=
∑
n≥0

∑
k+l=n

∏
i

(
n!

(n− l)!(l!)
rni ⊗ µn(mi))T

n−l
1 T l2

=
∑
n≥0

(
∏
i

rni ⊗ µn(mi))
n∑
l=0

(
n

l

)
T n−l1 T l2

=
∑
n≥0

(
∏
i

rni ⊗ µn(mi))(T1 + T2)n

= f(x)(T1 + T2)

Now we use Proposition A.15 and obtain an R-algebra homomorphism

ϕ : UB(R⊗B M)→ R⊗B UB(M)

corresponding to f satisfying

ϕ([T(x,n)]) = cx,n for all x ∈ R⊗B M,n ∈ N

where f(x) =
∑
n≥0

cx,nT
n. In particular

ϕ([T(r⊗y,n)]) = rn ⊗ µn(y) for all r ∈ R, y ∈M,n ∈ N.

To �nish the prove we construct an inverse ψ of ϕ as follows. Let N be
an R-module. By [Rob63, Proposition III.4, p.261] there exists a unique
homomorphism of B-algebras

δN : UB(N)→ UR(N)

satisfying µB,n(x) 7→ µR,n(x) for all x ∈ N and n ∈ N (where UB(N) =
(UB(N),U+

B (N), µB,n) and UR(N) = (UR(N),U+
R (N), µR,n)). Apply the func-

tor UB to the canonical B-module homomorphism M → R ⊗B M given by
x 7→ 1⊗ x and denote the resulting B-algebra homomorphism by

δ0 : UB(R⊗B M)→ UR(R⊗B M).
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Then

δ := δR⊗BM ◦ δ0 : UB(M)→ UR(R⊗B M)

satis�es δ(µn(x)) = η̂(1⊗ x). We de�ne the B-bilinear map

UB(M)×R→ UR(R⊗B M), (u, r) 7→ δ(u) · r

and by the universal property of the tensor product we �nally obtain

ψ : UB(M)⊗B R→ UR(R⊗B M)

given by u⊗ r 7→ δ(u) · r. For all r ∈ R, x ∈M and n ∈ N we have:

ψ(ϕ([T(r⊗x,n)])) = ψ(rn ⊗ µn(x))

= δ(µn(x)) · rn

= η̂n(1⊗ x) · rn

= η̂n(r ⊗ x)

= [T(r⊗x,n)]

and

ϕ(ψ(r ⊗ µn(x))) = ϕ(δ(µn(x)) · r)
= r · ϕ(δ(µn(x)))

= r · ϕ(η̂n(1⊗ x))

= r · ϕ([T(1⊗x)])

= r ⊗ µn(x)

This shows that ϕ and ψ are inverse to each other since they are R-linear and
UR(R ⊗B M) is as a R-algebra generated by elements of the form [T(r⊗x,n)]
as above, furthermore UB(M) is as a B-algebra generated by U+

B (M). �

Corollary A.17 Let H denote the set of all f ∈ Hom(B−mod)(J, exp(R)) that
satisfy the conditions

(a) f(x) = 1 + xT+ "terms of higher exponent" for all x ∈ J .

(b) f(y) =
∑
n≥0

γn(y)T n for all y ∈ I.

Then for M = J the bijection of Proposition A.15 restricts to a bijection

H → Hom(B−alg)(D(A,I,γ)(B, J), R).
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Proof: It is su�cient to check that for f ∈ Hom(A−alg)(UA(M), R) the condi-
tion (a) is equivalent to ϕ(F1) = 0 and condition (b) is equivalent to ϕ(F2) = 0
with F1 and F2 given as in the proof of Theorem A.13. But this is true since

ϕ(µ1(ι(x))) = ϕ([T(x,n)]) = cx,1 = x = ϕ(x) for all x ∈ J

where cx,1 is given by f(x) =
∑
n≥0

cx,nT
n and

ϕ(µn(ι(y))) = ϕ([T(y,n)]) = γn(y) = ϕ(γn(y)) for all y ∈ I.

�

With these tools we are now able to verify the statement we were looking
for.

Theorem A.18 There is an isomorphism

D(A,I,γ)(R, JR) ∼= R⊗B D(A,I,γ)(B, J).

