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Abstract. We establish analogs of the three Bieberbach theorems for a latticeΓ in a semidirect
productS o K whereS is a connected, simply connected solvable Lie group andK is a compact
subgroup of its automorphism group. We first prove that the action ofΓ on S is metrically
equivalent to an action ofΓ on a supersolvable Lie group. The latter is shown to be determined
by Γ itself up to an affine diffeomorphism. Then we characterize these lattices algebraically as
polycrystallographic groups. Furthermore, we realize any polycrystallographic groupΓ as a lattice
in a semidirect productSoF with F being a finite group whose order is bounded by a constant only
depending on the dimension ofS. This generalization of the first Bieberbach theorem is used to
obtain a partial generalization of the third one as well. Finally we show for any torsion free closed
subgroupΥ ⊂ S o K that the quotientS/Υ is the total space of a vector bundle over a compact
manifoldB, whereB is the quotient of a solvable Lie group by a torsion free polycrystallographic
group.

1 Introduction and main results

The classical Bieberbach theorems investigate the structure of crystallographic
groups, i.e. of discrete cocompact subgroups of the isometry group of the Eu-
clidean space Iso(Rd) = Rd o O(d).

Bieberbach’s First Theorem. LetΓ ⊂ RdoO(d)be a crystallographic group.
ThenΓ ∩ Rd has finite index inΓ .

Bieberbach’s Second Theorem.Let Γ1, Γ2 ⊂ Rd o O(d) be two crystallo-
graphic groups. Suppose there exists an isomorphismι : Γ1 → Γ2 of abstract
groups. Thenι is given by conjugation with an element in the group of affine
motionsRd o GL(d).

Bieberbach’s Third Theorem. In each dimension there are only finitely many
isomorphism classes of crystallographic groups.

We will study discrete, cocompact subgroups of semidirect productsS o K
whereS is a connected, simply connected solvable Lie group andK is a compact
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subgroup of its automorphism group Aut(S). Recall that a connected solvable
Lie groupS contains closed subgroups

{e} = N1 ⊂ · · · ⊂ Nk = S

such thatNi is normal inNi+1 andNi+1/Ni
∼= R or Ni+1/Ni

∼= S1. If the groups
N1, . . . ,Nk are normal inS, the groupS is called supersolvable. A connected
nilpotent Lie group is supersolvable; the converse however is not true.

The automorphism group Aut(S) of a simply connected Lie groupS is a Lie
group with finitely many connected components. Consequently, any compact
subgroup of Aut(S) is contained in a maximal compact subgroup and all maximal
compact subgroups are conjugate, compare Remark 3.1. Notice that a semidirect
productS o K acts onS by (τ, A) ? v = τ · A(v) for (τ, A) ∈ S o K, v ∈ S.

Theorem 1. LetS be a connected, simply connected solvable Lie group, and let
K ⊂ Aut(S) be a maximal compact subgroup. Then there is

a) a unique maximal connected, simply connected supersolvable normal sub-
groupR of S o K such thatK also can be viewed as a subgroup ofAut(R),

b) an isomorphismι : R o K → S o K of Lie groups and
c) an equivariant isometryf : (R, g1) → (S, g) for suitable left invariant met-

rics g1, g onR andS, i.e. f (h ? v) = ι(h) ? f (v) for v ∈ R andh ∈ R o K.
More precisely, ifg is a left invariant metric onS such thatg|e is invariant
under the natural representation ofK in the Lie algebras of S, then the pull
back metricg1 := f ∗g is left invariant onR.

So we may restrict attention to actions on supersolvable Lie groups, and
thereby we can view the following theorem as an analogue of the second Bieber-
bach theorem:

Theorem 2. Let Si be a connected, simply connected supersolvable Lie group,
Ki ⊂ Aut(Si) a compact subgroup, and letΓi ⊂ SioKi be a discrete cocompact
subgroup,i = 1,2. Suppose there exists an isomorphismι : Γ1 → Γ2 of abstract
groups. Then there is an isomorphismϕ : S1 → S2 and an elementτ ∈ S2 such
that the affine diffeomorphism

f : S1 → S2, v 7→ ϕ(v) · τ
is equivariant. In particular,ι(γ ) ?w = f (γ ? f −1(w)) for all w ∈ S2, γ ∈ Γ1.

In the special case of a nilpotent Lie groupS the theorem is due to Auslander
(1961a), and the groupΓ1 is then called analmost crystallographic group.

Theorem 2 is also a partial generalization of the main result of Farrell and
Jones (1997). They proved for a pair of torsion free, closed, cocompact subgroups
Υi ⊂ Si o Ki for which the identity components are contained in the nilradicals
of Si (i = 1,2) that the following holds: Any isomorphismπ1(S1/Υ1) →
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π1(S2/Υ2) between the fundamental groups is induced by a diffeomorphism
S1/Υ1 → S2/Υ2 provided that dim(Si/Υi) 6= 4. In the special case of discrete
groupsΥ1 andΥ2 this is of course equivalent to saying that for any isomorphism
Υ1 → Υ2 there exists a corresponding equivariant diffeomorphismS1 → S2.
Farrell and Jones (1997) employ strong topological theorems to obtain their
result. Our proof in contrast is elementary although it is quite long. Notice also
that Theorem 2 is stronger to some extent, since we do not require that the
considered groups are torsion free and since we prove in a “normalized category”
the existence of an affine diffeomorphism.

In order to generalize the other Bieberbach theorems we first characterize
the above lattices algebraically. Therefore we recall that a groupΛ is called
polycyclic if there are subgroups

{e} = N1 ⊂ · · · ⊂ Nk = Λ

such thatNi is a normal subgroup ofNi+1 and the factor groupNi+1/Ni is cyclic.
The number of factor groups satisfyingNi+1/Ni

∼= Z does not depend on the
choice of the subgroups and is called the Hirsch-rank or for short the rank ofΛ.
The groupΛ is called strongly polycyclic if for a suitable choiceNi+1/Ni

∼= Z

for all i. If Π is a group containing a polycyclic subgroupΛ of finite index, we
define rank(Π) := rank(Λ). This definition is easily seen to be independent of
the choice ofΛ. Finally the nilradical nil(Π) ofΠ is then defined as the maximal
nilpotent normal subgroup ofΠ .

Theorem 3. For a groupΓ the following statements are equivalent.

a) Γ is isomorphic to a discrete, cocompact subgroup of a semidirect product
S1 o K, whereS1 is a connected, simply connected solvable Lie group and
K is a compact subgroup of the automorphism groupAut(S1).

b) There is an almost crystallographic groupΓN , a crystallographic groupΓA
and an exact sequence

{1} → ΓN → Γ → ΓA → {1}.
c) There are subgroups

{e} = Γ0 ⊂ · · · ⊂ Γn = Γ

such thatΓi is a normal subgroup ofΓi+1 and the factor groupΓi+1/Γi is
isomorphic to a crystallographic group.

d) Γ is polycyclic up to finite index, andΓ does not contain any nontrivial finite
normal subgroup.

e) Γ contains a strongly polycyclic normal subgroupΛ of finite index such that
the centralizer ofΛ is contained inΛ.
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f) Γ is isomorphic to a discrete, cocompact subgroup of a semidirect product
S2 o F, whereS2 is a connected, simply connected solvable Lie group and
F is a finite subgroup of the automorphism groupAut(S2).

The equivalenced) ⇔ b) is due to Dekimpe. Moreover, he also provede) ⇒ d)

anda) ⇒ d), see (Dekimpe, 1996, Theorems 3.4.3 and 3.4.6).
Auslander and Johnson (1976) have verified a conjecture that is related to

the implicationd) ⇒ f ): Under the additional assumption thatΓ is torsion free
they have realizedΓ as the fundamental group of a compact manifold that is
finitely covered by a solvmanifold. The implicationa) ⇒ f ) is due to Farrell
and Jones (1997). Actually they proved it only under the additional assumption
thatΓ is torsion free but their proof carries over to the present situation.

Notice that the implicationa) ⇒ f ) can be viewed as a partial generalization
of the first Bieberbach theorem, since the actions ofΓ onS1 andS2 arising from
the conditions a) and f) are by the Theorems 1 and 2 equivalent.

Condition c) in the above theorem suggests the following notation: A group
Γ is called polycrystallographic, if and only if it satisfies one of the conditions
of Theorem 3. Using the above theorems it is easy to see:

Corollary 4. LetΓ be a polycrystallographic group. Then there is a connected,
simply connected supersolvable Lie groupS, a compact subgroupK of its auto-
morphism group and a homomorphismι : Γ → SoK mappingΓ isomorphically
onto a discrete, cocompact subgroup, such thatι(Γ ) ·(S×{e}) is dense inSoK.

Moreover, ifι2 : Γ → S2 o K2 is another embedding satisfying the above
assumptions, there is a unique isomorphismϕ : S2 o K2 → S o K for which
ϕ ◦ ι2 = ι, and thenϕ(S2 × {e}) = S × {e}.

The embedding of Corollary 4 has nice algebraic properties, see Sect. 8.
If Γ is an almost crystallographic group, then the groupK in Corollary 4 is

finite, the groupΓ ∗ := ι−1(S × {e}) can be viewed as the translational part of
Γ , and it coincides with the nilradical ofΓ . A theorem of Dekimpe et al. (1994)
generalizing the third Bieberbach theorem states that there are only finitely many
almost crystallographic groups containing a fixed group as its nilradical.

However, in the general situation the groupK is not finite and for that reason
we also consider different embeddings:

Theorem 5. For a polycrystallographic groupΓ of rankn there is

(i) a connected, simply connected solvable Lie groupS,
(ii) a finite subgroupF ⊂ Aut(S) with ord(F) ≤ Cn, whereCn is a constant

only depending onn and
(iii) a homomorphismι : Γ → S o F satisfyingS o F = ι(Γ ) · (S × {e}) and

mappingΓ isomorphically onto a discrete, cocompact subgroup ofS o F

for which the following holds: LetΓ ′ ⊂ Γ be a subgroup of finite index, and
let F′ ⊂ F be the unique group withS o F′ = ι(Γ ′) · (S × {e}). Then any
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automorphism ofι(Γ ′) ∼= Γ ′ can be extended uniquely to an automorphism of
S o F′.

The embeddingι in Theorem 5 is not unique, and the groupΓ ∗ := ι−1(S × {e})
is not independent of the choice ofι. However, the index of the subgroupΓ ∗ in
Γ is bounded byCn, and a theorem of Segal (1978) states that there are only
finitely many isomorphism classes of groups containing a fixed polycyclic group
as a normal subgroup of a given index. Thus we can regard Segal’s result in
connection with Theorem 5 as a generalization of Bieberbach’s third theorem.

Finally, we consider torsion free subgroups and the corresponding quotients.

Theorem 6. Let S be a connected, simply connected solvable Lie group,K
⊂ Aut(S) a compact subgroup, and letΥ ⊂ S o K be a torsion free closed
subgroup. Then

a) S/Υ is the total space of a vector bundle over a compact manifoldB.
b) The fundamental groupΓ := π1(B) is a torsion free polycrystallographic

group, and for an embeddingι : Γ → Ŝ o K̂ satisfying the assumption of
Corollary 4 the quotient̂S/Γ is diffeomorphic toB.

If in addition the identity component ofΥ is contained in a normal supersolvable
subgroup ofS, then a finite cover ofS/Υ is diffeomorphic to a product of a
compact manifold and a vector space.

In the special caseK = {e} the statement a) of the theorem was conjectured
by Mostow (1951) and proved by Auslander and Tolimieri (1970). Furthermore,
Mostow (1951) has shown that a finite cover of a noncompact solvmanifold is
homeomorphic to a product of a compact solvmanifold and a vectorspace.

The action ofS o K onS is isometric with respect to a suitable left invariant
metricg on S. At first view it seems to be more general to consider a subgroup
Υ ⊂ SoK for which the quotient(S, g)/Υ is a Riemannian manifold. However,
by applying (Eschenburg, 1984, Satz 12,13) one can show that such a manifold
is isometric to a quotient(S′, g′)/Υ ′ with Υ ′ being torsion free.

Remarks.1. The manifolds occurring in Theorem 6 are called infrasolvmani-
folds. Compact infrasolvmanifolds have a nice geometric characterization. Ac-
cording to Tuschmann (1997) a compact topological manifoldM is homeomor-
phic to an infrasolvmanifolds if and only ifM admits a sequence of Riemannian
structuresgµ with uniformly bounded sectional curvature such that(M, gµ)µ∈N

collapses in the Gromov Hausdorff sense to a flat orbifold.
2. After finishing this paper the author realized that compact solvmanifolds

can also be used to construct compact Riemannian manifolds with noncompact
holonomy groups, see Wilking (1999).

3. Discrete subgroups of supersolvable Lie groups resemble in many respects
discrete subgroups of nilpotent Lie groups, compare Subsect. 8.2. It would be
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interesting to know whether compact supersolvmanifolds, i.e. quotients of su-
persolvable Lie groups by lattices, have any special geometric properties.

4. Suppose thatΠ is a group that is polycyclic up to finite index. It is el-
ementary to show thatΠ contains a maximal finite normal subgroupE ⊂ Π .
By condition d) of Theorem 3 the factor groupΠ/E is polycrystallographic. So
polycrystallographic groups might be of algebraic interest as well.

5.A subgroupΓ of the group of affine motionsRdoGL(d) is called an affine
crystallographic group if the corresponding action ofΓ on Rd is discontinuous
and cocompact. It is conjectured that affine crystallographic groups are virtu-
ally polycyclic. Evidently, a virtually polycyclic affine crystallographic groupΓ
does not contain any finite normal subgroup, and hence it is polycrystallographic.
Moreover, it is not hard to see that the affine action ofΓ onRd is smoothly equiva-
lent to the action ofΓ on the supersolvable Lie group arising from the embedding
in Corollary 4; in fact the supersolvable Lie group acts then simply transitive on
Rd by affine diffeomorphisms. Of course one can use this to obtain structure
results for virtually polycyclic affine crystallographic groups. However, there is
already a nice structure theory for these groups, see Grunewald and Segal (1994).
Also notice that not any polycrystallographic group is affine crystallographic, see
(Benoist, 1995) for a nilpotent counterexample. Hence the results in (Grunewald
and Segal, 1994) do not imply structure results for polycrystallographic groups.
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The main aim of this paper is, of course, to prove the main results. However,
some of the results stated below might be of some interest in itself: In Sect. 2 we
give two counterexamples. They will uncover some mistakes occurring in this
context in the literature. Lemma 4.1 introduces a different characterization of
supersolvable Lie groups that is needed subsequently. Section 6 is the heart of
the proofs of the Theorems 2 and 6. We study there subgroups of a semidirect
productS oβ K with S being supersolvable. Our results depend on a good
understanding of the exponential map ofSoβ K. Here Theorem 6.5 is of its own
right.

