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NONNEGATIVELY CURVED MANIFOLDS WITH
FINITE FUNDAMENTAL GROUPS ADMIT METRICS

WITH POSITIVE RICCI CURVATURE

Christoph Böhm and Burkhard Wilking

In this paper we address the question whether a complete Riemannian
metric of nonnegative sectional curvature can be deformed to a metric of
positive Ricci curvature. This problem came up implicitly in various recent
new constructions for metrics with positive Ricci curvature. Grove and
Ziller [GZ] showed that any compact cohomogeneity one manifold with
finite fundamental group admits invariant metrics with positive Ricci cur-
vature. The case that both non-regular orbits have codimension two is
especially resilient. By earlier work of Grove and Ziller it has been known
that these manifolds admit invariant nonnegatively curved metrics. How-
ever, in certain cases the Ricci curvature of these metrics is not positive at
any point and hence they cannot apply the deformation theorem of Aubin
[A] and Ehrlich [E]: a metric of nonnegative Ricci curvature is conformally
equivalent to a metric with positive Ricci curvature if and only if the Ricci
curvature is positive at some point. Similar problems arise in the work of
Schwachhöfer and Tuschmann on quotient spaces [ST].

Our main result is:
Theorem A. Let (Mn, g) be a compact Riemannian manifold with finite
fundamental group and nonnegative sectional curvature. Then Mn admits
a metric with positive Ricci curvature.

Notice that by the theorem of Myers a closed manifold with infinite
fundamental group cannot admit a metric with positive Ricci curvature.
Similarly to Aubin’s and Ehrlich’s theorem, our deformation can be chosen
to be invariant under the isometry group as well.

We emphasize that Theorem A does not assert the existence of metrics
which have both nonnegative sectional as well as positive Ricci curvature.

Keywords and phrases: Ricci flow, nonnegative sectional curvature, invariant curva-
ture conditions
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This remains open. We should also mention that the assumption of non-
negative sectional curvature in the theorem cannot be replaced by non-
negative Ricci curvature. In fact there are Ricci flat manifolds which do
not admit positive scalar curvature, e.g. K3 surface. Since these manifolds
have special holonomy, one might ask whether compact manifolds with
nonnegative Ricci curvature and generic holonomy admit a metric with
positive Ricci curvature.

By the work of Nash [N] and Bérard-Bergery [Be1] any vector bundle of
rank ≥ 2 over a compact Riemannian manifold with positive Ricci curvature
admits a metric of positive Ricci curvature. By combining Theorem A with
the soul theorem of Cheeger and Gromoll we obtain

Corollary B. An open nonnegatively curved complete manifold with
finite fundamental group admits a complete metric with positive Ricci cur-
vature if and only if Hn−1(Mn,Z2) = 0.

Unlike in the compact case, there are open manifolds with metrics of
positive Ricci curvature and infinite fundamental group [Be2], [We], [BW].

To prove Theorem A we deform the given nonnegatively curved met-
ric by a family of Riemannian metrics gt satisfying Hamilton’s evolution
equation ∂

∂tgt = −2Ric(gt). We consider a time dependent family of curva-
ture conditions which lie strictly between nonnegative Ricci curvature and
nonnegative sectional curvature. As a consequence of an extended version
of Hamilton’s maximum principle (see [CL]), the Ricci flow preserves this
family of curvature conditions. It follows that for any nonnegatively curved
initial metric g0 on a closed manifold Mn there exists ε = ε(n, g0) > 0
such that the Ricci curvature of the evolved metrics gt is nonnegative for
t ∈ [0, ε). The strong maximum principle implies that the Ricci curvature
becomes positive unless M contains a flat factor and consequently has in-
finite fundamental group. For the convenience of the reader we include a
simplified proof of the extended maximum principle in section 1.

The proof of Theorem A, given in section 2, raises the question whether
any of the above curvature conditions is itself invariant under the Ricci
flow. Recall that the Ricci flow preserves several curvature conditions
such as positive scalar curvature, positive curvature operator and several
further conditions on Kähler manifolds. However, other natural curva-
ture conditions are not preserved. Recently, Ni [Ni] described complete
non-compact manifolds with bounded nonnegative sectional curvature such
that the Ricci flow does not preserve nonnegative sectional curvature. Fur-
thermore, Knopf [K] provided complete non-compact Kähler manifolds of
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bounded curvature and nonnegative Ricci curvature, which immediately
develop mixed Ricci curvature when evolved by the Kähler Ricci flow (cf.
[PhS]).

In the next theorem we present a closed manifold of this kind.

Theorem C. On the compact manifold M12 := Sp(3)/Sp(1)Sp(1)Sp(1)
the Ricci flow evolves certain positively curved metrics into metrics with
mixed Ricci curvature.

Taking products with spheres yields similar nonnegatively curved ex-
amples of arbitrary large dimension. Hence in dimensions above 12 there is
no curvature condition between nonnegative sectional curvature and non-
negative Ricci curvature which is invariant under the Ricci flow.