Proof: Set
E ′ := exp(R⊗B D(A,I,γ)(B, J)).

De�ne

f : JR ∼= R⊗B J → E ′ given by r ⊗ j 7→
∑
n≥0

(r ⊗ [T(j,n)])T
n

in the same manner as in Proposition A.16. We claim that f satis�es condi-
tion (a) and (b) from Corollary A.17, i.e. f ∈ H. Indeed let without loss of
generality x = r ⊗ j be an element of R⊗B J . Then

f(x) = 1 + (r ⊗ µ1(j))T + . . . = 1 + (r ⊗ ι(j))T + . . . = 1 + (r ⊗ j)T + . . .

by the relations due to F1. This implies (a). For y ∈ I we have

f(y) =
∑
n≥0

(1⊗ µn(y))T n =
∑
n≥0

(1⊗ γn(y))T n

by the relations due to F2. This implies (b) and we �x a homomorphism of
R-algebras

ϕ : D(A,I,γ)(R, JR)→ R⊗B D(A,I,γ)(B, J)

corresponding to f . Now consider the homomorphism of R-algebras

ψ : UB(J)⊗B R→ UR(R⊗B J)→ D(A,I,γ)(R, JR)
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where the �rst map is the map ψ of Proposition A.16 composed with the
canonical projection. We claim that ψ factorizes over R ⊗B D(A,I,γ)(B, J),

i.e. IB(J)⊗B R ⊆ kerψ. For x ∈ J and r ∈ R we have

ψ((ι(x)− x)⊗ r) = (δ(ι(x))− δ(x)) · r
= (δ(µ1(x))− x) · r
= (η̂1(1⊗ x)− x) · r
= (ι(1⊗ x)− x) · r
= (x− x) · r = 0

since the relation F1 in IR(R ⊗B J) implies η̂1(1⊗ x) = ι(1⊗ x). For y ∈ I
we have

ψ((µn(ι(y))− γn(y))⊗ 1) = (δ(µn(y))− δ(γn(y))) · r
= (η̂n(1⊗ y)− γn(y)) · r
= (γn(y)− γn(y)) · r = 0

since the relation F2 in IR(R ⊗B J) implies η̂n(1 ⊗ x) = γn(y). This shows
that ψ can be interpreted as a homomorphism of R-algebras

ψ : R⊗B D(A,I,γ)(B, J)→ D(A,I,γ)(R, JR)

which is inverse to ϕ. �



Appendix B

Slope �ltrations

The formalism of slopes occurs in di�erent areas in mathematics and often
is treated adjusted to the associated situation. In contrast to the many in-
carnations of slope �ltrations in the literature André introduced a purely
category theoretical approach. Since there appear di�erent slopes (more pre-
cisely slope functions) in the course of this thesis it is convenient to introduce
the basic results about them in this chapter. As announced the following is
extracted from [And09].

Let C denote an essentially small abelian category and let Γ be a totally
ordered (abelian) group such that Γ is divisible. One may always assume
Γ = Z× · · · × Z or Γ = R>0 × · · · × R>0 with the lexicographic order.

B.1 Slopes

We denote by sk(C) a skeleton of C, i.e. a set of representatives for the
isomorphism classes in C. Furthermore we assume that there exists

� a rank function rk : sk(C) → N that maps the zero object to 0 and is
additive on short exact sequences, i.e. rk(N) = rk(M) + rk(P ) for any
short exact sequence 0→M → N → P → 0.

� a slope function µ : sk(C) \ {0} → Γ, such that the degree function
deg := µ · rk is additive on short exact sequences.

Lemma B.1 1. For any short exact sequence 0→ M → N → P → 0 of
non-zero objects in C. Then

min(µ(M), µ(P )) ≤ µ(N) ≤ max(µ(M), µ(P ))

holds and both inequalities are strict unless µ(M) = µ(N) = µ(P ).

97
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2. Let 0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M denote a �ag such that Mi/Mi−1 6=
0 for 1 ≤ i ≤ r. Then

min{µ(Mi/Mi−1) | 1 ≤ i ≤ r} ≤ µ(M) ≤ max{µ(Mi/Mi−1) | 1 ≤ i ≤ r}.

