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Abstract. We establish analogs of the three Bieberbach theorems for a |atiicea semidirect
productS x K whereS is a connected, simply connected solvable Lie groupkaigia compact
subgroup of its automorphism group. We first prove that the actioff @h S is metrically
equivalent to an action af' on a supersolvable Lie group. The latter is shown to be determined
by I' itself up to an affine diffeomorphism. Then we characterize these lattices algebraically as
polycrystallographic groups. Furthermore, we realize any polycrystallographic firasg lattice

in a semidirect produ@ x F with F being a finite group whose order is bounded by a constant only
depending on the dimension 8f This generalization of the first Bieberbach theorem is used to
obtain a partial generalization of the third one as well. Finally we show for any torsion free closed
subgroupr” C S x K that the quotien8/ 7 is the total space of a vector bundle over a compact
manifold B, whereB is the quotient of a solvable Lie group by a torsion free polycrystallographic

group.

1 Introduction and main results

The classical Bieberbach theorems investigate the structure of crystallographic
groups, i.e. of discrete cocompact subgroups of the isometry group of the Eu-
clidean space ISR?) = R? x O(d).

Bieberbach’s First Theorem. LetI” C R? x O(d) be a crystallographic group.
ThenI” N R4 has finite index in".

Bieberbach’s Second TheoremLet I'y, I € RY x O(d) be two crystallo-
graphic groups. Suppose there exists an isomorphisih — I of abstract
groups. Then is given by conjugation with an element in the group of affine
motionsR? x GL(d).

Bieberbach’s Third Theorem. In each dimension there are only finitely many
isomorphism classes of crystallographic groups.

We will study discrete, cocompact subgroups of semidirect prodacisK
whereS is a connected, simply connected solvable Lie groupkarsch compact
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subgroup of its automorphism group A8Y. Recall that a connected solvable
Lie groupS contains closed subgroups

fe}=N1C---CNy=S

such that\; is normal inN;; andN;,1/N; = R or N, .1/N; = S. If the groups
Ni, ..., N, are normal inS, the groupsS is called supersolvable. A connected
nilpotent Lie group is supersolvable; the converse however is not true.

The automorphism group A(®) of a simply connected Lie grouis a Lie
group with finitely many connected components. Consequently, any compact
subgroup of AutS) is contained in a maximal compact subgroup and all maximal
compact subgroups are conjugate, compare Remark 3.1. Notice that a semidirect
productS x K actsonS by (t, A)xv =1 - A(v) for (r, A) e Sx K,v € S.

Theorem 1. LetS be a connected, simply connected solvable Lie group, and let
K ¢ Aut(S) be a maximal compact subgroup. Then there is

a) a unique maximal connected, simply connected supersolvable normal sub-
groupR of S x K such thaK also can be viewed as a subgroupfait(R),

b) anisomorphism: R x K — S x K of Lie groups and

c) an equivariantisometry: (R, g1) — (S, g) for suitable left invariant met-
rics g1, g onR andS, i.e. f(h*v) =t(h)* f(v)forv e Randh € R x K.
More precisely, ifg is a left invariant metric or6 such thatg. is invariant
under the natural representation Kfin the Lie algebras of S, then the pull
back metricg, := f*g is left invariant onR.

So we may restrict attention to actions on supersolvable Lie groups, and
thereby we can view the following theorem as an analogue of the second Bieber-
bach theorem:

Theorem 2. LetS; be a connected, simply connected supersolvable Lie group,
K; C Aut(S;) acompactsubgroup, and I€} C S; x K; be a discrete cocompact
subgroupj = 1, 2. Suppose there exists an isomorphisn; — I, of abstract
groups. Then there is an isomorphigmS; — S, and an element € S, such

that the affine diffeomorphism

f:S1—> S, v W) T
is equivariant. In particular(y) »w = f(y » fX(w)) forall w € S,, y € It.

In the special case of a nilpotent Lie gro8phe theorem is due to Auslander
(1961a), and the group; is then called amlmost crystallographic group

Theorem 2 is also a partial generalization of the main result of Farrell and
Jones (1997). They proved for a pair of torsion free, closed, cocompact subgroups
T; C S; x K; for which the identity components are contained in the nilradicals
of S; (i = 1,2) that the following holds: Any isomorphismy (S1/71) —
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m1(S,/T>) between the fundamental groups is induced by a diffeomorphism
S1/71 — S,/ 7> provided that dinGS; / ;) # 4. In the special case of discrete
groupsY; and?> this is of course equivalent to saying that for any isomorphism
71 — 71> there exists a corresponding equivariant diffeomorphgm— S,.
Farrell and Jones (1997) employ strong topological theorems to obtain their
result. Our proof in contrast is elementary although it is quite long. Notice also
that Theorem 2 is stronger to some extent, since we do not require that the
considered groups are torsion free and since we prove in a “normalized category”
the existence of an affine diffeomorphism.

In order to generalize the other Bieberbach theorems we first characterize
the above lattices algebraically. Therefore we recall that a group called
polycyclic if there are subgroups

{fe}=N1C---CNy=4A

such that\; is a normal subgroup i, , ; and the factor group; ;1/N; is cyclic.
The number of factor groups satisfyidg,1/N; = Z does not depend on the
choice of the subgroups and is called the Hirsch-rank or for short the ramk of
The groupA is called strongly polycyclic if for a suitable choidé,,/N; = Z
foralli. If IT is a group containing a polycyclic subgroupof finite index, we
define rankiT) := rank(A). This definition is easily seen to be independent of
the choice ofA. Finally the nilradical ni{IT) of IT is then defined as the maximal
nilpotent normal subgroup df.

Theorem 3. For a group I the following statements are equivalent.

a) I' is isomorphic to a discrete, cocompact subgroup of a semidirect product
S; x K, whereS; is a connected, simply connected solvable Lie group and
K is a compact subgroup of the automorphism gréup(S,).

b) There is an almost crystallographic groufy, a crystallographic groupg
and an exact sequence

{1} > Iy > T — Iy — {1}
c) There are subgroups
{fey=I1vc---cl, =T

such thatl; is a normal subgroup of’; and the factor groug’; 1/ is
isomorphic to a crystallographic group.

d) I is polycyclic up to finite index, andl does not contain any nontrivial finite
normal subgroup.

e) I" contains a strongly polycyclic normal subgroupof finite index such that
the centralizer ofA is contained inA.
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f) I' is isomorphic to a discrete, cocompact subgroup of a semidirect product
S, x F, whereS; is a connected, simply connected solvable Lie group and
F is a finite subgroup of the automorphism grofipt(S,).

The equivalencé) < b) is due to Dekimpe. Moreover, he also provgd= d)
anda) = d), see (Dekimpe, 1996, Theorems 3.4.3 and 3.4.6).

Auslander and Johnson (1976) have verified a conjecture that is related to
the implicationd) = f): Under the additional assumption thats torsion free
they have realized™ as the fundamental group of a compact manifold that is
finitely covered by a solvmanifold. The implicatien = f) is due to Farrell
and Jones (1997). Actually they proved it only under the additional assumption
thatI” is torsion free but their proof carries over to the present situation.

Notice that the implication) = f) can be viewed as a partial generalization
of the first Bieberbach theorem, since the actions @in S; andS, arising from
the conditions a) and f) are by the Theorems 1 and 2 equivalent.

Condition c) in the above theorem suggests the following notation: A group
I' is called polycrystallographic, if and only if it satisfies one of the conditions
of Theorem 3. Using the above theorems it is easy to see:

Corollary 4. LetI” be a polycrystallographic group. Then there is a connected,

simply connected supersolvable Lie grdbipa compact subgrould of its auto-

morphism group and a homomorphism” — SxK mappingl” isomorphically

onto a discrete, cocompact subgroup, such thap - (S X {e}) isdenseirs x K.
Moreover, ifi,: I' — S, x K; is another embedding satisfying the above

assumptions, there is a unique isomorphigmS, x K, — S x K for which

@ oty =t,and thenp(S; x {e}) = S x {e}.

The embedding of Corollary 4 has nice algebraic properties, see Sect. 8.
If I" is an almost crystallographic group, then the gréuim Corollary 4 is
finite, the groupl™ := ~1(S x {e}) can be viewed as the translational part of
I', and it coincides with the nilradical df. A theorem of Dekimpe et al. (1994)
generalizing the third Bieberbach theorem states that there are only finitely many
almost crystallographic groups containing a fixed group as its nilradical.
However, in the general situation the grdis not finite and for that reason
we also consider different embeddings:

Theorem 5. For a polycrystallographic groug™ of rankn there is

() aconnected, simply connected solvable Lie gr8up

(ii) a finite subgroupF c Aut(S) with ord(F) < C,, whereC, is a constant
only depending on and

(iii) a homomorphism: I' — S x F satisfyingS x F = «(I") - (S x {e}) and
mappingl” isomorphically onto a discrete, cocompact subgrouf of F

for which the following holds: Lef™” ¢ I' be a subgroup of finite index, and
let F c F be the unique group witls x F' = «(I'"’) - (S x {e}). Then any
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automorphism of(I"") = I’ can be extended uniquely to an automorphism of
SxF.

The embeddingin Theorem 5 is not unique, and the grolip := :=1(S x {e})

is not independent of the choice wiHowever, the index of the subgroup' in

I is bounded byC,, and a theorem of Segal (1978) states that there are only

finitely many isomorphism classes of groups containing a fixed polycyclic group

as a normal subgroup of a given index. Thus we can regard Segal’s result in

connection with Theorem 5 as a generalization of Bieberbach'’s third theorem.
Finally, we consider torsion free subgroups and the corresponding quotients.

Theorem 6. Let S be a connected, simply connected solvable Lie gréup,
C Aut(S) a compact subgroup, and 18t ¢ S x K be a torsion free closed
subgroup. Then

a) S/ 7T is the total space of a vector bundle over a compact manifold

b) The fundamental group’' := 71(B) is a torsion free polycrystallographic
group, and for an embeddlng I > SxK satisfying the assumption of
Corollary 4 the quotlenS/F is diffeomorphic taB.

Ifin addition the identity component @f is contained in a normal supersolvable
subgroup ofS, then a finite cover 0§/ 7 is diffeomorphic to a product of a
compact manifold and a vector space.

In the special cas& = {e} the statement a) of the theorem was conjectured

by Mostow (1951) and proved by Auslander and Tolimieri (1970). Furthermore,
Mostow (1951) has shown that a finite cover of a noncompact solvmanifold is
homeomorphic to a product of a compact solvmanifold and a vectorspace.

The action ofS x K on S is isometric with respect to a suitable left invariant
metricg on S. At first view it seems to be more general to consider a subgroup
T c SxKforwhichthe quotientS, g)/ T is a Riemannian manifold. However,
by applying (Eschenburg, 1984, Satz 12,13) one can show that such a manifold
is isometric to a quotientS’, g’) /Y with T’ being torsion free.

Remarks.1. The manifolds occurring in Theorem 6 are called infrasolvmani-
folds. Compact infrasolvmanifolds have a nice geometric characterization. Ac-
cording to Tuschmann (1997) a compact topological mani#éls homeomor-

phic to an infrasolvmanifolds if and only ¥ admits a sequence of Riemannian
structuresg,, with uniformly bounded sectional curvature such thet g,),.cn
collapses in the Gromov Hausdorff sense to a flat orbifold.

2. After finishing this paper the author realized that compact solvmanifolds
can also be used to construct compact Riemannian manifolds with noncompact
holonomy groups, see Wilking (1999).

3. Discrete subgroups of supersolvable Lie groups resemble in many respects
discrete subgroups of nilpotent Lie groups, compare Subsect. 8.2. It would be
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interesting to know whether compact supersolvmanifolds, i.e. quotients of su-
persolvable Lie groups by lattices, have any special geometric properties.

4. Suppose thalf is a group that is polycyclic up to finite index. It is el-
ementary to show thdl contains a maximal finite normal subgroi&pc I7.
By condition d) of Theorem 3 the factor group/E is polycrystallographic. So
polycrystallographic groups might be of algebraic interest as well.

5. A subgroup” of the group of affine motionR¢ x GL(d) is called an affine
crystallographic group if the corresponding actionbbnR? is discontinuous
and cocompact. It is conjectured that affine crystallographic groups are virtu-
ally polycyclic. Evidently, a virtually polycyclic affine crystallographic groiip
does not contain any finite normal subgroup, and hence itis polycrystallographic.
Moreover, itis not hard to see that the affine actiomainR? is smoothly equiva-
lent to the action of” on the supersolvable Lie group arising from the embedding
in Corollary 4; in fact the supersolvable Lie group acts then simply transitive on
R? by affine diffeomorphisms. Of course one can use this to obtain structure
results for virtually polycyclic affine crystallographic groups. However, there is
already a nice structure theory for these groups, see Grunewald and Segal (1994).
Also notice that not any polycrystallographic group is affine crystallographic, see
(Benoist, 1995) for a nilpotent counterexample. Hence the results in (Grunewald
and Segal, 1994) do not imply structure results for polycrystallographic groups.
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The main aim of this paper is, of course, to prove the main results. However,
some of the results stated below might be of some interest in itself: In Sect. 2 we
give two counterexamples. They will uncover some mistakes occurring in this
context in the literature. Lemma 4.1 introduces a different characterization of
supersolvable Lie groups that is needed subsequently. Section 6 is the heart of
the proofs of the Theorems 2 and 6. We study there subgroups of a semidirect
productS xg K with S being supersolvable. Our results depend on a good
understanding of the exponential maok 3 K. Here Theorem 6.5 is of its own
right.

