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Revisiting homogeneous spaces
with positive curvature

By Burkhard Wilking at Münster and Wolfgang Ziller at Philadelphia

Abstract. It was recently observed by M. Xu and J. Wolf that there is a gap in Berard
Bergery’s classification of odd-dimensional positively curved homogeneous spaces. Since this
classification has been used in other papers as well, we give a modern, complete and self-
contained proof (in odd as well as even dimensions), confirming that there are indeed no new
examples.

The classification of compact simply connected homogeneous spaces of positive curva-
ture is now almost 40 years old. It has been accomplished in a series of papers by M. Berger,
N. Wallach, S. Aloff–N. Wallach, and L. Bérard Bergery [1–3, 11], with an omission in [3] as
observed in [12]. As was recently observed by J. Wolf and M. Xu [15], there is a gap in Bérard
Bergery’s classification of odd-dimensional positively curved homogeneous spaces in the case
of the Stiefel manifold Sp.2/=U.1/ D SO.5/=SO.2/. Since this classification has been used in
several other papers, for example, in the classification of positively curved cohomogeneity one
manifolds in [6] and positively curved polar manifolds in [4], it seems desirable to correct this
situation. We thus present here a modern complete and self-contained proof of the classifica-
tion, confirming that there are indeed no new examples. To be more precise we will reprove the
following:

Theorem. Suppose a compact connected Lie group NK acts isometrically, effectively
and transitively on a simply connected manifold of positive sectional curvature with stabi-
lizer group NH. Then the pair . NK; NH/ is isomorphic to .K=C;H=C/ for one of the triples .K;H;C/
in Tables 1 or 2.

As far as the embeddings of H in K are concerned, Sp.2/S1 is the normalizer of the
subgroup Sp.2/ � SU.5/ embedded by the four-dimensional representation, Sp.1/max is the
unique three-dimensional maximal subgroup of Sp.2/, and in the third example U.2/ is the
normalizer of �SU.2/ � SU.2/ � SO.3/ � K. The last example is just an S1-extension of the
previous one and they are the Aloff–Wallach spaces [1], with

T.p; q/ WD ¹diag.zp�; zq; NzpCq/ W z; � 2 S1º for p � q � 1, gcd.p; q/ D 1.
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314 Wilking and Ziller, Revisiting homogeneous spaces with positive curvature

K H K=H Kernel C N.H/=H

SU.5/ Sp.2/ � S1 B13 Z5 ¹eº

Sp.2/ Sp.1/max B7 Z2 ¹eº

SU.3/�SO.3/ U.2/ W 7
1;1 Z3 ¹eº

SU.3/ T2 W 6 Z3 S3
Sp.3/ Sp.1/3 W 12 Z2 S3
F4 Spin.8/ W 24 ¹eº S3
SU.3/ S1 D diag.zp; zq; NzpCq/ W 7

p;q Z3 if p � q mod 3 S1 if p ¤ q

p � q � 1, gcd.p; q/D 1 ¹eº if p 6� q mod 3 SO.3/ if p D q

U.3/ T2.p; q/ W 7
p;q ZpC2q S1

Table 1. Homogeneous spaces Mn D K=H with positive sectional curvature, which are not diffeo-
morphic to rank 1 symmetric spaces.

K H K=H Kernel C N.H/=H

SO.nC 1/ SO.n/ Sn ¹eº Z2 (for n � 2)

SU.nC 1/ SU.n/ S2nC1 ¹eº S1 (for n � 2)

U.nC 1/ U.n/ S2nC1 ¹eº S1

Sp.nC 1/ Sp.n/ S4nC3 ¹eº S3

Sp.nC 1/Sp.1/ Sp.n/�Sp.1/ S4nC3 �Z2 Z2

Sp.nC 1/U.1/ Sp.n/�U.1/ S4nC3 �Z2 S1

Spin.9/ Spin.7/ S15 ¹eº Z2

Spin.7/ G2 S7 ¹eº Z2

G2 SU.3/ S6 ¹eº Z2

SU.nC 1/ U.n/ CPn ZnC1 ¹eº (for n � 2)

Sp.nC 1/ Sp.n/Sp.1/ HPn Z2 ¹eº (for n � 2)

Sp.nC 1/ Sp.n/U.1/ CP2nC1 Z2 Z2

F4 Spin.9/ CaP2 ¹eº ¹eº

Table 2. Transitive actions on rank 1 symmetric spaces.

The first three examples are the only ones in the list which admit a normal homogeneous
metric of positive sectional curvature. The first two of those were discovered by Berger [3],
while the third was added in [12] and is diffeomorphic to the Aloff–Wallach space W1;1. The
Wallach flag manifolds W 6, W 12 and W 24 are the only even-dimensional positively curved
simply connected homogeneous spaces apart from the rank 1 symmetric space, [11]. We will
not reprove that these spaces have positive curvature (see e.g. [16] for details). The group C is
defined as the intersection of H with the center of K and corresponds to the kernel of the action
of K on K=H. The normalizerN.H/ of H in K can be determined by a standard computation and
we keep track of the isomorphism type of N.H/=H in the last column, where S3 stands for the
permutation group with six elements.
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Here we should add that Spin.8/ acts in three different ways transitively on S7, but up to
outer automorphisms of Spin.8/ the actions are isomorphic.

A non-simply connected homogeneous space arises from a simply connected space K=H
by replacing H by a finite extension OH � N.H/. Thus the following corollary can be viewed as
the classification of non-simply connected homogeneous spaces of positive sectional curvature.

Corollary. Let .K;H; N.H/=H/ be one of the triples in Tables 1 or 2. If K=H is not
a Wallach flag manifold, then all finite subgroups of N.H/=H give rise to a finite extension OH
of H such that some positively curved metric descends to a K-invariant metric of K= OH. If K=H
is a Wallach flag manifold, then only the Z2-extensions of H allow for some positively curved
metric to descend.

Using the description in [12] of the SU.3/-equivariant principal bundle

SO.3/! W 7
1;1 ! CP2;

Shankar [9] was the first to observe that any finite subgroup F � SO.3/ can be realized as
fundamental group of a positively curved homogeneous space W 7

1;1=F.
Similarly, one can use the Sp.nC 1/ equivariant S3-principal bundle

S3 ! S4nC3 ! HPn

to realize any finite subgroup F � S3 as fundamental groups of a homogeneous space form
S4nC3=F.