Again, both inequalities are strict unless µ(Mi/Mi−1) = µ(M) for all
1 ≤ i ≤ r.

Proof: deg is additive on short exact sequences, hence we obtain

µ(N) = µ(M)
rk(M)

rk(N)
+ µ(P )

rk(P )

rk(N)
.

Set α := rk(M)
rk(N)

and receive rk(P )
rk(N)

= 1 − α since rk is additive on short exact
sequences. But

min(µ(M), µ(P )) ≤ µ(M)α + µ(P )(1− α) ≤ max(µ(M), µ(P ))

holds for any α ∈ [0, 1] and we have proven the �rst part. The second part
is proven by induction on r. �

De�nition B.2 0 6= N ∈ C is called (µ-)semistable (resp. (µ-)stable) if
µ(M) ≤ µ(N) (resp. µ(M) < µ(N)) holds for any subobject 0 6= M ( N .

Lemma B.3 Let N be a non-zero object of C.

1. N is semistable if and only if µ(P ) ≥ µ(N) holds for any non-zero
quotient P of N .

2. Let N be semistable and 0 6= M ⊆ N denote a subobject such that
µ(M) = µ(N) holds. Then M is semistable.

3. Let N be semistable and P 6= 0 denote a quotient of N such that µ(P ) =
µ(N) holds. Then M is semistable.

4. Let N be semistable and M 6= 0 be a direct summand of N . Then M
is semistable of slope µ(M) = µ(N).

5. Let 0 6= M ⊆ N be a subobject of minimal rank, such that µ(M) ≥ µ(N)
holds. Then M is semistable.

6. Let P 6= 0 be a quotient of N of minimal rank, such that µ(P ) ≤ µ(N)
hold. Then P is semistable.
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7. Let 0 → M → N → P → 0 be an exact sequence in C of non-zero
objects. If two object in the sequence are semistable, the third is also
semistable.

Proof: Straightforward, see [And09, Lemma 1.3.7.]. �

The following lemma [And09, Lemma 1.3.8.] states that there are no
non-trivial morphisms between semistable objects of decreasing slope.

Lemma B.4 Let M and N be semistable objects of C. µ(M) ≤ µ(N) holds
if there exists a non-zero morphism f : M → N .

Proof: Consider the factorizationM �M/ ker(f) ∼= Im(f) ↪→ N of f . Then
µ(M) ≤ µ(M/ ker(f)) = µ(Im(f)) ≤ µ(N) holds by the semistability of M
and N . �

De�nition B.5 Let N be a non-zero object of C. 0 6= M ⊆ N is a universal
destabilizing subobject of N (with respect to µ) if for any non-zero subobject
M ′ ⊆ N the following holds:

� µ(M ′) ≤ µ(M)

� If µ(M ′) = µ(M), then M ′ ⊆M ⊆ N .

A universal destabilizing subobjectM ofN ∈ C is semistable by de�nition
and unique. We have the following Lemma ([And09, Lemma 1.3.12.]).

Lemma B.6 Let N be a non-zero object of C. Then there exists a universal
destabilizing object of M .

Proof: We prove this by induction on rk(N). If N is already semistable we
are already done, in particular the statement is true for the case rk(N) = 1.
Assume that N is not semistable and consider all quotients 0 6= P 6= N
of N such that µ(P ) < µ(N). Choose such a P of minimal rank and set
N ′ := ker(N � P ). P is semistable by item 6. of Lemma B.3 and we have
rk(N ′) < rk(N) since the rk is additive. We deduce µ(P ) < µ(N) < µ(N ′)
from

min(µ(N ′), µ(P )) < µ(N) < max(µ(N ′), µ(P )).

By induction we know that N ′ has an universal destabilizing subobject M .
We claim that M is also an universal destabilizing object for N . It is imme-
diate that µ(N) < µ(N ′) ≤ µ(M). Take 0 6= M ′ ⊆ N such that N ′ ( M ′.
ThusM ′ ⊆ N � P is nonzero and we obtain µ(M ′) ≤ µ(P ) < µ(N) ≤ µ(M)
by Lemma B.4. This veri�es the claim. �
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B.2 Filtrations

Let C be an abelian category endowed with a rank function, de�ned as in
the previous paragraph. Furthermore let Γ be a totally ordered, uniquely
divisible, abelian group. We consider Γ as a category by Ob(Γ) := Γ and

HomΓ(γ, δ) :=

{
{∗} if γ ≤ δ

∅ if γ > δ.

