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Abstract: We will characterize the fundamental groups of compact manifolds of (almost) nonnegative Ricci
curvature and also the fundamental groups of manifolds that admit bounded curvature collapses to manifolds
of nonnegative sectional curvature. Actually it turns out that the known necessary conditions on these groups
are sufficient as well. Furthermore, we reduce the Milnor problem—are the fundamental groups of open
manifolds of nonnegative Ricci curvature finitely generated?—to manifolds with abelian fundamental groups.
Moreover, we prove for each positive integern that there are only finitely many non-cyclic, finite, simple
groups acting effectively on some completen-manifold of nonnegative Ricci curvature. Finally, sharping a
result of Cheeger and Gromoll [6], we show for a compact Riemannian manifold(M, g0) of nonnegative
Ricci curvature that there is a continuous family of metrics(gλ), λ ∈ [0,1] such that the universal covering
spaces of(M, gλ) are mutually isometric and(M, g1) is finitely covered by a Riemannian productN × Td,
whereTd is a torus andN is simply connected.
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1. Introduction

The paper is divided in six sections. In the beginning of each of the following sections we state
its main results which can be understood independently from each other. The corresponding
proofs can be found at the end of each section. In Section 2 we give algebraic characterizations
of the fundamental groups of several classes of Riemannian manifolds. At first, we consider
compact manifolds of nonnegative Ricci curvature. Using the fact that the fundamental group
of such a manifold acts cocompactly as the deck transformation group on the universal covering
spaceM̃ of M , Cheeger and Gromoll [5] have shown thatM̃ is compact, unless it contains
a line. Combining this observation with their deep splitting theorem they proved thatM̃ is
isometric to a Riemannian productRd× K whereK is a compact manifold. As a consequence
they deduced thatπ1(M) acts discontinuously and cocompactly onRd, and therefore it contains
a finite normal subgroupE such thatπ1(M)/E is isomorphic to a crystallographic group, i.e., to
a discrete, cocompact subgroup ofRd oO(d) (d = 0 is allowed).

It is natural to ask whether conversely all abstract groups satisfying this condition occur as
fundamental groups of compact manifolds of nonnegative Ricci curvature. In Theorem 2.1 we
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give a positive answer to this question. Actually we prove the stronger result that these groups
occur as fundamental groups of compact manifolds of nonnegative sectional curvature.

The fundamental group of ann-dimensional, complete manifoldM of nonnegative Ricci
curvature was first investigated by Milnor [14]. He used the polynomial volume growth of the
universal covering space ofM to show that any finitely generated subgroup ofπ1(M) has poly-
nomial growth of order6 n. Gromov [9] has given an algebraic characterization of the growth
condition: A finitely generated group has polynomial growth if and only if it contains a nilpotent
subgroup of finite index. We shall briefly say that such a group is nilpotent up to finite index.

There are two more classes of Riemannian manifolds for which the corresponding funda-
mental groups are nilpotent up to finite index: Fukaya and Yamaguchi [8] have shown that
for any positive integern there exists a constantε(n) > 0 such that the fundamental group
of any n-dimensional Riemannian manifoldM with sectional curvature bounded below by
− ε(n)/diam(M)2 is nilpotent up to finite index. Recently Cheeger and Colding [3] proved the
Gromov conjecture which is the Ricci version of Fukaya’s and Yamaguchi’s theorem: For anyn
there is a constantε̃(n) > 0 such that the fundamental group of anyn-dimensional Riemannian
manifoldM with Ricci curvature bounded below by− ε̃(n)/diam(M)2 is nilpotent up to finite
index.

A compactn-dimensional manifoldM is said to have almost nonnegative sectional curvature
(resp. Ricci curvature) if its sectional curvature (resp. Ricci curvature) is bounded below by
− ε(n)/diam(M)2 (resp.− ε̃(n)/diam(M)2).

Again one can ask whether any finitely generated group that is nilpotent up to finite index
occurs as a fundamental group in each of the considered classes. We give a positive answer to
this question in Theorem 2.3.

For the class of complete manifolds of nonnegative Ricci curvature a partial answer was
already known before, and this result also plays a crucial role in the proof of Theorem 2.3:
For a nilpotent Lie groupN Wei [21] constructed a complete metric of positive Ricci curvature
on M = Rp × N, wherep is a sufficiently large integer, in such a way that the natural action
of N on M is still isometric. Since, according to Malcev, any finitely generated, torsion free,
nilpotent group can be realized as a lattice in a connected, simply connected, nilpotent Lie
group, she obtained as a corollary that any finitely generated, torsion free, nilpotent group is
the fundamental group of some complete manifold of positive Ricci curvature.

The concept of a finitely generated, nilpotent group has a natural generalization, the concept
of a polycyclic group, see Section 2 for the definition. Professor E. Heintze posed the question
whether there is a class of manifolds for which the corresponding fundamental groups are
precisely the groups that are polycyclic up to finite index. In Theorem 2.4 we give a positive
answer to this question. One of the two classes we consider consists of compact manifolds that
admit bounded curvature collapses to manifolds of nonnegative sectional curvature. The most
difficult implication of Theorem 2.4 is actually an immediate consequence of the fiber bundle
theorem of Fukaya and Yamaguchi [8].

In the Theorems 2.1, 2.3 and 2.4 we give the two equivalent algebraic conditions c) and d).
Briefly stated this equivalence means that a finitely generated group is abelian (nilpotent,
polycyclic) up to finite index if and only if modulo a finite subgroup it is isomorphic to a crystal-
lographic (almost crystallographic, polycrystallographic) group. Recall that an almost crystallo-
graphic (polycrystallographic) group is a discrete, cocompact subgroup of a semidirect product
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N o K, whereN is a connected, simply connected, nilpotent (solvable) Lie group andK is a
compact subgroup of its automorphism group. In the nilpotent case the most striking part of this
equivalence, the implication d)⇒ c), is due to Lee [13]. The equivalence in the polycyclic case
is actually an immediate consequence of [23], where several equivalent characterizations of
polycrystallographic groups are given. In the proofs of the three theorems the equivalence of the
conditions c) and d) is crucial to realize these groups as fundamental groups in the considered
classes.

In Section 3 we will use the equivalence of the conditions c) and d) of Theorem 2.3 to
generalize Gromov’s polynomial growth Theorem to some extent to non-finitely generated
groups. In particular, Theorem 3.1 provides an algebraic characterization of groups for which
any finitely generated subgroup has polynomial growth of order6 n. As a corollary of this
theorem we prove that such a group is finitely generated if and only if any abelian subgroup
is finitely generated. This result is intended to reduce one of the major open problems in the
structure theory of noncompact, complete manifolds of nonnegative Ricci curvature: Is the
fundamental group of such a manifold finitely generated? Since any subgroup of a fundamental
group is the fundamental group of some covering space, Corollary 3.2 reduces the original
problem to manifolds with abelian fundamental groups. In Section 3 we also give an example
of a complete Riemannian manifoldM whose fundamental group is isomorphic toQ/Z; M is
obtained by a surgery construction from a sequence of homogeneous spaces, but actually it is
hard to tell whetherM admits a complete metric of nonnegative Ricci curvature.

Notice that Theorem 2.3 does not answer the question which of the groups that match the
algebraic characterization occur as fundamental groups in the corresponding class of manifolds
in a fixed dimension. For the class of compact manifolds of almost nonnegative sectional
curvature Fukaya and Yamaguchi [8] have shown that in each dimensionn there is a constant
Cn such that the fundamental group of a manifold in this class has a solvable normal subgroup
of index at mostCn. In Section 4 we will prove a weaker result for the class of complete
manifolds of nonnegative Ricci curvature (Theorem 4.1): In each dimensionn there is a finite
collection of finite simple groups such that any finitely generated fundamental group5 has a
finite subnormal series{e} = N0 ⊂ · · · ⊂ Nl = 5 with factor groupsNi+1/Ni being either
cyclic or isomorphic to a group of the finite collection. Beyond the fact that we apply strong
theorems the proof of Theorem 4.1 is surprisingly easy.

In Section 5 we establish an estimate for the index of the nilradical in an almost crystallo-
graphic group. It is a well-known fact that the torsion free almost crystallographic groups are
precisely the fundamental groups of Gromov’s almost flat manifolds. In this context Buser and
Karcher [1] proved for an almost crystallographic group0 that its translational part0∗ is a
subgroup of index at most 2· 61

2r (r−1) wherer = rank(0∗). We will show (Theorem 5.1) that
the index divides the number(2n)! wheren = rank(0∗)− rank([0∗, 0∗]).

The estimates of Section 5 are needed in the last section, which deals with a deformation
problem. By Cheeger and Gromoll [6] a compact manifold of nonnegative Ricci curvature is
finitely covered by a manifold which is diffeomorphic to a productT (d)×N whereN is simply
connected andT (d) is a torus. To sharpen this result we will study normal Riemannian coverings
q0:Rn× N → (M, g0), whereN is a complete Riemannian manifold with a compact isometry
group. Corollary 6.3 states that such a covering can be deformed via a continuous family of
Riemannian coveringsqλ:Rn× N → (M, gλ), λ ∈ [0,1], such that(M, g1) is finitely covered
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by a Riemannian productT (d) × Rn−d × N whereT (d) is a flat torus andd ∈ {0, . . . ,n}.
Moreover, we estimate the number of sheets of the finite covering.

In the case of ann-dimensional open flat manifold(M, g0) Corollary 6.3 reduces to the
following generalization of the first Bieberbach theorem (Corollary 6.4): There is a continuous
family (gλ)λ∈[0,1] of complete flat metrics onM such that the holonomy group of(M, g1) is
finite and its order is bounded bynn2

.

2. Algebraic characterizations of fundamental groups

2.1. Basic definitions and statement of results

A crystallographic group of rankd is a discrete, cocompact subgroup of the isometry group
of Rd. The trivial group is said to be a crystallographic group of rank 0.

Theorem 2.1. For an abstract group5 the following statements are equivalent.
a)5 is isomorphic to the fundamental group of a compact manifold of nonnegative sectional

curvature.
b)5 is isomorphic to the fundamental group of a compact manifold of nonnegative Ricci

curvature.
c) There is a finite groupE, a crystallographic group0 and an exact sequence

{1} → E
i→ 5

p→ 0→ {1} .
d) There is a finite groupF, an integer d> 0 and an exact sequence

{0} → Zd j→ 5
q→ F→ {1} .

e)5 is isomorphic to a discrete, cocompact subgroup of a semidirect productRd oβ F,
whereF is a finite group andβ: F→ GL(d,R) a homomorphism.

The construction actually shows that these groups occur as fundamental groups of compact
locally homogeneous spaces, which are finitely covered by Lie groups. It is therefore tempting
to ask “Which fundamental groups occur in the homogeneous case?” We use the concept of
a homogeneous space in the Riemannian sense. Hence a homogeneous space is a Riemannian
manifold whose isometry group acts transitively.

Theorem 2.2. For an abstract group5 the following statements are equivalent.
a)5 is isomorphic to the fundamental group of a compact homogeneous space.
b)5 is isomorphic to the fundamental group of a homogeneous space.
c) There is a finite groupE, an integer d> 0 and an exact sequence

{1} → E
i→ 5

p→ Zd → {0} .
d) The center of5 contains a subgroupA ∼= Zd of finite index in5.
e)5 is isomorphic to a discrete, cocompact subgroup of a direct productRd × F, whereF

is a finite group.
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An almost crystallographic group of rankd is a discrete, cocompact subgroup of a semidirect
productNo K, whereN is a connected, simply connected,d-dimensional, nilpotent Lie group,
K is a compact subgroup of the automorphism group Aut(N) and whereNoK carries the natural
semidirect product structure. Again the cased = 0 is allowed. As explained in the introduction,
a Riemannian manifold is said to have almost nonnegative sectional (resp. Ricci) curvature if
it satisfies the assumption of the theorem of Fukaya and Yamaguchi [8] (resp. the assumption
of the theorem of Cheeger and Colding [3]).

Theorem 2.3. For a finitely generated group5 the following statements are equivalent.
a) 5 is isomorphic to the fundamental group of a complete manifold of positive Ricci

curvature.
b)5 is isomorphic to the fundamental group of a complete manifold of nonnegative Ricci

curvature.
c) There is a finite groupE, an almost crystallographic group0 and an exact sequence

{1} → E
i→ 5

p→ 0→ {1} .
d) There is a finite groupF, a torsion free, nilpotent groupL and an exact sequence

{1} → L→ 5→ F→ {1} .
e)5 is isomorphic to a discrete, cocompact subgroup of a semidirect productNoβ F, where

N is a connected, simply connected, nilpotent Lie group, F is a finite group andβ: F→ Aut(N)
a homomorphism.

f) 5 is isomorphic to the fundamental group of a compact manifold of almost nonnegative
sectional curvature.

g)5 is isomorphic to the fundamental group of a compact manifold of almost nonnegative
Ricci curvature.

The concept of a finitely generated nilpotent group has a natural generalization, the concept of
a polycyclic group. Recall that a group3 is called polycyclic if there are subgroups

{e} = N1 ⊂ · · · ⊂ Nk = 3
such thatNi is a normal subgroup ofNi+1 and the factor groupNi+1/Ni is cyclic. If Ni+1/Ni

∼= Z
for all i , then3 is called a strongly polycyclic group.