By the corollary it is clear that any positively curved homogeneous spaces with a non-
cyclic fundamental group must be equivariantly diffeomorphic to one of these. We should
mention that the full isometry group of the examples in Table 1 was determined in [10] and var-
ious fundamental groups of locally homogeneous quotients have been exhibited [5] although
a classification is open.

Except for the Wallach flag manifolds, all the examples have positively curved met-
rics which are AdN.H/-invariant and thus the corollary is immediate for these examples. In
the remaining cases one just has to use in addition that the fundamental group of an even-
dimensional positively curved manifold has at most two elements by the Synge Lemma. The
three Z2 subgroups of S3 are conjugate and thus up to conjugation there is only one Z2-exten-
sion of H for the Wallach flag manifolds.

The rest of the paper is devoted to the proof of the theorem. The even-dimensional case
is treated in Section 2 and the odd-dimensional case in Sections 3, 4 and 5. We explain the
strategy in more detail at the end of the following section.

1. Obstructions to positive curvature

We will classify compact simply connected Riemannian homogeneous spaces K=H with
positive sectional curvature. We can thus assume that K and H are compact and connected, and
that the normal subgroup common to both is at most finite. We fix a biinvariant metricQ on the
Lie algebra k of K and let p denote the orthogonal complement of the subalgebra h in k. The
K-invariant metrics of K=H are in one-to-one correspondence with positive definite selfadjoint
endomorphisms GWp! p which commute with AdH. Indeed, one can use G to define a scalar
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product on p by putting hx; yi D Q.Gx; y/ for x; y 2 p and extend it equivariantly to K=H.
We will implicitly assume that some G has been chosen. The following criteria for finding
planes with zero or non-positive curvature is used as an obstruction in our classification.

Lemma 1.1. The following statements hold.

(a) If x; y 2 p are linearly independent eigenvectors ofG with Œx; y� D 0, then they generate
a zero curvature plane in K=H.

(b) Let x 2 p be an eigenvector to the smallest eigenvalue � of G and assume we can find
a linearly independent vector z 2 p with Œx; z� D 0. If we put y D G�1z, then x; y gen-
erate a plane of non-positive curvature in K=H.

Proof. One can express the formula for the sectional curvature of the homogeneous
metric in terms of the biinvariant metric (see e.g. [8] or [7]) as follows:

hR.x; y/y; xi D Q.B�.x; y/; Œx; y�/ �
3

4
Q.GŒx; y�p; Œx; y�p/

CQ.BC.x; y/;G
�1BC.x; y// �Q.BC.x; x/;G

�1BC.y; y//;

where B˙.x; y/ D 1
2
.Œx;Gy�� ŒGx; y�/ and Œx; y�p is the Q-orthogonal projection of Œx; y�

to p. This clearly implies (a).
For part (b), observe that BC.x; y/ 2 p for all x; y 2 p. Indeed, since adv commutes

with G for v 2 h, this well-known fact (see e.g. [7, p. 624] or [2, p. 62]) follows from

Q.Œx;Gy�; v/ D �Q.x; adv Gy/

D �Q.x;G adv y/

D �Q.Gx; Œv; y�/

D Q.ŒGx; y�; v/:

If x; y; z are as specified, then Œx; Gy� D 0 and hence

B�.x; y/ D
1

2
�Œx; y�; BC.x; y/ D �

1

2
�Œx; y�; BC.x; x/ D 0:

Thus we also have Œx; y� 2 p, and x; y are linearly independent since Gx D �x and Gy D z
are. Altogether

hR.x; y/y; xi D
1

2
�Q.Œx; y�; Œx; y�/C

1

4
�2Q.Œx; y�; G�1Œx; y�/ �

3

4
Q.GŒx; y�; Œx; y�/

�

�
1

2
C
1

4
�
3

4

�
�kŒx; y�k2Q D 0;

where we used the inequalities

Q.Gu; u/ � �kuk2Q and Q.G�1u; u/ �
1

�kuk2Q

for all u 2 p.

The lemma can also be used to give a new proof for the following essential obstruction.
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Lemma 1.2 (Berger). If K=H is a positively curved n-dimensional homogeneous space,
then rank K D rank H if n is even, and rank K D rank HC 1 if n is odd.

Proof. Consider first the special case of a trivial group H. Then K is endowed with a left
invariant positively curved metric. In our above notation, if x 2 p D k is an eigenvector to the
minimal eigenvalue of G, then by Lemma 1.1 (b) every vector z 2 k that commutes with x is
linearly dependent to x. Thus rank.K/ � 1.

We now use the following well-known fact, which will also be a crucial tool for us later
on. Let L � H � K and C.L/0 the identity component of the centralizer of L in K. Then C.L/0
acts transitively on the component of the fixed point set Fix.L/0 � K=H through eH, as one
easily sees by computing the tangent space of the orbit C.L/0 � eH. Thus

Fix.L/0 D C.L/0=C.L/0 \ H

is a totally geodesic submanifold of K=H and hence has positive curvature.
We now apply this to a maximal torus T � H. Then C.T/0 \ H D T and hence C.T/0=T

acts transitively and freely on Fix.T/0. Thus C.T/0=T admits a positively curved left invariant
metric and by the above special case rank.C.T/0=T/� 1 or equivalently rank.K/� rank.H/C1.
Since dim.L/�rank.L/ is an even number for any compact Lie group L, the lemma follows.

By [13], if a group K of the form SO.n/;SU.n/;Sp.n/ acts isometrically on a positively
curved manifold in such a way that the principal isotropy group contains a k � k-block of K
with k � 3, then the underlying manifold is covered by a manifold which is homotopy equiv-
alent to a rank 1 symmetric space. In the homogeneous case one can strengthen it as follows,
which will be our main tool in the classification since it allows one to proceed by induction
on the dimension of the Lie group. Although this result follows from [13] and the classifica-
tion of homogeneous spaces homotopy equivalent to a rank 1 symmetric space, we give here
a simple proof in the homogeneous case. In the following we will use the terminology lower
k � k-block to denote the k � k submatrix contained in the last k rows and last k columns, and
similarly for the upper k � k-block.