The proof of Theorem 5 needs some additional preparations which we have
placed in Subsect. 7.3. There a sufficient condition on a polycrystallographic
groupΓ is given which ensures that for the embeddingι : Γ → S o K of Corol-
lary 4 the groupS o K is connected. Actually this result can be interpreted as a
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correction of a similar theorem ofAuslander from which we show in Example 2.1
that the original version is not correct. Furthermore, we prove without additional
assumptions that the number of connected components ofS o K is bounded by
a constant only depending on the rank ofΓ .

Finally, we investigate in Sect. 8 the algebraic properties of the embedding
of Corollary 4. To some extent this embedding is the natural generalization of
the Malcev completion of a torsion free nilpotent group.

The author would like to thank the referees for bringing several references to
his attention.

2. Counterexamples

Let Λ be a torsion free polycyclic group. Then the nilradical nil(Λ) of Λ is
finitely generated. Hence there is a connected, simply connected nilpotent Lie
groupN, called the Malcev completion of nil(Λ), such that nil(Λ) is a lattice
in N, see (Raghunathan, 1972, Theorem 2.18). The action ofΛ on nil(Λ) by
conjugation induces an action ofΛ on the Malcev completionN of nil(Λ), see
(Raghunathan, 1972, Theorem 2.11). Letρ : Λ → GL(n) be the corresponding
representation in the Lie algebra ofN. The groupΛ is called predivisable if and
only if Λ/nil(Λ) is free abelian and for allg ∈ Λ the following is true: any
eigenvalueλ of ρ(g) is either real and positive or the numberλn is not real for
all positive integersn.

A theorem of Auslander (1961b) states that a predivisable polycyclic group
Λ is isomorphic to a lattice in a connected, simply connected solvable Lie group.
Another theorem of Auslander (1969) asserts that there is a connected solvable
Lie groupD containingΛ as a uniform lattice such that any automorphism of
Λ can be extended uniquely to an automorphism ofD. Both theorems are not
correct:

Example 2.1. There is a torsion free, predivisable polycyclic groupΛ which
can not be realized as a discrete, cocompact subgroup of a connected solvable
Lie group.

The construction ofΛ needs some preparations. Set

p(X) := X4 + 4X3 + 3X2 − 2X + 1 = (X + 1)4 − 3(X + 1)2 + 3.

Clearly,p is an irreducible polynomial, and the zeros ofp are the numbers:

z1 = −1 + 4
√

3eiπ/12, z2 = −1 + 4
√

3e−iπ/12,

z3 = −1 − 4
√

3eiπ/12, z4 = −1 − 4
√

3e−iπ/12.

We claim thatzni is not real for all positive integersn, i = 1, . . . ,4. In fact,
otherwise the numberzi/z̄i would be a root of unity. It is easy to see that the
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roots of unity inQ(z1, z2, z3, z4) form a cyclic group of order 12. Thus it is
sufficient to verify that(zi/z̄i)12 6= 1 which is trivial.

Let Z̃ be the integral closure ofZ in Q(z1), i.e. Z̃ consists of those numbers
in Q(z1) for which the corresponding (normalized) minimal polynomial is in
Z[X] ⊂ Q[X]. Evidently,z1 ∈ Z̃ and as additive group̃Z is isomorphic toZ4.
It is a well-known and elementary fact that the characteristic polynomial of the
Z-linear map Lz1 : Z̃ → Z̃, x 7→ z1x is given by the minimal polynomialp(X).
In particular, Lz1 ∈ GL(Z̃) ∼= GL(4,Z), andz1, z2, z3, z4 are the eigenvalues of
Lz1. Put

L :=
{ 

1 a b
0 1 c
0 0 1


 ∣∣∣∣ a, b, c ∈ Z̃ ⊂ C

}
.

Clearly, L is a finitely generated, torsion free nilpotent group of rank 12. We
define an automorphism ofL as follows.

σ : L → L, A 7→ diag(z1, z
2
1,1) · A · diag(z−1

1 , z−2
1 ,1).

As usualσ induces an automorphism̄σ on the Malcev completionN of L. It is
straightforward to check that the corresponding automorphismσ̄∗e : n → n of
the Lie algebra ofN has the eigenvalueszi, z

−1
i , z

2
i , i = 1, . . . ,4.

Next we consider the product groupL2 := L × L with the automorphism

ψ : L2 → L2, (g, h) 7→ (
σ(h), σ (g)

)
.

Similarly to aboveψ induces an automorphism̄ψ onN2, and the eigenvalues of
ψ̄∗e : n ⊕ n → n ⊕ n are given by±zi,±z−1

i ,±z2
i , i = 1, . . . ,4. Observe that,

for an eigenvalueλ of ψ̄∗e the numberλn is not real for all positive integersn.
Therefore the semidirect product

Λ := (L2)o Z, (a,m) · (b, n) := (
a · ψm(b),m+ n

)
is a torsion free, predivisable polycyclic group.

In order to show thatΛ has the claimed properties, it is important to verify
that the automorphism̄ψ : N2 → N2 is not contained in the identity component
of Aut(N2). Notice thatN is not abelian, so there is an elementg ∈ N for which
the connected group[g,N] := 〈{ghg−1h−1 | h ∈ N}〉 is not trivial. Choose the
minimal positive integerk for which the setS := {g ∈ N | dim([g,N]) = k}
is not empty. The setM := {g ∈ N2 | dim([g,N2]) = k} is invariant under
Aut(N2), and it is trivial to compute thatM = (S × C) ∪ (C × S), whereC is
the center ofN. Evidently,ψ̄ swaps the subsetsS × C andC × S of M. Taking
into account that these two subsets are open and closed inM, we see that̄ψ is
not contained in the identity component of Aut(N2).
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Suppose, on the contrary, thatΛ can be realized as a discrete, cocompact
subgroup of a connected solvable Lie groupS. It is convenient to assume that
dim(S) is minimal. LetÑ be the maximal connected, nilpotent normal subgroup
of S. If Ñ is not simply connected, there is a nontrivial, connected, maximal
compact central subgroupT of Ñ, compare Lemma 4.2 a) below. ThenT is a
characteristic subgroup of the normal subgroupN ⊂ S and accordingly normal
in S. The factor groupS/T is again a connected solvable group. SinceΛ is
torsion free and discrete inS, the projectionS → S/T mapsΛ isomorphically
onto a discrete, cocompact subgroup ofS/T which is impossible because dim(S)
is minimal. ThusÑ is simply connected.

By a theorem of Mostow the groupH := Λ∩ Ñ is a lattice inÑ, see (Raghu-
nathan, 1972, Theorem 3.3). Furthermore,H is contained inL2 = L2 × {e}, the
nilradical ofΛ. The factor groupS/Ñ is abelian, and hence[Λ,Λ] ⊂ H. It is
easy to see that the commutator group[Λ,Λ] ⊂ H is of finite index inL2 ⊂ Λ.
ThereforeH ⊂ L2 is lattice inÑ and also a lattice inN2 = N × N. Since both
groups are connected, simply connected nilpotent Lie groups, there exists an iso-
morphismι : Ñ → N2 with ι|H = id, see (Raghunathan, 1972, Theorem 2.11).
The connected groupS acts onÑ by conjugation, and the image of the induced
homomorphismS → Aut(Ñ) is contained in the identity component of Aut(Ñ).

Setg := (e,1) ∈ (L2) o Z = Λ. The automorphismcg : Ñ → Ñ, h 7→
ghg−1 leaves the subgroupH = Λ ∩ Ñ invariant and clearlycg|H = ψ . Hence
ι ◦ cg ◦ ι−1 andψ̄ coincide on the cocompact subgroupH of N2, so they must be
equal. But this implies that̄ψ is contained in the identity component of Aut(N2),
a contradiction.

Remarks 2.2.1.Actually the two theorems ofAuslander are only wrong in detail
but true in spirit. In fact, one just has to replace the assumption that the group
Γ is predivisable by the assumption thatΓ is generated by elements which are
absolutely net, see Subsect. 7.3 for the definition and details.

2. If one is willing to disregard the minor mistake in (Auslander, 1969, The-
orem 1), its statement implies nearly directly the existence part of Corollary 4.
However, we will not make use of this fact. Notice also that the uniqueness part of
Corollary 4 was not known before, even not in the special case of a predivisable
polycyclic groupΓ .

Example 2.3. There is a nontrivial, connected, simply connected solvable Lie
group S, a compact groupK ⊂ Aut(S) and a discrete, cocompact subgroup
Γ ⊂ S o K such thatΓ and S = S × {e} have only the trivial element in
common.

Choose a two-dimensional real subspaceV ⊂ R3 with Z3 ∩ V = {0}. There
is a one-dimensional connected subgroup SO(2) ⊂ SO(3) leavingV invariant.
Let G denote the semidirect productR3 o SO(2). ThenV × {e} is a normal
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subgroup ofG, and the factor groupQ := G/V × {e} is isomorphic to a direct
productR × SO(2). The projectionπ : G → Q maps the groupΓ := Z3 × {e}
monomorphically onto a subgroup ofQ. Clearly, we can find a connected, one-
dimensional, cocompact, closed subgroupA of Q that has trivial intersection
with π(Γ ). Let S be the preimageπ−1(A). By constructionS is a connected,
simply connected, closed, solvable normal subgroup that has trivial intersection
with Γ . Moreover,K = {e} × SO(2) is a group complement ofS in G, that is
K · S = G andK ∩ S = {e}. Finally, it is easy to see thatK acts onS ⊃ V × {e}
effectively by conjugation. Thus we can viewK as a subgroup Aut(S), and under
this identificationSoK is isomorphic toG, compare Subsect. 3.2. Furthermore,
Γ ∩ S = {e}.
Remarks 2.4.1. Example 2.3 contradicts Corollary 8.25 in (Raghunathan, 1972),
which in the above situation states that for the maximal connected nilpotent
normal subgroupN of S the groupN ∩ Γ is a lattice inN.

2. The error occurs in the proof of (Corollary 8.25, Raghunathan, 1972) where
is claimed that the maximal connected nilpotent normal subgroup ofS o K is
contained inS. In the above example this is not true. In fact, there the maximal
connected nilpotent normal subgroup ofS o K is isomorphic toR3; whereas
the maximal connected nilpotent normal subgroup ofS is isomorphic toR2.
Actually the mistake and the corollary itself is related to a similar assertion that
is stated in the proof of (Theorem 2, Auslander, 1961a).

3. In general for a latticeΛ in a connected, simply connected solvable Lie
groupS not any automorphism ofΛ can be extended to an automorphism of
S: Consider the homomorphismβ : R → C∗ ⊂ Aut(C), t 7→ exp(2πit) and
the semidirect productS = C oβ R. The groupΛ := (Z ⊕ iZ) × Z ∼= Z3 is
a discrete, cocompact subgroup ofS, but of course not any automorphism in
Aut(Λ) ∼= GL(3,Z) can be extended to one ofS.

3. Preliminaries

3.1. Basic properties of algebraic groups

Recall that the general linear group GL(n,C) has a so called Zarisky topology;
a subsetG ⊂ GL(n,C) is called Zarisky closed if and only if it is the zero set of
a collection of polynomials in the coefficientsaij and in det(aij )−1. An algebraic
subgroupG of GL(n,C) is a subgroup for which the underlying set is Zarisky
closed. It is a well-known and elementary fact that for a subgroupG ⊂ GL(n,C)
the Zarisky closure ofG is again a group. IfG ⊂ GL(n,C) is a group andH ⊂ G
is a normal subgroup, then the Zarisky closureH̄ of H is a normal subgroup of
the Zarisky closurēG of G. If in additionG/H is abelian, then̄G/H̄ is abelian,
too.
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We refer to the topology of GL(n,R) induced by the Zarisky topology as the
Zarisky topology of GL(n,R). In particular, the Zarisky closure in GL(n,R) is
defined.A real algebraic groupG ⊂ GL(n,R) is a group for which the underlying
set is Zarisky closed in GL(n,R). It is easy to show that a connected, unipotent
subgroup of GL(n,R) is a real algebraic group, see (Raghunathan, 1972, p. 9).

A (real) algebraic group has only finitely many connected components in the
Euclidean topology, see (Mostow, 1957).

If V is a realn-dimensional vector space with a given basis, then the gen-
eral linear group GL(V ) is canonically isomorphic to GL(n,R). Evidently, the
Zarisky topology induced by this identification on GL(V ) does not depend on the
choice of the basis. Thus Zarisky topology of GL(V ) has an intrinsic meaning.

In the sequel, we will make use of these elementary facts without further
comments. We also emphasize that except for the notion of Zarisky closure all
other topological concepts used for subgroups of GL(n,C) will be with respect
to the Euclidean topology. The main reason why real algebraic groups play a
role in the proofs of the above theorems is related to the following well-known
observation.

Remark 3.1.Let S be a connected, simply connected Lie group, and let Aut(S)
the group of continuous automorphisms ofS. The natural representationρ :
Aut(S) → GL(s) in the Lie algebra ofS is faithful, and its image is a real
algebraic linear group. In particular, Aut(S) is a Lie group with finitely many
connected components, it contains at least one maximal compact subgroup, and
any compact subgroup is conjugate to a subgroup of a given maximal compact
subgroup.

Proof. SinceS is connected,ρ is faithful. AsS is simply connected, the image
of ρ is the automorphism group Aut(s) of the Lie algebras. Checking that
Aut(s) is an algebraic group is easy: Choose a basisv1, . . . , vn of s and define∑n

h=1 cijhvh := [vi, vj ]. LetA ∈ GL(s) be represented by the matrix(aij ) with
respect to the basisv1, . . . , vn. ThenA ∈ Aut(s) if and only if for all h, k, l the
following holds

∑
j,h

cklhahjvh = A[vk, vl] = [Avk,Avl] =
∑
i,j,h

aikajlcijhvh.

Thus Aut(s) is a real algebraic group. The last part of the remark is a general
fact for Lie groups with finitely many connected components, see (Hochschild,
1965, Ch. XV,Theorem 3.1). ut
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3.2. Notational conventions and basic facts for semidirect products

Let S andK be Lie groups andβ : K → Aut(S) a continuous homomorphism.
On the Cartesian productS × K we introduce a Lie group structure by setting

(v, a) · (w, b) := (
v · β(a)(w), ab) for (v, a), (w, b) ∈ S × K.

This Lie group is denoted byS oβ K. It acts onS via (τ, a) ? h = τ · β(a)(h).
With this notation the group multiplication can be rewritten as(v, a) · (w, b) =
((v, a) ? w, ab).