The concept of an almost crystallographic group has also a natural generalization: A group
0 is called a polycrystallographic group of rankd if and only if 0 is isomorphic to a discrete
cocompact subgroup of a semidirect productS o K, whereS is a d-dimensional, connected,
simply connected solvable Lie group and whereK is a compact subgroup of Aut(S). As is
shown in Wilking [23] this is equivalent to saying that there are subgroups

{e} = 01 ⊂ · · · ⊂ 0k = 0
such that0i is a normal subgroup of0i+1 and the factor group0i+1/0i is isomorphic to a
crystallographic group. Therefore the notation “polycrystallographic” is rectified. Furthermore
it is easy to see that in the above the situation the rank of0 is given by

rank(0) =
k−1∑
i=1

rank(0i+1/0i ).
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Theorem 2.4. Let5 be a group. Then the following statements are equivalent.
a)5 is isomorphic to the fundamental group of a compact manifold M satisfying: There is

a sequence of Riemannian metrics gi on M such that
(i) The absolute value of the sectional curvature of(M, gi ) is bounded above by1.
(ii) The sequence(M, gi ) converges in the Gromov–Hausdorff sense to a(possibly lower

dimensional) compact Riemannian manifold B of nonnegative sectional curvature.
b) 5 is isomorphic to the fundamental group of a compact manifold M satisfying: There

are compact manifolds M= M0,M1, . . . ,Mk and sequences of Riemannian metrics gi
j on Mj

such that
(i) The sectional curvature of(M j , g

i
j ) is bounded below by−1.

(ii) The sequence(M j , g
i
j )i∈N converges in the Gromov–Hausdorff sense to(M j+1, g

0
j+1)

for j = 0, . . . , k− 1.
(iii) (Mk, g

i
k)i∈N collapses to a single point.

c) There is a finite groupE a polycrystallographic group0 and an exact sequence

{1} → E
i→ 5

p→ 0→ {1} .

d)5 is polycyclic up to finite index.
e)5 is isomorphic to a discrete, cocompact subgroup of a semidirect productSoβ F, where

S is a connected, simply connected, solvable Lie group, F is a finite group andβ: F→ Aut(S)
is a homomorphism.

Remark 2.5. 1. The groupi (E) ⊂ 5, occurring in condition c) of each of the four theorems, is
uniquely characterized as the maximal finite normal subgroup of5. In order to prove this, we
first remark that the product of two finite normal subgroups is again a finite normal subgroup.
Thus5 contains at most one maximal finite normal subgroup. On the other hand, a polycry-
stallographic group does not contain any nontrivial finite normal subgroup, and hencei (E) is
a maximal finite normal subgroup.

2. The Theorems 2.1 and 2.3 in particular provide an algebraic characterization of (almost)
crystallographic groups due to Dekimpe and Igodt [7]: An abstract finitely generated group
0 is isomorphic to an (almost) crystallographic group if and only if it contains an abelian
(resp. nilpotent) subgroup of finite index and it does not contain any nontrivial finite normal
subgroup. The analogue for polycrystallographic groups was proved in [23].

3. There is a different, more common algebraic characterization of (almost) crystallographic
groups given by L. Auslander. A finitely generated group0 is isomorphic to an (almost) cry-
stallographic group if and only if0 contains an abelian (resp. nilpotent) torsion free normal sub-
group0∗ of finite index, which is maximal among all abelian (resp. nilpotent) subgroups of5.

We use the opportunity to correct a mistake which occurs in this context in the literature,
see [2, p. 74]. In Auslander’s characterization of crystallographic groups the condition that0∗

is a normal subgroup is not redundant: LetS3 be the symmetric group of degree 3, and let
h: S3 → Z/2Z be the unique epimorphism onto the additive groupZ/2Z. Define0 as the
kernel of the homomorphism

S3 × Z→ Z/2Z , (σ, k) 7→ h(σ )+ π(k)
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whereπ :Z→ Z/2Z denotes the projection. Clearly,0 is not abelian but0 contains a cyclic
subgroup0∗ of index 3 generated by the element(τ,1) whereτ is a transposition. Thus0∗ is
a torsion free maximal abelian subgroup of finite index. Nevertheless,0 is not isomorphic to a
crystallographic group.

4. The embedding5 ↪→ SoβF in Theorem 2.4 e) can be chosen such that any automorphism
of 5 can be extended uniquely to an automorphism ofSoβ F.

The rest of this section is organized as follows: We will prove Theorem 2.1 and Theorem 2.2
in Subsection 2.2 and Subsection 2.3, respectively. For the proofs of the other two theorems
and for later applications we need some elementary lemmas from group theory which we have
placed in Subsection 2.4. Subsection 2.5 and Subsection 2.6 contain the proofs of Theorem 2.3
and Theorem 2.4, respectively.

2.2. Proof of Theorem 2.1

a)⇒ b) is trivial. b)⇒ c) is due to Cheeger and Gromoll [6]. The implication b)⇒ d) is
also due to them, but we do not need it in our proof.

c) ⇒ d) By the first Bieberbach theorem the crystallographic group0 contains a finitely
generated, free abelian normal subgroup0∗ ⊂ 0 of finite index (the subgroup of translations).
The preimagep−1(0∗) is a normal subgroup of finite index in5.

The centralizerZ of i (E) is the kernel of the homomorphism5 → Aut(i (E)) given by
conjugation. Hence5/Z is isomorphic to a subgroup of Aut(i (E)) which is finite becauseE is
finite.

ThereforeZ is a normal subgroup of finite index, too. The same is true forH := Z∩ p−1(0∗).
Clearly, the finite groupD := i (E) ∩ H is contained in the center ofH. The quotientH/D is
isomorphic to the free abelian groupp(H) ⊂ 0∗. Combining these facts we deduce that fora,
b ∈ H the following relations hold:

ba= abz for somez ∈ D ,

(ab)n = anbnz
1
2n(n−1) for all n ∈ N .

Using the last equation forn = 2 · ord(D) we find that the mapϑ : H → H, a 7→ an is a
homomorphism. Consequently,A := ϑ(H) is a normal subgroup of5, and since the kernel of
ϑ equalsD, we conclude thatA ∼= H/D ∼= p(H) ∼= 0∗. Thusp(A) is of finite index in0. Since
the kernel ofp is finite, it follows thatA is a subgroup of finite index in5.

d) ⇒ e) Let A := j (Zd). Via the natural inclusionZd ⊂ Rd we have a homomorphism
Aut(A) ∼= GL(Zd) ↪→ GL(Rd). So the operation of5 on A given by conjugation induces a
homomorphism

α:5→ GL(Zd
) ⊂ GL(Rd

) .

We consider5with the discrete topology andRd with the standard topology. Then the semidi-
rect product

Rd oα 5 , (v, g) · (w, h) := (
α(g)(w)+ v, gh

)
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with its product topology becomes a Lie group, and

N := {
(−v, j(v))

∣∣ v ∈ Zd}
is a discrete normal subgroup. The product({0} ×5) · N = Zd oα 5 is a discrete, cocompact
subgroup ofRd oα 5. The projection

π :Rd oα 5→ G := (Rd oα 5)/N

is a covering map, and the restrictionsπ |{0}×5 andπ |Rd×{1} are injective. Thereforeπ maps
5 ∼= ({0} ×5) isomorphically onto a discrete, cocompact subgroup ofG. Moreover,

G/π
(
Rd ×{1}) ∼= 5/A ∼= F ,

and hence we get an exact sequence

{0} → Rd j̄→ G
q̄→ F→ {1} ,

where j andq are characterized byj (v) = π(v,1) andq ◦ π(0, g) = q(g).
By the classical theory of factor systems or by cohomology theory of finite groups such a

sequence splits, i.e., there is a sectionh: F → G that is a homomorphism, see for example
[2, Chap. I.5]. Such a homomorphism can be constructed by using a set-theoretical section
s: F→ G, i.e., a map satisfyingq ◦ s= id, as follows:

h(a) := s(a) · j

(
1

ord(F)

∑
f ∈F

j −1(s(a)−1s( f )−1s( f a)
))
.

The maph can be viewed as the barycenter of the sectionssf , f ∈ F given by

sf (a) = s( f )−1s( f a) .

It is elementary to show thath is a homomorphism. As a consequenceG is isomorphic to the
semidirect productRd oβ F, whereβ: F→ GL(Zd) ⊂ GL(Rd) is the unique homomorphism
satisfyingα = β ◦ q. Explicitly the isomorphism is given by

Rd oβ F→ G , (v, f ) 7→ j (v) · h( f ) .

Since this is an isomorphism between Lie groups, we have realized5 as a discrete, cocompact
subgroup ofRd oβ F.

e)⇒ a) Let5 be a discrete, cocompact subgroup of a semidirect productRdoβ F, whereF
is finite andβ: F→ GL(d,R) is a real representation ofF. After changing the scalar product
of Rd, we may assume thatβ is an orthogonal representation. We define a discontinuous,
isometric action of5 ⊂ Rd oβ F onRd

5× Rd → Rd
, ((v, f ), w) 7→ β( f )(w)+ v.

For sufficiently largel there is an injective homomorphismh: F→ SU(l ). For example, one
can choosel = ord(F), sinceF can be viewed as a subgroup of the symmetric groupSl which
embeds into O(l − 1) ⊂ SU(l ).
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Consider SU(l ) with a biinvariant metric and define an isometric action of5 on the Rie-
mannian product SU(l )× Rd by

(v, f )(T, w) := (
h( f )T, β( f )(w)+ v)

for all (v, f ) ∈ 5 and (T, w) ∈ SU(l ) × Rd. This operation is discontinuous, because the
operation on the second factor is discontinuous. Forg ∈ 5\{e} at least one of the corresponding
isometries on the two factors is given by a nontrivial left translation, and accordingly the action is
free as well. Taking into account that SU(l )× Rd is a connected, simply connected manifold,
we see that5 is isomorphic to the fundamental group of(SU(l )× Rd)/5.

2.3. Proof of Theorem 2.2

The implication a)⇒ b) is trivial.
a)⇒ c) Let M be a compact homogeneous space with5 ∼= π1(M). Clearly, we can assume

that M is connected. Then the identity component Iso0(M) of the isometry group ofM acts
transitively onM . According to Myers and Steenrod [18], the group Iso0(M) is a compact
Lie group. Therefore the universal covering groupG of Iso0(M) is a Lie group that admits a
biinvariant metric, and because of thatG is isomorphic to a direct productRk × K, whereK is
a compact semisimple Lie group, see [4, Prop. 3.34].

Consequently,Rk × K acts transitively onM . Let H ⊂ Rk × K be the isotropy group
of some point inM . The manifoldM is diffeomorphic to(Rk × K)/H and thusπ1(M) ∼=
H/H0 =: π0(H). Consider the projection pr :H→ Rk onto the first component and the homo-
morphismπ0(pr):π0(H) → π0(pr(H)) induced by pr. Since the kernel of pr is compact, the
kernel ofπ0(pr) is finite. The image of pr, a closed cocompact subgroup ofRk, is isomorphic to
Rl × Zk−l for somel ∈ {0, . . . , k}. For that reason the image ofπ0(pr) is isomorphic toZk−l .

In summary, we can say thatπ1(M) ∼= π0(H) contains a finite normal subgroupE with a
factor groupπ1(M)/E isomorphic toZk−l , as claimed.

c) ⇒ d) From the implication c) ⇒ d) of Theorem 2.1 we deduce that there is a normal
subgroupA ∼= Zd of finite index in5. Since the image ofp is abelian, we have the equation
p(a) = p(gag−1) for g ∈ 5, a ∈ A. The restrictionp|A is injective, and hencea = gag−1 for
g ∈ 5, a ∈ A. In other words,A is contained in the center of5.

d) ⇒ e) By the implication d) ⇒ e) of Theorem 2.1, the group5 is isomorphic to a
discrete, cocompact subgroup of a semidirect productRd oβ F. The proof of Theorem 2.1
shows that in the present situationβ is the trivial homomorphism; in fact, the homomorphismα
occurring in the proof is trivial. It follows thatRd oβ F is a direct product.

e)⇒ a) For sufficiently largel the groupRd×F can be viewed as a subgroup ofRd×SU(l ).
Consequently,5 becomes a discrete, cocompact subgroup ofRd×SU(l ). Thus5 ∼= π1(Rd×
SU(l )/5).

b) ⇒ a) A connected homogeneous space in the Riemannian sense is diffeomorphic to
a quotientG/K, whereG is a connected Lie group andK is a compact subgroup. Choose a
maximal compact subgroupL of G with K ⊂ L. Using thatG/K fibers over the contractible
spaceG/L, we see thatG/K is homotopically equivalent to the fiberL/K. In particular,π1(G/K)
is isomorphic to the fundamental group of the compact homogeneous spaceL/K.



138 B. Wilking

2.4. Some group theory

Recall that a subgroupG ⊂ 5 is called characteristic if it is invariant under all automorphisms
of 5.

Lemma 2.6. Let5 be a finitely generated group.
a) Define for a given positive integer n the groupG as the intersection of all subgroups of

5 of index at most n. ThenG is a characteristic subgroup of finite index in5.
b) If G ⊂ 5 is a subgroup of finite index, thenG is finitely generated, too.
c) LetL ⊂ 5 be a finitely generated normal subgroup andH ⊂ L a subgroup of finite index

in L. Then there is a subgroupH′ ⊂ H of finite index that is normal in5.

