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HOW TO PRODUCE A RICCI FLOW VIA

CHEEGER-GROMOLL EXHAUSTION

ESTHER CABEZAS-RIVAS AND BURKHARD WILKING

Dedicated to Wolfgang T. Meyer on the occasion of his 75th birthday

Abstract. We prove short time existence for the Ricci flow on open mani-
folds of nonnegative complex sectional curvature. We do not require upper
curvature bounds. By considering the doubling of convex sets contained in
a Cheeger-Gromoll convex exhaustion and solving the singular initial value
problem for the Ricci flow on these closed manifolds, we obtain a sequence of
closed solutions of the Ricci flow with nonnegative complex sectional curvature
which subconverge to a solution of the Ricci flow on the open manifold. Fur-
thermore, we find an optimal volume growth condition which guarantees long
time existence, and we give an analysis of the long time behaviour of the Ricci
flow. Finally, we construct an explicit example of an immortal nonnegatively
curved solution of the Ricci flow with unbounded curvature for all time.

1. Introduction and main results

The Ricci flow was introduced by R. Hamilton in [24] as a method to deform
or evolve a Riemannian metric g given on a fixed n-dimensional manifold M
according to the following partial differential equation:

∂

∂t
g(t) = −2Ric(g(t)) (1.1)

over a time interval I ⊂ R, with the initial condition g(0) = g. The first basic
question, without which a theory about the Ricci flow does not even make sense,
is to ensure that equation (1.1) admits a solution at least for a short time. This
was already completely settled for closed manifolds (i.e. compact and without
boundary) by Hamilton in [24]. In dimension 2, short time existence for a non-
compact surface (which may be incomplete and with curvature unbounded above
and below) was established by Giesen and Topping in [18] using ideas from [45].

The non-compact case for n ≥ 3, even asking the manifold to be complete,
is much harder and in full generality appears to be hopeless: for instance, it is
difficult to imagine how to construct a solution to (1.1) starting at a manifold
built by attaching in a smooth way spherical cylinders with radius becoming
smaller and smaller (say of radius 1/k with k ∈ N). Hence to achieve short time
existence one needs to prevent similar situations by adding extra conditions on
the curvature. In this spirit, W. X. Shi proved in [41] that the Ricci flow starting
on an open (i.e. complete and non-compact) manifold with bounded curvature

1

http://arxiv.org/abs/1107.0606v3


2 ESTHER CABEZAS-RIVAS AND BURKHARD WILKING

(i.e. with supM |Rg| ≤ k0 < ∞) admits a solution for a time interval [0, T (n, k0)]
also with bounded curvature.

Later on M. Simon (cf. [43]), assuming further that the manifold has nonnega-
tive curvature operator (Rg ≥ 0) and is non-collapsing (infM volg (Bg(·, 1)) ≥
v0 > 0), was able to extend Shi’s solution for a time interval [0, T (n, v0)], with

curvature bounded above by c(n,v0)
t for positive times. Although T (n, v0) does

not depend on an upper curvature bound, such a bound is still an assumption
needed to guarantee short time existence.

The present paper manages to remove any restriction on upper curvature
bounds for open manifolds with nonnegative complex sectional curvature (see
Definition 3.1) which, by Cheeger, Gromoll and Meyer [10, 21], admit an exhaus-
tion by convex sets Cℓ. We are able to construct a Ricci flow with nonnegative
complex sectional curvature on the closed manifold obtained by gluing two copies
of Cℓ along the common boundary, and whose ‘initial metric’ is the natural sin-
gular metric on the double. By passing to a limit we obtain

Theorem 1. Let (Mn, g) be an open manifold with nonnegative (and possibly un-
bounded) complex sectional curvature (KC

g ≥ 0). Then there exists a constant T
depending on n and g such that (1.1) has a smooth solution on the interval [0,T ],
with g(0) = g and with g(t) having nonnegative complex sectional curvature.

Using that by Brendle [4] the trace Harnack inequality in [26] holds for compact
manifolds with KC ≥ 0, it follows that the above solution on the open manifold
satisfies the trace Harnack estimate as well. This solves an open question posed
by Chow, Lu and Ni [14, Problem 10.45].

The proof of Theorem 1 is easier if KC
g > 0 since then by Gromoll and Meyer

[21] M is diffeomorphic to R
n. In the general case, we need additional tools; for

instance, we prove the following result, which extends a theorem by Noronha [34]
for manifolds with Rg ≥ 0.

Theorem 2. Let (Mn, g) be an open, simply connected Riemannian manifold
with nonnegative complex sectional curvature. Then M splits isometrically as
Σ×F , where Σ is the k-dimensional soul of M and F is diffeomorphic to R

n−k.

In the nonsimply connected case M is diffeomorphic to a flat Euclidean vector
bundle over the soul. Thus combining with the classification in [6] of compact
manifolds with KC ≥ 0, we deduce that any open manifold of KC ≥ 0 admits a
complete nonnegatively curved locally symmetric metric ĝ, i.e. Kĝ ≥ 0, ∇Rĝ ≡ 0.

It is not hard to see that, given any open manifold (M,g) with bounded cur-
vature and KC

g > 0, for any closed discrete countable subset S ⊂ M one can
find a deformation ḡ of g in an arbitrary small neighborhood U of S such that ḡ
and g are C1-close, (M, ḡ) has unbounded curvature and KC

ḡ > 0. The following
result, which is very much in spirit of Simon [43], shows that this sort of local
deformations will be smoothed out instantaneously by our Ricci flow.
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Corollary 3. Let (Mn, g) be an open manifold with KC
g ≥ 0. If

inf
{
volg(Bg(p, 1)) : p ∈ M

}
= v0 > 0, (1.2)

then the curvature of (M,g(t)) is bounded above by c(n,v0)
t for t ∈ (0,T (n, v0)].

In the case of a nonnegatively curved surface, this volume condition is always
satisfied (see [15]), so any such surface can be deformed by (1.1) to one with
bounded curvature. For n ≥ 3 the lower volume bound in Corollary 3 is essential:

Theorem 4. a) There is an immortal 3-dimensional nonnegatively curved com-
plete Ricci flow (M,g(t))t∈[0,∞) with unbounded curvature for each t.

b) There is an immortal 4-dimensional complete Ricci flow (M,g(t))t∈[0,∞)

with positive curvature operator such that the curvature of (M,g(t)) is bounded
if and only if t ∈ [0, 1).

Higher dimensional examples can be obtained by crossing with a Euclidean factor.
Part b) shows that even if the initial metric has bounded curvature one can run
into metrics with unbounded curvature. The following result gives a precise lower
bound on the existence time for (1.1) in terms of supremum of the volume of balls,
instead of infimum as in Corollary 3 and [43]. We emphasize that this is new even
in the case of initial metrics of bounded curvature.

Corollary 5. In each dimension there is a universal constant ε(n) > 0 such that
for each complete manifold (Mn, g) with KC

g ≥ 0 the following holds: If we put

T := ε(n) · sup
{

volg(Bg(p,r))
rn−2

∣∣ p ∈ M, r > 0
}
∈ (0,∞],

then any complete maximal solution of Ricci flow (M,g(t))t∈[0,T ) with KC

g(t) ≥ 0

and g(0) = g satisfies T ≤ T .

IfM has a volume growth larger than rn−2, then Corollary 5 ensures the existence
of an immortal solution. Previously (cf. [40]) long time existence was only known
in the case of Euclidean volume growth under the stronger assumptions Rg ≥ 0
and bounded curvature. We highlight that our volume growth condition cannot
be further improved: indeed, as the Ricci flow on the metric product S2 × R

n−2

exists only for a finite time, the power n − 2 is optimal. For n = 3 we can even
determine exactly the extinction time depending on the structure of the manifold:

Corollary 6. Let (M3, g) be an open manifold with Kg ≥ 0 and soul Σ. If
(M,g(t))t∈[0,T ) is a maximal complete solution of (1.1) with g(0) = g and KC

g(t) ≥
0, then

T =





area(Σ)
4πχ(Σ) if dimΣ = 2

∞ if dimΣ = 1
1
8π limr→∞

volg(Bg(p,r))
r if Σ = {p0}

.

In the case Σ = {p0}, if T < ∞, then (M,g) is asymptotically cylindrical and
(M,g(t)) has bounded curvature for t > 0.
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By Corollary 5 a finite time singularity T on open manifolds with KC ≥ 0 can
only occur if the manifold collapses uniformly as t → T . For immortal solutions
we will also give an analysis of the long time behaviour of the flow: In the case
of an initial metric with Euclidean volume growth we remark that a result of
Simon and Schulze [40] can be adjusted to see that a suitable rescaled Ricci flow
subconverges to an expanding soliton, see Remark 7.3. If the initial manifold does
not have Euclidean volume growth, then by Theorem 7.5 any immortal solution
can be rescaled suitably so that it subconverges to a steady soliton (different from
the Euclidean space).

2. Structure of the paper and strategy of proof

Section 3 contains the background material that we use repeatedly throughout
the paper. The definition of nonnegative complex sectional curvature, which
implies nonnegative sectional curvature and has the advantage to be invariant
under the Ricci flow, can be found in subsection 3.1. Subsection 3.2 is about the
basics of open nonnegatively curved manifolds.

Section 4 carries out the proof of Theorem 1 for the particular case of a manifold
(M,g) with KC

g > 0, which is an easier scenario since there is a smooth strictly
convex proper function β : M → [0,∞[. The idea (developed within the proof
of Proposition 4.1) is to show that the doubling D(Ci) of the compact sublevel
Ci = β−1([0, i]) admits a metric with KC ≥ 0. We actually prove that after
replacing Ci by the graph of a convex function defined on Ci (a reparametrization
of β) the doubling is a smooth closed manifold (Mi, gi) with KC

gi > 0. The
sequence (Mi, gi) converges to (M,g). The key is now to establish two important
properties for the Ricci flows of (Mi, gi): (1) there is a lower bound (independent
of i) for the maximal times of existence Ti (Proposition 4.3), and (2) we can find
arbitrarily large balls around the soul point p0 where the curvature has an upper
bound of the form C/t (here C depends on the distance to p0, see Proposition 4.6).
The crucial tool for (1) is a result by Petrunin (Theorem 4.2) which also allows to
conclude that the evolved unit balls around the soul are uniformly non-collapsed
(Corollary 4.4). For the proof of (2) we use a fruitful point-picking technique by
Perelman [35], and we also need to obtain an improved version of 11.4 in [35]
(Lemma 4.5). All these results ensure that we can perform suitable compactness
arguments to prove Theorem 1 for the positively curved case (Theorem 4.7).

Several additional difficulties arise when we just assume KC
g ≥ 0. For instance,

the soul is not necessarily a point. A harder issue is that the sublevels of a
Busemann function Cℓ = b−1((−∞, ℓ]) have non-smooth boundary. Thus there
is no obvious smoothing of the doubling D(Cℓ) with KC ≥ 0. Section 5 gathers
the technical results we will need to apply in Section 6 to overcome the extra
complications of the general case of Theorem 1: we prove Theorem 2, which
essentially reduces the problem to the situation where the soul is a point; we
establish two estimates for abstract solutions of a Riccati equation which are
used later to give a quantitative estimate of the convexity of the sublevels Cℓ in
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terms of the curvature (Lemmas 5.2 and 5.3); in Proposition 5.5 we get curvature
estimates in terms of volume and lower sectional curvature; finally, we include a
technical result (Lemma 5.6) about how to perform a smoothing process for C1,1

hypersurfaces with bounds on the principal curvatures in the support sense by
C∞ hypersurfaces where the bounds change with an arbitrarily small error.

All the auxiliary results from Section 5 are employed in Section 6 to give a
complete proof of Theorem 1. First, we prove upper and lower estimates for
the Hessian of d2(·, Cℓ) (see Proposition 6.1 and Corollary 6.2), and then we
reparametrize such a distance function to give a sequence of functions whose
graphs Dℓ,k, after a smoothing process, give C∞ closed manifolds converging
to the double D(Cℓ). The sets Dℓ,k are not anymore convex, but we have a
precise control on the complex sectional curvatures of the induced metrics gℓ,k
(see Proposition 6.3). In Proposition 6.6 we prove that such curvature control
survives for some time for the Ricci flows starting on (Dℓ,k, gℓ,k). As a consequence

we get, for all large ℓ, a solution of the Ricci flow on D(Cℓ) with KC ≥ 0, and
whose ‘initial metric’ is the natural singular metric on the double. The rest of
the proof is then essentially analogous to Section 4.

Corollary 3, 5 and 6 are proved in Section 7 and Theorem 4 is proved in
Section 8

We end with three appendices containing additional background about open
nonnegatively curved manifolds (Appendix A), results for convex sets in Rie-
mannian manifolds (Appendix B) and results about smooth convergence and
curvature estimates for the Ricci flow (Appendix C).

3. Basic background material

3.1. About the relevant curvature condition. We first need to introduce

Definition 3.1. Let (Mn, g) be a Riemannian manifold, and consider its com-
plexified tangent bundle TCM := TM ⊗ C. We extend the curvature tensor R
and the metric g at p to C-multilinear maps R: (TC

p M)4 → C, g : (TC
p M)2 → C.

The complex sectional curvature of a 2-dimensional complex subspace σ of TC
p M

is defined by

KC(σ) = R(u, v, v̄, ū) = g(R(u ∧ v), u ∧ v),

where u and v form any unitary basis for σ, i.e. g(u, ū) = g(v, v̄) = 1 and
g(u, v̄) = 0. We say M has nonnegative complex sectional curvature if KC ≥ 0.

The manifold has nonnegative isotropic curvature ifKC(σ) ≥ 0 for any isotropic
plane σ ⊂ TC

p M , i.e. g(v, v) = 0 for all v ∈ σ.

Remark 3.2. Here we collect some relevant features known about the above cur-
vature condition (see [5] and [33] for the proofs).

(a) If g has strictly (pointwise) 1/4-pinched sectional curvature, thenKC
g > 0.
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(b) Nonnegative curvature operator (Rg ≥ 0) implies KC
g ≥ 0, which in turn

gives nonnegative sectional curvature (Kg ≥ 0). For n ≤ 3 the converse
holds.

(c) KC

(M,g) ≥ 0 if and only if (M,g)×R
2 has nonnegative isotropic curvature.

(d) The positivity and nonnegativity of KC is preserved under the Ricci flow.
(e) Let (M,g) be closed with KC

g > 0. Then g is deformed by the normalized
Ricci flow to a metric of positive constant sectional curvature, as time
goes to infinity.

Proposition 3.3. Let (Mn, g) be closed with KC
g ≥ 0. If M is homeomorphic

to a sphere, then the Ricci flow g(t) with g(0) = g has KC

g(t) > 0 for any t > 0.

