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Introduction

One can probably say that the story of Bounded forcing axioms begins in 1970 with the

publication of [M–S] by Donald Martin. There he formulates what came to be known

as Martin’s Axiom. This stood in connection with the publication of [S–T] where the

consistency of Souslin’s hypothesis was established by iterated forcing. Martin’s axiom

proved to be a useful tool even for mathematicians whose main focus is not set theory.

For this recall that for any regular uncountable κ ZFC+2ℵ0 = κ + MA is relatively

consistent to ZFC. So anybody whose everyday mathematical practice could be formal-

ized within ZFC—we suppose that this is the case for most mathematicians—simply

could try to prove a certain statement from Martin’s axiom. If she succeeded in this

endeavour she would in particular have proved that ¬p is unprovable from ZFC—while

not necessarily knowing anything about forcing or constructibility. Although in its for-

mulation Martin’s axiom is not a Bounded Forcing Axiom it can be considered as such

since it is equivalent to its bounded form—see for example [Ku], lemma II.3.1.. In the

eighties there were several important developments. Axiom A was defined by James

Baumgartner, the theory of proper forcing was developed by Saharon Shelah and the

forcing axioms PFA and MM were formulated in [Ba 2], [F–M–S] respectively. Attention

shifted to the bounded forms somehow after the publication of [G–S] and [Bag 1]. While

the latter article showed that Bounded Forcing Axioms allow an attractive characteri-

zation as absoluteness statement between the ground model and generic extensions, the

former yielded an equiconsistency result showing that unlike in the case of MA not only

is BPFA not equivalent to PFA but in addition it has considerably lower consistency

strength.

Mainly this thesis presents the results of [G–S]. The first three chapters provide

the basis for this. While in the first chapter the necessary large cardinal notions are

introduced—the one of reflecting and regular Σn–correct cardinals—the second chapter

contains an introduction to proper forcing as well as Axiom A forcing. In the third

chapter the main theorem of [Bag 1] is stated and proved and the forcing axiom BAAFA

is introduced.
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Introduction

The fourth chapter proves the consistency of BPFA from the existence of a reflecting

cardinal κ by an iterated forcing construction of length κ. Here the proof is written

down in a new—more semantically–oriented—way.

The goal of the fifth chapter is dual to the one of chapter four. Here it is proved that

if BAAFA holds then ℵ2 is reflecting in L.

The sixth chapter then aims at the construction of a model of BAAFA +¬BPFA.

Finally the seventh and last chapter contains some remarks on questions left open

by the thesis as well as historical explanations and semi–philosophical considerations

concerning the continuum problem.

In the course of writing this thesis I already decided at an early point not to aim at

methodical purity. This shows for example in the fourth chapter where some arguments

are carried out for reflecting cardinals and others for regular Σ2–correct cardinals. In the

case of arbitrary posets against complete Boolean algebras this decision turned out to

be a wise one. The canonical kind of forcing notion in the context of Bounded Forcing

Axioms seems to consist in complete Boolean algebras since for those there provably

exists an equivalent principle of generic absoluteness. However at some point I decided to

take a closer look at Axiom A forcing notions and it turned out that—at least according

to my experience—the canonical kind of forcing notion seems to be the arbitrary poset.

Since I was unable to prove that for every Axiom A poset the corresponding regular open

algebra satisfies Axiom A too I decided to introduce the notions of being reasonable, the

reasonable hull and Axiom A*—see definition 2.22. This sometimes caused an excess of

technicality—such as in corollary 2.39 but dealing with such technical problems in the

proof of such a corollary seemed better to me than to look for individual tricky solutions

in many other proofs. Finally the creative part of this thesis consists in the formulation

of BAAFA in definition 3.7 and the construction of a model of ZFC+ BAAFA +¬BPFA

in theorem 6.7. .

vi



1 Reflecting and Σn–correct cardinals

We are going to introduce some large cardinal notions—the notion of a reflecting cardinal

and the notion of a regular Σn–correct cardinal. These large cardinal notions fall between

inaccessiblity and Mahloness in the hierarchy of consistency strength. We start with

some technical remarks:

1.1. Lemma.

• “x = Hκ” is a ∆2-assertion for any cardinal κ.

Since the model relation between a set and a formula can be formulated by restricting

the quantifiers of the formula to the set we immediately attain:

• “Hκ |= “ϕ(a)”” is a ∆2-assertion for any cardinal κ such that a ∈ Hκ.

Proof. First note that x ∈ Hκ is Σ1

(
{x, κ}

)
. This is the case since it can be written

as follows:

∃α < κ, y ⊃ x, f ∈ Func : f : α →−→ y (1.1)

Here the general quantifier expressing f ’s being onto is bounded by y.

Now we can write x = Hκ in a Σ2

(
{x, κ}

)
–fashion as follows:

∀y ∈ x : y ∈ Hκ ∧ ∀y
(
y /∈ Hκ ∨ y ∈ x

)
(1.2)

The first part of the formula is Σ1

(
{x, κ}

)
since “x ∈ Hκ” is, the second consists of

a Π1–formula preceded by an unbounded general quantifier which renders it Π1. This

shows that it can be conceived of as a Σ2

(
{x, κ}

)
– as well as a Π2

(
{x, κ}

)
–formula. So

it is ∆2

(
{x, κ}

)
. ⊣

We will see soon that the reflecting cardinals are precisely the regular Σ2–correct

cardinals. The main cause for this lies in the following fact which links the sets of

hereditarily limited cardinality Hκ with the class of Σ2–assertions.
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1 Reflecting and Σn–correct cardinals

1.2. Lemma. If κ ∈ Card \ℵ1, a ∈ Hκ, ϕ(a) is a Σ2–formula in the language of set

theory and Hκ |= “ϕ(a)” then ϕ(a).

Proof. Let ψ be a Σ0–formula in the language of set theory, κ a cardinal and suppose

that

Hκ |= “∃x∀yψ(x, y, a)”. (1.3)

Towards a contradiction assume that

∀x∃y¬ψ(x, y, a). (1.4)

Choose a witness for the truth of (1.3), i.e. a b ∈ Hκ such that

Hκ |= “∀yψ(b, y, a)”. (1.5)

By (1.4) we have ∃y¬ψ(b, y, a). Take a witness c for the truth of this statement then

¬ψ(b, c, a) and clearly c /∈ Hκ. Let λ := trcl(c) then λ > κ and Hλ+ |= “¬ψ(b, c, a)”.

Set µ := trcl({a, b}) +ℵ0. Since a, b ∈ Hκ we have µ < κ. So by the Löwenheim-Skolem

theorem one can take an elementary submodel M ≺ Hλ+ such that M ⊃ trcl({a, b}) and

M ∈ [Hλ+ ]µ. Now we can form the Mostowski-collapse of M—call it N . Let π : M ←→

N be the collapsing function. Since trcl({a, b}) ⊂ M we have π(a) = a and π(b) = b.

But M |= “¬ψ(b, c, a)” so N |= “¬ψ
(
b, π(c), a

)
”. Furthermore π(c) ∈ N ⊂ Hµ+ ⊂ Hκ

hence Hκ |= “¬ψ
(
b, π(c), a

)
”. This contradicts (1.5). ⊣

1.3. Corollary. ∀κ ∈ Card : Hκ ≺∆2
V

1.4. Definition. A cardinal κ is called reflecting if and only if. . .

• . . . it is regular and the following holds:

• Whenever a ∈ Hκ, ϕ is a formula in the language of set theory, λ is a successor

cardinal and Hλ |= “ϕ(a)” there exists a µ ∈ Card ∩κ such that a ∈ Hµ and

Hµ |= “ϕ(a)”.

This is not the notion of reflecting cardinal which is introduced in [Je 2] on page 697.

This becomes clear when one compares the results which are following here with the

fact that Jech’s notion has a consistency strength well above the one of “There exists a

Mahlo cardinal.”.
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1.5. Lemma. The following are equivalent for an ordinal κ.

(1) κ is regular and whenever λ is a successor cardinal, a ∈ Hκ, ϕ is a formula in the

language of set theory and Hλ |= “ϕ(a)” there exists a successor cardinal µ < κ

such that a ∈ Hµ and Hµ |= “ϕ(a)”.

(2) κ is reflecting.

(3) κ is regular and whenever λ ∈ Card, a ∈ Hκ, ϕ is a formula in the language of

set theory and Hλ |= “ϕ(a)” there exists a µ ∈ Card ∩κ such that a ∈ Hµ and

Hµ |= “ϕ(a)”.

Proof.

• (1)⇒ (2): This is trivial.

• (2) ⇒ (3): Let λ be a cardinal, a ∈ Hκ and ϕ a formula such that Hλ |= “ϕ(a)”.

Suppose w.l.o.g. that λ > κ. We have

Hλ+ |= “∃µ ∈ Card: Hµ |= ϕ(a)”. (1.6)

By (2) there is a ϑ ∈ Card ∩κ such that

Hϑ |= “∃µ ∈ Card: Hµ |= ϕ(a)”. (1.7)

Let µ ∈ Hϑ witness this then a ∈ Hµ, µ is really a cardinal andHϑ |= “Hµ |= ϕ(a)”.

But then by lemma 1.1 in conjunction with lemma 1.2 Hµ |= “ϕ(a)” really holds

true.

• (3)⇒ (1): Let λ be a successor cardinal, a ∈ Hκ and suppose that Hλ |= “ϕ(a)”.

Then the following holds true:

Hλ |= “There exists a largest cardinal and ϕ(a) is valid.” (1.8)

By (3) there has to be a µ ∈ Card ∩κ such that

Hµ |= “There exists a largest cardinal and ϕ(a) is valid.”. (1.9)

But then µ has to be a successor cardinal.

3



1 Reflecting and Σn–correct cardinals

⊣

1.6. Definition. An ordinal α is called Σn–correct if and only if Vα ≺Σn
V .

1.7. Lemma. A regular cardinal is Σ1–correct iff it is inaccessible.

Proof.

• (⇐): If κ is inaccessible then in particular it is regular and Hκ = Vκ. Let a ∈ Vκ

and ϕ(a) be a Σ1–formula. Then ϕ(a),¬ϕ(a) are both Σ2–formulae. So lemma 1.2

implies that Vκ |= “ϕ(a)”⇒ ϕ(a) and Vκ |= “¬ϕ(a)”⇒ ¬ϕ(a). Hence Vκ ≺Σ1
V .

• (⇒): Let κ be Σ1–correct and regular. It suffices to show that κ is a strong limit

cardinal. To this end let λ ∈ Card ∩κ. Since every infinite cardinal is a limit

ordinal one can argue as follows:

λ ⊂ Vλ (1.10)

⇒ ∀X ⊂ λ : X ⊂ Vλ (1.11)

⇒ ∀X ⊂ λ : X ∈ Vλ+1 (1.12)

⇔ P(λ) ⊂ Vλ+1 (1.13)

⇒ P(λ) ∈ Vλ+2 ⊂ Vκ (1.14)

Now one considers the following statement which is Σ1

(
{P(λ)}

)
and hence Σ1(Vκ):

∃α < Ω, f ∈ Func : α →−→ P(λ). (1.15)

κ is Σ1-correct so there are α ∈ Ω∩Vκ = κ, f ∈ Func ∩Vκ such that f : α →−→ P(λ).

Clearly 2λ 6 α so 2λ ∈ Vκ and 2λ < κ. So κ is a strong limit cardinal and hence

inaccessible.

⊣

1.8. Lemma. A regular cardinal is reflecting iff it is Σ2–correct.

Proof.
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• (⇒) : Let κ be a reflecting cardinal.

– First we show that κ is Σ1–correct. So let a ∈ Vκ and suppose ∃xϕ(x, a) holds

where ϕ is a Σ0-formula in the language of set theory. Let b be a witness to

this, i.e. choose a b such that ϕ(b, a) holds. Define λ := trcl({a, b}). Then

Hλ+ |= “∃xϕ(x, a)”. Since κ is reflecting there exists a cardinal µ < κ such

that Hµ |= “∃xϕ(x, a)”. But then Vκ |= “∃xϕ(x, a)” since Vκ ⊃ Hκ ⊃ Hµ.

– Since κ is regular and Σ1–correct it is inaccessible by lemma 1.7 hence Vκ =

Hκ. So let a ∈ Vκ and ϕ(a) be a Σ2–statement. Of course by lemma 1.2

if Vκ |= “ϕ(a)” then ϕ(a). If on the other hand ϕ(a) the reflection theorem

implies that there is a cardinal λ > κ such thatHλ |= “ϕ(a)”—use for example

[Ku], IV.7.5 and let Z be the functional relation α 7→ Hℵα
. Since κ is reflecting

there is a cardinal µ < κ such that Hµ |= “ϕ(a)”. Because κ is inaccessible

one can apply lemma 1.2 within Vκ. This shows that Vκ |= “ϕ(a)”.

• (⇐) : Let κ be regular and Σ2–correct. Suppose a ∈ Hκ, λ ∈ Card and ϕ is a

formula in the language of set theory such that Hλ |= “ϕ(a)”. Then

∃µ ∈ Card: Hµ |= “ϕ(a)” (1.16)

is true and by lemma 1.1 a Σ2–statement. So it holds in Vκ. Let µ ∈ Card ∩κ be

a witness to this fact. Then Hµ |= “ϕ(a)” and µ is a cardinal.

⊣

In the following proofs we are going to use the fact that the satisfaction relation is

∆1–definable—see for example [De 2], Chapter I, section 9. This means there is a Σ1–

formula ϕΣ and a Π1–formula ϕΠ such that for every formula ψ, every set M and every

a ∈M :

Sat(M, a, [ψ]) :⇐⇒M |= “ψ(a)”⇐⇒ ϕΣ(M, a, [ψ])⇐⇒ ϕΠ(M, a, [ψ]) (1.17)

By [ψ] we refer to the Gödel–number of ψ. In the following proofs we suppose that

the satisfaction relation above has been defined for a bijective Gödel–numbering of all

Σ0–formulae by natural numbers.

1.9. Lemma. “α is Σn–correct.” is Πn–expressible whenever n ∈ ω \ 2 and “α is

regular and Σ1–correct.” is Π1–expressible. Therefore:
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1 Reflecting and Σn–correct cardinals

“α is regular and Σn–correct.” is Πn–expressible whenever n ∈ ω \ 1.

Proof. Note that trcl(X) is ∆1(X)–definable and “x = Vα” is a Π1({x, α})–relation

since “rk(x) < α” is a ∆1({x, α})–relation. Then for n ∈ ω \ 2 we can express “α is

Σn–correct.” as

∀m < ω, a
((

rk(a) < α ∧ ∃x1 . . . ∀xnϕΠ(trcl({a, x1, . . . , xn}), (a, x1, . . . , xn), m)
)

(1.18)

→ ∀w
(
w = Vα → ∃x1 ∈ w∀x2 ∈ w . . . ϕΠ(w, (a, x1, . . . , xn), m)

))

if n is even and as

∀m < ω, a
((

rk(a) < α ∧ ∃x1 . . .∃xnϕΣ(trcl({a, x1, . . . , xn}), (a, x1, . . . , xn), m)
)

(1.19)

→ ∀w
(
w = Vα → ∃x1 ∈ w∀x2 ∈ w . . . ϕΠ(w, (a, x1, . . . , xn), m)

))

if n is odd. Here the dots stand for alternating (blocks of) quantifiers or for the variables

bound by them. Note that the formula is at least Π2 since “w = Vα” in the second line

is not Σ1–definable. This in fact proves the first assertion of the lemma since Σ
˜n

–

downwards–absoluteness implies Π
˜n

–upwards–absoluteness which in turn implies Σ
˜n+1–

upwards–absoluteness.