Proof. a) Let H be a subgroup of indexk 6 n. Consider the natural action of5 on the left
cosets5/H. This action induces a homomorphism5 → Sk ⊂ Sn, whereSk andSn denote
the symmetric groups of degreesk andn. The kernel of this homomorphism is contained inH.
Consequently, any subgroup of indexk 6 n contains a subgroup which is the kernel of some
homomorphismϕ ∈ Hom(5,Sn). Since5 is finitely generated andSn is finite, it follows that
Hom(5,Sn) is finite. Thus the group

G ⊃
⋂

ϕ∈Hom(5,Sn)

Ker(ϕ)

is a subgroup of finite index in5. Evidently,G is a characteristic subgroup of5 as well.
b) Let M ⊂ 5 be a finite set that generates5. By enlargingM if necessary, we may assume

thatM contains an element of each left coset ofG in5 and thatM is invariant under inversion.
We claim that then the set

N := {
abc∈ G

∣∣ a, b, c ∈ M
}

generatesG. In fact, forg ∈ G there are elementsa1, . . . , an ∈ M such thatg = a1 · · ·an. In
order to proveg ∈ 〈N〉 we argue by induction onn. If n = 1, theng itself is contained inN. If
n > 2, we choose an elementb ∈ M such thatb ·an−1 ·an ∈ G. Thereforeb ·an−1 ·an ∈ N and
a1 · · ·an−2·b−1 ∈ G. By the induction hypothesis we can express the elementa1 · · ·an−2·b−1 as
a product of elements inN. Of course, the same is valid forg = (a1 · · ·an−2 ·b−1) ·b ·an−1 ·an.

c) DefineH′ as the intersection of all subgroups ofL of index at most ord(L/H). According
to a), the groupH′ is a characteristic subgroup of finite index inL. SinceL is a normal subgroup
of 5, it follows thatH′ is normal in5, too.

Lemma 2.7. Let5 be a group and3 a polycyclic subgroup of finite index. Then
a)Any subgroup of5 is finitely generated.
b) There is a strongly polycyclic normal subgroup of finite index in5.

Proof. Part a) follows immediately from the fact that any subgroup of3 is polycyclic. More-
over, by [19, Lemma 4.6] there is a strongly polycyclic subgroup3′ which has finite index
in 3. Evidently,3′ contains a subgroup of finite index which is normal in5, and hence the
statement b) is true as well.
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Lemma 2.8. LetG, H and5 be groups. Suppose thatG andH are polycyclic up to finite index
and assume that there is an exact sequence

{1} → H
j→ 5

q→ G→ {1} .
Then5 is polycyclic up to finite index, too.

Proof. Let3′ ⊂ H be a polycyclic subgroup of finite indexm. Let3 ⊂ 3′ be the intersection
of all index m subgroups ofH. By Lemma 2.63 is a characteristic subgroup of finite index
in H. Thus we get an exact sequence

{1} → H/3
j̄→ 5/ j (3)

q̄→ G→ {1} .
Using that3 is polycyclic, we see that it is sufficient to verify that5/j (3) is polycyclic up to
finite index. In other words, without loss of generalityH is finite.

Choose a strongly polycyclic subgroupG′ ⊂ G of finite index. Clearly, we only have to
check thatq−1(G′) is polycyclic up to finite index. So we may assume thatG itself is strongly
polycyclic. There is nothing to prove if rank(G) = 0. In the case rank(G) = 1 the group5
clearly contains a cyclic subgroup of finite index. Suppose that rank(G) > 2. Choose a normal
subgroupĜ ⊂ G with G/Ĝ ∼= Z. By induction on rank(G) we may assume thatq−1(Ĝ) is
polycyclic up to finite index. Choose a polycyclic characteristic subgroupN ⊂ q−1(Ĝ) of finite
index inĜ. ThenN is normal in5, and the factor group5/N fits in an exact sequence

{1} → H→ 5/N→ G/q(N)→ {1} .

UsingG/q(N) contains a cyclic subgroup of finite index and thatH is finite, we see that5/N
is cyclic up to finite index.

Lemma 2.9. Let5 be a finitely generated group, and letL be a nilpotent normal subgroup of
finite index.

a)ThenL is polycyclic.
b) The elements of finite order inL form a finite normal subgroup of5.

Proof. a) The groupL is finitely generated because it is of finite index in5. Taking into account
that by [19, Theorem 2.7] any subgroup of the nilpotent groupL is finitely generated, we see
thatL is polycyclic.

b) Clearly, the torsion elements ofL are invariant under conjugation in5, and thus we just
have to check that they form a finite group. LetC be the center ofL. By induction on the length
of the central series we may assume that the elements of finite order inL/C form a finite groupF.
Evidently, the torsion elements ofL are contained inG := π−1(F), whereπ : L → L/C is the
projection. Therefore it is sufficient to prove the statement forG.

The finitely generated abelian groupC contains a subgroupA ∼= Zd of finite index. Notice
thatA is a central subgroup of finite index inG. We employ Theorem 2.2 to find a finite normal
subgroupE ⊂ G such thatG/E is isomorphic toZd. This completes the proof becauseE consists
precisely of the torsion elements ofL.
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2.5. Proof of Theorem 2.3

Trivially a) implies b). The implications f) ⇒ d) and g) ⇒ d) are due to Fukaya and
Yamaguchi [8] and Cheeger and Colding [3], respectively.

b) ⇒ d) is due to Gromov [9] and Milnor [14]. More precisely, according to Milnor [14],
a finitely generated fundamental group of a complete manifold of nonnegative Ricci curvature
has polynomial growth, and a theorem of Gromov [9] states that such a group is nilpotent up
to finite index. Finally, we can apply Lemma 2.9 and Lemma 2.7 in order to show that there is
torsion free, nilpotent normal subgroupL of finite index.

d)⇒ c)was proved by Lee [13], but actually c) is also an immediate consequence of e) (see
below), and therefore we do not need this implication.

d) ⇒ a) We view L as a subgroup of5 and F as the quotient5/L. There is a unique
connected, simply connected, nilpotent Lie groupN, called the Malcev completion ofL, such
thatL is isomorphic to a lattice (a discrete, cocompact subgroup) inN, see [19, Theorem 2.18].
We identifyL with a lattice inN. We plan to extend the natural action ofL on N in some sense
to an action of5 on thek-fold productNk, wherek is the index ofL in 5.

Let b1, . . . , bk ∈ 5 be representatives of5/L. SinceL is a normal subgroup of5, we can
find for anyg ∈ 5 and i ∈ {1, . . . , k} a uniqueσg(i ) ∈ {1, . . . , k} for which bi gb−1

σg(i )
∈ L.

In fact, g 7→ σg defines an anti-homomorphism from5 to the symmetric group of degreek.
Notice that5 acts on thek-fold productNk by

g ·


x1
...

xk

 :=


b1gb−1

σg(1)xσg(1)
...

bkgb−1
σg(k)xσg(k)

 (1)

for all g ∈ 5 andx1, . . . , xk ∈ N.
Now we can make use of a construction of Wei [21]. For a sufficiently large numberp ∈ N

she introduced onM := Rp × N a complete metric of positive Ricci curvature for which
N still operates by isometries via left-translations on the second factor. Consider thek-fold
Riemannian productMk. We can define a discontinuous isometric action of5 on Mk by using
equation (1) for allg ∈ 5 andx1, . . . , xk ∈ M .

For sufficiently largel there is a homomorphismh:5 → SU(l ) with kernelL. The group
5 acts on SU(l ) by left-translation viah. Thus we get an isometric, discontinuous, free action
of 5 on SU(l )× Mk. Since SU(l )× Mk is a connected, simply connected manifold, we have
realized5 as the fundamental group of the orbit space(SU(l )× Mk)/5.

d) ⇒ e) Consider again the action of5 on Nk, which is given by (1). This operation is
obviously effective. So we may identify5 with the image of the induced homomorphism

5→ Nk o Sk

where(σ, (x1, . . . , xk)) ∈ Nk o Sk is the affine diffeomorphism

Nk → Nk
, (y1, . . . , yk ) 7→ (x1 · yσ−1(1), . . . , xk · yσ−1(k) ) .

Let ci : L → L, g 7→ bi gb−1
i , i = 1, . . . , k. The automorphismci can be extended uniquely

to a continuous automorphism ofN, see [19, Theorem 2.11]. We call this map againci and
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define a subgroup̃N of Nk ⊂ Nk o Sk consisting of the elements
c1(x)
...

ck(x)

 , x ∈ N .

Clearly,Ñ is isomorphic toN, and5 ⊂ NkoSkSk normalizes̃N. HenceÑ is a normal subgroup
of G = Ñ ·5 andG/Ñ ∼= 5/L = F. Consequently, we obtain an exact sequence of Lie group
homomorphisms

{1} → N
j→ G

q→ F→ {1} .
It is sufficient to prove that this sequence splits. LetC := [N,N] be the commutator group ofN.
SinceC is a characteristic subgroup,j (C) is a normal subgroup ofG. Thus there is an exact
sequence

{1} → N/C
j̄→ G/ j (C)

q̄→ F→ {1} .
SinceN/C is vector group, this sequence splits as we have seen in the proof of Theorem 2.1.
So letF̃ ⊂ G/j (C) be a subgroup that is viaq isomorphic toF. For the preimageH of F̃ under
the projectionG→ G/j (C) we get an exact sequence

{0} → C→ H
q→ F→ {1} ,

and by induction we can assume that this sequence splits.
e)⇒ c)We can define an action of5 ⊂ Noβ F on N consisting of affine diffeomorphisms

by
(x, f ) · y = x · β( f )(y) .

The kernelE ⊂ 5 of this action is clearly finite, and the quotient5/E is an almost crystallo-
graphic group.

c) ⇒ d) According to Auslander [19, Corollary 8.28], an almost crystallographic group
0 contains a torsion free, nilpotent normal subgroup of finite index (the subgroup of left
translations). By passing from5 to a subgroup of finite index, we can assume that0 itself is
torsion free and nilpotent.

From Lemma 2.8 we infer that5 is polycyclic up to finite index, and now by Lemma 2.7
there is a torsion free normal subgroupL of finite index in5. Taking into account thatp|L is
injective we see thatL is nilpotent.

e) ⇒ f) ∧ g) We identify5 with a discrete, cocompact subgroup ofN oβ F and define a
discontinuous, cocompact action of5 on N

5× N→ N , ((g, f ), h) 7→ g · β( f )(h). (2)

Lemma 2.10 below ensures the existence of a sequencegµ of left invariant metrics onN for
which

a) The action of5 on N, defined in (2), is isometric with respect to the metricgµ, and the
orbit space(L , gµ)/5 has diameter 1.

b) The sectional curvature of(N, gµ) is bounded below by−1/µ.
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For sufficiently largel there is a monomorphismh: F ↪→ SU(l ). Let g denote the biinvariant
metric on SU(l ) normalized by diam(SU(l ), g) = 1. We define an isometric action of5 on
(N, gµ)×(SU(l ), g) by using on the first factor the action defined in (2) and on the second factor
the action given by((v, f ), A) 7→ h( f ) · A for A ∈ SU(l ), (v, f ) ∈ 5 ⊂ Noβ F. Clearly, this
action is free and discontinuous, and thus5 is isomorphic to the fundamental group of the quo-
tient(M, gµ) := ((N, gµ)× (SU(l ), g))/5. Finally, the diameter of this quotient has the upper
bound

√
2, and its sectional curvature is bounded below by−1/µ. Consequently,(M, gµ) is a

compact manifold with almost nonnegative sectional (Ricci) curvature for sufficiently largeµ.

Lemma 2.10. Let F be a finite group, N a connected, simply connected, nilpotent Lie group,
β: F→ Aut(N) a homomorphism, and let5 ⊂ N oβ F be a lattice. Then there is a sequence
of left invariant metrics(gµ)µ∈N on N satisfying the following three conditions.
(1) The action ofNoβ F on (N, gµ) given by(g, f ) ? h := g · β( f )(h) is isometric.
(2) The diameter of the quotient(N, gµ)/5 is 1.
(3) The absolute value of the sectional curvature of(N, gµ) is bounded by1/µ.

Actually the statement of the lemma is known for a torsion free group0, and the proof of this
special case carries over to the present situation. However, to avoid mysteries we have included
a proof.

Proof. Consider the representation of the finite groupF in the Lie algebran given by f 7→
β( f )∗e. For a suitable scalar product〈· , ·〉 on n this representation becomes orthogonal. We
identify 〈· , ·〉 with the left invariant extension onN and observe that the action ofN oβ F on
(N, 〈· , ·〉) is isometric.