Then composition of morphisms in Γ is already uniquely determined.

De�nition B.7 A (decreasing) �ltration is a functor Fil•(·) : Γop × C → C
that assigns to an object (γ,M) a subobject Filγ(M) ofM . We call a �ltration

1. separated if
lim←−
γ∈Γ

Filγ(M) = 0

holds for any M in C.

2. exhaustive if
lim−→
γ∈Γ

Filγ(M) = M

holds for any M in C.

3. left continuous if
Filγ(M) = lim−→

δ<γ

Filδ(M)

holds for any γ ∈ Γ and M in C.

For a separated, exhaustive and left continuous �ltration Fil•(·) and any ob-
ject M , we receive a partition of

Λ = (−∞, λr] t · · · t (λ2, λ1] t (λ1,∞)

such that Fil•(·) is constant on each of the intervals above. The values

λ1 > λ2 > · · · > λr

are called the breaks of Fil•(·). Set:

gri(M) := Filλi(M)/Filλi−1(M),

degFil : sk(C)→ Λ,M 7→
r∑
i=1

λi · rk(grλi(M)), (B.1)
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µFil : sk(C) \ {0} → Λ,M 7→ degFil(M)

rk(M)
. (B.2)

We call Fil•(·) a slope �ltration if

1. the �ltration on Filλ(M) is induced by the �ltration of M , i.e.

Filη(Filλ(M)) =

{
Filη(M) if η ≥ λ

Filλ(M) if η ≤ λ
.

2. the �ltration on M/Filλ(M) is induced by the �ltration of M , i.e.

Filη(M/Filλ(M)) =

{
Filη(M)/Filλ(M) if η ≤ λ

0 if η ≥ λ
.

3. µFil is a slope function.

In the following we assume all �ltrations to be exhaustive, separated and
left continuous.

Lemma B.8 Let Fil•(·) denote a slope �ltration with breaks

λ1 > λ2 > · · · > λr

and let µ be the corresponding slope function. An object 0 6= N of C is
semistable (with respect to µ) if and only if r = 1.

Proof: We assume r = 1 and de�ne λ := λ1. Then N = grλ(N) and
µ(N) = λ. Now take a subobject 0 6= M ⊆ N . By functoriality of Fil•(·) we
obtain

Filη(M) ⊆ Filη(N) = 0 for all η > λ.

Hence the breaks η1 > η2 > · · · > ηs of M satisfy λ ≥ η1. We obtain

λ · rk(M) ≥ λ ·
s∑
i=1

rk(grηi(M)) ≥ rk(M) · µ(M),

in particular µ(N) = λ ≥ µ(M), i.e. N is semistable. Now assume that
r ≥ 2 and prove by induction that N is not semistable. We abbreviate
Ni := Filλi(N). We consider the case r = 2 and remark that

µ(N1) = λ1 and µ(N/N1) = λ2
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since Fil•(·) is a slope �ltration (N1 and N/N1 carry the induced �ltrations).
From µ(N1) = λ1 > λ2 = µ(N/N1) and Lemma B.1 we see that

µ(N/N1) < µ(N) < µ(N1),

in particular N is not semistable. Now assume that r ≥ 2 and that N is
semistable. For any subobject 0 6= M ⊆ N1 we receive

µ(M) = λ1 · rk(M) ≤ λ1 · rk(N1) = µ(N1).

Therefore N1 as well as N/N1 are semistable. Consider the induced slope
�ltration on N/N1 given by

0 ⊆ N2/N1 ⊆ · · · ⊆ Nr/N1 = N/N1

which has r− 1 breaks and hence N/N1 can not be semistable by induction.
This is a contradiction and N is not semistable. �

From this proof we get the following additional information.