For the second one we use lemma 1.7 which allows us to characterize regular Σ1–

correct cardinals as inaccessibles. But being regular is Π1 and being a strong limit is Π1

too—consider

∀β < α, f ∈ Func
(
(∀x ∈ dom(f) : x ⊂ β)→ ∃γ < α : γ /∈ ran(f)

)
. (1.20)

The third assertion now follows immediately from the the other two when one again

considers the fact that being regular is Π1. ⊣

1.10. Corollary. Let n ∈ ω \ 1. Then: There are unboundedly many Σn–correct

regular cardinals below every regular Σn+1–correct cardinal.

Proof. Let n ∈ ω \ 1 and κ be regular and Σn+1–correct. Then obviously κ is regular

and Σn–correct and hence for every α < κ a witness to the truth of

∃λ ∈ Reg \α : “λ is Σn–correct.” (1.21)
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which is a Σn+1

(
{α}

)
–assertion by lemma 1.9. So if we choose α < κ arbitrarily we get

Vκ |= “∃λ ∈ Reg \α : “λ is Σn–correct.”. If λ is a witness to this then

Vλ ≺Σn
Vκ ≺Σn+1

V (1.22)

so λ is in fact Σn–correct and of course it is regular too since every witness to its

singularity would have rank at most λ, meaning—its rank would in particular be smaller

than κ. ⊣

1.11. Definition. Levy’s scheme is the following collection of formulae:

{
∀κ ∈ Card, (αβ)β<κ

(
(“(αβ)β<κ is a sequence of ordinals.” ∧ ∀β < κ : ϕ(αβ)) (1.23)

→ ϕ(sup
β<κ

αβ)
)
→ ∃κ ∈ Reg : ϕ(κ)

∣∣ϕ is a formula in the languaga of set theory.
}
.

Each formula of this collection is claiming that whenever ϕ defines a club–class this very

class has a regular member. This amounts to the statement that Reg is stationary in Ω,

i.e. that Ω is Mahlo.

1.12. Lemma. If n < ω and Levy’s scheme holds then there is a stationary proper

class of regular Σn–correct cardinals.

Proof. Let C∗ be any closed unbounded proper class and n < ω. We have to show that

C contains a regular Σn–correct cardinal—as element. To this end we again consider

the Σn–satisfaction relation. More precisely we define an a ⊂ ω as follows:

a :=
{
n < ω

∣∣∃x∀y . . .Sat
(
trcl(x, y, . . . ), (x, y, . . . ), n

)}
(1.24)

In this formula as well as in the following one—which is clearly true—the dots stand for

n− 2 alternating (blocks of) quantifiers.

∀n < ω
(
n ∈ a↔ ∃y∀y . . .Sat

(
trcl(x, y, . . . ), (x, y, . . . ), n

))
(1.25)

It is a well–known fact that true sentences in the language of set theory reflect down to

Vα for a closed unbounded proper class of ordinals α. Let C ′ be such a closed unbounded

proper class. Then C := C ′ ∩C∗ is again a closed unbounded proper class. Since Levy’s

scheme holds, C has a regular member—call it κ. But then κ is clearly an element of

C∗ and it is also Σn–correct since Vκ reflects the statement (1.25). ⊣
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1 Reflecting and Σn–correct cardinals

1.13. Corollary. If κ is Mahlo then for every n < ω the set
{
λ < κ

∣∣Vκ |= “λ is

regular and Σn–correct.”
}

is stationary in κ.

Proof. By definition the set of regular λ below a Mahlo cardinal κ is stationary, i.e.

every set which is club in κ contains a regular cardinal. This in particular holds for all

closed unbounded subsets of κ which are definable with parameters from Vκ. But these

are precisely the closed unbounded proper classes from Vκ’s point of view. So Levy’s

scheme holds true in Vκ. An application of lemma 1.12 within Vκ yields the desired

result. ⊣

This corollary establishs that the regular Σn–correct cardinals lie consistencywise be-

low a Mahlo–cardinal.

Many large cardinal notions relativize to inner models, in order for our account of

reflecting cardinals to be complete we prove that this is indeed the case for them too.

1.14. Lemma. Every reflecting cardinal is reflecting in L.

Proof. Suppose κ is a reflecting cardinal. Let λ ∈ Ω \ κ be a successor cardinal in L,

a ∈ HL
κ , ϕ a formula in the language of set theory and suppose that HL

λ |= “ϕ(a)”. We

have to find a µ ∈ CardL ∩κ such that HL
µ |= “ϕ(a)”.

To this end let ν be a successor cardinal which is large enough so that Hν |= “HL
λ |=

ϕ(a)”. Since κ is reflecting, there exists a cardinal χ < κ such that

Hχ |= “∃µ ∈ CardL : HL
µ |= ϕ(a)”. (1.26)

Let µ ∈ Hχ be a witness to this. Now “µ ∈ CardL : HL
µ |= ϕ(a)” is a Π1–assertion. This

is the case since it can be written as

Lµ |= “ϕ(a)” ∧ ∀α < Ω : Lα |= “µ ∈ Card ”. (1.27)

and the function α 7→ Lα is ∆1 by [Je 2], lemma 13.14. So by lemma 1.2 µ ∈

CardL ∧HL
µ |= “ϕ(a)”. Obviously µ < κ so we are finished. ⊣

1.15. Lemma. If n < ω and 0# exists then all uncountable cardinals are Σn–correct

in L.

8



Proof. Suppose ϕ is a formula in the language of set theory, κ ∈ Card \ℵ1, a ∈ Lκ

and L |= “ϕ(a)”. By applying the reflection theorem within L we get a λ ∈ Card \ℵ2

such that Lλ |= “ϕ(a)”. But then by [De 2], theorem V.2.12 Lκ |= “ϕ(a)”. ⊣
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1 Reflecting and Σn–correct cardinals
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2 Axiom A and properness

In this chapter we are going to introduce two attributes of forcing notions, the one called

Axiom A and the attribute of being proper. Axiom A was introduced by James E. Baum-

gartner in [Ba 1] while properness is an idea of Saharon Shelah. Both attributes share

two nice properties. One is that they are both generalizations both of being countably

closed and of satisfying the countable chain condition, the other is that each attribute

is preserved under iterations with countable support. In both cases the generalizations

are made carefully enough in order to preserve ℵ1 in the generic extension—a prop-

erty shared by the countably closed notions of forcing as well as by those satisfying the

countable chain condition.

We start with an abstract discussion of properness.

2.1 Properness

2.1. Definition. Given a notion of forcing P, the proper (P, p)–game for p ∈ P is

the game where in move n, Player I plays a maximal antichain An, followed by Player

II playing countable subsets of the antichains previously played by her opponent Bn
0 ⊂

A0, . . . , B
n
n ⊂ An.

Player II wins iff ∃q 6 p ∀n < ω :
⋃
k∈ω\nB

k
n is predense below q.

2.2. Definition. We call a notion of forcing P proper if and only if for every p ∈ P,

Player II has a winning strategy in the proper (P, p)–game. The class of all proper

notions of forcing will be denoted by Prop throughout this thesis.

2.3. Remark. Indeed, looking at it from II’s point of view, the rules of the game

are formulated in a friendly manner. It would make no difference for example, if II in

each move was allowed only to play a singleton instead of a countable set, because she

could remember all other elements she would like to play and play them at future moves

instead—all II needs is a fixed injection f : ω2 →֒ ω. We will use this fact in some

proofs.

11



2 Axiom A and properness

2.4. Definition. The proper (P, p)∗–game is played as follows: In the nth move,

Player I plays ordinal names α̇n and Player II plays ordinals βn. Player II wins iff

∃q 6 p q 
P “∀m < ω ∃n < ω : α̇m = β̌n”.

2.5. Lemma. Player II has a winning strategy in the proper (P, p)∗–game if she has

one in the proper (P, p)–game.

Proof. Let P be a partial order, p ∈ P and let there be a play of the proper (P, p)∗–

game. Player I plays ordinal names α̇n. Associate to each α̇n a maximal antichain

An with the property that ∀n < ω ∀a ∈ An ∃β
a
n < Ω : a 
P “α̇n = β̌an” and assume

Player I would play these instead of the ordinal names. Since Player II has a winning

strategy in the proper (P, p)–game, she can play countable sets Bn
0 ⊂ A0, . . . , B

n
n ⊂ An.

Let f : ω ←→ ω3 be a fixed bijection such that ∀n < ω : f(n) = ω2 · k + ω · l + m

with k + l 6 n and let emn : ω ←→ Bm
n be enumerations of the sets Bm

n . Suppose

f(n) = ω2 · k + ω · l +m. Then let Player II play the ordinal βn := β
ek+l
k

(m)

k in move n.

Now playing this way is a winning strategy for II—Proof:

II wins in the proper (P, p)–game, so there is a q 6P p such that ∀n < ω :
⋃
m∈ω\nB

m
n

is predense below q. This very q witnesses that II wins the proper (P; p)∗–game. Let

n < ω. In move n, I played α̇n. Now
⋃
m∈ω\nB

m
n is predense below q. Let m ∈ ω \ n

and b ∈ Bm
n be such that b‖Pq. Let l := emn

−1

(b) and k := m − n. Then q 
P “α̇n =

β̌f−1(ω2·n+ω·k+l) = β̌
en+k
n (l)
n ”.

So we have shown that ∀n < ω ∃m < ω : q 
P “α̇n = β̌m”. But then clearly q 
P “α̇n =

β̌m”. ⊣

We are now going to introduce two alternative characterizations of properness.

2.6. Definition. Let us call κ ∈ Reg sufficiently large for P iff κ > 2P.

The idea behind this terminology is that we can then consider a Hκ and countable

elementary submodels M ≺ Hκ and analyse P as well as dense sets, predense sets, dense

open sets, antichains and filters (in V ) in these M , where we may add parameters to

the language of Hκ.

2.7. Lemma. Let P be a partial order, κ be sufficiently large for P and M ≺ Hκ. The

following assertions are equivalent for q ∈ P:

(1) For all antichains A ∈M : A ∩M is predense below q.

12



2.1 Properness

(2) For all ordinal names α̇ ∈M : ∀p 6P q ∃r 6P p, β ∈M : r 
P “α̇ = β̌”.

(3) q 
P “Γ ∩ M̌ is P̌-generic over M̌.”.

Proof. (1) ⇒ (2): Let q be such that (1) is fulfilled, let A be a maximal antichain

whose elements decide α̇, i.e. ∀a ∈ A ∃βa : a 
P “α̇ = β̌a”. Let p 6P q be arbitrary.

Then ∃a ∈ A ∩ M : a‖Pp. a 
P “α̇ = β̌a”. Let s ∈ P be such that r 6P a, p. Then

r 
P “α̇ = β̌a”. ⊣

(2) ⇒ (3): Suppose q 6
P “Γ ∩ M̌ is P-generic over M̌.”. Take a maximal antichain

A ∈M ∩P(P) and a p 6P q such that p 
P “Ǎ∩Γ∩M̌ = ∅”. Let λ ∈ CardM and e ∈M

such that M |= “e : λ ←→ A is an enumeration of A.”. Then γ̇ :=
{
(δ̌, a)

∣∣e(δ) = a
}

is

an ordinal name in M . Suppose r 6P p and r 
P “γ̇ = β̌” for a β ∈M . Then (β̌, a) ∈ γ̇

for an a >P r, so r 
P “ǎ ∈ Γ ∩ Ǎ”.  ⊣

(3) ⇒ (1): Suppose (3) holds and A is a maximal antichain in M . Then clearly

q 
P “Ǎ ∩ Γ ) ∅”. But then there is an r 6P q and an a ∈ A such that r 
P “ǎ ∈ Γ”.

But then r‖Pa, so we can choose an s 6P r, a. Then s 6P a, q, so (1) holds. ⊣

2.8. Definition. A condition q is called (M,P)–generic iff one of the assertions

above holds.

2.9. Lemma. If P is a notion of forcing, κ is sufficiently large for P and there is a

club C ⊂ [Hκ]
<ω1 of models M ≺ Hκ such that

∀M ∈ C, p ∈M ∩ P ∃q 6P p : q is (M,P)–generic, (2.1)

then P is proper.

Proof. Let p ∈ P be arbitrary. The following is a winning strategy for II in the

proper (P, p)–game. In move 0, choose a M0 ∈ C such that A0 ∈ M0. In any move

n ∈ ω \ 1, choose a Mn ∈ C such that Mn ⊃ Mn−1 ∪ {An}. In every move n < ω, play

the countable sets Bn
0 := A0 ∩ Mn, . . . , B

n
n := An ∩ Mn. Define Mω :=

⋃
n<ωMn. C is

club, so Mω ∈ C. Let q 6P p be (Mω,P)–generic. ∀n < ω :
⋃
m∈ω\nB

m
n = An ∩Mω and

∀n < ω : An ∩Mω is predense below q, so ∀n < ω :
⋃
m∈ω\nB

m
n is predense below q, so

II won. p was arbitrarily chosen, so P is proper. ⊣

13



2 Axiom A and properness

2.10. Lemma. Being proper is a Σ2–property.

Proof. Let P be a notion of forcing The following formula describes the existence of

a winning strategy in the proper (P, p)–game. Let AmP denote the set of all maximal

antichains in P.

∃f ∈ Func : dom(f) = (AmP )<ω ∧ ∀(x, y) ∈ f, (n,A) ∈ x∃(n, b) ∈ y : b ∈ A

∧∀(Ak|k < ω) ∈ (AmP )ω∃q 6 p∀r ∈ Pq, m < ω∃n ∈ ω \m :

f((Ak|k < n)) = (bk|k < n) ∧ bm‖Pq (2.2)

Here all but the quantifiers at the beginning of one of the first two lines are bounded.

So the assertion is Σ2 in the parameters P and p. Now if the above formula is preceded

by “∀p ∈ P” we have a formulation of properness. Since the additional quantifier is

bounded, being proper is itself a Σ2–assertion. ⊣

2.11. Lemma. If P is a notion of forcing, p ∈ P is such that Player II has a winning

strategy in the proper (P, p)∗–game, κ is sufficiently large for P and M ∋ P, p is a

countable elementary submodel of Hκ then there is an (M,P)–generic q 6P p.

Proof. Since Hκ |= “P is proper.” and M ≺ Hκ there exists a σp ∈ M such that

M |= “σp is a winning strategy for Player II in the proper (P, p)∗–game.”. Let e : ω →֒

MP be an enumeration of all ordinal names in M and let I play e(n) in move n. Let II

in the nth move play the ordinal βn according to σp and let q witness that II wins. So

q 
P “∀m < ω ∃n < ω : α̇m = β̌n”. Let r 6P q and α̇ ∈ MP be any ordinal name. Since

there is an m < ω such that α̇ = α̇m, q 
P “∃n < ω : α̇ = β̌n”. So one can take an

s 6P r and an n < ω such that s 
P “α̇ = β̌n”. So q 6P p is (M,P)–generic. ⊣

2.12. Remark. Of course if κ is sufficiently large for P and additionally whenever

M ∋ P is an elementary submodel of Hκ and p ∈ P ∩ M there is an (M,P)–generic

condition q 6P p then of course there is a club C ⊂ [Hκ]
<ω1 of elementary submodels of

Hκ such that (2.1) holds—simply the club
{
M

∣∣M ∈ [Hκ]
<ω1 ∧ M ≺ Hκ ∧ P ∈ M

}
. So

we arrive at the following...