For a semidirect productS oβ K we will always identifyK with the group
{e} × K andS with the normal subgroupS × {e} of S oβ K.

Let G be a Lie group,S a closed normal subgroup, and letK ⊂ G be a closed
subgroup such thatG = K · S andK ∩ S = {e}. Then the natural action of
K on S by conjugation induces a continuous homomorphismβ : K → Aut(S),
andS oβ K is isomorphic toG via (τ, a) 7→ τ · a. Conversely for a semidirect
productS oβ K the action ofK on S by conjugation coincides with the action
of K onS induced by the homomorphismβ.

There is a natural homomorphismπ : S oβ K → S o Aut(S), (τ, a) 7→
(τ, β(a)). Clearly, Ker(π) = Ker(β). In particular, the kernel ofβ is a normal
subgroup ofS oβ K. If β is injective, we will often identifyK with β(K), and
then writeS o K for S oβ K.

Lemma 3.2. a) LetS be a connected, simply connected solvable Lie group, and
let K be a compact subgroup ofAut(S). Then the semidirect productS o K
contains no nontrivial compact normal subgroup.

b) LetG be a Lie group, and letS be a connected, simply connected, closed, co-
compact solvable normal subgroup ofG. ThenG is isomorphic to a semidirect
productS oβ K, whereK is a maximal compact subgroup ofG.

c) LetG be a Lie group that contains no nontrivial compact normal subgroup,
and letS ⊂ G be as in b). ThenG is isomorphic to a semidirect product
S o K, whereK is a compact subgroup ofAut(S).

Proof. a).Suppose thatL is a compact normal subgroup ofS o K. Evidently,K
is a maximal compact subgroup ofS o K. Taking into account thatK · L is also
compact, we see thatL ⊂ K. HenceL acts effectively by conjugation onS. On
the other hand, the normal subgroupsL andS have trivial intersection, and thus
they commute. In combination these facts show thatL is the trivial group.

b).SinceG has only finitely many connected components, a maximal compact
subgroup exists, see (Hochschild, 1965, Ch. XV, Theorem 3.1). Moreover, for a
maximal compact subgroupK of G we getG = K · S, see (Hochschild, 1965,
Ch. XV, Theorem 3.7). On the other hand,K ∩ S = {e}, and thereforeG is
isomorphic to a semidirect productS oβ K.
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c).By b) the groupG is isomorphic to a semidirect productSoβ K′. Further-
more,G contains no nontrivial compact normal subgroup, and hence the natural
homomorphismS oβ K′ → S o Aut(S) is injective. ut

3.3. Some group theory

Lemma 3.3. LetΠ be a group andΛ a polycyclic subgroup of finite index. Then

a) Any subgroup ofΠ is finitely generated.
b) There is a strongly polycyclic normal subgroup of finite index inΠ .

For a proof of this lemma see (Segal, 1983, Proposition 2,p 2). The next lemma
is known as well, see (Dekimpe, 1996, Lemma 3.2.4). However, since it is less
standard we include a proof.

Lemma 3.4. LetΠ be a group and suppose that the center ofΠ has finite index
inΠ . Then the torsion elements inΠ form a characteristic subgroupT, and the
factor groupΠ/T is an abelian torsion free group.

Proof of Lemma 3.4.Let C denote the center ofΠ , CQ := C ⊗Z Q, and let
p : C → CQ, h 7→ h⊗ 1 be the natural map. Clearly, the kernel ofp precisely
consists out of the torsion elements inC. Consider the direct productΠ × CQ

and the central subgroup

∆ := {(h,−p(h)) | h ∈ C}.
The projection pr: Π × CQ → G := Π × CQ/∆ mapsCQ injectively onto a
central subgroup ofG. Moreover, the kernel of pr|Π is the torsion group Ker(p).
Therefore it is sufficient to check that the torsion elements inG form a finite
characteristic subgroup̄T with an abelian factor groupG/T̄. Consider the finite
groupF := G/pr(CQ) ∼= Π/C and the exact sequence

{1} → CQ → G → F → {1}.
By cohomology theory such a sequence splits, see (Brown, 1982). HenceG

is isomorphic to direct productF × CQ and the assertion follows. ut
For a groupG and an integerk we letGk o Sk denote the semidirect product

of the symmetric group of degreek with thek-fold product ofG.

Lemma 3.5. Let Γ be a group,Λ ⊂ Γ a normal subgroup of indexk < ∞.
ThenΓ is isomorphic to a subgroup of the semidirect productΛk o Sk.

Proof. Let b1, . . . , bk ∈ Γ be representatives ofΓ/Λ. SinceΛ is a normal
subgroup ofΓ , we can find for anyg ∈ Γ and i ∈ {1, . . . , k} a unique
σg(i) ∈ {1, . . . , k} for which bigb

−1
σg(i)

∈ Λ. In fact,g 7→ σg defines an anti-
homomorphism fromΓ to the symmetric group of degreek. Now we define a
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monomorphismi : Γ → Λk o Sk by

i(g) :=
((
b1gb

−1
σg(1)

, . . . , bkgb
−1
σg(k)

)
, σg−1

)
for all g ∈ Γ .

ut

4. The reduction to supersolvable Lie groups

4.1. Supersolvable Lie groups

A well-known theorem of Engel states that a connected Lie group is nilpotent if
and only if the adjoint group consists of unipotents. There is a similar character-
ization of supersolvable Lie groups.

Lemma 4.1. A connected Lie groupS is supersolvable if and only if all elements
in the adjoint groupAd(S) have only positive eigenvalues.

Proof. Let s denote the Lie algebra ofS. We begin with the case of a super-
solvable Lie groupS. So there are closed normal subgroups{e} = N0 ⊂ · · · ⊂
Nk = S of S with dim(Ni+1/Ni) = 1. Choose vectorsb1, . . . , bk ∈ s such that
b1, . . . , bi is a basis of the Lie algebra ofNi . With respect to this basis Ad(S)
is represented by real upper triangular matrices. Taking into account that Ad(S)
is connected, we see that the Eigenvalues of elements in Ad(S) are real and
positive.

Assume now conversely that the eigenvalues of Adg are real and positive for
all g ∈ S. Let S′ be the maximal solvable normal subgroup ofS. Suppose for
a moment thatS′ 6= S. ThenG := S/S′ is a semisimple Lie group with trivial
center, and therefore it has a nontrivial compact subgroupK. Clearly, for allg ∈ K
the eigenvalues of Adg : g → g have absolute value one. On the other hand, the
semisimple endomorphism Adg has only positive eigenvalues and consequently
Adg = id. ThusK is contained in the center ofG, a contradiction.

HenceS = S′ is a solvable Lie group. LetT be a maximal compact subgroup
of S. As above we deduce thatT is central, and therefore it is sufficient to check
that the factor groupS/T is supersolvable. According to (Hochschild, 1965,
Ch. XV, Theorem 3.1)S/T is diffeomorphic to an Euclidean space, and thus we
may assume thatS itself is simply connected. By Lie’s theorem we can find a
vectorv in the complexificationsC of s which is an eigenvector of Ad(S). But
then the conjugatēv of v is also an eigenvector of Ad(S). Taking into account that
all eigenvalues are real, we see that any vector in spanC(v̄, v) is an eigenvector
of Ad(S). The intersection of spanC(v̄, v) ands ⊂ sC is nontrivial, so there is
a vectorw ∈ s which is an eigenvector of Ad(S). But thenR ∼= exp(Rw) = A
is a closed normal subgroup ofS, and in order to show thatS is supersolvable,
we just have to check thatS/A is supersolvable. Now the statement follows by
induction on the dimension ofS. ut
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Lemma 4.2. a) A maximal compact subgroupT of a connected supersolvable
Lie groupS is unique and central, and the factor groupS/T is simply con-
nected.

b) Let S1 and S2 be connected supersolvable normal Lie subgroups of a Lie
group G. ThenS1 · S2 is a connected supersolvable normal Lie subgroup,
too.

c) Let G be a Lie group. The maximal connected supersolvable normal Lie
subgroupS of G is closed. IfG contains no nontrivial compact normal
subgroup, thenS is simply connected.

Proof. a). This is an immediate consequence of the proof of Lemma 4.1.
b).LetS3 = S1·S2,H = S1∩S2, and lets1, s2, s3 andh be the corresponding

Lie algebras. The adjoint representation ofS3 induces representations ins1/h
ands2/h. Because of the inclusion[s1, s2] ⊂ h the natural representation ofS1

in s2/h is trivial. Moreover, Adg|s1 has only positive eigenvalues forg ∈ S1, and
hence Adg|s3 has only positive eigenvalues. Similarly, Adg|s3 has only positive
eigenvalues forg ∈ S2. By Lie’s theorem the eigenvalues of Adg|s3 are positive
for all g ∈ S2 · S1 = S3. ThereforeS3 is supersolvable, see Lemma 4.1.

c). Let S̃ be the maximal connected solvable normal subgroup ofG. Clearly,
S̃ is a closed subgroup ofG. Furthermore,S is the maximal connected super-
solvable normal subgroup ofS̃. So without loss of generalityG is a solvable Lie
group. Set

S′ := {g ∈ G | Adg has only positive eigenvalues}.

By Lie’s theoremS′ is a closed normal subgroup ofG, and Lemma 4.1 exhibits
the identity componentS′

0 of S′ as a supersolvable Lie group. Lets andg be
the Lie algebras corresponding toS andG. SinceS contains the maximal con-
nected nilpotent normal subgroup ofG, it follows thatG/S is abelian. Hence the
natural representation ofG in g/s is trivial. Now Lemma 4.1 givesS ⊂ S′ and
therebyS = S′

0. ThusS is closed. According to a) there is a unique maximal
compact central subgroupT of S, andS/T is simply connected. Notice that the
characteristic subgroupT of S is normal inG. Consequently,S itself is simply
connected provided thatG contains no nontrivial compact normal subgroups.

ut

4.2. Existence of cocompact supersolvable subgroups

Lemma 4.3. Let S ⊂ GL(n,C) be a group containing a solvable subgroup of
finite index. Then the matrices inS that have only positive eigenvalues form a
normal subgroupR of S.
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Proof. Evidently, the setR is invariant under conjugation, and therefore we
only have to show thatR is a subgroup. Notice that the Zarisky closureS̄ of
S is solvable up to finite index, too. By replacingS by S̄ if necessary, we may
assume thatS = S̄ is an algebraic group. In particular,S is a Lie group with
finitely many connected components, and the identity componentS0 is solvable.
Because of Lie’s theorem it is sufficient to verify the assertion under the additional
assumption thatS0 is contained in the group of upper triangular matrices.

Let S be a matrix inS that has only positive eigenvalues. The groupS has
only finitely many connected components, and henceSk is an upper triangular
matrix for some positive integerk. Thene1 ∈ Cn is an eigenvector ofSk. Since
the eigenvalues ofS are positive, it follows thate1 is also an eigenvector of
S. Similarly, we can deduce from the fact thatUi := spanC{e1, . . . , ei} is an
invariant underSk, thatUi is an invariant underS as well,i = 1, · · · , n. But
this proves thatS is an upper triangular matrix. Thus the setR consists of upper
triangular matrices, and now it is trivial to check thatR is a subgroup ofS. ut
Lemma 4.4. LetS ⊂ GL(n,R) be a real algebraic group with a solvable iden-
tity componentS0, and letR be the set of matrices inS that have only positive
eigenvalues. ThenR is a connected, simply connected, cocompact normal sub-
group ofS, andS is isomorphic to a semidirect product of a compact group and
R.

Proof. By Lemma 4.3 the setR is a normal subgroup ofS. Because of Lie’s
theorem there is an one-dimensional subspaceCv of Cn that is invariant under
S0. By restriction we get a homomorphismr : S0 → GL(Cv) = C∗. We denote
by R+ the group of positive real numbers. Evidently,r(S0) ∩ R+ is cocompact
in r(S0).

Let S′ := r−1(R+). By constructionv is an eigenvector for allg ∈ S′, and
the corresponding eigenvalues are real and positive. Analogously to the proof of
Lemma 4.3 we can find an eigenvectorw ∈ Rn \ {0} of S′.

Denote byH2 ⊂ S the subset consisting precisely of the matrices inS that
havew as an an eigenvector. Clearly,H2 is a real algebraic subgroup ofS, and
H2 ⊃ S′ is a cocompact subgroup ofS.

Consider the natural representationh : H2 → GL(Rn/Rw). Similarly to
above there is a vectorw2 ∈ Rn/Rw and a cocompact real algebraic subgroupH3

such thatw2 is an eigenvector ofh(H3). Combining this with a simple induction
argument we see thatS contains a real algebraic cocompact subgroupHn which
is in GL(n,R) conjugate to a group of upper triangular matrices.

The identity componentHn0 of Hn is cocompact inS, too. Since the matrices
in Hn0 have only positive eigenvalues, they are contained inR, and thus the
identity componentR0 of R is cocompact inS. Taking into account thatR is
closed, we see thatR/R0 is finite. By (Hochschild, 1965, Ch. XV)R contains
a maximal compact subgroupK, and the quotientR/K is a connected, simply
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connected manifold. On the other hand, we infer from the definition ofR thatR
contains no nontrivial compact subgroup at all, and henceR itself is connected
and simply connected. The remaining part of the lemma is a direct consequence
of Lemma 3.2. ut
Lemma 4.5. LetS be a connected, simply connected solvable Lie group,N the
maximal connected nilpotent normal subgroup ofS, and letInt(N) ⊂ Aut(S)
be the group of inner automorphisms ofS induced by elements ofN. There is a
toral subgroupT ⊂ Aut(S) such that

(i) Int(N) · T is normal inAut(S),
(ii) the maximal connected, simply connected supersolvable normal subgroup

R of the semidirect productS o T is cocompact,
(iii) T also can be viewed as a subgroup ofAut(R), and under this identification

S o T is isomorphic to the semidirect productR o T.

Proof. We identify the groups Aut(S) and Aut(s) in natural fashion, compare
proof of Remark 3.1. Observe that under this identification the group Int(N)
equals Ad(N) ⊂ Ad(S) ⊂ Aut(s). By Remark 3.1 Aut(s) is a real algebraic
group, and hence it contains the Zarisky closureZ of Ad(S) in GL(s) as a
subgroup. Recall that Ad(S) is a normal subgroup of Aut(s), and accordingly
the same is valid forZ. The connected, unipotent group Ad(N) is Zarisky closed
in GL(s), and sinceS/N is abelian,Z/Ad(N) is abelian, too.