Lemma 1.3 (Block Lemma). Let K 2 ¹SO.n/;SU.n/;Sp.n/º and assume that a con-
nected proper subgroup H contains the lower k�k-block of K with k � 3 if K 2 ¹SO.n/;SU.n/º
and k � 2 if K D Sp.n/. If K=H admits an K-invariant positively curved metric, then H con-
tains a group conjugate to a lower .n � 1/ � .n � 1/-block and .K;H/ is one of the pairs listed
in Table 2.

Proof. We may assume that k is chosen maximal among all groups which are conjugate
to H. We then let Lk denote the lower k � k-block, N.Lk/ its normalizer and let q � k denote
the orthogonal complement of the Lie algebra of N.Lk/. An element v 2 q is determined by
its entries in the upper right .n � k/ � k corner and we say v is in the i -th row if the entries
in the other rows are zero, i D 1; : : : ; n � k. Under the action of Lk the space q is decom-
posed by the rows into .n � k/ pairwise equivalent sub-representations of Lk . If K D SO.n/
or K D SU.n/ with k � 3, these irreducible representations are orthogonal respectively uni-
tary, and if K D Sp.n/ with k � 2 they are quaternionic. This in turn implies that the action
of the upper .n � k/ � .n � k/-block Un�k on q induces a transitive action on the irreducible
Lk-sub-representations.
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We claim that Lk is normal in H. Otherwise, the isotropy representation of H=Lk contains
a non-trivial irreducible sub-representation of Lk which can be seen as a sub-representation
of q. As explained, we may assume that it is given by the last row in q. But now it is easy to
see that H contains the lower .k C 1/ � .k C 1/-block in contradiction to our choice of k.

Thus Lk is normal in H. If k D n � 1, then clearly .K;H/ is one of the pairs listed in
Table 2. Suppose on the contrary k � n � 2. We choose an irreducible sub-representation
V � q consisting of eigenvectors of the selfadjoint endomorphism G. As before Adg V is
given by the last row in q for some g 2 Un�k . After conjugating G and H with Adg we can
therefore assume that the last row in q consists of eigenvectors. Clearly, we can iterate this argu-
ment and we may assume without loss of generality that each row of q consists of eigenvectors
of G. But now it is obvious that we can find commuting eigenvectors and by Lemma 1.1 (a)
this is a contradiction.

Remark. The subgroups U.2/ � SO.4/ and Sp.2/ � SU.4/ contain a 2 � 2 but no
3 � 3-block. Thus we cannot allow k D 2 for K 2 ¹SU.n/;SO.n/º. The proof breaks down,
since for a 2�2-block L2 � K the irreducible sub-representation in q are complex if K D SO.n/
and quaternionic for K D SU.n/ and the upper .n�2/�.n�2/-block no longer acts transitively
on them.

The proof of the theorem in the next few sections will go by induction on the dimension of
the Lie group, that is, at all times we will assume that the main theorem holds for all Lie groups
with dimension strictly below dim.K/. For any element � 2 H the fixed point set Fix.�/ is totally
geodesic and hence positively curved. If Fix.�/0 is the component of Fix.�/ containing the base
point, then the id component of the centralizerC.�/0 acts transitively on it, with stabilizer group
H� WD C.�/0 \ H and thus C.�/0=H� is positively curved. Although Fix.�/0 may not be simply
connected, we obtain a contradiction if its universal cover is not listed in Table 1 or 2.

For simplicity of notation we let Fix.�/ stand for Fix.�/0 and C.�/ for C.�/0. Since � is
contained in a maximal torus of H which in turn can be extended to a maximal torus of K, we
have

rankC.�/ D rank K; rank.H�/ D rank.H/

and � is a central element in the identity component of H�. Hence the codimension of these fixed
point sets C.�/=H� is always even, and we can do the induction in even and odd dimensions
separately.

In all of the cases we will consider, Ad� is an involution, and hence K=C.�/ is a symmetric
space with rank.C.�// D rank.K/. If K is an exceptional Lie group, then the classification of
symmetric spaces only allows the following possibilities for the pair .K; C.�//:

G2W SO.4/;

F4W .Sp.3/ � Sp.1//=�Z2; Spin.9/;

E6W .Spin.10/ � S1/=�Z4; .SU.6/ � SU.2//=�Z2;

E7W .Spin.12/ � SU.2//=�Z2; .E6 � S1/=�Z3; SU.8/=Z2;

E8W .E7 � SU.2//=�Z2; Spin.16/=Z2 DW SO0.16/:

We can assume, by making the action ineffective if necessary, that the semisimple part
of K is simply connected. But when K D Spin.n/, we will usually replace it by SO.n/, at the
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expense of possibly making K=H not simply connected. We will use the following notational
conventions:

� If we write a Lie group L as L D L1 � L2, then L1 and L2 are normal subgroups generating
L and L1 \ L2 is finite.

� If a group is identified as SO.4/, then SU.2/˙ will stand for the two simple normal
subgroups.

� GWp! pD h? will always stand for a positive definite selfadjoint endomorphism induc-
ing a positively curved metric on the homogeneous space K=H, see first paragraph of this
section. Both H and K are connected and the kernel of the action of K on K=H is finite.

� Sometimes we will just say that we found commuting eigenvectors ofG. This is the same
as saying that the case under consideration cannot occur, as it contradicts Lemma 1.1 (a).
Similarly, if a situation arises where our induction hypothesis can be used to show that
some fixed point component cannot have positive sectional curvature, it should be under-
stood that we can move on to the next case.

2. The even-dimensional case

Since rank K D rank H, all irreducible sub-representations of H in p are inequivalent, and
hence the metric is diagonal, that is, every vector in an irreducible sub-representation of H is an
eigenvector of G. In addition, we can assume that K is simple since otherwise K=H is a product
homogeneous space and every K-invariant metric is a product metric, contradicting positive
curvature. Furthermore, all elements in K are, up to conjugacy, also contained in H and hence
for each symmetric pair .K; L/ with rank.K/ D rank.L/ we can find an element � in H such that
C.�/ Š L and Ad� is an involution. In case of the classical Lie groups we always assume that H
contains the classical diagonal torus and then � 2 H will be diagonal as well.