The proof of Theorem 5 needs some additional preparations which we have
placed in Subsect. 7.3. There a sufficient condition on a polycrystallographic
groupr is given which ensures that for the embedding” — S x K of Corol-
lary 4 the groufs x K is connected. Actually this result can be interpreted as a
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correction of a similar theorem of Auslander from which we show in Example 2.1
that the original version is not correct. Furthermore, we prove without additional
assumptions that the number of connected componei@s<oK is bounded by
a constant only depending on the rankiaf

Finally, we investigate in Sect. 8 the algebraic properties of the embedding
of Corollary 4. To some extent this embedding is the natural generalization of
the Malcev completion of a torsion free nilpotent group.

The author would like to thank the referees for bringing several references to
his attention.

2. Counterexamples

Let A be a torsion free polycyclic group. Then the nilradical nil of A is
finitely generated. Hence there is a connected, simply connected nilpotent Lie
groupN, called the Malcev completion of tiift), such that nilA) is a lattice
in N, see (Raghunathan, 1972, Theorem 2.18). The actiof oh nil(A) by
conjugation induces an action df on the Malcev completiol of nil(A), see
(Raghunathan, 1972, Theorem 2.11). petA — GL(n) be the corresponding
representation in the Lie algebraMf The groupA is called predivisable if and
only if A/nil(A) is free abelian and for a§ € A the following is true: any
eigenvaluex of p(g) is either real and positive or the numbBeéris not real for
all positive integers.

A theorem of Auslander (1961b) states that a predivisable polycyclic group
A isisomorphic to a lattice in a connected, simply connected solvable Lie group.
Another theorem of Auslander (1969) asserts that there is a connected solvable
Lie groupD containingA as a uniform lattice such that any automorphism of
A can be extended uniquely to an automorphisnboBoth theorems are not
correct:

Example 2.1. There is a torsion free, predivisable polycyclic grodpwhich
can not be realized as a discrete, cocompact subgroup of a connected solvable
Lie group.

The construction ofA needs some preparations. Set
p(X) = X*4+4X34+3X2-2X+1= (X +D*-3(X +1)?+3.
Clearly, p is an irreducible polynomial, and the zerospoére the numbers:

71 = —14+/3e™2 75 = 143712
o= 1 R oy — 1 Yae

We claim thatz} is not real for all positive integers, i = 1,..., 4. In fact,
otherwise the numbes; /z; would be a root of unity. It is easy to see that the
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roots of unity inQ(z1, zo, z3, 74) form a cyclic group of order 12. Thus it is
sufficient to verify that(z; /z;)*? # 1 which is trivial.

Let Z be the integral closure & in Q(zy), i.e.Z consists of those numbers
in Q(z1) for which the corresponding (normalized) minimal polynomial is in
Z[X] C Q[X]. Evidently,z; € Z and as additive grouf is isomorphic tazZ*.
It is a well-known and elementary fact that the characteristic polynomial of the
Z-linearmapl,: Z — Z, x — zix is given by the minimal polynomigh(X).
In particular, L, € GL(Z) = GL(4, Z), andz;, z2, z3, z4 are the eigenvalues of
L.,.Put

L = Olc

{ lab
001

a,b,cezC(C}.

Clearly, L is a finitely generated, torsion free nilpotent group of rank 12. We
define an automorphism afas follows.

o:L— L, A diagzy,z3, 1) - A-diagz;t 212 D).

As usualo induces an automorphismon the Malcev completioiN of L. It is
straightforward to check that the corresponding automorplismn — n of
the Lie algebra oN has the eigenvalues, z; 1,22, i = 1,... , 4.

Next we consider the product group := L x L with the automorphism

y:Ll2—> L% (g.h) — (o(h),0(g)).

Similarly to abovey induces an automorphisgh onN2?, and the eigenvalues of
Vwe: n@®n — n@nare given bytz;, +771, +72,i = 1,... , 4. Observe that,
for an eigenvalue. of ¥, the numben” is not real for all positive integers.
Therefore the semidirect product

A= (> %Z, (a,m)-(b,n) = (a Y™ (b), m + n)

is a torsion free, predivisable polycyclic group.

In order to show thati has the claimed properties, it is important to verify
that the automorphisnt : N2 — N2 is not contained in the identity component
of Aut(N?). Notice thatN is not abelian, so there is an elemgnt N for which
the connected groujg, N] := ({ghg~*h~ | h € N}) is not trivial. Choose the
minimal positive integek for which the setS := {g € N | dim([g, N]) = k}
is not empty. The seM := {g € N? | dim([g, N?]) = k} is invariant under
Aut(N?), and it is trivial to compute tha/ = (S x C) U (C x S), whereC is
the center oN. Evidently,iy swaps the subsefsx C andC x S of M. Taking
into account that these two subsets are open and closkd we see thai/ is
not contained in the identity component of ANE).
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Suppose, on the contrary, thatcan be realized as a discrete, cocompact
subgroup of a connected solvable Lie grdiiplt is convenient to assume that
dim(S) is minimal. LetN be the maximal connected, nilpotent normal subgroup
of S. If N is not simply connected, there is a nontrivial, connected, maximal
compact central subgroup of N, compare Lemma 4.2 a) below. Th&ns a
characteristic subgroup of the normal subgrdéug S and accordingly normal
in S. The factor grous/T is again a connected solvable group. Sintés
torsion free and discrete 8, the projectiorS — S/T mapsA isomorphically
onto a discrete, cocompact subgrou@gt which is impossible because diB)
is minimal. ThusN is simply connected.

By a theorem of Mostow the grotpp:= A NN is a lattice inN, see (Raghu-
nathan, 1972, Theorem 3.3). Furthermdids contained i = L2 x {e}, the
nilradical of A. The factor grous/N is abelian, and hendet, A] C H. Itis
easy to see that the commutator group A] C H is of finite index inL? C A.
ThereforeH C L2 is lattice inN and also a lattice itN2 = N x N. Since both
groups are connected, simply connected nilpotent Lie groups, there exists an iso-
morphism: : N — N2 with yn = id, see (Raghunathan, 1972, Theorem 2.11).
The connected group acts onN by conjugation, and the image of the induced
homomorphisng — Aut(N) is contained in the identity component of /mlt)

Setg := (¢,1) € (L x Z = A. The automorphisna,: N — N, / >
ghg~! leaves the subgroug = A N N invariant and clearly,n = . Hence
Locg ot"tandy coincide on the cocompact subgradf N2, so they must be
equal. But this implies that is contained in the identity component of ANE),

a contradiction.

Remarks 2.21. Actually the two theorems of Auslander are only wrong in detail
but true in spirit. In fact, one just has to replace the assumption that the group
I' is predivisable by the assumption thatis generated by elements which are
absolutely net, see Subsect. 7.3 for the definition and details.

2. If one is willing to disregard the minor mistake in (Auslander, 1969, The-
orem 1), its statement implies nearly directly the existence part of Corollary 4.
However, we will not make use of this fact. Notice also that the uniqueness part of
Corollary 4 was not known before, even not in the special case of a predivisable
polycyclic groupr”.

Example 2.3. There is a nontrivial, connected, simply connected solvable Lie
group S, a compact grougK C Aut(S) and a discrete, cocompact subgroup
I' ¢ S xKsuchthatl” andS = S x {e} have only the trivial element in
common.

Choose a two-dimensional real subspsice R3 with Z3 NV = {0}. There
is a one-dimensional connected subgrougBQ@ SO(3) leavingV invariant.
Let G denote the semidirect produBf x SO(2). ThenV x {e} is a normal
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subgroup ofG, and the factor grou@ := G/V x {e} is isomorphic to a direct
productR x SO(2). The projectionr : G — Q maps the group™ := Z3 x {e}
monomorphically onto a subgroup @ Clearly, we can find a connected, one-
dimensional, cocompact, closed subgrdupf Q that has trivial intersection
with 7 (I"). Let S be the preimage ~1(A). By constructiorS is a connected,
simply connected, closed, solvable normal subgroup that has trivial intersection
with I". Moreover,K = {e} x SO(2) is a group complement & in G, that is
K-S =GandKnNS = {e}. Finally, it is easy to see tht acts onS D V x {e}
effectively by conjugation. Thus we can vighas a subgroup AgE), and under
this identificatiorS x K is isomorphic tds, compare Subsect. 3.2. Furthermore,
NS ={e}.

Remarks 2.41. Example 2.3 contradicts Corollary 8.25 in (Raghunathan, 1972),
which in the above situation states that for the maximal connected nilpotent
normal subgroufN of S the groupN N I" is a lattice inN.

2. The error occurs inthe proof of (Corollary 8.25, Raghunathan, 1972) where
is claimed that the maximal connected nilpotent normal subgrod oK is
contained irS. In the above example this is not true. In fact, there the maximal
connected nilpotent normal subgroup®fx K is isomorphic toR?3; whereas
the maximal connected nilpotent normal subgrougBat isomorphic toR?.
Actually the mistake and the corollary itself is related to a similar assertion that
is stated in the proof of (Theorem 2, Auslander, 1961a).

3. In general for a latticet in a connected, simply connected solvable Lie
group S not any automorphism aofi can be extended to an automorphism of
S: Consider the homomorphispg: R — C* ¢ Aut(C), t — exp(2rit) and
the semidirect produc® = C xz R. The groupA := (Z @ iZ) x Z = Z3 s
a discrete, cocompact subgroup$fbut of course not any automorphism in
Aut(A) = GL(3, Z) can be extended to one 8f

3. Preliminaries
3.1. Basic properties of algebraic groups

Recall that the general linear group G- C) has a so called Zarisky topology;
asubseG c GL(n, C) is called Zarisky closed if and only if it is the zero set of
a collection of polynomials in the coefficientg and in deta;;)~*. An algebraic
subgroupG of GL(n, C) is a subgroup for which the underlying set is Zarisky
closed. Itis a well-known and elementary fact that for a subg@®up GL (1, C)

the Zarisky closure db is again agroup. I6 C GL(n, C)isagroupandi C G

is a normal subgroup, then the Zarisky closhiref H is a normal subgroup of
the Zarisky closuré& of G. If in addition G/H is abelian, ther /H is abelian,
too.
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We refer to the topology of Glz, R) induced by the Zarisky topology as the
Zarisky topology of Gl(n, R). In particular, the Zarisky closure in Gk, R) is
defined. Areal algebraic growp c GL(n, R) isagroup for which the underlying
set is Zarisky closed in Glz, R). It is easy to show that a connected, unipotent
subgroup of Gl(z, R) is a real algebraic group, see (Raghunathan, 1972, p. 9).

A (real) algebraic group has only finitely many connected components in the
Euclidean topology, see (Mostow, 1957).

If V is a realn-dimensional vector space with a given basis, then the gen-
eral linear group GLV) is canonically isomorphic to Glz, R). Evidently, the
Zarisky topology induced by this identification on GL) does not depend on the
choice of the basis. Thus Zarisky topology of G1) has an intrinsic meaning.

In the sequel, we will make use of these elementary facts without further
comments. We also emphasize that except for the notion of Zarisky closure all
other topological concepts used for subgroups of/GIC) will be with respect
to the Euclidean topology. The main reason why real algebraic groups play a
role in the proofs of the above theorems is related to the following well-known
observation.

Remark 3.1.Let S be a connected, simply connected Lie group, and let®ut

the group of continuous automorphismsSfThe natural representatiqn:

Aut(S) — GL(s) in the Lie algebra ofS is faithful, and its image is a real
algebraic linear group. In particular, A®) is a Lie group with finitely many
connected components, it contains at least one maximal compact subgroup, and
any compact subgroup is conjugate to a subgroup of a given maximal compact
subgroup.