Proof. Clearly g cannot be Ricci flat as this would give a flat metric on a sphere.
Moreover, since M is a sphere the metric is irreducible and neither Kähler nor
Quaternion-Kähler. If (M,g) is a locally symmetric space we could use a result of
[3] to see that (M,g) is round. Combining all this with the holonomy classification
of Berger [1] we deduce that g as well as g(t) has SO(n) holonomy. Now the
statement follows from the proof of [6, Proposition 10]. ⊔⊓

3.2. Cheeger-Gromoll convex exhaustion. Let (M,g) be a nonnegatively
curved open manifold. A ray is a unit speed geodesic γ : [0,∞) → M such that
γ[0,s] is a minimal geodesic for all s > 0. Fix o ∈ M , and consider the set of rays

R = {γ : [0,∞) → M : γ is a ray with γ(0) = o}.
Recall that

b = sup
γ∈R

{
lim
s→∞

(
s− dg(γ(s), ·)

)}

is called the Busemann function of M . By the work of Cheeger, Gromoll and
Meyer [21, 10] b is a convex function, that is, for any geodesic c(s) ∈ M the
function s 7→ b ◦ c(s) is convex. Equivalently one can say that b satisfies ∇2b ≥ 0
in the support sense (cf. Definition B.4).

The following properties of the sublevels Cℓ := b−1((−∞, ℓ]) will be used
throughout the paper:

(1) Each Cℓ is a totally convex compact set,
(2) dimCℓ = n for all ℓ > 0, ∪ℓ>0Cℓ = M ,
(3) s < ℓ implies Cs ⊂ Cℓ and Cs = {x ∈ Cℓ : dg(x, ∂Cℓ) ≥ ℓ− s},
(4) each Cℓ, ℓ > 0, has the structure of an embedded submanifold of M with

smooth totally geodesic interior and (possibly non-smooth) boundary.

The family Cℓ is part of the Cheeger-Gromoll convex exhaustion used for the soul
construction (see some more details in Appendix A). For us only the structure
of Cℓ for ℓ → ∞ is of importance. If (M,g) has positive rather than nonnega-
tive sectional curvature, then ∇2eb > 0 holds in the support sense. By a local
smoothing procedure one can then show
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Theorem 3.4 (Greene-Wu, [20]). If (Mn, g) is an open manifold with Kg > 0,
then there exists a smooth proper strictly convex function β : M → [0,∞[.

The main reason why the proof of Theorem 1 is quite a bit easier in the positively
curved case is this theorem. In the nonnegatively curved case we will have to work
with the sublevels of the Busemann function instead.

4. Manifolds with positive complex sectional curvature

4.1. Approximating sequence for the initial condition. Let (Mn, g) be an
open manifold with KC

g > 0. On M we can consider a function β as described
in Theorem 3.4. Since β is proper, the global minimum is attained and we may
assume that its value is 0. Since β is strictly convex, β−1(0) consists of a single
point p0, and clearly p0 is the only critical point of β. Hence the sublevel set

Ci = {x ∈ M : β(x) ≤ i} (4.1)

is a convex set with a smooth boundary for all i > 0. Recall that β is obtained
essentially from a smoothing of a Busemann function b. Thus we may assume that
for each i there is some ℓi so that Ci has Hausdorff distance ≤ 1 to b−1((−∞, ℓi]).

The goal is to construct a pointed sequence of closed manifolds converging to
(M,g, p0). The first attempt would be to consider the double D(Ci) of Ci (which
is obtained by gluing together two copies of Ci along the identity map of the
boundary). However, D(Ci) is usually not a smooth Riemannian manifold. To
overcome this, we adapt to our setting ideas from [30, 22] which roughly consist
in modifying the metric in a small inner neighborhood of the boundary ∂Ci to
form a cylindrical end so that the gluing is well defined.

Proposition 4.1. Let (Mn, g) be an open manifold with KC
g > 0 and soul point

p0. Then there exists a collection {(Mi, gi, p0)}i≥1 of smooth closed n-dimensional
pointed manifolds with KC

gi > 0 satisfying

(Mi, gi, p0) −→ (M,g, p0) as i → ∞
in the sense of the smooth Cheeger-Gromov convergence (cf. Definition C.1).

Proof. For each fixed i, consider Ci as in (4.1). The goal is to modify the metric
g|Ci within Ci \ Ci−ε. For that aim, let us choose any real function ϕi such that

(a) ϕi is smooth on (−∞, i) and continuous at i,
(b) ϕi ≡ 0 on (−∞, i− ε] and ϕi(i) = 1.
(c) ϕ′

i, ϕ
′′
i are positive on (i− ε, i),

(d) ϕ−1
i has all left derivatives vanishing at 1,

By (d) the derivative ϕ′
i(s) tends to ∞ for s → i. Now take ui := ϕi ◦ β and put

Gi = {(x, ui(x)) : x ∈ Ci}
G̃i = {(x, 2 − ui(x)) : x ∈ Ci}
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Note that the submanifolds Gi and G̃i are isometric and (d) ensures that they

paste smoothly together to a C∞ closed hypersurface D(Ci) = Gi∪ G̃i of M ×R.

Clearly the induced metric of Gi can be regarded as a deformation of the metric
on Ci. Given the properties of ϕi and β, it is straightforward to check that ui is
a convex function. Using this and that M ×R has nonnegative complex sectional
curvature, we deduce that (Mi, gi) := D(Gi) has nonnegative complex sectional
curvature as well.

Notice that Ci−ε can be seen as a subset of Mi for all i > 0, which immediately
implies that (Mi, gi, p0) converges to (M,g, p0) in the Cheeger-Gromov sense. We
now use the short time existence of the Ricci flow on Mi (cf. [24]), and choose
ti > 0 so small that (Mi, gi(ti), p0) still converges to (M,g, p0).

Since Mi is a topological sphere, we can employ Proposition 3.3 to conclude
that KC

gi(ti)
> 0. Thus gi,new = gi(ti) is a solution of our problem. ⊔⊓

4.2. Ricciflowing the approximating sequence. Consider {(Mi, gi, p0)} the
sequence of closed, positively curved manifolds obtained above. For each fixed
i we can construct a Ricci flow (Mi, gi(t)) defined on a maximal time interval
[0, Ti), with Ti < ∞, and such that gi(0) = gi.

4.2.1. A uniform lower bound for the lifespans. The first difficulty to address is
that the curvature of gi will tend to infinity as i → ∞, so it may happen that
the maximal time of existence of the flow Ti goes to zero as i tends to infinity.
Then our next concern is to prove that the times Ti admit a uniform lower bound
Ti ≥ T > 0 for all i. The key to achieve such a goal is to estimate the volume
growth of unit balls around p0. For such an estimate, we make a strong use of

Theorem 4.2 (Petrunin, cf. [37]). Let (Mn, g) be a complete manifold with Kg ≥
−1. Then for any p in M

∫

Bg(p,1)
scalg dµg ≤ Cn,

for some constant Cn depending only on the dimension.

Proposition 4.3. Let (M,g) and (Mi, gi, p0) be as in Proposition 4.1. Then
there exists a constant T > 0, depending on n, and V0 := volg (Bg(p0, 1)) (but
independent of i), such that the Ricci flows (Mi, gi(t)) with gi(0) = gi are defined
on [0,T ], and satisfy KC

gi(t)
> 0 for all t ∈ [0,T ].

Proof. For each i, (Mi, gi) is a closed n-manifold; so the classical short time exis-
tence theorem in [24] ensures that there exists some Ti > 0 and a unique maximal
Ricci flow (Mi, gi(t)) defined on [0, Ti) with gi(0) = gi. Moreover, KC

gi(t)
> 0, since

this is true for t = 0 by Proposition 4.1, and positive complex sectional curvature
is preserved under the Ricci flow (cf. Remark 3.2 (d)).
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Observe that Ricgi(t) > 0 implies Bgi(0)(p0, 1) ⊂ Bgi(t)(p0, 1). Using the evolu-
tion equation of the Riemannian volume element dµgi(t) under the Ricci flow and
applying Theorem 4.2, we get

∂

∂t
volgi(t)

(
Bgi(0)(p0, 1)

)
= −

∫

Bgi(0)
(p0,1)

scalgi(t) dµgi(t) ≥ −Cn. (4.2)

Hence
volgi(t)

(
Bgi(0)(p0, 1)

)
− volgi(0)

(
Bgi(0)(p0, 1)

)
≥ −Cnt. (4.3)

On the other hand, as KC
gi > 0, we know (cf. Remark 3.2 (e)) that the volume

of (Mi, gi(t)) vanishes completely at the maximal time Ti so that

Ti ≥
volgi(0)

(
Bgi(0)(p0, 1)

)

Cn

i→∞−→ volg (Bg(p0, 1))

Cn
=: 2T .

⊔⊓

As a consequence, we obtain a uniform (independent of t and i) lower bound
for the volume of unit balls centered at the soul point:

Corollary 4.4. For the sequence of pointed Ricci flows (Mi, gi(t), p0)t∈[0,T ] from
Proposition 4.3, we can find a constant v0 = v0(n, V0) satisfying

volgi(t)
(
Bgi(t)(p0, 1)

)
≥ v0 > 0 for any t ∈ [0,T ].

Proof. Using again (4.2) and t ≤ T := V0/(2Cn), we obtain

volgi(t)
(
Bgi(t)(p0, 1)

)
≥ volgi(t)

(
Bgi(0)(p0, 1)

)
≥ volgi(0)

(
Bgi(0)(p0, 1)

)
−Cnt

≥ 3

4
V0 − CnT =

V0

4
=: v0 > 0.

⊔⊓

4.2.2. Interior curvature estimates around the soul point. The first step in order
to get a limiting Ricci flow starting on (M,g) from the sequence (Mi, gi(t)) is to
obtain uniform (independent of i, but maybe depending on time and distance to
p0) curvature estimates. We first need an improved version of [35, 11.4]:

Lemma 4.5. Let (Mn, g(t)), t ∈ (−∞, 0] be an open, non-flat ancient solution
of the Ricci flow. Assume further that g(t) has bounded curvature operator, and

that KC

g(t) ≥ 0. Then lim
r→∞

volg(t)(Bg(t)( · ,r))
rn vanishes for all t.

Proof. The k-noncollapsed assumption from 11.4 in [35] was already removed in
[32]. So it only remains to ensure that we can relax Rg(t) ≥ 0 to KC

g(t) ≥ 0. One

can go through the original proof and check that the only instances in which one
needs the full Rg(t) ≥ 0 (instead of just Kg(t) ≥ 0) is when one applies Hamilton’s
trace Harnack inequality (cf. [26]) or Hamilton’s strong maximum principle in
[25]. But under our weaker assumption we can replace them by Brendle’s trace
Harnack in [4] and the strong maximum principle of Brendle and Schoen [6,
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Proposition 9] (see also the Appendix of [47]). The rest of the proof proceeds
verbatim as the original one. ⊔⊓
Proposition 4.6. Consider the Ricci flows (Mi, gi(t)), with t ∈ [0,T ], coming
from Proposition 4.3. For any D > 0 there exists a constant CD > 0 such that

scalgi(t)(x) ≤
CD

t
for all i ≥ 1, x ∈ Bgi(t)(p0,D) and t ∈ (0,T ].

Proof. Assume, on the contrary, that we can find a constant D0 > 0 so that there
exist indices ik ≥ 1 (for brevity, let us denote as (Mk, gk(t)) the corresponding
subsequence (Mik , gik(t))), and sequences of times tk ∈ (0,T ) and points pk ∈
Bk(p0,D0) (hereafter Bk = Bgk(tk), scalk = scalgk(tk) and dk = dgk(tk)) satisfying

scalk(pk) > 4k/tk. (4.4)

Claim 1. We can find a sequence of points {p̄k}k≥k0 which satisfy (4.4) and

scalgk(t)(p) ≤ 8 scalk(p̄k) for all





p ∈ Bk

(
p̄k,

k√
scalk(p̄k)

)
,

t ∈
[
tk − k

scalk(p̄k)
, tk

]

with dk(p̄k, p0) ≤ D0 + 1.

Notice that it is enough to prove

scalk(p) ≤ 4 scalk(p̄k) for all p ∈ Bk

(
p̄k,

k√
scalk(p̄k)

)
, (4.5)

with dk(p̄k, p0) ≤ D0 + 1. In fact, as KC

gk(t)
≥ 0, we can apply the trace Harnack

inequality in [4] (which, in particular, gives ∂
∂t(t scalg(t)) ≥ 0). This yields for any

t ∈
[
tk − k

scalk(p̄k)
, tk

]

scalgk(t) ≤
tk
t
scalk ≤ tk

tk − k/ scalk(p̄k)
scalk < 2 scalk,

where we have used that (4.4) implies k
scalk(p̄k)

< tk
k
4k

< tk
4 .

So our goal is to find p̄k satisfying (4.4) and (4.5). If (4.5) does not hold for
p̄k = pk, it means that there exists a point x1 ∈ Bk

(
pk,

k√
scalk(pk)

)
such that

scalk(x1) > 4 scalk(pk). Next, check if (4.5) holds for p̄k = x1, namely, if

scalk(p) ≤ 4 scalk(x1) for all p ∈ Bk

(
x1,

k√
scalk(x1)

)
.

In case this is not satisfied, we iterate the process and, accordingly, we construct
a sequence of points {xj}j≥2 such that

xj ∈ Bk

(
xj−1,

k√
scalk(xj−1)

)
and scalk(xj) > 4 scalk(xj−1).

Thus (xj)j∈N is a Cauchy sequence and a straightforward computation shows
that it stays in the relatively compact ball Bk(p0,D0 + 1). Because of

lim
j→∞

scalk(xj) = ∞
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this gives a contradiction. In conclusion, there exists ℓ ∈ N such that p̄k can be
taken to be xℓ.

Now from Claim 1 it follows that Bk(p0, r) ⊂ Bk(p̄k, r + D0 + 1). Then for
r ∈ [D0 + 3/2,D0 + 2], using Corollary 4.4 with volk = volgk(tk), we get

volk (Bk(p̄k, r))

rn
≥ volk (Bk(p0, r −D0 − 1))

rn
≥ volk (Bk(p0, 1))

(
r −D0 − 1

r

)n

≥ v0/2
n

(D0 + 2)n
=: ṽ0 > 0.

