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Abstract We will characterize the fundamental groups of compact manifolds of (almost) nonnegative Ricci
curvature and also the fundamental groups of manifolds that admit bounded curvature collapses to manifolds
of nonnegative sectional curvature. Actually it turns out that the known necessary conditions on these groups
are sufficient as well. Furthermore, we reduce the Milnor problem—are the fundamental groups of open
manifolds of nonnegative Ricci curvature finitely generated?—to manifolds with abelian fundamental groups.
Moreover, we prove for each positive integethat there are only finitely many non-cyclic, finite, simple
groups acting effectively on some completenanifold of nonnegative Ricci curvature. Finally, sharping a
result of Cheeger and Gromoll [6], we show for a compact Riemannian maribldjy) of nonnegative

Ricci curvature that there is a continuous family of mettigs), » € [0, 1] such that the universal covering
spaces ofM, g) are mutually isometric aneM, g1) is finitely covered by a Riemannian produdtx T9,
whereT¢ is a torus andN is simply connected.

Keywords Fundamental groups, nonnegative curvature, groups of polynomial growth.
MS classification53C20, 57S30.

1. Introduction

The paper is divided in six sections. In the beginning of each of the following sections we state
its main results which can be understood independently from each other. The corresponding
proofs can be found at the end of each section. In Section 2 we give algebraic characterizations
of the fundamental groups of several classes of Riemannian manifolds. At first, we consider
compact manifolds of nonnegative Ricci curvature. Using the fact that the fundamental group
of such a manifold acts cocompactly as the deck transformation group on the universal covering
spaceM of M, Cheeger and Gromoll [5] have shown thdtis compact, unless it contains
a line. Combining this observation with their deep splitting theorem they provedvthiat
isometric to a Riemannian produkf x K whereK is a compact manifold. As a consequence
they deduced that, (M) acts discontinuously and cocompactly®$y and therefore it contains
a finite normal subgroup such thatr, (M) /E is isomorphic to a crystallographic group, i.e., to
a discrete, cocompact subgroupRsf x O (d) (d = 0 is allowed).

It is natural to ask whether conversely all abstract groups satisfying this condition occur as
fundamental groups of compact manifolds of nonnegative Ricci curvature. In Theorem 2.1 we
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give a positive answer to this question. Actually we prove the stronger result that these groups
occur as fundamental groups of compact manifolds of nonnegative sectional curvature.

The fundamental group of amdimensional, complete manifoll of nonnegative Ricci
curvature was first investigated by Milnor [14]. He used the polynomial volume growth of the
universal covering space & to show that any finitely generated subgrouprpfM) has poly-
nomial growth of ordek n. Gromov [9] has given an algebraic characterization of the growth
condition: A finitely generated group has polynomial growth if and only if it contains a nilpotent
subgroup of finite index. We shall briefly say that such a group is nilpotent up to finite index.

There are two more classes of Riemannian manifolds for which the corresponding funda-
mental groups are nilpotent up to finite index: Fukaya and Yamaguchi [8] have shown that
for any positive integen there exists a constantn) > 0 such that the fundamental group
of any n-dimensional Riemannian manifoll with sectional curvature bounded below by
— g(n)/diam(M)? is nilpotent up to finite index. Recently Cheeger and Colding [3] proved the
Gromov conjecture which is the Ricci version of Fukaya’s and Yamaguchi’s theorem: For any
there is a constadtn) > 0 such that the fundamental group of angimensional Riemannian
manifold M with Ricci curvature bounded below by&(n)/diam(M)? is nilpotent up to finite
index.

A compacti-dimensional manifoldM is said to have almost nonnegative sectional curvature
(resp. Ricci curvature) if its sectional curvature (resp. Ricci curvature) is bounded below by
— g(n)/diam(M)? (resp.— &(n)/diam(M)?).

Again one can ask whether any finitely generated group that is nilpotent up to finite index
occurs as a fundamental group in each of the considered classes. We give a positive answer to
this question in Theorem 2.3.

For the class of complete manifolds of nonnegative Ricci curvature a partial answer was
already known before, and this result also plays a crucial role in the proof of Theorem 2.3:
For a nilpotent Lie groupl Wei [21] constructed a complete metric of positive Ricci curvature
on M = RP x N, wherep is a sufficiently large integer, in such a way that the natural action
of N on M is still isometric. Since, according to Malcev, any finitely generated, torsion free,
nilpotent group can be realized as a lattice in a connected, simply connected, nilpotent Lie
group, she obtained as a corollary that any finitely generated, torsion free, nilpotent group is
the fundamental group of some complete manifold of positive Ricci curvature.

The concept of a finitely generated, nilpotent group has a natural generalization, the concept
of a polycyclic group, see Section 2 for the definition. Professor E. Heintze posed the question
whether there is a class of manifolds for which the corresponding fundamental groups are
precisely the groups that are polycyclic up to finite index. In Theorem 2.4 we give a positive
answer to this question. One of the two classes we consider consists of compact manifolds that
admit bounded curvature collapses to manifolds of nonnegative sectional curvature. The most
difficult implication of Theorem 2.4 is actually an immediate consequence of the fiber bundle
theorem of Fukaya and Yamaguchi [8].

In the Theorems 2.1, 2.3 and 2.4 we give the two equivalent algebraic conditions c) and d).
Briefly stated this equivalence means that a finitely generated group is abelian (nilpotent,
polycyclic) up to finite index if and only if modulo a finite subgroup it is isomorphic to a crystal-
lographic (almost crystallographic, polycrystallographic) group. Recall that an almost crystallo-
graphic (polycrystallographic) group is a discrete, cocompact subgroup of a semidirect product
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N x K, whereN is a connected, simply connected, nilpotent (solvable) Lie groupkaisda
compact subgroup of its automorphism group. In the nilpotent case the most striking part of this
equivalence, the implication d= c¢), is due to Lee [13]. The equivalence in the polycyclic case

is actually an immediate consequence of [23], where several equivalent characterizations of
polycrystallographic groups are given. In the proofs of the three theorems the equivalence of the
conditions c) and d) is crucial to realize these groups as fundamental groups in the considered
classes.

In Section 3 we will use the equivalence of the conditions ¢) and d) of Theorem 2.3 to
generalize Gromov's polynomial growth Theorem to some extent to non-finitely generated
groups. In particular, Theorem 3.1 provides an algebraic characterization of groups for which
any finitely generated subgroup has polynomial growth of order. As a corollary of this
theorem we prove that such a group is finitely generated if and only if any abelian subgroup
is finitely generated. This result is intended to reduce one of the major open problems in the
structure theory of nhoncompact, complete manifolds of nonnegative Ricci curvature: Is the
fundamental group of such a manifold finitely generated? Since any subgroup of a fundamental
group is the fundamental group of some covering space, Corollary 3.2 reduces the original
problem to manifolds with abelian fundamental groups. In Section 3 we also give an example
of a complete Riemannian manifoM whose fundamental group is isomorphicQ@¢Z; M is
obtained by a surgery construction from a sequence of homogeneous spaces, but actually it is
hard to tell whetheM admits a complete metric of nonnegative Ricci curvature.

Notice that Theorem 2.3 does not answer the question which of the groups that match the
algebraic characterization occur as fundamental groups in the corresponding class of manifolds
in a fixed dimension. For the class of compact manifolds of almost nonnegative sectional
curvature Fukaya and Yamaguchi [8] have shown that in each dimengi@re is a constant
C, such that the fundamental group of a manifold in this class has a solvable normal subgroup
of index at mostC,,. In Section 4 we will prove a weaker result for the class of complete
manifolds of nonnegative Ricci curvature (Theorem 4.1): In each dimendioere is a finite
collection of finite simple groups such that any finitely generated fundamental grdwgs a
finite subnormal seriefe} = Ny C --- C N, = II with factor groupsn;_;/N; being either
cyclic or isomorphic to a group of the finite collection. Beyond the fact that we apply strong
theorems the proof of Theorem 4.1 is surprisingly easy.

In Section 5 we establish an estimate for the index of the nilradical in an almost crystallo-
graphic group. It is a well-known fact that the torsion free almost crystallographic groups are
precisely the fundamental groups of Gromov’s almost flat manifolds. In this context Buser and
Karcher [1] proved for an almost crystallographic grdughat its translational parft* is a
subgroup of index at most-®B2" "D wherer = rank(I'*). We will show (Theorem 5.1) that
the index divides the numbé&2n)! wheren = rank(I'*) — rank([T"*, T'*]).

The estimates of Section 5 are needed in the last section, which deals with a deformation
problem. By Cheeger and Gromoll [6] a compact manifold of nonnegative Ricci curvature is
finitely covered by a manifold which is diffeomorphic to a prodlié x N whereN is simply
connected an@ @ is a torus. To sharpen this result we will study normal Riemannian coverings
0o: R" x N — (M, g,), whereN is a complete Riemannian manifold with a compact isometry
group. Corollary 6.3 states that such a covering can be deformed via a continuous family of
Riemannian coverings :R" x N — (M, g,), A € [0, 1], such tha{M, g,) is finitely covered
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by a Riemannian produd @ x R"¢ x N whereT@ is a flat torus andl € {0, ..., n}.
Moreover, we estimate the number of sheets of the finite covering.

In the case of am-dimensional open flat manifoldM, g,) Corollary 6.3 reduces to the
following generalization of the first Bieberbach theorem (Corollary 6.4): There is a continuous
family (9;); 0,17 Of complete flat g]etrics oM such that the holonomy group oM, g,) is
finite and its order is bounded Y.

2. Algebraic characterizations of fundamental groups
2.1. Basic definitions and statement of results

A crystallographic group of rantt is a discrete, cocompact subgroup of the isometry group
of RY. The trivial group is said to be a crystallographic group of rank 0.

Theorem 2.1. For an abstract groufd] the following statements are equivalent.

a)I1is isomorphic to the fundamental group of a compact manifold of nonnegative sectional
curvature.

b) IT is isomorphic to the fundamental group of a compact manifold of nonnegative Ricci
curvature.

¢) There is a finite groug, a crystallographic groug™ and an exact sequence

1l >E>T2T - (1),

d) There is a finite groufs, an integer d> 0 and an exact sequence

o720 rs (1.

e) IT is isomorphic to a discretecocompact subgroup of a semidirect prodiiét g F,
whereF is a finite group ang: F — GL(d, R) a homomorphism.

The construction actually shows that these groups occur as fundamental groups of compact
locally homogeneous spaces, which are finitely covered by Lie groups. It is therefore tempting

to ask “Which fundamental groups occur in the homogeneous case?” We use the concept of

a homogeneous space in the Riemannian sense. Hence a homogeneous space is a Riemannian
manifold whose isometry group acts transitively.

Theorem 2.2. For an abstract groud] the following statements are equivalent.
a) IT is isomorphic to the fundamental group of a compact homogeneous space.
b) IT is isomorphic to the fundamental group of a homogeneous space.
¢) There is a finite groujg, an integer d> 0 and an exact sequence

M—>e>n2z% - (o).

d) The center of1 contains a subgroup = Z9 of finite index inlT.
e) IT is isomorphic to a discrefeocompact subgroup of a direct prodiRt x F, whereF
is a finite group.
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An almost crystallographic group of radks a discrete, cocompact subgroup of a semidirect
productN x K, whereN is a connected, simply connectelddimensional, nilpotent Lie group,
K is a compact subgroup of the automorphism grouguand whereN x K carries the natural
semidirect product structure. Again the cdse 0 is allowed. As explained in the introduction,
a Riemannian manifold is said to have almost nonnegative sectional (resp. Ricci) curvature if
it satisfies the assumption of the theorem of Fukaya and Yamaguchi [8] (resp. the assumption
of the theorem of Cheeger and Colding [3]).

Theorem 2.3. For a finitely generated groupl the following statements are equivalent.

a) IT is isomorphic to the fundamental group of a complete manifold of positive Ricci
curvature.

b) IT is isomorphic to the fundamental group of a complete manifold of nonnegative Ricci
curvature.