Proof. SinceS is connectedp is faithful. As S is simply connected, the image
of p is the automorphism group A@b of the Lie algebras. Checking that
Aut(s) is an algebraic group is easy: Choose a basis. . , v, of s and define
Y on_a1ciinvn := [v;, v;]. Let A € GL(s) be represented by the matix;) with
respect to the basis, ... , v,. ThenA € Aut(s) if and only if for all &, k, [ the
following holds

E cnanjvy = Alv, vl = [Aw, Ay] = E a;kGjICijp V) -
i ij.h

Thus Aut(s) is a real algebraic group. The last part of the remark is a general
fact for Lie groups with finitely many connected components, see (Hochschild,
1965, Ch. XV,Theorem 3.1). O
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3.2. Notational conventions and basic facts for semidirect products

Let S andK be Lie groups ang: K — Aut(S) a continuous homomorphism.
On the Cartesian produ6t x K we introduce a Lie group structure by setting

(,a) - (w,b) = (v-Ba)(w),ab) for (v,a), (w,b) €S xK.

This Lie group is denoted b§ x4 K. It acts onS via (r,a) x h = t - B(a)(h).
With this notation the group multiplication can be rewrittenNeasa) - (w, b) =
((v, a) xw, ab).

For a semidirect produ@ xz K we will always identifyK with the group
{e} x K:andS with the normal subgrouf x {e} of S x4 K.

Let G be a Lie group$S a closed normal subgroup, andietc G be a closed
subgroup such thad = K-S andK NS = {e}. Then the natural action of
K on S by conjugation induces a continuous homomorphgsnkK — Aut(S),
andS xg K is isomorphic toG via (t, a) — 7 - a. Conversely for a semidirect
productS x4 K the action ofK on S by conjugation coincides with the action
of K on S induced by the homomorphisgh

There is a natural homomorphism: S xg K — S x Aut(S), (t,a) —
(1, B(a)). Clearly, Ke(x) = Ker(B). In particular, the kernel of is a normal
subgroup ofS x K. If g is injective, we will often identifyK with g(K), and
then writeS x K for S x4 K.

Lemma 3.2. a) LetS be aconnected, simply connected solvable Lie group, and
let K be a compact subgroup &iut(S). Then the semidirect produst x K
contains no nontrivial compact normal subgroup.

b) LetG be aLie group, and Ies be a connected, simply connected, closed, co-
compact solvable normal subgroup®fThenG isisomorphic to a semidirect
productS x4 K, whereK is a maximal compact subgroup Gf

c) LetG be a Lie group that contains no nontrivial compact normal subgroup,
and letS ¢ G be as in b). Thert is isomorphic to a semidirect product
S x K, whereK is a compact subgroup @fut(S).

Proof. a).Suppose thdt is a compact normal subgroup fx K. Evidently,K
is a maximal compact subgroup 8fx K. Taking into account th& - L is also
compact, we see thatc K. Hencel acts effectively by conjugation oB. On
the other hand, the normal subgroupandS have trivial intersection, and thus
they commute. In combination these facts show thigtthe trivial group.

b).SinceG has only finitely many connected components, a maximal compact
subgroup exists, see (Hochschild, 1965, Ch. XV, Theorem 3.1). Moreover, for a
maximal compact subgroug of G we getG = K - S, see (Hochschild, 1965,
Ch. XV, Theorem 3.7). On the other hariN S = {e}, and therefores is
isomorphic to a semidirect produStx s K.
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c). By b) the groupG is isomorphic to a semidirect produst«z K'. Further-
more,G contains no nontrivial compact normal subgroup, and hence the natural
homomorphisn® xz K" — S x Aut(S) is injective. O

3.3. Some group theory

Lemma 3.3. LetIT be a group andi a polycyclic subgroup of finite index. Then

a) Any subgroup ofT is finitely generated.
b) There is a strongly polycyclic normal subgroup of finite indexiin

For a proof of this lemma see (Segal, 1983, Proposition 2,p 2). The next lemma
is known as well, see (Dekimpe, 1996, Lemma 3.2.4). However, since it is less
standard we include a proof.

Lemma 3.4. LetIT be a group and suppose that the centefioiias finite index
in IT. Then the torsion elements I form a characteristic subgroup, and the
factor group/I/T is an abelian torsion free group.

Proof of Lemma 3.4Let C denote the center aff, Cp := C ®z Q, and let
p: C — Cq, h — h ® 1 be the natural map. Clearly, the kernelpoprecisely
consists out of the torsion elementsGn Consider the direct produc¢f x Cg
and the central subgroup

A= {(h,—p(h)) | h € C}.

The projection pr [T x Cg — G := IT x Cgp/A mapsCgq injectively onto a
central subgroup d&. Moreover, the kernel of py; is the torsion group Kep).
Therefore it is sufficient to check that the torsion element& iform a finite
characteristic subgroup with an abelian factor grou@/T. Consider the finite
groupF := G/ pr(Cq) = I1/C and the exact sequence

{1} - Cog - G— F— {1}.

By cohomology theory such a sequence splits, see (Brown, 1982). i&ence
is isomorphic to direct produét x Cq and the assertion follows. O

For a grougG and an integek we letG* x S, denote the semidirect product
of the symmetric group of degréewith the k-fold product ofG.

Lemma 3.5. Let I" be a group,A C I a normal subgroup of indek < oo.
ThenI" is isomorphic to a subgroup of the semidirect produnétx S;.

Proof. Let by, ... ,b, € I be representatives df/A. Since A is a normal
subgroup ofI", we can find for anyg € I'andi € {1,...,k} a unique
o,(i) € {1,..., k} for which b; gbg @ € A.Infact, g — o, deflnes an anti-
homomorphlsm fronT" to the symmetrlc group of degrée Now we define a
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monomorphismi: I' — A x S, by

i(g) = ((blgbggl(l), .. ,bkgb;gl(k)>, ogl) forallg e I'.

4. The reduction to supersolvable Lie groups
4.1. Supersolvable Lie groups

A well-known theorem of Engel states that a connected Lie group is nilpotent if
and only if the adjoint group consists of unipotents. There is a similar character-
ization of supersolvable Lie groups.

Lemma 4.1. A connected Lie grou§ is supersolvable if and only if all elements
in the adjoint groupAd(S) have only positive eigenvalues.

Proof. Let s denote the Lie algebra &. We begin with the case of a super-
solvable Lie groufs. So there are closed normal subgrofgs= No C --- C

Ny = S of S with dim(N;,1/N;) = 1. Choose vectors,, ... , b, € s such that
b1, ..., b; is a basis of the Lie algebra of;. With respect to this basis A8)

is represented by real upper triangular matrices. Taking into account tki&) Ad
is connected, we see that the Eigenvalues of elements {&)Aare real and
positive.

Assume now conversely that the eigenvalues of Ak real and positive for
all g € S. Let S’ be the maximal solvable normal subgroupSofSuppose for
a moment tha§’ # S. ThenG := S/S' is a semisimple Lie group with trivial
center, and therefore it has a nontrivial compact subgko@early, for allg € K
the eigenvalues of Ad g — g have absolute value one. On the other hand, the
semisimple endomorphism Adhas only positive eigenvalues and consequently
Ad, = id. ThuskK is contained in the center &, a contradiction.

HenceS = S’ is a solvable Lie group. L&t be a maximal compact subgroup
of S. As above we deduce thatis central, and therefore it is sufficient to check
that the factor grougs/T is supersolvable. According to (Hochschild, 1965,
Ch. XV, Theorem 3.15/T is diffeomorphic to an Euclidean space, and thus we
may assume tha itself is simply connected. By Lie's theorem we can find a
vectorv in the complexificatiorsc of s which is an eigenvector of A&). But
then the conjugateof v is also an eigenvector of A8). Taking into account that
all eigenvalues are real, we see that any vector ingf@an) is an eigenvector
of Ad(S). The intersection of spaitv, v) ands C sc is nontrivial, so there is
a vectorw € s which is an eigenvector of A®). But thenR = exp(Rw) = A
is a closed normal subgroup 8f and in order to show th& is supersolvable,
we just have to check th&/A is supersolvable. Now the statement follows by
induction on the dimension @&. 0
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Lemma 4.2. a) A maximal compact subgrodpof a connected supersolvable
Lie groupS is unique and central, and the factor gro®T is simply con-
nected.

b) LetS; and S, be connected supersolvable normal Lie subgroups of a Lie
group G. ThenS; - S, is a connected supersolvable normal Lie subgroup,
too.

c) Let G be a Lie group. The maximal connected supersolvable normal Lie
subgroupS of G is closed. IfG contains no nontrivial compact normal
subgroup, ther® is simply connected.

Proof. a) This is an immediate consequence of the proof of Lemma 4.1.

b).LetS3 = S1-Sy,H = S1NS,, and lets;, s, s3 andh be the corresponding
Lie algebras. The adjoint representationSafinduces representations sh/h
ands,/h. Because of the incluside, s»] C b the natural representation 8f
insy/h is trivial. Moreover, Ad,;, has only positive eigenvalues fgre S,, and
hence Ad,s, has only positive eigenvalues. Similarly, Ad has only positive
eigenvalues fog € S,. By Lie’s theorem the eigenvalues of Agl are positive
forall g € S; - S1 = S3. ThereforeS; is supersolvable, see Lemma 4.1.

C).Let S be the maximal connected solvable normal subgroup.dlearly,
S is a closed subgroup @. FurthermoreS is the maximal connected super-
solvable normal subgroup & So without loss of generalit@ is a solvable Lie
group. Set

S' := {g € G | Ad, has only positive eigenvalues

By Lie's theoremS' is a closed normal subgroup G&f and Lemma 4.1 exhibits
the identity componer;, of S’ as a supersolvable Lie group. Letndg be
the Lie algebras corresponding$candG. SinceS contains the maximal con-
nected nilpotent normal subgroup®f it follows thatG/S is abelian. Hence the
natural representation @ in g/s is trivial. Now Lemma 4.1 give§$ c S’ and
therebyS = Sj,. ThusS is closed. According to a) there is a unique maximal
compact central subgroupof S, andS/T is simply connected. Notice that the
characteristic subgroup of S is normal inG. Consequenthy$ itself is simply
connected provided th& contains no nontrivial compact normal subgroups.
o

4.2. Existence of cocompact supersolvable subgroups

Lemma4.3. LetS ¢ GL(n, C) be a group containing a solvable subgroup of
finite index. Then the matrices B1that have only positive eigenvalues form a
normal subgroupR of S.
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Proof. Evidently, the seR is invariant under conjugation, and therefore we
only have to show thaR is a subgroup. Notice that the Zarisky clos@ef

S is solvable up to finite index, too. By replaci&gby S if necessary, we may
assume thab = S is an algebraic group. In particulés,is a Lie group with
finitely many connected components, and the identity compdgistsolvable.
Because of Lie'stheoremitis sufficient to verify the assertion under the additional
assumption thabg is contained in the group of upper triangular matrices.

Let S be a matrix inS that has only positive eigenvalues. The gr@&ipas
only finitely many connected components, and hesfces an upper triangular
matrix for some positive integér. Thene; € C" is an eigenvector af*. Since
the eigenvalues of are positive, it follows that; is also an eigenvector of
S. Similarly, we can deduce from the fact thidt := span-{es, ..., e} is an
invariant unders*, thatU; is an invariant unde§ as well,i = 1, --- , n. But
this proves thas is an upper triangular matrix. Thus the &tonsists of upper
triangular matrices, and now it is trivial to check tiiats a subgroup 06. 0O

Lemma 4.4. LetS c GL(n, R) be areal algebraic group with a solvable iden-
tity componeng,, and letR be the set of matrices i@ that have only positive
eigenvalues. TheR is a connected, simply connected, cocompact normal sub-
group ofS, andS is isomorphic to a semidirect product of a compact group and
R.

Proof. By Lemma 4.3 the seR is a nhormal subgroup db. Because of Lie’s
theorem there is an one-dimensional subsgacef C" that is invariant under
So. By restriction we get a homomorphism Sy — GL(Cv) = C*. We denote
by R* the group of positive real numbers. EvidentySy) N R is cocompact
inr(So).

Let S’ := r~1(R™). By constructiorw is an eigenvector for a € S', and
the corresponding eigenvalues are real and positive. Analogously to the proof of
Lemma 4.3 we can find an eigenvectore R” \ {0} of S'.

Denote byH, C S the subset consisting precisely of the matriceS ithat
havew as an an eigenvector. Clearly; is a real algebraic subgroup 8f and
H, > S’ is a cocompact subgroup 8t

Consider the natural representatibn H, — GL(R"/Rw). Similarly to
above there is avectar, € R" /Rw and a cocompact real algebraic subgrbidp
such thatw; is an eigenvector 0f(Hs). Combining this with a simple induction
argument we see th&tcontains a real algebraic cocompact subgrdypvhich
is in GL(n, R) conjugate to a group of upper triangular matrices.