Next, Bishop-Gromov’s comparison theorem ensures that the above conclusion is
true even for smaller radius:

volk (Bk(p̄k, r))

rn
≥ ṽ0 > 0 for 0 < r ≤ D0 + 2. (4.6)

After a parabolic rescaling of the metric

g̃k(s) = Qkg( · , tk + sQ−1
k ) for Qk = scalk(p̄k) > 4k/T ,

using Kg̃k(s) > 0, Claim 1 says that for k ≥ k0

|R|g̃k(s) ≤ scalg̃k(s) ≤ 8 on Bg̃k(0)(p̄k, k) for all s ∈ [−k, 0]. (4.7)

In addition, as the volume ratio in (4.6) is scale-invariant, we have

volg̃k(0)
(
Bg̃k(0)(p̄k, r)

)

rn
≥ ṽ0 > 0 for 0 < r ≤ (D0 + 2)

√
Qk. (4.8)

Combining this and (4.7) with Theorem C.3 gives

injg̃k(0)(p̄k) ≥ c(n, ṽ0).

Joining the above estimate to (4.7), we are in a position to apply Hamilton’s
compactness (cf. Theorem C.2) to the pointed sequence

(Mk, g̃k(s), p̄k), s ∈ [−k, 0]

to obtain a subsequence converging, in the smooth Cheeger-Gromov sense to a
smooth limit solution of the Ricci flow

(M∞, g∞(t), p∞) t ∈ (−∞, 0]

which is complete, non compact (since the diameter with respect to g̃k(s) tends
to infinity with k because Qk → ∞), non-flat (as scalg∞(0)(p∞) = 1), of bounded

curvature (more precisely, |R|g∞(t) ≤ 8 on M∞ × (−∞, 0]), and with KC

g∞(t) ≥ 0.

Moreover, from (4.8) and volume comparison, we have

ṽ0 ≤
volg∞(0)

(
Bg∞(0)(p∞, r)

)

rn
≤ ωn for all r > 0.

Therefore, the limit of the volume ratio as r → ∞ also lies between two positive
constants, which contradicts Lemma 4.5. ⊔⊓
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4.3. Proof of short time existence for the positively curved case.

Theorem 4.7. Let (Mn, g) be an open manifold with KC
g > 0 (and possibly

unbounded curvature). Then there exists T > 0 and a sequence of closed Ricci
flows (Mi, gi(t), p0)t∈[0,T ] with KC

gi(t)
> 0 which converge in the smooth Cheeger-

Gromov sense to a complete limit solution of the Ricci flow

(M,g∞(t), p0) for t ∈ [0,T ],

with g∞(0) = g.

Proof. Consider the sequence (Mi, gi(t)), with t ∈ [0,T ], coming from Proposition
4.3. Take some convex compact set Cj+1 = β−1((−∞, j + 1]) ⊂ M from the
convex exhaustion endowed with the Riemannian metric g. By the construction
in Proposition 4.1, we can view Cj+1 also as a subset ofMi for i ≥ j+2. Moreover,
the metric gi(0) on Cj+1 converges to g in the C∞ topology. By Proposition 4.6
there is some constant Lj with

|Rgi(t)| ≤
Lj

t on Bgi(t)(Cj+1, 1) for all t ∈ (0,T ] and i ≥ j + 2. (4.9)

Since the metric gi(0) converges on Cj in the C∞ topology to g we can choose
ρ > 0 so small that

|Rgi(0)| ≤ ρ−2 on Cj+1 for i ≥ j + 2. (4.10)

After possibly decreasing ρ we may assume that the ρ-neighborhood of Cj is
contained in Cj+1 with respect to the metric gi(0) for i ≥ j + 2. Combining the
inequalities (4.9) and (4.10) we are now in a position to apply Theorem C.5 in

order to deduce that for some constant L̂j > 0 we have

|Rgi(t)| ≤ L̂j on Cj for all t ∈ [0,T ] and i ≥ j + 2. (4.11)

Combining this with an extension of Shi’s estimate as stated in Theorem C.4,
we reach furthermore

|∇kRgi(t)| ≤ L̂j,k on Cj for all t ∈ [0,T ] and i ≥ j + 2.

From here, by standard arguments as in [28] (see Lemma 2.4 and remarks
after it), we have that the metrics gi(t) on Cj have all space and time derivatives
uniformly bounded. Hence one can apply the Arzelà-Ascoli-Theorem to deduce
that after passing to a subsequence gi(t) converges to g∞(t) in the C∞ topology
on Cj × [0,T ] ⊂ M × R.

Doing this for all j ∈ N and applying the usual diagonal sequence argument we
can, after passing to subsequence, assume that gi(t) converges in the C∞ topology
to a limit metric g∞(t) on Cj× [0,T ] for all j. By construction g∞(t) is a solution
of the Ricci flow on M with initial metric g∞(0) = g. The completeness of g∞(t)
is a consequence of the following Lemma. ⊔⊓
Lemma 4.8. There exists L > 0 such that Bg∞(t)(p0, r) ⊂ Bg∞(0)(p0, 2r+L(t+1))
for all positive r and t ∈ [0,T ].
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Proof. This will follow by proving a uniform estimate for (Mi, gi, p0). Since
(Mi, gi) is the double of a convex set, it has a natural Z2-symmetry which comes
from switching the two copies of the double. As the Ricci flow on closed mani-
folds is unique, this symmetry is preserved by the Ricci flow. Thus the middle
of (Mi, gi(t)), being the fixed point set of an isometry, remains a totally geodesic
hypersurface Ni. It is now fairly easy to estimate how the distance of p0 to Ni

changes in time: Let L1 be a bound on the eigenvalues of the Ricci curvature on
Bgi(t)(p0, 1) for all i and all t ∈ [0,T ].

If c(s) is a minimal geodesic in (Mi, gi(t)) from p0 to Ni then it follows for the
left derivative of ri(t) = dgi(t)(p0, Ni) that

d
dtri(t) ≥ −

∫ ri(t)

0
Ricgi(t)(ċ(s), ċ(s)) ds ≥ −L1 −

∫ ri(t)

1
Ricgi(t)(ċ(s), ċ(s)) ds

≥ −L1 − (n− 1) = −L2,

where we used the second variation formula in the last inequality.

If we put Di = dgi(0)(p0, Ni) then we obtain dgi(t)(p0, Ni) ≥ Di−L2t. Recalling
that dgi(0)(p,Ni) ≥ dgi(t)(p,Ni), for any r > 0 we can find i big enough so that

Bgi(t)(p0, r) ⊂ {p ∈ Ci ∩Mi | dgi(0)(p,Ni) ≥ Di − L2t− r}.
Next recall that β is essentially a smoothing of a Busemann function and by
assumption the level set β−1(i) has Hausdorff distance at most 1 to b−1(ℓi) for a
suitable ℓi. Combining this with the previous inclusion and that we modified the
metric in Ci in a controlled way we deduce

Bgi(t)(p0, r) ⊂
{
p ∈ b−1((−∞, ℓi]) | dgi(0)(p, b−1(ℓi)) ≥ ℓi − L2t− r − L3

}

= b−1
(
(−∞, L3 + r + L2t]

)

where L3 = 3 + diamg(b
−1((−∞, 0])). Finally, applying Lemma A.3 gives

b−1
(
(−∞, L3 + r + L2t]

)
⊂ Bg(0)(p0, 2r + L(1 + t))

for a suitable large L. ⊔⊓

For some of the applications we will need a version of Lemma 4.8 for abstract
solutions of the Ricci flow with KC

g(t) ≥ 0.

Lemma 4.9. Let (M,g(t))t∈[0,T ] be a solution of the Ricci flow with KC

g(t) ≥ 0.

Suppose that (M,g(t)) is complete for t ∈ [0,T ). If p0 ∈ M , then for some C > 0

Bg(t)(p0, R) ⊂ Bg(0)(p,R+ C(1 + t)) for all R ≥ 0, t ∈ [0,T ]

In particular, g(T ) is complete as well.

Proof. There is nothing to prove in the compact case and thus we may as-
sume that (M,g(0)) is open. After rescaling we may assume that the closure
of Bg(T )(p0, 1) is compact and that Kg(t) ≤ 1 on Bg(t)(p0, 1).
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We define bt : M → R by bt(q) := lim supp→∞
(
dg(t)(p, p0)− dg(t)(p, q)

)
. Notice

that similarly to the Busemann function in subsection 3.2 bt is convex, proper
and bounded below. In the sequel d

dt refers to a right hand side Dini derivative.
Similar to the proof of the previous lemma, it suffices to show

Claim. d
dtbt(q) ≥ −4(n − 1) for all q ∈ M .

Choose qk → ∞ with bt(q) = limk→∞ dg(t)(qk, p0)−dg(t)(qk, q). We may assume
that the Busemann function bt is differentiable at qk. Let ck (resp. γk) be a unit
speed geodesic from qk to p0 (resp. to q). We claim that the angle between ċk(0)
and γ̇k(0) converges to 0.

Notice that bt ≥ b̃t, where b̃t is the Busemann function of (M,g(t)) defined with
respect to all rays emanating from p0. Therefore we deduce from Lemma A.3 that
bt(qk) ≥ (1 − δk)d(p0, qk) for some sequence δk → 0. After possibly adjusting δk
we also may assume that bt(qk)−bt(q) ≥ (1−δk)d(q, qk). Since s 7→ bt(ck(s)) and
s 7→ bt(γk(s)) are convex 1-Lipschitz functions, we get that 〈∇bt(qk), ċk(0)〉 ≤
−(1− δk) and 〈∇bt(qk), γ̇k(0)〉 ≤ −(1− δk). Thus 〈ċk(0), γ̇k(0)〉 → 1 as claimed.

By Toponogov triangle comparison theorem d(ck(1), γk(1)) → 0. If we put
q̃k := ck(1), then bt(q) = limk→∞ dg(t)(q̃k, p0)− dg(t)(q̃k, q).

We can now use the second variation formula combined with the curvature
bounds on Bg(t)(p0, 1) to see that d

dtdg(t)(q̃k, p0) ≥ −4(n− 1). Since dg(t)(q̃k, q) is

decreasing in t, we deduce d
dt limk→∞ dg(t)(q̃k, p0)− dg(t)(q̃k, q) ≥ −4(n− 1). This

in turn implies that the right derivative of bt(q) is bounded below by −4(n − 1)
as claimed. ⊔⊓

5. Miscellanea of auxiliary results for the general case

5.1. A splitting theorem for open manifolds with KC ≥ 0.

Theorem 5.1. Let (Mn, g) be an open, simply connected Riemannian manifold
with KC

g ≥ 0. Then M splits isometrically as Σ×F , where Σ is the k-dimensional

soul of M and F is diffeomorphic to R
n−k. In particular, F carries a complete

metric of nonnegative complex sectional curvature.

Proof. By Theorem A.2 due to M. Strake, it is enough to show that the nor-
mal holonomy group of the soul Σ is trivial, which in turn is equivalent (by a
modification of [36, Section 8.4]) to prove

〈R(e1, e2)v1, v2〉 = 0 for all e1, e2 ∈ TpΣ and all v1, v2 ∈ νpΣ.

With such a goal, we look at the curvature tensor on the 4-dimensional space
N = span{e1, e2, v1, v2}, namely, we consider R̃ = R|Λ2N . It is well-known that
one has the orthogonal decomposition Λ2N = Λ2

+ ⊕ Λ2
− into the eigenspaces of

the Hodge star operator ∗ with eigenvalues ±1. This gives a block decomposition

R̃ =

(
A B
tB C

)
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with respect to the bases

{b±1 = e1 ∧ e2 ± v1 ∧ v2, b±2 = e1 ∧ v1 ∓ e2 ∧ v2, b±3 = e1 ∧ v2 ± e2 ∧ v1}
for Λ2

±. By Cheeger and Gromoll [10, Theorem 3.1] the mixed curvatures vanish,

i.e. R̃(ei ∧ vj, ei ∧ vj) = 0. Thus

a22 + a33 + c22 + c33 = 0.

On the other hand, it is well known (cf. [29]) that nonnegative isotropic cur-

vature of R̃ implies that the numbers a22 + a33 and c22 + c33 are nonnegative.
Consequently,

a22 + a33 = 0 = c22 + c33. (5.1)

Since R̃ is a 4-dimensional curvature operator with nonnegative sectional cur-
vature, a result by Thorpe (see e.g. [38, Proposition 3.2]) ensures that we can
find a λ ∈ R such that

R̃ + λ

(
I 0
0 −I

)
=

(
A+ λI B

tB C − λI

)

is a positive semidefinite matrix. Combining this with (5.1), we obtain λ = 0, so

R̃ itself is a nonnegative operator. Then vi ∧ ej are in the kernel of R̃. Finally,
the first Bianchi identity yields

〈R(e1 ∧ e2), v1 ∧ v2〉 = −〈R(v1 ∧ e1), e2 ∧ v2〉 − 〈R(e2 ∧ v1), e1 ∧ v2〉 = 0.

⊔⊓

5.2. Some preliminary estimates for Riccati operators. In the space of
self-adjoint endomorphisms S(Rn), A ≤ B if 〈Av, v〉 ≤ 〈Bv, v〉 for every v ∈ R

n.

Lemma 5.2. Let A(s) ∈ S(Rn) be a nonnegative solution of the Riccati equation

A′(s) +A2(s) +R(s) = 0, (5.2)

with R(s) ≥ 0. Assume also that R and |R′| are bounded for s ∈ [0, 1] by constants
CR and CR′ > 0, respectively. Then there exists A0 ∈ S(Rn) satisfying

A(0) ≥ A0, A0 ≤ CR (5.3)

and we can find an ε0 = ε0(CR, CR′) > 0 so that

〈A0w,w〉 ≥ ε0 〈R(0)w,w〉2 for all w ∈ R
n with |w| = 1. (5.4)

Proof. From (5.2), we can write

A(s)−A(0) = −
∫ s

0

(
A2(ξ) +R(ξ)

)
dξ ≤ −

∫ s

0
R(ξ) dξ.

As this is valid for any s, using A(s) ≥ 0 and R(s) ≥ 0, we conclude

A(0) ≥
∫ ∞

0
R(ξ) dξ ≥

∫ 1

0
R(ξ) dξ =: A0.
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Clearly, A0 ≤ CR. Next, take w ∈ R
n with |w| = 1, define C := max{CR, CR′}

and compute

〈R(s)w,w〉 =
〈(
R(0) + sR′(ξ)

)
w,w

〉
≥ r(0)− C s,

where r(0) = 〈R(0)w,w〉 and r(0)/C ≤ CR/C ≤ 1. This allows to estimate

〈A0w,w〉 =
∫ 1

0
〈R(ξ)w,w〉 dξ ≥

∫ 1

0
max{0, r(0) − Cξ} dξ

≥
∫ r(0)/C

0
(r(0)− Cs) ds =

r(0)2

2C
,

which gives the result taking ε0 =
1
2C . ⊔⊓

Lemma 5.3. Let A(s) ∈ S(Rn) be a solution of (5.2). Suppose that |R(s)| ≤ CR

and |R′(s)| ≤ CR′ for small s. If there exists ε0 > 0 and A0 ∈ S(Rn) satisfying
(5.3) and (5.4), then we can find an s0 = s0(CR) > 0 such that

A(s) ≥ −Cs2 Id for all s ∈ (0, s0], (5.5)

for some C = C(CR, CR′) > 0.