LetZ0 be the identity component ofZ. The abelian groupZ0/Ad(N) contains
a unique maximal toral subgroup̃T. Consider the preimageM of T̃ under the
projectionZ0 → Z0/Ad(N). Since Ad(N) and Z0 are normal subgroups of
Aut(s) and T̃ is a characteristic subgroup ofZ0/Ad(N), it follows thatM is a
normal subgroup of Aut(s), too. Choose a maximal compact subgroupT of M.
Lemma 3.2 yields the equationM = T · Ad(N), and thusT satisfies condition
(i).

Using thatZ0/M is a vector group we see thatT is maximal compact inZ0 as
well. By Lemma 4.4 the solvable real algebraic groupZ contains a connected,
cocompact normal subgroupY such thatA has only positive eigenvalues for
A ∈ Y. Moreover,Z0 = T · Y. In other words, for allg ∈ Z0 there is an element
h ∈ T such thath · g has only positive eigenvalues.

Via the natural identification Aut(s) = Aut(S) the groupT becomes a sub-
group of Aut(S). Letg be the Lie algebra of the semidirect productS o T, t and
s the subalgebras corresponding to the subgroupsT andS.

R̃ := {g ∈ S o T | Adg has only positive eigenvalues}.
Because of Lie’s theorem̃R is a normal subgroup of the solvable groupS o T.
The adjoint map Adg induces the identity on the abelian Lie algebrag/s for all
g ∈ S o T. This consideration shows that the eigenvalues of Adg are positive
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if and only if all eigenvalues of Adg|s : s → s are positive. Taking into account
that Adg|s ∈ Z0, we see that there is an elementh ∈ T such that all eigenvalues
of Adhg are positive. ThusS o T = T · R̃.

Forh ∈ T \ {e} the map Adh|s is a nontrivial semisimple endomorphism with
eigenvalues of absolute value 1. HenceT ∩ R̃ = {e}. Consequently,S o T/T
is homeomorphic tõR. In particular,R̃ is a connected, simply connected, co-
compact supersolvable normal subgroup. ThereforeR̃ ⊂ R, and equality holds,
since the factor groupR/R̃ is a connected, simply connected, compact solvable
Lie group. Lemma 3.2 allows us to regardT as a subgroup of Aut(R), andRoT
is then isomorphic toS o T. ut

4.3. Proof of Theorem 1

Choose a subgroupT ⊂ Aut(S) as stated in Lemma 4.5. Since Int(N) · T is a
normal subgroup of Aut(S), it follows thatT′ = (Int(N) · T) ∩ K is maximal
compact in Int(N) · T. ThusT is conjugate toT′ andS o T is isomorphic to
S o T′. HenceT′ also satisfies the conclusion of Lemma 4.5, and we can assume
T = T′. But thenT is a normal subgroup ofK andS o T is a normal subgroup
of SoK. Consequently, the maximal connected supersolvable normal subgroup
R of S o T is normal inS o K. Using thatR is cocompact, we can deduce from
Lemma 4.2 thatR is the maximal connected, simply connected supersolvable
normal subgroup ofSoK as well. By Lemma 3.2K may be viewed as subgroup
of Aut(R) andR o K andS o K are isomorphic.

Clearly, we can find an isomorphismι : R o K → S o K. with ι|K = id. Set
(f (g), a(g)) := ι(g) for g ∈ R. It is straightforward to check thatf : R → S is
an equivariant diffeomorphism. Letg be a left invariant metric onS for which
g|e is invariant under the natural representation ofK. The natural action ofSoK
on (S, g) is isometric. Consequently, the natural action ofR o K on (S, f ∗g)
is isometric, wheref ∗g denotes the pull back metric. In particular,f ∗g is left
invariant onR.

5. Discrete, cocompact subgroups

5.1. Characterizations of subgroups

We have seen in Remark 2.4 that Corollary 8.25 in Raghunathan (1972) is not
correct. However, in view of Theorem 1 part b) of the following proposition can
be regarded as a weak version of its statement:

Proposition 5.1. Let S be a connected, simply connected supersolvable Lie
group, K a compact subgroup ofAut(S), Γ ⊂ S o K a discrete, cocompact
subgroup, and letN be the maximal connected nilpotent normal subgroup ofS.
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a) Letρ be the natural representation ofS o K in the Lie algebran of N. Then
for g ∈ S o K the endomorphismρ(g) is unipotent, if and only ifg ∈ N. In
particular, the kernel ofρ coincides with the center ofN.

b) N ∩ Γ is a lattice inN.
c) The groupΓ is polycyclic up to finite index andN ∩Γ is the nilradical ofΓ .
d) The subgroupΓ + := S ∩ Γ of Γ has the following algebraic characteri-

zation: The nilradicalnil(Γ ) is torsion free, and the natural action ofΓ on
nil(Γ ) induces an action on its Malcev completionÑ. Let

ρ̃ : Γ → GL(ñ)

be the corresponding representation in the Lie algebra ofÑ. Theng ∈ Γ + if
and only if all eigenvalues of̃ρ(g) are real and positive.

Part d) of the proposition is a generalization of the main result in (Dekimpe,
1997), where the special case of a finite groupK was considered.

Proof. Letg be the Lie algebra ofSoK, s,n andk the subalgebras corresponding
to the subgroupsS, N andK. SinceN is a normal subgroup ofS o K, the adjoint
representation induces a homomorphism

ρ : S o K → GL(n).

We claim that an elementg ∈ SoK is contained inS if and only if all eigenvalues
of ρ(g) are positive. By Lemma 4.1 the elements inρ(S) have only positive
eigenvalues. Let̃S ⊂ S o K be the set of elements that are mapped byρ onto
endomorphisms that have only positive eigenvalues. For an elementg = (τ, a) ∈
S̃ ⊂ S o K we consider the groupS′ generated byg and S. Evidently, S′

is solvable, and from Lemma 4.3 we obtain the inclusionS′ ⊂ S̃. Thus all
eigenvalues ofρ(a) = ρ(τ−1)ρ(g) are positive. On the other hand,ρ(a) is
contained in the compact groupρ(K) and accordingly has to be the identity. This
proves that̃S = S o Ker(ρ|K) ⊂ S o K. In particular, it just remains to check
that Ker(ρ|K) = {e}.

Now, let g = (τ, a) ∈ Ker(ρ). Clearly, Ker(ρ) ⊂ S̃ = S o Ker(ρ|K).
Thereforea ∈ Ker(ρ) and as a consequenceτ ∈ Ker(ρ). The kernel ofρ|S is
easily recognized as the centerC of N. So the kernel Ker(ρ) = C × Ker(ρ|K) is
a direct product, and Ker(ρ|K) is a characteristic subgroup of Ker(ρ). Because
of Lemma 3.2 the compact normal subgroup Ker(ρ|K) of S o K is trivial.

a). Let g ∈ S o K. From the above consideration we deduce that ifρ(g) is
unipotent, theng ∈ S. Since the eigenvalues ofρ(S) are real, the groupρ(S)
can be represented by real upper triangular matrices. It follows that the unipotent
elements inρ(S) form a connected normal subgroupU. Taking into account that
the kernel ofρ is the center ofN, we see thatρ−1(U) is a connected nilpotent
normal subgroup ofS, and henceρ−1(U) = N.
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b). By a theorem of Auslander the identity componentD0 of the closureD of
Γ · S is a solvable group, see (Raghunathan, 1972, Theorem 8.24). Evidently,
Γ ∩ D0 is discrete and cocompact inD0. It is an immediate consequence of a)
that the maximal connected nilpotent normal subgroup ofD is N. By a theorem
of Mostow (Raghunathan, 1972, Theorem 3.3) the groupN ∩Γ is a lattice inN.

c).The groupD has only finitely many connected components. In particular,
Γ ∩D0 is of finite index inΓ . Moreover, the groupΓ ∩D0, being discrete in the
connected solvable Lie groupD0, is polycyclic. Clearly,Γ ∩ N belongs to the
nilradical nil(Γ ). Using thatΓ ∩ N is a lattice inN, we deduce that nil(Γ ) · N is
nilpotent. Consequently,ρ(nil(Γ )) consists of unipotents, and by a) nil(Γ ) ⊂ N.

d). Since nil(Γ ) is a lattice inN, we can identifyÑ with N. The natural
representatioñρ coincides under this identification withρ|Γ . Now d) follows
from the analogous statement onρ which we have proved above. ut

5.2. The Proof of Theorem 3

a) ⇒ b). In view of Theorem 1 we may assume thatS is supersolvable. LetN
be the maximal connected nilpotent normal subgroup ofS, and letH ⊂ K be
the kernel of the induced action ofK on S/N. Proposition 5.1 exhibitsΓN :=
(N o H) ∩ Γ as a cocompact subgroup ofN o H. Moreover,H acts effectively
onN, and henceΓN is an almost crystallographic group.

The kernel of the projectionπ : S o K → (S/N)o (K/H) containsΓN ⊂ Γ

as a cocompact subgroup, and accordingly the imageΓA := π(Γ ) is a discrete,
cocompact subgroup of(S/N)o (K/H). Evidently,S/N is isomorphic toRd for
somed. Since the action of(K/H) on S/N is effective, it follows that(S/N)o

(K/H) is isomorphic to a closed, cocompact subgroup ofRd o O(d). ThusΓA
is a crystallographic group.
b) ⇒ c). By assumption it is sufficient to prove that there is a subnormal

series{e} = Γ0 ⊂ · · · ⊂ Γn−1 = ΓN with crystallographic factorsΓi/Γi−1. We
argue by induction on rank(ΓN). By the definition of an almost crystallographic
group there is a connected, simply connected nilpotent Lie groupN and a compact
groupK ⊂ Aut(N) such thatΓN is a discrete cocompact subgroup ofN o K.
Proposition 5.1 exhibitsΓN ∩ N as the nilradical nil(ΓN) of ΓN , and also as a
lattice inN.

Let H ⊂ K be the kernel of the natural action ofK on the factor group
N/[N,N]. Notice that the action of the compact groupH on [N,N] is effective.
Moreover, the commutator group of nil(Γ ) is a lattice in[N,N], and hence
Γ ′
N := [N,N]oH∩ΓN is an almost crystallographic group.As above we see that

the factor groupΓN/Γ ′
N is crystallographic. Because of rank(Γ ′

N) < rank(ΓN)
this completes the proof.
c) ⇒ d). Since crystallographic groups are abelian up to finite index,Γ is

polycyclic up to finite index by a standard argument, see (Segal, 1978, Propo-
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sition 2, p.2). By induction onn we can assume thatΓn−1 does not contain any
nontrivial finite normal subgroup. Suppose now thatE is a finite normal subgroup
of Γ . By the induction hypothesis the intersectionE ∩ Γn−1 is trivial. Thus the
projectionΓ → Γ/Γn−1 mapsE isomorphically onto a finite normal subgroup
of Γ/Γn−1. But a crystallographic group does not contain any nontrivial finite
normal subgroup, and consequentlyE is the trivial group.
d) ⇒ e). Notice that

A := {g ∈ Γ | the centralizer ofg has finite index inΓ }.
is a characteristic subgroup ofΓ . SinceA is by Lemma 3.3 finitely generated,
it is evident from the definition that the center ofA is of finite index inA. By
Lemma 3.4 the torsion elements inA form a groupE. Using that the center of
E is a finitely generated subgroup of finite index we see thatE is finite. ButE
is normal inΓ and hence trivial. ThereforeA ∼= A/E, an abelian torsion free
group, is free abelian.

The factor groupΓ/A is polycyclic up to finite index, and by Lemma 3.3 it
contains a strongly polycyclic normal subgroupH of finite index. LetΛ be the
preimage ofH under the projectionπ : Γ → Γ/A. Evidently,Λ is a strongly
polycyclic normal subgroup of finite index inΓ . Moreover, the centralizer ofΛ
is contained inA ⊂ Λ.
e) ⇒ d). Suppose thatE is a finite normal subgroup ofΓ . The torsion free

groupΛ has trivial intersection withE. Using that bothE andΛ are normal
subgroups, we deduce that they commute. SoE is contained in the centralizer of
Λ which is by assumption a subgroup ofΛ. HenceE is the trivial group.

Trivially f ) impliesa); so it remains to prove the implicationd) ⇒ f ), and
this will be done together with Theorem 5 in Subsect. 7.4 below.

6. Further preparations

Lemma 6.1. Let A ∈ M(n,C), and letλ1, . . . , λk be the pairwise different
eigenvalues ofA. Suppose that the numbersexp(λ1), . . . ,exp(λk) are pairwise
different, too. Then there is a polynomialp ∈ C[X] satisfyingp(exp(A)) = A.
If in additionA ∈ M(n,R), we can choosep ∈ R[X].
Proof. Choose a decompositionA = S + N , whereS is semisimple,N is
nilpotent andSN = NS. Then exp(A) = exp(S) · exp(N), exp(S) is semisim-
ple, exp(N) is unipotent, and the matrices exp(S) and exp(N) commute. It is a
well-known fact that such a decomposition is unique and that there exist polyno-
mialsp1, p2 satisfyingp1(exp(A)) = exp(S) andp2(exp(A)) = exp(N). Thus
it suffices to find polynomialsq1, q2 ∈ C[X] satisfyingq1(exp(S)) = S and
q2(exp(N)) = N .
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We chooseq1 ∈ C[X] with q1(exp(λi)) = λi , i = 1, . . . , k. Using thatS is
conjugate to a diagonal matrix, we deduce thatq1(exp(S)) = S. Next we define

q2(X) :=
n∑
i=1

(−1)i+1 (X−1)i

i

and obtain

q2(exp(N)) =
∞∑
i=1

(−1)i+1 (exp(N)−I )i
i

= log(exp(N)) = N.

Suppose in addition thatA ∈ M(n,R). By the first part there is a polynomialq ∈
C[X] with q(exp(A)) = A. Let q̄ denote the conjugate polynomial ofq. Then
p(X) := 1

2(q(X)+ q̄(X)) is a polynomial inR[X] satisfyingp(exp(A)) = A.
ut

6.1. The exponential map ofS oβ K

Proposition 6.2. Let S be a connected, simply connected supersolvable Lie
group,K a compact Lie group,β : K → Aut(S) a continuous homomorphism,
G := S oβ K, and letk, s andg be the Lie algebras corresponding toK, S and
G.

a) There is a neighborhoodU of 0 in k such that the setU + s := {u+ v | u ∈
U, v ∈ s} is invariant under the adjoint representation, andexp: U + s →
S o T is a diffeomorphism onto its imageexp(U + s) = S × exp(U) ⊂
G. Moreover, forv ∈ U + s there is a polynomialq ∈ R[X] satisfying
q(Adexp(v)) = adv.

b) LetU + s be as in a). Suppose that for a Lie subgroupR of G the elements
exp−1

|U+s(R) are contained in the Lie algebrar of R. ThenR is a closed
subgroup with finitely many connected components andS′ := R ∩ S is a
connected, cocompact subgroup ofR. Furthermore,R is isomorphic to a
semidirect productS′ oβ ′ L, whereL is maximal compact inR.

c) The centralizerR of a subgroupH ⊂ G satisfies the hypothesis ofb).
d) The normalizerR of an analytic subgroupH ⊂ G satisfies the hypothesis

of b).