The identity componerti,,o of H,, is cocompact irs, too. Since the matrices
in H,o have only positive eigenvalues, they are containe®,jrand thus the
identity componenRy of R is cocompact irS. Taking into account thaR is
closed, we see th&® /R is finite. By (Hochschild, 1965, Ch. XMR contains
a maximal compact subgrouf, and the quotienR/K is a connected, simply
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connected manifold. On the other hand, we infer from the definitidR thfatR
contains no nontrivial compact subgroup at all, and hdhdself is connected

and simply connected. The remaining part of the lemma is a direct consequence
of Lemma 3.2. O

Lemma 4.5. LetS be a connected, simply connected solvable Lie grblughe
maximal connected nilpotent normal subgrougsefand letint(N) c Aut(S)

be the group of inner automorphisms®fnduced by elements dF. There is a
toral subgroupT C Aut(S) such that

() Int(N) - T is normal inAut(S),

(i) the maximal connected, simply connected supersolvable normal subgroup
R of the semidirect produ@ x T is cocompact,

(iii) T alsocan be viewed as a subgroupfeit(R), and under this identification
S x T is isomorphic to the semidirect produgtx T.

Proof. We identify the groups AgS) and Auts) in natural fashion, compare
proof of Remark 3.1. Observe that under this identification the grouNjnt
equals AdN) c Ad(S) C Aut(s). By Remark 3.1 Auts) is a real algebraic
group, and hence it contains the Zarisky closdref Ad(S) in GL(s) as a
subgroup. Recall that A&) is a normal subgroup of A@), and accordingly
the same is valid foZ. The connected, unipotent group &Y is Zarisky closed
in GL(s), and sinces/N is abelianZ/Ad(N) is abelian, too.

LetZy be the identity component d. The abelian grouﬁo/Ad(N) contains
a unique maximal toral subgroup Consider the preimagé of T under the
projectionZg — Zo/Ad(N). Since AdN) and Zy are normal subgroups of
Aut(s) andT is a characteristic subgroup @§/Ad(N), it follows thatM is a
normal subgroup of Aub), too. Choose a maximal compact subgrdupf M.
Lemma 3.2 yields the equatiavi = T - Ad(N), and thusT satisfies condition
OF

Using thatZy/M is a vector group we see thiis maximal compact idy as
well. By Lemma 4.4 the solvable real algebraic graipontains a connected,
cocompact normal subgroup such thatA has only positive eigenvalues for
A € Y. MoreoverZy =T - Y. In other words, for alg € Zy there is an element
h € T such that: - g has only positive eigenvalues.

Via the natural identification As) = Aut(S) the groupT becomes a sub-
group of Aut(S). Letg be the Lie algebra of the semidirect prod8ck T, t and
s the subalgebras corresponding to the subgrdugsdsS.

R:={geSxT| Ad, has only positive eigenvalues

Because of Lie’s theorelR is a normal subgroup of the solvable groip« T.
The adjoint map Ad induces the identity on the abelian Lie algebya for all
g € S x T. This consideration shows that the eigenvalues of &gk positive
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if and only if all eigenvalues of Ad,: s — s are positive. Taking into account
that Ad,|s € Zo, we see that there is an elemén¢ T such that all eigenvalues
of Ad,, are positive. Thu§ x T=T-R.

Forh € T\ {e} the map Adl, is a nontrivial semisimple endomorphism with
eigenvalues of absolute value 1. Hefic@ R = {e}. ConsequentlyS x T/T
is homeomorphic t&R. In particular, R is a connected, simply connected, co-
compact supersolvable normal subgroup. Therefore R, and equality holds,
since the factor grouB/Ii is a connected, simply connected, compact solvable
Lie group. Lemma 3.2 allows us to regafds a subgroup of AUR), andR x T
is then isomorphic t& x T. O

4.3. Proof of Theorem 1

Choose a subgroup c Aut(S) as stated in Lemma 4.5. Since(Ny - T is a
normal subgroup of AYB), it follows thatT’ = (Int(N) - T) N K is maximal
compact in InfN) - T. ThusT is conjugate tol’ andS x T is isomorphic to
S x T’. Hencel”’ also satisfies the conclusion of Lemma 4.5, and we can assume
T = T'. But thenT is a normal subgroup df andS % T is a normal subgroup
of S x K. Consequently, the maximal connected supersolvable normal subgroup
R of S x T is normal inS x K. Using thatR is cocompact, we can deduce from
Lemma 4.2 thaR is the maximal connected, simply connected supersolvable
normal subgroup db x K as well. By Lemma 3.K may be viewed as subgroup
of Aut(R) andR x K andS x K are isomorphic.

Clearly, we can find an isomorphismR x K — S x K. with (x = id. Set
(f(2),a(g) :=(g) for g € R. Itis straightforward to check that: R — Siis
an equivariant diffeomorphism. Lgtbe a left invariant metric ofs for which
gl is invariant under the natural representatioiKoT he natural action o x K
on (S, g) is isometric. Consequently, the natural actiorRok K on (S, f*g)
is isometric, wheref*g denotes the pull back metric. In particulgtg is left
invariant onR.

5. Discrete, cocompact subgroups
5.1. Characterizations of subgroups

We have seen in Remark 2.4 that Corollary 8.25 in Raghunathan (1972) is not
correct. However, in view of Theorem 1 part b) of the following proposition can
be regarded as a weak version of its statement:

Proposition 5.1. Let S be a connected, simply connected supersolvable Lie
group, K a compact subgroup dkut(S), I' C S x K a discrete, cocompact
subgroup, and lelN be the maximal connected nilpotent normal subgrou$.of
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a) Letp be the natural representation 8fx K in the Lie algebrar of N. Then
for g € S x K the endomorphism(g) is unipotent, if and only it € N. In
particular, the kernel op coincides with the center &¥.

b) NN I' is a lattice inN.

c) The groupl” is polycyclic up to finite index and N I" is the nilradical ofI".
d) The subgroug™ := SN I" of I' has the following algebraic characteri-
zation: The nilradicahil (I") is torsion free, and the natural action &f on

nil (") induces an action on its Malcev completi@nLet

5: ' — GL(®#)

be the corresponding representation in the Lie aIgebrEIoTheng ertif
and only if all eigenvalues gi(g) are real and positive.

Part d) of the proposition is a generalization of the main result in (Dekimpe,
1997), where the special case of a finite grisuywas considered.

Proof. Letg be the Lie algebra & x K, s, n andt the subalgebras corresponding
to the subgroupS, N andK. SinceN is a normal subgroup & x K, the adjoint
representation induces a homomorphism

p: SxK— GLn).

We claim that an elemegte S x K s contained irs if and only if all eigenvalues
of p(g) are positive. By Lemma 4.1 the elementso(S) have only positive
eigenvalues. Le§ C S x K be the set of elements that are mappegmnto
endomorphisms that have only positive eigenvalues. For an elemerit, a) €

S c S x K we consider the groug’ generated by and S. Evidently, S’

is solvable, and from Lemma 4.3 we obtain the inclus®nc S. Thus all
eigenvalues op(a) = p(t Y)p(g) are positive. On the other hangd(a) is
contained in the compact growgK) and accordingly has to be the identity. This
proves thaS = S x Ker(px) C S x K. In particular, it just remains to check
that Ker(pk) = {e}.

Now, letg = (z,a) € Ker(p). Clearly, Kexp) C S = S x Ker(pi).
Thereforea € Ker(p) and as a consequences Ker(p). The kernel ofp;s is
easily recognized as the cen@of N. So the kernel Keip) = C x Ker(pk) is
a direct product, and Kép) is a characteristic subgroup of Kep. Because
of Lemma 3.2 the compact normal subgroup &) of S x K is trivial.

a).Let g € S x K. From the above consideration we deduce thai(#) is
unipotent, therg € S. Since the eigenvalues of(S) are real, the group (S)
can be represented by real upper triangular matrices. It follows that the unipotent
elements irp (S) form a connected normal subgroupTaking into account that
the kernel ofp is the center oN, we see thap~(U) is a connected nilpotent
normal subgroup o8, and hencep~1(U) = N.
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b). By a theorem of Auslander the identity componBgtof the closureD of
I' - S'is a solvable group, see (Raghunathan, 1972, Theorem 8.24). Evidently,
I' N Dy is discrete and cocompact y. It is an immediate consequence of a)
that the maximal connected nilpotent normal subgroup &f N. By a theorem
of Mostow (Raghunathan, 1972, Theorem 3.3) the gieuap!” is a lattice inN.

c). The groupD has only finitely many connected components. In particular,
I’ N Dy is of finite index inI". Moreover, the group™ N Dy, being discrete in the
connected solvable Lie groupy, is polycyclic. Clearly,I” N N belongs to the
nilradical nil(1™). Using thatl” N N is a lattice inN, we deduce thatnil") - N is
nilpotent. Consequently,(nil (1)) consists of unipotents, and by a)(il) c N.

d). Since nilI") is a lattice inN, we can identiny with N. The natural
representatiod coincides under this identification with . Now d) follows
from the analogous statement prwhich we have proved above. O

5.2. The Proof of Theorem 3

a) = b). In view of Theorem 1 we may assume tlsats supersolvable. LeXl

be the maximal connected nilpotent normal subgrouf,adnd letH c K be
the kernel of the induced action & on S/N. Proposition 5.1 exhibitgy :=

(N x H) N I' as a cocompact subgroupMfx H. Moreover,H acts effectively
onN, and hencdy is an almost crystallographic group.

The kernel of the projection: S x K — (S/N) x (K/H) containsly c I”
as a cocompact subgroup, and accordingly the imfiage= 7 (I") is a discrete,
cocompact subgroup 08/N) x (K/H). Evidently,S/N is isomorphic tdR¢ for
somed. Since the action ofK /H) on S/N is effective, it follows tha{S/N) x
(K/H) is isomorphic to a closed, cocompact subgroufR6fx O(d). Thusry
is a crystallographic group.

b) = c¢). By assumption it is sufficient to prove that there is a subnormal
series{e} = Iy C --- C I,,_1 = Iy with crystallographic factorg; /I;_;. We
argue by induction on rarity ). By the definition of an almost crystallographic
group there is a connected, simply connected nilpotent Lie g¥anm a compact
groupK C Aut(N) such thatl'y is a discrete cocompact subgrouphfx K.
Proposition 5.1 exhibitgy N N as the nilradical n{ll'y) of I'y, and also as a
lattice inN.

Let H c K be the kernel of the natural action &f on the factor group
N/[N, N]. Notice that the action of the compact gradmn [N, N] is effective.
Moreover, the commutator group of @il) is a lattice in[N, N], and hence
Iy := [N, N] xHN Iy is an almost crystallographic group. As above we see that
the factor grouply /Iy, is crystallographic. Because of raik,) < rank(I'y)
this completes the proof.

¢) = d). Since crystallographic groups are abelian up to finite indeis
polycyclic up to finite index by a standard argument, see (Segal, 1978, Propo-
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sition 2, p.2). By induction om we can assume thdt,_, does not contain any
nontrivial finite normal subgroup. Suppose now tha a finite normal subgroup
of I'. By the induction hypothesis the intersectiém I;,_; is trivial. Thus the
projectionI” — I'/I,,_1 mapsE isomorphically onto a finite normal subgroup
of I'/I,_1. But a crystallographic group does not contain any nontrivial finite
normal subgroup, and consequertlys the trivial group.

d) = e). Notice that

A := {g € I' | the centralizer of has finite index in"}.

is a characteristic subgroup &f. SinceA is by Lemma 3.3 finitely generated,
it is evident from the definition that the center A&fis of finite index inA. By
Lemma 3.4 the torsion elementsAnform a groupE. Using that the center of
E is a finitely generated subgroup of finite index we see Ehat finite. ButE

is normal inI" and hence trivial. Therefor& = A/E, an abelian torsion free
group, is free abelian.

The factor group” /A is polycyclic up to finite index, and by Lemma 3.3 it
contains a strongly polycyclic normal subgrodf finite index. LetA be the
preimage ofH under the projectiorr: I" — I'/A. Evidently, A is a strongly
polycyclic normal subgroup of finite index ifi. Moreover, the centralizer of
is contained ilA C A.

e) = d). Suppose thdE is a finite normal subgroup df'. The torsion free
group A has trivial intersection withe. Using that bottE and A are normal
subgroups, we deduce that they commuteE$®contained in the centralizer of
A which is by assumption a subgroup.4f HenceE is the trivial group.

Trivially f) impliesa); so it remains to prove the implicatieh = f), and
this will be done together with Theorem 5 in Subsect. 7.4 below.

6. Further preparations

Lemma6.l.Let A € M(n,C), and letiq, ..., Ax be the pairwise different
eigenvalues ofi. Suppose that the numbexsp(i,), ... , exp(i;) are pairwise
different, too. Then there is a polynomjale C[X] satisfyingp(exp(A)) = A.
If in addition A € M (n, R), we can choos@ € R[X].