Proof. Using Riccati comparison (see e.g. [17]) we can assume without loss of
generality that A(0) = A0. Next, we do a Taylor expansion for A and use (5.2)
at s = 0:

A(s) ≥ A(0) + sA′(0)− C s2 Id ≥ A(0)− s(A(0)2 +R(0)) −C s2 Id

≥ (1− sCR)A0 − sR(0)−Cs2 Id,

which comes from (5.3). Notice that C depends on CR and CR′ . Choose now any
w ∈ R

n with |w| = 1. Then, for s ≤ 1
2CR

=: s0, our assumption (5.4) yields

〈A(s)w,w〉 ≥ 1

2
〈A0w,w〉 − s 〈R(0)w,w〉 − Cs2 ≥ 1

2
ε0r(0)

2 − sr(0)− Cs2

=

(√
ε0
2
r(0)− s√

2ε0

)2

−
(
C +

1

2ε0

)
s2 ≥ −C̃(ε0, C) s2.

⊔⊓

5.3. Curvature estimates in terms of volume. It will be useful for technical
purposes to have in mind the following

Lemma 5.4. Let (Mn, g) be a Riemannian manifold with Kg ≥ −Λ2 ≥ −1.
Then there is a constant C depending on n such that

volg (Bg(p,R))

volg (Bg(p, r))
≤

(
R

r

)n

(1 + C(ΛR)2)

for all p ∈ M and all 0 < r ≤ R ≤ 2.
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Proof. Let us use the Taylor expansion for sinh ρ, with 0 ≤ ρ ≤ 2, to deduce

ρm ≤ (sinh ρ)m =

( ∞∑

j=0

ρ2j+1

(2j + 1)!

)m

≤ ρm(1 + C̃ρ2)m = ρm
m∑

j=0

(
m
j

)
(C̃ρ2)j

≤ ρm(1 + Cρ2).

Now Bishop-Gromov’s comparison theorem says that

volg (Bg(p,R))

volg (Bg(p, r))
≤

∫ R

0
[sinh(Λρ)]n−1 dρ

∫ r

0
[sinh(Λρ)]n−1 dρ

≤

∫ R

0
(Λρ)n−1(1 + C(Λρ)2) dρ

∫ r

0
(Λρ)n−1 dρ

≤ (ΛR)n/(Λn) + C(ΛR)n+2/(Λ(n + 2))

(Λr)n/(Λn)
≤ Rn

rn
(1 + C(ΛR)2).

⊔⊓

Proposition 5.5. For any ε > 0 we can find positive constants δ, κ, T such that
if (Mn, g(t)) is a compact Ricci flow with

Kg(t) ≥ −κ on [0, t̄] and
volg(0)Bg(0)(·, r)

rn
≥ (1− δ)ωn,

for some r ∈ (0, 1], then

|R|g(t) ≤
ε

t
on [0, t̄] ∩ [0, r2T (ε)]. (5.6)

Proof. By rescaling it suffices to prove the statement for r = 1. Arguing by
contradiction, suppose that there is an ε > 0 and a sequence of Ricci flows
(Mi, gi(t)) defined on [0, t̄i] satisfying

Kgi(t) ≥ − 1

(n− 1)i
and volgi(0)Bgi(0)(p, 1) ≥

(
1− 1

i

)
ωn (5.7)

for all p ∈ Mi and all i. But assume that we can also find a sequence of points
and times {(pi, ti)} such that

Qi := |R|gi(ti)(pi) = max
q∈Mi

|R|gi(ti)(q) > ε/ti with ti → 0. (5.8)

Next, we aim to show that the volume estimate in (5.7) survives for some time.
From (5.7) and the evolution of dgi(t) under (1.1), we deduce that

Bgi(t)

(
p, et/i

)
⊂ Bgi(t+τ)

(
p, e(t+τ)/i

)
for all 0 ≤ t < t+ τ ≤ t̄i.
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Accordingly

∂

∂t
volgi(t)

(
Bgi(t)(p, e

t/i)
)

≥ ∂

∂τ

∣∣∣∣
τ=0

volgi(t+τ)

(
Bgi(t)(p, e

t/i)
)

= −
∫

Bgi(t)
(p, et/i)

scalgi(t) dµgi(t)

≥ −Cne
(n−2)t/i,

which follows from Petrunin’s estimate (cf. Theorem 4.2). This leads to

volgi(t)
(
Bgi(t)(p, e

t/i)
)
≥ volgi(0)

(
Bgi(0)(p, 1)

)
−Cne

(n−2)t/i t ≥ (1− ηi)ωn

for all t ∈ [0, ti] and with ηi → 0. Next, we can apply Lemma 5.4 to conclude

volgi(t)
(
Bgi(t)(p, r)

)
≥ 1

1+C e2t/i

i

(
r

et/i

)n
volgi(t)

(
Bgi(t)(p, e

t/i)
)

≥ e−nti/i

1+C e2ti/i

i

(1− ηi)r
nωn

= (1− µi)r
nωn (5.9)

for all 0 < r ≤ et/i, t ∈ [0, ti] with µi → 0.

Now consider the rescaled solution to the Ricci flow ḡi(t) = Qig(ti + t/Qi).
Doing a time-picking argument, we can assume without loss of generality that

|R|ḡi(t) ≤ 4 on Bḡi(0)(pi, 2) and t ∈ [−tiQi/2, 0] ⊃ [−ε/2, 0],

where the latter is true by (5.8). In addition,

|R|ḡi(0)(pi) = 1. (5.10)

A standard application of Shi’s derivative estimates gives on Bḡi(0)(pi, 1)

|∇ℓR|ḡi(t) ≤
C(n, ℓ)

(t+ ε/2)ℓ/2
; in particular |∇ℓR|ḡi(0) ≤ C(n, ℓ, ε). (5.11)

After passing to a subsequence we may assume that Bḡi(0)(pi, 1) converges to
a nonnegatively curved limit ball Bḡ∞(p∞, 1) satisfying (5.10) and (5.11). In
particular volḡ∞(Bḡ∞(p∞, 1)) < ωn. On the other hand, it is immediate from
(5.9) that volḡ∞(Bḡ∞(p∞, 1)) ≥ ωn – a contradiction. ⊔⊓

5.4. Smoothing C
1,1 hypersurfaces.

Lemma 5.6. Let Mn be a smooth Riemannian manifold, H a C1,1 hypersurface,
and N a unit normal field. Suppose we have bounds C1 ≤ AH ≤ C2 on the
principal curvatures of H in the support sense. Then we can find a sequence of
smooth hypersurfaces Hi converging in the C1-topology to H such that C1 − 1

i ≤
AHi ≤ C2 +

1
i . If H is invariant under the isometric action of a compact Lie

group G on M , then one can assume in addition that Hi is invariant under the
action as well.
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Proof. First, we give the proof in the case of a compact hypersurface.

We consider a small tubular neighborhood U = Br0(H) of H. By assumption
U \ H has two components U+ and U−. We consider the function f : U → R

which is defined on U+∪H as the distance to H and on U− as minus the distance
to H. Clearly f is a C1,1-function. Moreover, it is easy to deduce that for each
ε we can find r such that

C1 − ε ≤ ∇2f ≤ C2 + ε on Br(H)

holds in the support sense. Furthermore, we know of course |∇f | ≡ 1. Now it is
not hard to see that for each ε > 0 we can find a smooth function fε on Br/2(H)
satisfying

C1 − 2ε ≤ ∇2fε ≤ C2 + 2ε and

|fε − f |+ |∇f −∇fε| ≤ min{ε, r/10} on Br/2(H).

It is now straightforward to check that for εi =
1

10i(|C1|+|C2|+1) we can put Hi :=

f−1
εi (0) and check the claimed bounds on the principal curvatures of Hi.

If H is invariant under the isometric action of a compact Lie group G, then
f(gp) = f(p) for all p ∈ H. By putting f̃ε(p) :=

1
vol(G)

∫
G
fε(gp) dµ(g) we obtain

a G-invariant function with the same bounds on the Hessian as fε. We can then
define Hi as before.

If the hypersurface is not compact one uses a (G-invariant) compact exhaustion
and argues as before. ⊔⊓

6. The general case

6.1. Estimates on the Hessian of the squared distance function.

Proposition 6.1. Let (Mn, g) be an open manifold with Kg ≥ 0, let Cℓ be a
sublevel set of the Busemann function (see subsection 3.2), and p ∈ ∂Cℓ. For
each unit normal vector v ∈ NpCℓ there is a smooth hypersurface S supporting
∂Cℓ at p from the outside such that TpS is given by the orthogonal complement
of v, and the second fundamental form A of S satisfies

u ≥ 〈Avw,w〉 ≥ cR(w, v, v, w)2 for all w ∈ TpS with |w| = 1, (6.1)

for some positive constants c and u depending on Cℓ.

Proof. We fix r > 0 smaller than a quarter of the convexity radius of Cℓ+r.
Proposition B.1 by Yim ensures that any element of NpCℓ can be obtained, up
to scaling, as (hereafter we use Einstein sum convention)

αiui with |ui| = 1, α0 + . . .+ αk = 1 and αi ≥ 0,

where each ui ∈ span(TpCℓ) is such that γi(s) = expp(sui) is the minimal geo-
desic from p to a point of ∂Cℓ+2r. As dim(Cℓ) = n, we can choose k ≤ n by
Carathéodory’s Theorem (cf. [39]).



20 ESTHER CABEZAS-RIVAS AND BURKHARD WILKING

Consider qi := γi(r) ∈ Cℓ+r and the hyperplane Vi ⊂ TqiM perpendicular to
γ′i(r). Since γ′i(r) ∈ NqiCℓ+r it follows that Hi := exp(Br(0) ∩ Vi) is a smooth
hypersurface supporting Cℓ+r from the outside.

Then ϕi := r+ℓ−d(Hi, ·) is a lower support function of the Busemann function
b at p (which can be seen using e.g. Lemma A.4 by Wu). Note that ∇2ϕi|γi(s) is
a positive semidefinite solution of a Riccati equation for s ∈ [0, r]. So we clearly
have upper bounds (just depending on Cℓ) for ∇2ϕi|p. Lemma 5.2 now yields

∇2ϕi|p(w,w) ≥ ε0R(w, ui, ui, w)
2 (6.2)

for all unit vectors w ∈ TpM .

As mentioned above there is some λ > 0 such that λv = αiui with
∑

i αi = 1.
Define φ = αiϕi, which is a function whose gradient is λv. Since it is a convex
combination of lower support functions for b at p, φ is also a lower support
function for b at p; therefore, b−1 ((−∞, ℓ]) ∩ Br(p) ⊂ φ−1 ((−∞, ℓ]) ∩ Br(p).
Consequently, if we define S as the level set φ−1(ℓ)∩Br(p), then TpS is orthogonal
to v and S supports Cℓ at p from the outside. Moreover, the second fundamental
form of S at p is proportional to ∇2φ|p, and from (6.2) we have

∇2φ|p(w,w) = αi∇2ϕi|p(w,w) ≥ ε0 α
iRw(ui, ui)

2. (6.3)

Next, using Kg(αiui − αjuj , w) ≥ 0 we can estimate the curvature:

Rw(α
iui, α

juj) ≤
1

2

∑

i,j

(
α2
iRw(ui, ui) + α2

jRw(uj , uj)
)
≤ (n+ 1)(αi)2Rw(ui, ui).

Now, combining a discrete version of Hölder’s inequality applied to (6.3), that
αi ≤ 1 and the above computation, we reach

∇2φ|p(w,w) ≥
ε0

n+ 1

(∑

i

√
αiRw(ui, ui)

)2
≥ ε0

n+ 1

(∑

i

α2
i Rw(ui, ui)

)2

≥ ε0
(n+ 1)2

Rw(α
iui, α

juj)
2 = c(n, ε0)Rαiui

(w,w)2.

Finally, the statement follows since the second fundamental form of S satisfies
〈Avw,w〉 ≥ c(n, ε0)λ

3Rv(w,w)
2, and it is easy to see that λ is bounded below by

a constant just depending on Cℓ. ⊔⊓
Corollary 6.2. Consider (Mn, g) and C = Cℓ as in Proposition 6.1. Then there
exists a neighborhood U of Cℓ such that f = d2(·, C) is a C1,1 function on U and
satisfies the following estimates

−λf3/2 ≤ ∇2f ≤ 2 on U (6.4)

in the support sense, for some positive constant λ = λ(C).

Proof. By a result of Walter (see Theorem B.3) we can find a tubular neighbor-
hood U of C, such that f is C1,1 on U .
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Let q ∈ U and let p ∈ ∂C denote a point with d(q, p) = d(q, C). Clearly d(·, p)2
is an upper support function of f at q and thus ∇2f |q ≤ 2.

In order to get the lower bound, we consider a minimal unit speed geodesic
γ(s) from p to q. The initial direction v = γ′(0) is a normal vector, and by
Proposition 6.1 we can find a hypersurface S touching C from the outside at p
such that TpS is normal to v, and the second fundamental form of S is bounded
by u ≥ 〈Avw,w〉 ≥ cR(v,w,w, v)2 for any unit vector w.

Notice that a2 := d(S, ·)2 is a lower support function of f at q. Since A(s) =
∇2a|γ(s) satisfies a Riccati equation with A(0) = Av, we can employ Lemma 5.3
(for which we can take A0 = Av, since the latter is bounded above) to conclude

A(s) ≥ −Cs2. Consequently, ∇2f |q ≥ −2C a(q) d(p, q)2 = −2Cf3/2(q). ⊔⊓

6.2. A sequence of graphical sets with controlled curvatures. For any
r > 0 and any set S ⊂ M consider the tubular neighborhood Br(S) = ∪p∈SBr(p).