Proof. a).It is easy to see that there is an open, connected neighborhoodU ⊂
k ⊂ g of 0 in k for which the following three conditions are satisfied.

(i) exp: U → K is a diffeomorphism onto its image.
(ii) U is invariant under the adjoint representation ofK.
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(iii) For u ∈ U the imaginary parts of the eigenvalues of the adjoint map
adu : g → g lie strictly between−π andπ .

We claim that the conclusion of a) is true as soon asU ⊂ k is an open set satisfying
the above conditions. Note that foru ∈ U ands ∈ s the Lie subalgebra generated
by u ands is solvable. Since all eigenvalues of ads : g → g are real, it follows
from Lie’s theorem that the imaginary parts of the eigenvalues of adu+s : g → g
lie strictly between−π andπ . By Lemma 6.1 this implies the existence of a
polynomialp ∈ R[X] with p(Adexp(u+s)) = p(exp(adu+s)) = adu+s .

Let N be the maximal connected nilpotent normal subgroup ofS, and let
C be the center ofN. Clearly, C is a characteristic subgroup ofS. Thus the
homomorphismβ : K → Aut(S) induces a homomorphism̄β : K → Aut(S/C).
Consider the natural projectionπ : SoβK → (S/C)oβ̄K. We lets/c denote the
Lie algebra of the supersolvable Lie groupS/C. By induction on the dimension
of S we can assume that exp: U + s/c → (S/C)oβ̄ K is a diffeomorphism onto
its image exp(U + s/c) = (S/C) × exp(U). For v ∈ g we haveπ(exp(v)) =
exp(π∗(v)), and hence it is sufficient to prove that for anyv ∈ U + s the map

f : c → C, c 7→ exp(−v)exp(v + c)

is a diffeomorphism. But this is an elementary computation: We identify the
simply connected abelian groupC canonically with its Lie algebrac. Then

f (c) =
∞∑
k=0

(−adv)k
(k+1)! c for c ∈ c = C.

In fact, this identity follows immediately from the formula for the differential of
the exponential mapping, see (Helgason, 1978, Theorem 1.7). In order to show
that f is a diffeomorphism, it remains to check that the linear maph(adv) =∑∞

k=0
(−adv|c)k
(k+1)! is invertible. Letλ1, . . . , λk be the different eigenvalues of adv.

Then the eigenvalues ofh(adv) are given by
∑∞

k=0
(−λi)k
(k+1)! , i = 1, . . . , k. For

λi = 0 this number is 1, and forλi 6= 0 this number equals1−exp(−λi)
λi

. Since the
imaginary parts of the numbersλ1, . . . , λk lie strictly between−π andπ , the
eigenvalues ofh(adv) are different from 0, and thush(adv) is invertible.

b). Let π : G → K be the natural projection. By hypothesis any element
in exp−1

|U+s(R) is contained in the Lie algebra ofR. Therefore any element of
exp−1

|U (π(R)) is contained in the Lie algebra ofπ(R). Henceπ(R) is embedded
and accordingly closed inK. Clearly,S′ := R∩S is a connected, closed subgroup
of S. The compactness ofπ(R) ∼= R/S′ implies thatR has only finitely many
connected components. The last part of b) is a direct consequence of Lemma 3.2.

c). Let g ∈ (S × exp(U)) ∩ R andv = exp−1
|U+s(g). Observe that forh ∈ H

the vector Adhv lies inU + s and that exp(Adhv) = hexp(v)h−1 = exp(v). By
a) Adhv = v for all h ∈ H. Consequently,v is contained in the Lie algebra ofR.
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d). Let h, r be the Lie algebras corresponding toH andR. Suppose thatg is
in R∩ (S×exp(U)) and putv := exp−1

|U+s(g). Evidently, Adg leavesh invariant.
Since there is a polynomialp ∈ R[X] with p(Adg) = adv, it follows thath is an
invariant subspace of adv as well. Using thatH is connected, we findv ∈ r. ut

6.2. A global correspondence between subgroups and subalgebras

Proposition 6.3. We keep the notations of Proposition 6.2. There is an open
neighborhoodU of 0 in k satisfying the conclusion of Proposition 6.2 a) and
for which moreover the following is true: For any subgroupH of S oβ K the
subspace

b := spanR
(
exp−1

|U+s(H)
) ⊂ g

is a subalgebra, the Lie groupB corresponding tob is closed inG, B ∩ H is
cocompact inB, andB∩S is a connected, simply connected, cocompact subgroup
of B.

Proof. At first we want to define the setU occurring in the proposition. There is a
biinvariant metric〈·, ·〉 onK such that for anyx ∈ k with exp(x) = e the quantity
〈x, x〉 is an integer. In fact, ifK is semisimple, one can set〈x, y〉 := − 1

4π2B(x, y),
whereB is the Killing form of k. In the general case one can define〈·, ·〉 as the
pullback metric of a locally faithful representationρ : K → (SO(d), g) where
g := − 1

4π2Bso(d).
It is easy to see that with respect to the above metric the following holds:

Let L be a normal subgroup ofK andl ⊂ k the corresponding ideal. Then the
orthogonal complementl⊥ of l is an ideal ink, and the analytic Lie subgroup
corresponding tol⊥ is acompactnormal subgroup ofK, too.

Consider the ballU := Br(0) of radiusr around 0 ink. By shrinkingr if
necessary, it is possible to assume thatU + s satisfies the conclusion of Propo-
sition 6.2 a). Furthermore, a theorem of Jordan (Raghunathan, 1972, proof of
Theorem 8.29) allows us to require that for any finite subgroupF of K the group
generated by exp(U) ∩ F is abelian.

We claim that then the proposition is correct withU = Br(0). Henceforth
we can assume thatK is connected. Since we can replaceH by its closure if
necessary, we only have to verify the proposition for any closed subgroupH ⊂ G.
The subgroup ofH generated by(S×exp(U))∩H is a normal subgroup of finite
index inH, and without loss of generalityH itself is generated by elements in
S × exp(U). We argue by induction on dim(G). Evidently, the proposition is
correct if dim(G) = 1. The induction conclusion is divided in five steps.

Step 1. It is sufficient to prove the proposition under the following two additional
assumptions:
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(1) The centralizer ofH is contained in the center ofG.
(2) A connected Lie subgroupZ ⊂ G is normalized byH if and only if it is

normal inG.

If (1) is not true, then there is a subgroupZ1 ⊂ G such that the centralizerG′
of Z1 containsH but notG. In fact, one can defineZ1 as the centralizer ofH.

If (2) is not true, then there is a connected Lie subgroupZ ⊂ G such that the
normalizerG′ of Z containsH but notG.

In either caseG′ has strictly smaller dimension thanG. By Proposition 6.2 the
groupG′ is a semidirect product of a compact subgroupK′ and of the connected,
simply connected supersolvable groupS′ := G′ ∩ S.

The compact groupK′ is conjugate to a subgroup ofK. Since the setU + s
is invariant under the adjoint representation ofG, it is allowed to replaceH by a
conjugate subgroup. So we may assume thatK′ ⊂ K.

Let k′ ⊂ k ands′ ⊂ s be the Lie algebras ofK′ andS′. From the definition of
U and from the induction hypothesis we infer that we can apply the proposition
for G′ = S′ oβ K′ with U ′ := U ∩ k′. Finally, we have by Proposition 6.2 c), d)

exp−1
|U+s(H) ⊂ U ′ ⊕ s′,

and hence the assertion follows.

Step 2. The proposition is correct provided thatH is abelian.

Without loss of generality the centralizer ofH is contained in the center of
G, see Step 1. Taking into account thatH is abelian we see that the centralizer
of H is G. ThusG itself is abelian. But for an abelian groupG the proposition is
clearly correct.

Step 3. The proposition is correct ifH contains a noncompact, closed, abelian
normal subgroupA.

By Step 2

b′ := spanR
(
exp−1

|U+s(A)
)

is a Lie algebra, the groupB′ corresponding tob′ is closed,A ∩ B′ is cocompact
in B′, andC := B′ ∩ S is a connected, cocompact subgroup ofB′. SinceA is
noncompact, the groupC is nontrivial. From the definition ofb′ we deduce that
H normalizesB′. The additional assumption (2) in Step 1 says thatB′ is normal
in G. This implies thatC is normal inG, too. LetĤ be the closure ofH · C.
Evidently,

b = spanR
(
exp−1

|U+s(H)
) = spanR

(
exp−1

|U+s(Ĥ)
)
.

Furthermore,H is cocompact in̂H. Thus it is sufficient to prove the proposition
for Ĥ instead ofH. In other words, without loss of generalityC ⊂ H.
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Consider the homomorphism̄β : K → Aut(S/C) induced byβ and the pro-
jectionπ : S oβ K → (S/C)oβ̄ K. By the induction hypothesis the proposition
is known for the pairπ(H) ⊂ (S/C)oβ̄ K. ForH ⊂ Soβ K the assertion follows
trivially.

Step 4. The proposition is correct provided that the identity componentH0 of H
is nontrivial.

We begin with the case of a noncompact identity componentH0. The maximal
connected solvable normal subgroupR of H0 is cocompact inH0, and hence it is
itself a noncompact, closed normal subgroup ofH. The commutator group[R,R]
is a connected subgroup ofS. Thus ifR is not abelian, the center of the nilpotent
commutator group[R,R] is a noncompact, closed, abelian normal subgroup of
H. In either case the assertion follows from Step 3.

Suppose now thatH0 is compact. By Step 1 it is sufficient to prove the
proposition under the additional assumption thatH0 is normal inG. In particular,
H0 ⊂ K. As explained above the orthogonal complementL of H0 in K is a
compact subgroup, too. Moreover,L andH0 commute, and as a consequenceH0

andS oβ L commute.
Let l be the Lie algebra ofL, U ′ := U ∩ l, H′ := H ∩ (S oβ L), and let

b′ := spanR
(
exp−1

|U ′⊕s(H
′)
)
.

By the induction hypothesisb′ is a Lie algebra, the Lie groupB′ corresponding
to b′ is a closed subgroup ofS oβ L andB′ ∩ S is connected and cocompact in
B′. It remains to check thatb = b′ ⊕ h. Clearly,b ⊃ b′ ⊕ h, and in order to get
the converse relation, we consider a vectorv ∈ exp−1

|U⊕s(H). Thenv decomposes
as a sumv = u1 + u2 + u3 whereu1 ∈ h, u2 ∈ l andu3 ∈ s. By construction
the norm of the vectoru1 + u2 ∈ U = Br(0) is strictly less thanr. Sinceu1 and
u2 are orthogonal, this implies‖u2‖ < r, and accordinglyu2 ∈ U ′. Using that
H0 andS oβ L commute, we see exp(u1 + u2 + u3) = exp(u1) · exp(u2 + u3).
Hence exp(u2 + u3) ∈ H andu2 + u3 ∈ b′. But this provesv ∈ b′ ⊕ h.

A closed subgroup ofG with trivial identity component is discrete, and con-
sequently we can complete the proof of the proposition by showing:

Step 5. The proposition is correct for a discrete groupH.

If H is finite, then it is conjugate to a subgroup ofK, and without loss of
generalityH ⊂ K. Evidently,H ∩ S × exp(U) = H ∩ exp(U). By definition
of U the group generated by exp(U) ∩ H is abelian, and now Step 2 yields the
assertion.

Assume now thatH is not finite. By a theorem of Auslander (Raghunathan,
1972, Theorem 8.24) there is a subgroup of finite index inH which is a discrete
subgroup of a connected solvable Lie group. In particular,H is polycyclic up to
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finite index. We employ Lemma 3.3 in order to find a strongly polycyclic normal
subgroupH′ of finite index inH. Let A be the center of the nilradical ofH′.
Evidently,A is an infinite, abelian normal subgroup ofH, so the claim follows
from Step 3. ut

6.3. The Lie hull of a subgroup

Definition 6.4. LetSoβ K be as in Proposition 6.2. For a subgroupH ⊂ Soβ K
the Lie hull of H in S oβ K is defined as the groupR that corresponds in the
sense of part a) of the following theorem toH. A subgroupH is said to be a Lie
hull (in S oβ K) if and only if H coincides with its Lie hull.

Theorem 6.5. LetG = S oβ K, s, k andg be as in Proposition 6.2.

a) For a subgroupH ⊂ G there is a unique closed subgroupR ⊂ G satisfying:
H is a cocompact subgroup ofR, S′ := R ∩ S is a connected, cocompact
normal subgroup ofR andR coincides with the closure ofH·S′. Furthermore,
the groupR is then isomorphic to a semidirect productS′ oβ ′ L whereL is
compact.

b) Let H̃ ⊂ H ⊂ G be subgroups, and let̃R and R be the corresponding Lie
hulls in G. If H̃ is a normal subgroup ofH, thenR̃ is a normal subgroup of
R. Moreover, we have in that case that the commutator group

[R, R̃] := 〈{ghg−1h−1 | g ∈ R, h ∈ R̃}〉
is the Lie hull of[H, H̃] in G. In particular, ifH is abelian (nilpotent, solvable),
thenR is abelian (nilpotent, solvable), too.

c) Assume thatH ⊂ G is a closed subgroup such thatG is the Lie hull ofH in
G. LetS1 be another connected, simply connected supersolvable Lie group,
K1 ⊂ Aut(S1) a compact subgroup, and letϕ : H → S1oK1 be a continuous
homomorphism mappingH onto a cocompact subgroup ofS1 o K1. Then
there is a unique continuous extension ofϕ to a continuous homomorphism
ϕ̄ : G → S1 o K1. Moreover,ϕ̄(S) = S1.

Proof. a).Choose a neighborhoodU ⊂ k of 0 as in Proposition 6.3. Then

b := spanR
(
exp−1

|U+s(H)
)

is a Lie algebra, and the corresponding Lie groupB is closed inG. Furthermore,
H ∩ B is cocompact inB, andS′ := B ∩ S is a connected, cocompact subgroup
of B. Finally, it is evident from the definition ofb thatH normalizesB and that
H ∩ B has finite index inH. Clearly,H also normalizesS′, and thus the closure
R of H · S′ has the claimed properties.