Since C.�/=H� is again an even-dimensional space of positive curvature, only one factor
in C.�/ can act effectively on Fix.�/, and the others must lie in H� and hence in H. Furthermore,
if C.�/=H� is not a point, then the action of the remaining factor is listed in Table 1 or 2, since
we always assume that the main theorem holds for Lie groups of dimension strictly smaller
than dim.K/. We point out though that low-dimensional isomorphisms of Lie algebras some-
times give rise to less obvious presentations, e.g. CP3 D SO.6/=U.3/ D SO.5/=U.2/.

We now discuss each simple Lie group separately. Due to the low-dimensional isomor-
phisms

Spin.5/ Š Sp.2/ and Spin.6/ Š SU.4/

we only need to consider Spin.n/ for n � 7, and in that case replace it by SO.n/ for simplicity.
The aim is to confirm that .K;H/ is listed in Table 1 or 2.

2.1. The case K D SU.3/. The only rank 2 subgroups of SU.3/ are U.2/ and T2, and
both pairs correspond to listed examples.

2.2. The case K D SU.4/. In this case, the fixed point set Fix.�/ D S.U.2/U.2//=H�

has positive curvature, for � D diag.�1;�1; 1; 1/, and thus H�, and hence also H, contains an
SU.2/-block, say the upper 2 � 2-block.
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We next look at the involution �2 D diag.1;�1;�1; 1/ and repeat the argument. It shows
that the group H also contains either the middle SU.2/-block or the .1; 4/-SU.2/-block. Neither
of these blocks commutes with the upper SU.2/-block and in fact the two blocks generate an
SU.3/-block and we are done by the Block Lemma.

2.3. The case K D SU.k/ (k � 5). In this case we look at the fixed point set of
�D diag.�; : : : ; �;��/ 2 H, where � 2 S1 is a primitive 2k-th root of unity. ThusC.�/D U.k�1/
and the fixed point component U.k � 1/=H� admits positive curvature. Since k � 1 � 4, it fol-
lows that H contains a .k � 2/ � 3 block, and we are done by the Block Lemma.

2.4. The case K D Sp.2/. We may assume that the involution � D diag.�1; 1/ is in H.
Since Sp.1/ � Sp.1/=H� admits positive curvature, H contains an Sp.1/-block. Thus either
H D Sp.1/ � Sp.1/ or H D Sp.1/ � S1 and both quotients are listed in Table 2.

2.5. The case K D Sp.3/. We may assume that the involutions �1 D diag.�1; 1; 1/,
�2 D diag.1;�1; 1/ and �3 D diag.1; 1;�1/ are in H and that H contains no 2 � 2-block. Then
we have Fix.�h/ D Sp.2/Sp.1/=H�h and since H does not contain an Sp.2/, it must contain the
Sp.1/-block – given by the S3 in the h-th diagonal entry. Hence ¹diag.a; b; c/ W a; b; c 2 S3º
is a subgroup of H. Since H contains no 2 � 2-block equality must hold and we are left with the
twelve-dimensional Wallach flag manifold.

2.6. The case K D Sp.k/ (k � 4). We may assume � D diag.�1;�1; 1; : : : ; 1/ 2 H
and hence Fix.�/ D Sp.2/ � Sp.k � 2/=H�. Thus H contains either the upper 2 � 2-block or the
lower .k � 2/ � .k � 2/-block. In either case the result follows from the Block Lemma.

2.7. The case K D SO.k/ (k � 7). We may assume � D diag.�1;�1;�1;�1; 1 : : : ; 1/
is in H and hence Fix.�/ D SO.4/ � SO.k � 4/=H� admits positive curvature. The group H� must
contain all but one of the connected simple normal subgroups of SO.4/�SO.k�4/. This implies
that H contains either the upper 4�4-block or the lower .k�4/�.k�4/-block and we are done
by the Block Lemma.

2.8. The case K D G2. For any involution � 2 H, we have Fix.�/ D SO.4/=H�, which
implies that H� contains at least a group isomorphic to U.2/ � SO.4/. We claim that H D U.2/
cannot hold. In fact, otherwise we could choose � as a non-central involution in U.2/ and
would get H� D T2, but SO.4/=T2 does not admit positive curvature. Thus H is strictly bigger
than U.2/. The only connected proper subgroups of G2 satisfying this are SU.3/ and SO.4/.
In the former case, G2=SU.3/ Š S6 is listed in Table 2, while the latter case is not possible as
G2=H would be isometric to the rank 2 symmetric space G2=SO.4/.

2.9. The case K D F4. Choose an involution � 2 H whose centralizer in F4 is given
by Spin.9/. Since Fix.�/ D Spin.9/=H� has positive curvature, H contains Spin.8/. The only
proper connected subgroups in F4 satisfying this are Spin.8/ and Spin.9/ and both correspond
to listed quotients.

2.10. The case K D Ei , i D 6; 7; 8. We choose an element � 2 H whose centralizer
C.�/ is given by S1 � Spin.10/ if i D 6, S1 � E6 if i D 7 and SO0.16/ if i D 8. By induction we
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can use Tables 1 and 2 in the introduction to see that C.�/ cannot act transitively by isometries
on a positively curved manifold of positive even dimension. HenceC.�/ D H� � H and equality
must hold since C.�/ is maximal – a contradiction as K=C.�/ is a higher rank symmetric space.

3. K not semisimple

In the remaining three sections we assume that K=H is an almost effective representation
of an odd-dimensional homogeneous space of positive sectional curvature and in this section
we treat the case of a non-semisimple compact group K. Since rank.K/ D rank.H/C 1, the
center of K can be at most one-dimensional. After passing to a finite cover we can assume
K D S1 � K2 with K2 semisimple. We let pr2.H/ denote the projection of H to the second factor.
Since K=H has finite fundamental group, the projection of H to the first factor is surjective.

If we put H2 D K2 \ H, then H D �S1 � H2. Since the projection to the first factor is
surjective, K2 acts transitively on K=H with stabilizer H2 and by induction on the dimen-
sion of the Lie group .K2;H2/ is up to a finite covering one of the pairs listed in Table 1
or 2. The group pr2.H/ is contained in the normalizer of H2 in K2 and thus N.H2/=H2 is
at least one-dimensional. Combining this with the fact that K2 is semisimple we deduce that
.K2;H2/ is given by .SU.n/;SU.n � 1//, .Sp.n/;Sp.n � 1// or .SU.3/; diag.zp; zq; NzpCq//
(with p � q � 1 and gcd.p; q/ D 1). In either case the corresponding S1-extension is also
listed in Tables 1 and 2 and thus we are done.