Proof. Choose a decompositiohA = S + N, whereS is semisimple,N is
nilpotent andSN = NS. Then expA) = exp(S) - exp(N), exp(S) is semisim-

ple, exgN) is unipotent, and the matrices &$p and exgN) commute. Itis a
well-known fact that such a decomposition is unique and that there exist polyno-
mials p1, p, satisfyingpi(exp(A)) = exp(S) and po(exp(A)) = exp(N). Thus

it suffices to find polynomialg,, g» € C[X] satisfyingg:(exp(S)) = § and
q2(€Xp(N)) = N.
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We choosey; € C[X] with gi(exp(r;)) = A;,i =1, ..., k. Using thatS is
conjugate to a diagonal matrix, we deduce th@exp(S)) = S. Next we define

Q(X) = Y (—1yFt I
i=1
and obtain

qZ(eXmN)) = Z(_l)i+l w
i=1

Suppose in addition that € M (n, R). By the first part there is a polynomigle
C[X] with g(exp(A)) = A. Let g denote the conjugate polynomial @f Then
p(X) = %(q(X) + ¢ (X)) is a polynomial inR[ X] satisfyingp (exp(A)) = A.

o

6.1. The exponential map 8f>z K

Proposition 6.2. Let S be a connected, simply connected supersolvable Lie
group,K a compact Lie groupd: K — Aut(S) a continuous homomorphism,

G := S x4 K, and lett, s and g be the Lie algebras correspondingkg S and

G.

a) There is a neighborhoot of 0in ¢ such thatthesdl/ +s:={u+v|u €
U, v € s} is invariant under the adjoint representation, aexp: U + s —
S x T is a diffeomorphism onto its imagxplU + s) = S x expU) C
G. Moreover, forv € U + s there is a polynomial; € R[X] satisfying
Q(Adexp(v)) = ad,.

b) LetU + s be as in a). Suppose that for a Lie subgrdrpf G the elements
exg‘L,1+5(R) are contained in the Lie algebra of R. ThenR is a closed
subgroup with finitely many connected components@nd= RN S is a
connected, cocompact subgroupRf Furthermore,R is isomorphic to a
semidirect produc®’ x4 L, whereL is maximal compact iR.

c) The centralizeR of a subgrougH C G satisfies the hypothesis by.

d) The normalizeR of an analytic subgroupd c G satisfies the hypothesis
of b).

Proof. a).ltis easy to see that there is an open, connected neighbotthiaod
¢ C g of 0 in €& for which the following three conditions are satisfied.

(i) exp: U — Kis adiffeomorphism onto its image.
(i) U isinvariant under the adjoint representatiorkof
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(i) Foru € U the imaginary parts of the eigenvalues of the adjoint map
ad,: g — g lie strictly between-z ands.

We claim that the conclusion of a) istrue as sootias tis an open set satisfying
the above conditions. Note that iore U ands € s the Lie subalgebra generated
by u ands is solvable. Since all eigenvalues of;agy — g are real, it follows
from Lie’s theorem that the imaginary parts of the eigenvalues pfadi — ¢
lie strictly between—m andx. By Lemma 6.1 this implies the existence of a
pOIynomialp € R[X] with p(Adexunrs)) = P(eXp(ad4+s)) = ad4+s-

Let N be the maximal connected nilpotent normal subgrouf®,0énd let
C be the center oN. Clearly, C is a characteristic subgroup & Thus the
homomorphisng : K — Aut(S) induces a homomorphisft K — Aut(S/C).
Consider the natural projectian: SxzK — (S/C) xzK. We lets/c denote the
Lie algebra of the supersolvable Lie gro8pC. By induction on the dimension
of S we can assume that expy/ +s/c — (S/C) x; K is a diffeomorphism onto
its image expU + s/¢) = (S/C) x exp(U). Forv € g we haver (exp(v)) =
exp(m, (v)), and hence it is sufficient to prove that for ang U + s the map

f:c— C, ¢ exp(—v)explv+c)

is a diffeomorphism. But this is an elementary computation: We identify the
simply connected abelian gropcanonically with its Lie algebra Then

o0

ok
fle)y =) Gac forcec=C.

k=0
In fact, this identity follows immediately from the formula for the differential of
the exponential mapping, see (Helgason, 1978, Theorem 1.7). In order to show
that f is a diffeomorphism, it remains to check that the linear mégd,) =

— ko, . . . .
Yoo ((:fl‘),) is invertible. LetAy, ... , A; be the different eigenvalues of ad

Then the eigenvalues df(ad,) are given byz,fio%"f;, i =1,... k. For

A; = 0 this number is 1, and for; # 0 this number equals*2=* Since the
imaginary parts of the numbets, ... , A, lie strictly between—= andr, the
eigenvalues ofi(ad,) are different from 0, and thus(ad,) is invertible.

b). Let #: G — K be the natural projection. By hypothesis any element
in exg‘,]1+5(R) is contained in the Lie algebra &. Therefore any element of

exg‘Ul(n(R)) is contained in the Lie algebra af(R). Hencer (R) is embedded

and accordingly closed K. Clearly,S’ := RNSis aconnected, closed subgroup

of S. The compactness af(R) = R/S’ implies thatR has only finitely many

connected components. The last part of b) is a direct consequence of Lemma 3.2.
C).Letg € (S x exp(U)) NR andv = exg‘,]1+5(g). Observe that foh € H

the vector Agv lies inU + s and that expAd,v) = hexp(v)h ! = exp(v). By

a) Ad,v = v forall & € H. Consequentlyy is contained in the Lie algebra Bf
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d). Let b, ¢ be the Lie algebras correspondingH@andR. Suppose that is
iNRN (S xexp(U)) and puty := exgj}ﬁ(g). Evidently, Ad, leaved) invariant.
Since there is a polynomial € R[X] with p(Ad,) = ad,, it follows thath is an
invariant subspace of aés well. Using thaH is connected, we find € v. O

6.2. A global correspondence between subgroups and subalgebras

Proposition 6.3. We keep the notations of Proposition 6.2. There is an open
neighborhoodU of 0 in ¢ satisfying the conclusion of Proposition 6.2 a) and
for which moreover the following is true: For any subgroHpof S x4 K the
subspace

b= spamg(exg_Ulﬁ(H)) Cg

is a subalgebra, the Lie grouB corresponding ta is closed inG, B N H is
cocompactimB, andBNS is a connected, simply connected, cocompact subgroup
of B.

Proof. At firstwe wantto define the sét occurring in the proposition. Thereis a
biinvariant metric(-, -) onK such that for any < ¢ with exp(x) = e the quantity
(x, x)isaninteger. Infact, K is semisimple, one can st, y) := —M%B(x, y),
whereB is the Killing form of . In the general case one can define) as the
pullback metric of a locally faithful representatign K — (SO(d), g) where

8 = _%%Bso(d)-

It is easy to see that with respect to the above metric the following holds:
Let L be a normal subgroup & and( c ¢ the corresponding ideal. Then the
orthogonal complemerit- of [ is an ideal in, and the analytic Lie subgroup
corresponding té* is acompactormal subgroup oK, too.

Consider the ballU := B,(0) of radiusr around 0 in¢. By shrinkingr if
necessary, it is possible to assume thiat s satisfies the conclusion of Propo-
sition 6.2 a). Furthermore, a theorem of Jordan (Raghunathan, 1972, proof of
Theorem 8.29) allows us to require that for any finite subgf®opK the group
generated by ex/) N F is abelian.

We claim that then the proposition is correct with= B, (0). Henceforth
we can assume th#t is connected. Since we can repladey its closure if
necessary, we only have to verify the proposition for any closed subgtaus.
The subgroup ofl generated byS x exp(U)) NH is a normal subgroup of finite
index inH, and without loss of generality itself is generated by elements in
S x exp(U). We argue by induction on di(®). Evidently, the proposition is
correct if dim(G) = 1. The induction conclusion is divided in five steps.

Step 1. Itis sufficientto prove the proposition under the following two additional
assumptions:
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(1) The centralizer oH is contained in the center .
(2) A connected Lie subgroup c G is normalized byH if and only if it is
normal inG.

If (1) is not true, then there is a subgrozip C G such that the centraliz€’
of Z, containsH but notG. In fact, one can defing, as the centralizer dfl.

If (2) is not true, then there is a connected Lie subgrdup G such that the
normalizerG’ of Z containsH but notG.

In either cas&’ has strictly smaller dimension th& By Proposition 6.2 the
groupG' is a semidirect product of a compact subgréijpnd of the connected,
simply connected supersolvable grdsp= G' N S.

The compact grouf’ is conjugate to a subgroup Kf Since the set/ + s
is invariant under the adjoint representatiorXfit is allowed to replacél by a
conjugate subgroup. So we may assume itat K.

Let¥ C tands’ C s be the Lie algebras ¢f’ andS’. From the definition of
U and from the induction hypothesis we infer that we can apply the proposition
for G' =S’ xg K with U’ := U N ¥. Finally, we have by Proposition 6.2 c), d)

exp;,(H) C U' @5,
and hence the assertion follows.
Step 2. The proposition is correct provided thdtis abelian.

Without loss of generality the centralizer Hfis contained in the center of
G, see Step 1. Taking into account thirhis abelian we see that the centralizer
of His G. ThusG itself is abelian. But for an abelian gro@the proposition is
clearly correct.

Step 3. The proposition is correct ifl contains a noncompact, closed, abelian
normal subgroup.

By Step 2

b’ := spam (exp,(A))

is a Lie algebra, the group/ corresponding té’ is closed A N B’ is cocompact
in B/, andC := B’ N S is a connected, cocompact subgrouBafSinceA is
noncompact, the group is nontrivial. From the definition di’ we deduce that
H normalizesB’. The additional assumption (2) in Step 1 says Bidas normal
in G. This implies thatC is normal inG, too. LetH be the closure oH - C.
Evidently,

b = span; (exp(H)) = span(expy,,(H).

FurthermoreH is cocompact iH. Thus it is sufficient to prove the proposition
for H instead oH. In other words, without loss of generali§/c H.
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Consider the homomorphisf: K — Aut(S/C) induced byg and the pro-
jectionm : S x5 K — (S/C) x5 K. By the induction hypothesis the proposition
is known for the pairr (H) C (S/C) x5z K. ForH C S x4z K the assertion follows
trivially.

Step 4. The proposition is correct provided that the identity compoh&yaf H
is nontrivial.

We begin with the case of a noncompact identity compoHgnthe maximal
connected solvable normal subgrdrpf Hg is cocompact iy, and hence it is
itself anoncompact, closed normal subgrouplof he commutator groufir, R]
is a connected subgroup f Thus ifR is not abelian, the center of the nilpotent
commutator groupR, R] is a noncompact, closed, abelian normal subgroup of
H. In either case the assertion follows from Step 3.

Suppose now thatly is compact. By Step 1 it is sufficient to prove the
proposition under the additional assumption tHais normal inG. In particular,
Ho c K. As explained above the orthogonal complemerdf Hy in K is a
compact subgroup, too. MoreoverandHy commute, and as a consequehige
andS xgz L commute.

Let[ be the Lie algebra df, U' :=U N[, H := HN (S xg L), and let

b’ := span(expq.(H)).

By the induction hypothesis is a Lie algebra, the Lie group’ corresponding
to b’ is a closed subgroup & xg L andB’ N S is connected and cocompact in
B’. It remains to check that = b’ @ . Clearly,b D b’ @ b, and in order to get
the converse relation, we consider a veetar exg}]1®5(H). Thenv decomposes
as asumv = u; + up + uz whereu, € h, u; € landus € s. By construction
the norm of the vectai;, + u, € U = B,(0) is strictly less tham. Sinceu; and
uy are orthogonal, this impliefu,|| < r, and accordinglyi, € U’. Using that
Ho andS Xg L commute, we see exipy + uy + uz) = explu) - expluz + usz).
Hence exfu;, + uz) € Handu, + uz € b’. But this proves € b’ @ .

A closed subgroup d& with trivial identity component is discrete, and con-
sequently we can complete the proof of the proposition by showing:

Step 5. The proposition is correct for a discrete grddp

If H is finite, then it is conjugate to a subgroup Kf and without loss of
generalityH c K. Evidently, HN' S x exp(U) = H N exp(U). By definition
of U the group generated by e{jp) N H is abelian, and now Step 2 yields the
assertion.

Assume now thai is not finite. By a theorem of Auslander (Raghunathan,
1972, Theorem 8.24) there is a subgroup of finite index imhich is a discrete
subgroup of a connected solvable Lie group. In particldds polycyclic up to
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finite index. We employ Lemma 3.3 in order to find a strongly polycyclic normal
subgroupH’ of finite index inH. Let A be the center of the nilradical &f'.
Evidently, A is an infinite, abelian normal subgroupldf so the claim follows
from Step 3. O

6.3. The Lie hull of a subgroup

Definition 6.4. LetS xz K be as in Proposition 6.2. For a subgrdtiic S xgK
the Lie hull ofH in S x4 K is defined as the grouR that corresponds in the
sense of part a) of the following theoremHioA subgroupH is said to be a Lie
hull (in S x4 K) if and only if H coincides with its Lie hull.