Proposition 6.3. Let C ⊂ (Mn, g) be a sublevel set of the Busemann function
(see subsection 3.2). Then we can construct a sequence {Dk}∞k=1 of C∞ closed
hypersurfaces of B1(C) × [0, 1] which converges in the Gromov-Hausdorff sense
to the double of C, and whose principal curvatures λi satisfy

− b

k2
≤ λi ≤ B k (6.5)

for all 1 ≤ i ≤ n and some positive constants b,B depending on C. Hence, if we
endow Dk with the induced Riemannian metric gk, we get the curvature estimates

− b̃

k
≤ KC

gk
and |Rgk | ≤ B̃k2 on Dk. (6.6)

Proof. In a first important step we will construct a closed C1,1 hypersurface
Dk so that (6.5) holds for its principal curvatures in the support sense. Define
φk = 1

k φ(k
2f), where as before f = d2( · , C) and φ : [0, 1] → [0, 1] is a smooth

function satisfying

(a) φ ≡ 0 on [0, 1/4] and φ(1) = 1;
(b) on (1/4, 1): φ′, φ′′ are positive and φ′′ ≤ α(φ′)3 for some finite α > 0;
(c) φ−1 has all left derivatives vanishing at 1.

Notice that (c) implies that φ′ and φ′′ tend to infinity at 1. Hereafter, φ, φ′ and
φ′′ will always be evaluated at k2f (without saying it explicitly).

Consider the tubular neighborhood U from Corollary 6.2, and take

Gk = {(p, φk(p)) : p ∈ B1/k(C) ∩ U}
which is a hypersurface of the cylinder B1(C)× [0, 1/k]. Observe that by (a) Gk

can be written as the union of
(
B1/(2k)(C) ∩ U

)
× {0} (which is totally geodesic

in the cylinder) and the graphical annulus

Ak =
{
(p, φk(p)) : p ∈ U and 1

2k ≤ d(p,C) ≤ 1
k

}
(6.7)
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whose second fundamental form h is given by

h =
∇2φk√

1 + |∇φk|2
, where

∇φk = k φ′∇f = 2kφ′d∇d

∇2φk = k3φ′′∇f ⊗∇f + k φ′∇2f

We need to estimate the principal curvatures of Ak to prove (6.5). With such
a goal, take e1 = ∇d√

1+〈∇d,∇φk〉2
and complete to form a basis {ei} orthonormal

with respect to the metric induced on the graph g̃ = g +∇φk ⊗∇φk, and which
diagonalizes h. Notice that

k3φ′′ 〈∇f, e1〉2√
1 + (2 k φ′ d)2

≤ k2

2d

φ′′

φ′
〈∇f,∇d〉2

1 + 〈∇d,∇φk〉2
≤ k2

2d

φ′′

(φ′)3
1

k2
≤ α

2d

and

Λ :=
k φ′∇2f(ei, ei)√
1 + (2 k φ′ d)2

≤ 1

2d
∇2f(ei, ei) ≤

1

d
,

which comes from (6.4). Therefore, from (6.7) we obtain λi ≤ α k + 2k =: Bk.

On the other hand, using φ′′ ≥ 0, (6.4) and (6.7), we have

λi = h(ei, ei) ≥ Λ ≥ −λ f3/2 1

2d
= −λ

2
d2 ≥ − λ

2k2
.

All the previous computations are true at almost every point of Ak, since
Corollary 6.2 ensures that f is C1,1 on U and thus twice differentiable almost
everywhere. At the remaining points all the above estimates are still valid in the
support sense (just redo the proof substituting f by its support functions).

Clearly the hypersurfaces Dk = D(Gk) converge in the Gromov-Hausdorff
sense to the double D(C) of the convex set C. Employing Lemma 5.6, after

increasing b and B slightly, we can find a smooth hypersurface D̃k which is C1

close to Dk such that the estimate (6.5) remains valid. Clearly we can assume

that D̃k still converges to D(C). Finally, rename Dk = D̃k, and notice that (6.6)
now follows from (6.5) and the Gauß equations. ⊔⊓

Observe that each (Dk, gk) constructed above is not anymore nonnegatively
curved, but we have a precise control of its curvature given by (6.6). Using the
short time existence theory from [24], we have the following immediate

Corollary 6.4. There exists Tk > 0 such that (Dk, gk(t)) is a sequence of so-
lutions to the Ricci flow for t ∈ [0, Tk) starting at the smooth closed manifolds
(Dk, gk) from Proposition 6.3.

6.3. Curvature estimates for the Ricci flow of our initial sequence of
smoothings. We consider a fixed convex exhaustion Cℓ = b−1((−∞, ℓ]) as in
subsection 3.2. For each Cℓ we apply Proposition 6.3 with C = Cℓ, let (Dℓ,k, gℓ,k(t))
denote the Ricci flow from Corollary 6.4 and put gℓ,k = gℓ,k(0). Moreover, when
a constant B depends on Cℓ we will write Bℓ to denote B(Cℓ).
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Our next concern is to extend the curvature estimates in (6.6) at least for a
short interval of time, where the important point is that the length of such an
interval is independent of k. It is somewhat surprising that we can only prove
this if ℓ is large enough. Ultimately this in turn is due to the following

Lemma 6.5. Let (Dℓ,k, gℓ,k) be the closed smooth manifolds constructed in Propo-
sition 6.3, and take p ∈ Dℓ,k. Then we can find r = r(ℓ) ∈ (0, 1] (possibly
converging to 0 with ℓ → ∞) and ηℓ → 0 independent of k such that

volgℓ,k
(
Bgℓ,k(p, r)

)

rn
≥ (1− ηℓ)ωn for all k. (6.8)

Proof. As the manifolds (Dℓ,k, gℓ,k) converge to the double D(Cℓ) of Cℓ in the
Gromov-Hausdorff sense, the continuity of volumes (see e.g. [9, Theorem 5.9]
by Cheeger and Colding) gives limk→∞ volgℓ,k

(
Bgℓ,k(pk, r)

)
= Hn

D(Cℓ)
(B(p∞, r)).

Thus it suffices to prove that small balls in D(Cℓ) have nearly Euclidean volume
provided that ℓ is large.

This essentially follows from Lemma B.2 by Guijarro and Kapovitch which
ensures that, for p ∈ ∂Cℓ with large ℓ, TpCℓ is close to a half-space, and so
vol{v ∈ TpCℓ : |v| < r} = 1

2(ωn − εℓ)r
n with εℓ → 0 as ℓ → ∞. As Cℓ is a convex

set in a Riemannian manifold, we can find for each p ∈ D(Cℓ) a number r(p) small
enough so that the volume of a geodesic ball B(p, r) in D(Cℓ) is ≥ (ωn−2εℓ)r(p)

n.

To remove the dependence on p, we choose a finite subcover
⋃k

i=1 B(pi, εℓ ri) of⋃
p∈D(Cℓ)

B(p, εℓ r(p)), where ri = r(pi) and we take r0 = mini ri. Then any q ∈
D(Cℓ) is contained in B(pi, εℓ ri) for some i. Notice that B(pi, ri) ⊂ B(q, (1+εℓ)ri)
and thus vol (B(q, (1 + εℓ)ri)) ≥ (ωn − 2εℓ)r

n
i . Finally, apply volume comparison

to get vol(B(q,r0))
rn0

≥ ωn−2εℓ
(1+εℓ)n

. ⊔⊓

Proposition 6.6. There exists some ℓ0 > 0 and for each ℓ ≥ ℓ0 exists a time
Tℓ > 0 (independent of k) such that for the Ricci flow (Dℓ,k, gℓ,k(t)) constructed
in Corollary 6.4 we have

KC

gℓ,k(t)
≥ − 1√

k
and |R|gℓ,k(t) ≤

1

t
(6.9)

for all t ∈ (0, Tℓ] and all sufficiently large k.

Proof. Unless otherwise stated, all the curvature quantities hereafter correspond
to gℓ,k(t). We consider a maximal solution (Dℓ,k, gℓ,k(t)) of the Ricci flow with
t ∈ [0, Tℓ,k). By (6.6) there is some constant Bℓ such that

KC(0) ≥ −Bℓ
k , and |R(0)| ≤ Bℓ k

2. (6.10)

Henceforth we will restrict our attention to k ≥ 4B2
ℓ .

We define tℓ,k as the minimal time for which we can find some complex plane

σ in TCDℓ,k with KC(tℓ,k)(σ) = − 1√
k
. If such a time does not exist, we put
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tℓ,k = Tℓ,k. In particular, we have for the usual sectional curvature

K(t) ≥ − 1√
k

for all t ∈ [0, tℓ,k]. (6.11)

We put
u(t) := 4n(|R(t)| + 1).

Using the initial estimate (6.10) it is not hard to obtain a doubling estimate for
u(t). In fact, the application of [14, Lemma 6.1] gives

u(t) ≤ Lℓ k
2 for all t ∈

[
0, 1

Lℓk2

]
(6.12)

for some positive constant Lℓ.

By Lemma 6.5, for any δ > 0 we can find an ℓ0 such that for each ℓ ≥ ℓ0 there
is r = r(ℓ) with volg(0)(Bg(0)(p, r)) ≥ (1 − δ) rnωn. Combining this with (6.11)
and Proposition 5.5 we deduce that, for ℓ ≥ ℓ0, there is some t̄ℓ and k0 = k0(ℓ)
such that

u(t) ≤ 1

10t
for all t ∈ [0, tℓ,k] ∩ [0, t̄ℓ] and all k ≥ k0. (6.13)

Thus the inequalities (6.9) hold for t ∈ [0, tℓ,k]∩ [0, t̄ℓ] and it suffices to check that
tℓ,k is bounded away from 0 for k → ∞. In particular, it is enough to consider
hereafter k ≥ k0 with tℓ,k < min{Tℓ,k, t̄ℓ}.

In order to get a lower bound on tℓ,k we have to estimate KC(t) from below.

Consider the algebraic curvature operator R̃ := R + λ(t)I, where Iijkl = δikδjl −
δilδjk represents the curvature operator of the standard unit sphere, and λ(t) ≥ 0.

Under the Ricci flow, R̃ evolves according to
(

∂

∂t
−∆

)
R̃ = λ′(t)I + 2(R2 +R♯).

Next, recall the formula (cf. [2, Lemma 2.1])

(R + λI)2 + (R + λI)♯ = R2 +R♯ + 2λRic ∧ id + λ2(n− 1) I.

It is easy to see that

2Ric ∧ id + λ(n − 1) I ≤ u(t)
2 I

holds provided that λ ≤ 1. We reach
(

∂

∂t
−∆

)
R̃ ≥ 2

(
R̃2 + R̃♯

)
+

[
λ′(t)− λ(t)u(t)

]
I.

As the ODE R′ = R2+R# preserves KC ≥ 0, we can use the maximum principle
to ensure that: If we define λ(t) as the solution of the initial value problem

λ′(t) = λ(t)u(t)

λ(0) = Bℓ
k (from (6.10))

,

it follows that R̃(t) has nonnegative complex sectional curvature for t ∈ [0, tℓ,k].
Hence

KC(t) ≥ −Bℓ
k e

∫ t
0
u(τ)dτ for all t ∈ [0, tℓ,k].
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Combining this with (6.12) and (6.13) we deduce

KC(t) ≥ −e Bℓ
k for t ∈

[
0, 1

k2Lℓ

]
∩ [0, tℓ,k], and

KC(t) ≥ −e Bℓ
k

(
Lℓk

2t
) 1

10 for t ∈
[

1
k2Lℓ

, tℓ,k
]
.

Using that by construction the minimum of KC(tℓ,k) is given by − 1√
k
, we obtain

the desired uniform lower bound on tℓ,k.

⊔⊓

6.4. Reduction to the positively curved case. We have the following im-
provement of Proposition 4.1.

Proposition 6.7. Let (Mn, g) be an open manifold with KC
g ≥ 0 whose soul is

a point p0. Then there is a sequence of closed manifolds (Mi, gi, p0) with KC
gi > 0

converging in the Cheeger-Gromov sense to (M,g, p0).

Proof. Consider the sets Cℓ = {b ≤ ℓ} from subsection 3.2. Summing up, from
Proposition 6.3 and Corollary 6.4 we have a sequence (Dℓ,k, gℓ,k(t)) of Ricci flows
satisfying (6.9) on (0, Tℓ] for all ℓ ≥ ℓ0. Using Petrunin’s result (Theorem 4.2)
similar to the proof of Proposition 5.5, we see that the volume estimate (6.8)
remains valid for (Dℓ,k, gℓ,k(t)) provided we double the constant ηℓ and we assume
t ∈ [0, tℓ]. This, combined with (6.9), allows to apply Theorem C.3 by Cheeger,
Gromov and Taylor to reach a uniform lower bound for the injectivity radius
injgℓ,k(t̄) ≥ c(ℓ, t̄), for any t̄ ∈ (0, tℓ].

Then, we can apply Hamilton’s compactness (Theorem C.2) to get a compact
limiting Ricci flow (Dℓ,∞, gℓ,∞(t)) on (0, Tℓ] with KC

gℓ,∞(t) ≥ 0. Arguing e.g. as

in [43, Theorem 9.2], we deduce that (Dℓ,∞, dgℓ,∞(t)) converges (in the Gromov-

Hausdorff sense as t → 0) to (D(Cℓ), dgℓ); in particular, Dℓ,∞ is homeomorphic

to the sphere D(Cℓ). By Proposition 3.3 KC

gℓ,∞(t) > 0 for all t ∈ (0, Tℓ].

On the other hand, for any ε > 0 we can view Cℓ−ε as a subset of Dℓ,k for all
k ∈ N ∪∞. Combining Theorem C.5 and a generalization of Shi’s estimate (see
Theorem C.4) with (6.9) we see that on Cℓ−ε the metric gℓ,∞(t) converges for
t → 0 in the C∞ topology to g. We choose tℓ so close to zero that (Cℓ−ε, gℓ,∞(tℓ))
converges in the C∞ topology to (M,g, p0) as ℓ → ∞. ⊔⊓

If the soul of the manifold of Theorem 1 is a point, one can now deduce the con-
clusion of Theorem 1 completely analogously to Section 4 using Proposition 6.7
in place of Proposition 4.1.

Proof of Theorem 1. If M is not simply connected, we consider its universal

cover M̃ . The goal is to construct a Ricci flow (M̃, g(t)) on M̃ for which each

g(t) is invariant under Iso(M̃ , g(0)). By Theorem 2, M̃ splits isometrically as
Σk × F , where Σ is closed and F is diffeomorphic to R

n−k with KC
gF

≥ 0. By

[10, Corollary 6.2] of Cheeger and Gromoll F splits isometrically as F = R
q ×F ′
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where R
q is flat and F ′ has a compact isometry group. Clearly there is a Ricci

flow (Rq×Σ, g(t)) which is invariant under Iso(Rq×Σ) and thus it suffices to find
a Ricci flow (F ′, g(t)) which is invariant under Iso(F ′). Using [10, Corollary 6.3]
by Cheeger and Gromoll, we can find o ∈ F ′ which is a fixed point of Iso(F ′). We
now define the Busemann function on F ′ with respect to this base point. Then
all sublevel sets Cℓ, the doubles D(Cℓ) and the smoothings of the double Dℓ,k

come with a natural isometric action of Iso(F ′).