Let us describe the above example more precisely (cf. section 3). The
homogeneous space M12 has a two-dimensional family of homogeneous unit
volume metrics. The biinvariant metric of Sp(3) induces on M12 a homo-
geneous unit volume Einstein metric gE of nonnegative sectional curvature.
By shrinking the round fibers S

4 of the fibration S
4 → M12 → HP2 and

rescaling, we obtain a curve gt, t > 1, of unit volume submersion metrics
with positive sectional curvature emanating from gE . The curve gt is up to
reparameterization a solution to the normalized Ricci flow. By analyzing
the asymptotic behavior of solutions of the Ricci flow, we prove that for
any homogeneous non-submersion initial metric, being close enough to g2,
the normalized Ricci flow evolves mixed Ricci curvature.

1 Hamilton’s Maximum Principle

Let π : V → M be a vector bundle over a compact smooth manifold M
of dimension n with a fixed metric k on the fibers Vp = π−1(p), p ∈ M .
Let gt be a time dependent metric on M and let ∇L

t denote the correspon-
ding Levi–Civita connection on (M,gt). Furthermore, let ∇t denote a time
dependent metric connection on V . For a section R : M → V of the vector
bundle one can define a new section ∆tR : M → V as follows. For p ∈ M
choose an orthonormal basis of Vp and extend it along radial geodesics in
(M,gt) emanating from p by parallel transport of ∇t to an orthonormal
basis X1(q), . . . ,Xd(q) of Vq for all q in a small neighborhood of p. If we
put fi := k(Xi, R), then

(∆tR)(p) =
d∑

i=1

(∆tfi) ·Xi(p)
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where ∆t on the right-hand side denotes the Laplace Beltrami operator of
(M,gt). Notice that the Laplace operator ∆tR can also be defined invari-
antly from the connections ∇L

t and ∇t (cf. [H2]).
Suppose that a time dependent section R(·, t) ∈ Γ(V ) satisfies the

parabolic equation
∂
∂tR(p, t) = (∆tR)(p, t) + f

(
R(p, t)

)
, (1.1)

where f : V → V is a local Lipschitz map mapping each fiber Vq to itself.
Roughly speaking Hamilton’s maximum principle asserts that the dynamics
of the partial differential equation (1.1) is controlled by dynamics of the
ordinary differential equations

d
dtRp(t) = f

(
Rp(t)

)
(1.2)

in the fibers Vp, p ∈ M . In all applications f is invariant under parallel
transport in the following sense: If c is a curve in M and the section R is
parallel along c with respect to ∇t then f(R) is parallel along c, too. Notice
that in this case it suffices to consider (1.2) on one fiber.

Next, we describe Hamilton’s maximum principle more precisely. For
t ≥ 0 let C(t) denote a closed subset of V , invariant under parallel transport
by the connection ∇t, such that for every p ∈M the set

Cp(t) = C(t) ∩ Vp ⊆ Vp

is convex. We assume that the sets C(t) depend continuously on t (that
is limt→t0 C(t) = C(t0) in the pointed Hausdorff topology) and moreover
that the family {C(t)} is invariant under the ordinary differential equations
(1.2): This means that for all t0 ≥ 0, p ∈ M and R0 ∈ Cp(t0) the solution
Rp(t) of (1.2) with Rp(t0) = R0 satisfies Rp(t) ∈ Cp(t) for all t ≥ t0 (for
which the solution Rp(t) exists).

Now we can state a special case of a maximum principle [CL] for the
parabolic equation (1.1), which generalizes Hamilton’s maximum principle
[H2]. For the convenience of the reader we include a short self-contained
proof. Let us mentioned that in contrast to Hamilton’s original approach we
use the converse Dini derivatives for functions which are not differentiable.
This seems to simplify the proof in particular for the more general situation
considered in [CL].

Theorem 1.1. For t ∈ [0, δ] let C(t) ⊆ V be a closed subset, depending
continuously on t. Suppose that each of the sets C(t) is invariant un-
der parallel transport, fiberwise convex and that the family {C(t)}0≤t≤δ
is invariant under the ordinary differential equations (1.2). Then, for any
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solution R(p, t) ∈ Γ(V ) on M × [0, δ] of the parabolic equation (1.1) with
R(p, 0) ∈ C(0), we have R(p, t) ∈ C(t) for all t ∈ [0, δ].

Proof. For any S ∈ Vq we let

rt(S) = dk
(
S,Ct(q)

)

denote the distance between S and the convex set Cq(t) in the fiber Vq.
For a solution R(p, t) to the parabolic equation (1.1), defined on [0, δ], we
consider the maximal distance to C(t),

s(t) := sup
p∈M

rt
(
R(p, t)

)
.

Even though s is not differentiable we define

s′(t0) := lim sup
h↘0

s(t0) − s(t0 − h)
h

.

