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Abstract We prove that an effective action of a torus T on a homotopy CP m is
linear if m < 4 · rk(T ) − 1. Examples show that the bound is optimal. Combining
this with a theorem of Hattori we conclude that the total Pontrjagin class of such a
manifold is given by the usual formula (1 + x2)m+1.

1 Introduction

In this paper we study torus actions of large rank on homotopy complex projective
spaces. Let T be a torus and let M be a homotopy CP m with smooth T -action.
We fix a generator x ∈ H 2(M; Z) and denote by γ a T -equivariant complex line
bundle over M with first Chern class equal to x.

By restricting the tangent bundle T M and the line bundle γ to T -fixed points
one obtains a set of T -representations. The action is called linear if for some linear
T -action on C

m+1 the induced action on the canonical line bundle over CP m gives
the same representations (see Section 2 for a precise definition).

In [6,8] Petrie constructed examples of S1-actions on homotopy CP 4r−1’s
which are not linear. These “exotic actions” extend to effective actions by a torus
of rank r . The linear actions and Petrie’s exotic actions are the only known actions
on homotopy complex projective spaces. In this paper we show

Theorem 1.1. Let M be a homotopy CP m with smooth effective action by a torus
T of rank r . If m < 4r − 1 then the T -action is linear.

Petrie conjectured that the total Pontrjagin class of a homotopy CP m is standard
(i.e. of the form (1 + x2)m+1) if the manifold admits a smooth effective S1-action.

� The second named author is anAlfred P. Sloan Research Fellow and was partly supported
by an NSF grant.
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He proved his conjecture for S1-actions which extend to smooth effective actions
by a torus of rank m [7]. Hattori has shown that the conjecture is true for linear
S1-actions [2]. Combining his result with Theorem 1.1 gives

Corollary 1.2. Let M be a homotopy CP m which admits a smooth effective action
by a torus T of rank r . If m < 4r − 1 then the total Pontrjagin class of M is
standard. ��
It follows from simply-connected surgery theory that for fixed m ≥ 3 the set of
diffeomorphism classes of homotopy CP m’s is infinite and partitioned into finite
subsets by their total Pontrjagin class. Hence, Corollary 1.2 implies

Corollary 1.3. For m < 4r − 1, m �= 2, the class of homotopy CP m’s which
admit a smooth effective action by a torus T of rank r contains only finitely many
diffeomorphism types. ��
Remark 1.4. a) It is known that a compact manifold M which is homotopically

equivalent to CP m has a standard Pontrjagin class if and only if M is tan-
gentially homotopically equivalent to M , i.e., there is a homotopy equivalence
h : M → CP m such that the pull back bundle h∗T CP m is stabily isomorphic
to the tangent bundle T M . This in turn is equivalent to saying that for some
k > 0 the manifolds M × R

k and CP m × R
k are diffeomorphic.

b) The paper was partly motivated by [11], where it is shown that a simply con-
nected positively curved n–dimensional (n �= 7) Riemannian manifold (Mn, g)

that supports an isometric effective action of a r-dimensional torus with r ≥
n
4 + 1 is homeomorphic to S

n or HP n/4 or homotopically equivalent to CP n/2.
By Corollary 1.2 the conclusion can be improved to tangentially homotopically
equivalent.

The idea for this paper was developed during a stay of the authors at the University
of Pennsylvania. The first named author would like to thank Wolfgang Ziller and
the University of Pennsylvania for hospitality. The second named author would like
to thank Igor Belegradek for pointing out Remark 1.4 a).

2 Basic properties

In this section we recall basic properties of torus actions on integral cohomology
CP m’s. These are used in the next section to prove a slightly more general version
of Theorem 1.1. As a general reference we recommend [6,1,4].

Recall that a smooth closed manifold M is an integral cohomology CP m if
H ∗(M; Z) = Z[x]/(xm+1), where x has degree 2. Any homotopy CP m is an
integral cohomology CP m. The converse is true for simply-connected manifolds.

Assume a torus T acts smoothly on M . Let γ → M be a complex line bundle
over M with c1(γ ) = x (the “Hopf bundle”). Hattori and Yoshida have shown
that the T -action lifts to γ and any two lifts differ by a complex one-dimensional
T -representation [3]. We fix a lift.