Let {0} = g0 ⊂ · · · ⊂ gk = n be the central series ofn, i.e.,gi is inductively defined by the
property: the Lie algebragi+1/gi is the center ofn/gi . Define pairwise orthogonal (with respect
to 〈· , ·〉) vector subspacesV1, . . . , Vk ⊂ n by means ofV1 ⊕ · · · ⊕ Vi = gi , i = 1, . . . , k.
Evidently, each subspaceVj is invariant under the action ofF. Moreover, [Vi ,Vj ] ⊂ gi−1 for
all i, j . Set

gλ

( k∑
i=1

vi ,

k∑
i=1

wi

)
:=

k∑
i=1

λ
2k−i+1〈vi , wi 〉

for vi , wi ∈ Vi ,λ ∈ (0,1]. Clearly,NoβF acts isometrically on(N, gλ). Sincegλ(v, v) 6 〈v, v〉,
it follows that

diam((N, gλ )/5) 6 diam((N, 〈· , ·〉)/5) .
Letvi 1, . . . , vi j i be an orthonormal basis ofVi with respect to〈· , ·〉. Thenvi j /λ

2k−i
, i = 1, . . . , k,

j = 1, . . . , ji is an orthonormal basis ofn with respect togλ. Furthermore, fori 6 l∥∥∥∥[ vi j

λ2k−i ,
vlm

λ2k−l

]∥∥∥∥2

gλ

6 1

λ2(k−i )+1 · ‖[vi j , vlm ]‖2gλ 6 λ2k−i+2−2(k−i )+1 · ‖[vi j , vlm ]‖2〈· ,·〉
6 λ

2 · ‖[vi j , vlm ]‖2〈· ,·〉.
Now we infer from the curvature formula for left-invariant metrics on Lie groups [4, Proposi-
tion 3.18] that the sectional curvature of(N, gλ) tends uniformly to zero provided thatλ tends
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to 0. This completes the proof, since simultaneously the diameter of(N, gλ)/5 is bounded
from above.

2.6. Proof of Theorem 2.4

The implication a)⇒ b) is trivial.
b) ⇒ d) This is nearly a direct consequence of the results of Fukaya and Yamaguchi [8]:

Condition (iii) implies that(Mk, g
i
k) has almost nonnegative sectional curvature for sufficiently

largei . Hence the fundamental group ofMk is by Fukaya and Yamaguchi [8] nilpotent up to
finite index.

By induction onk we can assume that the fundamental group of the Riemannian manifold
(B, g) := (M1, g

0
1) is polycyclic up to finite index. Because of the fiber bundle theorem of

Fukaya and Yamaguchi [8] the manifoldM fibers overB, and the fibration can be realized
by a Hausdorff approximationfi : (M, g

i
0)→ (B, g). Thus the fibers offi become arbitrarily

small in(M, gi
0). By the generalized Margulis Lemma [8] there is a constantε > 0, which only

depends on the dimension such that for anyε-ball Bε(p) ⊂ (M, gi
0) the image of the natural

homomorphism [π1(Bε(p))→ π1(M)] is nilpotent up to finite index.
Since for a sufficiently largei a fiberFi of fi is contained in some ballBε(p) ⊂ (M, gi

0), it
follows that the imageH of the natural homomorphism [π1(Fi ) → π1(M)] is nilpotent up to
finite index. We have an exact sequence

{1} → H→ π1(M )→ π1(B)→ {1} ,
and hence Lemma 2.8 applies.

d) ⇒ e) By Lemma 2.7 we can find a strongly polycyclic group3 ⊂ 5 of finite index.
Clearly,3 is a polycrystallographic group.

Theorem 5 in [23] tells us that after we have replaced3 by a subgroup of finite index, we can
view3 as a discrete, cocompact subgroup of a connected, simply connected solvable Lie group
S such that for any subgroup3′ of finite index in3 any automorphism of3′ extends uniquely
to an automorphism ofS. Finally, we can by Lemma 2.6 assume that3 is a characteristic
subgroup of5.

In particular,3 is a characteristic subgroup of finite index in5, and any automorphism of
3 ⊂ S extends uniquely to an automorphism ofS. But these are precisely the conditions that
we have used for the pairL ⊂ N in the proof of the implication d) ⇒ e) of Theorem 2.3.
Hence the proof there carries over to the present situation. Thus there is a homomorphism
β: F := 5/3 → Aut(S) and an embedding5 ↪→ S oβ F that intersects each connected
component ofSoβ F and that extends the inclusion3 ⊂ S ⊂ Soβ F. Since3 is a characteristic
subgroup, each automorphism of5 restricts to an automorphism of3. Consequently, we can
extend each automorphism of5 uniquely to an automorphism of5 · S = Soβ F, so we also
have proved Remark 2.5.4.

e)⇒ c) Let5 be a discrete, cocompact subgroup ofSoβ F and

pr :Soβ F −→ So β(F) ⊂ So Aut(S)

the projection. Clearly, the image0 := pr(5) is a discrete cocompact subgroup ofS o β(F)
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and therefore a polycrystallographic group. Because of the finiteness of Ker(pr) the assertion
follows.

c) ⇒ d) It is known that a polycrystallographic group is polycyclic up to finite index,
see [23]. So we can infer from Lemma 2.8 that5 is polycyclic up to finite index, too.

e) ⇒ a) Let N ⊂ S be the maximal connected, nilpotent normal subgroup ofS, n ⊂ s

the corresponding Lie algebras, and let〈· , ·〉 be a scalar product ons that is invariant under the
natural representation ofF in s.

We have seen in the proof of Lemma 2.10 that there is an orthogonal decompositionn =
V1⊕ · · · ⊕ Vk satisfying

(i) V1⊕ · · · ⊕ Vi is a characteristic Lie subalgebra ofn, i = 1, . . . , k,
(ii) [ Vi ,Vj ] ⊂ V1⊕ · · · ⊕ Vi−1 for all i, j and
(iii) eachVi is an invariant under the natural representation ofF in n. LetVk+1 be the orthogonal

complement ofn in s and define a new metric by means of

gλ

( k+1∑
i=1

vi ,

k+1∑
i=1

wi

)
=

k+1∑
i=1

λ
2k+1−i 〈vi , wi 〉

for vi , wi ∈ Vi , λ ∈ (0,1). We know that∥∥∥∥[ vi

λ2k−i ,
w j

λ2k− j

]∥∥∥∥2

gλ

6 λ2 · ‖[vi , w j ]‖2〈· ,·〉

for vi ∈ Vi , w j ∈ Vj and i, j 6 k, see proof of Lemma 2.10. Moreover, [v,w] ∈ n for v,
w ∈ Vk+1, and accordingly‖[v,w]‖2gλ 6 λ2‖[v,w]‖2〈· ,·〉.

SinceV1⊕· · ·⊕Vi is a characteristic Lie subalgebra ofn, it is an ideal ins. Thus forv ∈ Vk+1
andwi ∈ Vi (i 6 k) the Lie bracket [v,wi ] is contained inV1⊕ · · · ⊕ Vi , and hence we obtain
the inequality∥∥∥∥[v, wi

λ2k−i

]∥∥∥∥
gλ

6 ‖[v, wi ]‖〈· ,·〉 .

Using a curvature formula for left-invariant metrics on Lie groups [4, Prop. 3.18], it is easy to
see that the sectional curvature of(S, gλ)λ∈(0,1) is uniformly bounded.

For eachλ we have an isometric action of5 ⊂ Soβ F on (S, gλ) given by

(τ, τ ) ? h := τ · β( f )(h) .

Choose an injective homomorphismϕ: F ↪→ SU(l ) and define an action of5 on SU(l ) by
(τ, f )A := ϕ( f )A. Now we get a free, discontinuous, cocompact action of5 on the Riemann-
ian product(S, gλ)× SU(l ).

Consider the Riemannian fibration

N −→ (S, gλ )× SU(l ) −→ (S, gλ )/N× SU(l ) =: B̃ .

From [s, s] ⊂ n we infer that the quotientN\ (S, gλ) is isometric to an Euclidean space, and the
induced metric oñB does not depend onλ. Furthermore,̃B has nonnegative sectional curvature.

Next we observe that the action of5 respects the fibration, and hence we get an isometric
action of5/L on B̃ whereL := 5∩N×{1}. SinceN/L is compact, this action is discontinuous.
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Moreover, it is free, and thus we get a fibration

N/L→ (
(S, gλ )× SU(l )

)/
5→ B̃

/
(5/L) =: B .

Notice that diameter of the fibers in(M, gλ) := ((S, gλ)× SU(l ))
/
5 tends uniformly to 0.

Consequently,(M, gλ) converges in the Gromov–Hausdorff sense toB for λ→ 0.

3. A generalization of Gromov’s polynomial growth theorem

For an abstract group5 with a given finite generator system the growth functiong(h) is
defined as the number of words in5of length at mosth. A finitely generated group is said to have
polynomial growth of order6 n if and only if there is a constantC satisfyingg(h) 6 C ·hn for
all positive integersh. This condition is easily seen to be independent of the generator system.
Gromov [9] has shown that a finitely generated group has polynomial growth, if and only if it
is nilpotent up to finite index. Our aim is to prove the following generalization of Gromov’s
theorem.

Theorem 3.1. For a group5 the following statements are equivalent.
a) There is an integer n such that any finitely generated subgroup of5 has polynomial

growth of order6 n.
b) There is a normal subgroupT ⊂ 5 satisfying

(i) For any finitely generated subgroup5′ of5 the group5′ ∩ T is finite.
(ii) The factor group5/T contains a torsion free, nilpotent subgroup of finite index, which

is an inductive limit of finitely generated, nilpotent groups of a fixed rank.

Condition (ii) in the above theorem implies in particular that the factor group5/T is count-
able. Moreover, the groupT is by condition (i) locally finite, i.e., any finitely generated subgroup
of T is finite. In fact, it is clear from the proof of Theorem 3.1 thatT can be chosen as the maxi-
mal locally finite normal subgroup of5. A deep theorem proved independently by Kargapolov
and Hall and Kulatilaka states that an infinite locally finite group contains an infinite abelian
subgroup, see Kegel and Wehrfritz [12]. Combining this result with Theorem 3.1 we show

Corollary 3.2. Let5 be a group for which any finitely generated subgroup has polynomial
growth of order6 n = n(5). Then5 is finitely generated if and only if any abelian subgroup
is finitely generated.

The proof of the above quoted theorem on locally finite groups involves the celebrated Feit–
Thompson Theorem, which states that any finite group of odd order is solvable. Under the
stronger hypothesis that5 is the fundamental group of a complete manifold of nonnegative
Ricci curvature, one can give an elementary proof for Corollary 3.2 which uses the fact that in this
case any finitely generated subgroup of5 satisfies in addition the conclusion of Theorem 4.1.

The rest of this section is organized as follows: The proof of the theorem and the corollary
will be given in the first two subsections. In Subsection 3.3 we draw a consequence for the fun-
damental groups of manifolds of nonnegative Ricci curvature. The last subsection is concerned
with an example.
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3.1. On the proof of the theorem

For the proof of Theorem 3.1 we need

Lemma 3.3. Let5 be a group that has a torsion free normal subgroupL of finite index. Then
the torsion elements in the centralizer ofL, i.e., the elements in

E := {
g ∈ 5 ∣∣ gh= hg ∀h ∈ L, gl = e for some l∈ N} ,

form the maximal finite normal subgroup of5.

Proof. Let C(L) denote the centralizer ofL. The groupZ = L ∩ C(L) is a torsion free central
subgroup of finite index in C(L). In order to prove thatE is a group, we have to show that for
g, h ∈ E the elementgh−1 is contained inE, too. For that we consider the group5′ generated
by g andh. The subgroupA := 5′ ∩ Z has finite index in5′, and by Lemma 2.6A is finitely
generated. Moreover,A is torsion free, and hence it is a free abelian central subgroup of finite
index in5′. According to Theorem 2.2 there is a finite groupE′ such that5′/E′ is free abelian.
Clearly,g, h, gh−1 ∈ E′ ⊂ E.

ThereforeE is a group, and sinceE has trivial intersection withL, it is finite as well. By its
very definitionE is a characteristic subgroup of C(L), and because of that it is a finite normal
subgroup of5.

Let Ẽ be a finite normal subgroup of5. Using thatẼ andL are normal subgroups of5 we
find thataba−1b−1 ∈ L ∩ Ẽ = {e} for a ∈ Ẽ andb ∈ L. Consequently,̃E ⊂ C(L) is contained
in E.

Proof of Theorem 3.1. b)⇒ a)Let5′ be a finitely generated subgroup of5. ThenE′ := 5′∩T
is a finite normal subgroup of5′, and the factor group5′/E′ contains a torsion free, nilpotent
subgroup of finite index. From the implication c)⇒ d) of Theorem 2.3 we infer that5′ contains
a torsion free, nilpotent subgroupL of finite index. Moreover, the rank ofL is bounded by a
constant that only depends on5. It is well-known thatL has polynomial growth and that the
degree of this growth is bounded by a constant only depending on rank(L). Taking into account
thatL is of finite index in5′, we see that5′ has polynomial growth of controlled degree, too.

a) ⇒ b) By Gromov’s theorem any finitely generated subgroup of5 contains a nilpotent
subgroup of finite index. As we have seen in Section 2 this implies that any finitely generated
subgroup contains a torsion free, nilpotent normal subgroup of finite index. The rank of this
nilpotent subgroup is at mostn. Thus we can choose a finitely generated, torsion free, nilpotent
subgroupL ⊂ 5 of maximal rank.

SetLk := 〈{gk! | g ∈ L}〉 for k ∈ N. Note thatLk is a normal subgroup ofL. The factor
groupL/Lk is a nilpotent group which is generated by finitely many elements of finite order,
and because of Lemma 2.9 it is finite.

Let C(Lk) denote the centralizer ofLk in5, and let Tor(C(Lk)) be the elements of finite order
in C(Lk).

T :=
⋃
k∈N

Tor
(
C(Lk )

)
.

We claim that for any finitely generated group5′ ⊃ L the setT ∩ 5′ is the maximal finite
normal subgroup of5′.
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In order to prove this, we choose a torsion free, nilpotent normal subgroupL′ ⊂ 5′ of finite
index in5′. Then the groupL ∩ L′ is of finite index inL, and accordingly

rank(L′) > rank(L ∩ L′) = rank(L) .