222 B. Wilking

Assume now that̃R is another group satisfying the conclusion of a). Then

b̃ := spanR
(
exp−1

|U+s(R̃)
)

is a Lie algebra,S′ ⊂ B is cocompact in the Lie group̃B corresponding to
b̃. More precisely,S′ is a connected cocompact subgroup ofB̃ ∩ S. The orbit
space(B̃∩S)/S′ being both compact and contractible must be trivial, and hence
B̃ ∩ S = S′. Similarly we obtain the equatioñR ∩ S = B̃ ∩ S, soS′ = R̃ ∩ S.
But this impliesR̃ = R.

Let L be a maximal compact subgroup ofR. From Subsect. 3.2 we infer that
R is canonically isomorphic to a semidirect productS′ oβ ′ L, whereβ ′ : L →
Aut(S′) is induced by conjugation.

b). The following obvious fact will be used subsequently without further
comments: LetB ⊂ G be a Lie hull,H ⊂ B a subgroup, and letL ⊂ B be a
maximal compact subgroup. ThenB is canonically isomorphic to a semidirect
product(B∩S)oβ ′ L, and under this identification the Lie hull ofH in B coincides
with the Lie hull ofH in G.

So we may assume thatR = G. We first want to prove that̃R is a normal
subgroup ofG. Let M be the normalizer of̃R, and letN be the normalizer of the
identity component̃R0 of R̃. Evidently,H ⊂ M ⊂ N. From Proposition 6.2 we
deduce thatN is a Lie hull and thusN = G.

SinceR̃0 is normal inG, the groupK̃0 := R̃0 ∩ K is maximal compact in
R̃0. This implies thatR̃0 = S̃ oβ K̃0 ⊂ S oβ K whereS̃ := R̃0 ∩ S = R̃ ∩ S.
Evidently,β induces a homomorphism̄β : K/K̃0 → Aut(S/S̃). Consider the
natural projectionπ : Soβ K → (S/S̃)oβ̄ (K/K̃0) and observe thatπ(M) is the

normalizer ofπ(R̃) in π(G). In particular, the centralizerC(π(R̃)) of the finite
groupπ(R̃) is of finite index inπ(M). ThusC(π(R̃)) is cocompact inπ(G),
too. By Proposition 6.2 c) the groupC(π(R̃))∩ S/S̃ is a connected, cocompact
subgroup ofS/S̃, and consequently these two groups coincide. HenceS ⊂ M.
SinceG is the closure ofH · S, we findM = G.

In other words,̃R is normal inG = R, as claimed. It follows that̃K := R̃∩K
is maximal compact iñR and thatR̃ = S̃oβ K̃ ⊂ SoβK whereS̃ = R̃∩S. Now
it is easy to see that[G, R̃] ∩ S is a connected group and that the factor group
[G, R̃] /

([G, R̃] ∩ S) is isomorphic to the compact group[K, K̃]. This proves

that [G, R̃] is a Lie hull, and accordingly the Lie hullR′ of [H, H̃] is contained
in [G, R̃].

In order to get the converse relation we observe that[H, H̃] is normal inH. Its
Lie hull R′ is normal inG, the Lie hull ofH. SoR′ = S′ oβK′ whereK′ = R′ ∩K
andS′ = R′ ∩ S. Consider the natural projection

pr : G = S oβ K → (S/S′)oβ̂ (K/K
′) =: Ĝ.
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Evidently, the groupŝG = pr(G) and pr(R̃) are the Lie hulls of pr(H) and pr(H̃)
in Ĝ. Moreover, pr(H̃) is contained in the center of pr(H). From Proposition 6.2
we deduce that the centralizer of pr(H̃) is a Lie hull, and thus pr(H̃) is contained
in the center ofĜ. Since the center of̂G is also a Lie hull, we see that the
Lie hull pr(R̃) of pr(H̃) is contained in the center of̂G, too. Consequently,
[G, R̃] ⊂ Ker(pr) = R′.

c). SetG1 := S1 o K1. At first, we want to check that there is no nontrivial
compact subgroup ofG1 which is normalized byϕ(H). Assume thatL is a
compact subgroup ofS1 o K1 normalized byϕ(H). Let R1 be the Lie hull of
ϕ(H) · L ⊂ S1 o K1. Using thatR1 ∩ S1 is a connected cocompact subgroup of
S1 ⊂ G1, we obtain the inclusionS1 ⊂ R1 and for that reasonR1 = S1 o K′

1,
whereK′

1 = K1 ∩ R1. Clearly, the compact groupL ⊂ S1 o K1 is a Lie hull.
SinceL is a normal subgroup ofϕ(H) · L, it follows from b) thatL is normal
in R1. By Lemma 3.2 the groupR1

∼= S1 o K′
1 does not contain any nontrivial

compact normal subgroup and henceL = {e}.
Consider the product group

P := G × G1 = (S × S1)oβ×id (K × K1)

and the graph̃H := {(h, ϕ(h)) | h ∈ H} of ϕ. We viewS × S1, G1 andG in the
natural fashion as subgroups ofP.

Let R̃ be the Lie hull ofH̃ in P. SinceH̃ is cocompact inR̃, it follows
that R̃ ∩ G1 is a compact normal subgroup ofR̃. Furthermore,̃R ∩ G1 is also
normalized by the image of the projection pr1 : R̃ → G1 onto the second factor
of P. In particular,ϕ(H) ⊂ pr1(R̃) normalizes the compact group̃R ∩ G1. As
explained above this implies thatR̃ ∩ G1 = {e}.

Consequently, the projection pr: R̃ → G onto the first factor ofP is injective.
We claim that pr is surjective as well. Clearly, pr(R̃) ⊃ H is cocompact inG.
The groupS̃ := R̃ ∩ (S × S1) is a connected, cocompact subgroup ofR̃, and
hence pr(S̃) is a connected, cocompact subgroup ofS. Therefore pr(S̃) = S, so
pr(R̃) contains the closure ofH · S which is by hypothesis equal toG.

Thus pr is an isomorphism, and̄ϕ := pr1 ◦ pr−1 is a continuous extension of
ϕ. Moreover, the connected, cocompact subgroupϕ̄(S) of S1 coincides withS1.

Suppose now that̂ϕ is another continuous extension ofϕ. Consider the graph
Ĝ := {(g, ϕ̂(g)) | g ∈ G} of ϕ̂, and letR̂ be the Lie hull ofĜ in P. Evidently,
R̃ ⊂ R̂. As above we can show thatR̂ is again a graph. Since the three groups
R̃ ⊂ R̂ ⊃ Ĝ are graphs, we find̃R = R̂ = Ĝ and in particular̂ϕ = ϕ̄. ut

7. Proofs of the main results

Recall that until now we have not verified Theorem 3 in full generality. However,
we have seen that each of the conditions in Theorem 3 implies condition d). In this
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section we say thatΓ is a polycrystallographic group if and only ifΓ matches
the condition d) of Theorem 3. Notice that with this definition the statements of
the Corollary 4 and Theorem 5 make sense, so we can prove them. Also remark
that Theorem 5 then implies the missing implication “d) ⇒ f )” of Theorem 3.

7.1. The proof of Theorem 2

By replacingKi by a compact subgroup if necessary, we may assume thatSioKi
is the Lie hull ofΓi ⊂ SoKi .According to Theorem 6.5 there is an isomorphism
ϕ : S1 o K1 → S2 o K2 that extendsι.

The groupϕ(K1) is not necessarily equal toK1. However,ϕ(K1) is maximal
compact inS2 o K2, and for a suitableτ ∈ S2 we haveτ−1ϕ(K1)τ = K2. The
affine diffeomorphism

f : S1 → S2, v 7→ ϕ(v) · τ
is easily seen to be equivariant, and hence we are done.

7.2. The proof of Corollary 4

The uniqueness part of Corollary 4 is a direct consequence of Theorem 6.5 c).
The polycrystallographic groupΓ is polycyclic up to finite index, and by (Raghu-
nathan, 1972, Theorem 4.28) there is a subgroupΛ of finite index inΓ which
is isomorphic to lattice in a connected, simply connected solvable Lie groupS′.
By passing fromΛ to a subgroup of finite index if necessary, we may assume
thatΛ is a normal subgroup ofΓ .

There is a toral subgroupT of Aut(S′) such thatT o S′, is isomorphic to
a semidirect productG := S̃ o T, whereS̃ is a connected, simply connected
supersolvable Lie group, see Lemma 4.5. Letk be the index ofΛ in Γ , Gk the
k-fold product ofG, S̃k the k-fold product ofS̃, and letSk be the symmetric
group of degreek. By Lemma 3.5 there is an injective homomorphism

ψ : Γ → Λk o Sk ⊂ Gk o Sk.

Clearly, the semidirect productGk o Sk is isomorphic to(S̃)k o K̃, whereK̃ ∼=
Tk o Sk is a compact subgroup of Aut(S̃k).

Let R be the Lie hull ofψ(Γ ) in (S̃)ko K̃, see Definition 6.4. Thenψ(Γ ) is a
discrete, cocompact subgroup ofR. Furthermore,R is isomorphic to a semidirect
productS oβ K̃′, whereS ⊂ S̃k is a connected, simply connected supersolvable
Lie group andK̃′ is a compact group acting onS by continuous automorphism
via β. We identifyΓ ∼= ψ(Γ ) with a discrete, cocompact subgroup ofS oβ K̃′.
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Consider the natural projectionπ : Soβ K̃′ → Soβ(K̃) ⊂ SoAut(S). The
kernel ofπ|Γ , being both discrete and compact, is finite and hence trivial because
Γ satisfies condition d) of Theorem 3. Thusι := π|Γ mapsΓ isomorphically
onto a discrete, cocompact subgroup ofS o β(K̃) such thatι(Γ ) · S is dense in
S o β(K̃).

7.3. A criterion for connectivity

Let V be a real or complex vector space. We recall that an endomorphism
A ∈ GL(V ) is called net if the multiplicative subgroup ofC∗ generated by
the eigenvalues ofA does not contain any nontrivial root of unity. We need a
slightly different definition: LetA ∈ GL(V ), and letλ1, . . . , λn ∈ C be the
eigenvalues ofA. We callA absolutely net if and only if the group generated by
λ1
|λ1| , . . . ,

λk
|λk | does not contain any nontrivial root of unity.

For a polycrystallographic groupΓ the nilradical nil(Γ ) is torsion free; in
fact this follows immediately if one applies Proposition 5.1 to the image of the
embeddingι : Γ → S o K of Corollary 4. Hence the conjugate action ofΓ on
nil(Γ ) induces a representation

ρ : Γ → GL(n) (7.1)

in the Lie algebran of the Malcev completion of nil(Γ ). We call an element
g ∈ Γ absolutely net if and only ifρ(g) is absolutely net.

Proposition 7.1. LetΓ be a polycrystallographic group, and letι : Γ → SoK
be an embedding satisfying the assumptions of Corollary 4. Ifg ∈ Γ is absolutely
net, thenι(g) is contained in the identity component ofS o K.

Corollary 7.2. Let ι : Γ → S o K be as above.

a) If Γ is generated by elements which are absolutely net, thenS o K is con-
nected. In particular,Γ/nil(Γ ) is then abelian.

b) The number of connected components ofSoK is bounded by a constant only
depending on the rank ofΓ .

Corollary 7.3. LetΓ be a polycrystallographic group that is generated by ele-
ments which are absolutely net. Suppose moreover thatΓ/nil(Γ ) is free abelian.
ThenΓ is isomorphic to a discrete, cocompact subgroup of a connected, simply
connected solvable Lie group.

Of course, Corollary 7.3 and Corollary 7.2 a) can be regarded as corrections
of the two theorems of Auslander from which we have seen in Example 2.1 that
the original versions are not correct.
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Lemma 7.4. Letd = (d1, . . . , dk) ∈ (S1)k. Suppose that the subgroup ofS1 ⊂
C∗ generated byd1, . . . , dk ∈ S1 is torsion free. Then the closure of the cyclic
group generated byd is a connected subgroup of(S1)k.

Proof of Lemma 7.4.We argue by induction onk. If k = 1 andd 6= e, then the
group generated byd1 is dense inS1. Suppose now that the lemma is known
for k − 1 ≥ 1. Choose real numbersϕ1, . . . , ϕk such that exp(2πiϕi) = di ∈
S1 ⊂ C. If 1, ϕ1, . . . , ϕk ∈ R are linear independent overQ, then the group
generated byd is dense in

(
S1

)k
, and we are done. Otherwise there are integers

z1, . . . , zk, w ∈ Z such that(z1, . . . , zk) 6= 0 and
n∑
i=1

ziϕi = w.

Clearly, we can assume that the greatest common divisor ofz1, . . . , zk, w is 1.
Suppose for a moment that an integerm > 1 divides the numbersz1, . . . , zk. By
constructionw

m
∈ Q\Z, and hence

∏k
i=1 d

zi/m

i is a nontrivial root of unity which
is impossible. Thus the greatest common divisor ofz1, . . . , zk is 1, and there are
integersa1, . . . , ak with

∑k
i=1 aizi = w. Let ϕ̃i = ϕ−ai . Then exp(2πiϕ̃i) = di

and
∑k

i=1 ziϕ̃i = 0.
In other words, without loss of generalityw = 0. To prove the induction step

we argue by induction on
∑k

i=1 |zi |. If
∑k

i=1 |zi | = 1, thenϕi0 = 0 for somei0,
and the assertion follows from thek-induction hypothesis.

Assume now that
∑k

i=1 |zi | > 1.There are at least two numberszi, zj different
from 0 because the greatest common divisor of(z1, . . . , zk) is 1.After reordering
we have 0< |zk| ≤ |zk−1|. Choose a numbern ∈ Z such that|zk−1−nzk| < |zk|,
consider the Lie group automorphism

σ : (S1)k→ (S1)k,(
b1, . . . , bk

) 7→ (
b1, . . . , bk−1, bkb

n
k−1

)
, and let

d̂ := (
d̂1, . . . , d̂k

) := σ(d),(
ϕ̂1, . . . , ϕ̂k

) := (
ϕ1, . . . , ϕk−1, ϕk + nϕk−1

)
.

Evidently, the group generated bŷd1, . . . , d̂k ∈ S1 coincides with the group
generated byd1, . . . , dk. Sinceσ is an isomorphism, the closure of the group
generated byd is connected if and only if the closure of the group generated byd̂

is connected. Moreover, for the numbers(ẑ1, . . . , ẑk) := (z1, . . . , zk−1−nzk, zk)
we have

∑k
i=1 ẑi ϕ̂i = 0. By construction

∑k
i=1 |ẑi | < ∑k

i=1 |zi |, and thus the
assertion follows from the induction hypothesis. ut
Proof of Proposition 7.1.LetN be the maximal connected nilpotent normal sub-
group ofS, n the Lie algebra ofN, and let

ρ : S o K → GL(n)
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be the natural representation. Proposition 5.1 allows us to identifyN with the
Malcev completion of nil(Γ ) and henceρ(ι(g)) is absolutely net.