Since the Ricci flow on compact Riemannian manifolds is unique, the Ricci
flow (Dℓ,k, gℓ,k(t)) is invariant under Iso(F ′); hence the same holds for the limit
(Dℓ,∞, gℓ,∞(t)), and finally for the limiting Ricci flow on F ′.

In summary, there is a Ricci flow (M̃, g(t)) with KC

g(t) ≥ 0 which is invariant

under Iso(M̃ , g(0)) and so descends to a solution on M . ⊔⊓

7. Applications

7.1. Proof of Corollary 3. Arguing as before, it is enough to consider the case
where the soul is a point. Redoing the arguments from the proof of Proposition
4.3 and using (1.2), we deduce that our Ricci flow exists until time T = v0

2Cn
.

Plugging this and (1.2) into a reasoning like in Corollary 4.4, we reach

volg(t)
(
Bg(t)(p, r)

)

rn
≥ v0

2
> 0 for r ∈ (0, 1], p ∈ M, t ∈ [0,T ]. (7.1)

Now assume that the claim about bounded curvature does not hold, i.e., there
exists a sequence of Ricci flows (Mi, gi(t)) constructed as in Theorem 1 (in par-
ticular, KC

gi(t)
≥ 0 and (Mi, gi(t)) satisfies a trace Harnack inequality) and points

(pi, ti) ∈ Mi×(0,T ) with scalgi(ti) > 4i/ti. By means of a point picking argument
as in the proof of Proposition 4.6 on the relatively compact set Bgi(ti)(pi, 1), we
get a sequence of points {p̄i}i≥i0 such that, after parabolic rescaling of the metric
with factor Qi = scalgi(ti)(p̄i), we get for the rescaled metric g̃i(s)

|R|g̃i(s) ≤ 8 on Bg̃i(0)(p̄i, i) for s ∈ [−i, 0].

By the scaling invariance of (7.1), the corresponding estimate holds with
Bg̃i(0)(p̄i, r) for any 0 < r ≤ √

Qi. The rest of the proof goes exactly as the
remaining steps in the proof of Proposition 4.6.

7.2. Estimates for the extinction time. We first need a scale invariant version
of Petrunin’s estimate (Theorem 4.2).

Lemma 7.1. Let (Mn, g) be an open manifold with Kg ≥ 0. Then for any p ∈ M
and r > 0, there exists a constant Cn > 0 such that

∫

Bg(p,r)
scalg dµg ≤ Cn r

n−2.
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Proof. For any r > 0, consider the rescaled metric g̃ = 1
r2
g. SinceKg̃ = 1

r2
Kg ≥ 0,

we are in position to apply Theorem 4.2 to (M, g̃) which gives

Cn ≥
∫

Bg̃(p,1)
scalg̃ dµg̃ =

∫

Bg(p,r)
r2−n scalg dµg,

where for the last equality we have used the identities dµg̃ = r−n dµg, scalg̃ =
r2 scalg and Bg̃(p, 1) = Bg(p, r). ⊔⊓
Lemma 7.2. Suppose (Mn, g(t))t∈[0,T ) is a maximal solution of the Ricci flow

with KC

g(t) ≥ 0. If T < ∞, then

lim sup
t→T

sup
{

volg(t)(Bg(t)(p,r))

rn−2 | p ∈ M, r > 0
}
= 0.

Proof. We assume on the contrary that we can find v0 > 0, xj ∈ M , tj → T

and rj > 0 satisfying volg(tj )(Bg(tj )(xj , rj)) ≥ v0r
n−2
j . We fix some (x̄, t̄, r̄) =

(xj0 , tj0 , rj0) with (T − t̄) ≤ v0
2Cn

, where Cn is the constant in Lemma 7.1.

Now we can use Petrunin’s result as in Lemma 7.1 in order to estimate

volg(t)(Bg(t)(p̄, r̄)) ≥ volg(t)(Bg(t̄)(p̄, r̄))

≥ (v0 − Cn(t− t̄))r̄n−2 ≥ v0
2 r̄

n−2 for t ∈ [t̄,T ).

This in turn allows us to prove, similarly to Proposition 4.6, that for each D
there is a CD with

|Rg(t)| ≤ CD on Bg(t)(p̄,D), t ∈
[
t̄,T

)
.

As in the proof of Theorem 4.7 we get also bounds on the derivatives of Rg(t). This
in turn shows that g(t) converges smoothly to a smooth limit metric g(T ). By
Lemma 4.9 g(T ) is complete and thus we can extend the Ricci flow by applying
Theorem 1 to (M,g(T )) – a contradiction. ⊔⊓

Proof of Corollary 5. Consider a maximal Ricci flow (M,g(t))t∈[0,T ) withKC ≥
0 and suppose on the contrary that

T < 1
Cn

sup
{

volg(0)(Bg(0)(p,r))
rn−2 | p ∈ M, r > 0

}
,

where Cn is the constant from Lemma 7.1.

By assumption we can choose r > 0 and p ∈ M with

volg(0)
(
Bg(0)(p, r)

)
> CnTr

n−2.

Using Petrunin’s estimate (as restated in Lemma 7.1) we deduce

volg(t)
(
Bg(t)(p, r)

)
≥ volg(t)

(
Bg(0)(p, r)

)
> Cn(T − t) rn−2.

Combining with Lemma 7.2 this gives a contradiction.

⊔⊓
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Proof of Corollary 6. Any open nonnegatively curved manifold with a two di-
mensional soul Σ is locally isometric to Σ × R and the Ricci flow exists exactly

until area(Σ)
4πχ(Σ) ∈ (0,∞]. If dim(Σ) = 1, then the universal cover splits off a line and

Corollary 5 ensures the existence of an immortal solution. So it only remains to
consider the case that the soul is a point.

If T < ∞, using Corollary 5 we know that

lim sup
r→∞

volg(Bg(p,r))
r = L < ∞.

By Lemma A.3 there is a sequence ηi ց 1 such that for a base point o ∈ M the
following holds

Bg(o, i) ⊂ Ci ⊂ Bg(o, iηi) for all i ≥ 1,

where Ci is the sublevel set b−1((−∞, i]) of the Busemann function at o (see

subsection 3.2). In particular,
volg(Ci)

volg(Bg(o,i))
→ 1.

Clearly vol(Ci) = vol(C0) +
∫ i
0 area(∂Ct) dt. Moreover, by work of Sharafutdi-

nov (see e.g. [49, Theorem 2.3]) there is an 1-Lipschitz map ∂Cb → ∂Ca for a ≤ b.
Accordingly, the area of ∂Ci is monotonously increasing and thus

0 < lim
r→∞

area(∂Cr) = lim
r→∞

volg(Bg(p,r))
r = L.

This yields that D := limr→∞ diam(∂Cr) < ∞. In fact, suppose for a moment
D = ∞. Choose a > 0 so large that area(∂Ca) ≥ 3

4L. Since diam(∂Cr) tends
to infinity while the area converges to L, we can find for each ε > 0 an r and a
circle of length ≤ ε in ∂Cr which subdivides ∂Cr into two regions of equal area.
If we consider the image of this circle under the 1-Lipschitz map ∂Cr → ∂Ca (for
r ≥ a), we get a closed curve of length ≤ ε which subdivides ∂Ca in two regions
such that each of them has area at least L/4. Since ε was arbitrary this gives a
contradiction.

As it is the boundary of a totally convex set, ∂Cr is a nonnegatively curved
Alexandrov space (cf. Buyalo [7]). Combining compactness and Sharafutdinov
retraction, ∂Cr converges for r → ∞ to a nonnegatively curved Alexandrov
space S. Moreover, for any sequence pi ∈ M converging to infinity we have
limGH,i→∞(M,g, pi) → S × R. Thus M is asymptotically cylindrical.

In particular, M is volume non-collapsed, and from Corollary 3 we deduce
that (M,g(t)) has bounded curvature ≤ C

t for positive times. It is now easy to
extract from the sequence (M,g(t), pi) a subsequence converging to (N, g∞(t)).
Topologically the nonnegatively curved manifold N is homeomorphic to S ×R –
a manifold with two ends. Thus (N, g∞(t)) splits isometrically as (S2, ḡ(t))× R.

From Lemma 7.2 one can deduce that limt→T volḡ(t)(S
2) = 0. By Gauß Bonnet

limt→0 volḡ(t)(S
2) = 8πT = L.

⊔⊓



HOW TO PRODUCE A RICCI FLOW VIA CHEEGER-GROMOLL EXHAUSTION 29

Remark 7.3. Let (M,g) be an open manifold with KC
g ≥ 0 and Euclidean volume

growth. By Corollary 3 the curvature of our Ricci flow g(t) starting on (M,g)
is bounded for positive times. Following the work of Schulze and Simon [40],
with Hamilton’s Harnack inequality replaced by [4], one can show that there is a
sequence of positive numbers ci → 0 such that limi→∞(M, cig(t/ci)) = (M,g∞(t))
is a Ricci flow (t ∈ (0,∞)) whose ‘initial metric’ (Gromov Hausdorff limit of
(M,dg∞(t)) for t → 0) is the cone at infinity of (M,g). Moreover, (M,g∞(t)) is
an expanding gradient Ricci soliton.

7.3. Long time behaviour of the Ricci flow. We will only consider solutions
which satisfy the trace Harnack inequality. Notice that this is automatic if we
consider a solution coming out of the proof of Theorem 1.

Lemma 7.4. Let (Mn, g(t)) be a non flat immortal solution of the Ricci flow
with KC ≥ 0 satisfying the trace Harnack inequality. If (M,g(0)) does not have
Euclidean volume growth, then for p0 ∈ M

lim sup
t→∞

volg(t)(Bg(t)(p0,
√
t))√

t
n = 0.

Proof. Suppose on the contrary that we can find tk → ∞ and ε > 0 with
volg(tk)(Bg(tk)(p0,

√
tk)) ≥ ε

√
tk

n
. Analogous to Proposition 4.6 one can show

that there is some universal T > 0 such that for the rescaled flow g̃k(t) =
1
tk
g(tk+t·tk)t∈[−1,∞) we have that scalg̃k(t) ≤ C

t onBg̃k(t)(p0, 1) for t ∈ (0,T ] where

C is independent of k. Using this for t = T and combining with the Harnack
inequality, we find a universal constant C2 with scalg̃k(0) ≤ C2 on Bg̃k(0)(p0, 1).

Thus we obtain that scalg(tk) ≤ C2
tk

on Bg(tk)(p0,
√
tk). Combining with the Har-

nack inequality and using Bg(0) ⊂ Bg(tk) we deduce that scalg(t) ≤ C2
t on M . By

Hamilton [27, Editor’s note 24] this implies that Bg(t)(p0,
√
t) ⊂ Bg(0)(p0, C3

√
t)

for a constant C3 = C3(C2, n). Hence

ε
√
tk

n ≤ volg(tk)

(
Bg(0)(p0, C3

√
tk)

)
≤ volg(0)

(
Bg(0)(p0, C3

√
tk)

)
,

which means that g(0) has Euclidean volume growth – a contradiction. ⊔⊓
Theorem 7.5. Let (Mn, g(t)) be a non flat immortal Ricci flow with KC ≥ 0
satisfying the trace Harnack inequality. If (M,g(0)) does not have Euclidean
volume growth, then for p0 ∈ M there is a sequence of times tk → ∞ and a
rescaling sequence Qk such that for g̃k(t) = Qkg(tk+

t
Qk

) the following holds. The

rescaled flow (M, g̃k(t), p0) converges in the Cheeger-Gromov sense to a steady
soliton (M∞, g̃∞(t)) which is not isometric to R

n.

Proof. For t ∈ [0,∞) we define Q(t) > 0 as the minimal number for which

volg(t)

(
Bg(t)

(
p0,

1√
Q(t)

))
= 1

2ωn
1√

Q(t)
n
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We can choose εk → 0 and tk → ∞ with ∂
∂t |t=tk

scalg(t)(p0) ≤ εk scalg(tk)(p0)
2.

In fact otherwise it would be easy to deduce that a finite time singularity occurs.

By Lemma 7.4 the rescaled Ricci flow g̃k(t) = Qk g(tk+
t

Qk
) with Qk = Q(tk) is

defined on an interval [−Tk,∞) with Tk → ∞. Moreover, volg̃k(0)
(
Bg̃k(0)(p0, 1)

)
=

ωn
2 and ∂

∂t |t=0
scalg̃k(t)(p0) ≤ εk scalg̃k(0)(p0)

2.

Arguing as in the proof of Lemma 7.4 one can show that there is some T >
0 such that for each r there is a constant Cr for which scalg̃k(T ) ≤ Cr on
Bg̃k(T )(p0, r). Using the Harnack inequality after possibly increasing Cr we may
assume that scalg̃k(t) ≤ Cr on Bg̃k(T )(p0, r) for all t ∈ [−Tk/2,T ]. Shi’s estimate
also give bounds on the derivative of the curvature tensor on Bg̃k(T )(p0, r) ×
[−Tk/4,T /2].

After passing to a subsequence we may assume (M, g̃k(T /2), p0) converges in
the Cheeger-Gromov sense to (M∞, g̃∞(T /2), p∞). By the Arcelà-Ascoli theo-
rem we also may assume that under the same set of local diffeomorphisms the
pull backs of g̃k(t) converge to g̃∞(t), t ∈ (−∞,T /2]. Clearly g̃∞(t) is a solution
of the Ricci flow with KC

g̃∞(t) ≥ 0. The completeness of g̃∞(t) follows from the

completeness of g̃∞(T /2), for t < T /2. Moreover, we have that
∂ scalg̃∞(0)(p0)

∂t = 0.
If g̃∞(0) is not flat, we can pass to the universal cover of M∞ and after spitting
off an Euclidean factor we may assume that the Ricci curvature is positive. Re-
call that for ancient solutions with KC

g̃∞(t) ≥ 0 and positive Ricci curvature the

Harnack inequality implies that

0 ≤ ∂ scalg̃∞(t)

∂t − 1
2 Ric

−1
g̃∞(t)(∇ scalg̃∞(t),∇ scalg̃∞(t)),

where Ric−1
g̃∞(t) is the (positive definite) symmetric (2, 0)-tensor defined by the

equation Ric−1
g̃∞(t)

(
v,Ricg̃∞(t) w

)
= g̃∞(t)(v,w). Since equality holds for one point

in space-time one can deduce from a strong maximum principle, that g̃∞(t) is a
steady Ricci soliton. In fact, this only requires minor modification in the proof
of a result by Brendle [4, Proposition 14]. We leave the details to the reader.
Finally volg̃∞(0)

(
Bg̃∞(0)(p0, 1)

)
= 1

2ωn and thus the limit is not the Euclidean
space. ⊔⊓

7.4. Further Consequences.

Corollary 7.6. Let (M,g) be an open manifold with KC
g ≥ 0 and M ∼= R

n, then

there is a sequence gi of complete metrics on M with KC

gi > 0 converging to g in

the C∞ topology.