¢) There is a finite groufg, an almost crystallographic group and an exact sequence

1> ES>T3T - (1),
d) There is a finite groujs, a torsion freg nilpotent groupL and an exact sequence
{1} > L—1I - F— {1}.

e) [T is isomorphic to a discreteocompact subgroup of a semidirect prodict ; F, where
N is a connectegsimply connecteadilpotent Lie groupF is a finite group ang: F — Aut(N)
a homomorphism.

f) I is isomorphic to the fundamental group of a compact manifold of almost nonnegative
sectional curvature.

g) I is isomorphic to the fundamental group of a compact manifold of almost nonnegative
Ricci curvature.

The concept of a finitely generated nilpotent group has a natural generalization, the concept of
a polycyclic group. Recall that a groupis called polycyclic if there are subgroups

{e} =N, C---CN = A

such than; is a normal subgroup of; |, and the factor groul, , , /N; is cyclic. IfN; /N, = Z
foralli, thenA is called a strongly polycyclic group.

The concept of an almost crystallographic group has also a natural generalization: A group
I" is called a polycrystallographic group of radkf and only if I' is isomorphic to a discrete
cocompact subgroup of a semidirect prodact K, wheres is ad-dimensional, connected,
simply connected solvable Lie group and whé&rés a compact subgroup of A®). As is
shown in Wilking [23] this is equivalent to saying that there are subgroups

{e}=r,c---cT=r

such thatl’; is a normal subgroup df;_, and the factor group’;_,/I'; is isomorphic to a
crystallographic group. Therefore the notation “polycrystallographic” is rectified. Furthermore
it is easy to see that iQ _t{le above the situation the rarikisfgiven by

rank") = Y " rank(I,/T;).
=1
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Theorem 2.4. LetII be a group. Then the following statements are equivalent.

a) IT is isomorphic to the fundamental group of a compact manifold M satisfyingre is
a sequence of Riemannian metri¢og M such that

(i) The absolute value of the sectional curvaturgMf, g;) is bounded above k.

(i) The sequenceM, g,) converges in the Gromov—Hausdorff sense {passibly lower
dimensiongl compact Riemannian manifold B of nonnegative sectional curvature.

b) IT is isomorphic to the fundamental group of a compact manifold M satisf{ingre
are compact manifolds M= M, M, ..., M, and sequences of Riemannian metriﬁ:slg M;
such that

(i) The sectional curvature ¢M;, gij) is bounded below by 1.

(if) The sequenceM;, g‘j)ieN converges in the Gromov—Hausdorff sensgNg _ ;, g?+1)
forj=0,...,k—1
(i) (M,, db); .y collapses to a single point.
c¢) There is a finite groujg a polycrystallographic group” and an exact sequence

11> E-S>T3T - (1),

d) IT is polycyclic up to finite index.

e) ITis isomorphic to a discreteocompact subgroup of a semidirect prodsct, F, where
S is a connectedsimply connectedolvable Lie groupF is a finite group angs: F — Aut(S)
is a homomorphism.

Remark 2.5. 1. The group (E) C II, occurring in condition c) of each of the four theorems, is
uniquely characterized as the maximal finite normal subgroup. df order to prove this, we

first remark that the product of two finite normal subgroups is again a finite normal subgroup.
ThusTI contains at most one maximal finite normal subgroup. On the other hand, a polycry-
stallographic group does not contain any nontrivial finite normal subgroup, and h&)ds

a maximal finite normal subgroup.

2. The Theorems 2.1 and 2.3 in particular provide an algebraic characterization of (almost)
crystallographic groups due to Dekimpe and Igodt [7]: An abstract finitely generated group
" is isomorphic to an (almost) crystallographic group if and only if it contains an abelian
(resp. nilpotent) subgroup of finite index and it does not contain any nontrivial finite normal
subgroup. The analogue for polycrystallographic groups was proved in [23].

3. There is a different, more common algebraic characterization of (almost) crystallographic
groups given by L. Auslander. A finitely generated grdujs isomorphic to an (almost) cry-
stallographic group if and only If contains an abelian (resp. nilpotent) torsion free normal sub-
groupI™* of finite index, which is maximal among all abelian (resp. nilpotent) subgroupis of

We use the opportunity to correct a mistake which occurs in this context in the literature,
see [2, p. 74]. In Auslander’s characterization of crystallographic groups the conditidrithat
is a normal subgroup is not redundant: ISgtbe the symmetric group of degree 3, and let
h:S; — 7Z/2Z be the unique epimorphism onto the additive gré@j2Z. DefineT" as the
kernel of the homomorphism

Sy X Z— 7Z/2Z, (o, k)= h(o)+ m(K)
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wherer:Z — 7/27 denotes the projection. Clearly,is not abelian bul” contains a cyclic
subgroup™ of index 3 generated by the eleméint 1) wherer is a transposition. Thus* is
a torsion free maximal abelian subgroup of finite index. Neverthelessnot isomorphic to a
crystallographic group.

4. The embeddinfl — Sx zFinTheorem 2.4 e) canbe chosen such thatany automorphism
of IT can be extended uniquely to an automorphisrs ef, F.

The rest of this section is organized as follows: We will prove Theorem 2.1 and Theorem 2.2
in Subsection 2.2 and Subsection 2.3, respectively. For the proofs of the other two theorems
and for later applications we need some elementary lemmas from group theory which we have
placed in Subsection 2.4. Subsection 2.5 and Subsection 2.6 contain the proofs of Theorem 2.3
and Theorem 2.4, respectively.

2.2. Proof of Theorem 2.1

a) = b) is trivial. b) = c¢) is due to Cheeger and Gromoll [6]. The implication® d) is
also due to them, but we do not need it in our proof.

¢) = d) By the first Bieberbach theorem the crystallographic grbugontains a finitely
generated, free abelian normal subgrdtipc T" of finite index (the subgroup of translations).
The preimage~1(I'*) is a normal subgroup of finite index if.

The centralizez of i (E) is the kernel of the homomorphisii — Aut(i (E)) given by
conjugation. Hencél /z is isomorphic to a subgroup of AGI{E)) which is finite because is
finite.

Thereforez is a normal subgroup of finite index, too. The same is trueifee zN p~1(I').
Clearly, the finite grou := i(E) N H is contained in the center &f. The quotientH/D is
isomorphic to the free abelian groyggH) C I'*. Combining these facts we deduce thatdor
b € H the following relations hold:

ba=abz for somez € D,
(ab)" = a"b"zz"(-D foralln e N.

Using the last equation far = 2 - ord(D) we find that the mapp:H — H, a > a" is a
homomorphism. Consequently,,= # (H) is a normal subgroup dfl, and since the kernel of
¥ equalsD, we conclude thaa = H/D = p(H) = I'*. Thusp(A) is of finite index inI". Since
the kernel ofp is finite, it follows thatA is a subgroup of finite index ifl.

d) = e) LetA = j(Z%). Via the natural inclusioiZ ¢ RY we have a homomorphism
Aut(A) = GL(Z%) — GL(RY). So the operation ofl on A given by conjugation induces a
homomaorphism

a: T — GL(Z%) ¢ GL(RY).

We consideiT with the discrete topology arf&® with the standard topology. Then the semidi-
rect product

RY %, M, (v, Q) (w, h) = (a(g)(w)+v, gh)
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with its product topology becomes a Lie group, and
N = {(—v, j(v) |v ez}

is a discrete normal subgroup. The prod{6} x IT) - N = Z9 x, ITis a discrete, cocompact
subgroup ofR? x_ T1. The projection

7R %, T — G := (R® x, T)/N

is a covering map, and the restriction$g,,;; and= |ga, (4, are injective. Therefore maps
IT = ({0} x IT) isomorphically onto a discrete, cocompact subgrou@.d¥loreover,

G/m(RY x {1}) = TI/A =F,

and hence we get an exact sequence

0 >RrRL L EL 1y,

where] andq are characterized by(v) = 7 (v, 1) andq o 7 (0, 9) = q(Q).

By the classical theory of factor systems or by cohomology theory of finite groups such a
sequence splits, i.e., there is a sectio® — G that is a homomorphism, see for example
[2, Chap. I.5]. Such a homomorphism can be constructed by using a set-theoretical section
S.F — G, i.e., a map satisfying o s = id, as follows:

. 1 .
h(a) = s(a)- j ( ord(®) E j‘l(S(a)‘ls(f)‘lS(fa)))
feF

The maph can be viewed as the barycenter of the sect&gnd < F given by

s;(a) =s(f) 's(fa).

It is elementary to show thditis a homomorphism. As a consequer®e isomorphic to the
semidirect producR? x4 F, whereg: F — GL(Z% c GL(RY) is the unique homomorphism
satisfyinga = B8 o q. Explicitly the isomorphism is given by

RYxzF—>G, (v, f)— J()-h(f).

Since this is an isomorphism between Lie groups, we have redlizzsla discrete, cocompact
subgroup ofR? x, F.

€) = a) LetIT be a discrete, cocompact subgroup of a semidirect prdb%&tﬂ F, whereF
is finite andg: F — GL(d, R) is a real representation ef After changing the scalar product
of RY, we may assume that is an orthogonal representation. We define a discontinuous,
isometric action of 1 ¢ R? x4 F onR?

MxRY> R, ((v, f), w)— B(F)(w) +v.

For sufficiently largé there is an injective homomorphisdmF — SU(l). For example, one
can choosé = ord(F), sinceF can be viewed as a subgroup of the symmetric giuphich
embeds into @ — 1) c SU().
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Consider SWd) with a biinvariant metric and define an isometric actionfbbn the Rie-
mannian product SU) x RY by

(v, )T, w) == (h(HT, B(f)(w)+v)

for all (v, f) € IT and (T, w) € SU(I) x RY. This operation is discontinuous, because the
operation on the second factor is discontinuousgrer1 )\ {e} at least one of the corresponding
isometries on the two factors is given by a nontrivial left translation, and accordingly the actionis
free as well. Taking into account that 8Yx RY is a connected, simply connected manifold,
we see thafl is isomorphic to the fundamental group@&U(l) x RY)/T1.

2.3. Proof of Theorem 2.2

The implication a = b) is trivial.

a) = c) Let M be a compact homogeneous space Wit& ;(M). Clearly, we can assume
that M is connected. Then the identity component,($6) of the isometry group oM acts
transitively onM. According to Myers and Steenrod [18], the group,(9d) is a compact
Lie group. Therefore the universal covering grasipf Isg,(M) is a Lie group that admits a
biinvariant metric, and because of tiais isomorphic to a direct produ® x K, wherek is
a compact semisimple Lie group, see [4, Prop. 3.34].

ConsequentlyR¥ x K acts transitively onM. Let H ¢ RX x K be the isotropy group
of some point inM. The manifoldM is diffeomorphic to(R¥ x K)/H and thusr,; (M) =
H/Ho =: m,(H). Consider the projection pr — RX onto the first component and the homo-
morphismz(pr): my(H) — my(pr(H)) induced by pr. Since the kernel of pr is compact, the
kernel ofr,(pr) is finite. The image of pr, a closed cocompact subgroi‘ofs isomorphic to
R x ZX! for somel € {0, ..., k}. For that reason the image sf(pr) is isomorphic taz*"'.

In summary, we can say that (M) = m,(H) contains a finite normal subgro#pwith a
factor groupr, (M) /E isomorphic taZ~', as claimed.