Taking into account that rank(L) is maximal, we see that rank(L′) = rank(L ∩ L′), and hence
L∩ L′ is of finite index inL′. PutL′l := 〈{gl ! | g ∈ L′}〉, let C(L′l ) be the centralizer ofL′l , and let
Tor(C(L′l )) denote the elements of finite order in C(L′l ). The groupL′l is a torsion free normal
subgroup of finite index in5′ for all l > 0. By Lemma 3.3 the set Tor(C(L′l )) ∩ 5′ is the
maximal finite normal subgroup of5′. In particular, Tor(C(L′l ))∩5′ does not depend onl . For
anyl there is an integerk such that

Lk ⊂ L′l ⇒ Tor(C(L′l )) ⊂ Tor(C(Lk )) .

Furthermore, for anyk there is anl such that

L′l ⊂ Lk ⇒ Tor(C(Lk )) ⊂ Tor(C(L′l )) .

Consequently,

T ∩5′ = Tor(C(L′l )) ∩5′ = Tor(C(Lk )) ∩5′

for all l and for almost everyk. ThusT ∩5′ is the maximal finite normal subgroup of5′, as
claimed.

In particular,T is a normal subgroup of5. Let pr :5 → 5/T be the projection. For any
finitely generated group5′ ⊃ L the kernel of the restriction pr|5′ is the maximal finite normal
subgroup of5′. According to Remark 2.5, the image of5′ is then isomorphic to an almost
crystallographic group0′ with rank(0′) = rank(L).

Recall that the nilradical nil(0′) of an almost crystallographic group0′ is the maximal
nilpotent normal subgroup. It is known and will follow from Theorem 5.1 below that nil(0′) is
a torsion free subgroup of finite index in0′ and that the index is bounded by a constant only
depending on rank(0′).

Therefore we can find a finitely generated subgroup00 of5/T that is isomorphic to an almost
crystallographic group of rank equal to rank(L) that maximizes the quantity ord(00/nil(00)).
Choose a realizationι:00 → F o N of 00 as an almost crystallographic group, i.e.,N is a
connected, simply connected, nilpotent Lie group,F is a compact subgroup of Aut(N) and
the homomorphismι maps00 isomorphically onto a discrete, cocompact subgroup ofF o N.
Thanks to Auslander’s characterization of almost crystallographic groups nil(00) is mapped
onto a lattice inN× {1} = N, if one is not familiar with Auslander’s theorem one can employ
[23, Prop. 5.1] instead. Without loss of generalityF is isomorphic to the finite factor group
00/nil(00), because we can replaceF by a suitable subgroup.

Lemma 3.4. There is a unique extension ofι to a homomorphism h:5/T→ F o N and h is
injective.

Before verifying Lemma 3.4, we use it to complete the proof of Theorem 3.1. Sinceh is
injective, we can and we will identify5/T with its image. Evidently, the groupG := (5/T)∩N
is a torsion free, nilpotent subgroup of index ord(F) in 5/T. Furthermore, for any finitely
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generated subgroup0′ ⊂ G the group0′ ∩ 00 is of finite index in0′. Consequently,G is
contained in the countable group

exp(spanQ(exp−1
(nil(00)))) .

In summary, we can say thatG is a torsion free, countable, nilpotent group, and any finitely
generated subgroup has rank at most rank(nil(00)). But this implies thatG is the inductive limit
of finitely generated, nilpotent groups of a fixed rank.

Proof of Lemma 3.4. Clearly, it suffices to show: For any finitely generated subgroup01 ⊂
5/T satisfying00 ⊂ 01 there is a unique homomorphismϕ:01→ F o N that extendsι, and
this homomorphism is injective.

Notice that01 is isomorphic to an almost crystallographic group. Thus there is a connected,
simply connected, nilpotent Lie groupN1 a compact subgroupF1 ⊂ Aut(N1) and a homomor-
phismι1:01 → F1 o N1 mapping01 isomorphically onto a discrete, cocompact subgroup of
F1o N1.

The almost crystallographic groups00 and01 have the same rank, and hence00 is a subgroup
of finite index in01. Thereforeι1(00) is a discrete, cocompact subgroup ofF1 o N1, too. As
above we deduce thatι1(0i )∩N1×{1} coincides with the nilradical of0i , i = 1,2. In particular,
nil(00) ⊂ nil(01). Moreover, we can assume thatF1 is isomorphic to the finite factor group
01/nil(01). Since the order of00/nil(00) is maximal,

ι1(00) · (N1 ×{1}) = F1 o N1. (1)

The groupι1(nil(00)) is a lattice inN1 = N1× {1}, andι(nil(00)) is a lattice inN. Using that
ι1 andι are injective, we conclude that there is a unique isomorphismψ : N1 → N satisfying
ψ ◦ ι1|00

= ι, see [19, Theorem 2.11]. Because of the uniqueness ofψ we have

ψ
(
ι1(g) · v · ι1(g−1

)
) = ι(g) · ψ(v) · ι(g−1

) for g ∈ 00 andv ∈ N1.

With this in mind it is straightforward to check that we can extendψ to an isomorphism
ψ : F1 o N1→ Fo N by definingψ(ι1(g) · v) := ι(g) · ψ(v) for g ∈ 00, v ∈ N1 = N1 × {1}.
Now ϕ := ψ ◦ ι1 is a homomorphism that extendsι.

It remains to verify thatϕ is unique. Equation (3.1) yields01 = 00 · nil(01), and therefore
it is sufficient to show thatϕ|nil(01)

: nil(01)→ N is unique. Forg ∈ nil(01) there is a positive
integerl such thatgl ∈ nil(00). There is precisely one elementv in the simply connected
nilpotent groupN with vl = ι(gl ), and clearly we have necessarilyϕ(g) = v.

3.2. Proof of the corollary

If 5 is finitely generated, then we can apply Gromov’s theorem to see that5 is nilpotent up
to finite index, and then by Lemma 2.7 any subgroup of5 is finitely generated, too.

Assume conversely that5 is not finitely generated. Choose a normal subgroupT as stated in
Theorem 3.1. If the locally finite groupT is infinite, then it contains an infinite abelian subgroup,
see [12]. Thus it suffices to consider the case of a finite groupT. In particular, the quotient5/T
is not finitely generated. The group5/T contains a torsion free, nilpotent subgroup of finite
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index, and evidently we can assume that5/T itself is torsion free and nilpotent. The proof
of Theorem 3.1 shows that then the group5/T can be viewed as a cocompact subgroup of a
simply connected, nilpotent Lie groupN in such a way that any finitely generated subgroup of
5/T is discrete inN.

Suppose for a moment that any abelian subgroup of5/T lies discrete inN. Since5/T is not
discrete, we could find two sequencesgk, hk ∈ 5/T ⊂ N converging toesuch thatgk does not
commute withhk. Then the commutator sequence [gk, hk] := gkhkg−1

k h−1
k 6= ealso converges

to e, and it follows that [N,N] ∩5/T is not discrete in [N,N]. Via a simple induction argument
this yields a contradiction.

Hence5/T contains an abelian subgroupA which is not discrete and accordingly not finitely
generated. Let5′ be the preimage ofA under the projection5→ 5/T. Forh ∈ 5′ the inner
automorphism Int(h):5′ → 5′, g 7→ hgh−1 leaves the left cosets of the finite groupT
invariant. So Int(hk!) = id for k = ord(T), andhk! is contained in the center of5′. Taking into
account that5′/T is torsion free, we see that the center of5′ is not finitely generated.

3.3. A remark on fundamental groups

Remark 3.5. a) Let 5 be a discrete subgroup of a connected Lie groupG and n ∈ N. If
any finitely generated subgroup of5 has polynomial growth of order6 n, then5 is finitely
generated.

b) Let M be a complete manifold of nonnegative Ricci curvature, M̃ the universal covering
space of M andIso(M̃) its isometry group. Ifπ0(Iso(M̃)) := Iso(M̃)/Iso0(M̃) is finitely
generated, thenπ1(M) is finitely generated, too.

Proof. a) By Corollary 3.2 it is sufficient to prove that any abelian subgroup of5 is finitely
generated. But according to Mostow [17], a discrete solvable subgroup of a connected Lie
group is finitely generated.

b) Recall first that Iso(M̃) is a Lie group, see [18].
A slight modification of the argument in [14] shows that any finitely generated subgroup of

π0(Iso(M̃)) has polynomial growth. Thus ifπ0(Iso(M̃)) is finitely generated, then it is nilpotent
up to finite index, and any subgroup ofπ0(Iso(M̃)) is finitely generated, too. The fundamental
groupπ1(M) can be viewed as a discrete subgroup of Iso(M̃). By a) the intersectionN ofπ1(M)
with the identity component Iso0(M̃) of Iso(M̃) is finitely generated. The quotientπ1(M)/N is
isomorphic to a subgroup ofπ0(Iso(M̃)) and consequently finitely generated. But thenπ1(M)
is finitely generated, too.

3.4. An example

Example 3.6. There is a complete Riemannian manifold M with fundamental group isomorphic
toQ/Z that is obtained by a surgery construction from a sequence of compact homogeneous
spaces.

Let Hn ⊂ SU(3) be a cyclic subgroup of ordern!, and letMn := SU(3)/Hn, n > 2. For



150 B. Wilking

n > 2 we choose two smooth regular loopscn, γn: [0,1]→ Mn satisfying
(i) The submanifoldscn([0,1]) andγn([0,1]) are disjoint.

(ii) The loopcn represents a generator of the fundamental groupπ1(Mn, cn(0)).
(iii) The element inπ1(Mn, γn(0)) represented byγn generates a cyclic subgroup of order

(n− 1)!.
Choose two disjoint open tubular neighborhoodsUn of cn([0,1]) andVn of γn([0,1]) with

smooth boundaries∂Un and∂Vn.

D := (M2 \U2) ∪
⋃
i>3

(Mi \ (Ui ∪ Vi )) .

Let fn: ∂Un→ ∂Vn+1 be a diffeomorphism. Consider onD the equivalence relation gener-
ated byp ∼ fn(p) for p ∈ ∂Un, n > 2. The equivalence classesM := D/∼ form a connected
smooth manifold, andM admits a complete metric. By making iterated use of van Kampen’s
theorem we see that the fundamental group ofM is isomorphic toQ/Z, the inductive limit of
(Z/n! Z)n∈N.

Furthermore, one can show that the universal covering space ofM has only one end. Thus
none of the presently known obstructions can be used to prove thatM admits no complete metric
of nonnegative Ricci curvature. However, if one uses a slightly different surgery construction,
the resulting manifold has a fundamental group which contains a finitely generated subgroup
of exponential growth. Clearly, this manifold does not admit a complete metric of nonnegative
Ricci curvature, and from this point of view it would be rather surprising ifM admits such a
metric.

4. A result on fundamental groups in a fixed dimension

The goal of this section is to prove the following theorem.

Theorem 4.1. In each dimension n there are finite simple groupsF1, . . . , Fk for which the
following holds: Any finitely generated fundamental group5 of a complete, n-dimensional
manifold M of nonnegative Ricci curvature contains subgroups

{e} = N0 ⊂ N1 ⊂ · · · ⊂ Nl = 5
such thatNi is normal in Ni+1 and Ni+1/Ni is either cyclic or isomorphic toF ji for some
ji ∈ {1, . . . , k}.

We will see that it is easy to reduce the statement of the theorem to the following

Proposition 4.2. In each dimension n there are finite, simple groupsF1, . . . , Fk for which
the following holds: Any non-cyclic, finite, simple group acting effectively and isometrically on
some connected, n-dimensional, complete Riemannian manifold of nonnegative Ricci curvature
is isomorphic toF j for some j∈ {1, . . . , k}.

In contrast to the statement of the proposition we remark that any finite or countable group
F can act freely and discontinuously on a complete 2-manifold with constant curvature−1:
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Therefore recall that the free groupG in countable many generators acts freely and discon-
tinuously on the hyperbolic planeH2. Choose an epimorphismϕ: G → F. Then the group
F ∼= G/Ker(ϕ) acts freely and discontinuously on the quotientH2/Ker(ϕ).

Proof of Theorem 4.1. Let M be a complete,n-dimensional Riemannian manifold of nonneg-
ative Ricci curvature with a finitely generated fundamental groupπ1(M). Since5 := π1(M)
is nilpotent up to finite index, there are subgroups

{e} = N0 ⊂ · · · ⊂ N j = 5
such thatNi is a normal subgroup ofNi+1 and the factor groupNi+1/Ni is either cyclic or
isomorphic to a finite, simple group. So we only have to check that there are in a given dimension
only finitely many non-cyclic, finite, simple groups which can be realized in this manner. Recall
that the group5 acts freely and discontinuously on the universal covering spaceM̃ of M .
Moreover, the factor groupNi+1/Ni acts freely and discontinuously on the orbit spaceM̃/Ni .
But now the assertion follows from the proposition.

Proof of Proposition 3.2. Suppose that the proposition is wrong in some dimensionn. Then
we could find a sequence(Fi )i∈N of non-cyclic, finite, simple groups such that

a) ord(Fi ) > i ,
b)Fi acts effectively and isometrically on a connected,n-dimensional, complete Riemannian

manifold Mi of nonnegative Ricci curvature.
Choose a pointpi ∈ Mi for which the cosetXi := Fi · pi is nontrivial. We shall think ofXi

as equipped with the metric that is induced by the Riemannian distance function ofMi . After
scaling the metric onMi we have diam(Xi ) = 1.