2.13. Resumee. The four last lemmata together with the remark showed us the

equivalence of the following four statements for a notion of forcing P thereby yielding

up to now four different possible characterizations of properness:

14



2.1 Properness

(1) P is proper.

(2) ∀p ∈ P : Player II has a winning strategy in the proper (P, p)∗–game.

(3) For every κ ∈ Card sufficiently large for P, every countable elementary submodel

M ∋ P of Hκ and every p ∈M ∩ P there exists a q 6P p that is (M,P)–generic.

(4) For every for P sufficiently large κ ∈ Reg there is a club C ⊂ [Hκ]
<ω1 of models

M ≺ Hκ such that

∀M ∈ C, p ∈ P ∩M ∃q 6P p : q is (M,P)–generic. (2.3)

Proof.

• (1)⇒ (2): By lemma 2.5.

• (2)⇒ (3): By lemma 2.11.

• (3)⇒ (4): By remark 2.12.

• (4)⇒ (1): By lemma 2.9.

⊣

There still is another possiblity to characterize properness which we just state

here—we are not going to use it.

2.14. Theorem. Let P be any notion of forcing. P is proper if and only if for every

cardinal κ each set stationary in [κ]<ω1 remains stationary in the generic extension.

For a proof as well as details regarding clubs and stationary sets in [κ]<ω1 see [Je 2],

page 605, pp. 100 respectively.

2.15. Lemma. Suppose P is a proper notion of forcing. Then forcing with P does not

collapse ℵ1. In fact, if C∗ is a countable set of ordinals in the generic extension M [G],

there is a set C, countable in the ground model M such that C∗ ⊂ C.

Proof. Suppose that P is proper, Ċ is a P–name and p ∈ P is a condition such that

p 
P “Ċ is countable.”. We can choose a P–name ḟ which testifies this, i.e.

p 
P “ḟ : ω →−→ Ċ”. (2.4)

15



2 Axiom A and properness

Let us confuse ḟ(n) with a name for ḟG(n) where G is P–generic. Furthermore let us

choose a q 6P p arbitrarily. Our goal is to find a countable set of ordinals C and an

r 6P q such that r 
P “Ċ ⊂ Č”. If we consider a play of the proper (P, q)∗–game P’s

properness implies that Player II has a winning strategy in this game—let us fix one

and call it σq. Now in the role of Player I we can force our opponent to deliver C and r.

• In move n Player I plays the ordinal name α̇n := ḟ(n).

• Next II plays according to her strategy, i.e. βn := σq(α̇0, . . . , α̇n).

Let C :=
{
βn

∣∣n < ω
}
. II wins this play of the game, so there exists an r 6P q such that

r 
P “∀m < ω∃n < ω : α̇m = β̌n”—in other words: r 
P “ḟ“ω ⊂ Č”. Since r 6P p and

by (2.4) this implies that r 
P “Ċ ⊂ Č”. ⊣

A property of properness most welcome is its preservation under products.

2.16. Theorem. If Pα is an iterated forcing construction of length α of proper

forcing notions with countable support then Pα is proper.

For a proof see for example [Je 2], pp. 604 or [Ab], pp. 15.

2.2 Axiom A and a property of classes of forcing notions

We are now going to introduce Axiom A and explain the relationship between c.c.c.,

σ–closed, Axiom A and proper notions of forcing. Moreover we will define a property of

classes of forcing notions which seems to be necessary in order to be able to deal with

Axiom A and Boolean algebras at the same time.

2.17. Definition. A notion of forcing P = (P,6P) satisfies Axiom A iff there exists

a sequence (6n |n < ω) of ever stronger partial orderings on the set P strengthening

6P, that is we have

P × P ⊃6P=60
P⊃61

P⊃62
P⊃ · · · ⊃6n

P⊃6n+1
P ⊃ . . . (2.5)

such that

• Whenever (pn|n < ω) is a sequence of conditions from P such that ∀n < ω :

pn+1 6n
P pn there is a pω ∈ P such that ∀n < ω : pω 6n

P pn.
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2.2 Axiom A and a property of classes of forcing notions

• For any ordinal P-name α̇, any condition p ∈ P and any n < ω there exists a

condition q ∈ P and a countable set of ordinals B such that q 6n
P p and q 
P “α̇ ∈

B̌”.

2.18. Lemma. There are (at least) two possibilities to rephrase the second condition

in the definition of Axiom A forcing notions P = (P,6P). Equivalent are:

(1) If p ∈ P , A is an antichain maximal below p and n < ω then there exists a q 6n
P p

such that
{
a
∣∣a ∈ A ∧ a‖Pq

}
< ℵ1.

(2) If p ∈ P , D ⊂ P is dense below p and n < ω then there exists a B ∈ [D]<ω1 and a

q 6n
P p such that B is predense below q.

(3) If α̇ is a P-name, p 
P “α̇ < Ω” and n < ω then there exists a q 6n
P p and a

countable set of ordinals C such that q 
P “α̇ ∈ Č”.

Proof. We assume throughout that P = (P,6P) is a notion of forcing and P × P ⊃

6P = 60
P⊃61

P⊃ . . . is a sequence for which the first condition in definition of Axiom A

forcing notions holds true.

(1)⇒ (2): Let p, n and D be as above. Choose an antichain A ⊂ D which is maximal

under all antichains which are subsets of D. Then of course it is also maximal below p

since if it was not and b was a witness for this, i.e. ∀a ∈ A : a⊥Pb then by density of D

one could take a c ∈ D such that c 6 b. Then ∀a ∈ A : a⊥Pc— .

Let q be as in (1) and define B :=
{
a
∣∣a ∈ A ∧ a‖Pq

}
. By (1) B is countable. But B

is also predense below q. For if r 6 q is arbitrarily chosen since A is maximal below p

there is an a ∈ A such that a‖Pr. Then a‖Pq so a ∈ B. ⊣
(
(1)⇒ (2)

)

(2) ⇒ (3): Let p, n and α̇ be given. Let D :=
{
q
∣∣q ∈ P ∧ ∃α < Ω : q 
P “α̇ = α”

}
.

D is dense. Then there exists a q 6n p and a B ∈ [D]<ω1 which is predense below q.

Define C :=
{⋃
{α|b 
P “α̇ = α”}

∣∣b ∈ B
}
. Then q 
P “α̇ ∈ Č”. ⊣

(
(2)⇒ (3)

)

(3)⇒ (1): Let p, n and A be as above. Let κ := A and e : κ←→ A be an enumeration.

Then p 
P “e < κ̌”. By (3) there is a countable set of ordinals C and a q 6n p such that

q 
P “e ∈ Č”. But
{
a
∣∣a ∈ A ∧ a‖Pq

}
⊂ e“C ∈ [A]<ω1. ⊣

(
(3)⇒ (1)

)
⊣

2.19. Lemma. Every notion of forcing that satisfies the c.c.c. also satisfies Axiom A.

Proof. Let P = (P,6P) be a c.c.c. forcing notion. Define 6n
P:= idP for every n < ω.

Then clearly the first condition is fulfilled. But the second one is fulfilled too for if p ∈ P
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2 Axiom A and properness

and an ordinal P-name α̇ are given one can choose an antichain A deciding α̇ which is

maximal in below p. P satisfies the c.c.c. so A < ℵ1. Let B ∈ [Ω]<ω1 be such that

∀q ∈ A ∃β ∈ B : q 
P “α̇ = β̌”. Then
{
q 6P p

∣∣q 
P “α̇ ∈ B̌”
}

is dense below p. Hence

p 
P “α̇ ∈ B̌”. ⊣

2.20. Lemma. Every countably closed notion of forcing satisfies Axiom A.

Proof. Let P = (P,6P) be a countably closed notion of forcing. Define 6n
P:=6P for

every n < ω. Then the first condition is fulfilled by countable closedness. If p ∈ P and

an ordinal P-name α̇ are given one simply chooses a condition q 6P p which decides α̇.

Then of course the second condition is fulfilled. ⊣

Now we call to mind Kunen’s notion of dense embedding—see [Ku], Definition VII.7.7.

2.21. Definition. Suppose P, Q are partially ordered sets. Then δ : P −→ Q is a

dense embedding if and only if

(1) ∀p, q ∈ P : δ(p) 6Q δ(q),

(2) ∀p, q ∈ P : δ(p)⊥Qδ(q),

(3) δ“P is dense in Q.

2.22. Definition.

• Let us call a class of forcing notions C reasonable by definition if and only if the

following holds:

Suppose P is a forcing notion in C,Q is any forcing notion, there exist a (2.6)

complete Boolean algebra B and dense embeddings δP : P −→ B, δQ : Q −→ B.

Then Q ∈ C.

• Furthermore for a class of forcing notions C let us define the reasonable hull rh(C)

as follows:

rh(C) :=
{
P
∣∣P is a forcing notion and there exists a forcing (2.7)

notion Q ∈ C, a complete Boolean algebra

and dense embeddings δP : P −→ B, δQ : Q −→ B}.

18



2.2 Axiom A and a property of classes of forcing notions

• We call AA∗ := rh(AA) the class of forcing notions satisfying Axiom A*.

[Ku], II.3.3. says that for any poset P there is at least one complete Boolean algebra

in which P can be densely embedded. The following lemma shows that this complete

Boolean algebra is unique up to isomorphism.

2.23. Lemma. Let P be a poset and B,E complete Boolean algebras. If there are

dense embeddings δB : P −→ B+, δE : P −→ E+ then B and E are isomorphic.

Proof. Let P,B,E, δB and δE be as above. Then the following is an isomorphism

between B and E.

ϕ : B ≃ E (2.8)

b 7−→
∨{

δE(p)
∣∣p ∈ P ∧ δB(p) 6B b

}
.

(1) ϕ(00B) = 00E. This follows easily from ϕ(00B) =
∨
∅ and

∨
∅ = 00E.

(2) ∀a, b ∈ B : ϕ(a) 6E ϕ(b). Suppose that a 6B b. Then
{
δE(p)

∣∣p ∈ P ∧ δB(p) 6B

a
}
⊂

{
δE(p)

∣∣p ∈ P ∧ δB(p) 6B b
}

and hence ϕ(a) 6E ϕ(b).

(3) a 66B b ⇒ ϕ(a) 66E ϕ(b). Suppose towards a contradiction that a 66B b but

ϕ(a) 6 ϕ(b). By separativity there exists a c ∈ B such that c 6B a but c⊥Bb. Let

p ∈ P be such that δB(p) 6B c then δB(p) 6B a but δB(p)⊥Bb. We have

∀q ∈ P
(
δB(q) 6B b→ δB(p)⊥BδB(q)

)
(2.9)

=⇒ ∀q ∈ P
(
δB(q) 6B b→ p⊥Pq

)
(2.10)

=⇒ ∀q ∈ P
(
δB(q) 6B b→ δE(p)⊥EδE(q)

)
. (2.11)

This shows that ϕ(b) 6E ¬δE(p). But δB(p) 6B a implies that δE(p) 6E ϕ(a). So

δE(p) 6E ¬δE(p). But then δE(p) = 00E— 

(4) Surjectivity. Let e ∈ E be given. Define b :=
∨

B

{
δB(p)

∣∣p ∈ P ∧ δE(p) 6E e
}
. We

show ϕ(b) = e.

• Suppose ϕ(b) 66 e. By separativity there is an element in E at least as strong

as ϕ(b) but incompatible with e. Since δE
“P is dense in E there is also such

an element in δE
“P. So there is a p ∈ P such that δE(p) 6E ϕ(b) but δE(p)⊥Ee.

By definition of ϕ there is a q ∈ P such that δB(q) 6E b and δE(q)‖EδE(p).

Then p‖Pq—let r 6P p, q. In particular we have δB(r) 6B b. Now by definition
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2 Axiom A and properness

of b there is an s ∈ P such that δE(s) 6E e and δB(s)‖BδB(r). Then s‖Pr—let

t 6P r, s. Then t 6P r 6P p so δE(t) 6E δE(p) hence δE(t)⊥e. But also t 6P s

so δE(t) 6E δE(s) 6E e— 

• Suppose e 66 ϕ(b). As above there is a p ∈ P such that δE(p) 6E e but

δE(p)⊥Eϕ(b). By definition of b the first assertion implies that δB(p) 6B

b. By definition of ϕ the second assertion yields ∀q ∈ P
(
δB(q) 6B b →

δE(p)⊥EδE(q)
)
. So δE(p)⊥EδE(p)— 

(5) ∀B ⊂ B :
∨

b∈B

ϕ(b) = ϕ
( ∨

b∈B

b
)
.

In order to prove this let B ⊂ B be given.

• Since by (2) ∀b ∈ B : ϕ(b) 6E ϕ(
∨
b∈B b) clearly

∨
b∈B ϕ(b) 6E ϕ(

∨
b∈B b).

• Suppose that ϕ(
∨
b∈B b) 66E

∨
b∈B ϕ(b). Using separativity of 6E and density

of δE
“P in E choose a p ∈ P such that

δE(p) 6E ϕ
( ∨

b∈B

b
)
, (2.12)

but δE(p) ⊥E

∨

b∈B

ϕ(b). (2.13)

By definition of ϕ there is a q ∈ P such that δB(q) 6B

∨
b∈B b and δB(q)‖BδB(p).

The last assertion implies p‖Pq. Let r 6P p, q witness this. Since δB(r) 6B

δB(q) 6B

∨
b∈B b there is a b ∈ B such that δB(r)‖Bb. Let s ∈ P be such

that δB(s) 6B b and δB(s)‖BδB(r). Then r‖Ps so choose a t 6P r, s. δB(t) 6B

δB(s) 6B b follows so δE(t) 6E ϕ(b) 6E

∨
b∈B ϕ(b) by definition of ϕ. On the

other hand t 6P r 6P p so δE(t) 6E δE(p)⊥E

∨
b∈B ϕ(b)— 

(6) ϕ(¬b) = ¬ϕ(b). This follows from (1)–(5) and the fact that ¬b =
∨ {

a
∣∣∀c(c 6

00 ∨ c 66 a ∨ c 66 b)
}
.

(7) ϕ(11B) = 11E. This is an easy consequence of (1) and (6).

(8)
∧

b∈B

ϕ(b) = ϕ
( ∧

b∈B

b
)
. This follows from (5) and (6).

(9) Injectivity. Follows from (3) and the fact that 6B is antisymmetric.

⊣
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2.2 Axiom A and a property of classes of forcing notions

We are denoting this uniquely determined complete Boolean algebra by ro(P). The

functional relation ro is denoted as here because one attains the algebra by considering

all regular open subsets of P in the canonical topology on P, i.e. the topology with base

clopen sets Up :=
{
q
∣∣q ∈ P ∧ q 6P p

}
. An important point here is of course that forcing

with ro(P) always yields the same generic extension as forcing with P. See for example

[Je 2], pp. 204 or [Ku], VII.7.11. .

2.24. Lemma. The classes of c.c.c., the class of forcing notions which preserve

stationary subsets of ℵ1 and Prop are reasonable.

Proof.

• c.c.c.: Suppose P and Q are posets, B is a complete Boolean algebra and δP :

P −→ B as well as δQ : Q −→ B are dense embeddings. Let A be an uncountable

antichain in Q. Then δQ
“A is an uncountable antichain in B. Since δP

“P is dense

in B there is an antichain A′ ⊂ δP
“P which is a refinement of A. Of course A′ is

also uncountable. But then by the first condition in the definition of the notion of

dense embeddings, δ−1“A′ is an uncountable antichain in P. By contraposition we

see that Q satisfies the c.c.c. if P does.