Let r0 denote the maximum of s on [0, δ]. By assumption, we can find a
constant L > 0 such that the restriction of f to the ball B2r0(R(t, q)) is
L/2-Lipschitz continuous for all q ∈ M and t ∈ [0, δ]. We will show below
that s′(t) ≤ L · s(t) for all t ∈ [0, δ]. Thus, for g(t) := s(t) · e−Lt we get
g′(t) ≤ 0 for all t ∈ [0, δ]. If s(0) = 0, then g(0) = 0, which implies g(t) ≤ 0
for all t ∈ [0, δ], and the theorem is proved.

It remains to compute s′(t). For t0 ∈ [0, δ] there exists po ∈ M with
s(t0) = rt0(R(po, t0)). We may assume s(t0) > 0. Clearly, for h > 0 we
have s(t0 − h) ≥ rt0−h(R(po, t0 − h)), consequently

s′(t0) ≤ lim sup
h↘0

rt0(R(po, t0)) − rt0−h(R(po, t0 − h))
h

(1.1)
= lim sup

h↘0

rt0(R(po,t0))−rt0−h(R(po,t0)−h∆t0R(po,t0)−hf(R(po,t0))
h

≤ lim sup
h↘0

rt0(R(po, t0)) − rt0−h(R(po, t0) − hf(R(po, t0))
h

.

The equality holds sinceR(po, t0 − h) = R(po, t0) − h · ddt |t=t0R(po, t) + o(h)
and since the functions rt0−h are distance functions, hence uniformly Lip-
schitz continuous. To justify the last inequality we argue as follows: Using
the convexity of C(t) it is easy to see that for each t the function rt is of
class C1 on V \ C(t). We observe that the closed s(t0)-tubular neighbor-
hood r−1

t0 ([0, s(t0)]) of Ct0 is convex. By construction the section Rt0 is
contained in this neighborhood and we deduce from Lemma 1.2

k
(
∆t0R(t0, po), grad(rt0)(R(t0, po))

) ≤ 0 .
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Since C(t) is continuous with respect to the pointed Hausdorff topology it
is easy to see that grad(rt) is also continuous with respect to t. Thus for
each ε > 0 there is δ > 0 such that

k
(
∆t0R(t0, po), grad(rt−h)(S))

) ≤ ε

for all (S, h) with |R(t0, po) − S|k + |h| ≤ δ . From the convexity of the
function rt0−h it follows that

rt0−h
(
R(t0, po) − hf(R(po, t0) − h∆t0R(t0, po))

)

≥ −εh+ rt0−h
(
R(t0, po) − hf(R(po, t0)

)

for small h > 0 which gives the asserted inequality, as ε > 0 was arbitrary.
Next, for h > 0 we choose the unique Sh ∈ Cpo(t0 − h) with

rt0−h
(
R(po, t0) − hf(R(po, t0)

)
=

∣∣Sh + hf(R(po, t0)) −R(po, t0)
∣∣
k
.

Applying triangle inequality and using that f is L/2-Lipschitz continuous
on B2s(t0)(R(po, t0)) we obtain

rt0−h
(
R(po, t0) − hf(R(po, t0)

) − rt0
(
R(po, t0)

)

≥ ∣∣Sh + hf(Sh) −R(po, t0)
∣∣
k
− rt0

(
R(po, t0)

) − h
∣∣f(Sh) − f(R(po, t0))

∣∣
k

≥ dk
(
Sh + hf(Sh), R(po, t0)

) − dk
(
R(po, t0), C(t0)

) − h · L · s(t0)
≥ −dk

(
Sh + hf(Sh), C(t0)

) − h · L · s(t0) .
The term Sh+hf(Sh) approximates the solution γSh

of (1.2) with γSh
(t0−h)

= Sh ∈ Cpo(t0−h) up to first order. Since the family C(t) is invariant under
(1.2) we know γSh

(t) ∈ Cpo(t) for t ≥ t0 − h. Hence dk(C(t0), Sh + hf(Sh))
= o(h) and we conclude s′(t0) ≤ L · s(t0) as claimed. �

The above maximum principle relies on the following elementary obser-
vation.

Lemma 1.2. Let C ⊂ V be a closed subset such that Cp = C∩Vp is convex
for all p ∈M and suppose that C is invariant under parallel transport with
respect to a metric connection ∇t. If R ∈ Γ(V ) is a section with Rq ∈ Cq for
all q ∈ M , then ∆tR is a section with (∆tR)(q) ∈ TR(q)Cq, where TR(q)Cq
denotes the tangent cone of the convex set Cq ⊂ Vq at R(q).

Proof. Choose orthonormal vectorfields X1, . . . ,Xd of V in a neighborhood
of p. We may assume that each Xi is parallel along geodesics in M starting
at p. Choose also an orthonormal basis e1, . . . , en of vectorfields in (M,gt) in
a neighborhood of p which are radially parallel. If we write R in coordinates
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R =
∑d

i=1 fi ·Xi for suitable functions fi then

(∆tR)(p) =
d∑

i=1

(∆tfi)(p) ·Xi(p) =
n∑

j=1

d∑

i=1

(
ej(p)(ejfi)

) ·Xi(p) .