Theorem 6.5. LetG = S xg K, 5, £ andg be as in Proposition 6.2.

a) For a subgroufH c G there is a unique closed subgroRpc G satisfying:
H is a cocompact subgroup &, S’ := R N S is a connected, cocompact
normal subgroup dR andR coincides with the closure éf-S’. Furthermore,
the groupR is then isomorphic to a semidirect produg't x4 L whereL is
compact.

b) LetH c H C G be subgroups, and I&® andR be the corresponding Lie
hulls in G. If H is a normal subgroup dfl, thenR is a normal subgroup of
R. Moreover, we have in that case that the commutator group

[R,R] := ((ghg*h™* | g e R,h € R})

is the Lie hull ofH, H]in G. In particular, ifHis abelian (nilpotent, solvable),
thenR is abelian (nilpotent, solvable), too.

c) Assume that c G is a closed subgroup such th@tis the Lie hull ofH in
G. LetS; be another connected, simply connected supersolvable Lie group,
K1 C Aut(S;) acompact subgroup, and let H — S; x K3 be a continuous
homomorphism mapping onto a cocompact subgroup 8f x K;. Then
there is a unigue continuous extensiorpdb a continuous homomorphism
¢: G — S1 x Ki. Moreoverg(S) = S;.

Proof. a).Choose a neighborhodd c ¢ of O as in Proposition 6.3. Then

b := spar (exp,,(H))

is a Lie algebra, and the corresponding Lie gr&up closed inG. Furthermore,

H N B is cocompact iB, andS’ := B N S is a connected, cocompact subgroup
of B. Finally, it is evident from the definition df thatH normalizesB and that

H N B has finite index irH. Clearly,H also normalize$§’, and thus the closure
R of H - S has the claimed properties.
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Assume now thaR is another group satisfying the conclusion of a). Then

b := span (exg_l,lJrE(lf?))

is a Lie algebraS’ ¢ B is cocompact in the Lie grouﬁ corresponding to

b. More preciselyS' is a connected cocompact subgrouBofi S. The orbit
space(B NS)/S’ being both compact and contractible must be trivial, and hence
BNS=¢. Similarly we obtain the equatio)RNS=BNS,soS =RNS.

But this impliesR = R.

Let L be a maximal compact subgroupRfFrom Subsect. 3.2 we infer that
R is canonically isomorphic to a semidirect prod&txz L, whereg’: L —
Aut(S’) is induced by conjugation.

b). The following obvious fact will be used subsequently without further
comments: LeB c G be a Lie hull,lH c B a subgroup, and ldt ¢ B be a
maximal compact subgroup. Thé&nis canonically isomorphic to a semidirect
product(BNS) x4 L, and under this identification the Lie hulldfin B coincides
with the Lie hull ofH in G.

So we may assume thRt = G. We first want to prove thaR is a normal
subgroup of3. LetM be the normalizer oR, and letN be the normalizer of the
identity componenR, of R. Evidently,H ¢ M c N. From Proposition 6.2 we
deduce thaN is a Lie hull and thud = G.

SinceRy is normal inG, the groupKo := Ro N K is maximal compact in
Ro. This implies thaRo = S X KoC S xp K whereS := RyNS=RNS.
Evidently, 8 induces a homomorphist: K/Ko — Aut(S/S). Consider the
natural projectionr : S x5 K — (S/S) x5 (K/Ko) and observe that(M) is the
normalizer ofn(li) in 7(G). In particular, the centralize@(n(li)) of the finite
groupn(R) is of finite index inz (M). ThusC(n(R)) is cocompact int (G),
too. By Proposmon 6.2 c) the grouib(n(R)) N S/S is a connected, cocompact
subgroup 0f5/S, and consequently these two groups coincide. H&ceM.
SinceG is the closure oH - S, we findM = G. 3 y

In other wordsR is normal inG = R, as claimed. It follows thadf := RNK
is maximal compactiR and thaR = SxzK C S x 3K whereS = RNS. Now
itis easy to see thdG, R] N S is a connected group and that the factor group
[G, R / (G, R N S) is isomorphic to the compact groyl, K] This proves
that[G, R] is a Lie hull, and accordingly the Lie huR’ of [H, H] is contained
in [G, R].

In order to get the converse relation we observe[ﬂHat:I] is normal inH. Its
Lie hullR"is normal inG, the Lie hull ofH. SoR’ = S’ xg K’ whereK’ = R'NK
andS’ = R’ N S. Consider the natural projection

pr: G =S x5 K — (/S x; (K/K) = G.
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Evidently, the groupé = pr(G) and pxR) are the Lie hulls of piH) and pi(H)

in G. Moreover, p(FI) is contained in the center of (). From Proposition 6.2
we deduce that the centralizer of(ﬁlb is a Lie hull, and thus piﬂ) is contained
in the center ofG. Since the center of is also a Lie hull, we see that the
Lie hull pr(R) of pr(H) is contained in the center @, too. Consequently,
[G,R] C Ker(pr) = R’.

). SetG; := S; x Kj. At first, we want to check that there is no nontrivial
compact subgroup of5; which is normalized byy(H). Assume thatl is a
compact subgroup db; x K; normalized byp(H). Let R; be the Lie hull of
¢(H) - L c S1 x Kj. Using thatR; N'S; is a connected cocompact subgroup of
S; C G;, we obtain the inclusio®; C R; and for that reasoR; = S; x K,
whereK; = K; N R;. Clearly, the compact group C S; x Ky is a Lie hull.
Sincel is a normal subgroup af(H) - L, it follows from b) thatL is normal
in R;. By Lemma 3.2 the grouR; = S; x K} does not contain any nontrivial
compact normal subgroup and herce: {e}.

Consider the product group

P = GXGl = (SXSl) X gxid (KXKl)

and the graplﬁ-l :={(h, (h)) | h € H} of p. We viewS x S;, G; andG in the
natural fashion as subgroupskf

Let R be the Lie hull ofH in P. SinceH is cocompact irR, it follows
thatR N G, is a compact normal subgroup Bf FurthermoreR N G, is also
normalized by the image of the projection pR — G onto the second factor
of P. In particular,p(H) C prl(R) normalizes the compact grOllR)ﬂ Gi. As
explained above this implies thRtN G, = {e}.

Consequently, the projection pfe — G onto the first factor oP is injective.
We claim that pr is surjective as well. Clearly,(R) > His cocompact irG.
The groupS = RN (S x Sy) is a connected, cocompact subgroup?ofand
hence p(S) is a connected, cocompact subgrou@oTherefore p('S) =S, s0
pr(R) contains the closure ¢f - S which is by hypothesis equal B.

Thus pr is an isomorphism, agd:= pr; o pr-1 is a continuous extension of
Moreover, the connected, cocompact subgi@() of S; coincides withS;.
Suppose now that is another continuous extensioryafConsider the graph

= {(g ¢(g)) | g € G} of ¢, and letR be the Lie hull ofG in P. Evidently,

C R. As above we can show thRtis agaln a graph. Since the three groups
CR>Gare graphs, we finR = R = G and in particulap = ¢. O

s

20 v G))

7. Proofs of the main results

Recall that until now we have not verified Theorem 3 in full generality. However,
we have seen that each of the conditions in Theorem 3 implies condition d). In this
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section we say that is a polycrystallographic group if and only if matches

the condition d) of Theorem 3. Notice that with this definition the statements of
the Corollary 4 and Theorem 5 make sense, so we can prove them. Also remark
that Theorem 5 then implies the missing implicatiah = f)” of Theorem 3.

7.1. The proof of Theorem 2

By replacingK; by a compact subgroup if necessary, we may assum8gief;
is the Lie hull of I; C S xK;.According to Theorem 6.5 there is anisomorphism
Q: S1 X K; — S, x K, that extends.

The groupp(K;) is not necessarily equal ,. However,p(K;) is maximal
compact inS, x K», and for a suitable € S, we haver ‘¢(K;)t = Ky. The
affine diffeomorphism

f:S1—> S, v W) T

is easily seen to be equivariant, and hence we are done.

7.2. The proof of Corollary 4

The uniqueness part of Corollary 4 is a direct consequence of Theorem 6.5 c).
The polycrystallographic grouf is polycyclic up to finite index, and by (Raghu-
nathan, 1972, Theorem 4.28) there is a subgraug finite index inI" which
is isomorphic to lattice in a connected, simply connected solvable Lie gsoup
By passing fromA to a subgroup of finite index if necessary, we may assume
that A is a normal subgroup af'.

There is a toral subgroup of Aut(S’) such thatT x S, is isomorphic to
a semidirect produdb = S x T, whereS is a connected, simply connected
supersolvable Lie group, see Lemma 4.5. L& the index ofA in I", Gf the
k-fold product ofG, St the k-fold product ofS, and letS, be the symmetric
group of degreé. By Lemma 3.5 there is an injective homomorphism

wIF%AkNSkCGkNSk.

Clearly, the semidirect produ@ x Sy is isomorphic to(S)* x K, whereK =
Tk % S, is a compact subgroup of A@&).

LetR be the Lie hull ofy (I") in (S)* x K, see Definition 6.4. Thewr (I') is a
discrete, cocompact subgroupRafFurthermoreR is isomorphic to a semidirect
productS g K’, whereS c Sk is a connected, simply connected supersolvable
Lie group anK' is a compact group acting @by continuous automorphism
via . We identify I" = ¢ (I") with a discrete, cocompact subgroupSk g K.
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Consider the natural projection: S g K' — Sx ﬁ(R) C SxAuUt(S). The
kernel ofr, -, being both discrete and compact, is finite and hence trivial because
I' satisfies condition d) of Theorem 3. Thus= 7 mapsI” isomorphically

onto a discrete, cocompact subgrougsok B(K) such that(I') - S is dense in
S x B(K).

7.3. A criterion for connectivity

Let V be a real or complex vector space. We recall that an endomorphism
A e GL(V) is called net if the multiplicative subgroup &f* generated by
the eigenvalues oA does not contain any nontrivial root of unity. We need a
slightly different definition: LetA € GL(V), and letiq,...,A, € C be the
eigenvalues ofi. We call A absolutely net if and only if the group generated by
I;—i‘, e, ‘i—i‘ does not contain any nontrivial root of unity.

For a polycrystallographic group the nilradical ni(I") is torsion free; in
fact this follows immediately if one applies Proposition 5.1 to the image of the
embedding: I — S x K of Corollary 4. Hence the conjugate actioniofon

nil(I") induces a representation
po: I’ — GL(n) (7.1)

in the Lie algebran of the Malcev completion of nil"). We call an element
g € I absolutely net if and only ib(g) is absolutely net.

Proposition 7.1. LetI" be a polycrystallographic group, and letI” — S x K
be an embedding satisfying the assumptions of Corollary4elf is absolutely
net, then(g) is contained in the identity component®f« K.

Corollary 7.2. Let:: I' — S x K be as above.

a) If I' is generated by elements which are absolutely net, 1enK is con-
nected. In particular/"/ nil(I") is then abelian.

b) The number of connected components gfK is bounded by a constant only
depending on the rank df.

Corollary 7.3. LetI" be a polycrystallographic group that is generated by ele-
ments which are absolutely net. Suppose moreoverthatl (I") is free abelian.
ThenI is isomorphic to a discrete, cocompact subgroup of a connected, simply
connected solvable Lie group.

Of course, Corollary 7.3 and Corollary 7.2 a) can be regarded as corrections
of the two theorems of Auslander from which we have seen in Example 2.1 that
the original versions are not correct.
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Lemma 7.4. Letd = (di, ... , d;) € (SY)*. Suppose that the subgroupf c
C* generated byls, ... ,d; € S'is torsion free. Then the closure of the cyclic
group generated by is a connected subgroup (®1)~.

Proof of Lemma 7.4We argue by induction ok. If k = 1 andd # e, then the
group generated by, is dense inS!. Suppose now that the lemma is known
for k — 1 > 1. Choose real numbes, ... , ¢ such that exPrig;) = d; €

S c C.If1,¢1,...,9 € R are linear independent ové}, then the group

generated by is dense ir(Sl)k, and we are done. Otherwise there are integers
Z1,...,2% W € Z suchthaizy, ..., zx) # 0and

n
E ZiYi = w.
i=1

Clearly, we can assume that the greatest common divisor, of . , z;, w is 1.
Suppose for a moment that an integer- 1 divides the numbers, ... , z;. By
construction” e Q\ Z, and henc§[;_, d//" is a nontrivial root of unity which
is impossible. Thus the greatest common divisanof . . , z; is 1, and there are
integersiy, ... , a; with Zle a;zi = w.Letg;, = ¢ —a;. Thenexp2riy;) = d;
ande:l Zi@i =0.

In other words, without loss of generalilty = 0. To prove the induction step
we argue by induction o __, |z;|. If Y, |z:] = 1, theng;, = O for someio,
and the assertion follows from theinduction hypothesis.