4. K semisimple but not simple

We assume in this section that K D K1 � K2 is a simply connected product group with
semisimple factors of positive rank. Notice that rank.Ki / � rank.Hi / � rank.K/ � rank.H/ D 1
holds for Hi D Ki \ H, i D 1; 2. We distinguish among three cases.

4.1. H1 and H2 are finite. Then rank.Ki / � rank.Hi /C 1 D 1 and thus K D S3 � S3.
If H is three-dimensional, then it is necessarily given by�S3 and K=HŠ S3 is in our list. Other-
wise H is a circle and we can assume H D ¹.zp; zq/ W z 2 S1º with p � q � 1, gcd.p; q/ D 1.
We want to rule out these potential examples by finding commuting eigenvectors. The tangent
space p splits into a trivial one-dimensional module and a four-dimensional module spanned by
.j; 0/; .k; 0/; .0; j /; .0; k/ on which H acts as a rotation on the span of the first two and the last
two vectors. If p ¤ q, the sub-representations are inequivalent and thusG-invariant. Therefore
.j; 0/ and .0; j / are commuting eigenvectors. If p D q, we can assume that one eigenvector is
given by e1 D . j̨; ǰei / for some ˛; ˇ;  2R with ˛2Cˇ2 D 1. A second eigenvector to the
same eigenvalue is then obtained by the action of H to be e2 D .˛k; ˇkei /. Any vector in the
four-dimensional module which is Q-orthogonal to both must thus be an eigenvector as well.
Thus e3 D .� ǰ; j̨ei / is an eigenvector and it clearly commutes with e1. Here we used indi-
rectly that we can choose the biinvariant metric Q such that both factors are weighted equally.

4.2. H1 is finite but H2 is not. Then rank.K1/ D 1 and thus K D S3 � K2.
We start with the case where H projects surjectively to the first factor. In this case we

have H D �S3 � H2 and the factor K2 acts transitively on the homogeneous space K=H with
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stabilizer H2. By induction on the dimension of the Lie group, the pair .K2;H2/ is up to a finite
covering listed in Table 1 or 2. Since pr2.H/ is contained in the normalizer of H2, it follows that
N.H2/=H2 is three-dimensional. Therefore the pair .K2;H2/ is given by .SU.3/; diag.z; z; Nz2//
or .Sp.n/;Sp.n � 1//. But then .K;H/ is (up to finite kernel) either .SU.3/ � SO.3/;U.2// or
.Sp.n/ � Sp.1/;Sp.n/�Sp.1// and both are listed in Tables 1 and 2.

The projection of H to the S3 factor cannot be trivial as otherwise H D 1 � H2 would be
a product subgroup of S3 � K2 and every invariant metric of K=H would be a product metric.

It remains to consider the subcase where the projection of H to the S3 factor is given by
an S1. Let N.H2/ denote the normalizer of H2 in K2. If N.H2/=H2 is three-dimensional, then
a fixed point component of H2 is locally isometric to .S3 � S3/=S1, which is impossible as we
saw in Section 4.1.

Otherwise, we have dim.N.H2/=H2/ � 1. This implies that the two-dimensional irre-
ducible representation of H in the first factor is not equivalent to any other sub-representation
of H in p since no other non-trivial sub-representation has H2 in its kernel. Thus the two-
dimensional sub-representation in the first factor consists of eigenvectors and it is now easy to
find commuting eigenvectors of G.

4.3. Both H1 and H2 are infinite. In this case there is a non-trivial irreducible sub-
representation which does not contain H1 in its kernel. Since any such sub-representation is
tangent to the first factor, there are eigenvectors in the first factor. Similarly there are also
eigenvectors in the second factor and thus we found commuting eigenvectors.

5. The odd-dimensional case with K simple

The proof is again by induction on the dimension of the group. Again we frequently use
that the centralizer C.�/ of an element � 2 H acts transitively on an odd-dimensional fixed point
component of � and by induction this action is, up to possibly a larger kernel, (locally) given
by one listed in Tables 1 and 2 in the introduction. We point out though that low-dimensional
isomorphisms of Lie algebras sometimes give rise to less obvious presentations:

RP7 D SO.5/=SU.2/˙ D SO.6/=SU.3/ D SO.7/=G2 D SO.8/=Spin.7/;

RP7 D SO.5/SU.2/=SU.2/� ��SU.2/C; S5 D SU.4/=Sp.2/;

RP15 D SO.9/=Spin.7/:

As explained, for � 2 H, the group H is either equal to H� D C.�/ \ H or an equal rank
enlargement thereof. The latter are rather rare, as follows from [14, table on p. 281]. For exam-
ple, up to covers the only equal rank enlargements of simple Lie groups are

SO.2n/ � SO.2nC 1/; SU.3/ � G2; Spin.9/ � F4;

SU.8/=Z2 � E7; SU.9/=Z3 � E8; Spin.16/=Z2 � E8:

The group S3 � S3 has only Sp.2/ as equal rank enlargement whereas SO.4/ has SO.5/
and G2.

We go through the list of simple Lie groups. By passing to a Z2 quotient if necessary
we again can deal with the group SO.k/ rather than Spin.k/ as long as we allow fundamen-
tal group Z2 for K=H. As in the even-dimensional case we only need to consider this case
for k � 7.
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5.1. The case K D SU.3/. If H D SO.3/, then K=H is isometric to a symmetric space
of rank 2, and hence does not have positive curvature, and if H D SU.2/, it is a sphere. Other-
wise, H is one-dimensional and we may assume H D diag.zp; zq; NzpCq/ with p � q � 0 and
gcd.p; q/ D 1. Then K=H is an Aloff–Wallach space, which has positive curvature unless
.p; q/ D .1; 0/. In the latter case we choose the involution � D diag.�1; 1;�1/ 2 H whose
fixed point set Fix.�/ D U.2/=H D .S2 � S1/=�Z2 cannot have positive curvature.