We let C̄ ⊂ R
d denote the convex set corresponding to Cp under the iden-

tification Vq ∼= R
d induced by the choice of the above basis. Since Cexp(sej)

is parallel with respect to ∇t along the geodesic exp(sej) in (M,gt), the
curve cj(s) = (f1, . . . , fd)(exp(sej)) is contained in C̄ ⊂ R

d. Clearly this
implies c′′j (s) ∈ Th(s)C̄,

∑
j c

′′
j (0) ∈ Th(0)C̄ and the result follows. �

Remark 1.3. (a) The maximum principle remains valid if f also depends
explicitly on t. What is needed in the proof is that f = f(t, R) is locally
Lipschitz continuous.

(b) The condition that the family C(t) is continuous with respect to the
pointed Hausdorff topology can be removed. If R is a solution of (1.1) we
can choose a compact convex subset C̃(0) ⊂ C(0) containing the image of
R( · , 0) which is invariant under parallel transport. Now one can consider
C̄t =

⋂
C̃(t), where the intersection is taken over all bounded closed convex

families C̃(t)0≤t≤δ′ extending the given set C̃(0) which are invariant under
parallel transport and invariant under (1.2). The minimal family C̄(t) is
continuous with respect to the Hausdorff topology and from the theorem
it follows that R(q, t) ∈ C̄t ⊂ Ct for t ∈ [0, δ′].

2 Ricci Flow Deformations

Let (Mn, g0) be a compact Riemannian manifold with finite fundamental
group and nonnegative sectional curvature. We consider an abstract vector
bundle W isomorphic to TM and endow it with a fixed fiber metric k. Let
gt denote the solution to the unnormalized Ricci flow

∂
∂t gt = −2Ric(gt)

with initial metric g0. We choose an isometry u : W → TM at time t = 0
and let this isometry evolve by the equation

∂
∂t u

i
a = gij Ricjk uka .

Then, the pull-back metric kab = giju
i
au

j
b is constant in time [H2]. With the

help of the isometries u(t) : (W,k) → (TM, gt) we can pull back any vector
bundle over M associated to the principal bundle P of orthonormal frames
of (TM, gt). In particular, the (4, 0)-curvature tensor R of the Riemannian
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manifold (Mn, gt) can be considered a section in the associated bundle

V = PW ×O(n) S
(
Λ2(Rn)

)
,

where S(Λ2(Rn)) denotes the space of symmetric bilinear forms on Λ2(Rn)=
TeO(n) and PW is the principal bundle of orthonormal frames in (W,k).
The fiber metric k on W induces a fiber metric on V again denoted by k.
Notice that we use Hamilton’s sign convention, that is on the round sphere
we have Rxvxv ≥ 0.

We can also pull back the Levi–Civita connection of the tangent bundle
of (Mn, g(t)) and the induced connection of any associated vector bundle.
As explained in the previous section the Laplacian of a section in such a
bundle can be defined. One arrives at the following evolution equation for
the curvature tensor R (see [H2]):

∂
∂tRabcd = (∆R)abcd + 2(Babcd −Babdc +Bacbd −Badbc) ,

where
Babcd := kefkghReagbRfchd .

Notice that we are precisely in the situation described in the last section.
The first crucial step in the proof of Theorem A is the following

Proposition 2.1. For each n ∈ N and κ > 0 there is a constant ε > 0
such that the following holds. If (M,g0) is a compact nonnegatively curved
n-manifold with upper curvature bound κ, then the solution gt of the Ricci
flow with initial metric g0 exists on [0, ε] and all metrics gt have nonnegative
Ricci curvature.

Proof. Let D1,D2, E1, E2 be positive constants to be fixed later on. For
t ≥ 0 we consider the subset C(t) of curvature tensors R in V which satisfy
the following constraint equations:

0 ≤ Ric(v, v) ∀ v ∈W , (2.1)

(Rxvxw)2 ≤ (D1+tE1) · Ric(v, v) · Ric(w,w) ∀ v,w, x∈W , |x|= 1 , (2.2)
‖R‖ ≤ D2 + tE2 . (2.3)

Here, ‖R‖ denotes the 2-norm of the curvature tensor R.
Clearly, the sets C(t) are closed and invariant under parallel transport.