Assume now thagj.‘:1 |z;| > 1. There are atleasttwo numbeysz; different
from 0 because the greatest common divisdtgf. . . , z;) is 1. After reordering
we have O< |zx| < |zx—1|. Choose a number e Z such thatz,_1 —nzi| < |zil,
consider the Lie group automorphism

o (SH = (Y,
(bl, ceey bk) = (bl, e br_q, bkbz_l)a and let
d = (ﬁl ,c?k) =o0(d),
(‘.51, . Jﬁk) = (fpl, coe s k-1, Gk n¢k—1)-
Evidently, the group generated b, ... ,d;, € S* coincides with the group
generated by, ... , d;. Sinceo is an isomorphism, the closure of the group
generated by is connected if and only if the closure of the group generated by
is connected. Moreover, forthenumb€&ls ... , Zx) = (21, - - - » Zk—1—NZk> 2%)

we haveY""_, z,¢; = 0. By construction) +_, |2,| < Y*_, |zi|, and thus the
assertion follows from the induction hypothesis. O

Proof of Proposition 7.1.LetN be the maximal connected nilpotent normal sub-
group ofS, n the Lie algebra oN, and let

p: SxK— GL(n)
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be the natural representation. Proposition 5.1 allows us to iddWtifyith the
Malcev completion of nilI") and hencey (:(g)) is absolutely net.

LetH c S x K be the cyclic group generated big), and letR be the Lie
hull of Hin S x K, see Definition 6.4. Theorem 6.5 exhibRsas an abelian
group andS’ := RN S as a connected, cocompact subgroupRo€onsider the
maximal compact subgroupof R. Clearly, we can write(g) € R uniquely as
aproduct(g) =a-t =1 -awherea € Landr € S'.

Let A1, ..., Ax be the eigenvalues gf(:(g)). The eigenvalues gé(r) are
positive and the eigenvalues pfa) have absolute value 1. Taking into account
that

p(1(®) = p@p(r) = p(r)p(a),

we see that the eigenvalues ofa) are given byTﬂ, cee li—’kfl The closure of
the cyclic group generated hky(a) is contained in the compact groygL).

Combining this with Lemma 7.4 we find thaia) is contained in the identity
component op (S x K). By Proposition 5.1 the kernel gfis given by the center
of N. In particular, Kefp) is connected, and accordinglyis contained in the

identity component o8 x K. Of course, the same is valid for = «(g). O

Al
|

For the proof of Corollary 7.2 and for a later application we need the following

Lemma 7.5. Let I" be a polycrystallographic group of rank and letp be as
in equation (7.1). The® contains a characteristic subgroup* of finite index
satisfying the following three conditions.

@) nil(Ir)y =nil(r* andr*/nil(r) is free abelian.

(i) The subgroup oS! generated by all elements of the for}p wherex is an
eigenvalue of an element i(I"*), is torsion free.

(i) The index ofr™* in I" is bounded by constant only depending on the rank

Proof of Lemma 7.5Let 7 : I — I'/nil(I") be the projection, and Id be
the maximal finite normal subgroup &%/ nil(I"). The preimagdy = 7 ~1(E)
contains no nontrivial finite normal subgroup, because the maximal finite normal
subgroup offy is normal inI". ThusTI} is a polycrystallographic group. Since
nil(I") is of finite index inI" we can employ Proposition 5.1 in order to see that
I' is an almost crystallographic group. Itis known that the index of the nilradical
in an almost crystallographic group is bounded by a constant only depending
on the rank of the group. Hence the orderois bounded by a constant only
depending on rankil (I")). For that reason there is a free abelian characteristic
subgroupA c I'/ nil(I") of controlled finite index. The group; := 7 ~1(A) is
a characteristic subgroup o6f, and nik7y) = nil(I").

As before we leN denote the Malcev completion of i) = nil(I7). Since
nil(I") C Nis a lattice inN, the groupD := span,(exp t(nil(I"))) C nis a
lattice in the Lie algebra, see (Raghunathan, 1972, p.34). Cledlis invariant
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underp(I"), and thus the characteristic polynomial @fg) is in Z[X] for all
gel.

Seth = rank(Iy/nil(I")), and choose elements, ... ,a, € I which
project onto a generator system of the free abelian giaymil (I"). Consider
the eigenvalues;y, . .. , A;; Of p(a;). Since the characteristic polynomialafg)
is iInZ[X], the degree of the field extensi@hc Q(A;1, ... , A;x) is bounded by
k!. Moreover,|)\,‘j|2 € Q(Ai1, ..., Aix), SO the degree of the field extension

QcK =074 i=L....hj=1... k)

is at most(2¢k!)". The roots of unity irk form a finite cyclic grougC ¢ K*. The
inequality dimy(K) < (2°k!)" yields that the number := ord(C) is bounded
from above by a constant only depending on the rank of

SetA’ := {g¢ | g € I/ nil(IN)} andI'* := 7~Y(A"). Evidently, I'* is a
characteristic subgroup d@f, andI". Moreover, the index/” : I'*) is bounded
by a constant only depending on rdifik.

The commutator group @f(17) is contained in the unipotent groygnil (1)).
As can be extracted from (Raghunathan, 1972, p.69), this implies that for some
basis of the complexificatiomc the groupe (I1) can be represented by a group
of upper triangular matrices. In particular, for any eigenvalad an element in
o (1) the numben/|A| is contained ifK*.

Leth € I'*. Choose: € Iy suchthau“ nil(I') = Anil(5). If Ay, ..., A, are

the eigenvalues gf(a), theniq, ... , A{ are the eigenvalues of(k). Since the
numbers 2L 2k are contained in the torsion free grol | z € K*} C

hale? = |xi\0
K*, the assertion follows. O

Proof of Corollary 7.2. a)Suppose thai” is generated by elements which are
absolutely net. Then(I") is by Proposition 7.1 contained in the identity compo-
nent ofS x K. Taking into account th&8 x K is the closure of(I") - S, we see
thatS x K itself is connected. In other wordK, is a torus. By Proposition 5.1
the maximal connected nilpotent normal subgrdugf S x K is contained irS
andi(IM) NN = «(nil(IN)). SinceS x K is a connected solvable group, the factor
groupS x K/N is abelian, and hencg/ nil(I") is abelian, too.

b). Choose a subgroup* C I' as stated in Lemma 7.5. The elementgin
are absolutely net, and via Proposition 7.1 this impliestfiat) is contained in
the identity component & x K. Using thatS x K is the closure of(I") - S, we
deduce that the number of connected componeng »fK is bounded by the
index of I'*in I'. O

Proof of Corollary 7.3.Let N be the maximal connected nilpotent normal sub-
group of S x K. By Proposition 5.IN ¢ S and¢(nil(I"')) = NN« is a
lattice in N. Consider the projection: S x K — Q := (S x K)/N. Since
t(nil(I')) is cocompact in the kernel af, the imageA := 7 («(I")) is discrete.
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Furthermore A = I'/nil(I") is free abelian. Choose a basis ... , b, of A

and elements;, ... , v, € qinthe Lie algebra of the abelian gro@psatisfying
exp(v;) = b;. Let A be the Lie group corresponding to the abelian Lie algebra
sparg(vs, ..., vy). Clearly, A containsA as a discrete, cocompact subgroup.

From dim(A) = rank(A) we infer thatA is simply connected. But then1(A)
is a connected, simply connected solvable Lie group contautifig= I" as a
discrete cocompact subgroup. O

7.4. On the proof of Theorem 5

We need the following simple observation:

Lemma 7.6. Let G be a connected solvable Lie group aNdhe maximal con-
nected nilpotent normal subgroup Gt Then the natural homomorphism

7 : Aut(G) — Aut(G/N)

has a finite image. Moreover, the order of the image is bounded by a constant
only depending on the dimension®f

Proof. Let n and g be the Lie algebras dfl and G, and letgc be the com-
plexification of g. By Lie’s theorem there is a basis gt with respect to
which adg) is represented by upper triangular matrices. Foe g we let
dw) = (d1(v), ... ,d(v)) € CF denote the diagonal elements of the matrix
representing ad wherek is the dimension of. Clearly,d: g — C* is a homo-
morphism with kerneh.

Forv € g, @ € Aut(G) the endomorphisms aand ad,,, have the same
eigenvalues. Thus there is a permutatioa S; with d(a.(v)) = (dy)(V), ... ,
dy iy (v)). Since the kernel of is n, it follows that the sefa.(v +n) | @ €
Aut(G)} consists of at most! elements. Using thai, (and accordinglyy) is
determined by the image of a basisgyfwe deduce that the image sfhas at
most(k!)* elements. o

Proof of Theorem 5Choose an embedding I" — S x K satisfying the as-
sumptions of Corollary 4. We will viewin the following as inclusion map. The
identity componenK, of K is a torus. Notice that for any subgroup of finite
index the inclusiol™” — I'"- (S x Kp) matches the assumptions of Corollary 4.
In particular, any automorphisra:: I’ — I'' can be extended uniquely to an
automorphisnma of I'" - (S % Kp).

Let N be the maximal nilpotent normal subgroup®fBy Proposition 5.1
N is also the maximal nilpotent normal subgrouok Ko, and by Lemma 7.6
the image of the natural projectiarn Aut(S x Kg) — Aut(S x Kg/N) is finite.
Moreover, the order of the image ofis bounded by a constant only depending



230 B. Wilking

on dim(S x Kg) < 2-rank(I"). Letq be the Lie algebra of the abelian Lie group
Q :=S x Kg/N.

Choose a subgroup™ c I as stated in Lemma 7.5. Observe tiiat is
necessarily contained ifp := I N (S x Kg) by Proposition 7.1.

Clearly, exp q¢ — Qis ahomomorphism, and henBe:= exp X(pr(I"*)) is
alattice ing. SetWg := spay(W). Ifamapo € Aut(S x Ko) leaves a subgroup
I’ of finite index inIg invariant, thent (6).: ¢ — q leaves a subgroup of finite
index in W invariant and thusr (¢)..(Wg) = Wg.

Claim. LetE := {a € 7 (Aut(S x Ko)) | a.(Wg) = Wg}. Then

H := ({a(pr(g)) | g € I'*, « € E})
is a discrete free abelian subgroupf

In order to show thatl is discrete, we just have to verify that the group

W = ({a.(w) | we W,a € E})

is discrete. But this is trivial becausé c Wq is obviously finitely generated.
So it remains to check thét is torsion free. Set

Ir'* = ({o(g) | g € I'*, 0 € AUt(S x K)}).

Clearly,H is contained in pfl"*). Consider the natural representatjonS x
Ko — GL(n). By definition of "* the multiplicative subgrou@ c C* generated
by all eigenvalues of elements ir(I"*) is torsion free. From Lie’s theorem we
infer that the multiplicative group generated by all eigenvalues of elements in
p(I'*) coincides with®. Now let g € I'*\ (I'* N N). By Proposition 5.1
the elemenp(g) is not unipotent. Since the eigenvalues@$) are not roots of
unity, it follows thatp (¢*) is not unipotent for all positive integeksin particular,
gk ¢ N for all k > 0. Taking into account that is the kernel of pr, we see that
pr(I"*) > H is torsion free, and hence the above claim is proved.

Notice thatH is by definition invariant under the natural actionbn Q.
For the free abelian group we choose a homomorphism

¥:H— q satisfying expy = id.

Recallthaf := ord(E) < ord(imag€g)) is bounded by a constant only depend-
ing on rankI"). Putl-H := {g' | g € H}. The mapH — |-H, g — g'isan
isomorphism, and accordingly we can define a homomorphisthH — g by
means of

V(g = Y e(v@(g)) forgeH.

acE
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Evidently, expyr = id. Furthermore,

U((g)) = a.(¥(g)) fora € Eandg el-H.

Seta := sparﬂ{(&(l -H)) andA := exp(a). Clearly,A containd -H as a discrete,
cocompact subgroup. From dig) = rank( -H) we infer thatA is a simply
connected, closed subgroup @Qf Moreover,A is invariant under the natural
action ofE on Q. Since p(I'*) ¢ Handl-H c A, the index ofA N pr(Ip) in
pr(Ip) is bounded by a constant only depending on (dhk

PutR := pr-1(A). ThenN cC R is the maximal nilpotent normal subgroup
of R and nikI") ¢ N. By Corollary 7.2 we can control the quantity” : 1),
and hence

(I':RNT) = (I: Ty - (pr(lp) : AN pr(Ip))

is bounded by a constant only depending on the rank.of

Furthermore, for a subgroup’ of finite index inI" and an automorphism
o: I'" — I'"the unigue extensioh: I''-S x Ko — I'"- S x Kg of o leaves the
subgrougR invariant. In particular/” normalizesR. The produci” - R splits as a
semidirect produd® x F where the order df C Aut(R) equalq " : RNTI"), see
Lemma 3.2. Moreover, for a subgroiip of finite index inI” any automorphism
o: I'" — I can be extended to an automorphigm.r of I’ - R.