Let H ⊂ S o K be the cyclic group generated byι(g), and letR be the Lie
hull of H in S o K, see Definition 6.4. Theorem 6.5 exhibitsR as an abelian
group andS′ := R ∩ S as a connected, cocompact subgroup ofR. Consider the
maximal compact subgroupL of R. Clearly, we can writeι(g) ∈ R uniquely as
a productι(g) = a · τ = τ · a wherea ∈ L andτ ∈ S′.

Let λ1, . . . , λk be the eigenvalues ofρ(ι(g)). The eigenvalues ofρ(τ) are
positive and the eigenvalues ofρ(a) have absolute value 1. Taking into account
that

ρ
(
ι(g)

) = ρ(a)ρ(τ) = ρ(τ)ρ(a),

we see that the eigenvalues ofρ(a) are given by λ1
|λ1| , . . . ,

λk
|λk | . The closure of

the cyclic group generated byρ(a) is contained in the compact groupρ(L).
Combining this with Lemma 7.4 we find thatρ(a) is contained in the identity
component ofρ(SoK). By Proposition 5.1 the kernel ofρ is given by the center
of N. In particular, Ker(ρ) is connected, and accordinglya is contained in the
identity component ofS o K. Of course, the same is valid fora · τ = ι(g). ut

For the proof of Corollary 7.2 and for a later application we need the following

Lemma 7.5. LetΓ be a polycrystallographic group of rankn, and letρ be as
in equation (7.1). ThenΓ contains a characteristic subgroupΓ ∗ of finite index
satisfying the following three conditions.

(i) nil(Γ ) = nil(Γ ∗) andΓ ∗/nil(Γ ) is free abelian.
(ii) The subgroup ofS1 generated by all elements of the formλ|λ| , whereλ is an

eigenvalue of an element inρ(Γ ∗), is torsion free.
(iii) The index ofΓ ∗ in Γ is bounded by constant only depending on the rankn.

Proof of Lemma 7.5.Let π : Γ → Γ/nil(Γ ) be the projection, and letE be
the maximal finite normal subgroup ofΓ/nil(Γ ). The preimageΓN := π−1(E)
contains no nontrivial finite normal subgroup, because the maximal finite normal
subgroup ofΓN is normal inΓ . ThusΓN is a polycrystallographic group. Since
nil(Γ ) is of finite index inΓ we can employ Proposition 5.1 in order to see that
Γ is an almost crystallographic group. It is known that the index of the nilradical
in an almost crystallographic group is bounded by a constant only depending
on the rank of the group. Hence the order ofE is bounded by a constant only
depending on rank(nil(Γ )). For that reason there is a free abelian characteristic
subgroupA ⊂ Γ/nil(Γ ) of controlled finite index. The groupΓ1 := π−1(A) is
a characteristic subgroup ofΓ , and nil(Γ1) = nil(Γ ).

As before we letN denote the Malcev completion of nil(Γ ) = nil(Γ1). Since
nil(Γ ) ⊂ N is a lattice inN, the groupD := spanZ

(
exp−1(nil(Γ ))

) ⊂ n is a
lattice in the Lie algebran, see (Raghunathan, 1972, p.34). Clearly,D is invariant
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underρ(Γ ), and thus the characteristic polynomial ofρ(g) is in Z[X] for all
g ∈ Γ .

Set h = rank(Γ1/nil(Γ )), and choose elementsa1, . . . , ah ∈ Γ which
project onto a generator system of the free abelian groupΓ1/nil(Γ ). Consider
the eigenvaluesλi1, . . . , λik ofρ(ai). Since the characteristic polynomial ofρ(g)
is in Z[X], the degree of the field extensionQ ⊂ Q(λi1, . . . , λik) is bounded by
k!. Moreover,|λij |2 ∈ Q(λi1, . . . , λik), so the degree of the field extension

Q ⊂ K := Q

({ λij

|λij |
∣∣ i = 1, . . . , h, j = 1, . . . , k

})
is at most(2kk!)h. The roots of unity inK form a finite cyclic groupC ⊂ K∗. The
inequality dimQ(K) ≤ (2kk!)h yields that the numberc := ord(C) is bounded
from above by a constant only depending on the rank ofΓ .

SetA′ := {gc | g ∈ Γ1/nil(Γ )} andΓ ∗ := π−1(A′). Evidently,Γ ∗ is a
characteristic subgroup ofΓ1 andΓ . Moreover, the index(Γ : Γ ∗) is bounded
by a constant only depending on rank(Γ ).

The commutator group ofρ(Γ1) is contained in the unipotent groupρ(nil(Γ )).
As can be extracted from (Raghunathan, 1972, p.69), this implies that for some
basis of the complexificationnC the groupρ(Γ1) can be represented by a group
of upper triangular matrices. In particular, for any eigenvalueλ of an element in
ρ(Γ1) the numberλ/|λ| is contained inK∗.

Leth ∈ Γ ∗. Choosea ∈ Γ1 such thatac nil(Γ ) = hnil(Γ ). If λ1, . . . , λk are
the eigenvalues ofρ(a), thenλc1, . . . , λ

c
k are the eigenvalues ofρ(h). Since the

numbers λc1
|λ1|c , . . . ,

λck
|λk |c are contained in the torsion free group{zc | z ∈ K∗} ⊂

K∗, the assertion follows. ut
Proof of Corollary 7.2. a).Suppose thatΓ is generated by elements which are
absolutely net. Thenι(Γ ) is by Proposition 7.1 contained in the identity compo-
nent ofS o K. Taking into account thatS o K is the closure ofι(Γ ) · S, we see
thatS o K itself is connected. In other words,K is a torus. By Proposition 5.1
the maximal connected nilpotent normal subgroupN of S o K is contained inS
andι(Γ )∩N = ι(nil(Γ )). SinceS o K is a connected solvable group, the factor
groupS o K/N is abelian, and henceΓ/nil(Γ ) is abelian, too.

b). Choose a subgroupΓ ∗ ⊂ Γ as stated in Lemma 7.5. The elements inΓ ∗
are absolutely net, and via Proposition 7.1 this implies thatι(Γ ∗) is contained in
the identity component ofS o K. Using thatS o K is the closure ofι(Γ ) · S, we
deduce that the number of connected components ofS o K is bounded by the
index ofΓ ∗ in Γ . ut
Proof of Corollary 7.3.Let N be the maximal connected nilpotent normal sub-
group ofS o K. By Proposition 5.1N ⊂ S and ι(nil(Γ )) = N ∩ ι(Γ ) is a
lattice in N. Consider the projectionπ : S o K → Q := (

S o K
)
/N. Since

ι(nil(Γ )) is cocompact in the kernel ofπ , the imageΛ := π(ι(Γ )) is discrete.
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Furthermore,Λ ∼= Γ/nil(Γ ) is free abelian. Choose a basisb1, . . . , bh of Λ
and elementsv1, . . . , vh ∈ q in the Lie algebra of the abelian groupQ satisfying
exp(vi) = bi . Let A be the Lie group corresponding to the abelian Lie algebra
spanR(v1, . . . , vh). Clearly,A containsΛ as a discrete, cocompact subgroup.
From dim(A) = rank(Λ) we infer thatA is simply connected. But thenπ−1(A)
is a connected, simply connected solvable Lie group containingι(Γ ) ∼= Γ as a
discrete cocompact subgroup. ut

7.4. On the proof of Theorem 5

We need the following simple observation:

Lemma 7.6. LetG be a connected solvable Lie group andN the maximal con-
nected nilpotent normal subgroup ofG. Then the natural homomorphism

π : Aut(G) → Aut(G/N)

has a finite image. Moreover, the order of the image is bounded by a constant
only depending on the dimension ofG.

Proof. Let n andg be the Lie algebras ofN and G, and letgC be the com-
plexification of g. By Lie’s theorem there is a basis ofgC with respect to
which ad(g) is represented by upper triangular matrices. Forv ∈ g we let
d(v) = (d1(v), . . . , dk(v)) ∈ Ck denote the diagonal elements of the matrix
representing adv, wherek is the dimension ofg. Clearly,d : g → Ck is a homo-
morphism with kerneln.

For v ∈ g, α ∈ Aut(G) the endomorphisms adv and adα∗(v) have the same
eigenvalues. Thus there is a permutationσ ∈ Sk with d(α∗(v)) = (dσ(1)(v), . . . ,

dσ(k)(v)). Since the kernel ofd is n, it follows that the set{α∗(v + n) | α ∈
Aut(G)} consists of at mostk! elements. Using thatα∗ (and accordinglyα) is
determined by the image of a basis ofg, we deduce that the image ofπ has at
most(k!)k elements. ut
Proof of Theorem 5.Choose an embeddingι : Γ → S o K satisfying the as-
sumptions of Corollary 4. We will viewι in the following as inclusion map. The
identity componentK0 of K is a torus. Notice that for any subgroupΓ ′ of finite
index the inclusionΓ ′ → Γ ′ · (SoK0)matches the assumptions of Corollary 4.
In particular, any automorphism:σ : Γ ′ → Γ ′ can be extended uniquely to an
automorphism̄σ of Γ ′ · (S o K0).

Let N be the maximal nilpotent normal subgroup ofS. By Proposition 5.1
N is also the maximal nilpotent normal subgroup ofS o K0, and by Lemma 7.6
the image of the natural projectionπ : Aut(S o K0) → Aut(S o K0/N) is finite.
Moreover, the order of the image ofπ is bounded by a constant only depending
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on dim(S o K0) ≤ 2 · rank(Γ ). Letq be the Lie algebra of the abelian Lie group
Q := S o K0/N.

Choose a subgroupΓ ∗ ⊂ Γ as stated in Lemma 7.5. Observe thatΓ ∗ is
necessarily contained inΓ0 := Γ ∩ (S o K0) by Proposition 7.1.

Clearly, exp: q → Q is a homomorphism, and henceW := exp−1(pr(Γ ∗)) is
a lattice inq. SetWQ := spanQ(W). If a mapσ̄ ∈ Aut(SoK0) leaves a subgroup
Γ ′ of finite index inΓ0 invariant, thenπ(σ̄ )∗ : q → q leaves a subgroup of finite
index inW invariant and thusπ(σ̄ )∗(WQ) = WQ.

Claim. Let E := {
α ∈ π(Aut(S o K0)) | α∗(WQ) = WQ

}
. Then

H := 〈{α(pr(g)) | g ∈ Γ ∗, α ∈ E}〉
is a discrete free abelian subgroup ofQ.

In order to show thatH is discrete, we just have to verify that the group

W̄ := 〈{α∗(w) | w ∈ W,α ∈ E}〉
is discrete. But this is trivial becausēW ⊂ WQ is obviously finitely generated.
So it remains to check thatH is torsion free. Set

Γ̄ ∗ := 〈{σ(g) | g ∈ Γ ∗, σ ∈ Aut(S o K)}〉.
Clearly,H is contained in pr(Γ̄ ∗). Consider the natural representationρ : S o

K0 → GL(n). By definition ofΓ ∗ the multiplicative subgroupΘ ⊂ C∗ generated
by all eigenvalues of elements inρ(Γ ∗) is torsion free. From Lie’s theorem we
infer that the multiplicative group generated by all eigenvalues of elements in
ρ(Γ̄ ∗) coincides withΘ. Now let g ∈ Γ̄ ∗ \ (Γ̄ ∗ ∩ N). By Proposition 5.1
the elementρ(g) is not unipotent. Since the eigenvalues ofρ(g) are not roots of
unity, it follows thatρ(gk) is not unipotent for all positive integersk. In particular,
gk 6∈ N for all k > 0. Taking into account thatN is the kernel of pr, we see that
pr(Γ̄ ∗) ⊃ H is torsion free, and hence the above claim is proved.

Notice thatH is by definition invariant under the natural action ofE on Q.
For the free abelian groupH we choose a homomorphism

ψ : H → q satisfying exp◦ψ = id .

Recall thatl := ord(E) ≤ ord(image(π)) is bounded by a constant only depend-
ing on rank(Γ ). Put l ·H := {gl | g ∈ H}. The mapH → l ·H, g 7→ gl is an
isomorphism, and accordingly we can define a homomorphismψ̃ : l ·H → q by
means of

ψ̃(gl) :=
∑
α∈E

α∗
(
ψ(α−1(g))

)
for g ∈ H.



Rigidity of group actions on solvable Lie groups 231

Evidently, exp◦ψ̃ = id. Furthermore,

ψ̃(α(g)) = α∗(ψ̃(g)) for α ∈ E andg ∈ l ·H.

Seta := spanR(ψ̃(l ·H)) andA := exp(a). Clearly,A containsl ·H as a discrete,
cocompact subgroup. From dim(A) = rank(l ·H) we infer thatA is a simply
connected, closed subgroup ofQ. Moreover,A is invariant under the natural
action ofE on Q. Since pr(Γ ∗) ⊂ H andl ·H ⊂ A, the index ofA ∩ pr(Γ0) in
pr(Γ0) is bounded by a constant only depending on rank(Γ ).

PutR := pr−1(A). ThenN ⊂ R is the maximal nilpotent normal subgroup
of R and nil(Γ ) ⊂ N. By Corollary 7.2 we can control the quantity(Γ : Γ0),
and hence

(Γ : R ∩ Γ ) = (Γ : Γ0) · (
pr(Γ0) : A ∩ pr(Γ0)

)
is bounded by a constant only depending on the rank ofΓ .

Furthermore, for a subgroupΓ ′ of finite index inΓ and an automorphism
σ : Γ ′ → Γ ′ the unique extension̄σ : Γ ′ ·S o K0 → Γ ′ ·S o K0 of σ leaves the
subgroupR invariant. In particular,Γ normalizesR. The productΓ ·R splits as a
semidirect productRoF where the order ofF ⊂ Aut(R) equals(Γ : R∩Γ ), see
Lemma 3.2. Moreover, for a subgroupΓ ′ of finite index inΓ any automorphism
σ : Γ ′ → Γ ′ can be extended to an automorphismσ̄|Γ ′·R of Γ ′ · R.