• stat.pres.: If P and Q are posets, B is a complete Boolean algebra and δP : P −→ B,

δQ −→ B are dense embeddings then by [Ku], theorem 7.11 P and B yield the same

generic extensions and Q and B yield the same generic extensions. So P and Q

yield the same generic extensions. Since to preserve stationary subsets of ℵ1 is

a property defined via the generic extension, the class of forcing notions which

preserve stationary subsets of ℵ1 is resonable.

• Prop: One can argue just as above using theorem 2.14 which allows one to define

properness via attributes of the generic extension. Since we did not prove this

theorem we nevertheless give a direct proof here.

Let P be a proper notion of forcing, Q any notion of forcing, B a complete Boolean

algebra and δP : P −→ B, δQ : Q −→ B dense embeddings. We want to show that

Q is proper too. Let q ∈ Q be given. By density of δP
“P choose a p ∈ P such

that δP(p) 6B δQ(q). We are now going to use II’s winning strategy in the proper

(P, p)–game to define a winning strategy for her in the proper (Q, q)–game. In

order to prove this strategy to be winning Player I and II will simultaneously play

a proper (P, p)–game.
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2 Axiom A and properness

– In move n Player I plays a maximal antichain An ⊂ Q. Then because δQ is

a dense embedding δQ
“An is a maximal antichain in B. Since δP

“P is dense

in B we can choose an antichain Bn ⊂ δP
“P refining δQ

“An. If cn is a choice

function with domain Dn :=
{
δ−1

P
“{b}

∣∣b ∈ Bn

}
then En := cn

“Dn is a maximal

antichain in P and δP
“En = Bn. This En is the antichain played by I in the

proper (P, p)–game. Now by her winning strategy in the proper (P, p)–game

Player II plays Cn
m ∈ [Em]<ω1 for m 6 n. Back in the proper (Q, q)–game she

plays F n
m :=

{
a ∈ Am

∣∣∃c ∈ Cn
m : δP(c) 6B δQ(a)

}
. For every m 6 n since Cn

m

is countable and Am is an antichain this subset of Am is clearly countable.

Now suppose that these simultaneous plays have been finished. We know that

Player II won the proper (P, p)–game, i.e. there exists an r 6P p such that for all

m < ω
⋃
n∈ω\m C

n
m is predense below r. Now choose—in the role of Player II—an

s 6Q q such that δQ(s) 6B δP(r)—this can be achieved by first choosing a u ∈ Q

such that δQ(u) 6B δP(r) 6B δP(p) 6B δQ(q). Then u and q are compatible so one

can take an s 6Q q, u which provides what was demanded.

We finally show that this implies that for all m < ω that
⋃
n∈ω\m F

n
m is predense

below s. To this end let m < ω and u 6Q s be arbitrarily chosen. By the argument

above take a t 6P r such that δP(t) 6B δQ(u). Since
⋃
n∈ω\mC

n
m is predense below

r there is an n ∈ ω \m and a c ∈ Cn
m such that t‖Pc. But then δP(t)‖BδP(c). Since

δP
“Em was a refinement of δQ

“Am there is an a ∈ Am—and hence ∈ F n
m—such that

δQ(a) >B δP(c). So δQ(a)‖BδQ(u) which implies a‖Qu.

⊣

But not all proper forcing notions satisfy Axiom A*. We now give an example of a

forcing notion P ∈ Prop \AA∗:

2.25. Example. Consider the forcing notion P which adds a club subset of ℵ1 with

finite conditions. P := (P,6P) where

P :=
{
p ∈ Func

∣∣ dom(p) ∈ [ℵ1]
<ω ∧ ran(p) ⊂ ℵ1∧ (2.14)

∃f ⊃ p : f is a normal function.
}

and p 6P q :⇐⇒ p ⊃ q.

In order to prove that this forcing notion is indeed proper, but fails to satisfy Axiom

A* we will now introduce another game.
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2.2 Axiom A and a property of classes of forcing notions

2.26. Definition. Let P be any notion of forcing and p ∈ P. The strengthened

proper (P, p)–game is defined as follows: Let n < ω. In move n Player I plays an ordinal

P-name α̇n, i.e. a P-name such that 11P 
P “α̇ < Ω” while Player II responds by playing

a Bn ∈ [Ω]<ω1 . Player II wins if and only if ∃q 6 p : q 
P “∀n < ω : α̇n ∈ B̌n”.

2.27. Lemma.

(1) Let P ∈ AA∗. Then for every p ∈ P Player II has a winning strategy in the

strengthened proper (P, p)–game.

(2) If P is a notion of forcing, p ∈ P and Player II has a winning strategy in the

strengthened proper (P, p)–game then she has one in the proper (P, p)∗–game.

Proof.

• Ad (1): Let P be any forcing satisfying Axiom A*. Then there is a forcing notion

Q ∈ AA, a complete Boolean algebra B and dense embeddings δP : P −→ B and

δQ : Q −→ B. Now let p ∈ P be arbitrarily chosen and choose a q0 ∈ Q such that

δQ(q0) 6B δP(p)—this is possible because δ“Q is dense in B. We start a play of

the strengthened proper (P, p)–game. The following is a winning strategy for II:

Construct a descending sequence of conditions (qn|n < ω) in Q like this:

– In move n Player I plays an ordinal P-name α̇n.

– After that in the role of Player II the existence of the dense embeddings

δP : P −→ B, δQ : Q −→ B allows us to choose a Q-name γ̇n which names the

same object as α̇n—this is possible by [Ku], VII.7.12, VII.7.13. By definition

of Axiom A forcing we can choose a qn+1 6n
Q qn and a Bn ∈ [Ω]<ω1 such that

qn+1 
Q “γ̇n ∈ B̌n”. (2.15)

At the end of the game we have defined a sequence q0 >0
Q q1 >1

Q . . . so by definition

of Axiom A forcing there is a qω ∈ Q such that

∀n < ω : qω 6n
Q qn and thus (2.16)

qω 
Q “∀n < ω : γ̇n ∈ B̌n”. (2.17)

qω 6Q q0 implies δQ(qω) 6B δQ(q0). Choose an r ∈ P such that δP(r) 6B δQ(qω).

Since δP(r) 6B δQ(qω) 6B δQ(q0) 6B δP(p) we have in particular δP(r)‖BδP(p). By
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2 Axiom A and properness

definition of dense embeddings it follows that r‖Pp. Choose a witness for this, i.e.

an s 6P p, r. Then δP(s) 6B δQ(qω) and thus

s 
P “∀n < ω : α̇n ∈ B̌n”. (2.18)

So obviously playing like this is a winning strategy for Player II.

• Ad (2): Suppose P is a notion of forcing, p ∈ P and Player II has a winning strategy

in the strengthened proper (P, p)–game. Let f : ω ←→ ω2 be any bijection such

that ∀n < ω : f(n) 6 ω · n. Now let there be a play of the proper (P, p)∗–game.

In move n Player I plays an ordinal P-name α̇n. Let Bn be the set II would play

according to her winning strategy in the strengthened proper (P, p)–game. Choose

an enumeration en : ω ←→ Bn of this set. Then if f(n) = ω · k + m II plays the

ordinal βn := ek(m).

Playing like this is a winning strategy for II. In order to see this let q 6P p be

such that q 
P “∀n < ω : α̇n ∈ B̌n”. This q is our witness. Suppose q 6
P “∀m <

ω ∃n < ω : α̇m = β̌n”. Then there would be an r 6P q and an n < ω such that

r 
P “α̇n /∈
⋃
m<ω β̌m”. But r 6P q, q 
P “α̇n ∈ B̌m” and Bm ⊂

⋃
m<ω βm— 

⊣

2.28. Corollary. AA∗ ⊂ Prop.

2.29. Lemma. Let P be the forcing from example 2.25. P ∈ Prop \AA∗.

Proof.

• Choose a p ∈ P arbitrarily. We will define a winning strategy in the proper

(P, p)–game, thereby showing P to be proper. So let there be a play of the proper

(P, p)–game and α0 := max
(
ran(p)

)
. Suppose in move n Player I just played a

maximal antichain An. Then Player II chooses an indecomposable ordinal αn+1 ∈

ℵ1 \ (αn + 1) such that

∀k 6 n, β < αn+1∃γ < αn+1∀p ⊂ β × β∃q ∈ Ak ∩P(γ × γ) : p‖Pq. (2.19)

Then she plays the sets Bn
k :=

{
p ∈ Ak

∣∣p ⊂ αn+1 × αn+1

}
for k 6 n. Obviously

these sets are countable.
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2.2 Axiom A and a property of classes of forcing notions

Now we want to see that this is possible at all. We are going to define an ascending

sequence of ordinals (ηm|m < ω) as follows:

– η0 := min
{
ζ < ℵ1

∣∣ωζ > αn
}
,

– ηm+1 := maxk6n

(
min

{
ζ ∈ ℵ1\(ηm+1)

∣∣∀p ∈ ωηm×ωηm∃q ∈ Ak∩P(ωζ×ωζ) :

p‖Pq
})

.

Set αn+1 := ωsupm<ω ηm . Clearly αn+1 is an indecomposable ordinal smaller than

ℵ1. In order to see that (2.19) holds let k 6 n and β < αn+1 be given. There is

an m < ω with ωηm > β. Then by definition of the ηm we get ∀p ⊂ β × β∃q ∈

Ak ∩ P(ωηm+1 × ωηm+1) : p‖Pq. But ωηm+1 < αn+1.

Now we have to prove that in fact this is a winning strategy for Player II. To this

end set αω := supn<ω αn and q := p ∪
{
(αω, αω)

}
. q is a condition in P. In order to

show this let f : ℵ1 −→ ℵ1 be a normal function extending p. Then one can define

g : ℵ1 −→ ℵ1 (2.20)

β 7−→




f(β) iff f(β) 6 α0

α0 +
(
β − f−1(α0)

)
otherwise.

g is a normal function extending q. By definition it is a normal function. From

the fact that αω is indecomposable we get that αω− f
−1(α0) = αω. Again because

of αω’s indecomposablility g(αω) = αω follows.

Choose now any r 6P q and an n < ω. Set s := r ∩ (αω × αω). Since r is finite we

have that s ⊂ αm × αm for some m ∈ ω \ n already. To be even more specific we

have s ⊂ β × β for some β < αm. By definition of the αk it follows that there is a

γ < αm and a t ∈ An ∩ P(γ × γ) such that s‖Pt. Now r ∪ t 6P r, t witnesses that
⋃
k∈ω\nB

k
n is predense below q since t ∈ Bm−1

n and r ∪ t ∈ P. Towards showing

the latter note that r ∪ t = s ∪ t ∪ (r \ s). s ∪ t is a condition since s‖Pt. So let

f ⊃ s ∪ t, g ⊃ r be normal functions and let γ := max
(
dom(s ∪ t)

)
. Then the

following is a normal function extending r ∪ t:

h : ℵ1 −→ ℵ1 (2.21)

β 7−→





f(β) iff β < γ

f(γ) + (β − γ) iff β ∈ αω \ γ

g(β) otherwise.

25



2 Axiom A and properness

This shows P ∈ Prop.

• Now we will show that Player I has a winning strategy in the strengthened proper

(P, p)–game. Together with lemma 2.27 this implies P /∈ AA∗.

So let there be a play of the strengthened proper (P, p)–game where in move n I

plays ordinal names α̇n and II plays countable sets of ordinals Bn . The following

is a winning strategy for I:

– In move 0 she plays α̇0 := 0 and sets β0 := ω.

– In move n+1 she chooses an indecomposable ordinal βn+1 from ℵ1\
(
sup(Bn)+

βn + 1
)

and plays the following name:

α̇n+1 :=
{(
γ, {(βn+1, γ)}

)∣∣γ ∈ ℵ1 \ βn+1

}
. (2.22)

Choose now an arbitrary q 6P p. We have to show that there are n < ω, r 6P q

such that r 
P “α̇n /∈ B̌n”. So let βω := supn<ω βn and γ := max
(
dom(q) ∩ βω

)

where we assume w.l.o.g. that q ) ∅. Take an n < ω such that βn > γ. Again

w.l.o.g. we may assume that q(γ) 6 sup(Bn) since otherwise we already have

q 
P “α̇n /∈ B̌n”. Define r := q ∪
{(
βn, sup(Bn) + βn

)}
. In order to see that r is

a condition suppose f is a normal function extending q. Then the following is a

normal function extending r.

g : ℵ1 −→ ℵ1 (2.23)

δ 7−→





sup(Bn) + 1 + δ iff δ ∈ (βn+1 + 1) \ (γ + 1)

f(δ) otherwise.

The important points here are that on every limit ordinal g is defined by the same

clause as its immediate predecessors, both clauses define segmentwise continuous

functions, sup(Bn) > q(γ) = f(γ) and finally βn+1 is indecomposable and greater

than sup(Bn) by II’s strategy hence g(βn+1+1) = f(βn+1+1) > βn+1+1 > βn+1 =

g(βn+1).

But clearly r 
P “α̇n = sup(B̌n) + β̌n” so in particular r 
P “α̇n /∈ B̌n”. This

concludes the proof.

⊣
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2.3 Preservation of Axiom A

We have seen that the following holds:

c.c.c. ( AA ) σcl

T

AA∗

.T

Prop

(2.24)

Of course we did not show officially that AA 6⊂ c.c.c. or that AA 6⊂ σcl but this follows

easily from c.c.c., σcl ⊂ AA and the fact that neither c.c.c. ⊂ σcl nor σcl ⊂ c.c.c..

2.3 Preservation of Axiom A

The goal of this section is the preservation of Axiom A in iterations with countable

support. We will however start by stating a fact which was clear from the very beginning

of the analysis of the notion of “Axiom A”.

2.30. Lemma. If P is a forcing notion satisfying Axiom A and 11P 
P “π is a forcing

notion satisfying Axiom A.” then P ⋆π is a forcing notion satisfying Axiom A. Moreover

if pω ∈ P is a witness for the truth of the first condition defining Axiom A forcings for

P then there is a P-name σω such that (pω, σω) is such a witness for P ⋆ π.

Proof. We define:

(p, σ) 6n
P⋆π (q, τ) :⇐⇒ p 6n

P q ∧ p 
P “σ 4n
π τ”. (2.25)

We will now check that this definition yields the sequence of partial orders sought.

• Let
(
(pn, σn)|n < ω

)
be a sequence of conditions from P ⋆ π such that

∀n < ω : (pn+1, σn+1) 6n
P⋆π (pn, σn). (2.26)

27



2 Axiom A and properness

Let pω be such that ∀n < ω : pω 6n
P pn. Then we obviously have that ∀n < ω :

pω 
P “σn+1 4n
π σn” and

pω 
P “(σn|n < ω) is a sequence of length ω of conditions (2.27)

from π such that ∀n < ω : σn+1 4n
π σn.”.

Here (σn|n < ω) has to be understood as a name for the sequence of the inter-

pretations of the σn. Such a name can be easily constructed depending on the

particular coding of ordered pairs and sequences employed. Since π was forced

to satisfy Axiom A and by the maximal principle we know of the existence of a

P-name σω such that pω 
P “∀n < ω : σω 4n
π σn”. But then

∀n < ω : (pω, σω) 6n
P⋆π (pn, σn). (2.28)

• Let (p0, σ) ∈ P ⋆ π, n < ω be arbitrarily chosen and α̇ be any ordinal P ⋆ π-

name. One can conceive of α̇ as a P-name for an ordinal π-name via the following

recursively defined morphism:

ϕ : V P⋆π −→ V P (2.29)
{(
ηi, (qi, τi)

)∣∣i ∈ I
}
7−→

{
(νi, qi)

∣∣i ∈ I
}
.

where νi is a canonical name for the ordered pair
(
ϕ(ηi)

G, τGi
)

where G is P–generic.