From the Bishop–Gromov inequality we infer thatXi contains anε-net consisting of at most
(4/ε)n elements for allε > 0. Thus by [9] the sequence(Xi )i∈N has a convergent subsequence.
Without loss of generalityXi itself converges to a compact metric spaceX∞ with respect to
the Gromov–Hausdorff distance. Furthermore, we can assume that the action ofFi on Xi also
converges to an isometric action of some closed subgroup of the isometry group Iso(X∞), see
[8] for the concept of equivariant Hausdorff convergence.

We define a biinvariant metric on Iso(X∞) by

d∞(ι, σ ) := max
{

d∞(ι( p), σ( p))
∣∣ p ∈ X∞

}
for ι, σ ∈ Iso(X∞). After passing once more to a subsequence if necessary, we can find an
1/i -almost homomorphismϕi : Fi → Iso(X∞) for all i ∈ N, i.e., a map satisfying

d∞
(
ϕi (ab), ϕi (a) ◦ ϕi (b)

)
<

1

i
for all a,b ∈ Fi .

Moreover, we can assume that the image ofϕi is 1/i -almost transitive, i.e., for anyx, y ∈ X∞
there is an elementa ∈ Fi with d∞(ϕ(a)(x), y) < 1/i .

The group Iso(X∞) is a compact topological group. According to [16, Theorem 2.20, p. 99],
any neighborhoodU of the neutral elemente contains a compact normal subgroupN such that
G = Iso(X∞)/N is a compact Lie group.
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Let U be the ball of radius14 arounde in Iso(X∞), and letN ⊂ U be as above. We consider
G = Iso(X∞)/N with the induced metric̄d∞. Clearly,

ψi := π ◦ ϕi : Fi → (G, d̄∞ )

is an 1/i -almost homomorphism, whereπ : Iso(X∞)→ G denotes the projection.
Choose a biinvariant Riemannian metricg onG satisfying‖[X,Y]‖ 6 ‖X‖ · ‖Y‖ for all X,

Y ∈ g and for which the injectivity radius of(G, g) is at leastπ , see [10] for existence ofg.
Let d denote the corresponding Riemannian distance.

Sinced andd̄∞ induce the same topology onG, it follows that for anyε > 0 there exists an
integeri0 such thatψi is anε-almost homomorphism with respect to the Riemannian distanced
for all i > i0. By a theorem of Grove et al. [10] the almost homomorphismψi then can
be deformed into a homomorphism̃ψi : Fi → G with d(ψ̃i (a), ψi (a)) 6 3

2 ε provided that
ε < π/6, i > i0, a ∈ Fi . Using once again thatd andd̄∞ induce the same topology, we infer
that

d̄∞
(
ψ̃i (a), ψi (a)

)
< 1

4

for all a ∈ Fi and for sufficiently largei . By construction diam(X∞) = 1, and taking into
account that the image ofϕi is 1/i -almost transitive, we see that diam(ϕi (Fi )) > 3

4 for i > 4.
Moreover, the groupN is contained in the ball of radius14 arounde, and hence

diam(ψi (Fi ), d̄∞ ) > 1
2 for i > 4.

Therefore diam(ψ̃i (Fi ), d̄∞) > 1
4 for large i . In particular,ψ̃i is a nontrivial homomorphism

for almost everyi . In fact,ψ̃i is then injective becauseFi is a simple group.
But a theorem of Jordan [19, Theorem 8.29] states that a finite subgroup of a compact Lie

groupG contains an abelian normal subgroup of index at mostm= m(G)—a contradiction.

5. Estimates for groups

It is well-known that the fundamental groups of Gromov’s almost flat manifolds are precisely
the torsion free almost crystallographic groups. In this context Buser and Karcher [1] proved
that the index of the nilradical0∗ in an almost crystallographic group is bounded by 2·61

2r (r−1)

wherer = rank(0∗). We will improve this estimate:

Theorem 5.1. Let0 be an almost crystallographic group, and let0∗ be the nilradical of0.
Then the factor group0/0∗ is finite, and its order divides the number(2n)! where n =
rank(0∗)− rank([0∗, 0∗]).

Corollary 5.2. Let5 be a finitely generated group that is abelian up to finite index, d =
rank(5),and letE be the maximal finite normal subgroup of5. Then5 contains a characteristic
subgroupA ∼= Zd of index at mostord(E)2d+1 · (2d)2d.

The rest of this section is organized as follows: Subsection 5.1 is devoted to the proof of The-
orem 5.1. In Subsection 5.2 we have placed a lemma stating that the order of an automorphism
of a finite groupF is bounded by ord(F). Finally, we prove Corollary 5.2 in Subsection 5.3.
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5.1. Proof of Theorem 5.1

A theorem of Minkowski [15] says that the least common multiple of the orders of all finite
subgroups of GL(n,Z) is given by

vn :=
∏
p∈P

p
∑∞

k=0[n/pk(p−1)]
,

whereP are the prime numbers and [n/pk(p− 1)] is the Gauss bracket ofn/pk(p− 1). The
so called Minkowski boundvn obviously divides the number(2n)!. Thus we only have to prove
that the factor group0/0∗ is isomorphic to a subgroup of GL(n,Z).

By definition the almost crystallographic group0 is a discrete, cocompact subgroup of a
semidirect productFoN whereN is a connected, simply connected, nilpotent Lie group andF is
a compact subgroup of its automorphism group Aut(N). It is known that the nilradical0∗ of0 is
then given by0∗ = 0∩N×{1}, see for example [23, Proposition 5.1]. The group0∗ is a lattice in
N = N×{1} and accordingly of finite index in0. By replacingF by a subgroup if necessary, we
may assume thatF is isomorphic to the finite factor group0/0∗. Let [N,N] be the commutator
group ofN. The group0 ∩ [N,N] is discrete and cocompact in [N,N], and the projection

pr :Fo N→ (N/[N, N])o F

maps0 onto a discrete, cocompact subgroup. In particular,D := pr(0)∩ (N/[N,N]) is a lattice
in the vector groupN/[N,N]. We claim that the induced action ofF on N/[N,N] is effective.
This implies thatF ∼= 0/0∗ is isomorphic to a subgroup of Aut(D) ∼= GL(n,Z).

In order to show that the action ofF on N/[N,N] is effective, we argue by induction on
the dimension. Clearly, there is nothing to prove ifN is abelian. IfN is not abelian, we define
inductively a sequence of subgroups byN0 = N andNi+1 = [N,Ni ]. SinceN is nilpotent, there
is a maximal numberi0 > 1 for which Ni0 is nontrivial. Evidently,Ni0 is invariant under the
action ofF, and by our induction hypothesis it is sufficient to verify that the induced action ofF
on N/Ni0 is effective.

Suppose that an automorphismι ∈ F induces the identity onN/Ni0. Consider the correspond-
ing automorphismι∗ of the Lie algebran of N. The Lie subalgebrani0 corresponding toNi0 is
an invariant subspace ofι∗. There is anι∗-invariant vector complementp of ni0 in n becauseι∗
has finite order. The automorphism ofN/Ni0 induced byι is the identity and henceι|∗p = id.
Using thatι∗ is a Lie algebra automorphism, we findι|∗[p,p] = id. Sinceni0 is contained in the
center ofn, it follows that [p, p] = [n, n] ⊃ ni0, and accordinglyι∗ = ι|∗p⊕ni0

= id. But then
trivially ι itself is the identity.

5.2. On the order of an automorphism of a finite group

We recall that for two groupsH ⊂ F the number(F : H) is defined as the index ofH in F.

Lemma 5.3. a) Let F be a finite group, σ ∈ Aut(F) an automorphism ofF, and letH = {g ∈
F | σ(g) = g} be the fix point subgroup. Then there is some positive integer k6 (F : H) such
thatσ k is an inner automorphism ofF.

b) Let F andσ be as above. Then there is a positive integer n6 ord(F) such thatσ n = id.
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Although the statement of the lemma is certainly known, the author was not able to find it
in the literature. Thus we will prove it:

Proof of Lemma 5.3. a) At first we consider a special case: there is a subgroupH̃ such that
H ( H̃ ( F andσ(H̃) = H̃. By induction on(F : H) we can assume that there exists a positive
integerl 6 (H̃ : H) and an elementh0 ∈ H̃ satisfyingσ l (h) = h0hh−1

0 for all h ∈ H̃. The
induction hypothesis applied toτ(g) := h−1

0 σ l (g)h0 says thatτm is an inner automorphism of
F for some positive integerm6 (F : H̃). Consequently,σ l ·m is inner, and we are done.

Notice that for any integerl the fixpoint group ofσ l is invariant underσ , and by the above
consideration we can assume that this group is eitherH or F. Then there exists a positive integer
m such that the orbit{σ n(g) | n ∈ Z} has preciselym elements for allg ∈ F \ H. Without
loss of generalitym > (F : H) becauseσm = id. For g ∈ F we can find a positive integer
l 6 (F : H) < m such thatσ l (g) andg are contained in the same right cosetH · g. Therefore
σ l (g) = hg for someh ∈ H \ {e} and

σ
l
(g−1

σ(g)) = (hg)−1
σ(hg) = g−1

σ(g) .

SinceH is also the fix point group ofσ l , it follows that

fg := g−1
σ(g) ∈ H for all g ∈ F .

Observe thatσ(ab) = a fab fb = ab(b−1 fab) fb, and thusfab = (b−1 fab) fb for all a, b ∈ F.
Now it is easy to see thatA := 〈{ fg | g ∈ F}〉 ⊂ H is normal inF. Clearly,σ(hg) = hg fg, and
fhg = fg for h ∈ H andg ∈ F. Via Ag = gA this yields the equationfgh = fg for all h ∈ A.
Hence

gh fg = σ(gh) = g fgh H⇒ h fg = fgh ∀ h ∈ A .

AccordinglyA is abelian. As already explained we can definefH·g := fg for any right coset
of H. SinceA is abelian, the element

c :=
∏

g∈H\F
fg

is well defined, too. Setk := (F : H) = ord(H\F). Then

c−1gc =
( ∏

a∈H\F
fa

)−1
· g ·

∏
b∈H\F

fb

= g ·
( ∏

a∈H\F
(g−1 fag)

)−1
·
∏

b∈H\F
fb

= g ·
( ∏

a∈H\F
( fag f −1

g )
)−1
·
∏

b∈H\F
fb

= g · f k
g ·

( ∏
a∈H\F

fag

)−1
·
∏

b∈H\F
fb = g · f k

g

= σ
k
(g).

Thusσ k is inner.
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b) Consider the natural homomorphism

ϕ: F→ Int(F) ⊂ Aut(F) , g 7→ [h 7→ ghg−1] .

Notice thatϕ(σ(g)) = σ ◦ϕ(g) ◦σ−1 for g ∈ F. Let Z denote the cyclic group generated byσ ,
and letι be a generator of the cyclic groupZ′ := Z ∩ Int(F).

Evidently,σ commutes withι, so the setϕ−1(ι) is invariant underσ . Chooseg0 ∈ ϕ−1(ι)

and consider its orbitZ ? g0 := {σ l (g0) | l ∈ Z}. For k := ord(Z ? g0) we haveσ k(g) = g
for all g ∈ Z ? g0 and as a consequenceσ k(h) = h for all h satisfyingg0h ∈ Z ? g0. Since
Z ? g0 ⊂ ϕ−1(ι), we haveϕ(h) = id provided thatg0h ∈ Z ? g0. Therefore the kernel ofϕ
contains a subgroupC of order at leastk which is fixed byσ k. Clearly, the group

H = {
h ∈ F

∣∣ σ k
(h)= h

}
containsg0, and henceϕ(H) ⊃ Z′. Consequently, ord(H) > k · ord(Z′).

By part a) there is a numberl 6 (F : H) such that(σ k)l is an inner automorphism. Thus
σ kl ∈ Z′ and(σ k·l )ord(Z′) = id. This completes the proof, sincek · l · ord(Z′) 6 ord(F).

5.3. Proof of Corollary 5.2

Let p:5 → 0 := 5/E denote the projection. By Remark 2.50 is isomorphic to a cry-
stallographic group of rankd, and by Theorem 5.1 the translational part0∗ of 0 has index at
most(2d)!. Let b1, . . . , bd be a basis of0∗ andgi ∈ p−1(bi ). The order of the automorphism
E→ E, f 7→ gi f g−1

i is bounded by ord(E), see Lemma 5.3. In other words, for some positive
integerki 6 ord(E) the elementgki

i lies in the centralizer ofE. The group generated bybk1
1 ,

. . . ,bkd
d has index at most(2d)! · ord(E)d in 0. Accordingly the index of

H := {
g ∈ p−1

(0
∗
)
∣∣ g f = f g ∀ f ∈ E

} ⊂ 5
in 0 is bounded by 1/ord(D) · (2d)! · ord(E)d+1, whereD is the center ofE. Notice thatH is a
characteristic subgroup of5. From the proof of Theorem 2.1 we know that the map

ϕ: H→ H , h 7→ h2 ord(D)

is a homomorphism and the imageA := ϕ(H) is a subgroup which itself is isomorphic to
Zd. SinceH is a characteristic subgroup of5, the same is valid forA. Clearly, (H : A) 6
ord(D) · (2 ord(D))d, and thus the index ofA in 5 is bounded by

(H : A) · (5 : H) 6 2d · (2d)! · ord(E)2d+1 6 (2d)2d · ord(E)2d+1
.