Corollary B.9 Let Fil•(·) denote a slope �ltration with breaks

λ1 > λ2 > · · · > λr

and let µ be the corresponding slope function. Take an object N of C and
abbreviate Ni := Filλi(N) for i = 1, . . . , r.

1. All graded pieces Ni/Ni−1 are semistable.

2. µ(N1) = λ1 < µ(N2/N1) = λ2 < · · · < µ(Nr/Nr−1) = λr.

Proposition B.10 Let Fil•(·) denote a slope �ltration with breaks

λ1 > λ2 > · · · > λr

and let µ be the corresponding slope function. Take an object N of C and
abbreviate Ni := Filλi(N) for i = 1, . . . , r. Then

F : 0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nr = N

is the unique �ag (up to unique isomorphism) satisfying:

1. For all i = 1, . . . , r the quotient Ni/Ni−1 is semistable.

2. µ(N1) > µ(N2/N1) > · · · > µ(N/Nr−1) holds.
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Furthermore Ni is the preimage of the universal destabilizing subobject of
N/Ni−1 under the canonical projection N � N/Ni−1.

Proof: Let M be a universal destabilizing subobject of N and set

j := min{i = 1, . . . , r |M ⊆ Ni}.

Consider the nonzero morphism

M �M/Nj−1 ↪→ Nj/Nj−1

between semistable objects, given by the composition of the canonical projec-
tion and the natural inclusion. We deduce µ(M) ≤ µ(Nj/Nj−1) by Lemma
B.4. But since M is a universal destabilizing subobject of N we also have
µ(Nj/Nj−1) ≤ µ(N1) ≤ µ(M) and this implies j = 1, hence M = N1. Now
proceed inductively. �

Theorem B.11 (Harder-Narasimhan) The map Fil•(·) 7→ µFil given as
in (B.2) establishes a bijection between slope �ltrations and slope function on
C.

Proof: Injectivity immediately follows from Proposition B.10. Let µ be an
arbitrary slope function on C and let N denote an object of N . As indicated
in Proposition B.10 we de�ne a �ag on N inductively by de�ning Ni to
be the preimage of the universal destabilizing subobject of N under the
canonical projection N � N/Ni−1 (and N0 := 0). Let Mi ⊆ N/Ni−1 denote
an universal destabilizing subobject. Then we receive an exact sequence

0→ Ni−1 → Ni →Mi → 0.

Mi and Ni−1 are semistable by de�nition resp. induction and hence all Ni

are semistable. The existence of the rank function implies that there are only
�nitely many Ni, assume Nr = N . Set λi := µ(Ni/Ni−1) and

Filλ(N) := Ni for all λ ∈ (λi+1, λi].

as well as Filλ(N) = N for λ ≥ λr and Fil
λ(N) = 0 for λ > λ1. This �ltration

is a slope �ltration and we obtain surjectivity. �

B.3 Dieudonné-Manin Classi�cation

Since we already introduced the concept of a Harder-Narasimhan �ltration
the smoothest way to proof the Classi�cation Theorem is the one executed
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by Y. W. Ding and Y. Ouyang in their short article [DO12]. For all technical
details we likewise refer to [DO12].

Let k be a perfect �eld of characteristic p > 0 and denote by F the �eld
of fractions of the ring of Witt vectors W (k). We denote by ν the discrete
valuation on F induced by W (k). As usual a ϕ-module D over F is a �nite-
dimensional vector space over F together with at σ-semilinear map ϕ where
σ := W (σ) and σ : k → k is the Frobenius map given by x 7→ xp.

In the following de�nition we introduce the Newton slope µN of a ϕ-
module D over F . The rank function is the given by the dimension of D
and the degree function is the so called Newton number tN (compare [BC09,
De�nition 8.1.7.]).

De�nition B.12 Let D 6= 0 denote a ϕ-module over F . Choose a basis of
D and denote by A the matrix representing the map ϕ with respect to this
basis. Set

tN(D) := ν(det(A))

and

µN(D) :=
tN(D)

dimF (D)
.

Furthermore D is called isoclinic of slope λ ∈ Q if there exists a W (k)-lattice
M ⊆ D such that

ϕh(M) = pdM,

where λ = d
h
and d, h ∈ Z and h ≥ 1. (The slope λ ∈ Q does not depend on

the choice of the lattice, which follows from the third point of the subsequent
Remark B.13.)