It remains to check that there is at most one extension of each automorphism.
Any automorphism of ™ - R can be extended tb” - (S x Kp) by Theorem 6.5.
Furthermore, by the same theorem any automorphisaf I'" - (S x Kp) is
determined by the restrictian, . In summary, we can say that any automorphism
o of I'" - R is determined by the restrictiaf, . o

7.5. The proof of Theorem 6

In view of Theorem 1 we may assume tl&ts supersolvable. Notice that the
torsion free grou” C S x K contains no nontrivial compact subgroup, so its
identity component is a simply connected solvable Lie groupR.dte the Lie
hullof Tin S x KandS’ = SNR’. By replacingY” by a conjugate subgroup if
necessary, we may assume tlat= R'NK is maximal compactiR’. ThenR’is
asemidirect product subgro® = S’ xg K’ € SxK, whereg’: K’ — Aut(S’)
is the restriction.

Clearly, the Lie algebra’ is invariant under the natural representation of
K" in s. SinceK’ is compact, we can find E'-invariant subspacg C s such
thats = p @ s'. For any such complement we let R” — GL(p) denote the
representation that is given (A, 7))(u) := A.u for (A,7) e R O 7T,
u € p. We define an action @® © T onS’ x p by using on the first factor the
natural action and on the second factor the action induced by the representation
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o. Notice that for any decompositign= p1 - - - ® p, of K’-invariant subspaces
the following map iR’-equivariant.

f:S xp—S, (7.2)
(hyur+ -+ +u) —> h-expluyg) - - - explug)

foru; e p;,i =1,..., k. We claim that for a suitable choicgis a diffeomor-
phism as well. From this it is clear that the manif@dT is diffeomorphic to
(S' x p)/ 7. Since(S' x p)/T is a vector bundle over the compact manifold
B := S’/ 7, this completes the proof of a).
In order to prove the existence of a suitable decompositiens’ ® p; ®

-+ @ p; we argue by induction on dit®). Let ¢ be the center of the nilradical
of 5, and letC be the corresponding Lie group. Observe fiat=CN S’ isa
connected normal subgroupRf. Denote by’ the Lie algebra o€’ and choose a
K’-invariant subspagg such that = ¢’ ®p;. Next we consider the factor groups
S’/C’andS/C and the corresponding Lie algebsi&’ ands/c. By our induction
hypothesis there is a decompositigft = s'/¢ & p=5'/C B p2 D --- & py Of
K'-invariant subspaces such that the map

f:(8/C) xp—S/C,
(h,fig+ -+ iig) — h - expliy) - - - expliy)

is a diffeomorphism. Sind€’ is compact, there isl'-invariant subspagg such
that the natural projection— s/c¢ maps; isomorphically ont@;,i = 2, ... , k.
Evidently,s = s @ p1 ® - - - @ p, and it is straightforward to check that for this
decomposition the map in (7.2) is a diffeomorphism.

Statement b) follows from Lemma 7.7 below. It remains to verify the addition.
By our additional assumption the identity compon&gtof 7" is contained in
S'.SetT := ¥ NS, and letR c S be the Lie hull of7". Notice that? is
a normal subgroup of and that the factor groups/7 is abelian up to finite
index. From Theorem 6.5 we infer thRtis normal inS’ x4 K’ and that the
factor groupQ := S’ xp K’/R has an abelian identity componedg. SinceT
is a cocompact subgroup Bfand sincel, C 7, it follows that the projection
pr: S" xp K" — Q mapsY onto a discrete subgroup Qf.

Analogously to Subsect. 7.4 we can find a simply connected, closed sub-
groupA c Q with finitely many connected components that contairi3pras a
discrete cocompact subgroup. The preim#ge= pr-1(A) S T is asimply con-
nected Lie group with finitely many connected components and with a solvable
identity componeriTy. By Lemma 3.2 we may identify’ with a semidirect prod-
uct Yo x g F, whereF is a finite group. The representation S’ x g K" — GL(p)
restricts to a representation Ty x5 F — GL(p). Recall that the image af is
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relatively compact. In particulap(7y) is abelian. Thug induces a representa-
tion

o: (To/[To, Tol) x5 F — GL().

The groupYy/[ Yo, ol is a simply connected abelian group and therefore it is
isomorphic taR? for some integep. Setp; (v, f) := oA v, f) for A € [0, 1].
Clearly, (01)1¢(0.1) is @ smooth family of homomorphisms and the imag@®f

is the finite groupp (F). Because of” C 7 this consideration shows that

o1:=0r: 7T — GL(p)

can be deformed via a continuous family of representatignsy” — GL(p)

into a representationy with a finite image, too. Define a new action bfon

S’ x p by using on the first factor the natural action and on the second factor
the action induced by the representatinlt is known that the quotient of this
action is diffeomorphic to the quotient of the original action. Since the image
of oo is finite, a finite sheeted covering spaceSHfY" is diffeomorphic to the
product(S'/T") x p, whereY’ = Ker(pp) is a subgroup of finite index ifr.

Lemma 7.7. LetS be a connected, simply connected supersolvable Lie gioup,
acompact Lie group; := S xz K, and letY” C G be atorsion free cocompact,
closed subgroup. Thef := 7o(Y") := T/ 7y is a torsion free polycrystallo-
graphic group and for an embeddidg — S x K satisfying the assumptions of
Corollary 4 the quotiené/F is diffeomorphic to the manifol8/ 7 .

Proof. Withoutloss of generalit is the Lie hull ofY" in G. Since the normalizer
of the identity componerity of 7" is by Proposition 6.2 a Lie hull, the groufy
is normal inG. The Lie hullR of Ty is a normal subgroup @, too. Furthermore,
Yois cocompactifR, and accordingly” := T -R s a closed subgroup. We claim
that for the natural action of on S the T—orbits coincide with th&@ —orbits.
In order to prove this it is sufficient to show tHRtand T, have the same orbits.
The groupL = R N K is maximal compact ilR becauseR is normal inG. So
R =S’ xg L whereS’ = SN R. By constructiory is a connected, cocompact
subgroup oR, and henc@j xe = S’ = Rg % e. Taking into account thatp and
R are normal subgroups @&, we see thatpyxv =Rxvforallv € S.

The projection pr S xz K — (S/S') x5 (K/L) mapsT onto a discrete,
cocompact subgroup’ := pr(Y") = pr(Y). Evidently, the quotientS/S)/I"
is diffeomorphic taS/ 7. Since the action of onS is free, the action of™ on
(S/S)) is free as well. In particulad," is torsion free. Consider the projection

7w (S/8) x5 (K/L) — (S/S) x B(K/L) =: S x K

and the group”™ := n(I") = I" = 7o(T). Clearly, the inclusion™ ¢ S x K
matches the hypothesis of Corollary 4. Finally, the mani®ld” is diffeomor-
phictoS/r". O
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8. Further consequences
8.1. Representations of polycrystallographic groups

The aim of this subsection is to prove the following

Corollary 8.1. LetI" be a polycrystallographic group; I — S x K an em-
bedding satisfying the assumptions of Corollary4,l” — GL(m, R) a repre-
sentation ofl", and letZ be the Zarisky closure gf(I") in GL(m, R). Assume
furtherthatl is the maximal compact normal subgrouZoéndletr: Z — Z/L

denote the projection. Then there is a homomorphjsns x K — Z/L with

polL=1mop.

Proof. Evidently, the identity component & is solvable. LeR C Z be the set
of matrices that have only positive eigenvalues. Lemma 4.4 exiibdis a con-
nected, simply connected normal subgrouZoFurthermoreZ is isomorphic
to a semidirect produd® - K whereK C Z is maximal compact.

The grouR is supersolvable, and thus the Lie hullgfl™) in R-K is defined,
see Definition 6.4. In particular, there is a compact gleug Z and a connected
subgrous’ C R normalized byK’ such thajp (I") is cocompact ik’ - S’. LetL’
be the maximal compact normal subgrousof K'. Clearly, o (I") normalizes
L’. The Zarisky closure df’ in GL(n, R) is a compact normal subgroup2find
accordinghyL’ C L. Thereforer (S’ - K’) contains no compact normal subgroup.
Hencer (S’ - K') is by Lemma 3.2 isomorphic to a semidirect prod8tt« K”
with K”  Aut(S’). Now Theorem 6.5 c) applies. O

8.2. Some consequences for lattices in supersolvable Lie groups

For a polycrystallographic group we call the groug™* that is characterized in
Proposition 5.1 the positive part &f. A polycrystallographic group is called

a positive polycyclic group if and only if it coincides with its positive part. We
have

Remark 8.2 Anabstractgroupt isisomorphicto a lattice in a connected, simply
connected supersolvable Lie group, if and onlyt i a positive polycyclic group.

Proof. That the condition is necessary is an immediate consequence of Propo-
sition 5.1. Furthermore, for a positive polycyclic gropwe can choose an
embedding: A — S x K satisfying the assumptions of Corollary 4. We infer
from Proposition 5.1 thatt = ((A) is contained in the supersolvable groBp

i

For a positive polycyclic groupt, and a connected, simply connected su-
persolvable Lie grougs containingA as a lattice we cals a supersolvable
completion ofA. This definition generalizes the concept of the Malcev comple-
tion of a torsion free nilpotent group. From Theorem 6.5 a), ¢) we obtain:
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Corollary 8.3. Let A; be a positive polycyclic group, and I& > A; be a
supersolvable completion of;, i = 1, 2. Then each homomorphism A; —
A, extends uniguely to a homomorphiSn— S,.

Thus the supersolvable completion of a positive polycyclic group is a functor.
Of course, the class of positive polycyclic groups is much smaller than the class of
polycrystallographic groups. However, at least for polycrystallographic groups
of rank three the difference is not that big:

Remark 8.4.For a polycrystallographic group of rank three the positive part
r'+of I is of finite index inI".

In fact, it is elementary to show thdt contains a subgroup of finite in-
dex which is isomorphic to a semidirect prodz?) x4 Z, wheref: Z —
GL(2,7), z — A% for someA € GL(2,Z). Thus it just remains to check that
there is a positive integer such thatA” has only positive eigenvalues. But this
is a trivial computation.

8.3. Extendable homomorphisms

We have seen in the preceding subsection that the embedding of Corollary 4
induces on the subclass of positive polycyclic groups a functor that maps a
positive polycyclic groupi onto its supersolvable completion. In order to extend
this functor to a category containing all polycrystallographic groups as objects,
we have to restrict ourselves to a special type of homomorphism.

Definition 8.5. Let I'; be a polycrystallographic group, andietl” — S; x K;
be an embedding satisfying the assumption of Corollary & 1, 2. A ho-
momorphismg: I71 — I3 is called extendable if there is a homomorphism
¢: S1 x Ky — S, x K, of Lie groups satisfying(S;) C S, andg oty = 1200¢.

If such a homomorphisr exists, then it is unigue. In fact one can show that the
graph ofp is necessarily given by the Lie hull §f:1(g). 12(¢(g))) | g € I1}in

(S1 % Kyp) x (S2 x Ky). Clearly, the polycrystallographic groups together with
the extendable homomorphisms form a category. Furthermore, with respect to
this category the embedding of Corollary 4 is a functor.

Proposition 8.6. Lety: I1 — I be a homomorphism between polycrystallo-
graphic groups. Thep is an extendable homomorphism provided that the image
I'" .= @(I) satisfies one of the following conditions.

a) I'’is a subgroup of the positive paft" of I.
b) There are subgroups

I = NoC---CN, =13

such thatN;_; is either normal inN; or of finite index inN;,i =1, ... , k.
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Proof. a).By the very definition of the positive part the Lie h@! of 1o(I") in
S, % Ky is a connected subgroup 86. Now Theorem 6.5 ¢) applies.

b). We claim that the Lie hulR; of (x(N;) in S, x K, contains no nontrivial
compact normal subgroups. We argue by reversed inductiorBynLemma 3.2
the statement is correct f&, = S, x K,. Suppose that the Lie huR;,; of
t2(N; 1) contains no nontrivial compact normal subgroup. In the caseé\thiat
normal inN;; we can employ Theorem 6.5 to see tRatis normal inR;, 1.
Thus the maximal compact normal subgroufRefis normal inR;,; and hence
trivial. If N; is of finite index inN;, 1, thenR; is of finite index inR;, 1, and the
assertion follows from Lemma 3.2.

Since the Lie hulRq of 12(I"") contains no compact normal subgroups, it fol-
lows thatRy it is isomorphic to a semidire& x K, whereS C S, is a connected
supersolvable Lie group ahd C Aut(S) is compact. By Theorem 6.5 c) there is
a homomorphisng: S; x Ky — Rowith @(S1) c SC S, andg oy = 10 .

O
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