6. Deformation of coverings

Let N be a complete manifold with a compact isometry group. Consider a normal Riemannian
covering q0:Rn × N → (M, g0), i.e., q0 is bundle map of a principle5-bundle overM for
some discrete group5 acting isometrically onRn×N. In this section we will study continuous
deformations qλ:Rn × N → (M, gλ), λ ∈ [0,1], of Riemannian coverings, where the metric
of Rn × N is the fixed product metric.
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For the motivation we recall that by Cheeger and Gromoll [6] a complete manifold of
nonnegative sectional curvature is isometric a Riemannian productRk × N, where N is a
manifold with a compact isometry group. Moreover, Cheeger and Gromoll [5] have shown that
the universal covering space of a compact manifold of nonnegative Ricci curvature splits as
Rl × N, whereN and hence Iso(N) is compact.

The main results will follow from the following two theorems.

Theorem 6.1. Letq:(M̃, g̃)→ (M, g0)be a normal Riemannian covering between connected,
complete Riemannian manifolds,5 ⊂ Iso(M̃) the deck transformation group,and letη: [0,1]×
5→ Iso(M̃) be a smooth proper map such that eachηλ = η(λ, ·) is a homomorphism. Assume
moreover thatη0 coincides with the natural inclusion5 ⊂ Iso(M̃).

Then there is smooth family of Riemannian coveringsqλ: (M̃, g̃)→ (M, gλ) such thatq0 = q
andηλ(5) is the deck transformation group ofqλ.

If 5 is a finitely generated group containing an abelian subgroupA of finite index, then we
set rank(5) := rank(A).

Theorem 6.2. Let5 be a finitely generated group that is abelian up to finite index, d =
rank(5), and let E be the maximal finite normal subgroup of5. Let G be a compact Lie
group of rank r, and letψ :5 → G be a homomorphism. Then there is a smooth family of
homomorphisms(ψ)λ∈[0,1]:5 → G such thatψ0 = ψ and the kernel ofψ1 contains a free
abelian normal subgroup5′ ⊂ 5 satisfying

(5 : 5′) 6 (2d)2d(r+1) · ord(E)2d+1 · ord(π0(G)) .

These theorems yield several finiteness results: Cheeger and Gromoll [6] proved that a
compact manifold of nonnegative Ricci curvature is finitely covered by a manifold that is
diffeomorphic to product of a torus and a simply connected manifold. We can sharpen this
result as follows.

Corollary 6.3. Let (N, g) be a complete Riemannian manifold with a compact isometry
groupIso(N), and letq0:Rn× N → (M, g0) be a normal Riemannian covering. Then there is
a continuous family(gλ)λ∈[0,1] of metrics on M, a continuous family of Riemannian coverings
qλ:Rn× N → (M, gλ) and a s-sheeted normal Riemannian covering z1: T (d)×Rn−d× N →
(M, g1), where T(d) is a d-dimensional, flat torus and T(d) × Rn−d × N carries the product
metric. Moreover,

s 6 2 · (2d)2d(r+1) · ord(E)2d+1 · ord(π0(Iso(N ))) ,

whereE is the maximal finite normal subgroup in the group of deck transformations5, d =
rank(5) and r = rank(Iso(N)×O(n− d)).

If q0 is the universal covering map of a (noncompact) complete flat manifold, one can
restate the above corollary in a more intrinsic fashion. We recall that any noncompact, complete
manifold of nonnegative sectional curvature has according to Cheeger and Gromoll [6] a totally
convex compact submanifoldS such thatM is diffeomorphic to the normal bundle ofS. The
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submanifoldS is called a soul ofM . Its dimension is determined by dim(S) = max{k |
Hk(M,F2) 6= 0}, whereH∗(M,F2) denotes the singular homology with coefficients inF2.

Corollary 6.4. Let(M, g0) be a connected, noncompact, complete, flat manifold, and let S be
a soul of M, k = dim(S), l = codim(S), n = k+l = dim(M) > 2. There is a continuous family
(gλ)λ∈[0,1] of complete, flat metrics on M such that the holonomy groupHol(g1) of (M, g1) is
finite and its order is bounded

ord(Hol(g1)) 6 2 · (2k)k(l+2) 6 nn2

.

It is an immediate consequence of Bieberbach’s third theorem that there are up to affine dif-
feomorphisms only finitely many compact flat manifolds in each dimension. We can generalize
this result:

Corollary 6.5. Up to flat metric deformations there are only finitely many isometry classes of
complete, flat manifolds in each dimension.

A deep theorem of Tits [20] implies that a finitely generated subgroup of a connected Lie
group is either solvable up to finite index or it contains a free subgroup of rank 2. As an
application of this theorem, we can strengthen Theorem 6.2:

Corollary 6.6. Let5 be a finitely generated group that does not contain a free subgroup
of rank 2, and assume either thatG is a compact Lie group or thatG = GL(n,K) where
K ∈ {R,C}. Consider the setHom(5,G) of homomorphismsψ :5 → G topologized by
pointwise convergence. ThenHom(5,G) has only finitely many arc-connected components
and each of these components contains a homomorphism with a finite image.

The proof of the corollary yields at least in principal estimates for the number of arc-connected
components of Hom(5,G) depending on5 andG. The fact that Hom(5,GL(n,K)) has only
finitely components is known although it is not used; in fact Hom(5,GL(n,K))has the structure
of a real affine variety.

Now we prove the theorems and the corollaries in order of occurrence.

On the proof of Theorem 6.1

We need the following

Lemma 6.7. Let G be a Lie group, F a finite group andηλ: F → G a continuous family of
homomorphisms, λ ∈ [0,1]. Then for eachλ ∈ [0,1] there exists an element gλ ∈ G satisfying
ηλ( f ) = gλ · η0( f ) · g−1

λ for all f ∈ F.

Actually the lemma is an immediate consequence of a rigidity theorem of A. Weil, see [19,
Theorem 6.7]. However, in this special case there is an elementary proof. Following an idea in
[1, appendix] we will work with barycenters:

Proof of Lemma 6.7. Letλ0 ∈ [0,1], F̃ := ηλ0
(F). Clearly, it is sufficient to show that there is

a numberδ > 0 such that the homomorphismηλ is conjugate toηλ0
for |λ− λ0| < δ. Choose
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an Ad(F̃)-invariant left-invariant metric onG, and consider the quotientM := G/F̃ with the
induced metric. Setp := F̃ ∈ G/F̃. As usualG acts isometrically onM andF̃ is the isotropy
group of p with respect to this action.

The orbitηλ(F)p is contained in an arbitrarily small ball aroundp, provided that|λ − λ0|
is sufficiently small. Thus the barycenterζλ of the finite collection(ηλ( f ) · p) f ∈F of points is
well-defined andλ → ζλ is a continuous curve in a neighborhood ofλ0. Notice thatηλ(F) is
contained in the isotropy group ofζλ.

The natural projectionG→ M is a covering map, and we can liftζλ to a curveγ : ]λ0 − δ,
λ0+ δ[ → G with γ (λ0) = e. By construction the groupγ (λ) ·ηλ(F) ·γ (λ)−1 is then contained
in F̃, the isotropy group ofp. SinceF̃ is finite, it follows thatηλ(g) = γ (λ)−1 · ηλ0

(g) · γ (λ)
for all g ∈ F.

Proof of Theorem 6.1. The proper mapηλ induces a discontinuous action of5 on M̃ . In
particular, for any elementg ∈ 5 of infinite order the isometryηλ(g) has no fix points. LetF
be a finite subgroup of5. From Lemma 6.7 we infer that for eachλ ∈ [0,1] there is an element
gλ ∈ G satisfyingηλ( f ) = gλη0( f )g−1

λ for all f ∈ F. Sinceη0( f ) is a fix point free isometry,
the same is valid forηλ( f ), λ ∈ [0,1], f ∈ F \ {e}. We have proved that the action

5× ([0, 1]× M̃
)→ [0, 1] × M̃ , g ? (λ, x) := (

λ, ηλ(g)(x)
)

is free. It is discontinuous as well, becauseη is a proper map. The quotientN := ([0,1] ×
M̃)/5 is a smooth manifold with boundary, and

σ : N → [0, 1] , 5 ? (λ, x) 7→ λ

is a submersion. ThusN is anM-fiber bundle over [0,1] and therefore we can find a diffeomor-
phism f : N → [0,1]×M for which f (5?(0, x)) = q(x) and pr1◦ f = σ , where pr1 : [0,1]×
M → [0,1] denotes the projection onto the first component. Let pr2 : [0,1]× M → M be the
projection onto the second component, and let qλ(x) := pr2 ◦ f (5 ? (λ, x)). Clearly, qλ is a
covering, and the deck transformation group corresponding to qλ is ηλ(5) ⊂ Iso(M̃). Hence
there is a unique metricgλ on M with respect to which qλ becomes a Riemannian covering.

On the proof of Theorem 6.2

Lemma 6.8. Let G0 be a connected, compact Lie group with a biinvariant metric. Letvi ∈
g−{0}be a vector with‖vi ‖ < c(vi /‖vi ‖),where c denotes the cut locus function, gi := exp(vi ),
(i = 1,2). Then g1g2 = g2g1 if and only if[v1, v2] = 0.

Proof. If [ v1, v2] = 0, theng1 andg2 lie in a toral subgroup ofG0, and in particularg1g2 = g2g1.
Assume conversely that the elementsg1 andg2 commute. Notice that

exp(Adg2
v1) = g2 exp(v1)g

−1
2 = exp(v1) .

Since the metric onG0 is biinvariant, it follows that‖Adg2
v1‖ = ‖v1‖, and by hypothesis

Adg2
v1 = v1.

Thereforeg2 commutes with exp(tv1) for all t ∈ R. As above this implies that

Adexp(tv1)
v2 = v2 ,
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and accordingly exp(tv1) commutes with exp(sv2) for all t, s ∈ R. But then [v1, v2] = 0.

Proof of Theorem 6.2. By Corollary 5.25 contains a normal subgroup5∗ ∼= Zd of finite
index satisfying(5 : 5∗) 6 (2d)2d ord(E)2d+1. Let5∗1 = 5∗ ∩ ψ−1(G0), whereG0 is the
identity component ofG.

(5 : 5∗1) 6 (2d)2d ord(E)2d+1 · ord(π0(G)). (1)

Choose a basisb1, . . . , bd of 5∗1 and a biinvariant metric onG. Then for someki 6 2r the
elementψ(bki

i ) = ψ(bi )
ki is not contained in the cut locus ofe in G. In order to prove this, we

choose a (r -dimensional) maximal torusTi containingψ(bi ). Letti denote the Lie algebra ofTi .
Since the maximal torusTi is a convex submanifold ofG, the cut locus function ofTi is just the
restrictionc|ti of the cut locus function ofG. Consequently, the Dirichlet fundamental-domain
around 0 corresponding to the covering exp :ti → Ti is given by

F :=
{
v ∈ ti

∣∣∣∣ ‖v‖ 6 c

(
v

‖v‖
)}

.

Let 1
2 F = { 12v | v ∈

◦
F}. Suppose now that the elementsψ(bi ), . . . , ψ(bi )

l are contained in
the cut locus ofe in Ti , that isψ(bi ), . . . , ψ(bi )

l ∈ exp(∂F). The setsψ(bi )
0 · exp(1

2 F), . . . ,
ψ(bi )

l · exp(1
2 F) are disjoint, and hence

volr (Ti ) > (l + 1) · volr
(
exp( 1

2 F )
) = l + 1

2r
volr (Ti ) .

Thereforel < 2r , and the statement follows.
Choosek1, . . . , kd 6 2r as stated above. Consider the set

V := {
ψ(gbki

i g−1
)
∣∣ i = 1, . . . , d, g ∈ 5} ⊂ 5

∗
1 .

For anya ∈ V there is by construction a uniqueva ∈ g of minimal norm with exp(va) = a. We
employ Lemma 6.8 to see that the set{va | a ∈ V} generates an abelian Lie algebrat. Clearly,
the image ofψ normalizesT. Thus5∗2 := 5∗1 ∩ ψ−1(T) is a normal subgroup of5 and

(5
∗
1 : 5∗2) 6 2dr

. (2)

Choose a homomorphism

f :5∗2 → t satisfying exp◦ f = ψ |5∗2 .
Let C denote the centralizer of5∗2 in 5. The factor group5/C operates effectively on5∗2. So
5/C is isomorphic to a subgroup of GL(d,Z), and as explained in the proof of Theorem 5.1,
a theorem of Minkowski [15] implies thatk := ord(5/C) divides the number(2d)!. Set

A := {vk | v ∈ 5∗2} .
For c ∈ C the endomorphism Adψ(c)|t: t→ t special is the identity. Consequently, Adψ(h)|t is
well-defined forh ∈ 5/C. Furthermore, the map5∗2 → A, v 7→ vk is an isomorphism, and
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hence we can define a mapϕ: A→ t by means of

ϕ(v
k
) :=

∑
h∈5/C

Adψ(h)
(

f (h−1
vh)

)
for v ∈ 5∗2.