Remark B.13 1. The Newton number tN is independent of the choice of
a basis. Indeed a change of the basis results in σ-conjugation of the
matrix A, i.e. A is replaced by σ(B)AB−1 for some B ∈ GL(D). But

ν(det(σ(B)AB−1)) = ν(det(σ(B)) + ν(det(A)) + ν(det(B−1))

= ν(σ(det(B)) + ν(det(A))− ν(det(B))

= ν(det(A)).

2. tN is additive on exact sequences, i.e. for any exact sequence

0→ D1 → D → D2 → 0

of ϕ-modules over F the equation tN(D) = tN(D1)+tN(D2) holds. This
is obvious since det is multiplicative on such exact sequences.
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3. Any ϕ-module D over F , that is isoclinic of slope λ = d
h
∈ Q, has

Newton slope µN(D) = λ. Let M be a W (k)-lattice in D such that
ϕh(M) = pdM holds and let A denote a matrix representing ϕ with
respect to a basis of M . Then

µN(D) =
1

h
· tN(Ah) · dimF (D)−1

=
1

h
· ν(det(pd1)) · dimF (D)−1

=
d

h
= λ

4. The subsequent Lemma B.14 shows that any isoclinic ϕ-module over F
is semistable.

5. It is not at all clear yet that a ϕ-module D over F , which is semistable
(with respect to µN), is indeed isoclinic of Newton slope µN(D). This
fact is a crucial part of the proof of the Classi�cation Theorem of
Dieudonné-Manin.

From the de�nition we may also draw the following conclusion.

Lemma B.14 1. Let 0 → (D1, ϕ1)
α→ (D,ϕ)

β→ (D2, ϕ2) → 0 be an
exact sequence of ϕ-modules over F and assume that (D,ϕ) is isoclinic.
Then (D1, ϕ1) and (D2, ϕ2) are isoclinic and µN(D,ϕ) = µN(D1, ϕ1) =
µN(D2, ϕ2).

2. Let (D1, ϕ1) and (D2, ϕ2) be isoclinic ϕ-modules over F of distinct
slopes, i.e. µN(D1, ϕ1) 6= µN(D2, ϕ2) and let γ : (D1, ϕ1)→ (D2, ϕ2) be
a morphism of ϕ-modules over F . Then γ is the zero morphism.

Proof: LetM ⊆ D denote a lattice such that ϕh(M) = pdM holds for suitable
h, d ∈ Z. We see that β(M) ⊆ D2 is a lattice and ϕh2(β(M)) = β(ϕh(M)) =
β(pdM) = pdβ(M), hence (D2, ϕ2) is isoclinic of slope d

h
. By the second part

of Remark B.13 we obtain

µN(D1) =
tN(D)− tN(D2)

dimF (D)− dimF (D2)

=
tN(D)− µN(D)dimF (D2)

dimF (D)− dimF (D2)

=
tN(D)

dimF (D)
= µN(D)
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This proves the �rst point. Now assume that γ : (D1, ϕ1)→ (D2, ϕ2) is non-
zero. Then µN(D2, ϕ2) = µN(Im(γ)) = µN(D1/ ker(γ)) = µN(D1, ϕ1) holds
by the �rst part and contradicts the assumption. �

Now Theorem B.11 automatically provides a �ltration for any ϕ-module
D over F . We need to show that this �ltration splits and propose that the
graded pieces, i.e. the direct summands, are isoclinic of the appropriate slope.

De�nition B.15 Let D be a ϕ-module over F . Choose a W (k)-lattice M ⊆
D and set

Mh,d :=
⋂
n≥0

ϕ−nh,d(M)

and we call Fil•N given by

FilλN(D) := Mh,d[
1

p
]

for λ = d
h
∈ Q the Newton �ltration on D.

Remark B.16 FilλN(D) is independent of the choices of the lattice M and
the choice of the pair (h, d) and Fil• is indeed a �ltration. See [DO12, Pro-
postion 2.1.].