Let X be a connected component of the fixed point manifold MT and let pt ∈ X.
By restricting γ to pt one obtains a complex one-dimensional T -representation χX,
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the Hopf representation at X. At the fixed point pt the tangent bundle splits as a
direct sum of the tangent space of X and the normal representation NX which, by
definition, is the normal bundle of X restricted to pt . Since X is a trivial T -space
the isomorphism class of the real representation NX and the isomorphism class of
the complex representation χX are independent of the choice of the point pt in X.
Note also that for two connected components X, Y ⊂ MT the isomorphism class
of the complex representation χY · χ−1

X is independent of the lift by [3].
It will be convenient to use the following notation: Let W1, W2 be two

T -representations (real or complex) and T̃ ⊂ T .

• W1 ∼=R W2 if W1 and W2 are isomorphic as real T -representations.
• W1 ∼=C W2 if W1 and W2 are complex representations which are isomorphic

as complex T -representations.
• W1 ∼=(T̃ ,R) W2 (resp. W1 ∼=(T̃ ,C) W2) if W1 and W2 are isomorphic as real

(resp. complex) T̃ -representations.

The localization theorem for cohomology or K-theory leads to strong relations
between M and MT (cf. [6]; [1], Ch. VII; [4], Ch. VI).

Proposition 2.1. Let M be an integral cohomology CP m with smooth T -action.
Then the following holds:

1. The restriction of x ∈ H 2(M; Z) to a connected component X ⊂ MT generates
H ∗(X; Z). In particular, X is an integral cohomology complex projective space.

2. dimC M + 1 = ∑

X⊂MT (dimC X + 1).
3. Two connected components X, Y ⊂ MT are equal if and only if χX

∼=C χY .
4. The normal representation NX, X ⊂ MT , admits a T -equivariant complex

structure such that

det NX
∼=C det




⊕

Y⊂MT ,Y �=X

(dimC Y + 1) · χY · χ−1
X



 .

��
Here dimC denotes half of the dimension. If M is the complex projective space
CP m and the action is induced by a linear T -action on C

m+1 then the normal
representation NX at X ⊂ MT is isomorphic to the direct sum of the representations
(dimC Y+1)·χY ·χ−1

X , where the sum runs over the connected components Y ⊂ MT

different from X. For an integral cohomology CP m we make the

Definition 2.2. The T -action is linear if for every X ⊂ MT

NX
∼=R

⊕

Y⊂MT ,Y �=X

(dimC Y + 1) · χY · χ−1
X . (1)

Remarks 2.3. 1. If (1) holds then the tangential representations TptM , pt ∈ X ⊂
MT , and the Hopf representations χX are isomorphic to the ones for a T -action
on the canonical line bundle over CP m induced by a linear action on C

m+1.
2. A smooth S1-action on an integral cohomology projective space M is linear if

MS1
has less than 4 connected components [9,10,12].
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3. A smooth torus action on an integral cohomology projective space M is linear
if dimC M < 3 (to see this apply the last remark and Proposition 2.1, Part 2, to
a suitable S1-subgroup).

Next we extend the notion of linearity to certain normal subspaces. Let T̃ be a sub-
torus of T , Ṽ := (NX)T̃ and F̃ the connected component of MT̃ which contains
X.

Definition 2.4. The T -action is linear on Ṽ if

Ṽ ∼=R

⊕

Y⊂F̃ T ,Y �=X

(dimC Y + 1) · χY · χ−1
X . (2)

Note that T acts linearly on M if and only if T acts linearly on NX for every
connected component X ⊂ MT .

We shall be interested in the case where T̃ is the identity component of the
kernel of an irreducible T -subrepresentation R̃ ⊂ NX (i.e. T̃ is the maximal sub-
torus of T acting trivially on R̃). Let T1, . . . , Tk denote the different subtori arising
in this way and let Vj := (NX)Tj . Note that NX is the direct sum of the Vj and
that two irreducible representations R, R̃ belong to the same Vj if and only if their
kernels have the same identity components. The next lemma shows that linearity
can be detected locally.

Lemma 2.5. The T -action on M is linear if and only if the T -action is linear on
Vj ⊂ NX for all X and all Vj .