We show that for every p ∈M the sets Cp(t) = C(t) ∩ Vp are convex.
The set of curvature tensors satisfying (2.1) and (2.3) is obviously con-

vex. Let R,S ∈ Vp denote curvature tensors satisfying (2.1) and (2.2). For
v ∈ Wp we set A = Rxvxw, a1 = Ric(v, v), a2 = Ric(w,w) and for the
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tensor S we define B, b1 and b2 accordingly. Let λ ∈ [0, 1]. We need to
show that λR+ (1 − λ)S satisfies the equation (2.2) as well:
(
λA+ (1 − λ)B

)2 ≤ λ2A2 + 2λ(1 − λ)|A||B| + (1 − λ)2B2

≤ (D1+tE1) ·
(
λ2a1a2+2λ(1−λ)

√
a1a2b1b2+(1−λ)2b1b2

)

≤ (D1 + tE1) ·
(
λa1 + (1 − λ)b1

) · (λa2 + (1 − λ)b2
)
.

The first inequality follows from Cauchy–Schwarz, the second one from
(2.2). The last inequality is equivalent to 2

√
a1a2b1b2 ≤ a1b2 + a2b1 which

follows from (2.1). This shows that the sets Cp(t) are convex.
In order to apply Hamilton’s maximum principle, stated in Theorem 1.1,

we need to show that the family {C(t)}0≤t≤ε is invariant under the ordinary
differential equation

d
dtRabcd = 2(Babcd −Babdc +Bacbd −Badbc) (2.4)

for suitable constants ε,D1,D2, E1, E2 depending on n and κ.
First notice that the curvature bounds for g0 give a bound D2 on the

norm of R. Clearly we can find a constant E2 > 0 and an ε1 > 0 such
that the family of curvature tensors satisfying (2.3) is invariant under the
ordinary differential equation (2.4). The solution of the Ricci flow exists
as long as the curvature tensor stays bounded. Combining with the maxi-
mum principle we deduce that there exists solution of the Ricci flow on the
interval [0, ε1] and that its curvature tensor satisfies (2.3).

Next, observe that at time t = 0 the constraint equation (2.2) is fulfilled
with D1 = 1 since the metric g0 has nonnegative sectional curvature. This
is seen as follows: The symmetric bilinear form Rx,·,x,· has nonnegative
eigenvalues 0 ≤ λ2

1, . . . , λ
2
n corresponding to eigenvectors e1, . . . , en of norm

one. Let v =
∑n

i=1 vi · ei and w =
∑n

j=1wj · ej . Then

(Rxvxw)2 =
( n∑

i=1

viwiλ
2
i

)2

≤
( n∑

i=1

(viλi)2
)
·
( n∑

j=1

(wjλj)2
)

= Rxvxv ·Rxwxw
≤ Ric(v, v) · Ric(w,w) .

Put D1 := 1 and choose constants E2,D2 with D2 + ε1E2 ≤ 2D2. We
claim that for suitable large E1 ≥ 1/ε1 we can set ε := 1/E1 and then the
family C(t)0≤t≤ε is invariant under (2.4). Notice that ε ≤ ε1.
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As seen above the constraint equation (2.3) is invariant by itself. Next,
let R = R(t) be a solution of (2.4) and assume that R(t) ∈ C(t) for some
t ∈ [0, ε]. At a point p we choose an orthonormal basis e1, . . . , en with
Ricab = Ric(ea, eb) = 0 for a 
= b. Since Ricac = kbdRabcd and k′ab = 0, we
deduce from (2.4) and [H1, Lem. 7.4]

d
dt Ricac = 2kbekdfRabcd Ricef =

n∑

b=1

2Rabcb Ricbb .

Thus we get for unit vectors v,w, x ∈Wp:
d
dt

(
(1 + tE1) · Ric(v, v) · Ric(w,w) − (Rvxwx)2

)

= E1 ·
∣∣ Ric(v, v)

∣∣ · ∣∣ Ric(w,w)
∣∣ + 2(1 + tE1)

n∑

a=1

Rvava · Ricaa ·Ric(w,w)

+ 2(1 + tE1)
n∑

a=1

Rwawa · Ricaa ·Ric(v, v) − 2Rvxwx · ∂
∂t Rvxwx

≥ E1 ·
∣∣ Ric(v, v)

∣∣ · ∣∣ Ric(w,w)
∣∣ − 4

n∑

a=1

|Rvava| · Ricaa ·Ric(w,w)

− 4
n∑

a=1

|Rwawa| · Ricaa ·Ric(v, v)−4
√

Ric(v, v)Ric(w,w) · ∣∣ ddt Rvxwx
∣∣ ,

where we used t ≤ 1/E1 and the constraint equation (2.2) for the last
inequality. We will show that this expression is nonnegative. The first
term dominates the second and the third term by (2.2) and (2.3) if we
choose E1 large enough. By (2.4) we get

d
dtRvxwx = 2

n∑

a,b=1

RvaxbRwaxb −RvaxbRxawb

+RvawbRxaxb −RvaxbRxawb . (2.5)

This equation remains valid if we replace e1, . . . , en by another orthonormal
basis. Therefore without loss of generality Rxaxb = 0 for a 
= b. Thus

n∑

a,b=1

RvawbRxaxb =
n∑

a=1

RxaxaRvawa

≤ Ric(x, x) ·
√

(D1 + tE1) · Ric(v, v) · Ric(w,w)

≤ 2nD2 ·
√

Ric(v, v) · Ric(w,w) .