It remains to check that there is at most one extension of each automorphism.
Any automorphism ofΓ ′ · R can be extended toΓ ′ · (S o K0) by Theorem 6.5.
Furthermore, by the same theorem any automorphismσ̄ of Γ ′ · (S o K0) is
determined by the restriction̄σ|Γ ′ . In summary, we can say that any automorphism
σ̄ of Γ ′ · R is determined by the restriction̄σ|Γ ′ . ut

7.5. The proof of Theorem 6

In view of Theorem 1 we may assume thatS is supersolvable. Notice that the
torsion free groupΥ ⊂ S o K contains no nontrivial compact subgroup, so its
identity component is a simply connected solvable Lie group. LetR′ be the Lie
hull of Υ in S o K andS′ = S ∩ R′. By replacingΥ by a conjugate subgroup if
necessary, we may assume thatK′ := R′∩K is maximal compact inR′. ThenR′ is
a semidirect product subgroupR′ = S′oβ ′ K′ ⊂ SoK, whereβ ′ : K′ → Aut(S′)
is the restriction.

Clearly, the Lie algebras′ is invariant under the natural representation of
K′ in s. SinceK′ is compact, we can find aK′-invariant subspacep ⊂ s such
that s = p ⊕ s′. For any such complement we let% : R′ → GL(p) denote the
representation that is given by%((A, τ))(u) := A∗u for (A, τ) ∈ R′ ⊃ Υ ,
u ∈ p. We define an action ofR′ ⊃ Υ on S′ × p by using on the first factor the
natural action and on the second factor the action induced by the representation
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%. Notice that for any decompositionp = p1⊕· · ·⊕pk of K′-invariant subspaces
the following map isR′-equivariant.

f : S′ × p → S, (7.2)

(h, u1 + · · · + uk) 7→ h · exp(u1) · · · exp(uk)

for ui ∈ pi , i = 1, . . . , k. We claim that for a suitable choicef is a diffeomor-
phism as well. From this it is clear that the manifoldS/Υ is diffeomorphic to(
S′ × p

)
/Υ . Since

(
S′ × p

)
/Υ is a vector bundle over the compact manifold

B := S′/Υ , this completes the proof of a).
In order to prove the existence of a suitable decompositions = s′ ⊕ p1 ⊕

· · · ⊕ pk we argue by induction on dim(S). Let c be the center of the nilradical
of s, and letC be the corresponding Lie group. Observe thatC′ := C ∩ S′ is a
connected normal subgroup ofR′. Denote byc′ the Lie algebra ofC′ and choose a
K′-invariant subspacep1 such thatc = c′⊕p1. Next we consider the factor groups
S′/C′ andS/C and the corresponding Lie algebrass′/c′ ands/c. By our induction
hypothesis there is a decompositions/c = s′/c′ ⊕ p̄ = s′/c′ ⊕ p̄2 ⊕ · · · ⊕ p̄k of
K′-invariant subspaces such that the map

f̄ : (S′/C′)× p̄ → S/C,

(h̄, ū2 + · · · + ūk) 7→ h̄ · exp(ū2) · · · exp(ūk)

is a diffeomorphism. SinceK′ is compact, there is aK′-invariant subspacepi such
that the natural projections → s/c mapspi isomorphically ontōpi , i = 2, . . . , k.
Evidently,s = s′ ⊕ p1 ⊕ · · · ⊕ pk, and it is straightforward to check that for this
decomposition the mapf in (7.2) is a diffeomorphism.

Statement b) follows from Lemma 7.7 below. It remains to verify the addition.
By our additional assumption the identity componentΥ0 of Υ is contained in
S′. SetΥ̃ := Υ ∩ S′, and letR̃ ⊂ S′ be the Lie hull ofΥ̃ . Notice thatΥ̃ is
a normal subgroup ofΥ and that the factor groupΥ/Υ̃ is abelian up to finite
index. From Theorem 6.5 we infer thatR̃ is normal inS′ oβ ′ K′ and that the
factor groupQ := S′ oβ ′ K′/R̃ has an abelian identity componentQ0. SinceΥ̃
is a cocompact subgroup ofR̃ and sinceΥ0 ⊂ Υ̃ , it follows that the projection
pr : S′ oβ ′ K′ → Q mapsΥ onto a discrete subgroup ofQ.

Analogously to Subsect. 7.4 we can find a simply connected, closed sub-
groupA ⊂ Q with finitely many connected components that contains pr(Υ ) as a
discrete cocompact subgroup. The preimageΥ̂ := pr−1(A) ⊃ Υ is a simply con-
nected Lie group with finitely many connected components and with a solvable
identity component̂Υ0. By Lemma 3.2 we may identifŷΥ with a semidirect prod-
uctΥ̂0 oβ F, whereF is a finite group. The representation% : S′ oβ ′ K′ → GL(p)
restricts to a representation% : Υ̂0 oβ F → GL(p). Recall that the image of% is
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relatively compact. In particular,%(Υ̂0) is abelian. Thus% induces a representa-
tion

%̄ : (
Υ̂0/[Υ̂0, Υ̂0]

)
oβ̄ F → GL(p).

The groupΥ̂0/[Υ̂0, Υ̂0] is a simply connected abelian group and therefore it is
isomorphic toRp for some integerp. Set%̄λ(v, f ) := %̄(λ · v, f ) for λ ∈ [0,1].
Clearly,(%̄λ)λ∈[0,1] is a smooth family of homomorphisms and the image of%̄0

is the finite group%(F). Because ofΥ ⊂ Υ̂ this consideration shows that

%1 := %|Υ : Υ → GL(p)

can be deformed via a continuous family of representations%λ : Υ → GL(p)
into a representation%0 with a finite image, too. Define a new action ofΥ on
S′ × p by using on the first factor the natural action and on the second factor
the action induced by the representation%0. It is known that the quotient of this
action is diffeomorphic to the quotient of the original action. Since the image
of %0 is finite, a finite sheeted covering space ofS/Υ is diffeomorphic to the
product(S′/Υ ′)× p, whereΥ ′ = Ker(%0) is a subgroup of finite index inΥ .

Lemma 7.7. LetS be a connected, simply connected supersolvable Lie group,K
a compact Lie group,G := S oβ K, and letΥ ⊂ G be a torsion free cocompact,
closed subgroup. ThenΓ := π0(Υ ) := Υ/Υ0 is a torsion free polycrystallo-
graphic group and for an embeddingΓ → Ŝ o K̂ satisfying the assumptions of
Corollary 4 the quotient̂S/Γ is diffeomorphic to the manifoldS/Υ .

Proof. Without loss of generalityG is the Lie hull ofΥ in G. Since the normalizer
of the identity componentΥ0 of Υ is by Proposition 6.2 a Lie hull, the groupΥ0

is normal inG. The Lie hullR ofΥ0 is a normal subgroup ofG, too. Furthermore,
Υ0 is cocompact inR, and accordinglŷΥ := Υ ·R is a closed subgroup.We claim
that for the natural action of̂Υ on S the Υ̂ –orbits coincide with theΥ –orbits.
In order to prove this it is sufficient to show thatR andΥ0 have the same orbits.
The groupL = R ∩ K is maximal compact inR becauseR is normal inG. So
R = S′ oβ L whereS′ = S ∩ R. By constructionΥ0 is a connected, cocompact
subgroup ofR, and henceΥ0 ? e = S′ = R0 ? e. Taking into account thatΥ0 and
R are normal subgroups ofG, we see thatΥ0 ? v = R ? v for all v ∈ S.

The projection pr: S oβ K → (S/S′) oβ̄ (K/L) mapsΥ onto a discrete,

cocompact subgroup̃Γ := pr(Υ ) = pr(Υ̂ ). Evidently, the quotient(S/S′)/Γ̃
is diffeomorphic toS/Υ . Since the action ofΥ onS is free, the action of̃Γ on
(S/S′) is free as well. In particular,̃Γ is torsion free. Consider the projection

π : (S/S′)oβ̄ (K/L) → (S/S′)o β̄(K/L) =: Ŝ o K̂

and the groupΓ := π(Γ̃ ) ∼= Γ̃ ∼= π0(Υ ). Clearly, the inclusionΓ ⊂ Ŝ o K̂
matches the hypothesis of Corollary 4. Finally, the manifoldS/Υ is diffeomor-
phic toŜ/Γ . ut
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8. Further consequences

8.1. Representations of polycrystallographic groups

The aim of this subsection is to prove the following

Corollary 8.1. LetΓ be a polycrystallographic group,ι : Γ → S o K an em-
bedding satisfying the assumptions of Corollary 4,ρ : Γ → GL(m,R) a repre-
sentation ofΓ , and letZ be the Zarisky closure ofρ(Γ ) in GL(m,R). Assume
further thatL is the maximal compact normal subgroup ofZ, and letπ : Z → Z/L
denote the projection. Then there is a homomorphismϕ : S o K → Z/L with
ϕ ◦ ι = π ◦ ρ.

Proof. Evidently, the identity component ofZ is solvable. LetR ⊂ Z be the set
of matrices that have only positive eigenvalues. Lemma 4.4 exhibitsR as a con-
nected, simply connected normal subgroup ofZ. Furthermore,Z is isomorphic
to a semidirect productR · K whereK ⊂ Z is maximal compact.

The groupR is supersolvable, and thus the Lie hull ofρ(Γ ) in R·K is defined,
see Definition 6.4. In particular, there is a compact groupK′ ⊂ Z and a connected
subgroupS′ ⊂ R normalized byK′ such thatρ(Γ ) is cocompact inK′ ·S′. LetL′
be the maximal compact normal subgroup ofS′ · K′. Clearly,ρ(Γ ) normalizes
L′. The Zarisky closure ofL′ in GL(n,R) is a compact normal subgroup ofZ and
accordinglyL′ ⊂ L. Thereforeπ(S′ · K′) contains no compact normal subgroup.
Henceπ(S′ · K′) is by Lemma 3.2 isomorphic to a semidirect productS′ o K′′
with K′′ ⊂ Aut(S′). Now Theorem 6.5 c) applies. ut

8.2. Some consequences for lattices in supersolvable Lie groups

For a polycrystallographic groupΓ we call the groupΓ + that is characterized in
Proposition 5.1 the positive part ofΓ . A polycrystallographic groupΛ is called
a positive polycyclic group if and only if it coincides with its positive part. We
have

Remark 8.2.An abstract groupΛ is isomorphic to a lattice in a connected, simply
connected supersolvable Lie group, if and only ifΛ is a positive polycyclic group.

Proof. That the condition is necessary is an immediate consequence of Propo-
sition 5.1. Furthermore, for a positive polycyclic groupΛ we can choose an
embeddingι : Λ → S o K satisfying the assumptions of Corollary 4. We infer
from Proposition 5.1 thatΛ ∼= ι(Λ) is contained in the supersolvable groupS.

ut
For a positive polycyclic groupΛ, and a connected, simply connected su-

persolvable Lie groupS containingΛ as a lattice we callS a supersolvable
completion ofΛ. This definition generalizes the concept of the Malcev comple-
tion of a torsion free nilpotent group. From Theorem 6.5 a), c) we obtain:
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Corollary 8.3. Let Λi be a positive polycyclic group, and letSi ⊃ Λi be a
supersolvable completion ofΛi , i = 1,2. Then each homomorphismϕ : Λ1 →
Λ2 extends uniquely to a homomorphismS1 → S2.

Thus the supersolvable completion of a positive polycyclic group is a functor.
Of course, the class of positive polycyclic groups is much smaller than the class of
polycrystallographic groups. However, at least for polycrystallographic groups
of rank three the difference is not that big:

Remark 8.4.For a polycrystallographic groupΓ of rank three the positive part
Γ + of Γ is of finite index inΓ .

In fact, it is elementary to show thatΓ contains a subgroup of finite in-
dex which is isomorphic to a semidirect product(Z2) oβ Z, whereβ : Z →
GL(2,Z), z 7→ Az for someA ∈ GL(2,Z). Thus it just remains to check that
there is a positive integern such thatAn has only positive eigenvalues. But this
is a trivial computation.

8.3. Extendable homomorphisms

We have seen in the preceding subsection that the embedding of Corollary 4
induces on the subclass of positive polycyclic groups a functor that maps a
positive polycyclic groupΛ onto its supersolvable completion. In order to extend
this functor to a category containing all polycrystallographic groups as objects,
we have to restrict ourselves to a special type of homomorphism.

Definition 8.5. LetΓi be a polycrystallographic group, and letι : Γ → Si o Ki
be an embedding satisfying the assumption of Corollary 4,i = 1,2. A ho-
momorphismϕ : Γ1 → Γ2 is called extendable if there is a homomorphism
ϕ̂ : S1 o K1 → S2 o K2 of Lie groups satisfyinĝϕ(S1) ⊂ S2 andϕ̂ ◦ ι1 = ι2 ◦ϕ.

If such a homomorphism̂ϕ exists, then it is unique. In fact one can show that the
graph ofϕ̂ is necessarily given by the Lie hull of

{(
ι1(g), ι2(ϕ(g))

) ∣∣ g ∈ Γ1
}

in
(S1 o K1)× (S2 o K2). Clearly, the polycrystallographic groups together with
the extendable homomorphisms form a category. Furthermore, with respect to
this category the embedding of Corollary 4 is a functor.

Proposition 8.6. Letϕ : Γ1 → Γ2 be a homomorphism between polycrystallo-
graphic groups. Thenϕ is an extendable homomorphism provided that the image
Γ ′ := ϕ(Γ1) satisfies one of the following conditions.

a) Γ ′ is a subgroup of the positive partΓ +
2 of Γ2.

b) There are subgroups

Γ ′ := N0 ⊂ · · · ⊂ Nk = Γ2

such thatNi−1 is either normal inNi or of finite index inNi , i = 1, . . . , k.
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Proof. a).By the very definition of the positive part the Lie hullS′ of ι2(Γ ′) in
S2 o K2 is a connected subgroup ofS2. Now Theorem 6.5 c) applies.

b).We claim that the Lie hullRi of ι2(Ni) in S2 o K2 contains no nontrivial
compact normal subgroups. We argue by reversed induction oni. By Lemma 3.2
the statement is correct forRk = S2 o K2. Suppose that the Lie hullRi+1 of
ι2(Ni+1) contains no nontrivial compact normal subgroup. In the case thatNi is
normal inNi+1 we can employ Theorem 6.5 to see thatRi is normal inRi+1.
Thus the maximal compact normal subgroup ofRi is normal inRi+1 and hence
trivial. If Ni is of finite index inNi+1, thenRi is of finite index inRi+1, and the
assertion follows from Lemma 3.2.

Since the Lie hullR0 of ι2(Γ ′) contains no compact normal subgroups, it fol-
lows thatR0 it is isomorphic to a semidirect̄So K̄, whereS̄ ⊂ S2 is a connected
supersolvable Lie group and̄K ⊂ Aut(S̄) is compact. By Theorem 6.5 c) there is
a homomorphism̂ϕ : S1 o K1 → R0 with ϕ̂(S1) ⊂ S̄ ⊂ S2 andϕ̂ ◦ ι1 = ι2 ◦ ϕ.

ut
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