Now we argue as follows:

π is forced to satisfy Axiom A so we have

11P 
P “∃τ 4π σ,B : τ 
π “ϕ(α̇) ∈ B̌” ∧ B < ℵ1”. (2.30)

By the maximal principle we can choose P–names τ, β such that

11P 
P “τ 4π σ ∧ τ 
π “ϕ(α̇) ∈ β̌ ∧ β̌ < ℵ1””. (2.31)

We can also find a P–name η for an enumeration of the set named by β:

11P 
P “τ 4π σ ∧ η is a function with dom(η) = ω ∧ τ 
π “ϕ(α̇) ∈ η̌“ω”” (2.32)

Now construct by cisfinite induction a descending chain of conditions in P as

follows—let pm+1 6m+n
P pm and Bm ∈ [Ω]<ω1 be such that pm+1 
P “η(m) ∈ Bm”
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for all m < ω. Then let pω be such that ∀m < ω : pω 6m+n
P pm and Bω :=

⋃
m<ω Bm. Now from

pω 
P “τ 
π “ϕ(α̇) ∈ B̌ω”” (2.33)

it follows that

(pω, τ) 
P⋆π “α̇ ∈ B̌ω”. (2.34)

⊣

2.31. Corollary. Any finite iteration of Axiom A forcings satisfies Axiom A.

Here some comment is in order. Note that here we employ the definition of iterated

forcing of [Ba 1] or [Je 2]—not of [Ku]. Kunen requires the second components of the

forcing conditions in two-step-iterations to be elements of dom(π). With this definition

one could indeed prove that the iteration of countably closed forcings with Axiom A

forcings or the iteration of Axiom A forcings with c.c.c. forcings each satisfy Axiom A.

The general proof would at least not be possible like this since one would require the

first component to decide the second one within dom(π). Nevertheless we are following

Kunen to the extent that we do not require the partial orders to be antisymmetric.

Why we do this will become obvious in the proof of the fact that CS–Iterations preserve

Axiom A.

The following definition will be utilized to prove that CS–Iterations preserve Axiom

A.

2.32. Definition. Let Pα =
((

(Pβ,6β , 11β), (πβ,4β , εβ)
)
|β < α

)
be an iterated

forcing construction with countable support such that

∀β < α : 11β 
Pβ
“πβ satisfies Axiom A.” (2.35)

• If p, q ∈ Pα, n < ω and F ∈ [α]<ω define

p 6F,n q :⇐⇒ p 6 q ∧ ∀β ∈ F : p↾ β 
Pβ
“p(β) 4n

β q(β)”. (2.36)
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2 Axiom A and properness

• Furthermore call
(
(pn, Fn)|n < ω

)
a fusion sequence iff

∀n < ω : pn+1 6Fn,n pn, (2.37)

∀n < ω :Fn ⊂ Fn+1, (2.38)
⋃

n<ω

Fn =
⋃

n<ω

supt(pn). (2.39)

The following, due to Baumgartner is known as the fusion lemma:

2.33. Lemma. If Pα =
((

(Pβ,6β , 11β), (πβ ,4β, εβ)
)
|β < α

)
is an iterated forcing

construction with countable support and
(
(pn, Fn)|n < ω)

)
is a fusion sequence then

there exists a pω ∈ Pα such that

∀n < ω : pω 6Fn,n pn. (2.40)

Proof. We wil define pω by defining pω(β) by induction on β.

• Suppose β = γ + 1 for some γ < α.

If γ /∈
⋃

n<ω

supt(pn) let pω(γ) := εγ. (2.41)

Otherwise the final condition in the definition of fusion sequences tells us that

∃n < ω : γ ∈ Fn. So one can define n := min
{
n
∣∣n < ω ∧ γ ∈ Fn

}
and thus a

sequence (νn|n < ω) of Pγ-names by setting νm := pm+n(γ) for all m < ω. Then

pω ↾ γ 
Pγ
“ν0 <0 ν1 <1 ν2 <2 . . . ” (2.42)

since ∀n < ω : pω ↾ γ 6 pn ↾ γ by the inductive hypothesis and pm+n+1 
Pγ
“νm+1 4

νm” for m < ω by the first condition in the definition of fusion sequences.

So since 11γ 
Pγ
“πγ satisfies Axiom A.” and by the maximal principle there exists

a Pγ-name µ such that

pω ↾ γ 
Pγ
“∀m < ω : µ 4m νm”. (2.43)

Let p(γ) := µ.
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2.3 Preservation of Axiom A

• Suppose β ∈ α ∩ Lim. Define

p↾ β :=
⋃

γ<β

(
p↾ γ

)
. (2.44)

pω provides what was demanded. ⊣

2.34. Lemma. Suppose p ∈ Pα, n < ω, F ∈ [α]<ω and α̇ is a P-name such that

p 
P “α̇ < Ω”. Then there exists a q 6F,n p and a countable set of ordinals C such that

q 
P “α̇ ∈ Ω”.

Proof. Let α < Ω, F ∈ [α]<ω, n < ω, p ∈ Pα and a Pα-name α̇ be given such that

p 
Pα
“α̇ < Ω”. We will prove the lemma by induction on α.

• α = β+1. In this case we can interpret α̇ as a Pβ-name for a πβ-name. Doing this

one gets the following:

p↾ β 
Pβ
“p(β) 
πβ

“α̇ < Ω””. (2.45)

Now one can use the fact that 11β 
Pβ
“πβ satisfies Axiom A.”. This yields

p↾ β 
Pβ
“∃q 4n

β p(β), C ∈ [Ω]<ω1 : q 
πβ
“α̇ ∈ C””. (2.46)

By the maximal principle there are Pβ-names η, ζ such that p ↾ β 
Pβ
“η 4n

β

p(β) ∧ ζ ∈ Func ∧ dom(ζ) = ω ∧ η 
πβ
“∃m < ω : α̇ = ζ(m)””. Now we can use

the inductive hypothesis to define by a second induction—this time on m < ω—a

fusion sequence
(
(qm, Fm)|m < ω

)
together with a sequence (Cm|m < ω) such that

∀m < ω : Cm ∈ [Ω]<ω1 . In what follows, by ζ(m) we mean a Pβ-name for the mth

value of the interpretation of ζ . Suppose m < ω is given.

– Let qm :=





p↾ β iff m 6 n

some q 6
Fm−1,m−1
β qm−1 such that

q 
Pβ
“ζ(m) ∈ Cm−(n+1)”

for some Cm−(n+1) ∈ [Ω]<ω1 otherwise.

– Choose an enumeration em : ω ←→ supt(qm).

– Define Fm :=





F ∩ β iff m 6 n

(F ∩ β) ∪
⋃

k<m

ek
“m otherwise.
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Now
(
(qm, Fm)|m < ω

)
is clearly a fusion sequence. By the fusion lemma there

exists a q ∈ Pβ such that ∀m < ω : q 6
Fm,m
β qm. So in particular q 6

F ∩β,n
β p. Also

since ∀m < ω : qm+n+1 
Pβ
“ζ(m) ∈ Cm” we have that ∀m < ω : q 
Pβ

“ζ(m) ∈

Cm”. Define C :=
⋃
m<ω Cm. By p↾ β 
Pβ

“η 
πβ
“∃m < ω : α̇ = ζ(m)”” we get:

q 
Pβ
“η 
πβ

“α̇ ∈ Č”” (2.47)

and so in the normal interpretation of α̇:

qa(η) 
Pα
“α̇ ∈ Č”. (2.48)

But q 6
F ∩β,n
β p ↾ β and p ↾ β 
Pβ

“η 4n
β p(β)”. So regardless of whether or not

β ∈ F we have that

qa(η) 6F,n
α p. (2.49)

This concludes the proof of the successor step.

• α ∈ Lim. Set β := max(F ) + 1. Since F < ω and α ∈ Lim it follows that β < α.

We now can conceive of α̇ as a Pβ-name for an ordinal Pα

Gβ
-name, then we get

p↾ β 
Pβ
“p↾ (α \ β) 
 P̌α

Γβ

“α̇ < Ω””. (2.50)

Then there is a Pβ-name η for an element of Pα

Gβ
and a Pβ-name ζ for an ordinal

such that

p↾ β 
Pβ
“η 4 P̌α

Γβ

p↾ (α \ β) ∧ η 
 P̌α
Γβ

“α̇ = ζ””. (2.51)

By the inductive hypothesis we know that there is a q 6n
β p ↾ β and a countable

set of ordinals C such that q 
Pβ
“ζ ∈ C”. But then

q 
Pβ
“η 
 P̌α

Γβ

“α̇ ∈ Č”” (2.52)

which in turn means with the normal interpretation of α̇

qaη 
Pα
“α̇ ∈ Č”. (2.53)
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Since F ⊂ β we also immediately get qa(η) 6F,n
α p. This concludes the proof of

the limit step and thereby the whole proof.

⊣

2.35. Lemma. Whenever P is a nontrivial forcing notion and ν ) ∅ is a P-name there

are at least ℵ0 P-names νn, (n < ω) such that

∀n < ω : 11P 
P “ν = νn”. (2.54)

Proof. By induction on n.

• Choose an arbitrary (p0, σ) ∈ ν and let ν0 := ν.

• If νn, pn are given let An be a nontrivial—meaning An shall have at least two

elements—antichain in P maximal below pn and let νn+1 := νn ∪
{
(p, σ)

∣∣p ∈ An
}
\{

(pn, σ)
}
. Finally choose an arbitrary pn+1 ∈ An.

Obviously this inductive definition provides the necessary P–names. ⊣

We are now going to define a function which together with the preceding lemmata

allows us to define the necessary partial orders to prove the theorem below.

2.36. Definition. By lemma 2.35 for every β < α there exists a function

Fβ :
{
ν
∣∣ν is a Pβ-name and ∃p ∈ Pβ : p 
Pβ

“ν ∈ πβ”
}
−→ ω (2.55)

such that for every Pβ-name ν with ∃p ∈ Pβ : p 
Pβ
“ν ∈ πβ”:

Fβ
“
{
µ
∣∣µ is a Pβ-name and 11β 
Pβ

“µ = ν”
}

= ω. (2.56)

Fix furthermore for every X ∈ [α]ω a bijection

GX :Xω ←→
{
f
∣∣f ∈Xω ∧ ∀n < ω : f−1“{n} < ω

}
. (2.57)

Then for every p ∈ P we can define a function fp as follows:
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2 Axiom A and properness

fp : supt(p) −→ ω (2.58)

β 7−→





0 iff β = 0

Fβ
(
p(β)

)
iff β ∈ Ω \ 1 ∧ supt(p) < ω

Gsupt(p)

({
(γ, Fγ

(
p(γ)

)∣∣γ ∈ supt(p)
})

(β) iff β ∈ Ω \ 1 ∧ supt(p) > ω

With the help of these functions we can now define the partial orders 6α
n for n < ω.

• Let p 60
α q iff p 6α q for any p, q ∈ Pα.

• Let for n ∈ ω \ 1

p 6n
α q iff





p 6f−1
p

“(n+1),n q ,

fp ⊃ fq and

fp
“(n+ 1) = fq

“(n+ 1).

2.37. Lemma. Whenever q ∈ Pα and f ∈supt(q)ω such that f(0) = 0 and ∀n < ω :

f−1“n < ω hold there exists an qf ∈ Pα such that f = fqf and

∀F ∈ [supt(q)]<ω, n < ω, p ∈ Pα(q 6F,n p↔ qf 6F,n p). (2.59)

Proof. We distinguish two cases:

• supt(q) < ω. In this case whenever β ∈ supt(q) let νβ be a Pβ-name such that

11β 
Pβ
“q(β) = νβ” and Fβ(νβ) = f(β).

• supt(q) = ω. Then if β ∈ supt(q) let νβ be a Pβ-name such that 11β 
Pβ
“q(β) =

νβ” and G−1
supt(q) ◦ f(β) = Fβ(νβ).

In both cases this is possible because of the choice of the functions Fβ . Now define

qf(β) :=




νβ iff β ∈ supt(q)

11β otherwise.
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2.3 Preservation of Axiom A

A close look at qf
′s definition reveals that ∀β < α : 11β 
Pβ

“q(β) = qf(β)” and

f = fqf . So we have for any F ∈ [α]<ω:

q 6F,n p (2.60)

⇒ q 6 p ∧ ∀β ∈ F : 11β 
Pβ
“q 4n

β p” (2.61)

⇒ qf 6 p ∧ ∀β ∈ F : 11β 
Pβ
“qf 4n

β p” (2.62)

⇒ qf 6F,n p. (2.63)

This of course uses that q 6 p ⇒ qf 6 p. In order to see that this is true assume the

contrary, i.e. assume there would exist a p ∈ Pα such that q 6 p while qf 66 p. Then let

β < α be minimal such that qf ↾ β 
Pβ
“qf(β) 64β p(β)”. But 11β 
Pβ

“qf(β) = q(β)” so

qf ↾ β 
Pβ
“q(β) 64β p(β)”— ⊣

2.38. Theorem. (Piotr Koszmider, 1993) If Pα =
((

(Pβ,6β , 11β), (πβ,4β , εβ)
)
|β < α

)

is an iterated forcing construction with countable support such that

∀β < α : 11β 
Pβ
“πβ satisfies Axiom A.” (2.64)

then the partial orders defined above witness that Pα satisfies Axiom A too.

The following proof is due to Piotr Koszmider and was first given in [Ko]—interestingly

enough—more than nine years after James Baumgartner introduced Axiom A in [Ba 1].

Proof.

• We have that p 60
α q ⇐⇒ p 6α q for any p, q ∈ Pα by definition.

• Suppose that p 6n+1
α q for some p, q ∈ Pα and an n < ω.

– p 6
f−1

p
“(n+2),n+1

α q implies p 6
f−1

p
“(n+1),n

α q since f−1
p

“(n+ 2) ⊃ f−1
p

“(n+ 1) and

11β 
Pβ
“πβ satisfies Axiom A.”.

– If fp ⊃ fq then clearly fp ⊃ fq.

– fp ⊃ fq hence f−1
p

“(n+1) ⊃ f−1
q

“(n+1). In order to see that also f−1
p

“(n+1) ⊂

f−1
q

“(n + 1) let β ∈ supt(p) be such that fp(β) 6 n. Since f−1
p

“(n + 2) =

f−1
q

“(n+2) we see that fq(β) < n+2. But if fq(β) = n+1 then by fp ⊃ fq we

would have fp(β) = n+1— So β ∈ f−1
q

“(n+1) after all—hence f−1
p

“(n+1) =

f−1
q

“(n+ 1).
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2 Axiom A and properness

• Suppose that we have been given a sequence p0 >0 p1 >1 p2 >2 . . . . Define

Fn :=




∅ iff n = 0

f−1
pn+1

“(n+ 1) iff n > 0.

Now one is able to check that p1 >F0,0 p1 >F1,1 p2 >F2,2 . . . is a fusion sequence:

– pn+1 6Fn,n pn holds for every n < ω by definition—note here that p1 >F0,0 p1

means the same as p1 > p1 which is in turn implied by p1 = p1.