In order to get control on the other three summands in (2.5) it is sufficient
to show that the norm ‖Rw‖ of the tensor Rw,·,·,· is uniformly bounded by



Vol. 17, 2007 RICCI FLOW AND NONNEGATIVE SECTIONAL CURVATURE 675

C
√|Ric(w,w)| for all unit vectors w ∈Wp, where C is independent of E1.

To this end, let x, x̃, u ∈Wp with ‖x‖ = ‖x̃‖ = ‖u‖ = 1. Then, by (2.2) we
know

(Ru,(x+x̃),w,(x+x̃))
2 ≤ 16(D1 + tE1) · Ric(u, u) · Ric(w,w) ,

hence

|Ruxwx̃ +Rux̃wx| ≤ 6
√

1 + tE1 ·
√

Ric(u, u)Ric(w,w)

≤ 12n ·
√
D2 ·

√
Ric(w,w)︸ ︷︷ ︸

:=cw

. (2.6)

By the first Bianchi identity

0 = Ruxwx̃ +Rux̃xw +Ruwx̃x

= −Rux̃wx −Rux̃wx −Rx̃xwu + ru,w

= −3Rux̃wx + ru,w + rx̃,w

with |rx̃,w| ≤ cw and |ru,w| ≤ cw. Therefore we can find a constant C which
only depends on D2 and n with ‖Rw‖ ≤ C

√|Ric(w,w)|.
The first constraint equation Ric ≥ 0 is obviously fulfilled at time t = 0.

To conclude that nonnegative Ricci curvature is preserved as well, for solu-
tions which fulfill (2.2), we argue as follows. Because of (2.2) at each time
t the Ricci curvature is either nonnegative or nonpositive. Thus if the Ricci
curvature would change sign at some time t0 > 0, then we would conclude
Ric(t0) = 0 and, by equation (2.2), R(t0) = 0. Using that R(t) is a solution
of the ordinary differential equation (2.4) we see R(t) = 0 for all t.

We conclude that the family C(t)0≤t≤ε is invariant under the ordinary
differential equation (2.4). By Hamilton’s maximum principle the same is
true for the solution gt of the Ricci flow, hence Ric(gt) ≥ 0 for all t ∈ [0, ε]. �

One may ask whether the curvature conditions described by (2.1), (2.2),
(2.3) are themselves invariant under the Ricci flow. The example described
in Theorem C shows that in dimension n = 12 and higher this is not the
case.

Proof of Theorem A. To establish Theorem A we have to show that the
Ricci tensor becomes positive definite if we assume in addition that M has
finite fundamental group. From the evolution equation

∂
∂t Ricaa = (∆ Ric)aa + 2Rabad · Ricbd

for the Ricci curvature and from the above constraint equations, which are
fulfilled by the solution gt of the Ricci flow with initial metric g0, we deduce
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the existence of a constant H > 0 such that the modified Ricci tensor

R̃ic(t) := etH · Ric(g(t))

satisfies the inequality
∂
∂t R̃icaa ≥ (∆R̃ic)aa (2.7)

for t ∈ [0, ε].
Below, we will show that the rank of R̃ic is constant on the interval (0, ε].

If R̃ic has maximal rank then we are done. Thus, let v denote a smooth
vector field on M , depending smoothly on t ∈ I, with R̃ic(v, v) = 0. Since
R̃ic ≥ 0, we deduce from (2.7)

0 =
(
∂
∂t R̃ic

)
(v, v) ≥ 2

n∑

a=1

R̃ic(∇av,∇av) .

This shows that the kernel of the Ricci tensor Ric(g(t)) is invariant under
parallel transport. Consequently, the Riemannian metrics g(t) are Rieman-
nian product metrics with one flat factor, a contradiction to the assumption
that Mn has finite fundamental group.

It remains to show that the modified Ricci tensor R̃ic(g(t)) has constant
rank for t > 0. Let 0 ≤ µ1 ≤ · · · ≤ µn denote the eigenvalues of R̃ic(g(t))
and let

σl := µ1 + · · · + µl

= min{tr R̃ic|X | X ⊂ R
n subspace of dimension l} .

Now fix p ∈ M and let (e1(t0), . . . , el(t0)) denote an orthonormal basis
of (Wp, k) such that σl(t0) =

∑l
i=1 R̃ict0(ei(t0), ei(t0)). Then we have

σ′l(t0) := lim inf
t↗t0

σl(t0) − σl(t)
t0 − t

≥ d
dt

∣∣∣
t=t0

l∑

i=1

R̃ict
(
ei(t0), ei(t0)

)

≥
l∑

i=1

(∆R̃ic)t0
(
ei(t0), ei(t0)

)
.