5.2. The case K D SU.4/. There exists an involution � 2 H which is not central since
rank.H/ D 2. In this case, Fix.�/ D S.U.2/U.2//=H�, which can only have positive curvature
if H contains �SU.2/ or an SU.2/-block. In the first case, K=H is effectively a quotient of
SO.6/. The image of S.U.2/U.2// in SO.6/ is SO.2/SO.4/, and hence the image of �SU.2/
is a 3 � 3-block in SO.6/, and we are done by the Block Lemma.

If H contains a block (say lower) SU.2/, there are four possible enlargements of rank 2.
If H is simple, then it must be SU.3/ or Sp.2/, since SU.4/ does not contain a G2. But then
K=H D S7 or S5 is in our list. A third possibility is that H D SU.2/ � SU.2/ (lower and upper
2 � 2-block), but then K=H is effectively given by SO.6/=SO.4/ and we are done by the Block
Lemma.

The final possibility is H D SU.2/ � diag.z2p; z2q; NzpCq; NzpCq/ for some p; q 2 Z with
gcd.p; q/ D 1 and this can be ruled out as follows. If jpj ¤ jqj, then the two rows in the ortho-
gonal complement q of S.U.2/U.2// correspond to inequivalent representations and hence
are contained in eigenspaces of G which clearly yields commuting eigenvectors. If p D q,
the representation of H in q decomposes into two equivalent complex representations and the
normalizer of H contains the upper 2 � 2-block. Hence we can argue as in the proof of the Block
Lemma to find commuting eigenvectors. If p D �q, then the involution diag.1; 1;�1;�1/ 2 H
has a three-dimensional fixed point component S.U.2/U.2//=H D .S2 � S1/=Z2 with infinite
fundamental group.

5.3. The case K D SU.5/. Let F Š Z42 denote the group of diagonal matrices in SU.5/
with eigenvalues ˙1. Since we can assume that the three-dimensional torus in H is diagonal,
there exists an index 2 subgroup E of F contained in H. We claim that one element in E has an
eigenvalue �1 with multiplicity 4. Suppose not. If �1; �2 2 F are two elements both of which
have the eigenvalue �1 with multiplicity 4, then it would follow �1 � �2 2 E. But these products
generate the whole group F – a contradiction.

Therefore without loss of generality � D diag.�1;�1;�1;�1; 1/ 2 H. By induction, the
fixed point set Fix.�/ D U.4/=H� must be one of U.4/=U.3/, U.4/=SU.4/ or SU.4/=Sp.2/. In
the first two cases, H contains a 3 � 3-block, and we are done. In the last case, H contains
Sp.2/ � S1, which gives rise to the positively curved Berger space SU.5/=Sp.2/ � S1.

5.4. The case K D SU.k/, k � 6. We can assume that the maximal diagonal torus of H
has at least a one-dimensional intersection with the maximal torus of �SU.3/ � SU.3/2 con-
tained in the upper 6 � 6-block of SU.k/. Clearly, any involution � in this intersection has
a complex eigenvalue �1 with multiplicity 4. Then Fix.�/ D S.U.4/ � U.k � 4//=H�.

If k � 7, then H� either contains the upper 4 � 4 or the lower .k � 4/ � .k � 4/-block
and we are done.

If k D 6, the stabilizer group of the action of SU.4/ on Fix.�/ is Sp.2/ unless it contains
an SU.3/-block. Thus we may assume Sp.2/SU.2/ � S1 � H with S1 D diag.z; z; z; z; Nz2; Nz2/.
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This in turn implies that �2 D diag.i;�i; i;�i; i;�i/ 2 Sp.2/SU.2/� H. The centralizer C.�2/
is isomorphic to S.U.3/U.3// and hence Fix.�2/ D S.U.3/U.3//=H�2 has positive curvature.
By induction H contains up to conjugation a 3 � 3-block and we are done by the Block Lemma.

5.5. The case K D Sp.2/. There are three three-dimensional subgroups of Sp.2/. One
quotient is a sphere S7 D Sp.2/=Sp.1/, the second the Berger space Sp.2/=Sp.1/max with
positive curvature, and the third the Stiefel manifold Sp.2/=�Sp.1/ D SO.5/=SO.3/ which
contains a 3 � 3-block, and thus is ruled out by the Block Lemma.

It remains to consider H D diag.zp; zq/ with p � q � 0 and gcd.p; q/ D 1. Then the
weights of the adjoint action of H on p are 0; 2p; 2q; p � q; p C q. If they are all distinct,
the metric G is diagonal, and there are two commuting eigenvectors. If .p; q/ D .1; 0/, then
Fix.�/ D Sp.1/Sp.1/=S1 � 1 cannot have positive curvature, where � is the involution in H.

This leaves us with two exceptional cases.
If .p; q/ D .1; 1/, then Sp.2/=�S1 D SO.5/=SO.2/ is the Stiefel manifold where we can

think of SO.2/ as the lower 2 � 2-block. In this case, p D p0 ˚ p1 where H acts trivially on
the three-dimensional module p0 (upper 3 � 3-block), and as the direct sum of three equivalent
two-dimensional representations on p1. We use Lemma 1.1 (b) to find an obstruction. If an
eigenvector corresponding to the smallest eigenvalue ofG lies in p0, then it has rank 2 in so.5/

and there is a vector in p1 that commutes with it. If the eigenvector lies in p1, we can use
the fact that SO.5/=SO.3/SO.2/ is a symmetric space of rank 2 to find a linearly independent
vector in p1 that commutes with it. In either case Lemma 1.1 (b) implies that Sp.2/=H does not
have positive curvature.

Ruling out the remaining case of .p; q/ D .3; 1/ we postpone to the end since it is the
only case that requires a more detailed argument, see Section 5.14.

5.6. The case K D Sp.3/. If � 2 H is an involution which is not central, then

Fix.�/ D Sp.2/Sp.1/=H�

and by induction there are only four odd-dimensional quotients which have positive curva-
ture, corresponding to H� D Sp.2/, Sp.1/�Sp.1/, Sp.1/Sp.1/ or Sp.1/maxSp.1/. By the Block
Lemma we may assume that H does not contain a 2 � 2-block and thus H D H�.