There are two facts that are crucial for the proof of the Classi�cation
Theorem but also rather technical. We will source the details out by only
stating them and providing a (well-written) reference.

Proposition B.17 Let D be a ϕ-module over F .

1. Fil•N is a slope �ltration and µFilN = µN .

2. Assume that 0 → D1 → D → D2 → 0 is a short exact sequence of
ϕ-modules. Then

0→ FilλN(D1)→ FilλN(D)→ FilλN(D2)→ 0

is also exact for any λ ∈ Q.

Proof: Let λ1 > λ2 > · · · > λr denote the break points of Fil•N and set
Di := FilλiN (D) for all i = 1, . . . , r. Then Di/Di−1 is isoclinic of slope λi by
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[DO12, Proposition 2.6.] and hence µN(Di/Di−1) = λi by the third part of
Remark B.13. Since tN is additive on exact sequences we obtain

µN(D) = (
r∑
i=1

tN(Di/Di−1))/dimF (D)

= (
r∑
i=1

λi · dimF (Di/Di−1))/dimF (D)

= µFilN (D).

In particular µFilN is a slope function and hence Fil•N is a slope �ltration.
The second part is subject of [DO12, Proposition 2.8.]. �

Theorem B.18 (Dieudonné-Manin) Let D be a ϕ-module over F . Then

1.

D =
r⊕
i=1

Dλi ,

where Dλi := FilλiN (D)/Fil
λi−1

N (D), λ1 > λ2 > · · · > λr are the break
points of Fil•N and λ0 > λ1 is arbitrary.

2. There exists a W (k)-lattice M ⊆ Dλi such that ϕhi(M) = pdiM where
λi = di

hi
∈ Q.

Proof: The second part of the theorem follows directly from Proposition
B.17. Set Di := FilλiN (D) for all i = 1, . . . , r. Since ϕ is bijective we may
consider D as ϕ−1-module over F (where ϕ−1 is semilinear with respect to
σ−1). We denote the Newton slope with respect to ϕ−1 by µ

′
N and remark

the following. A ϕ-module is isoclinic of slope λ if and only if it is isoclinic
of slope −λ considered as an ϕ−1-module. Denote the Harder-Narasimhan
�ltration corresponding to µ

′
N by Fil

′•
N and set D

′
i := Fil

′i
N(D). Then the

chain
0 = D

′

0 ⊆ D
′

1 ⊆ · · · ⊆ D
′

s = D

has isoclinic quotients D
′
i/D

′
i−1 of slope µN(D

′
i/D

′
i−1) = −λ′i for all i =

1, . . . , s. Now we prove the following statements by induction on s:

� FilλN(D) = Ds−i+1 for all λ ∈ (−λ′i−1,−λ
′
i] and i = 1, . . . , s.

� FilλN(D) = 0 for all λ > −λs.

� −λ′i = λr−i+1 for all i = 1, . . . , s.
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� D ∼=
⊕s

i=1D
′
i/D

′
i−1.

In the case that s = 1 all the conditions are satis�ed since D is isoclinic of
slope λ1 = −λ′1. By induction we know that Fil−λ

′
s(D

′
s−1) = 0 and deduce

Fil
−λ′s
N (D) = Fil

−λ′s
N (D)/Fil

−λ′s
N (D

′

s−1) = Fil
−λ′s
N (D/D

′

s−1) = D/D
′

s−1 6= 0

by applying Proposition B.17 and the fact that D/D
′
s−1 is isoclinic of slope

−λ′s. Similarly

FilλN(D) = FilλN(D)/FilλN(D
′

s−1) = FilλN(D/D
′

s−1) = 0

holds for all λ > −λ′s. This provides λ1 = −λ′s and therefore Fil
−λ′s
N (D) = D1.

In particular we see that D1
∼= D/D

′
s−1 and 0→ D

′
s−1 → D → D/D

′
s−1 → 0

splits. We �nish the proof with the remark that for all i = 1, . . . , r we have
an isomorphism

D
′

i/D
′

i−1
∼= Dr−i+1/Dr−i.

�

Corollary B.19 Any ϕ-module D over F , which is semistable (with respect
to µN), is indeed isoclinic of Newton slope µN(D).