¢) = d) From the implication £ = d) of Theorem 2.1 we deduce that there is a normal
subgroupa = Z9 of finite index inT1. Since the image op is abelian, we have the equation
p(@) = p(gag?) for g € 1, a € A. The restrictionp|, is injective, and henca = gag™* for
g € I, a € A. In other wordsA is contained in the center @f.

d) = e) By the implication d = e) of Theorem 2.1, the groupl is isomorphic to a
discrete, cocompact subgroup of a semidirect prom&’cmﬂ F. The proof of Theorem 2.1
shows that in the present situatifins the trivial homomorphism; in fact, the homomorphism
occurring in the proof is trivial. It follows thak® x4 F is a direct product.

e) = a) For sufficiently largé the grougR? x F can be viewed as a subgroupsf x SU().
Consequentlyil becomes a discrete, cocompact subgroup®k SU(1). ThusIT = 7, (RY x
SU(l)/ ).

b) = & A connected homogeneous space in the Riemannian sense is diffeomorphic to
a guotientG/K, whereG is a connected Lie group andis a compact subgroup. Choose a
maximal compact subgroupof G with K C L. Using thatG/K fibers over the contractible
spaces/L, we see that /K is homotopically equivalent to the fibefK. In particularr, (G/K)
is isomorphic to the fundamental group of the compact homogeneousisfrace
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2.4. Some group theory

Recallthata subgroup c ITis called characteristicifitis invariant under all automorphisms
of IT.

Lemma 2.6. LetII be a finitely generated group.

a) Define for a given positive integer n the groGas the intersection of all subgroups of
IT of index at most n. Thel is a characteristic subgroup of finite indexIih

b) If G C IT is a subgroup of finite indexhenG is finitely generatedoo.

c) LetL c IT be a finitely generated normal subgroup amd L a subgroup of finite index
in L. Then there is a subgrouy C H of finite index that is normal ifl.

Proof. a) LetH be a subgroup of indek < n. Consider the natural action &f on the left
cosets[1/H. This action induces a homomorphidih— S, C S,, whereS, ands, denote
the symmetric groups of degreleandn. The kernel of this homomorphism is containedhin
Consequently, any subgroup of index< n contains a subgroup which is the kernel of some
homomorphismp € Hom(I1, S,)). Sincell is finitely generated and, is finite, it follows that
Hom(I1, S,) is finite. Thus the group

GD ﬂ Ker(p)

peHom(I1,Sp)
is a subgroup of finite index ifl. Evidently,G is a characteristic subgroup bf as well.

b) LetM c TII be a finite set that generatBs By enlargingM if necessary, we may assume
thatM contains an element of each left coseGadh IT and thatM is invariant under inversion.
We claim that then the set

N := {abce G |a, b, ce M}

generates. In fact, forg € G there are elements, ..., a, € M suchthag =a;---a,. In
order to proveg € (N) we argue by induction on. If n = 1, theng itself is contained irN. If
n > 2, we choose an elememe M suchthab-a,_,-a, € G. Thereforeb-a,_;-a, € N and
a, - --a,_,-b™! € G. By theinduction hypothesis we can express the element a, ,-b~!as
a product of elements iN. Of course, the same is valid fgr= (a, - - -a, ,-b 1) -b-a, ;-a,.
c) DefineH’ as the intersection of all subgroupsLodf index at most or./H). According
to a), the groupi’ is a characteristic subgroup of finite index.irSinceL is a normal subgroup
of I, it follows thatH’ is normal inI1, too.

Lemma 2.7. LetIl be a group andA a polycyclic subgroup of finite index. Then
a) Any subgroup ofT is finitely generated.
b) There is a strongly polycyclic normal subgroup of finite indeXlin

Proof. Part a) follows immediately from the fact that any subgroup.a$ polycyclic. More-
over, by [19, Lemma 4.6] there is a strongly polycyclic subgradpvhich has finite index
in A. Evidently, A’ contains a subgroup of finite index which is normallin and hence the
statement b) is true as well.
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Lemma 2.8. LetG, H andIl be groups. Suppose thatandH are polycyclic up to finite index
and assume that there is an exact sequence

M >H>T3 6 (1),

ThenlII is polycyclic up to finite indextoo.

Proof. Let A’ C H be a polycyclic subgroup of finite indewr. Let A ¢ A’ be the intersection
of all indexm subgroups ofH. By Lemma 2.6A is a characteristic subgroup of finite index
in H. Thus we get an exact sequence

(1) > H/A 5 T1/j(A) S 6 > (1)

Using thatA is polycyclic, we see that it is sufficient to verify thAt/j (A) is polycyclic up to
finite index. In other words, without loss of generalitys finite.

Choose a strongly polycyclic subgro@® c G of finite index. Clearly, we only have to
check thag~%(G) is polycyclic up to finite index. So we may assume thatself is strongly
polycyclic. There is nothing to prove if rag&) = 0. In the case rank) = 1 the groupIl
clearly contains a cyclic subgroup of finite index. Suppose that(@nk 2. Choose a normal
subgroupG C G with G/G = Z. By induction on rankG) we may assume that 1(G) is
polycyclic up to finite index. Choose a polycyclic characteristic subgroapg—1(G) of finite
index inG. ThenN is normal inI1, and the factor groupl /N fits in an exact sequence

{1} > H— II/N - G/q(N) — {1}.

UsingG/g(N) contains a cyclic subgroup of finite index and thas finite, we see thalll /N
is cyclic up to finite index.

Lemma 2.9. LetII be a finitely generated groypnd letL be a nilpotent normal subgroup of
finite index.

a) ThenL is polycyclic.

b) The elements of finite order inform a finite normal subgroup dfl.

Proof. a) The groupis finitely generated because it is of finite indexXinTaking into account
that by [19, Theorem 2.7] any subgroup of the nilpotent groigpfinitely generated, we see
thatL is polycyclic.

b) Clearly, the torsion elements bfare invariant under conjugation I, and thus we just
have to check that they form a finite group. lcgbe the center af. By induction on the length
of the central series we may assume that the elements of finite otder farm afinite grouyr.
Evidently, the torsion elements ofare contained itG := 7 ~1(F), wherex:L — L/C is the
projection. Therefore it is sufficient to prove the statementor

The finitely generated abelian grogpcontains a subgroup = Z9 of finite index. Notice
thatA is a central subgroup of finite index @ We employ Theorem 2.2 to find a finite normal
subgroufE c G such that/E is isomorphic tdZ¢. This completes the proof becauseonsists
precisely of the torsion elements laf
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2.5. Proof of Theorem 2.3

Trivially a) implies b). The implications)f = d) and 9 = d) are due to Fukaya and
Yamaguchi [8] and Cheeger and Colding [3], respectively.

b) = d) is due to Gromov [9] and Milnor [14]. More precisely, according to Milnor [14],
a finitely generated fundamental group of a complete manifold of nonnegative Ricci curvature
has polynomial growth, and a theorem of Gromov [9] states that such a group is nilpotent up
to finite index. Finally, we can apply Lemma 2.9 and Lemma 2.7 in order to show that there is
torsion free, nilpotent normal subgroumf finite index.

d) = c¢) was proved by Lee [13], but actually c) is also an immediate consequence of e) (see
below), and therefore we do not need this implication.

d) = a We viewL as a subgroup off andF as the quotienf1/L. There is a unigue
connected, simply connected, nilpotent Lie groypalled the Malcev completion af such
thatL is isomorphic to a lattice (a discrete, cocompact subgrouR) gee [19, Theorem 2.18].
We identifyL with a lattice inN. We plan to extend the natural action.odbn N in some sense
to an action ofl1 on thek-fold productN¥, wherek is the index ofL_ in I1.

Letb,, ..., b, € IT be representatives @t /L. SinceL is a normal subgroup dfl, we can
find foranyg € ITandi € {1,...,k} a uniqueag(i) e {1,...,k} for which bigb;gl(i) € L.
In fact, g — o defines an anti-homomorphism fromto the symmetric group of degrée
Notice thatlT acts on thek-fold productN¥ by

1

X1 b, 905 1) X5, 1)
g-| | = : (1)
X b.gb . x
K k 905 k) Xog (k)
forall g e IT andxy, ..., X € N.

Now we can make use of a construction of Wei [21]. For a sufficiently large numleel
she introduced oM = RP x N a complete metric of positive Ricci curvature for which
N still operates by isometries via left-translations on the second factor. Considksfdle
Riemannian produd¥1®. We can define a discontinuous isometric actioflain M by using
equation (1) for alg € IT andxy, ..., X, € M.

For sufficiently largd there is a homomorphisim IT — SU(I) with kernelL. The group
IT acts on SW) by left-translation vieh. Thus we get an isometric, discontinuous, free action
of IT on SUl) x MK, Since SUl) x MK is a connected, simply connected manifold, we have
realizedIT as the fundamental group of the orbit spg8eJ(l) x M¥)/II.

d) = e) Consider again the action & on N¥, which is given by (1). This operation is
obviously effective. So we may identifif with the image of the induced homomaorphism

M — N* x Sy
where(o, (Xq, ..., X)) € NK x S is the affine diffeomorphism
N = N (s Y P O Yoraays -0 X Yorig) -
Letc:L - L, g~ bigbl‘l, i = 1,..., k. The automorphisng; can be extended uniquely

to a continuous automorphism nf see [19, Theorem 2.11]. We call this map aggiand
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define a subgroup of NK ¢ NX x S, consisting of the elements

C1(X)

G (X)

Clearly,N is isomorphic taN, andIT C N¥ x S, S, normalizesN. HenceN is a normal subgroup
of G = N-ITandG/N = IT/L = F. Consequently, we obtain an exact sequence of Lie group
homomorphisms

M ->NS>cdFEo ().

It is sufficient to prove that this sequence splits. Cet= [N, N] be the commutator group of.
SincecC is a characteristic subgroup(C) is a normal subgroup at. Thus there is an exact
sequence

1) > N/C S 6/jc) L F - (1),

SinceN/C is vector group, this sequence splits as we have seen in the proof of Theorem 2.1.
So letF ¢ G/j(C) be a subgroup that is vigisomorphic toF. For the preimagel of F under
the projectionc — G/j(C) we get an exact sequence

0) > C—>HIFo (1),

and by induction we can assume that this sequence splits.
e) = ¢) We can define an action & C N x4 F onN consisting of affine diffeomorphisms
by
(X, £)-y=x-B(HH(y).

The kerneE c IT of this action is clearly finite, and the quotiefi/E is an almost crystallo-
graphic group.

¢) = d) According to Auslander [19, Corollary 8.28], an almost crystallographic group
" contains a torsion free, nilpotent normal subgroup of finite index (the subgroup of left
translations). By passing froifi to a subgroup of finite index, we can assume thaself is
torsion free and nilpotent.

From Lemma 2.8 we infer thdl is polycyclic up to finite index, and now by Lemma 2.7
there is a torsion free normal subgroupf finite index inI1. Taking into account thap|, is
injective we see that is nilpotent.

e) = f) A g) We identify IT with a discrete, cocompact subgrouphot«, F and define a
discontinuous, cocompact actionldfonN

IMIxN—>N, (g f),h)g-B(H)Hh). )

Lemma 2.10 below ensures the existence of a sequgneé left invariant metrics om for
which

a) The action of1 onN, defined in (2), is isometric with respect to the megjc and the
orbit spacgL, g,)/I1 has diameter 1.

b) The sectional curvature R, g,,) is bounded below by- 1/.
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For sufficiently large there is a monomorphisim F — SU(l). Let g denote the biinvariant
metric on SUl) normalized by diaSU(l), g) = 1. We define an isometric action df on
(N, g,) x (SU(l), g) by using on the first factor the action defined in (2) and on the second factor
the action given by (v, f), A) — h(f). Afor Ae SU(), (v, f)eIT CN 4 F. Clearly, this
action is free and discontinuous, and tliug isomorphic to the fundamental group of the quo-
tient(M, 9,) == ((N,g,) x (SU(), 9))/I1. Finally, the diameter of this quotient has the upper
bound+/2, and its sectional curvature is bounded below-ly/ .. ConsequentlyM, g,)isa
compact manifold with almost nonnegative sectional (Ricci) curvature for sufficiently large

Lemma 2.10. LetF be a finite groupN a connectedsimply connectecdilpotent Lie group
B:F — Aut(N) a homomorphisirand letIT C N x4 F be a lattice. Then there is a sequence
of left invariant metricg,) .y ONN satisfying the following three conditions.

(1) The action oN x4 Fon(N, g,) given by(g, f) xh:=g- g(f)(h) is isometric.