If the group H� is given by Sp.1/�Sp.1/ D diag.q; r; r/ or Sp.1/Sp.1/ D diag.1; q; r/
with q; r 2 Sp.1/, then we can choose a second involution �2 D diag.1;�1;�1/ 2 H with fixed
point set

Sp.1/Sp.2/=H D Sp.2/=�Sp.1/

in the first case, and

Sp.1/Sp.2/=H D Sp.1/ � .Sp.2/=Sp.1/Sp.1//

in the second case. Neither one admits positive curvature.
Thus we are left with the case H� D H D Sp.1/maxSp.1/ � Sp.2/Sp.1/. Then we have

p D p1 ˚ p2, where p1 is the irreducible sub-representation of H given by the orthogonal
complement of Sp.1/max in the upper sp.2/-block and p2 is the irreducible inequivalent sub-
representation given by .sp.2/˚ sp.1//?. Clearly, pi is contained in an eigenspace of G.
We may assume that a maximal torus of H is given by ¹diag.z3; z; �/ W z; � 2 S1º (see e.g.
[3, p. 237]). The circle diag.z3; z; 1/ acts on the Lie algebra of Sp.1/max with weight 2 and
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thus x D diag.j; 0; 0/ 2 p1, as x lies in a two-dimensional sub-representation of the circle
with weight 6. Clearly, we can find a commuting eigenvector in p2.

5.7. The case K D Sp.k/, k � 4. Fixed point groups of non-central involutions are of
the form Sp.r/Sp.s/with r C s D k and r � s. Thus either r � 3 or r D s D 2. In either case,
it follows from our induction hypothesis that H� � H contains a 2 � 2-block and we are done.

5.8. The case K D SO.k/, k � 7. We may assume that the maximal torus of H has at
least a one-dimensional intersection with SU.3/ � U.3/ contained in the upper the 6 � 6-block.
Any involution � in this intersection has the eigenvalue �1 with real multiplicity four. Hence
without loss of generality � D diag.�1;�1;�1;�1; 1; : : : ; 1/ 2 H.

A fixed point component is given by SO.4/SO.k�4/=H�. If k � 10, then by induction H�

either contains the upper 4 � 4-block or the lower .k � 4/ � .k � 4/-block and we are done.
If k D 7, then H� contains a 3 � 3-block unless

H�0 D SU.2/� ��SU.2/ Š SO.4/ with �SU.2/ � SU.2/C � SO.3/:

If H D H�, then we consider another involution �2 D diag.�1;�1; 1; 1;�1;�1; 1/ 2 H com-
ing from .diag.i;�i/; diag.i;�i// 2 SU.2/� ��SU.2/ with fixed point set SO.4/SO.3/=H�2

which cannot have positive curvature since .H�2/0 D U.1/U.1/. Thus H ¤ H� and H is simple.
Since SO.5/ only embeds as a 5 � 5-block into SO.7/, it necessarily follows that H D G2 and
SO.7/=G2 Š RP7 is two-fold covered by a listed example.

If k D 8, then at least two of the four normal connected simple subgroups of SO.4/SO.4/
are in H�. If they form a 4 � 4-block, then we are done by the Block Lemma. Otherwise, we
can choose a suitable complex structure such that H� contains the subgroup L given as the upper
and lower 2 � 2-block of SU.4/ � SO.8/. If we choose an automorphism of the Lie algebra
so.8/ that moves the subalgebra su.4/ into a 6 � 6-block so.6/, then the image of the Lie
algebra of L will be a 4 � 4-block (see first paragraph of Section 5.2). By the Block Lemma,
H Š Spin.7/ and SO.8/=Spin.7/ Š RP7 is two-fold covered by a listed example.

It remains to consider k D 9. Then Fix.�/ D SO.5/SO.4/=H�. By the Block Lemma,
we can assume that both SO.5/ and one of the simple factors in SO.4/ must act non-trivially
on Fix.�/. This leaves only the possibility that effectively

Fix.�/ D RP7 D SO.5/SU.2/C=SU.2/� ��SU.2/C:

Thus �SU.2/C � H which implies that H contains another involution �2 with eigenvalue �1
of multiplicity 8 and hence has fixed point component SO.8/=H�2 . Thus either H contains
a 7 � 7-block and we are done, or Fix.�2/ D RP7 D SO.8/=Spin.7/. But then H D Spin.7/
and K=H D RP15 is two-fold covered by a listed example.

5.9. The case K D G2. For every involution � 2 H, we have Fix.�/ D SO.4/=H�. Since �
is contained in the center of H�, we deduce that H� 6Š SO.3/ and so H� D H is a normal subgroup
of SO.4/. We let p0 � p denote the three-dimensional trivial sub-representation of H corre-
sponding to the dual normal subgroup of SO.4/. The orthogonal complement q WD .p0/

? \ p

corresponds to the tangent space of the rank 2 symmetric space G2=SO.4/. Thus Gjq cannot
be a multiple of the identity because otherwise we could find commuting eigenvectors. This
implies that the representation of H Š SU.2/ on the eight-dimensional space q is reducible.
Since Ad�jq D � id, there are no trivial or three-dimensional sub-representations and it must
be given as the sum of two four-dimensional sub-representations.
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Altogether, Gjq has two four-dimensional eigenspaces p1 and p2 corresponding to dis-
tinct eigenvalues �1 and �2. If X 2 p1 n ¹0º, then adX moves p2 to p0 ˚ h as G2=SO.4/ is a
symmetric space. Since p0 is three-dimensional, we have ŒX; Y � 2 h for some Y 2 p2 n ¹0º.
Now BC.X; Y / D ŒGX; Y �� ŒX;GY � D .�1��2/ŒX; Y � 2 p (see proof of Lemma 1.1) gives
ŒX; Y � D 0 and we found two commuting eigenvectors.

5.10. The case K D F4. In this case, C.�/ is either Sp.3/ � Sp.1/ or Spin.9/. Since
rank.H/ D 3, one of its involutions lies in Z2 ˚ Z2, the center of Spin.8/ � Spin.9/. Since
Sp.3/Sp.1/ does not contain a Spin.8/, the fixed point set is Fix.�/ D Spin.9/=H�. Thus we
have H� D Spin.7/ since H� has rank 3, which in turn implies that H D Spin.7/ since it has no
equal rank enlargement.

Choose an involution �2 2 Spin.7/ with H�2 D Spin.4/Spin.3/. Again C.�2/ is either
Sp.3/ � Sp.1/ or Spin.9/ and by induction C.�2/=H� does not have positive curvature.