As above we may extend the orthonormal basis (e1(t0), . . . , el(t0)) by radial
parallel transport to a local orthonormal basis. The locally defined function∑l

i=1 R̃ict0(ei(t0), ei(t0)) − σl attains a local minimum at p, hence in the
sense of support functions we obtain

∂
∂t σl ≥ ∆σl .
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From the strong maximum principle for functions it follows that for some
ε > 0 we either have σl ≡ 0 on (0, ε) or σl > 0 on (0, ε]. Observe that the
strong maximum principle for functions satisfying the differential inequality
can be easily deduced from the maximum principle for solutions by showing
that the minimum of the function satisfying inequality growth faster than
the minimum of the function satisfying the equality. Therefore the rank of
R̃ic is constant on (0, ε]. �

3 Ricci Flow and Positive Curvature

The Ricci flow does not preserve nonnegative sectional curvature on com-
plete Riemannian manifolds with bounded curvature in general. Recently,
Ni [Ni] has described such manifolds for the first time: The tangent bundle
TS

n, n ≥ 2, of the sphere provides a concrete example.
We will describe compact manifolds for which the Ricci flow evolves an

initial metric of positive sectional curvature to metrics with mixed Ricci
curvature. Consequently the Ricci flow does neither preserve positive sec-
tional curvature, nor nonnegative Ricci curvature, nor any condition in
between on compact Riemannian manifolds.

Theorem 3.1. On the flag manifold Sp(3)/Sp(1)Sp(1)Sp(1) the Ricci
flow evolves certain positively curved metrics into metrics with mixed Ricci
curvature.

Proof. Let G/H = Sp(3)/Sp(1)Sp(1)Sp(1). We consider the symplectic
group G = Sp(3) as a subgroup of Gl(3,H). On the Lie algebra g = sp(3)
of G = Sp(3) we consider the Ad(G)-invariant scalar product

Q(V,W ) = −1
2Re tr(V ·W ) .

The orthogonal complement m of the Lie subalgebra h = sp(1)⊕sp(1)⊕sp(1)
of g can be decomposed into three irreducible (and pairwise inequivalent)
Ad(H)-invariant subspaces:

m = m1 ⊕ m2 ⊕ m3 .

We have sp(2)i ⊕ sp(1)i = h ⊕ mi, where sp(2)i ⊕ sp(1)i denotes the Lie
algebra of one of the three intermediate subgroups H � K1,K2,K3 � G
which are all isomorphic to Sp(2) × Sp(1).

It follows from Schur’s lemma, that every Ad(H)-invariant scalar pro-
duct on m can be described by

g = x1 ·Q|m1 ⊥ x2 ·Q|m2 ⊥ x3 ·Q|m3



678 C. BÖHM AND B. WILKING GAFA

where x1, x2, x3 > 0. As a consequence, the space of G-invariant met-
rics on G/H is 3-dimensional, parameterized by the positive real numbers
(x1, x2, x3). By the same reasoning we have

Ric(g) = (x1 · r11) ·Q|m1 ⊥ (x2 · r22) ·Q|m2 ⊥ (x3 · r33) ·Q|m3

for r11, r22, r33 ∈ R.
In order to compute the Ricci tensor of a G-invariant metric on G/H

we apply the following formula (cf. [WaZ], [PS]):

rii =
bi
2xi

− 1
4di

∑

j,k

[ijk]
2x2

k − x2
i

xixjxk
.

In this formula, for each i, −B|mi = biQ|mi , where B denotes the Killing
form of G, and di = dim mi; the triple [ijk] =

∑
Q([Xα,Xβ ],Xγ)2 is

summed over {Xα}, {Xβ}, and {Xγ}, Q-orthonormal bases for mi, mj ,
and mk, respectively. Notice that [ijk] is totally symmetric in i, j, k.

In our case we have d1 = d2 = d3 = 4, b1 = b2 = b3 = 32, [123] = 16
and all other structure constants vanish. We conclude

r11 = 2 ·
(

8
x1

+
x1

x2x3
− x2

x1x3
− x3

x1x2

)
,

r22 = 2 ·
(

8
x2

+
x2

x1x3
− x3

x1x2
− x1

x2x3

)
,

r33 = 2 ·
(

8
x3

+
x3

x1x2
− x1

x2x3
− x2

x1x3

)
.

Hence, the scalar curvature scal(g) of g is given by

scal(g) = 8 ·
(

8
x1

+
8
x2

+
8
x3

− x1

x2x3
− x2

x1x3
− x3

x1x2

)
.

As a consequence, the normalized Ricci flow ∂
∂tgt=−2Ric(gt)+ 2

n · scal(gt)·gt
for homogeneous initial metrics is given by

x′1 =
8
3
·
(
−8 − 2 · x2

1

x2x3
+

(
x2

x3
+
x3

x2

)
+ 4 ·

(
x1

x2
+
x1

x3

))

x′2 =
8
3
·
(
−8 − 2 · x2

2

x1x3
+

(
x1

x3
+
x3

x1

)
+ 4 ·

(
x2

x1
+
x2

x3

))

x′3 =
8
3
·
(
−8 − 2 · x2

3

x1x2
+

(
x1

x2
+
x2

x1

)
+ 4 ·

(
x3

x1
+
x3

x2

))
.