– Since fpn+1
⊃ fpn

for every n < ω we have that Fn = f−1
pn+1

“(n+1) ⊂ f−1
pn+2

“(n+

2) = Fn+1.

– Finally one has to prove
⋃

n<ω

Fn =
⋃

n<ω

supt(pn).

∗ “ ⊂ ” : This is simple—if β ∈
⋃
n<ω Fn =

⋃
n<ω f

−1
pn+1

“(n + 1) then β ∈

f−1
pn+1

“(n+ 1) for some n < ω. But then β ∈ supt(pn+1) for this very n by

definition of the fp.

∗ “ ⊃ ” : Let β ∈
⋃
n<ω supt(pn). Then there is an n < ω such that

β ∈ supt(pn) so since ran(fpn
) = ω there is an m < ω with the property

β ∈ f−1
pn

“(m + 1). One can assume w.l.o.g. that m > n. That means

(β, k) ∈ fpn
for some k 6 m. But fpn

⊂ · · · ⊂ fpm
⊂ fpm+1

so (β, k) ∈

fpm+1
and hence β ∈ f−1

pm+1

“{k} ⊂ f−1
pm+1

“(m+ 1) = Fm ⊂
⋃
k<ω Fk.

By lemma 2.33 we know of the existence of a q ∈ Pα such that ∀n < ω : q 6Fn,n pn

Now define f :=
⋃

n∈ω\1

fpn
.

– f is a function since if (β,m), (β, n) ∈ f there is a k < ω such that (β,m), (β, n) ∈

fpk
but fpk

is a function so m = n. Hence f is a function.

– f(0) = 0 since fp1(0) = 0.

– ∀n < ω : f−1“{n} < ω since ∀m,n < ω : f−1
pm

“{n} < ω and ∀n < ω : f−1“(n+

1) = f−1
pn

“(n+1). Towards proving the latter statement let n < ω be arbitrarily

chosen. That f−1“(n+1) ⊃ f−1
pn

“(n+1) is trivial so let β ∈ f−1“(n+1). Then

there exist m < ω, k 6 n such that (β, k) ∈ fpm
where one can assume w.l.o.g.

that m > n. Since ∀l ∈ m \n : f−1
pl+1

“(l+ 1) = f−1
pl

“(l+ 1) it follows by a finite

induction that (β, k) ∈ fpn
so β ∈ f−1

pn

“(n+ 1).

Our pω sought will be the qf of lemma 2.37 with respect to the recently defined

condition q and the very recently defined function f . So pω := qf . We want to see

that ∀n < ω : pω 6n pn. Once again we distinguish two cases:
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2.3 Preservation of Axiom A

– n = 0 : We know that pω 6F1,1 p1 so in particular pω 6 p1. Also we know that

p1 60 p0, i.e. p1 6 p0. So by transitivity pω 6 p0, i.e. pω 60 p0 by definition.

– n ∈ ω \ 1 :

∗ fpω
⊃ fpn

since fpω
= f, f =

⋃

m<ω

fpm
and

⋃

m<ω

fpm
⊃ fpn

.

∗ f−1
pω

“(n + 1) = f−1
qf

“(n + 1) = f−1“(n + 1) = f−1
pn

“(n + 1) as it was proved

earlier.

∗ pω 6f−1“(n+1),n pn since

· q 6Fn,n pn so q 6 pn hence ∀β < α : q ↾ β 6β pn ↾ β ∧ q ↾ β 
Pβ

“q(β) 4 pn(β)”. One can see by an induction on β that this implies

∀β < α : qf ↾ β 6 pn ↾ β ∧ qf ↾ β 
Pβ
“qf (β) 4 pn(β)”. But then

pω = qf 6 pn.

· Let β ∈ f−1
pω

“(n+ 1) = f−1“(n+ 1) = f−1
pn

“(n+ 1). From q 6Fn,n pn we

get q ↾ β 
Pβ
“q(β) 4 pn(β)”. Again by an induction on β one can

see that qf ↾ β 6β q ↾ β. This yields qf ↾ β 
Pβ
“qf(β) 4 pn(β)”.

• Let p ∈ Pα, n < ω and α̇ be a Pα-name such that p 
Pα
“α̇ < Ω”. By lemma

2.34 there is a q 6
f−1

p
“(n+1),n

α p and a countable set of ordinals C such that q 
Pα

“α̇ ∈ Č”. Now let e : ω ←→ supt(q) be an enumeration and define a function f as

follows:

f : supt(q) −→ ω (2.65)

β 7−→





fp(β) iff β ∈ supt(p)

e(β) + n + 1 otherwise.

Since by f ’s definition ∀m < ω : f−1“{m} < ω by lemma 2.37 there exists a qf ∈ Pα
such that fq = f and

∀F ∈ [supt(q)]<ω, m < ω, r ∈ Pα(q 6F,m r ↔ qf 6F,m r). (2.66)

We have fqf = f ⊃ fp and f−1“(n + 1) = f−1
p

“(n + 1), both by definition of f .

Because of (2.66) we also get

qf 6f−1“(n+1),n p⇔ q 6f−1“(n+1),n p⇔ q 6f−1
p

“(n+1),n p. (2.67)

But the inequality on the right hand side is true so the same holds for the inequality
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2 Axiom A and properness

on the left hand side. So qf 6n
α p. With F = ∅ or m = 0 (2.66) implies that since

q 6F,m
α q, qf 6α q. So we can conclude that

qf 
Pα
“α̇ ∈ Č”. (2.68)

This finishes the proof.

⊣

We also need the fact that countable support iterations of forcings from AA∗ are in AA∗.

This seems to be easier to believe than to prove, nevertheless a proof is given below.

For the proof we use the fact that the regular open algebra of a poset P is unique up

to isomorphism—lemma 2.23 provides this and that “it” can be characterized as “the”

complete Boolean algebra such that P can be mapped densely into it.

2.39. Corollary. If Pα is an iterated forcing construction of length α of forcing

notions from AA∗ with countable support, then Pα ∈ AA∗.

Proof. By induction. We are going to define a sequence of complete Boolean alge-

bras (Bγ |γ < α) together with an iterated forcing construction
((
(Qγ,6Qγ

, 11Qγ
), (ψγ ,4̺γ

, ε̺γ
)
)
|γ < α

)
by induction on γ. Our inductive hypothesis for γ is that ∀ξ < γ : 11ξ 
Qξ

“ψξ satisfies Axiom A.”(, hence Qγ ∈ AA by theorem 2.38) and that Pγ and Qγ can both

be mapped densely into Bγ .

• Let Q0 := P0.

• α = γ + 1 for some γ < Ω. By the inductive hypothesis we have Qγ ∈ AA

and we know that there is a complete Boolean algebra Bγ and dense embeddings

δPγ
: Pγ −→ Bγ, δQγ

: Qγ −→ Bγ . These mappings allow us to conceive of Bγ as

a superset of (the set of equivalence classes of) Pγ , Qγ and thus of Pγ–names and

Qγ–names as certain kinds of Bγ–names. In this sense because of Pγ’s and Qγ ’s

density in Bγ for every Bγ–name there exists a Pγ–name and a Qγ–name which

both name the same object in every Bγ–generic extension. Now 11γ 
Pγ
“πγ ∈ AA

∗”

holds. We fix witnesses for this, i.e. Bγ–names ψγ , βγ, δπ, δψ—where ψγ is chosen

as a Qγ–name such that

11Bγ

Bγ

“ψγ ∈ AA, βγ is a complete Boolean algebra and (2.69)

δπγ
: πγ −→ βγ, δψγ

: ψγ −→ βγ are dense embeddings.”.
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2.3 Preservation of Axiom A

Then Qγ ⋆ ψγ ∈ AA by theorem 2.38 and so it suffices to show that Qγ ⋆ ψγ can be

densely mapped into Bγ+1 := ro(Pγ ⋆ πγ). Recall that Bγ+1 consists of all regular

cuts in Pγ ⋆ πγ . Define:

δQγ+1
: Qγ ⋆ ψγ −→ Bγ+1 (2.70)

(q, τ) 7−→
{
(p, σ)

∣∣(p, σ) ∈ Pγ ⋆ πγ ∧ δPγ
(p) 6Bγ

δQγ
(q)

∧ δPγ
(p) 
Bγ

“δπγ
(σ) 4βγ

δψγ
(τ)”

}
.

Of course the elements of ran(δQγ+1
) are cuts.

– They are also regular—Proof:

Let (q, τ) ∈ Qγ ⋆ ψγ and (p, σ) ∈ Pγ ⋆ πγ \ δ
(
(q, τ)

)
. We distinguish two cases:

∗ δPγ
(p) 6Bγ

δQγ
(q). By definition of δQγ+1

, δPγ
(p) 6
Bγ

“δπγ
(σ) 4βγ

δψγ
(τ)”.

So one can choose an r 6Bγ
δPγ

(p) such that r 
Bγ
“δπγ

(σ) 64βγ
δψγ

(τ)”.

By the maximal principle, since Boolean algebras are separative and be-

cause of δπγ
’s density we can then choose a Pγ–name η for an element of

πγ ’s interpretation such that r 
Bγ
“η 4πγ

σ ∧ δπγ
(η)⊥βγ

δψγ
(τ)”. Take

an s ∈ Pγ such that δPγ
(s) 6Bγ

r. We have (s, η) 6Pγ⋆πγ
(p, σ) and

C(s,η) ∩ δQγ+1

(
(q, τ)

)
= ∅.

∗ Not so. Since Bγ is separative one can then choose a b ∈ Bγ such that

b 6Bγ
δPγ

(p) and b⊥Bγ
δQγ

(q). By density of δPγ
one can then find an

r ∈ Pγ with δPγ
(r) 6Bγ

b. So C(r,εγ) ∩ δQγ+1

(
(q, τ)

)
= ∅.

⊣(The cuts are regular.)

– The mapping defined in (2.70) is a dense embedding—Proof:

∗ Clearly for q, s ∈ Qγ+1 s 6Q q implies δQγ+1
(s) ⊂ δQγ+1

(q).

∗ Let (q, τ)⊥Qγ+1
(r, η) and suppose that (p, σ) ∈ δQγ+1

(
(q, τ)

)
∩ δQγ+1

(
(r, η)

)
.

Choose an s ∈ Qγ such that δQγ
(s) 6B δPγ

(p). Then by δQγ
(s) 6Bγ

δPγ
(p) 6Bγ

δQγ
(q) we have δQγ

(q)‖Bγ
δQγ

(s) and thus q‖Qγ
s. Choose a

t 6Q q, s. By the same argument t‖Qγ
r for which we choose a witness

u 6Qγ
r, t. Now δQγ

(u) 
Bγ
“δψγ

(τ)‖βγ
δψγ

(η)”. So by contraposition of

the second condition defining dense embeddings, u 
Qγ
“τ‖Qγ

η”. By the

maximal principle choose a Qγ–name witnessing this, i.e. a name χ such

that u 
Qγ
“χ 4ψγ

τ, η”. But then clearly (u, χ) 6Qγ+1
(q, τ), (r, η).

∗ Let C be any regular nonempty cut in Pγ ⋆ πγ . Let (p, σ) ∈ C witness

C’s nonemptyness. Since δQ is dense there exists a q ∈ Q such that
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2 Axiom A and properness

δQ(q) 6Bγ
δPγ

(p). Since 11Bγ

Bγ

“δψ : ψ −→ β is a dense embedding.”

by the maximal principle there exists a name τ—which can be chosen as

a Q–name—such that 11Bγ

Bγ

“δψ(τ) 6β δπγ
(σ)”. The definition of δQ⋆ψ

in (2.70) yields C(q,τ) ⊂ C so we are finished. ⊣
(
(2.70) is dense.

)

• α ∈ Lim. The inductive hypothesis implies that ∀ξ < γ : 11Qξ

Qξ

“ψξ satisfies

Axiom A.”. Theorem 2.38 tells us that then Qγ also satisfies Axiom A. We will

show that Qγ can be mapped densely into Bγ := ro(Pγ). The following function

does just this:

δQγ
: Qγ −→ Bγ (2.71)

q 7−→
{
p ∈ Pγ

∣∣∀ξ < γ : δPξ
(p↾ ξ) 6Bξ

δQξ
(q ↾ ξ)

}
.

As above now it can be easily seen that the elements of ran(δQγ
) are cuts.

– They are regular—Proof: Choose q ∈ Qγ and p ∈ Pγ such that p /∈ δQγ
(q).

Then by definition of δQγ
there exists a ξ < γ such that δPξ+1

(
p↾ (ξ+1)

)
66Bξ+1

δQξ+1

(
q ↾ (ξ + 1)

)
. Choose the least ξ with this property, then δPξ

(p ↾ ξ) 6
Bξ

“δπξ

(
p(ξ)

)
4βξ

δψξ

(
q(ξ)

)
”. Then there is a b ∈ Bξ such that b 6Bξ

δPξ
(p ↾ ξ)

and b 
Bξ
“δπξ

(
p(ξ)

)
64βξ

δψξ

(
q(ξ)

)
”. By separativity of βξ’s interpretation,

under usage of the maximal principle and by density of δπξ
’s interpretation

there exists a Pξ–name η such that b 
Bξ
“η 4πξ

p(ξ) ∧ δπξ
(η)⊥βξ

δψξ

(
q(ξ)

)
”.

Choose an r ∈ Pξ such that δPξ
(r) 6Bξ

b and define

s ∈ Pγ (2.72)

ν 7→






r(ν) iff ν < ξ,

η iff ν = ξ,

p(ν) iff ν ∈ γ \ ξ.

Then s 6Pγ
p and Cs ∩ δγ(q) = ∅.

– δQγ
is a dense embedding—Proof:

∗ Clearly if q, s ∈ Qγ and s 6Q q then δQγ
(s) ⊂ δQγ

(q).

∗ Suppose q, r ∈ Qγ and p ∈ δQγ
(q) ∩ δQγ

(r). We are inductively going to

construct an s 6Qγ
q, r. Our inductive hypothesis for ξ 6 γ is s ↾ ξ 6Qξ

q ↾ ξ, r ↾ ξ ∧ δQξ
(s↾ ξ) 6Bξ

δPξ
(p↾ ξ).

· Suppose ξ < γ and s ↾ ξ has been constructed. Clearly δPξ
(p ↾ ξ) 
Bξ
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2.3 Preservation of Axiom A

“δπξ

(
p(ξ)

)
4βξ

δψξ

(
q(ξ)

)
, δψξ

(
r(ξ)

)
”. Now we choose a name η for

an element of ψξ’s interpretation such that 11Bξ

Bξ

“δψξ
(η) 4βξ

δπξ

(
p(ξ)

)
”. Together with the second condition in the definition

of dense embeddings these forcing relations imply δPξ
(p ↾ ξ) 
Bξ

“η‖ψξ
q(ξ)”. Let χ be a name such that δPξ

(p↾ ξ) 
Bξ
“χ 4ψξ

η, q(ξ)”.

By the kind of argument just applied δPξ
(p↾ ξ) 
Bξ

“χ‖ψξ
r(ξ)” so let

finally be s(ξ) a Qξ–name such that δPξ
(p↾ ξ) 
Bξ

“s(ξ) 4ψξ
χ, r(ξ)”.

Together with the inductive hypothesis for ξ this proves the inductive

hypothesis for ξ + 1. The limit step is trivial if one supposes w.l.o.g.

that the Boolean algebras form an ascending chain.

∗ Let C be any regular nonempty cut in Pγ and let p ∈ C witness its

nonemptyness. One can define a q ∈ Qγ with δQγ
(q) ⊂ C inductively.