Proof. Assume theT -action onM is linear. By restricting to trivialTj -representations
in (1) one obtains

Vj
∼=R

⊕

Y⊂MT ,Y �=X,χY
∼=(Tj ,C)χX

(dimC Y + 1) · χY · χ−1
X .

Let Fj denote the connected component of MTj which contains X. By Proposition
2.1 χY

∼=(Tj ,C) χX if and only if Y ⊂ Fj . Hence, T acts linearly on Vj .
Next assume that for all X and all Vj ⊂ NX the T -action is linear on Vj , i.e.

Vj
∼=R

⊕

Y⊂FT
j ,Y �=X

(dimC Y + 1) · χY · χ−1
X . (3)

To show that the T -action on M is linear it suffices to show that T acts linearly on
NX. Consider a connected component Y ⊂ MT with X �= Y . By Proposition 2.1
the representation χY · χ−1

X is nontrivial and hence the identity component of the
kernel is a codimension one subtorus T̃ . Again by Proposition 2.1 X and Y are
contained in the same component F̃ of MT̃ . This proves T̃ = Tj and F̃ = Fj

for j suitable. Conversely if Y ⊂ Fj , then Tj is necessarily given by the identity
component of the kernel of χY · χ−1

X . In summary we can say that Y belongs to
precisely one Fj . Also NX = ⊕

j Vj . By summing up (3) it follows that T acts
linearly on NX. ��
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3 Proof of Theorem 1.1

In this section we prove Theorem 1.1 for integral cohomology CP m’s by induction
on the rank of the action. In the induction step we will use the fact that a T -action
is linear if some S1-subgroup acts with low codimension.

Proposition 3.1. Let M be an integral cohomology CP m with smooth effective
T -action. The T -action is linear if one of the following holds:

1. codimC MS1
< 3 for some S1 ⊂ T .

2. codimC MS1 = 3 for some S1 ⊂ T and dimC M �= 3.

Proof. For the S1-subgroup itself linearity follows from work of Masuda,
Tsukada-Washiyama, Wang, Yoshida and others: If MS1

has at most 3 connected
components then the S1-action is linear [9,10,12]. By Proposition 2.1 this is the
case if codimC MS1

< 3. If MS1
has more than 3 connected components and

if codimC MS1 = 3 then the number of connected components is 4 by Propo-
sition 2.1. Masuda has shown that an S1-action with 4 fixed point components
is linear if the components don’t have the same dimension (cf. [5], Lemma 5.4).
Since dimC M �= 3 the fixed point component of complex codimension 3 has posi-
tive dimension. The other components are isolated fixed points by Proposition 2.1.
Hence, T acts linearly by [5]. This completes the proof in the case that the rank of
T is one.

So assume the rank of T is ≥ 2. Let S1 ⊂ T be as in the proposition and
let MS1

0 ⊂ MS1
be a component of minimal codimension. By the above S1 acts

linearly on M . To show linearity for T it suffices to show that the T -action is linear
on Vj ⊂ NX for all X ⊂ MT and all Vj by Lemma 2.5.

We claim that T acts linearly on Vj if S1 acts non-trivially on Vj or if X �⊂ MS1

0 .
Assume first that S1 acts non-trivially on Vj . In particular, T is generated by Tj and
S1. Since S1 acts linearly on M the S1-action is linear on Vj by Lemma 2.5. Since
Tj acts trivially on Fj (notation as in the proof of Lemma 2.5) it follows that T acts

linearly on Vj . Next assume Vj ⊂ NX and X �⊂ MS1

0 . By the previous case we may
assume that S1 acts trivially on Vj and hence by Proposition 2.1 dimC Fj ≤ 2. The
claim now follows from Remark 2.3.

Next consider the representations Vl ⊂ NX, where X is a component of MS1

0 ∩
MT . By the above claim we may assume that Vl is tangential to the fixed point
component MS1

0 . Fix a connected component X0 of MT which is not contained

in MS1

0 , and fix the T -action on the Hopf bundle γ for which χX0 is a trivial
T -representation.