(2) The diameter of the quotief, g,,)/ITis 1.

(3) The absolute value of the sectional curvaturenafg),) is bounded byl/s.

Actually the statement of the lemma is known for a torsion free giougnd the proof of this
special case carries over to the present situation. However, to avoid mysteries we have included
a proof.

Proof. Consider the representation of the finite greum the Lie algebran given by f +—
B(f),. For a suitable scalar produgt, -) onn this representation becomes orthogonal. We
identify (-, -) with the left invariant extension ok and observe that the action meﬂ F on

(N, (-, -)) is isometric.

Let {0} =g, C --- C g, = n be the central series af i.e.,g; is inductively defined by the
property: the Lie algebrg_ ,/g; is the center ofi/g; . Define pairwise orthogonal (with respect
to (-, -)) vector subspace¥,;, ..., V, C nbymeansoV,®---®V, =g, i =1,....k
Evidently, each subspad is invariant under the action & Moreover, V,, V;] C g;_, for
alli, j. Set

i=1

i=1 i—1
forv,, w; € V;, A € (0, 1]. Clearly,N xﬂFactsisometricaIIyo(N, g,). Sinceg, (v, v) < (v, v),
it follows that

diam((N, g,)/T1) < diam((N, (-, -))/TT).

Lety;;. ... v;, beanorthonormal basis W with respecttd: , -). Theny; A2 =1,k
j =1,..., ] is an orthonormal basis afwith respect tay, . Furthermore, for < |
2
Uij v 2 ok—i+2_ok—i)+1 2
H[W, )»Z_Ln'i| < W'H[Uij, Umlllg, <2 vy, vl
(¢}

2 2
< A '||[Ui|‘, U|m]||(.,.>-

Now we infer from the curvature formula for left-invariant metrics on Lie groups [4, Proposi-
tion 3.18] that the sectional curvature @f, g, ) tends uniformly to zero provided thattends
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to 0. This completes the proof, since simultaneously the diametéx,af, )/I1 is bounded
from above.

2.6. Proof of Theorem 2.4

The implication a = b) is trivial.

b) = d) This is nearly a direct consequence of the results of Fukaya and Yamaguchi [8]:
Condition (iii) implies that(M,, gL) has almost nonnegative sectional curvature for sufficiently
largei. Hence the fundamental group bf, is by Fukaya and Yamaguchi [8] nilpotent up to
finite index.

By induction onk we can assume that the fundamental group of the Riemannian manifold
(B,g) := (My, g?) is polycyclic up to finite index. Because of the fiber bundle theorem of
Fukaya and Yamaguchi [8] the manifoM fibers overB, and the fibration can be realized
by a Hausdorff approximatiot: (M, g})) — (B, g). Thus the fibers off, become arbitrarily
smallin(M, gio). By the generalized Margulis Lemma [8] there is a constant0, which only
depends on the dimension such that for asyall B,(p) C (M, gh) the image of the natural
homomorphisms#, (B, (p)) — m;(M)]is nilpotent up to finite index.

Since for a sufficiently largea fiberF, of f, is contained in some baB, (p) C (M, gio), it
follows that the imaged of the natural homomorphisnx{(F,) — 7;(M)] is nilpotent up to
finite index. We have an exact sequence

{1} - H—> (M) - 7, (B) — {1},

and hence Lemma 2.8 applies.

d) = e) By Lemma 2.7 we can find a strongly polycyclic gronpc IT of finite index.
Clearly, A is a polycrystallographic group.

Theorem 5 in [23] tells us that after we have replasdaly a subgroup of finite index, we can
view A as a discrete, cocompact subgroup of a connected, simply connected solvable Lie group
S such that for any subgrowp’ of finite index inA any automorphism oA’ extends uniquely
to an automorphism aé. Finally, we can by Lemma 2.6 assume thats a characteristic
subgroup offT.

In particular,A is a characteristic subgroup of finite indexIih and any automorphism of
A C S extends uniquely to an automorphismsfBut these are precisely the conditions that
we have used for the pair C N in the proof of the implication d= e) of Theorem 2.3.
Hence the proof there carries over to the present situation. Thus there is a homomorphism
B:F = II/A — Aut(S) and an embeddingl — S x, F that intersects each connected
component o8 x4 F and that extends the inclusidgnC S C S x4 F. SinceA is a characteristic
subgroup, each automorphismIafrestricts to an automorphism of. Consequently, we can
extend each automorphism Gf uniquely to an automorphism @t - S = S x4 F, so we also
have proved Remark 2.5.4.

e) = ) LetI1 be a discrete, cocompact subgrougsof ; F and

pr:s mﬂF—>S>4,8(F) C S x AUL(S)

the projection. Clearly, the imade := pr(IT) is a discrete cocompact subgroupok B(F)
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and therefore a polycrystallographic group. Because of the finiteness @@rK#re assertion
follows.

¢) = d) It is known that a polycrystallographic group is polycyclic up to finite index,
see [23]. So we can infer from Lemma 2.8 thhis polycyclic up to finite index, too.

e) = a) Let N C S be the maximal connected, nilpotent normal subgroup,af C s
the corresponding Lie algebras, and(let:) be a scalar product arthat is invariant under the
natural representation &fin s.

We have seen in the proof of Lemma 2.10 that there is an orthogonal decompasition
V@ --- @V, satisfying

(i) V;®--- @V, is acharacteristic Lie subalgebrarofi =1, ..., kK,

i [Vi,vilcvie---eV,_,foralli, jand

(i) eachV, is an invariant under the natural representatighiof. LetV,  , be the orthogonal
complement of in s and define a new metric by means of
k+1  k+l

g»(va > wi) = Z o w)

for v, w; € V;, A € (0, 1) We know that

Y Wi

for v, € Vi, w; € Vj andi, j < k, see proof of Lemma 2.10. Moreovey, ] € n for v,
w € Vi1, and accordmgl;ﬂ[v wlllg, < A2Nv, wlli? -

SinceV, @- - - @V, is acharacteristic Lie subalgebramftis anideal ins. Thus forv € V, ;
andw; €V, (i <Kk)the Lie bracketg, w,]is contained inv; & - -- @ V;, and hence we obtain
the inequality

=511,

Using a curvature formula for left-invariant metrics on Lie groups [4, Prop. 3.18], itis easy to
see that the sectional curvature(sf g, ), . ¢ 1 is uniformly bounded.
For each we have an isometric action &f C S x4 F on (S, g;) given by

(t, t)*xh = 1-8(f)(h).

Choose an injective homomorphismF — SU(l) and define an action dil on SUl) by
(r, f)A:= ¢(f)A. Now we get a free, discontinuous, cocompact actiof oh the Riemann-
ian product(s, g,) x SU().

Consider the Riemannian fibration

2

2 2
22w willl?

O

< v, willl, ., -

N— (S, g,) x SU(l) — (S, g,)/N x SU(l) =

From|s, s] C nwe infer that the quotiem \ (S, g, ) is isometric to an Euclidean space, and the

induced metric o8 does not depend on FurthermoreB has nonnegative sectional curvature.
Next we observe that the action GOf respects the fibration, and hence we get an isometric

action of[1/L on B whereL := ITNN x {1}. SinceN/L is compact, this action is discontinuous.



Fundgamental groups and nonnegative curvature 145
Moreover, it is free, and thus we get a fibration

N/L— ((S, g;,) x SUI))/TT — B/(I1/L) =: B.

Notice that diameter of the fibers (M, g,) := ((S, g,) x SU(I))/I‘I tends uniformly to O.
ConsequentlyM, g,) converges in the Gromov—Hausdorff sens&tfor A — 0.

3. A generalization of Gromov’s polynomial growth theorem

For an abstract groupl with a given finite generator system the growth functggh) is
defined as the number of worddihof length at most. A finitely generated group is said to have
polynomial growth of orde& n if and only if there is a constaf satisfyingg(h) < C-h" for
all positive integer. This condition is easily seen to be independent of the generator system.
Gromov [9] has shown that a finitely generated group has polynomial growth, if and only if it
is nilpotent up to finite index. Our aim is to prove the following generalization of Gromov’s
theorem.

Theorem 3.1. For a groupII the following statements are equivalent.
a) There is an integer n such that any finitely generated subgroup bfs polynomial
growth of order< n.
b) There is a normal subgroup C IT satisfying
(i) For any finitely generated subgrodp of IT the groupIT’ N T is finite.
(ii) The factor groudI/T contains a torsion freailpotent subgroup of finite indewhich
is an inductive limit of finitely generatedilpotent groups of a fixed rank.

Condition (ii) in the above theorem implies in particular that the factor gil@yp is count-
able. Moreover, the groupis by condition (i) locally finite, i.e., any finitely generated subgroup
of Tis finite. In fact, it is clear from the proof of Theorem 3.1 thhatan be chosen as the maxi-
mal locally finite normal subgroup d@i. A deep theorem proved independently by Kargapolov
and Hall and Kulatilaka states that an infinite locally finite group contains an infinite abelian
subgroup, see Kegel and Wehrfritz [12]. Combining this result with Theorem 3.1 we show

Corollary 3.2. LetII be a group for which any finitely generated subgroup has polynomial
growth of order< n = n(IT). ThenlIT is finitely generated if and only if any abelian subgroup
is finitely generated.

The proof of the above quoted theorem on locally finite groups involves the celebrated Feit—
Thompson Theorem, which states that any finite group of odd order is solvable. Under the
stronger hypothesis that is the fundamental group of a complete manifold of nonnegative
Ricci curvature, one can give an elementary proof for Corollary 3.2 which usesthe fact thatin this
case any finitely generated subgroudbgatisfies in addition the conclusion of Theorem 4.1.

The rest of this section is organized as follows: The proof of the theorem and the corollary
will be given in the first two subsections. In Subsection 3.3 we draw a consequence for the fun-
damental groups of manifolds of nonnegative Ricci curvature. The last subsection is concerned
with an example.
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3.1. On the proof of the theorem

For the proof of Theorem 3.1 we need

Lemma 3.3. LetIl be a group that has a torsion free normal subgraugf finite index. Then
the torsion elements in the centralizerloif.e., the elements in

E:=|gell|gh=hgVhel, ¢ =e forsomele N},
form the maximal finite normal subgroup It

Proof. Let C(L) denote the centralizer af The groupz = L N C(L) is a torsion free central
subgroup of finite index in @). In order to prove thakt is a group, we have to show that for
g, h € E the elemengh~! is contained irE, too. For that we consider the grolip generated
by g andh. The subgroup := IT' N Z has finite index i1, and by Lemma 2.8 is finitely
generated. Moreoves is torsion free, and hence it is a free abelian central subgroup of finite
index inTT’. According to Theorem 2.2 there is a finite grafsuch thaf1’/E’ is free abelian.
Clearly,g, h, gh ' € E' C E.

Thereforee is a group, and since has trivial intersection with, it is finite as well. By its
very definitionE is a characteristic subgroup ofiG, and because of that it is a finite normal
subgroup offT.

Let E be a finite normal subgroup ®f. Using thatE andL are normal subgroups &f we
find thataba b~ € LN E = {e} for a € E andb € L. ConsequentlE c C(L) is contained
inE.

Proofof Theorem 3.1. b) = a) LetIT’ be afinitely generated subgroug@f Theng’ := IT'NT

is a finite normal subgroup di’, and the factor groupl’/E’ contains a torsion free, nilpotent
subgroup of finite index. From the implicatione> d) of Theorem 2.3 we infer thal’ contains

a torsion free, nilpotent subgroupof finite index. Moreover, the rank af is bounded by a
constant that only depends én It is well-known thatL has polynomial growth and that the
degree of this growth is bounded by a constant only depending ofaiikking into account
thatL is of finite index inIT’, we see thall’ has polynomial growth of controlled degree, too.

a) = b) By Gromov’s theorem any finitely generated subgrouplofontains a nilpotent
subgroup of finite index. As we have seen in Section 2 this implies that any finitely generated
subgroup contains a torsion free, nilpotent normal subgroup of finite index. The rank of this
nilpotent subgroup is at most Thus we can choose a finitely generated, torsion free, nilpotent
subgroup. C IT of maximal rank.