The inductive hypothesis for ξ < γ is δQξ
(q ↾ ξ) 6Bξ

δPξ
(p↾ ξ).

· Suppose q ↾ ξ has been defined. 11Bξ

Bξ

“δψξ
: ψξ −→ βξ is a

dense embedding.” hence by the maximal principle and the fact that

δQξ
: Qξ −→ Bξ is a dense embedding one can choose a Qξ–name η

for an element of ψξ’s interpretation such that 11Bξ

Bξ

“δψξ
(η) 4βξ

δπξ

(
p(ξ)

)
”. Let q(ξ) := η.

This inductive construction provides a q ∈ Qγ such that δQγ
(q) 6Bγ

δPγ
(p). So by definition of δQγ

we have δQγ
(q) ⊂ C.

⊣
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3 An equivalent formulation and

BAAFA

In chapter 2 we introduced Axiom A* and elucidated the relationship between partial

orders and complete Boolean algebras. The reason for this is that Axiom A was designed

for arbitrary posets while Bounded Forcing Axioms are commonly stated by reference

to Boolean algebras. For the latter fact there are two reasons. On the one hand the

Bounded Forcing Axiom for a specific poset might in fact be trivially true if all its

maximal antichains are large. On the other hand in the construction of a model for

BPFA in the following chapter one needs a Boolean algebra in order to construct a sub–

forcing–notion of limited size which contains all antichains in question but nevertheless

always contains a witness for the compatibility of two conditions in the larger notion of

forcing. Even if one has a dense embedding from some arbitrary poset in this Boolean

algebra and each antichain from the family considered lies in its image it is in general

unclear how to construct a filter for the family of preimages of the antichains. So in

order to define the Bounded Forcing Axioms properly let B denote the class of Boolean

algebras.

3.1. Definition. If κ, λ ∈ Card and C is a class of forcing notions, the forcing axiom

for C and κ, bounded by λ—BFA(A, κ, λ) says that whenever P is a forcing notion in C

and A is a family of less than κ maximal antichains each of which has size less than λ,

there is a filter G ⊂ P such that ∀A ∈ A : A ∩ G ) ∅. In the following we are going to

list some common forcing axioms.

• Martin’s Axiom—MA is BFA(c.c.c. ∩B, 2ℵ0,Ω).

• The proper forcing axiom—PFA is BFA(Prop ∩B,ℵ2,Ω).

• Martin’s Maximum—MM is BFA(C ∩B,ℵ2,Ω), where C is the class of all forcing

notions that do not destroy the stationarity of any set S ⊂ ℵ1.

• The bounded proper forcing axiom—BPFA is BFA(Prop ∩B,ℵ2,ℵ2).
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3 An equivalent formulation and BAAFA

• Bounded Martin’s maximum—BMM is BFA(C ∩B,ℵ2,ℵ2), where C is as in Mar-

tin’s maximum.

3.2. Definition. If n is a natural number, C0 a class of forcing notions and C1 any

class then Σn(C0, C1)-absoluteness is the following assertion:

Whenever P ∈ C0, a ∈ C1 and ϕ is a Σn-formula in the language of set theory then

11P 
P “ϕ(a)” iff ϕ(a).

3.3. Lemma. For any κ ∈ Card \ω there is a ∆1

(
{κ}

)
-definable surjection ϕ :

P(κ) →−→ Hκ+ .

Proof. There is—see the proof of theorem I.10.12 in [Ku]—a ∆1

(
{κ}

)
-definable well-

order of κ× κ of length κ. So one can define a bijection ψ : κ× κ←→ κ in a ∆1

(
{κ}

)
-

fashion. This function can be used to code relations on κ as subsets of κ. Furthermore

if R is a binary and well-founded relation on κ let πR : (κ,R) ≻ (πR
“κ,∈) denote the

function collapsing κ onto a transitive set. This function is ∆1

(
{κ,R}

)
. We define

ϕ : P(κ) →−→ Hκ+ (3.1)

A 7−→





⋃{
x ∈ πR

“κ
∣∣∀y ∈ πR“κ : x /∈ y

}
iff R := ψ−1“A and

(κ,R) is well-founded

∅ otherwise.

We essentially have to verify two claims:

• ϕ is surjective. In order to show this let a ∈ Hκ+ be given and set X := trcl
(
{a}

)
.

We have that X = trcl(a) + 1 6 κ + 1 = κ. Fix any surjection f : κ →−→ X and

define ε :=
{
(α, β)

∣∣f(α) ∈ f(β)
}
. By definition ε is a well-founded relation on κ.

Moreover it is extensional on any S ⊂ κ such that f ↾S is one to one. Let πε denote

the collapsing function of the transitive collapse of (κ, ε), then πε : (κ, ε) ≻ (X,∈)

and πε : (S, ε) ≃ (X,∈) for any S ⊂ κ such that f ↾ S is one to one and S is

maximal with respect to this property. We have that

{
x ∈ X

∣∣∀y ∈ X : x /∈ y
}

= {a} (3.2)

Thus by setting A := ψ“ε we get ϕ(A) = a.

• ϕ is ∆1. We know that ψ is ∆1

(
{κ}

)
and that the collapsing function is ∆1 in the

parameters κ,R and thus in the parameters κ,A. The only quantifier occuring in
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ϕ’s definition is bounded. So it remains to be shown that being well-founded is

∆1.

– “(κ,R) is well-founded.” is Π1 since it can be written as follows:

∀f : ω −→ κ ∃n < ω¬
(
f(n+ 1) R f(n)

)
(3.3)

– On the other hand it is Σ1 because the following formulation is possible:

∃f
(
dom(f) = κ ∧ ran(f) ⊂ Ω ∧ ∀α, β < Ω(α R β → f(α) < f(β)

))
(3.4)

⊣

3.4. Remark. In many arguments to come, given a family A of maximal antichains

in a Boolean algebra B we will consider the subalgebra finitely generated by A, that is

S :=

{ ∧

B∈C

∨

b∈B

b
∣∣∣C ∈

[[
{b ∈ B|∃A ∈ A : b ∈ A ∨ ¬b ∈ A}

]<ω]<ω
}

(3.5)

We also will sometimes use the fact that given a regular cardinal κ such that A is a

family of less than κ subsets—normally maximal antichains—of a Boolean algebra B∗

each of which has size smaller than κ the Boolean subalgebra S∗ finitely generated by A

has size smaller than κ. Because of this fact it is simple to construct a Boolean algebra

B isomorphic to B∗ by an isomorphism ψ : B∗ ≃ B such that ψ“S∗ ∈ Hκ. In general this

finitely generated subalgebra will not be complete. For the remaining part of this thesis

we employ the following convention: We are repeatedly going to talk about a notion of

forcing extending another one—that is P ⊂ Q. where P = (P,6P) and Q = (Q,6Q) may

be arbitrary posets, separative posets, Boolean algebras, complete Boolean algebras or

other notions of forcing. Important in this respect is only the fact that a partial order

is given or canonically definable on the forcing notions and that not only the subset

relation holds with respect to P and Q but also p 6P q if and only if p 6Q q for all

p, q ∈ P . One can for example up to isomorphism conceive of P and Q this way if P is

antisymmetric and separative and there exists a dense embedding δ : P →֒ Q which then

has to be one–to–one. But of course in the general case P ⊂ Q by no means implies that

P has to be dense in Q.
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3 An equivalent formulation and BAAFA

The following theorem was proved by Joan Bagaria during the summer of 1995, pre-

sented in Oberwolfach in January 1996 and appeared in print in [Bag 1].

3.5. Theorem. (Joan Bagaria, 2000) Let κ ∈ Card, cf(κ) > ω and B be a Boolean

algebra. The following expressions are equivalent.

(1) Σ1

(
{B},P(κ)

)
-absoluteness,

(2) Σ1({B}, Hκ+)-absoluteness,

(3) BFA({B}, κ+, κ+).

Proof.

• (1) ⇒ (2): Suppose (1) holds true, ϕ(•) is a Σ1-formula in the language of set

theory, a ∈ Hκ+ and B is a complete Boolean algebra such that 11B 
B “ϕ(a)”.

Let f : P(κ) →−→ Hκ+ be the ∆1(κ)-definable surjection from lemma 3.3 and let

b ⊂ κ be such that f(b) = a. Then ψ :≡ ϕ ◦ f is a Σ1-formula in the language

of set theory and 11B 
B “ψ(b)”. By (1) ψ(b) is really true. But then ϕ(a) is true

too. ⊣
(
(1)⇒ (2)

)

• (2) ⇒ (3): Suppose (2) holds and AB =
{
Aα

∣∣α < κ
}

is a family of at most κ

maximal antichains of cardinality at most κ. By remark 3.4 let D be isomorphic

to B by an isomorphism ψ : B ≃ D such that the subalgebra finitely generated by

the family AD :=
{
ψ“Aα

∣∣α < κ
}

is in Hκ. Then in particular AD is in Hκ. We

have that

11B 
B “ψ̌“Γ is AD–generic.”. (3.6)

By (2) we can infer

∃H ⊂ D : H is AD–generic. (3.7)

But then for such an H it follows that

ψ−1“H is AB–generic. (3.8)

⊣
(
(2)⇒ (3)

)
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• (3) ⇒ (1): This is the laborious part. Suppose that BFA
(
{B}, κ+, κ+

)
holds true,

a ⊂ κ, ϕ is a Σ0–formula in the language of set theory and

11B 
B “∃xϕ(x, a)”. (3.9)

Let G be B–generic. At first we argue in V [G]. We know that κ is still a cardinal

there because BFA
(
{B}, κ+, κ+

)
implies MAκ. Since ∃xϕ(x, a) is a Σ1– and so

in particular a Π2–statement lemma 1.2 implies that Hκ+ |= “∃xϕ(x, a)”. Let

M ≺ Hκ+ be such that κ ∪ {a} ⊂ M and M = κ. Now let f : κ ←→ M be an

enumeration such that f(1) = a and f(2 · α) = α for all α < κ. Note that f can

be chosen to be one–to–one since
{
{α}

∣∣α < κ
}
⊂ M because M is an elementary

submodel of Hκ+ .

Since κ is still a cardinal and ∈ is well–founded, for every α < κ there exists

a function gα : α −→ κ such that gα(β) < gα(γ) whenever f(β) ∈ f(γ) for all

β, γ < α—though of course in general not vice versa.

Now back to V . We are going to produce a transitive model containing a which

satisfies ∃xϕ(x, a). Because our generic filter G was arbitrarily chosen there is a

B–name Ξ for M and B–names ḟ, ġ0, ġ1, . . . for f, g0, g1, . . . such that

[[Ξ |= “∃xϕ(x, a)”]], [[ḟ(1) = ǎ]], [[∀α < κ : ḟ(2 · α) = α]] and (3.10)

[[∀β, γ < α
(
ḟ(β) ∈ ḟ(γ)→ ġα(β) < ġα(γ)

)
]] for α < κ are all equal to 11B.

For every formula ψ and every (β0, . . . βn) ∈
<ωκ consider the maximal antichains

A0
ψ,(β0,...,βn) :=

({
[[α is minimal such thatΞ |= “ψ

(
ḟ(α), ḟ(β̌0), . . . , ḟ(β̌n)

)
”]]

∣∣α < κ
}

(3.11)

∪
{
[[Ξ |= “∄xψ

(
x, ḟ(β̌0), . . . , ḟ(β̌n)

)
”]]

})
\ {00B},

together with the maximal antichains:

A1
α,β :=

{
[[ġα(β̌) = γ̌]]

∣∣γ < κ
}
\ {00B}, β < α < κ. (3.12)

By BFA
(
{B}, κ+, κ+

)
there exists a filter H meeting all these antichains. Now we
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3 An equivalent formulation and BAAFA

define a binary relation R on κ as follows:

R :=
{
(α, β)

∣∣α, β < κ ∧ [[ḟ(α̌) ∈ ḟ(β̌)]] ∈ H
}
. (3.13)

Notice the following:

– R is extensional—Proof:

Let α < β < κ. [[ḟ(α̌) 6= ḟ(β̌)]] = 11B. So by the definition of the antichains

in (3.11) there exists a γ < κ such that [[γ is minimal such that ḟ(γ) ∈

ḟ(α̌) △ ḟ(β̌)]] ∈ H . But then γ ∈
{
η < κ

∣∣η R α
}
△

{
η < κ

∣∣η R β
}
.

⊣ (R is extensional)

– R is well–founded—Proof:

Suppose towards a contradiction that this is wrong and let (βn|n < ω) be a

sequence of ordinals from κ such that βm R βn whenever n < m < ω. Define

γ := (supn<ω βn) + 1. Since cf(κ) > ω it follows that γ < κ. Then we can

consider ġγ. We have that [[ḟ(β̌m) ∈ ḟ(β̌n)]] ∈ H for all n < m < ω. As a

consequence [[ġγ(β̌m) < ġγ(β̌n)]] ∈ H for all n < m < ω. But H intersects

each A1
γ,βn

. So this gives us a sequence of ordinals (γn|n < ω) such that

[[ġγ(β̌n) = γn]] ∈ H for all n < ω. By choice of ġγ this sequence must be

decreasing. This is absurd. ⊣ (R is well–founded.)

Now we consider the Mostowski–collapse (N,∈) of the structure (κ,R), let π :

(κ,R) ≃ (N,∈) denote the collapsing morphism.

Claim: π(1) = a.

Proof of Claim:

Let us define X :=
{
α
∣∣α = 1 ∨ ∃β < κ : α = 2 · β

}
. Note that X is closed under

R, i.e. if β ∈ X and α R β then α ∈ X. Define

̺ : X ≃ κ ∪ {a} (3.14)

α 7→




a iff α = 1

β iff 2 · β = α.

Since 11B ∈ H and because of (3.10) we have α R β if and only if ̺(α) ∈ ̺(β).

So ̺ is an isomorphism from (X,R) onto the transitive structure ({a} ∪ κ,∈). By

uniqueness of the collapsing function and since X is closed under R it follows that

π ↾X = ̺. ⊣(Claim)
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By induction on the complexity of a formula ψ in the language of set theory

one can see that (κ,R) |= “ψ(β0, . . . , βn)”—with the symbol ∈ interpreted as the

relation R—if [[Ξ |= “ψ
(
ḟ(β̌0), . . . , ḟ(β̌n)

)
”]] ∈ H . So in the case of ϕ this means

that again with this interpretation (κ,R) |= “ϕ(α, 1)” for some α < κ. But then

(N,∈) |= “ϕ
(
π(α), a

)
” and since ϕ is a Σ0–formula and N is transitive really

ϕ
(
π(α), a

)
and in particular ∃xϕ(x, a). ⊣

(
(3)⇒ (1)

)

⊣

3.6. Corollary. Let C be any class of forcing notions and κ ∈ Card. Then the

following are equivalent:

(1) Σ1

(
C,P(κ)

)
-absoluteness,

(2) Σ1(C, Hκ+)-absoluteness,

(3) Σ1

(
rh(C),P(κ)

)
-absoluteness,

(4) Σ1

(
rh(C), Hκ+

)
-absoluteness,

(5) Σ1

(
rh(C) ∩ B,P(κ)

)
-absoluteness,

(6) Σ1

(
rh(C) ∩ B, Hκ+

)
-absoluteness,

(7) BFA
(
rh(C) ∩ B, κ+, κ+

)
.

Proof. (7).6

	�

hp


�
(5)

KS

��

(6)
KS

��
(3)

KS

��

(4)
KS

��
(1) (2)

The equivalences (5) ⇔ (7) and (6) ⇔ (7) follow from theorem 3.5. The other equiv-

alences follow from the definition of the reasonable hull and the fact that for any forcing

notion P forcing with ro(P) always yields the same generic extension as forcing with P.