5.11. The case K D E6. Here C.�/ is either SU.6/ � Sp.1/ or .Spin.10/ � S1/=�Z4.
As in the previous case, we can choose an involution � 2 Z.Spin.8// \ H with fixed point set
Fix.�/ D Spin.10/ � S1=H�. Thus either Spin.9/ � S1 � H or Spin.10/ � H. If H is a strict equal
rank enlargement of H�, then it is isomorphic to Sp.1/ � Spin.9/ or Spin.11/ and the central
element � 2 Spin.9/ of H� would remain central in H, which is impossible as these groups are
not in C.�/.

If H D Spin.9/ � S1, then we can choose another involution �2 2 Z.Spin.8// \ H with
H�2 D Spin.8/ � S1. But then Fix.�2/ D Spin.10/ � S1=Spin.8/ � S1 which does not admit pos-
itive curvature.

If H D Spin.10/, then we can choose an involution �2 2 SU.2/ � Spin.4/ � Spin.10/
with H�2 D Spin.4/Spin.6/ and as before C.�2/ Š Spin.10/ � S1 or SU.6/ � Sp.1/ but in either
case C.�2/=H�2 cannot have positive curvature by our induction hypothesis.

5.12. The case K D E7. We let � denote an involution in H which is not central in E7.
The potential candidates for C.�/ are E6 � S1, .Spin.12/ � Sp.1//=�Z2 or SU.8/=Z2. Notice
that �must be contained in the center ofC.�/. The center of E6 � S1 and SU.8/=Z2 only contains
one involution and this must be contained in the center of E7 which is Z2 – a contradiction.

Thus we have C.�/ D .Spin.12/ � Sp.1//=�Z2. Then H� is either Spin.11/ � Sp.1/ D H
or Spin.12/ D H. But then we can choose another involution �2 2 Z.Spin.4// � Spin.11/ \ H
with H�2 D Spin.4/Spin.7/Sp.1/ or Spin.4/Spin.8/. As before C.�2/ Š Spin.12/ � Sp.1/ and
the fixed point set does not have positive curvature.

5.13. The case K D E8. Here C.�/ is either E7 � Sp.1/ or SO0.16/. In the former case,
we would get H D E7 and there is a Riemannian submersion from E8=E7 to the higher rank
symmetric space E8=E7 � Sp.1/ as the isotropy representation of E8=E7Sp.1/ remains irre-
ducible when restricted to E7 – a contradiction.

Thus we have Fix.�/ D SO0.16/=H� and hence H� D Spin.15/ D H. We can now choose
another involution �2 2 Z.Spin.12// � H with H�2 D Spin.12/Spin.3/. As before we must
have C.�2/ Š SO0.16/ but then C.�2/=H�2 does not have positive curvature.

5.14. The case K D Sp.2/ and H D diag.ei� ; e3i�/. Finally, we discuss the example
left out in Section 5.5.
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Claim. Without loss of generality G commutes with Ada, where a D diag.j; j /.

We first want to explain why it is enough to prove the claim. By the claim it suffices to
consider Ad OH-invariant metrics with

OH WD H [ aH Š Pin.2/:

Of course, any such metric descends via the two-fold cover K=H! K= OH. Notice that Adajp
has a negative determinant and thus right multiplication with a induces an orientation reversing
isometry of Sp.2/=H and Sp.2/= OH is a non-orientable manifold. On the other hand, we know
that a positively curved odd-dimensional manifold is orientable by the Synge Lemma.

It remains to verify the claim. The element b D diag.ei ; ei / is in the normalizer of H.
Therefore the isometry type does not change if we replace G by Gb D Adb G Adb�1 to define
an induced metric on Sp.2/=H. We plan to show that for a suitable choice of b the endomor-
phisms Gb and Ada commute.

Consider the isotropy decomposition p D p0 ˚ p2 ˚ p4 ˚ p6 preserved by G, where H
acts trivially on the one-dimensional space p0 and with weight n on pn, n D 2; 4; 6. These
subspaces can be described explicitly as follows: p0 D R diag.�3i; i/, p6 D C � diag.0; j /,

p2 D

´ 
w �Nz

z 0

!
W w 2 C � j; z 2 C

µ
and p4 D

´ 
0 w

w 0

!
W w 2 C � j

µ
:

In particular, p2 is four-dimensional, whereas p4 and p6 are two-dimensional. Notice that each
of these spaces is also Ada-invariant. Since Gb restricts to a multiple of the identity on pi for
i D 0; 4; 6, it remains to show that Gbjp2

commutes with Adajp2
for a suitable choice of b.

The action of H induces a natural complex structure on p2 and we can view Gjp2
as

hermitian endomorphism with respect to this complex structure and the scalar product Q. The
element Adajp2

corresponds to complex conjugation if we identify the real vector subspace

W D

´ 
ǰ �ı

ı 0

!
ı; ˇ 2 R

µ
of p2 with R2. Hence if we consider the hermitian 2 � 2 matrix representing Gjp2

with respect
to an orthonormal basis ofW , thenG commutes with Ada if this matrix is real. If we replaceG
byGb , the corresponding 2 � 2matrix changes by conjugating it with diag.ei2 ; 1/ and clearly
we can turn the given hermitian matrix into a symmetric real matrix for a suitable choice of  .

Final remarks

An analysis of the proof shows: If a simply connected compact homogeneous space K=H
satisfies the conclusion of the Berger Lemma, but does not admit an invariant metric of posi-
tive sectional curvature, then either one can find commuting eigenvectors or K=H is given by
Sp.2/=diag.z3; z/, Sp.2/=diag.z; z/ or Sp.3/=¹diag.z; z; g/ W z 2 S1; g 2 S3º. The first space
is ruled out in Section 5.14. It is also the most difficult case in [2] where one finds another
proof that it does not admit positive curvature, by exhibiting two commuting vectors (not nec-
essarily eigenvectors) with zero curvature. The third space contains the second one as a totally
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geodesic submanifold. It was pointed out by M. Xu and J. A. Wolf that Bérard Bergery did
not consider the most general class of metrics on the second space when he tried to rule out
positive curvature. They also show that one can find metrics on it where all planes spanned by
commuting vectors have positive curvature. We recall that we rule out this potential example
in Section 5.5 using part (b) of Lemma 1.1.
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