SetL, = (g€ | g € L}) for k € N. Note thatL, is a normal subgroup af. The factor
groupL/L, is a nilpotent group which is generated by finitely many elements of finite order,
and because of Lemma 2.9 it is finite.

Let C(L,) denote the centralizer of in IT, and let TotC(L, )) be the elements of finite order
in C(L,).

T = JTor(C(y)).
keN
We claim that for any finitely generated grolip > L the setT N IT’ is the maximal finite

normal subgroup ofT’.
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In order to prove this, we choose a torsion free, nilpotent normal subgfaud1’ of finite
index inTT". Then the group. N L’ is of finite index inL, and accordingly

rank(L') > rank(L NL") = rank(L) .

Taking into account that rark) is maximal, we see that rafik) = rank(L N L"), and hence
LN L"is of finite index inL’. PutL := {d" 1 gel}, let C(L|) be the centralizer af;, and let
Tor(C(L))) denote the elements of finite order ifLQ). The groupL| is a torsion free normal
subgroup of finite index if1’ for all | > 0. By Lemma 3.3 the set TGC(L{)) N IT’ is the
maximal finite normal subgroup &t’". In particular, To(C(L;)) N I1" does not depend dnFor
anyl there is an integek such that

L, CL = Tor(C(y)) C Tor(C(Ly)) -
Furthermore, for ank there is arl such that

L C L, = Tor(C(Ly)) C Tor(C(L)).
Consequently,

TN = Tor(C(L)) NI = Tor(C(L,)) N IT'

for all I and for almost everk. ThusT N IT' is the maximal finite normal subgroup of, as
claimed.

In particular, T is a normal subgroup dfl. Let pr:IT — IT/T be the projection. For any
finitely generated groupl’ D L the kernel of the restriction py, is the maximal finite normal
subgroup oflT’. According to Remark 2.5, the image Hf is then isomorphic to an almost
crystallographic group” with rank(I'") = rank(L).

Recall that the nilradical niI’’) of an almost crystallographic group’ is the maximal
nilpotent normal subgroup. It is known and will follow from Theorem 5.1 below th&rfilis
a torsion free subgroup of finite index Iff and that the index is bounded by a constant only
depending on ran’).

Therefore we can find a finitely generated subgrbgpf IT/T thatis isomorphic to an almost
crystallographic group of rank equal to rgbkthat maximizes the quantity ofd,/nil(I'y)).
Choose a realizationI'y — F x N of I'; as an almost crystallographic group, i&.js a
connected, simply connected, nilpotent Lie groBgs a compact subgroup of Agt) and
the homomorphism mapsI', isomorphically onto a discrete, cocompact subgroup afN.
Thanks to Auslander’s characterization of almost crystallographic grou@d3nis mapped
onto a lattice irN x {1} = N, if one is not familiar with Auslander’s theorem one can employ
[23, Prop. 5.1] instead. Without loss of generalitys isomorphic to the finite factor group
I'y/nil(I"y), because we can replaedy a suitable subgroup.

Lemma 3.4. There is a unique extension ofo a homomorphism:H1/T — F x Nand h is
injective.

Before verifying Lemma 3.4, we use it to complete the proof of Theorem 3.1. Sice
injective, we can and we will identifi1 /T with its image. Evidently, the group := (IT/T) NN
is a torsion free, nilpotent subgroup of index @fdin IT/T. Furthermore, for any finitely
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generated subgroup’ C G the groupI” N Ty is of finite index inI"’. Consequentlys is
contained in the countable group

exp(span,(exp *(nil(Ty)))) .

In summary, we can say thatis a torsion free, countable, nilpotent group, and any finitely
generated subgroup has rank at most (aiid",)). But this implies that is the inductive limit
of finitely generated, nilpotent groups of a fixed rank.

Proof of Lemma 3.4. Clearly, it suffices to show: For any finitely generated subgmy
I1/T satisfyingl’, C I'; there is a unique homomorphismI’; — F x N that extends, and
this homomorphism is injective.

Notice thatl™; is isomorphic to an almost crystallographic group. Thus there is a connected,
simply connected, nilpotent Lie grouyy a compact subgroup, C Aut(N;) and a homomor-
phism:;:T'; — F; x N; mappingl’; isomorphically onto a discrete, cocompact subgroup of
Fi % Nj.

The almost crystallographic groupgandI™; have the same rank, and helggs a subgroup
of finite index inI";. Thereforey,(I'y) is a discrete, cocompact subgroupFefx N,, too. As
above we deduce thgtT’;) "N, x {1} coincides with the nilradical df;,i = 1, 2. In particular,
nil(I'y) C nil(I";). Moreover, we can assume ttgtis isomorphic to the finite factor group
I, /nil(I"y). Since the order of ,/nil(I"y) is maximal,

t1(Tg) - (Ng x {1}) = Fy X N;. 1)

The group, (nil(T"y)) is a lattice inN; = N; x {1}, andc(nil(T"y)) is a lattice inN. Using that
t, and: are injective, we conclude that there is a unique isomorphjism, — N satisfying
¥ oyl =t see [19, Theorem 2.11]. Because of the uniquenegswé have

1ﬁ(tl(g) U Ll(g_l)) = 1(g)-¢¥(v)- L(g‘l) forg e I'y andv € N;.

With this in mind it is straightforward to check that we can extehdo an isomorphism
V:F; x Ny = F x N by definingy (¢1,(9) - v) :=«(@) - ¥ (v) forg € Iy, v € Ny = N; x {1}
Now ¢ := ¥ o, is a homomorphism that extends

It remains to verify thap is unique. Equation (3.1) yields;, = I'y - nil(I";), and therefore
it is sufficient to show thap|-,,: nil(I';)) — N is unique. Folg € nil(I";) there is a positive
integer| such thatg' e nil(T'y). There is precisely one elementin the simply connected
nilpotent groupN with o' = «(g'), and clearly we have necessaryg) = v.

3.2. Proof of the corollary

If TT is finitely generated, then we can apply Gromov's theorem to seéltisnilpotent up
to finite index, and then by Lemma 2.7 any subgrouplas finitely generated, too.

Assume conversely tha@it is not finitely generated. Choose a normal subgrpap stated in
Theorem 3.1. If the locally finite groupis infinite, then it contains an infinite abelian subgroup,
see [12]. Thus it suffices to consider the case of a finite gfoupparticular, the quotierid /T
is not finitely generated. The group/T contains a torsion free, nilpotent subgroup of finite
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index, and evidently we can assume thBtT itself is torsion free and nilpotent. The proof
of Theorem 3.1 shows that then the grddpT can be viewed as a cocompact subgroup of a
simply connected, nilpotent Lie groupin such a way that any finitely generated subgroup of
I1/T is discrete irn.

Suppose for a moment that any abelian subgroup af lies discrete irN. Sincell/T is not
discrete, we could find two sequenagsh, € IT/T C N converging tce such thag, does not
commute withh,. Then the commutator sequengg,[h,] := gkhkgk‘lhk‘l # ealso converges
to e, and it follows that N, N] N TT/T is not discrete inji, N]. Via a simple induction argument
this yields a contradiction.

Hencell /T contains an abelian subgroapvhich is not discrete and accordingly not finitely
generated. Lell’ be the preimage of under the projectioml — IT/T. Forh € IT’ the inner
automorphism Inh): 11" — IT', g — hgh™! leaves the left cosets of the finite grotip
invariant. So Inth*') = id for k = ord(T), andh¥ is contained in the center ®f'. Taking into
account thafl’/T is torsion free, we see that the centefBfis not finitely generated.

3.3. A remark on fundamental groups

Remark 3.5. a) Let IT be a discrete subgroup of a connected Lie graupnd n € N. If
any finitely generated subgroup Of has polynomial growth of ordeg n, thenTIT is finitely
generated.

b) Let M be a complete manifold of nonnegative Ricci curvathtehe universal covering
space of M andso(M) its isometry group. lfz,(Iso(M)) := Iso(M)/Iso,(M) is finitely
generatedthens, (M) is finitely generategoo.

Proof. a) By Corollary 3.2 it is sufficient to prove that any abelian subgroupl d$ finitely
generated. But according to Mostow [17], a discrete solvable subgroup of a connected Lie
group is finitely generated.

b) Recall first that IsgM) is a Lie group, see [18].

A slight modification of the argument in [14] shows that any finitely generated subgroup of
no(lso(l\7l)) has polynomial growth. Thus;iifo(lso(l\7l)) is finitely generated, then it is nilpotent
up to finite index, and any subgroup:q{(lso(l\?l)) is finitely generated, too. The fundamental
grouprm, (M) can be viewed as a discrete subgroup of M By a) the intersectioN of m (M)
with the identity component Ig()l\7|) of Iso(M) is finitely generated. The quotiemt{(M)/N is
isomorphic to a subgroup mfo(lso(l\7l)) and consequently finitely generated. But thgM)
is finitely generated, too.

3.4. An example

Example 3.6. Thereisacomplete Riemannian manifold M with fundamental group isomorphic
to Q/Z that is obtained by a surgery construction from a sequence of compact homogeneous
spaces.

LetH, C SU(3) be a cyclic subgroup of order, and letM,, := SU(3)/H,, n > 2. For
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n > 2 we choose two smooth regular loaps y,,: [0, 1] — M,, satisfying
(i) The submanifolds,, ([0, 1]) andy, ([0, 1]) are disjoint.
(if) The loopc, represents a generator of the fundamental groum,,, c,(0)).
(iii) The element inz,(M,,, ¥,(0)) represented by, generates a cyclic subgroup of order
(n—1l
Choose two disjoint open tubular neighborhoalsof ¢, ([0, 1]) andV,, of y,([0, 1]) with
smooth boundariesU, andaV,,.

D = (M \Up) U J(M; \ (U V).
i>3

Let f,:0U,, — 0V, , be a diffeomorphism. Consider dnthe equivalence relation gener-
ated byp ~ f,(p) for p € dU,, n > 2. The equivalence classbbs:= D/~ form a connected
smooth manifold, and/ admits a complete metric. By making iterated use of van Kampen’s
theorem we see that the fundamental groupois isomorphic tdQ/Z, the inductive limit of
(Z/NVZ) pen-

Furthermore, one can show that the universal covering spakklads only one end. Thus
none of the presently known obstructions can be used to proviltadmits no complete metric
of nonnegative Ricci curvature. However, if one uses a slightly different surgery construction,
the resulting manifold has a fundamental group which contains a finitely generated subgroup
of exponential growth. Clearly, this manifold does not admit a complete metric of nonnegative
Ricci curvature, and from this point of view it would be rather surprisiniylidmits such a
metric.

4. A result on fundamental groups in a fixed dimension

The goal of this section is to prove the following theorem.

Theorem 4.1. In each dimension n there are finite simple gro@gs. . ., F, for which the
following holds Any finitely generated fundamental grolipof a completen-dimensional
manifold M of nonnegative Ricci curvature contains subgroups

such thatN; is normal inN;_; and N;,/N; is either cyclic or isomorphic t&; for some
jie{l, ..., kL

We will see that it is easy to reduce the statement of the theorem to the following

Proposition 4.2. In each dimension n there are finiteimple groups, ..., F, for which

the following holdsAny non-cyclicfinite, simple group acting effectively and isometrically on
some connected-dimensionalcomplete Riemannian manifold of nonnegative Ricci curvature
is isomorphic td=j for some je {1, ..., k}.

In contrast to the statement of the proposition we remark that any finite or countable group
F can act freely and discontinuously on a complete 2-manifold with constant curvature
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Therefore recall that the free gro@in countable many generators acts freely and discon-
tinuously on the hyperbolic planB2. Choose an epimorphisg: G — F. Then the group
F = G/Ker(p) acts freely and discontinuously on the quotiERyKer(p).