Since the normalized Ricci flow keeps the volume constant we may assume

x1x2 ≡ 1
x3
.
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Plugging x3 into the first two equations and rescaling the vector field by
the factor 3/8 we get

x′1 = −8 − 2 · x3
1 +

(
x1x

2
2 +

1
x1x2

2

)
+ 4 ·

(
x1

x2
+ x2

1x2

)

x′2 = −8 − 2 · x3
2 +

(
x2

1x2 +
1

x2
1x2

)
+ 4 ·

(
x2

x1
+ x2

2x1

)
.

Notice the symmetry of both these equation with respect to exchanging x1

with x2. Based on this observation we introduce the new coordinates

ϕ = x1 + x2 and ψ = x1 − x2 .

A computation shows that the above system is equivalent to

ϕ′ = −16 +
3
4
· ϕ3 − 11

4
· ϕψ2 + 16 · ϕ

(ϕ2 − ψ2)2
+ 8 · ϕ

2 + ψ2

ϕ2 − ψ2

ψ′ = ψ ·
(
−3

4
· ϕ2 − 5

4
· ψ2 + 16 · ϕ

ϕ2 − ψ2
+ 16 · 1

(ϕ2 − ψ2)2

)
.

The set {ψ ≡ 0} is invariant under the above ordinary differential equation.
We are interested in initial values (ϕ(0), ψ(0)) with ϕ(0) = N very large

(but fixed) and ψ(0) < 0 with |ψ(0)| very small to be fixed later on. The
above system shows clearly that for such initial values we have ϕ′ > 1 and
ψ′ > 0. That is, the ϕ-axis is (asymptotically) a local attractor. We change
the parameterization of solutions again and consider the system

ϕ′ = 1

ψ′ = ψ ·
−3

4 · ϕ2 − 5
4 · ψ2 + 16 · ϕ

ϕ2−ψ2 + 16 · 1
(ϕ2−ψ2)2

−16 + 3
4 · ϕ3 − 11

4 · ϕψ2 + 16 · ϕ
(ϕ2−ψ2)2 + 8 · ϕ2+ψ2

ϕ2−ψ2

.

In these new coordinates the Ricci curvature r11 can be written as follows:

r11 = 2 ·
(

8
x1

+ x2
1 − x2

2 −
1

x2
1x

2
2

)
= 2 ·

(
16
ϕ−ψ + ϕ · ψ− 16

(ϕ2−ψ2)2

)
. (3.1)

In order to conclude that r11 turns negative for large t, we will show that
ψ does not converge to fast to zero. We have

ϕ(t) = N + t
and

ψ′ ≤ −η · ψ · 1
ϕ (3.2)

where the second inequality holds with η > 1 for all large t. In particular,
we may assume η < 2. Since ψ(t) < 0 for all t ≥ 0 we conclude

ψ(t) ≤ −ψ(0) · ϕ(0)η

ϕ(t)η
.
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It follows
lim

t→+∞ψ(t) · ϕ2(t) = −∞ ,

which in view of (3.1) shows that r11 is negative for large t.
Now it is well known that any metric with x1 = x2 > x3 has positive

sectional curvature [W]. By continuity we can find positively curved metrics
with x1 + x2 = N = ϕ(0) and x1 − x2 = ψ(0) < 0 as small as we like. �

Let us mention that the above local analysis cannot be applied to the
complex flag manifold SU(3)/T 2. For this homogeneous space the structure
constants are different, so that in (3.2) the best possible η must be bigger
than two. An even more careful computation shows that in this case almost
submersion metrics do not develop mixed Ricci curvature. Notice however,
this does not exclude the above theorem to be true in this case, too.

Remark 3.2. (a) It is not hard to show that one can find initial metrics
of positive sectional curvature which are arbitrarily close to the normal ho-
mogeneous Einstein metric (1, 1, 1) and which evolve mixed Ricci curvature
under the Ricci flow.

(b) Using similar methods as above one can show that on SU(3)/T 2 the
Ricci flow does not preserve positive sectional curvature. In this case we
consider submersion metrics with slightly blown up fibers S

2. Again, the
corresponding curve of unit volume homogeneous metrics is a solution to the
normalized Ricci flow. It starts at the normal homogeneous Einstein metric
and approaches the homogeneous Kähler Einstein metric on SU(3)/T 2,
which does not have nonnegative sectional curvature but positive Ricci
curvature of course. More generally, on U(3p)/U(p)U(p)U(p), p ≥ 1, and
also on real flag manifolds SO(3p)/SO(p)SO(p)SO(p), p ≥ 3, the Ricci
flow does not preserve nonnegative sectional curvature.
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