Proof. Consider the de Rham decomposition M = R
k × (M1, g1)× . . . × (Ml, gl)

of M . Let gj(t) be a Ricci flow from Theorem 1 on Mj with gj(0) = gj , and let
g(t) be the corresponding product metric on M . We know that KC

gj(t)
≥ 0 and

clearly (Mj , gj(t)) is irreducible for small t ≥ 0. Since Mj is diffeomorphic to a
Euclidean space, (Mj , gj(t)) cannot be Einstein and we can deduce from Berger’s
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holonomy classification theorem [1] that the holonomy group is either SO(nj) or
U(nj/2), where nj = dimMj .

The strong maximum principle implies that either KC

gj(t)
> 0 or (Mj , gj(t))

is Kähler. Even in the Kähler case it follows that the (real) sectional curvature
is positive, Kgj(t) > 0: If there were a real plane with Kgj(t)(σ) = 0, then by

the strong maximum principle we could deduce that either Kgj(t)(v, Jv) = 0

for all v ∈ TM or Kgj(t)(v,w) = 0 for all v,w ∈ TpM with spanR{v, Jv} ⊥
spanR{w, Jw}. But both conditions imply in K ≥ 0 that the manifold is flat.

SinceKgj(t) > 0, Theorem 3.4 of Greene and Wu gives a strictly convex smooth

proper nonnegative function bj(t) on (Mj , gj(t)). Clearly we can also find such a

function on R
k. By just adding these functions we deduce that there is a proper

function b(t) : M → [0,∞) which is strictly convex with respect to the product
metric g(t). We now choose a sequence ti → 0 and εi → 0 and define gi as the
metric on M which is obtained by pulling back the metric on the graph of εib(ti)
viewed as hypersurface in (M,g(ti))×R. Clearly KC

gi
> 0 and if εi tends to zero

sufficiently fast, then gi converges to g in the C∞ topology. ⊔⊓
Remark 7.7. Although a priori we could prove this only for large ℓ, it is true that
for each convex set Cℓ = b−1((−∞, ℓ]) one can find a Ricci flow on a compact
manifold with KC ≥ 0 such that (M,g(t)) converges to the doubleD(Cℓ) of Cℓ for
t → 0. In fact, by using Corollary 7.6 one can find a sequence of strictly convex
sets Cℓ,k in manifolds with KC > 0 which converge in the Gromov-Hausdorff
topology to Cℓ. For strictly convex sets it is not hard to see that one can smooth
the double D(Cℓ,k) without losing KC ≥ 0 and thus the result follows.

8. An immortal nonnegatively curved solution of the Ricci flow

with unbounded curvature

8.1. Double cigars. Recall that Hamilton’s cigar is the complete Riemann-

ian surface (C, g0) :=
(
R
2, dx2+dy2

1+x2+y2

)
, which is rotationally symmetric, positively

curved and asymptotic at infinity to a cylinder of radius 1. The Ricci flow starting
at (C, g0) is a gradient steady Ricci soliton (i.e. an eternal self-similar solution).

Definition 8.1. Let (M, ḡ) and (N, g) be two complete n-dimensional Riemann-
ian manifolds, p ∈ M and q ∈ N . We say (M, ḡ, p) is ε-close to (N, g, q) if

◦ there is a subset U ⊂ N with B 1
ε
−ε(q) ⊂ U ⊂ B 1

ε
+ε(q) and

◦ a diffeomorphism f : B 1
ε
(p) → U such that ‖ḡ−f∗g‖Ck ≤ ε for all k ≤ 1/ε.

We denote x0 ∈ C the tip of Hamilton’s cigar, i.e. the unique fixed point of
the isometry group Iso(C), where the maximal curvature of C is attained. We
will also consider the rescaled manifolds (C, λ2g0).

Definition 8.2. A nonnegatively curved metric g on S
2 is called an (ε, λ)-double

cigar if the following holds



32 ESTHER CABEZAS-RIVAS AND BURKHARD WILKING

◦ g is invariant under O(2)× Z2 ⊂ O(3), and
◦ if p̄ is one of the two fixed points of the identity component of O(2)×Z2,
then (S2, g, p̄) is ε-close to (C, λ2g0, x0).

An important feature of the definition is that except for nonnegative curvature,
we do not make any assumptions on the middle region of the double cigar. In
the applications we will have diam(S2, g) ≫ 1

ε .

We have two easy consequences of compactness results.

Lemma 8.3. For any λ and ε > 0 there exists some δ > 0 such that: If (S2, g) is
any (δ, λ)-double cigar and (S2, g(t)) is a Ricci flow with g(0) = g, then (S2, g(t))
is an (ε, λ)-double cigar for all t ∈ [0, 1/ε].

Lemma 8.4. Let ḡ be a nonnegatively curved metric on S
2, (S2, ḡ(t))t∈[0,T ] the

Ricci flow with ḡ(0) = ḡ, and p̄ ∈ S
2. For a given ε > 0 there exists a positive

integer δ = δ(ε, ḡ) such that the following holds.

Let (M3, g) be any open nonnegatively curved 3-manifold and p ∈ M so that
(M,g, p) is δ-close to

(
(S2, ḡ) × R, (p̄, 0)

)
. If (M,g(t)) is an immortal nonnega-

tively curved Ricci flow with g(0) = g, then (M,g(t), p) is ε-close to
(
(S2, ḡ(t))×

R, (p̄, 0)
)
for all t ∈ [0, 1/ε] ∩ [0, T/2].

Proof of Lemma 8.3. Suppose on the contrary that for some positive ε and λ
we can find a sequence of (1i , λ)-double cigars (S2, gi) and times ti ∈ [0, 1ε ] such

that (S2, gi(ti)) is not an (ε, λ)-double cigar. Here (S2, gi(t))t∈[0,Ti) is the maximal
solution of the Ricci flow with gi(0) = gi . Let p̄ denote a fixed point of the identity
component of the O(2) × Z2-action. By assumption we know that (S2, gi(ti), p̄)
is not ε-close to (C, λ2g0, x0).

It is easy to see that the volume of any unit ball in (S2, gi) is bounded be-
low by a universal constant independent of i. Thus we have universal curvature
and injectivity radius bounds for all positive times. Moreover, by Gauß Bon-
net Ti → ∞. Using furthermore that we have control of the curvature and its
derivatives on larger and larger balls around p̄, one can deduce that the Ricci
flow subconverges to a (rotationally symmetric) limit immortal solution on the
cigar (C, g∞(t), x0) with bounded curvature and whose initial metric is λ2g0. Be-
cause of the uniqueness of the Ricci flow (see [13]) it follows that (C, g∞(t), x0)
is isometric to (C, λ2g0, x0) for all t. On the other hand, if t∞ ∈ [0, 1/ε] is a
limit of a convergent subsequence of ti, then (C, g∞(t∞), x0) is not ε/2-close to
(C, λ2g0, x0) – a contradiction. ⊔⊓

Proof of Lemma 8.4. Suppose on the contrary that we can find a sequence (Mi, gi)
of open 3-manifolds with Kgi ≥ 0 and pi ∈ Mi such that (Mi, gi, pi) is 1

i -close

to
(
(S2, ḡ) × R, (p̄, 0)

)
and a complete immortal Ricci flow gi(t) with gi(0) = gi

and Kgi(t) ≥ 0, such that (Mi, gi(ti), pi) is not ε-close to
(
(S2, ḡ(t)) × R, (p̄, 0)

)

for some ti ∈ [0, T/2].
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Arguing similar to the proof of the previous lemma, we can use Hamilton’s
compactness theorem to deduce that (Mi, gi(t), pi) converges to a limit nonnega-
tively curved solution on the manifold S

2 × R. Clearly the solution is just given
by the product solution on S

2×R and because of uniqueness of the Ricci flow on
S
2 we deduce that it is exactly given by

(
(S2, ḡ(t))×R, (p̄, 0)

)
– again this yields

a contradiction. ⊔⊓

8.2. Convex hulls of convex sets. Let C0 and C1 be two closed convex sets
of Rn. Then

Cλ = {(1− λ)x+ λy | x ∈ C0, y ∈ C1}
is convex as well. If ∂C0 and ∂C1 are smooth compact hypersurfaces of positive
sectional curvature, then ∂Cλ is smooth as well: In fact, let N0 and N1 denote
the unit outer normal fields of C0 and C1. By assumption Ni : ∂Ci → S

n−1 is a
diffeomorphism, i = 0, 1. For z = (1− λ)x+ λy ∈ Cλ and λ ∈ (0, 1) the tangent
cone TzCλ contains TxC0 as well as TyC1. This in turn implies

∂Cλ =
{
(1− λ)x+ λN−1

1 (N0(x)) | x ∈ ∂C0

}

and thus ∂Cλ is smooth. Furthermore, it is easy to see that ∂Cλ is positively
curved as well.

Consider now the convex sets C0 × {h0} and C1 × {h1} in R
n+1. The convex

hull C of these two sets is given by

C =
{
(y, (1− λ)h0 + λh1) | y ∈ Cλ, λ ∈ [0, 1]

}
.

In particular, we see that the boundary ∂C∩(Rn × (h0, h1)) is a smooth manifold.

8.3. Proof of Theorem 4 a). By Lemma 8.3 we can find a sequence εi → 0
such that any (εi,

1
i )-double cigar (S2, g) satisfies the following: The solution of

the Ricci flow g(t) with g(0) = g exists on [0, i] and (S2, g(t)) is a (2−i, 1i )-double
cigar for all t ∈ [0, i]. The sequence εi is hereafter fixed.

We now define inductively a sequence of (εi,
1
i )-double cigars Si so that

(1) Si has positive curvature and embeds as a convex hypersurface Si ⊂ R
3 in

such a way that it is invariant under the linear action of Z2×O(2) ⊂ O(3).
(2) The convex domain bounded by Si−1 is contained in the interior of the

convex domain bounded by Si.

It is fairly obvious that one can find (εi,
1
i )-double cigars satisfying (1). In

order to accomplish also (2), we choose r0 such that Si−1 ⊂ Br0(0). We can find
an (εi,

1
i )-double cigar (S2, g) and a fixed point p̄ ∈ S

2 of the identity component
of Z2 ×O(2) such that

◦ B1/εi(p̄) is isometric to B1/εi(x0) ⊂ (C, 1
i2
g0),

◦ for some R ≫ 1
εi

the set BR(p̄)\B2/εi(p̄) is isometric to a subset of a cone

◦ and B4R(p̄)\B2R(p̄) is isometric to S
1× [0, 2R) for a circle of length 4πr0.
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We can now construct an embedding of this cigar into R
3 such that the surface

Si bounds a convex domain which contains B2r0(0). By slightly changing the
embedding one can ensure that Si has positive sectional curvature. The sequence
Si of embedded double cigars is now fixed.

We put S0 = {0}. We now define inductively a sequence of positive numbers

ri → ∞, and heights hi :=
∑i

j=0 rj. Denote Cj ⊂ R
4 the convex hull of Sj−1 ×

{hj−1} ⊂ R
4 and Sj × {hj} ⊂ R

4. By choosing ri large enough we can arrange
for the following:

◦ The union Ci−1∪Ci is convex as well. In fact, Ci converges to the cylinder
bounded by Si−1 × [hi−1,∞) for ri → ∞. Hence for all large ri and all
p ∈ Si−1 × {hi−1} the union of the tangent cones TpCi−1 and TpCi is
properly contained in a half space.

◦ The hypersurface Hi :=
(
R
3 × [hi − 1 −√

ri, hi − 1]
)
∩ ∂Ci is arbitrarily

close to a product Si × [hi − 1−√
ri, hi − 1] in the C∞ topology.

◦ For any open 3-manifold (M3, g̃) with Kg̃ ≥ 0 containing an open subset
U isometric to Hi, for big ri Lemma 8.4 ensures that, if (M, g̃(t)) is an
immortal Ricci flow with g̃(0) = g̃ and Kg̃(t) ≥ 0, then for some p ∈ U we

have that (M, g̃(t), p) is 1
(1+diam(Si))i

-close to ((S2, g(t))×R, (p̄, 0)), where

(S2, g(t)) is a (2−i, 1i )-double cigar for all t ∈ [0, i].

By construction, C =
⋃

i≥1Ci is a convex set whose boundary ∂C is not smooth

but the singularities only occur for points in R
3 × {hi} ∩ ∂C, see subsection 8.2.

We can now smooth C as follows: Notice that ∂C ⊂ R
4 can be defined as the

graph of a convex function f on R
3. By construction Tp∂C is not a half space

for all p ∈ Si × {hi} and thus the gradient of f jumps at the level set Si.

We choose a smooth convex function g : [0,∞) → [0,∞) with g ≡ 0 on [1,∞)
and g′′ > 0 on [0, 1). We also define ϕ : [0,∞) → R by ϕ(t) = t + δ · g(|t − hi|)
for some δ > 0 which is to be determined next. Notice that ϕ is is C∞ on [0, hi]
and on [hi,∞). Moreover ϕ(t) = t for |t − hi| > 1. On the intervals [hi − 1, hi]
and [hi, hi + 1] the function ϕ is convex. However, at hi left and right derivative
of ϕ differ by 2δg′(0). Similarly there is small neighborhood U of Si such that f
is C∞ on U \Si. Along the level set Si there is an outer and an inner gradient of
f and the norm of the outer gradient is strictly larger than the norm of the inner
gradient. Thus we can choose δ so small that ϕ ◦ f is still a convex function. In
addition, we know that the Hessian of ϕ◦ f is bounded below by a small positive
constant in a neighborhood of Si. Thus we can mollify ϕ ◦ f in a neighborhood
of Si and patch things together using a cut off function.

By doing this procedure iteratively for all i we obtain a smooth convex hyper-
surface H. By construction the volume growth of H is larger than linear and by
Corollary 5 we have an immortal solution g(t) of the Ricci flow on H starting
with the initial metric.
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By construction for any i we can find a point p ∈ H such that (H, g(t), p) is
1
i -close to ((S2, g(t)) × R, (p̄, 0)) where (S2, g(t)) is a (2−i, 1i )-double cigar for all
t ∈ [0, i]. In particular, we know that

sup
{
Kg(t)(σ) | σ ⊂ TH

}
= ∞ and

inf
{
volg(t)(Bg(t)(p, 1)) | p ∈ H

}
= 0 for all t.