Proof of Theorem 4.1. Let M be a completaj-dimensional Riemannian manifold of nonneg-
ative Ricci curvature with a finitely generated fundamental groyM). Sincell := 7,(M)
is nilpotent up to finite index, there are subgroups

{e}=NoC---CN; =TI

such thatN; is a normal subgroup af;;, , and the factor group;_ ,/N; is either cyclic or
isomorphic to afinite, simple group. So we only have to check that there are in a given dimension
only finitely many non-cyclic, finite, simple groups which can be realized in this manner. Recall
that the groupl acts freely and discontinuously on the universal covering sphazf M.
Moreover, the factor group, , ,/N; acts freely and discontinuously on the orbit spa]:ﬁl\li.

But now the assertion follows from the proposition.

Proof of Proposition 3.2. Suppose that the proposition is wrong in some dimensidrhen
we could find a sequence; ); . of non-cyclic, finite, simple groups such that
a) ordF;) > i,

b)F, acts effectively and isometrically on a connectedjmensional, complete Riemannian
manifold M; of nonnegative Ricci curvature.

Choose a poinp, € M; for which the cosek; :=F; - p; is nontrivial. We shall think ofX;
as equipped with the metric that is induced by the Riemannian distance functién after
scaling the metric oM, we have diamX;) = 1.

From the Bishop—Gromov inequality we infer th§tcontains ar-net consisting of at most
(4/¢)" elements for alk > 0. Thus by [9] the sequenc;); .y has a convergent subsequence.
Without loss of generalityX; itself converges to a compact metric spatg with respect to
the Gromov—Hausdorff distance. Furthermore, we can assume that the adgtjommoX; also
converges to an isometric action of some closed subgroup of the isometry groMp lssee
[8] for the concept of equivariant Hausdorff convergence.

We define a biinvariant metric on 164_,) by

Ay (1. 0) == max{ d,(«p). (P)) | p € X}

for ¢, 0 € Iso(X,,). After passing once more to a subsequence if necessary, we can find an
1/i -almost homomorphism;: F; — Iso(X ) foralli € N, i.e., a map satisfying

doo(fﬂi(ab), p(a)o (pi(b)) < % foralla,beF.

Moreover, we can assume that the image,ds 1/i -almost transitive, i.e., for any, y € X_
there is an elemerat € F; with d_ (¢(a)(X), y) < 1/i.

The group Is0X ) is a compact topological group. According to [16, Theorem 2.20, p. 99],
any neighborhoodl of the neutral elemerg@contains a compact normal subgrauguch that
G = Iso(X_)/N is a compact Lie group.
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LetU be the ball of radiu% arounde ir_l Iso(X,), and letN C U be as above. We consider
G = Iso(X_)/N with the induced metrid_,. Clearly,

is an ¥/i -almost homomorphism, where Iso(X_,) — G denotes the projection.

Choose a biinvariant Riemannian meigion G satisfying||[ X, Y]|| < || X]| - [[Y]|| for all X,

Y e g and for which the injectivity radius ofG, g) is at leastr, see [10] for existence df.
Letd denote the corresponding Riemannian distance.

Sinced andd_, induce the same topology @, it follows that for anys > 0 there exists an
integeri, such thaty, is ans-almost homomorphism with respect to the Riemannian distance
for alli > i, By a theorem of Grove et al. [10] the almost homomorphignthen can
be deformed into a homomorphisth:F, — G with d(¥; (@), ¥; (@) < 3 provided that
e <m/6,i > iy a e F,. Using once again that andd_, induce the same topology, we infer
that

d(¥i(a) ¥i(a) < 3

for all a € F; and for sufficiently large. By construction diariX_) = 1, and taking into
account that the image ¢f is 1/i -almost transitive, we see that digm(F;)) > % fori > 4.
Moreover, the groupl is contained in the ball of radi@arounde, and hence

diam(y;(F), d) > 3 fori > 4.

Therefore diar; (F;), dy,) > 3 for largei. In particular,y; is a nontrivial homomorphism
for almost every. In fact, &i is then injective becausg is a simple group.

But a theorem of Jordan [19, Theorem 8.29] states that a finite subgroup of a compact Lie
groupG contains an abelian normal subgroup of index at most m(G)—a contradiction.

5. Estimates for groups

Itis well-known that the fundamental groups of Gromov’s almost flat manifolds are precisely
the torsion free almost crystallographic groups. In this context Buser and Karcher [1] proved
that the index of the nilradicdl* in an almost crystallographic group is bounded bﬁi“‘”
wherer = rankI™*). We will improve this estimate:

Theorem 5.1. LetT" be an almost crystallographic groupnd letI™ be the nilradical ofT".
Then the factor groud™/I'* is finitg and its order divides the numbé&gn)! where n =
rank(T*) — rank([T"*, T'*]).

Corollary 5.2. LetII be a finitely generated group that is abelian up to finite indkx=
rank(IT), and lete be the maximal finite normal subgroupl®f ThenI1 contains a characteristic
subgroupA = Z9 of index at mosbrd(E)?+1 . (2d)%.

The rest of this section is organized as follows: Subsection 5.1 is devoted to the proof of The-
orem 5.1. In Subsection 5.2 we have placed a lemma stating that the order of an automorphism
of a finite groupF is bounded by or¢F). Finally, we prove Corollary 5.2 in Subsection 5.3.
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5.1. Proof of Theorem 5.1

A theorem of Minkowski [15] says that the least common multiple of the orders of all finite
subgroups of GIn, Z) is given by

v, = 1_[ pZkeol/ P (P11
peP
whereP are the prime numbers and/[p“(p — 1)] is the Gauss bracket of/ p“(p — 1). The
so called Minkowski bound,, obviously divides the numbé&n)!. Thus we only have to prove
that the factor group’/ I'* is isomorphic to a subgroup of Gh, Z).

By definition the almost crystallographic grolipis a discrete, cocompact subgroup of a
semidirect produdt x N whereN is a connected, simply connected, nilpotent Lie groupraisd
a compact subgroup of its automorphism group(Auitlt is known that the nilradicdr™* of I' is
then given by* = I'MN x {1}, see for example [23, Proposition 5.1]. The grdtfps a lattice in
N = N x {1} and accordingly of finite index ifi. By replacingr by a subgroup if necessary, we
may assume th&tis isomorphic to the finite factor groupy I'*. Let [N, N] be the commutator
group ofN. The group” N[N, N] is discrete and cocompact iN[N], and the projection

pr:Fx N — (N/[N, N]) x F

mapsl” onto a discrete, cocompact subgroup. In partic@iag: pr(I') N (N/[N, N]) is a lattice
in the vector groupN/[N, N]. We claim that the induced action 8fon N/[N, N] is effective.
This implies thaF = I'/ T'* is isomorphic to a subgroup of At) = GL(n, Z).

In order to show that the action & on N/[N, N] is effective, we argue by induction on
the dimension. Clearly, there is nothing to provelifs abelian. IfN is not abelian, we define
inductively a sequence of subgroupsMyy= N andN; ; = [N, N;]. SinceN is nilpotent, there
is @ maximal numbei, > 1 for whichN; is nontrivial. EvidentlyN; is invariant under the
action ofF, and by our induction hypothesis it is sufficient to verify that the induced actien of
onN/N; is effective.

Suppose that an automorphisra F induces the identity on/N; . Consider the correspond-
ing automorphism, of the Lie algebran of N. The Lie subalgebra; A corresponding toy;  is
an invariant subspace of. There is an_-invariant vector complementof n; in n because,
has finite order. The automorphismwfN; induced by: is the identity and hence,,, = id.
Using that, is a Lie algebra automorphism, we find, , = id. Sincen;  is contained in the
center ofn, it follows that fp, p] = [n, n] O n; , and accordingly, = (| = id. But then

- ) : . ; @i
trivially ¢ itself is the identity.

5.2. On the order of an automorphism of a finite group

We recall that for two groupd C F the numbelF : H) is defined as the index &f in F.

Lemma 5.3. a) LetF be a finite groupo € Aut(F) an automorphism df, and letH = {g €
F | o(g) = g} be the fix point subgroup. Then there is some positive integerk : H) such
thatoX is an inner automorphism &,

b) LetF ando be as above. Then there is a positive integeg ord(F) such thate" = id.
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Although the statement of the lemma is certainly known, the author was not able to find it
in the literature. Thus we will prove it:

Proof of Lemma 5.3. a) At first we consider a special case: there is a subgrbspch that

H C H C F ando (H) = H. By induction on(F : H) we can assume that there exists a positive
integerl < (H : H) and an elemertt, € H satisfyings'(h) = hyhhy* for all h € A. The
induction hypothesis applied tqg) = hgla' (9)hy says that™ is an inner automorphism of

F for some positive integen < (F : H). Consequentlyy' ™ is inner, and we are done.

Notice that for any integdrthe fixpoint group o' is invariant under, and by the above
consideration we can assume that this group is elt@. Then there exists a positive integer
m such that the orbifo"(g) | n € Z} has preciselyn elements for allg € F \ H. Without
loss of generalitym > (F : H) becauses™ = id. Forg € F we can find a positive integer
| < (F: H) < msuch that'(g) andg are contained in the same right cosetg. Therefore
o'(g) = hgfor someh € H\ {e} and

o' (g70(9)) = (hg) *o(hg) = g0 (Q).
SinceH is also the fix point group of', it follows that
f, == g 'o(g) eH forall geF.

Observe thatr (ab) = af,bf, = ab(b~1f,b) f,, and thusf,, = (b=1f,b) f, foralla, b € F.
Now it is easy to see that := ({ fg | g € F}) C His normal inF. Clearly,o (hg) = hgfg, and
fhg = fqforh € Handg € F. Via Ag = gA this yields the equatioriy, = f, for all h € A.
Hence

ghfy, = o(gh) = gfsh = hf; = f;h VheA.

Accordingly A is abelian. As already explained we can defipg, := f; for any right coset
of H. SinceA is abelian, the element

Ci= 1_[ fg

geH\F
is well defined, too. Sk := (F : H) = ord(H\F). Then

clge = (1_[ fa)_l- ga- [[ %

acH\F beH\F

=9-([] (9‘1fag))7l- IT %

acH\F beH\F

- o-(]1 (fagfg‘1)>_l. I %
acH\F beH\F

=gt (] fu) - T fo =01

K acH\F beH\F
= 0 (9).

ThusoX is inner.
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b) Consider the natural homomorphism
¢:F — Int(F) C Aut(F), g~ [h+— ghg?].

Notice thatp (o (g)) = o 0o ¢(g) oo~ for g e F. LetZ denote the cyclic group generateddy
and let: be a generator of the cyclic grodp:= z N Int(F).

Evidently,c commutes with, so the setp~1(:) is invariant undes . Choosey, € )
and consider its orbiz « g, := {0'(gy) | | € Z}. Fork := ord(z » g,) we havesX(g) = ¢
forallg € Zx gy and as a consequeneé(h) = h for all h satisfyinggyh € Z » g,. Since
Zx gy C ¢ 1(1), we havep(h) = id provided thatgyh € Z x g,. Therefore the kernel af
contains a subgroup of order at leask which is fixed bys*. Clearly, the group

H={heF|o"h)=h)}
containsg,, and hence(H) D z'. Consequently, or@H) > k - ord(Z').

By part a) there is a numbér< (F : H) such that(o¥)" is an inner automorphism. Thus
o¥ € 7 and(c*")°"%) = id. This completes the proof, sinke | - ord(z’) < ord(F).