This corollary reveals a 'down to earth' meaning of the Classi�cation The-
orem. Take a ϕ-module D of dimension d over F and pick a basis to form the
representing matrix A of ϕ. If the determinant of A is contained in W (k)×,
then we may �nd a basis such that the representing matrix σ(B)AB−1 (for
some B ∈ GLd(W (k))) is contained in GLd(W (k)).

De�nition B.20 Let λ = s
r
∈ Q be a reduced fraction with r ≥ 1. We call

the vector space F r endowed with the semilinear map given by

ϕ(ei) :=

{
ei+1 for all 1 ≤ i ≤ r − 1

ps · e1 for i = r

the standard isocrystal S s
r
of slope λ = s

r
, which is an isoclinic ϕ-module over

F of slope λ, that does not contain non-trivial sub objects in the category of
ϕ-modules.

Lemma B.21 Let D1 and D2 denote isoclinic ϕ-modules over F of slope
s1
r1

and s2
r2
. The tensor product D1 ⊗F D2 is endowed with the structure of a

ϕ-module over F given by

ϕ := ϕ1 ⊗ ϕ2 : d1 ⊗ d2 7→ ϕ1(d1)⊗ ϕ2(d2).

Then D := D1 ⊗F D2 is isoclinic of Newton slope r1s2+r2s1
r1r2

.
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Proof: There exist W (k)-lattices M1 ⊆ D1 and M2 ⊆ D2 such that

ϕr1! (M1) = ps1M1 and ϕ
r2
2 (M2) = ps2M2.

Then M := M1 ⊗W (k) M2 is a W (k)-lattice in D and we obtain

ϕr1r2(M) = ϕr1r21 (M1)⊗W (k) ϕ
r1r2
2 (M2)

= pr2s1M1 ⊗W (k) p
r1s2M2

= pr2s1+r1s2M.

�

Theorem B.22 Assume that the residue �eld of F is algebraically closed.
Let D be an isoclinic ϕ-module over F of slope λ ∈ Q, where λ = s

r
is a

reduced fraction. Then D is isomorphic to a direct sum of (�nitely many)
copies of the standard isocrystal S s

r
.

Proof: See [Ked10, Remark 14.6.5.]. �

Applying this and a comparison of dimensions delivers:

Corollary B.23 Assume that the residue �eld of F is algebraically closed
and abbreviate ⊗ := ⊗F . Let r1, r2, s1, s2 ∈ Z such that r1, r2 ≥ 1 and
(r1, s1) = 1 = (r2, s2) holds. We denote the reduced fraction representing
s1
r1

+ s2
r2

by s
r
. Then there exists an isomorphism

S s1
r1

⊗ S s2
r2

∼= S
⊕ r1r2

r
s
r

of ϕ-modules over F . In particular we have the following isomorphisms of
ϕ-modules over F :

1. S s
r
⊗ S r−s

r

∼= S⊕r
2

1 for r, s ∈ Z such that r ≥ 1 and (r, s) = 1.

2. S⊗s1
r

∼= S⊕r
s−1

s
r

for r, s ∈ Z such that r, s ≥ 1 and (r, s) = 1.

3. S⊗−s− 1
r

∼= S⊕r
−s−1

s
r

for r, s ∈ Z such that r ≥ 1, s ≤ −1 and (r, s) = 1.

Proof: The ϕ-module S s1
r1

⊗S s2
r2

has dimension r1 · r2, Newton slope s
r
and is

isoclinic by Lemma B.21. By Theorem B.22 it is isomorphic to a direct sum
of copies of S s

r
, which has dimension r. We compare the dimensions and see

that the number of copies is r1r2
r
. The isomorphism stated in 1. is a special
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case of this. We prove the isomorphism in 2. by induction. For s = 1 there
is nothing to show. Assume that the statement holds for s− 1 and see that

S⊗s1
r

∼= S
⊗(s−1)
1
r

⊗ S 1
r

∼= S⊕r
s−2

s−1
r

⊗ S 1
r

∼= (S s−1
r
⊗ S 1

r
)⊕r

s−2

∼= S⊕r
s−1

s
r

The isomorphism in 3. is proved the same way. �
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