Remark 8.5. (a) A volume collapsed nonnegatively curved 3-manifold was con-
structed by Croke and Karcher [15]. Although the details are somewhat different,
their example is realized as a convex hypersurface of R4 as well.

(b) At an informal discussion at UCSD the second named author was asked
by Richard Hamilton, whether a nonnegatively curved three dimensional ancient
solution with unbounded curvature could exist. During this discussion Hamilton
described possible features of a counterexample. The construction in this section
is in part inspired by what Hamilton had in mind. Since the construction only
gives an immortal solution, Hamilton’s question remains open nevertheless.

(c) As said in the introduction, a nonnegatively curved surface evolves imme-
diately to bounded curvature under the Ricci flow. Giesen and Topping [19] gave
immortal 2-dimensional Ricci flows with unbounded curvature throughout time.

8.4. Proof of Theorem 4 b).

Lemma 8.6. Let (M,g) be an open manifold with KC ≥ 0 and bounded curvature.
Then there is an ε > 0 and C such that, for any complete Ricci flow g(t) with
g(0) = g and KC

g(t) ≥ 0, we have scalg(t) ≤ C on the interval [0, ε].

Proof. Recall that the injectivity radius of an open nonnegatively curved manifold
with bounded curvature is positive. By Corollary 3 for any solution g(t) we know

scalg(t) ≤ C1
t on some interval (0, ε]. We can now use Theorem C.5 to see that

scalg(t) ≤ C for all t ∈ [0, ε] with some universal C = C((M,g)). ⊔⊓
Lemma 8.7. There is an open 4-manifold (M,g) with nonnegative curvature
operator and a constant v0 > 0 such that the following holds

◦ vol(Bg(p, 1)) ≥ v0 for all p ∈ M .
◦ There is a sequence of points pk ∈ M such that (M,g, pk) converges in
the Cheeger-Gromov sense to the Riemannian product S2 ×R

2 (where S
2

has constant curvature 1 and R
2 is flat).

◦ There is a sequence of points qk ∈ M such that (M,g, qk) converges in
the Cheeger-Gromov sense to R

4 endowed with the flat metric.

Proof. The construction of (M4, g) is very similar to the one in subsection 8.3.
There is a sequence of embedded (1i , 1)-double cigars Si ⊂ R

3 so that

◦ Si is invariant under an Z2 ×O(2) ⊂ O(3)-action fixing the origin.
◦ The interior of the convex domain bounded by Si contains Si−1.
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◦ Si contains a subset which is isometric to S
1 × [−Ri−1, Ri−1] where S

1 is
a circle of radius 2Ri−1 = 2diam(Si−1) → ∞.

Analogous to subsection 8.3 one can then construct a smooth convex hyper-
surface (M3, g) ⊂ R

4 with O(2)×Z2 symmetry satisfying: There is pi ∈ M such
that (M3, pi) is e−Ri-close to Si × R. Moreover, it is clear from the construc-
tion that (M3, g) is uniformly volume non collapsed. We now define M4 as the
unique convex hypersurface in R

5 whose intersection with R
4 is given by (M3, g)

and which has a O(3) × Z2 symmetry. It is straightforward to check that M4

with the induced metric has the claimed properties. ⊔⊓

Proof of Theorem 4 b). Let (M4, g) be as in Lemma 8.7. We consider a solution
g(t) of the Ricci flow coming out of the proof of Theorem 1. Using (M4, g, qi)
converges to R

4 in the Cheeger-Gromov sense, it follows that the Ricci flow on the
compact approximations (Mi, gi(t)) converging to (M,g(t)) exists until Ti → ∞.
By the proof of Theorem 1 we can assume that g(t) is immortal. Moreover,
it is clear from the proof that gi(t) and hence g(t) have nonnegative curvature
operator. In particular we have an immortal complete solution g(t) with g(0) = g
and g(t) satisfies the trace Harnack inequality.

By Corollary 3 it follows that scalg(t) ≤ C
t for t ∈ (0, ε]. We claim that g(1)

has unbounded curvature. Suppose on the contrary that scalg(1) ≤ C. The trace

Harnack inequality implies that scalg(t) ≤ C
t for t ∈ (0, 1].

We now consider the sequence (M,g, pi) converging to (S2 × R
2, p∞) in the

Cheeger-Gromov sense. Applying Theorem C.5 it is easy that there is a uni-
versal constant C2 such that for any r we can find i0 such that scalg(t) ≤ C2

on Bg(0)(pi, r) for all t ∈ [0, 1] and i ≥ i0. By Hamilton’s compactness theorem

(M,g(t), pi) subconverges to a solution g∞(t) of the Ricci flow on (S2 × R
2, p∞)

with bounded curvature such that g∞(0) is given by the product metric (S2 with
constant curvature 1), t ∈ [0, 1]. On the other hand, for the the unique solution
(with bounded curvature) the curvature blows up at time 1/2 – a contradiction.

In summary, we can say scalg(t) is bounded for t ∈ (0, ε] and that scalg(1) is
unbounded. By Lemma 8.6 there must be a minimal time t0 ∈ (ε, 1] such that
g(t0) has unbounded curvature. From the trace Harnack inequality it follows that
g(t) has unbounded curvature for all t ≥ t0.

ThusM4 endowed with the rescaled Ricci flow g̃(t) := 1
t0−ε/2g(ε/2+t(t0−ε/2))

satisfies the conclusion of Theorem 4 b). ⊔⊓

Appendix A. Open manifolds of nonnegative curvature

Recall that a set C is called totally convex if for every geodesic segment Γ join-
ing two points in C, we have Γ ⊂ C, and that the normal bundle of a submanifold
S ⊂ M is ν(S) =

⋃
p{v ∈ TpM | v ⊥ TpS}. We start with the Soul Theorem.
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Theorem A.1 (Cheeger-Gromoll-Meyer, cf. [10, 21]). Let (Mn, g) be an open
manifold with Kg ≥ 0. Then there is a closed, totally geodesic submanifold Σ ⊂ M
which is totally convex and with 0 ≤ dimΣ < n. Σ is called a soul of M , and M
is diffeomorphic to ν(Σ). If Kg > 0, then a soul of M is a point, and so M is
diffeomorphic to R

n.

Here is a further property about the soul.

Theorem A.2 (Strake, cf. [44]). Let (Mn, g) be an open manifold with Kg ≥ 0

and Σk be the soul of M . If the holonomy group of ν(Σ) is trivial then M is
isometric to Σ× R

n−k, where R
n−k carries a complete metric of K ≥ 0.

Fix p ∈ Σ and let dp = dg( · , p), where dg is the Riemannian distance. It is
known (see e.g. [16]) that b (see subsection 3.2) and dp are asymptotically equal:

Lemma A.3. There exists a function θ(s) with lims→∞ θ(s) = 0 such that

(1− θ ◦ dp)dp ≤ b ≤ dp,

and for all x, y ∈ M it holds |b(x)− b(y)| ≤ dg(x, y).

It is useful to recall that b is indeed the distance from an appropriate set:

Lemma A.4 (Wu, cf. [48]). Let a ∈ R and let Ca = {x ∈ M : b(x) ≤ a}. Then
b|int(Ca) = a− d(·, ∂Ca).

Appendix B. Convex sets in Riemannian manifolds

Let C be a compact totally convex set (tcs) in a manifold M . We define the
tangent cone at p ∈ ∂C as

TpC = Clos{v ∈ TpM : expp(tv/|v|) ∈ C for some t > 0}.
By convexity of C, this is a convex cone in TpM . The normal space is defined as

NpC = {v ∈ span(TpC) : 〈v,w〉 ≤ 0 for all w ∈ TpC \ {0}}.

Here is a useful characterization of the normal space.

Proposition B.1 (Yim, cf. [49]). Let {Ca} be a family of tcs. Consider a > b
with a − b < δ, where δ > 0 is chosen so that the projection Ca → Cb is well-
defined (i.e. for all q ∈ Ca there is a unique q∗ ∈ Cb with d(q, q∗) = d(q, Cb)).
For each p ∈ ∂Cb, NpCb is the convex hull of the set of vectors v ∈ span(TpC)
such that the geodesic γ(s) = expp(sv/|v|) is the shortest path from p to some
point in ∂Ca.

Further details about the structure of the sublevel sets of the Busemann func-
tion b are given by
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Lemma B.2 (Guijarro-Kapovitch, cf.[23]). Consider Cℓ = b−1 ((−∞, ℓ]) ⊂ M
and p ∈ ∂Cℓ. Take γ any minimal geodesic from p = γ(0) to any point of the
soul. Then there exists ε(ℓ), with ε(ℓ) → 0 as ℓ → ∞ such that if v ∈ TpM is a
unit vector with ∠(v, γ̇(0)) < π

2 − ε(ℓ), then v ∈ TpCℓ.

The following theorem gives the existence of a tubular neighborhood U :

Theorem B.3 (Walter, cf. [46]). For each closed locally convex set A ⊂ (M,g),
there is an open set U ⊂ A such that

1) For each q ∈ U , there is a unique q∗ ∈ A with d(q, q∗) = d(q,A), and a
unique minimal geodesic from q to q∗ which lies entirely in U .

2) dA is C1 in U \A and twice differentiable almost everywhere in U \A.

Let us recall the Hessian bounds in the support sense:

Definition B.4 (Calabi, cf. [8]). Let f : (M,g) → R be continuous. We say that
∇2f |p ≥ h(p) in the support sense, for some function h : M → R, if for every
ε > 0 there exists a smooth function ϕε defined on a neighborhood of p such that

1) ϕε(p) = f(p) and ϕε ≤ f in some neighborhood of p.

2) ∇2ϕε|p ≥ (h− ε)gp.

Such functions ϕε are called lower support functions of f at p. One can analo-
gously define ∇2f ≤ h at p in the support sense.

Appendix C. Miscellanea of Ricci flow results

C.1. Smooth convergence of manifolds and flows.

Definition C.1 (Cheeger-Gromov convergence). (a) Consider a sequence of com-
plete manifolds (Mn

i , gi) and choose pi ∈ Mi. We say that (Mi, gi, pi) converges
to the pointed Riemannian n-manifold (M∞, g∞, p∞) if there exists

(1) a collection {Ui}i≥1 of compact sets with Ui ⊂ Ui+1, ∪i≥1Ui = M and
p∞ ∈ int(Ui) for all i, and

(2) φi : Ui → Mi diffeomorphisms onto their image, with φi(p∞) = pi

such that φ∗
i gi → g∞ smoothly on compact subsets of M∞, meaning that

|∇m(φ∗
i gi − g∞)| −→ 0 as i → ∞ on K for all m ≥ 0

for every compact set K ⊂ M . Here | · | and ∇ are computed with respect to any
fixed background metric.

(b) A sequence of complete evolving manifolds (Mi, gi(t), pi)t∈I converges to
a pointed evolving manifold (M∞, g∞(t), p∞)t∈I if we have (1) and (2) as before
such that φ∗

i gi(t) → g∞(t) smoothly on compact subsets of M∞ × I.

Theorem C.2 (Hamilton, cf. [27]). Let (Mk, gk(t), xk)t∈(a,b] be complete n-dimen-
sional Ricci flows, and fix t0 ∈ (a, b]. Assume the following two conditions:
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(1) For each compact interval I ⊂ (a, b], there is a constant C = C(I) < ∞
so that for all t ∈ I

|R|gk(t) ≤ C on Bgk(0)(xk, r) for all k ≥ k0(r).

(2) There exists δ > 0 such that injgk(t0)(xk) ≥ δ.

Then, after passing to a subsequence, the solutions converge smoothly to a com-
plete Ricci flow solution (M∞, g∞(t), x∞) of the same dimension, defined on (a, b].

Some authors quote stronger versions of this theorem, where the curvature
bound C is allowed to increase arbitrarily with r. However, in the proof one
then runs into trouble if one wants to verify completeness of the limit metrics for
different times. Lemma 4.9 can be regarded as a way to circumvent this problem.

Under bounded curvature, condition (2) above can be guaranteed by ensuring
a lower bound on the volume (see [11, Theorem 4.3]):

Theorem C.3 (Cheeger-Gromov-Taylor). Let Bg(p, r) be a metric ball in a com-
plete Riemannian manifold (Mn, g) with λ ≤ Kg|Bg(p,r) ≤ Λ for some constants

λ,Λ. Then, for any constant r0 such that 4r0 < min{π/
√
Λ, r} if Λ > 0, we have

injg(p) ≥ r0

(
1 +

V n
λ (2r0)

volg (Bg(p, r0))

)−1

,

where V n
λ (ρ) denotes the volume of the ball of radius ρ in the n-dimensional space

with constant sectional curvature λ.

C.2. Curvature estimates. Shi’s local derivative estimates ensure that if the
curvature is bounded on Bg(0)(p, r) × [0, T ], then we also have bounds on all
covariant derivatives of the curvature on the smaller set Bg(0)(p, r/2) × (0, T ],
where such bounds blow up to infinity as t → 0. Such a degeneracy can be
avoided by making the stronger assumption of having bounded derivatives of the
curvature in the initial metric.

Theorem C.4 (Lu-Tian, [31]). For any positive numbers α,K,Kℓ, r, n ≥ 2,m ∈
N, let Mn be a manifold with p ∈ M , and g(t), t ∈ [0, τ ] where τ ∈ (0, α/K), be
a Ricci flow on an open neighborhood U of p containing Bg(0)(p, r) as a compact
subset. If

|Rg(t)|(x) ≤ K for all x ∈ Bg(0)(p, r) and t ∈ [0, τ ]

|∇ℓRg(0)|(x) ≤ K(ℓ) for all x ∈ Bg(0)(p, r) and all ℓ ≥ 0,

then there exists C = C(α,K,K(ℓ), r,m, n) such that

|∇mRg(t)| ≤ C on Bg(0)(p, r/2) × [0, τ ].

Next we state a result of Simon [42, Theorem 1.3]. We actually use a simplified
and coordinate free version, see also Chen [12, Corollary 3.2]:
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Theorem C.5 (M. Simon, B. L. Chen). Let (Mn, g(t)), with t ∈ [0, T ], be a
complete Ricci flow. Assume we have the curvature bounds

|R|g(0) ≤ ρ−2 on Bg(0)(p, ρ) (C.1)

and

|R|g(t)(x) ≤ K/t for x ∈ Bg(0)(p, ρ) and t ∈ (0, T ]. (C.2)

Then there exists a constant C depending only on n such that

|R|g(t)(x) ≤ 4 eCKρ−2 for all x ∈ Bg(0)(p, ρ/2), t ∈ [0, T ].
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