5.3. Proof of Corollary 5.2

Let p: IT — T := II/E denote the projection. By Remark ZI5is isomorphic to a cry-
stallographic group of ran#f, and by Theorem 5.1 the translational paftof I' has index at
most(2d)!. Letb,, ..., by be a basis of * andg; € p~1(b). The order of the automorphism
E—E g fg(l is bounded by or(E), see Lemma 5.3. In other words, for some positive
integerk; < ord(E) the elemen‘giIQ lies in the centralizer of. The group generated ﬁﬁl,
el b(kf has index at mos2d)! - ord(E)? in . Accordingly the index of

H:={gep ™ (I')|gf=fgVieE}cT
in I is bounded by Zord(D) - (2d)! - ord(E)%*1, whereD is the center of. Notice thatH is a

characteristic subgroup &f. From the proof of Theorem 2.1 we know that the map

¢:H—>H, h > h2odD)

is a homomorphism and the image:= ¢(H) is a subgroup which itself is isomorphic to
78. SinceH is a characteristic subgroup of, the same is valid foa. Clearly, (H : A) <
ord(D) - (2 ord(D))¢, and thus the index of in I1 is bounded by

(H:A)-(IT:H) < 29 2d)! - ord(E)X*! < (2d)® - ord(E)% 1.

6. Deformation of coverings

Let N be a complete manifold with a compactisometry group. Consider a normal Riemannian
covering g:R" x N — (M, gy), i.e., g is bundle map of a principl€I-bundle overM for
some discrete grouf acting isometrically ofR" x N. In this section we will study continuous
deformations g R" x N — (M, g,), A € [0, 1], of Riemannian coverings, where the metric
of R" x N is the fixed product metric.
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For the motivation we recall that by Cheeger and Gromoll [6] a complete manifold of
nonnegative sectional curvature is isometric a Riemannian prdgfust N, whereN is a
manifold with a compact isometry group. Moreover, Cheeger and Gromoll [5] have shown that
the universal covering space of a compact manifold of nonnegative Ricci curvature splits as
R' x N, whereN and hence Isd\) is compact.

The main results will follow from the following two theorems.

Theorem6.1. Letq: (M, §) — (M, 0o) be anormal Riemannian covering between conngcted
complete Riemannian manifold$ ¢ Iso(M) the deck transformation grouand lety: [0, 1] x
I1 — Iso(M) be a smooth proper map such that each=n (1, -) isahomomorphism. Assume
moreover that), coincides with the natural inclusioll C Iso(M).

Then there is smooth family of Riemannian covermgsM, d) — (M, g,) suchthat, = q
andn, (IT) is the deck transformation group af.

If IT is a finitely generated group containing an abelian subgrooffinite index, then we
set rankIl) := rank(A).

Theorem 6.2. LetIT be a finitely generated group that is abelian up to finite indkx=
rank(IT), and letE be the maximal finite normal subgroup Of Let G be a compact Lie
group of rank r, and lety: IT — G be a homomorphism. Then there is a smooth family of
homomorphismsy), .o 1;: [T — G such thaty, = ¢ and the kernel of/, contains a free
abelian normal subgroupl’ C IT satisfying

(M: 1) < (2d)2 D . ord(E)* . ord(7,(G)) .

These theorems vyield several finiteness results: Cheeger and Gromoll [6] proved that a
compact manifold of nonnegative Ricci curvature is finitely covered by a manifold that is
diffeomorphic to product of a torus and a simply connected manifold. We can sharpen this
result as follows.

Corollary 6.3. Let (N, g) be a complete Riemannian manifold with a compact isometry
grouplso(N), and letq,: R" x N — (M, g,) be a normal Riemannian covering. Then there is
a continuous familyg, ), .o 1) of metrics on Ma continuous family of Riemannian coverings
0,:R"x N — (M, g,) and a s-sheeted normal Riemannian coveriggiz® x R"~9 x N —

(M, g,), where T9 is a d-dimensionalflat torus and T x R"~9 x N carries the product
metric. Moreover

s < 2. (2d)2 . ord(E)2 . ord(my(ISA(N)))

whereE is the maximal finite normal subgroup in the group of deck transformafiond =
rank(IT) and r = rank(Iso(N) x O(n — d)).

If g, is the universal covering map of a (noncompact) complete flat manifold, one can
restate the above corollary in a more intrinsic fashion. We recall that any noncompact, complete
manifold of nonnegative sectional curvature has according to Cheeger and Gromoll [6] a totally
convex compact submanifold such thatM is diffeomorphic to the normal bundle & The
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submanifoldS is called a soul ofM. Its dimension is determined by dii® = maxk |
H (M, F,) # 0}, whereH_(M, F,) denotes the singular homology with coefficientsin

Corollary 6.4. Let(M, g,) be a connectgchoncompactcompleteflat manifold and let S be
asoulof Mk = dim(S),| = codim(S), n = k+| = dim(M) > 2. There is a continuous family
(93)¢p0,1) Of completeflat metrics on M such that the holonomy grddpl(g,) of (M, g,) is
finite and its order is bounded

ord(Hol(gy)) < 2- (2K +2 < n™.

Itis an immediate consequence of Bieberbach'’s third theorem that there are up to affine dif-
feomorphisms only finitely many compact flat manifolds in each dimension. We can generalize
this result:

Corollary 6.5. Up to flat metric deformations there are only finitely many isometry classes of
completeflat manifolds in each dimension.

A deep theorem of Tits [20] implies that a finitely generated subgroup of a connected Lie
group is either solvable up to finite index or it contains a free subgroup of rank 2. As an
application of this theorem, we can strengthen Theorem 6.2:

Corollary 6.6. LetII be a finitely generated group that does not contain a free subgroup
of rank 2, and assume either tha is a compact Lie group or thas = GL(n, K) where

K € {R, C}. Consider the seHom(IT, G) of homomorphismg: 1 — G topologized by
pointwise convergence. Thétom(IT, G) has only finitely many arc-connected components
and each of these components contains a homomorphism with a finite image.

The proof ofthe corollary yields atleast in principal estimates for the number of arc-connected
components of Hoi1, G) depending ol andG. The fact that HoriT, GL(n, K)) has only
finitely componentsis known althoughitis notused; in fact HBMGL (n, K)) has the structure
of a real affine variety.

Now we prove the theorems and the corollaries in order of occurrence.

On the proof of Theorem 6.1

We need the following

Lemma 6.7. LetG be a Lie groupF a finite group andy,:F — G a continuous family of
homomorphisms. € [0, 1]. Then for each. € [0, 1] there exists an elemen} g G satisfying

n(f) =g, no(f)-g, *forall f eF.

Actually the lemma is an immediate consequence of a rigidity theorem of A. Weil, see [19,
Theorem 6.7]. However, in this special case there is an elementary proof. Following an idea in
[1, appendix] we will work with barycenters:

Proof of Lemma6.7. Leti, € [0, 1], F:= n,,(F). Clearly, itis sufficient to show that there is
anumbe® > 0 such that the homomorphism is conjugate tay, for |A — 2, < 8. Choose
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an Ad(F)-invariant left-invariant metric o, and consider the quotieM := G/F with the
induced metric. Sep := F € G/F. As usualG acts isometrically orM andF is the isotropy
group of p with respect to this action.

The orbitn, (F) p is contained in an arbitrarily small ball arourl provided thafx — A,
is sufficiently small. Thus the barycentgrof the finite collection(n, () - p) ;¢ of points is
well-defined and. — ¢, is a continuous curve in a neighborhood\gf Notice thaty, (F) is
contained in the isotropy group of.

The natural projectio® — M is a covering map, and we can lift to a curvey: 1, — 4,
Ao+ [ — Gwith y(Ay) = e. By construction the group(1) - n, (F) - y () ~Lis then contained
in F, the isotropy group op. SinceF is finite, it follows thatn, (g) = y (1)~ - n, (9) - ¥ (1)
forallg € F.

Proof of Theorem 6.1. The proper map,, induces a discontinuous action Hf on M. In
particular, for any elemerg € I of infinite order the isometry;, (g) has no fix points. Le¥
be a finite subgroup dil. From Lemma 6.7 we infer that for eaghe [0, 1] there is an element
g, € G satistyingn, (f) = gxno(f)g;l forall f € F. Sincen,y(f) is a fix point free isometry,
the same is valid fon, (), A € [0, 1], f € F\ {e}. We have proved that the action

Mx ([0, xM)—>[0, 1] x M, g, x) = (%, 1,(9)x)
is free. It is discontinuous as well, becauses a proper map. The quotieft := ([0, 1] x
M)/I1 is a smooth manifold with boundary, and

o:N— [0, 1], TII*x(x, X)X

is a submersion. Thu¥ is anM-fiber bundle over [01] and therefore we can find a diffeomor-
phismf: N — [0, 1] x M for which f (ITx (0, X)) = q(x) and pg o f = o, where p; : [0, 1] x

M — [0, 1] denotes the projection onto the first component. Let i, 1] x M — M be the
projection onto the second component, and |€ky := pr, o f(IT » (1, X)). Clearly, q is a
covering, and the deck transformation group corresponding te g} (IT) C Iso(M). Hence
there is a unique metrig, on M with respect to which gbecomes a Riemannian covering.

On the proof of Theorem 6.2

Lemma 6.8. Let G, be a connectgccompact Lie group with a biinvariant metric. Let €
g—{0} be avectorwithjv; || < c(v,/llv; 1), where c denotes the cutlocus functign:= exp(v;),
(i =1,2). Thengg, = 9,9, if and only if[v,, v,] = 0.

Proof. If[v,;, v,] = 0,theng, andg, lieinatoral subgroup ab,, andin particulag, g, = 9,9;.
Assume conversely that the elemegfsandg, commute. Notice that

exp(Adg, v1) = 0, exp(v;)g; = exp(vy) .

Since the metric o1G, is biinvariant, it follows that] Adg, v,[l = Ilv,l, and by hypothesis
Adgz v = V.
Thereforeg, commutes with exfv,) for all t € R. As above this implies that

Adexp(tvl) Uy = Uy,
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and accordingly exgpv,) commutes with ex{sv,) for all t, s € R. But then p,, v,] = 0.

Proof of Theorem 6.2. By Corollary 5.211 contains a normal subgrodp* = Z¢ of finite
index satisfying(IT : IT*) < (2d)® ord(E)**. Let [T} = IT* N ¥~ (G,), whereG, is the
identity component ofs.

(IM: M%) < (2d)® ord(E)** - ord (74(G)). 1)

Choose a basis,, . .., by of IT; and a biinvariant metric o8. Then for somék, < 2' the
elementl/f(bik‘) = w(bi)ki is not contained in the cut locus ein G. In order to prove this, we
choose ar(-dimensional) maximal torug containingy (b, ). Lett; denote the Lie algebra of.
Since the maximal torug is a convex submanifold @, the cut locus function of; is just the
restrictionc|,, of the cut locus function o&. Consequently, the Dirichlet fundamental-domain
around 0O corresponding to the covering exp= T, is given by

el )]

Let3F = {3v | v €F}. Suppose now that the elementtgb.), ..., v (b)' are contained in
the cut locus okin T;, thatisy (b)), .. ., zp(bi)' € exp(dF). The setsi//(bi)0 . exp(% F),...,
w(bi)' . exp(% F) are disjoint, and hence

vol (T;) > (I +1)-vol (exp(3F)) = I;r—rlvolr(Ti).

Thereford < 2, and the statement follows.
Choosek,, ..., ky < 2" as stated above. Consider the set

Vo= {y@bgh|i=1...,d gen} c 0j.

Foranya e V there is by construction a uniqug € g of minimal norm with expv,) = a. We
employ Lemma 6.8 to see that the §ef | a € V} generates an abelian Lie algeltr&learly,
the image ofy normalizesT. ThusIT} := I1; N ¢ ~(T) is a normal subgroup dfl and

(M :13) < 2, 2
Choose a homomorphism
f:TI; > t satisfying exp f = Vlny -

Let C denote the centralizer @13 in I1. The factor groudl/C operates effectively ofil}. So
IT1/C is isomorphic to a subgroup of Gd, Z), and as explained in the proof of Theorem 5.1,
a theorem of Minkowski [15] implies th&t := ord(IT/C) divides the numbef2d)!. Set

A= {vklveH;}.