Let Tj ⊂ T be the identity component of the kernel of χX and let Vj := N
Tj

X .
Since Fj contains X (by definition) and X0 (apply Proposition 2.1, Part 3, to Tj )
S1 acts non-trivially on Fj . Let νFj

denote the normal bundle of Fj ⊂ M . By

construction Vl ⊂ νFj
. To understand the T -action on Vl ⊂ NS1

X = (νFj |pt
)S

1
we

will compare νFj |pt
with νFj |q0

, q0 ∈ X0, and use the established linearity at X0.
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Note that νFj |pt
∼=(Tj ,R) νFj |q0

∼=R NX0 � N
Tj

X0
. Since T acts linearly on NX0

NX0
∼=R

⊕

Y⊂MT ,Y �=X0

(dimC Y+1)·χY ·χ−1
X0

∼=(Tj ,C)

⊕

Y⊂MT ,Y �=X0

(dimC Y+1)·χY ·χ−1
X .

By Proposition 2.1, Part 3, χY · χ−1
X is a trivial Tj -representation if and only if

Y ⊂ Fj . Hence,

νFj |pt
∼=(Tj ,R) NX0 � N

Tj

X0
∼=(Tj ,R)

⊕

Y⊂MT ,Y �⊂Fj

(dimC Y + 1) · χY · χ−1
X . (4)

Recall that T acts linearly on all subrepresentations Vi of νFj |pt
�(νFj |pt

)S
1
. Hence,

νFj |pt
� (νFj |pt

)S
1 ∼=R

⊕

Y⊂FT
i , i �=j, Y �=X, (Vi)

S1 �=Vi

(dimC Y + 1) · χY · χ−1
X . (5)

Note that {Y ⊂ FT
i | Y �= X, Vi ⊂ (νFj |pt

)S
1} ⊂ {Y ⊂ MT | Y �⊂ Fj } is the

complement of the index set of the direct sum in (5). Thus (4) and (5) imply

(νFj |pt
)S

1 ∼=(Tj ,R)

⊕

Y⊂FT
i ,Y �=X, Vi⊂(νFj |pt

)S
1

(dimC Y + 1) · χY · χ−1
X .

Since χY · χ−1
X is a trivial S1-representation for Y ⊂ FT

i , Vi ⊂ (νFj |pt
)S

1
, the

isomorphism extends to an isomorphism of T -representations

(νFj |pt
)S

1 ∼=R

⊕

Y⊂FT
i ,Y �=X, Vi⊂(νFj |pt

)S
1

(dimC Y + 1) · χY · χ−1
X . (6)

By restricting to the trivial Tl-subrepresentations (for fixed l �= j ) on both sides of
(6) it follows that T acts linearly on any Vl ⊂ (νFj |pt

)S
1 = NS1

X . This completes
the proof of the proposition. ��
Theorem 3.2. Let M be an integral cohomology CP m with effective smooth action
by a torus T of rank r . If m < 4r − 1 then the T -action is linear.

Proof. We prove the statement for almost effective actions (i.e. actions with finite
kernel) by induction on the rank of the action. If r = 1 then dimC M ≤ 2 and the
T -action is linear as pointed out before. So assume r ≥ 2.

Let X be a connected component of MT . By Lemma 2.5 it suffices to show that
T acts linearly on every Vi ⊂ NX.

For fixed Vi ⊂ NX let Vmax be a maximal element (with respect to inclusion)
of the set of representations

{V ⊂ NX | Vi ⊂ V, V S1 = V for some subgroup S1 ⊂ T }
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and let S1 denote the subtorus of T which acts trivially on Vmax . Since Vmax is
maximal a complementary subtorus T̃ ⊂ T of rank r − 1 acts almost effectively
on Vmax .

Let MS1

0 denote the connected component of MS1
which contains X. By Prop-

osition 2.1 MS1

0 is an integral cohomology complex projective space. Note that T̃

acts almost effectively on MS1

0 .

If dimC MS1

0 < 4r −5 then T̃ acts linearly on MS1

0 by the induction hypothesis.
In this case T̃ acts linearly on Vi which implies the same for the T -action on Vi .
If codimCMS1

0 < 3 then T acts linearly on M by Proposition 3.1. The remaining

case (dimC M = 4r − 2 �= 3 and codimCMS1

0 = 3) also follows from Proposition
3.1. ��
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