Observe that

exp◦ ϕ = ψ |A (3)

and
ϕ(gvg−1

) = Adg(v) for all v ∈ A , g ∈ 5. (4)

SetF := 5/A. As we have seen in the proof of Theorem 2.1, we can identify5 with a
subgroup of a semidirect productRd oβ F such thatA = 5 ∩ Rd × {1} is lattice inRd. Any
element ing ∈ Rd oβ F can be written ash ·∑d

i=1 λi ai , whereh ∈ 5, ai ∈ A andλi ∈ R.
Using the equations (3) and (4), we see that the following map is well-defined.

9:Rd oβ F → G ,

h ·
d∑

i=1

λi ai 7→ ψ(h) · exp
( d∑

i=1

λi ϕ(ai )
)

for h ∈ 5, ai ∈ A andλi ∈ R. Moreover,9 is a homomorphism with9|5 = ψ . Thus we can
define a smooth family of homomorphisms by setting

ψλ((v, f )) := 9((1− λ)v, f ) for (v, f ) ∈ 5 ⊂ Rd oβ F.

Clearly,ψ0 = ψ . Furthermore, the imageH := ψ1(5
∗
2) is a subgroup ofT satisfyinghk = e

for all h ∈ H. Consequently, ord(H) 6 kdim(T), and if we set5∗3 := 5∗2 ∩ Ker(ψ1), we obtain
the inequality

(5
∗
2 : 5∗3) = ord(H) 6 ((2d)!)r . (5)

Combining the estimates (1), (2) and (5), we conclude that

(5 : 5∗3) = (5
∗
2 : 5∗3) · (5∗1 : 5∗2) · (5 : 5∗1)

6 ((2d)!)r · 2dr · (2d)2d · ord(E)2d+1 · ord(π0(G))

6 (2d)2d(r+1) · ord(E)2d+1 · ord(π0(G)).

Proof of Corollary 6.3

Let5 be the group of deck transformations of the normal covering q0:Rn × N → M . The
isometry group ofRn × N is a product Iso(Rn × N) = Iso(Rn) × Iso(N). Thus5 operates
discontinuously and with a finite kernelE1 onRn. Therefore the quotient5/E1 =: 0′ can be
viewed as a discrete subgroup of Iso(Rn).

It is known that such a group acts with a finite kernel on an affine subspace ofRn as a
crystallographic group, see [8].

After changing the origin and the canonical basis we can assume that0′ acts discontinuously
and cocompactly on the subspaceRd×{0} ⊂ Rn. The kernelE2 of the action of0′ onRd ⊂ Rn

is finite, and0/E2 is a crystallographic group. LetE be the preimage ofE2 under the projection
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5→ 0′. Then5/E is isomorphic to a crystallographic group of rankd. By Theorem 2.15 is
abelian up to finite index, and by Remark 2.5E is the maximal finite normal subgroup of5.

Moreover,5 is a subgroup of Iso(Rd)× (O(n− d)× Iso(N)) =: Iso(Rd)× G. Let pr and
ψ0 be the projections of5 on Iso(Rd) andG, respectively. We employ Theorem 6.2 to find a
smooth deformation(ψλ)λ∈[0,1] of ψ0 in Hom(5,G) such that the kernel ofψ1 contains a free
abelian normal subgroupA satisfying

(5 : A) 6 (2d)2d(r+1) · ord(E)2d+1 · ord
(
π0(Iso(N )×O(n− d))

)
= 2 · (2d)2d(r+1) · ord(E)2d+1 · ord

(
π0(Iso(N ))

)
.

According to Theorem 6.1 there is a continuous family of metricsgλ on M and a con-
tinuous family of normal Riemannian coverings qλ:Rn × N → (M, gλ) such that the deck
transformation group of qλ is (pr , ψλ)(5) ⊂ Iso(Rd)× G.

Consider the covering

z1: (Rn × N )
/
((pr , ψ1)(A)) −→ (M, g1) .

By constructionψ1(A) = {e}. SinceA is free abelian, it follows that pr(A) consists out of
translations. ThusRn×N/(pr , ψ1)(A) is isometric to a Riemannian productT (d)×Rn−d×N,
as claimed.

Proof of Corollary 6.4

Clearly,M is homotopy equivalent to its soul. SinceS is a compact flat manifold, it follows
that5 := π1(M) ∼= π1(S) is a torsion free crystallographic group of rankk. By applying
Corollary 6.3 to the universal covering q0:Rk+l → (M, g0) of (M, g0) we find a continuous
family of Riemannian coverings qλ:Rk+l → (M, gλ) and as-sheeted normal Riemannian
covering

z1: T (k) × Rl → (M, g1)

with s6 2· (2k)2k(r+1), wherer = rank(O(l )) = [l/2]. Since the holonomy group ofT (k)×Rl

is trivial, the holonomy group of(M, g1) contains at most

2 · (2k)2k(r+1) 6 2 · (2k)k(l+2) 6 nn2

elements.

On the proof of Corollary 6.5

To make talking easier we introduce a notation: a diffeomorphismf : (M, g0) → (N, g)
between two complete, flat manifolds is called flat, if there is a continuous family(gλ)λ∈[0,1] of
complete, flat metrics onM connecting the given metricg0 with the pull back metricg1 := f ∗g.
We have to prove that there are only finitely many flat diffeomorphism classes of complete, flat
manifolds in each dimension. Therefore we need the following observation:
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Lemma 6.9. Let (M, g0) and(N, g) be two complete, flat manifolds, and let f: (M, g0)→
(N, g) be an affine diffeomorphism. Then f is flat.

Proof. Since f is affine, the metricgλ := λg+ (1− λ) f ∗g is flat, too. Moreover, the metrics
g0 andgλ have the same geodesics, and hencegλ is also complete.

Proof of Corollary 6.5. A complete, flat manifold is isometric to the an orbit space of the
formRn/0 where0 is a torsion free, discrete subgroup of Iso(Rn).

LetM(n)denote the set of torsion free, discrete subgroups of Iso(Rn). We say that two groups
01, 02 ∈ M(n) are equivalent if there exists a flat diffeomorphism between the quotients
Rn/01 → Rn/02. Clearly, it is sufficient to show thatM(n) contains only finitely many
equivalence classes.

Let N(n) ⊂ M(n) be the subset that consists of those groups0 for which the holonomy
group of the quotientRn/0 has order at mostnn2

. By Corollary 6.4 we only have to check that
N(n) is finite up to equivalence.

Observe that each0 ∈ N(n) is as an abstract group isomorphic to a crystallographic group of
rank< n. By the third Bieberbach theorem this class consists out of finitely many isomorphism
classes. Thus we just have to verify that for a fixed crystallographic group00 ⊂ Iso(Rd) of
rankd < n the set

N(n, 00) := {
0 ∈ N(n)

∣∣ 0 is as an abstract group isomorphic to00

}
contains only finitely many equivalence classes.

As explained in the proof of Corollary 6.3 a given group0 ∈ N(n, 00) acts on ad-
dimensional affine subspace ofRn as a crystallographic group. By passing from0 to an
equivalent group if necessary, we can assume that0 acts discontinuously and cocompactly
onRd × {0} ⊂ Rn. Notice that then0 ⊂ Iso(Rd)×O(n− d) ⊂ Iso(Rn). Hence it remains to
prove that

L := {
0 ∈ N(n, 00)

∣∣ 0 ⊂ Iso(Rd
)×O(n− d)

}
is finite up to equivalence. For a group0 ∈ L the image pr(0) of the projection pr : Iso(Rd)×
O(n−d)→ Iso(Rd) is a crystallographic group that is as an abstract group isomorphic to00. It
follows from the second Bieberbach theorem that there is an element in(v, A) ∈ Rd oGL (d)
satisfying00 = (v, A)pr(0)(v, A)−1. We let(v, A) also the image of(v, A) under the natural
inclusionRdoGL (d) ↪→ RnoGL (n), and define0′ = (v, A) ·0 · (v, A)−1. Clearly,0′ ∈ L,
and we can employ Lemma 6.9 to see that0′ is equivalent to0. This consideration shows that
it is sufficient to prove that the set

K := {
0 ∈ L

∣∣ 0 ⊂ 00 ×O(n− d), pr(0)= 00

}
contains only finitely many equivalence classes.

Let pr2 :00 × O(n − d) → O(n − d) be the projection. For0 ∈ K ⊂ N(n) we have
by construction that the order of Hol(Rn/0) is bounded bynn2

. Thus the order of the image
H := pr2(0) is at mostnn2

. It is an elementary consequence from representation theory of finite
groups that O(n − d) contains up to inner conjugation only finitely many groups of a given
order, and hence we can think ofH as a fixed group. Thus it is sufficient to check that for a
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given finite groupH there are only finitely many subgroups0 ⊂ 00 × H with pr(0) = 00.
But this is an immediate consequence of the fact that a finitely generated group contains only
finitely many subgroups of a given index, compare Lemma 2.6.

The Proof of Corollary 6.6

We begin with the case of a compact Lie groupG. Letψ ∈ Hom(5,G). The imageH :=
ψ(5) contains no free subgroups of rank 2. By a theorem of Tits [20] this implies thatH
is solvable up to finite index. Then the closureH of H is solvable up to finite index, too. In
particular, the identity componentH0, a connected solvable compact Lie group, is abelian.
ThereforeH andH are abelian up to finite index.

The homomorphismψ factorizesψ = ι◦ψ whereι: H→ G is the inclusion. By Theorem 6.2
we can deformι (and henceψ) into a homomorphism with finite image.

According to a theorem of Jordan [19, Theorem 8.29], there is a constantm(G) only depend-
ing onG such that any finite subgroupF ⊂ G contains an abelian normal subgroupF′ satisfying
(F : F′) 6 m(G).

Let5′ be the intersection of all subgroups of5 of index at mostm(G). Lemma 2.6 exhibits
5′ as a finitely generated subgroup of finite index in5. Observe that for a homomorphism
ψ ∈ Hom(5,G) with finite image the groupψ(5′) is abelian. In summary, we can say
that any homomorphismψ ∈ Hom(5,G) can be deformed into a homomorphism̃ψ with
Ker(ψ̃) ⊃ [5′,5′], where [5′,5′] is the commutator group of5′. Consequently, we only
have to prove that Hom(5/[5′,5′],G) has only finitely many arc-connected components.

In other words, we can assume that5 is abelian up to finite index. By Theorem 6.2 there
is a constanth = h(5,G) such that any homomorphismψ ∈ Hom(5,G) can be deformed
into a homomorphism with ord(ψ(5)) 6 h.

Let5′′ be the intersection of all subgroups of index at mosth in 5. From Lemma 2.6 we
infer that the factor groupF := 5/5′′ is finite. Similarly to above it remains to check that the
set Hom(F,G) has only finitely many arc-connected components. But this statement follows
immediately from the fact that Hom(F,G) has only finitely many conjugate classes, see [1,
appendix] for quantitative estimates.

Suppose now thatG = GL(n,K)whereK ∈ {R,C}. By the first part it is sufficient to verify
that a given representationψ ∈ Hom(5,G) can be deformed into an orthogonal representation
if K = R and into an unitary representation ifK = C. This clearly can be done by showing
thatψ can be deformed into a homomorphism that has a relatively compact image. We argue
by induction onn.

We begin with the case of a reducible representationψ . So there is a nontrivialψ(5)-invariant
subspaceV ⊂ Kn. Without loss of generalityV = Kd × {0} ⊂ Kn for some positive integer
d < n. Thenψ(g) is a block matrix

ψ(g) =
(
ζ (g) C(g)

0 η(g)

)

whereζ (g) ∈ GL(d,K), η(g) ∈ GL(n− d,K) andC(g) ∈ M(d× (n− d),K). Consider the
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continuous family of homomorphisms

ψλ(g) =
(
ζ (g) λ · C(g)

0 η(g)

)
for λ ∈ [0,1], g ∈ 5.

Clearly,ψ1 = ψ andψ0 = ζ⊕η. By the induction hypothesis we can deform the representations
ζ andη into homomorphisms with finite images, and hence we are done.

Thus we can assume thatψ is irreducible. LetZ be the Zarisky closure ofψ(5) in G. By
Tits theoremψ(5) is solvable up to finite index, so the identity componentZ0 of Z is solvable.
Suppose for a moment thatZ0 is not abelian. Then the commutator groupU = [Z0, Z0] is a
nontrivial unipotent normal subgroup ofZ. Because of Engel’s theorem the vector space

V = {
v ∈ Kn

∣∣ Av = v for all A ∈ U
}

is a nontrivial subspace ofKn. SinceU is a normal subgroup ofZ, V is aZ-invariant subspace
which is impossible. HenceZ0 is abelian. LetT be the maximal compact subgroup ofZ0,
and lett ⊂ z be the corresponding Lie algebras. We can find an Ad(Z)-invariant complement
a of t in z because Ad(Z) is finite. The groupA corresponding toa is a connected, simply
connected, closed, cocompact normal subgroup ofZ. In particular,A ∼= Rl for a suitable integer
l . SinceZ has only finitely many connected components, there exists a maximal compact
subgroupK and furthermoreK · A = Z, see [11, Ch. XV, Theorems 3.1 and 3.7]. Moreover
A∩ K = {e} and thereforeZ is isomorphic to a semidirect productRl oβ K. We identifyZ with
Rl oβ K, and consider the continuous family of homomorphismshλ(v, k) = (λv, k) for all
(v, k) ∈ Rl oβ K = Z, λ ∈ [0,1]. For the corresponding familyψλ := hλ ◦ψ we haveψ1 = ψ ,
and the image ofψ0 is contained in the compact groupK.
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