Forc e C the endomorphism Agl, |1t — t special is the identity. Consequently, Ad |, is
well-defined forh e IT/C. Furthermore, the mafl; — A, v — vX is an isomorphism, and
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hence we can define a mapA — t by means of

() = Y Adygp (f(h™wh))  for ve I

hell/C
Observe that
expo ¢ = VY| (3)
and
o(gug ™) =Ady(v)  forallveA, gell. (4)

SetF := II/A. As we have seen in the proof of Theorem 2.1, we can idemiifyith a
subgroup of a semidirect produgf' x , F such thath = I NR? x {1} is lattice inR?. Any
element ing € RY x4 F can be ertten ah - Z, 178, whereh € TI, &, € Aandj; € R.
Using the equations (3) and (4), we see that the following map is well-defined.

w: R XgF — G,

d d
h'z)‘iai — W(h)-exp(z)»iqo(ai))
i=1 i=1

forh e I1, & € Aand}; € R. Moreover, is a homomorphism withV,;; = v. Thus we can
define a smooth family of homomorphisms by setting

¥, ((v, ) == w(1-arpw, f) for (v, f) e M C RY %,

Clearly, ¥, = ¥. Furthermore, the image := y,(IT) is a subgroup of satisfyingh* = e
for all h € H. Consequently, or@i) < k4™M™ and if we seflT} := I} N Ker(y,), we obtain
the inequality

(T15 : T3) = ord(H) < ((2d)!)". (5)
Combining the estimates (1), (2) and (5), we conclude that

(M :T03) = (T : %) - (I} @ T05) - (T1: I15)
((2dy)" - 2% . 2d)™ - ord(E)*** - ord(7,(G))

<
< (2d)2 D ord(E) - ord(7,(G)).

Proof of Corollary 6.3

Let I'T be the group of deck transformations of the normal coverjp@® x N — M. The
isometry group ofR" x N is a product Is@R" x N) = Iso(R") x Iso(N). ThusII operates
discontinuously and with a finite kerng| onR". Therefore the quotierl /E; =: I'" can be
viewed as a discrete subgroup of (B8).

It is known that such a group acts with a finite kernel on an affine subspaRé a$ a
crystallographic group, see [8].

After changing the origin and the canonical basis we can assumié'thetis discontinuously
and cocompactly on the subsp&®x {0} C R". The kernek, of the action of” onRY c R"
is finite, andl"/E, is a crystallographic group. L&tbe the preimage &, under the projection
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IT — I''. ThenIl/E is isomorphic to a crystallographic group of raahkBy Theorem 2.11 is
abelian up to finite index, and by Remark E%s the maximal finite normal subgroup Bf.

Moreover,IT is a subgroup of IsS®?) x (O(n — d) x Iso(N)) =: Iso(R%) x G. Let pr and
¥, be the projections ofT on IsaRY) andG, respectively. We employ Theorem 6.2 to find a
smooth deformatioit/, ), [0 1; Of ¥ in HOM(IT, G) such that the kernel of, contains a free
abelian normal subgroup satisfying

(IM:A) < (2 . ord(E)** - ord(my(Isa(N) x O(n — d)))
= 2.(2d)™" D . ord(E)*™ - ord(mo(IsA(N))).

According to Theorem 6.1 there is a continuous family of metgcon M and a con-
tinuous family of normal Riemannian coverings " x N — (M, g,) such that the deck
transformation group of gis (pr, ¥,)(IT) C Iso(RY) x G.

Consider the covering

;0 (R" x N)/((pr, ¥1)(A) — (M, g;).

By constructiony; (A) = {e}. SinceA is free abelian, it follows that pa) consists out of
translations. ThuR" x N/(pr, ¥,)(A) is isometric to a Riemannian produet? x R"-9 x N,
as claimed.

Proof of Corollary 6.4

Clearly,M is homotopy equivalent to its soul. SinSas a compact flat manifold, it follows
thatIl := 7;(M) = 7,(S) is a torsion free crystallographic group of rakkBy applying
Corollary 6.3 to the universal covering:®R " — (M, g,) of (M, g,) we find a continuous
family of Riemannian coverings,gqR*"' — (M, g,) and as-sheeted normal Riemannian
covering

z:TO xR - (M, g))

with s < 2- (2k)*"+D wherer = rank(O(1)) = [I/2]. Since the holonomy group af® x R!
is trivial, the holonomy group ofM, g,) contains at most

elements.

On the proof of Corollary 6.5

To make talking easier we introduce a notation: a diffeomorphfsitM, g,) — (N, g)
between two complete, flat manifolds is called flat, if there is a continuous fagyily, o 1 of
complete, flat metrics ol connecting the given metrgg, with the pull back metrig, := f*g.

We have to prove that there are only finitely many flat diffeomorphism classes of complete, flat
manifolds in each dimension. Therefore we need the following observation:
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Lemma 6.9. Let(M, g,) and (N, g) be two completelat manifolds and let f: (M, g;) —
(N, g) be an affine diffeomorphism. Then f is flat.

Proof. Sincef is affine, the metrig, := Ag+ (1 — 1) f*g s flat, too. Moreover, the metrics
0o andg, have the same geodesics, and heg)cis also complete.

Proof of Corollary 6.5. A complete, flat manifold is isometric to the an orbit space of the
form R"/ " whererl is a torsion free, discrete subgroup of (B8).

Let1(n) denote the set of torsion free, discrete subgroups ¢R%0 We say that two groups
Iy, T, € M(n) are equivalent if there exists a flat diffeomorphism between the quotients
R"/T'; — R"/T,. Clearly, it is sufficient to show th&dt(n) contains only finitely many
equivalence classes.

Let 9t1(n) c M(n) be the subset that consists of those groDidsr which the holonomy
group of the quotienR"/ " has order at most™. By Corollary 6.4 we only have to check that
91(n) is finite up to equivalence.

Observe that eadh € 91(n) is as an abstract group isomorphic to a crystallographic group of
rank< n. By the third Bieberbach theorem this class consists out of finitely many isomorphism
classes. Thus we just have to verify that for a fixed crystallographic gigup Iso(RY) of
rankd < n the set

9N(n, I'y) = {I' € N(n) | I' is as an abstract group isomorphidtg}

contains only finitely many equivalence classes.

As explained in the proof of Corollary 6.3 a given grolipe 91(n, I'y) acts on ad-
dimensional affine subspace Bf' as a crystallographic group. By passing framto an
equivalent group if necessary, we can assume Ithatts discontinuously and cocompactly
onRY x {0} c R". Notice that therd™ C Iso(R%) x O(n — d) c Iso(R"™). Hence it remains to
prove that

£ = {I eNn, Iy) | I clIsaR?) x O(n — d)}

is finite up to equivalence. For a groiipe £ the image pfT") of the projection pr: IsRY) x
O(n—d) — Iso(RY) is a crystallographic group that is as an abstract group isomorplijc tb
follows from the second Bieberbach theorem that there is an elemént&) € RY x GL (d)
satisfyingl'y = (v, A) pr(I") (v, AL We let(v, A) also the image ofv, A) under the natural
inclusionRY x GL (d) < R" x GL (n), and defind” = (v, A)-T- (v, A L. Clearly,I' € £,
and we can employ Lemma 6.9 to see thais equivalent td". This consideration shows that
it is sufficient to prove that the set

R={Tef|TcTyx0On-d), prT)=T,}

contains only finitely many equivalence classes.

Let pr,: I’y x O(n —d) — O(n — d) be the projection. Fof" € & C 91(n) we have
by construction that the order of H®"/I") is bounded by1”2. Thus the order of the image
H = pry(I') is at mosn™. Itis an elementary consequence from representation theory of finite
groups that @ — d) contains up to inner conjugation only finitely many groups of a given
order, and hence we can think lefas a fixed group. Thus it is sufficient to check that for a
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given finite groupH there are only finitely many subgroupsc I'y x H with pr(I") = T,
But this is an immediate consequence of the fact that a finitely generated group contains only
finitely many subgroups of a given index, compare Lemma 2.6.

The Proof of Corollary 6.6

We begin with the case of a compact Lie grasipLet v € Hom(T1, G). The imageH =
Y (IT) contains no free subgroups of rank 2. By a theorem of Tits [20] this impliesHhat
is solvable up to finite index. Then the closweof H is solvable up to finite index, too. In
particular, the identity component,, a connected solvable compact Lie group, is abelian.
ThereforeH andH are abelian up to finite index.

The homomorphisng factorizes) = 1oy wherer: H — Gistheinclusion. By Theorem 6.2
we can deform (and hence)) into a homomorphism with finite image.

According to a theorem of Jordan [19, Theorem 8.29], there is a comsta@ntonly depend-
ing onG such that any finite subgroWpc G contains an abelian normal subgratigatisfying
(F: F) < m(G).

Let IT' be the intersection of all subgroupsidfof index at mosm(G). Lemma 2.6 exhibits
IT" as a finitely generated subgroup of finite indexiin Observe that for a homomorphism
¥ € Hom(T1, G) with finite image the group/(IT) is abelian. In summary, we can say
that any homomorphisnir € Hom(I1, G) can be deformed into a homomorphigmwith
Ker(y) D [IT, IT"], where [T, IT'] is the commutator group dfl’. Consequently, we only
have to prove that Hoahl /[IT’, IT'], G) has only finitely many arc-connected components.

In other words, we can assume tiiats abelian up to finite index. By Theorem 6.2 there
is a constanh = h(IT, G) such that any homomorphisth € Hom(I1, G) can be deformed
into a homomaorphism with ok@ (IT)) < h.

Let IT” be the intersection of all subgroups of index at ntogt IT. From Lemma 2.6 we
infer that the factor group := IT/I1” is finite. Similarly to above it remains to check that the
set HomF, G) has only finitely many arc-connected components. But this statement follows
immediately from the fact that Ho¢R, G) has only finitely many conjugate classes, see [1,
appendix] for quantitative estimates.

Suppose now that = GL(n, K) whereK € {R, C}. By the first part it is sufficient to verify
that a given representatian € Hom(I1, G) can be deformed into an orthogonal representation
if K = R and into an unitary representationkif = C. This clearly can be done by showing
thaty can be deformed into a homomorphism that has a relatively compact image. We argue
by induction om.

We begin with the case of areducible representatiofo there is a nontriviat (IT)-invariant
subspace/ ¢ K". Without loss of generality = K9 x {0} ¢ K" for some positive integer
d < n. Theny (g) is a block matrix

C
g - (:(g) (g)>
0 n(9

where¢ (g) € GL(d, K), n(g) € GL(n —d, K) andC(g) € M(d x (n — d), K). Consider the
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continuous family of homomorphisms

¢(9) A-C(9)
0 n(g)

Clearly,y, = ¥ andyy = ¢ @n. By the induction hypothesis we can deform the representations
¢ andp into homomorphisms with finite images, and hence we are done.

Thus we can assume théatis irreducible. Letz be the Zarisky closure af (IT) in G. By
Tits theoremy (1) is solvable up to finite index, so the identity componggof Z is solvable.
Suppose for a moment thag is not abelian. Then the commutator group= [Z,, Zy] is a
nontrivial unipotent normal subgroup af Because of Engel’s theorem the vector space

v, (9) = ( ) forx €[0,1], g e II.

V ={veK"| Av=vforall Aeuj

is a nontrivial subspace &". SinceU is a normal subgroup dof, V is az-invariant subspace
which is impossible. Hencg, is abelian. LetT be the maximal compact subgroup 2y,
and lett C 3 be the corresponding Lie algebras. We can find afziéhvariant complement

a of tin 3 because A) is finite. The groupA corresponding ta is a connected, simply
connected, closed, cocompact normal subgroup bf particularA = R! for a suitable integer

I. Sincez has only finitely many connected components, there exists a maximal compact
subgroupk and furthermoreX - A = z, see [11, Ch. XV, Theorems 3.1 and 3.7]. Moreover
ANK = {e} and therefore is isomorphic to a semidirect produkt x5 K. We identifyz with

R X5 K, and consider the continuous family of homomorphidm&, k) = (Av, k) for all
(v,k) e R Xz K =2, € [0, 1]. For the corresponding family, := h, oy we havey;, = v,
and the image of, is contained in the compact group
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