⊣
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3 An equivalent formulation and BAAFA

Now we are going to introduce a new bounded forcing axiom—BAAFA—the bounded

Axiom A forcing axiom. The reason for us doing so is that it is a natural as well as

proper weakening of BPFA which nevertheless has the same consistency strength. We

will not define BAAFA :⇐⇒ BFA(AA ∩ B,ℵ2,ℵ2) though. The reason is simply that it

seems to be unknown whether AA is reasonable. So in order to be able to treat BAAFA

just as the other Forcing Axioms we make the following definition:

3.7. Definition.

BAAFA :⇐⇒ BFA(AA∗ ∩ B,ℵ2,ℵ2) is the Bounded Axiom A forcing Axiom.
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4 The consistency of BPFA

This chapter aims at the definition of an iterated forcing construction by which one

attains a generic extension in which BPFA holds true. For this one needs a reflecting

cardinal. The iteration will consist of proper notions of forcing and will have this cardinal

as length. In order to describe the iteration and to prove that it provides what was

demanded we need some technical knowledge.

Two technical lemmata are immediately following in order to eventually prove lemma

4.3. They are concerned with technical aspects of forcing and do not touch the central

line of argument which starts with 4.3.

4.1. Lemma. Let κ ∈ Card,P ∈ Hκ+ and λ ∈ Reg such that λ > 2κ. Then for every

P–name σ there is a P–name τ ∈ Hλ such that 11P 
P “σ ∈ Ḣλ ⇒ σ = τ” where Ḣλ

is a P-name for the set of all sets with transitive closure smaller than λ in the generic

extension.

Proof. By induction on the rank of σ. Suppose the claim has been proved for all

P–names σ with rk(σ) < α. Now let σ be a P–name of rank α and A ⊂ P an antichain

maximal in the set
{
p ∈ P

∣∣p 
P “σ ∈ Ḣλ”
}
. We are now going to construct a name τp

for every p ∈ A. Let e : µ →֒ Hλ be an enumeration of all P–names from Hλ for the

appropriate µ ∈ Card. Define τp inductively as follows:

• τ0 := ∅.

• If τβ has been defined set τβ+1 := τβ ∪
(
{e(β)} × Aβ

)
where Aβ is an antichain

maximal in the set
{
q 6P p

∣∣q 
P “e(β) ∈ σ” ∧ ∀γ < β : q 
P “e(γ) 6= e(β)”
}
.

• If γ ∈ Lim and τβ has been defined for all ordinals β < γ then set τγ :=
⋃
β<γ τβ.

In fact only less than λ of these antichains can be nonempty—
{
β < µ

∣∣Aβ ) ∅
}
< λ—

Proof:

Suppose otherwise. Then there is a Q ∈ [µ]λ such that ∀β ∈ Q : Aβ ) ∅. Since there

are at most 2κ subsets of P there are at most 2κ nonempty antichains in P. So by the
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4 The consistency of BPFA

pigeonhole principle there is an S ∈ [Q]λ such that ∀β, γ ∈ S : Aβ = Aγ. Take a

q ∈ Amin(S). Then for any two β, γ ∈ S : q 
P “e(β) ∈ σ ∧ e(γ) ∈ σ ∧ e(β) 6= e(γ)”.

Define a name ζ :=
{
e(β)

∣∣β ∈ S
}
× {11P}. Then q 
P “ζ = λ ∧ ζ ⊂ σ ∈ Hλ”.  ⊣

Set τp :=
⋃
β<µ τβ . So we now have constructed a name τ for a subset of σ. Since λ

is regular, τ ∈ Hλ. We still have to show that p 
P “σ = τ”. To this end let q 6P p

and ν a P–name such that q 
P “ν ∈ σ”. We will show that
{
r ∈ P

∣∣r 
P “ν ∈ τ”
}

is dense below q. So let r 6P q be arbitrary and let η ∈ dom(σ), s 6 r be such that

s 
P “ν = η”. rk(η) < α so by the inductive hypothesis there is a P–name ϑ ∈ Hλ such

that 11P 
P “ϑ = η”. At some point in the construction ϑ is considered. We distinguish

two cases:

• There is a t ∈ Ae−1(ϑ) such that s‖Pt which is witnessed by u 6P s, t. Then

u 
P “ν = η = ϑ ∧ ϑ ∈ τ” so u 
P “ν ∈ τ” and u 6P s 6P r.

• s⊥Pt for all t ∈ Ae−1(ϑ). Define X :=
{
β < e−1(ϑ)

∣∣s 6
P “e(β) 6= ϑ”
}
. Because

of s 
P “ϑ ∈ σ” and the maximality condition for Ae−1(ϑ) we have that X ) ∅.

Let β := minX, ξ := e(β) and t 6P s be such that t 
P “ξ = ϑ”. Then Aβ

is predense below t so there are u ∈ P, v ∈ Aβ such that u 6P t, v. But then

u 
P “ν = η = ϑ = ξ ∧ ξ ∈ τ”. So u 
P “ν ∈ τ” and u 6P t 6P s 6P r.

So we succeeded in finding for each p ∈ A a name τp ∈ Hλ such that p 
P “σ = τp”. Set

τ :=
⋃
p∈A τp. Since each τp was in Hλ and A 6 P 6 κ < 2κ < λ, τ ∈ Hλ.

Now let q ∈ P be such that q 
P “σ ∈ Ḣλ”. We will show that
{
r 6P q

∣∣r 
P “σ = τ”
}

is dense below q. To this end let r 6P q be arbitrary and take a p ∈ A such that

p‖Pr. Let s 6P p, r be a witness to this fact. Then clearly s 
P “σ = τp”. But also

s 
P “τp = τ” since ∀t ∈ A \ {p}, u ∈ ran(τt) : u ∈ Pt, A is an antichain and s 6P p. ⊣

4.2. Lemma. Let κ ∈ Card, P ∈ Hκ+ a forcing notion and λ ∈ Reg such that λ > 2κ.

Then for every formula ϕ and every a ∈ Hλ:

11P 
P “(̇H)λ |= “ϕ(a)””⇐⇒ H(λ) |= “11P 
P “ϕ(a)””

Proof. By induction on the complexity of the formula ϕ. We define rk(∃xψ(x)) :=

rk(ψ(•)) + 1, rk(ψ → τ) := rk(ψ) + rk(τ) + 1 and rk(⊥) := 0. Then for all formulae ϕ

with rk(ϕ) = 0 Hλ |= “11P 
P “ϕ↔ ⊥”” and 11P 
P “Hλ |= “ϕ↔ ⊥””

• ϕ ≡ ⊥. This is trivial.
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• ϕ ≡ ψ → τ for some formulae ψ, τ .

Suppose p 
P “Hλ |= “ψ → τ””. We distinguish two cases.

– rk(τ) > 0. Let A ⊂ Pp be an antichain maximal below p deciding Hλ |= “ψ”

and Hλ |= “τ”. λ > 2κ > κ+ > trcl(A) hence A ∈ Hλ, Hλ |= “A is an

antichain maximal in below p.”. q 
P “Hλ |= “¬ψ”” or q 
P “Hλ |= “τ”” for

every q ∈ A. By the inductive hypothesis Hλ |= “q 
P “¬ψ”” or Hλ |= “q 
P

“τ”” for every q ∈ A. But then Hλ |= “p 
P “ψ → τ””.

– rk(τ) = 0 In this case τ ≡ ⊥. We prove the statement by contraposition.

Suppose Hλ 6|= ‘p 
P “ψ → ⊥”. Then Hλ |= “p 6
P “ψ → ⊥””. So Hλ |=

“∃q 6P p : q 
P “ψ”” hence there is a q 6P p with Hλ |= “q 
P “ψ””.

By the inductive hypothesis q 
P “Hλ |= “ψ”” so p 6
P “Hλ 6|= ‘ψ” hence

p 6
P “Hλ |= “ψ → ⊥””.

Assume that Hλ |= “p 
P “ψ → τ””. Again we distinguish two cases.

– rk(ψ) > 0. Suppose p 6
P “Hλ |= “ψ → τ””. Then there is a q 6P p such that

q 
P “Hλ 6|= ‘ψ → τ”. But then q 
P “Hλ |= “ψ”” and q 
P “Hλ |= “¬τ””.

By the inductive hypothesis Hλ |= “q 
P “ψ”” so Hλ |= “q 
P “τ”” by our

assumption. But—again by the inductive hypothesis Hλ |= “q 
P “¬τ””.  

– rk(ψ) = 0. Then ψ ≡ ⊥ and ϕ is equivalent to ⊤ but then this is clearly

trivial.

• ϕ ≡ ∃xψ(x).

– Suppose p 
P “Hλ |= “∃xψ(x)””. Then p 
P “∃x ∈ Hλ : Hλ |= “ψ(x)””. So

by the maximal principle there is a P–name σ such that p 
P “σ ∈ Hλ∧Hλ |=

“ψ(σ)””. By lemma 4.1 we can assume w.l.o.g. that σ ∈ Hλ. So Hλ |=

“p 
P “ψ(σ)”” by the inductive hypothesis hence Hλ |= “p 
P “∃xψ(x)”” in

particular.

– Assume Hλ |= “p 
P “∃xψ(x)””. ThenHλ |= “∃x : p 
P “ψ(x)”” so there is a

P–name σ ∈ Hλ such that Hλ |= “p 
P “ψ(σ)””. By the inductive hypothesis

p 
P “Hλ |= “ψ(σ)””. So in particular p 
P “∃x ∈ Hλ : Hλ |= “ψ(x)”” but

then p 
P “Hλ |= “∃xψ(x)””.

At the end we have to prove p 
P “Hλ |= “σ ∈ τ”” ⇔ Hλ |= “p 
P “σ ∈ τ”” for every

p ∈ P and P–names σ, τ ∈ Hλ. Clearly in this case p 
P “Hλ |= “σ ∈ τ””⇔ p 
P “σ ∈

τ”. So it suffices to prove p 
P “σ ∈ τ”⇔ Hλ |= “p 
P “σ ∈ τ””. This will be done by

an induction on rk(τ) in which we distinguish two cases:
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4 The consistency of BPFA

• rk(τ) = 0. Then τ is a name for the empty set hence p 
P “σ ∈ τ”, Hλ |= “p 
P

“σ ∈ τ”” are both clearly false.

• rk(τ) > 0. Suppose p 
P “σ ∈ τ”. By definition of the forcing relation this means

that Dσ,τ :=
{
q
∣∣∃(ζ, r) ∈ τ(q 6P r ∧ q 
P “σ = ζ”)

}
is dense below p. But then

by the inductive hypothesis DHλ
σ,τ = Dσ,τ and Hλ |= “Dσ,τ is dense below p.”, so by

the inductive hypothesis Hλ |= “p 
P “σ ∈ τ””.

On the other side assume that Hλ |= “p 
P “σ ∈ τ””. Then there is DHλ
σ,τ ∈ Hλ

and Hλ |= “Dσ,τ is dense below p.”. Again DHλ
σ,τ = Dσ,τ and Dσ,τ is really dense

below p. With the inductive hypothesis it follows that p 
P “σ ∈ τ”.

Because Hλ satisfies extensionality we do not need to deal with “ = ”. ⊣

4.3. Lemma. Let κ be a reflecting cardinal and P ∈ Hκ a forcing notion. Then

11P 
P “κ is reflecting.”.

Proof. Let κ and P be as above. Since reflecting cardinals are in particular inaccessible

and hence limit cardinals by the lemmata 1.7 and 1.8 we can fix a λ ∈ Card ∩κ such

that P ∈ Hλ. Now let a ∈ Hκ, µ ∈ Card \κ and suppose that

11P 
P “Hµ |= “ϕ(a)””. (4.1)

Lemma 4.2 implies Hµ |= “11P 
P “ϕ(a)””. If ν is large enough then by lemma 1.1

Hν |= “Hµ |= “11P 
P “ϕ(a)””” and in particular

Hν |= “∃ϑ ∈ Card \λ : Hϑ |= “11P 
P “ϕ(a)””” (4.2)

Let ϑ be a witness to this. Lemma 1.2 implies that ϑ > λ is in fact a cardinal and

in conjunction with lemma 1.1 it also yields Hϑ |= “11P 
P “ϕ(a)””. Since ϑ > λ

and P ∈ Hλ, forcing with P does not collapse ϑ. Finally by lemma 4.2 we attain

11P 
P “Hϑ |= “ϕ(a)””.

⊣

At this point we cite a generalized ∆–system–lemma.
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4.4. Lemma. ([Ku], II.1.6. Theorem) Let λ ∈ Card \ω and κ ∈ Reg \λ+ such that

∀ν < κ : [ν]<λ < κ. If B is a family of size at least κ such that ∀x ∈ B : x < λ then

there is a C ∈ [B]κ that forms a ∆–system.

We will need this in order to see that a certain forcing notion fulfills a particular chain

condition.

4.5. Fact. If α ∈ Lim, Pα is an iterated forcing construction of length α with finite

or countable support, Gα is Pα–generic,
(
β < cf(α)

)V [Gα]
and S ∈ P(β) ∩ V [Gα] then

already S ∈ V [Gγ] for some γ < α.

Proof. We can suppose w.l.o.g. that cf(α) is uncountable since otherwise β is a

natural number which instantaneously renders the statement above true. Let σ be a

Pα–name for S. For every δ ∈ S let pδ ∈ Gα be such that pδ 
Pα
“δ̌ ∈ σ”. Let

γ := supδ∈S

(
sup

(
supt(pδ)

))
. Since the support of every condition is countable and the

cofinality of α is uncountable and greater than β, γ < α. Then S =
{
δ < β

∣∣∃p ∈ Gγ :

p 
Pα
“δ̌ ∈ σ”

}
. The exact value of γ of course depends on S but that is not the point.


Pα
is definable in V so S is already definable from Gγ . ⊣

4.6. Theorem. (Saharon Shelah, 1995) Let κ be a reflecting cardinal. Then there is

a κ–c.c. proper notion of forcing P such that whenever G is P–generic over V , V [G] |=

“ ZFC+ BPFA +2ℵ0 = 2ℵ1 = ℵ2 = κ”.

The following proof is an analogue of the classical construction of a generic extension

for ZFC +¬CH + MA by iterated forcing as written down for example in [Ku], chapter

8, §6 which has been adapted for the proof of the statement above. The theorem was

first proved with a slightly different notation in [G–S].

Proof. Let f : κ ←→ κ2 be a bijection with the property that ∀γ < κ : f(γ) <

κ · (γ+1)—in fact a surjection with this feature would suffice. We are going to define an

iterated forcing construction with countable support
((

(Pγ,6γ , 11γ), (πγ ,4γ, εγ)
)
|γ < κ

)

as follows: Let γ < κ and

eγ : κ←→
{
(σ, α)

∣∣α, σ ∈ Hκ are Pγ–names and 11Pγ

Pγ

“σ ∈ Hκ̌ is a separative (4.3)

partial order and α is a family of maximal antichains in σ.”
}
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4 The consistency of BPFA

be an enumeration. Whenever η 6 γ one canonically can embed Pη into Pγ. Hence we

always can conceive of Pη–names as Pγ–names in such a situation. So for the names σ, α

from (4.3) let βγ(α,σ) be a Pγ–name from Hκ such that1

11Pγ

Pγ

“
(
∃β ∈ Hκ̌ : β ⊃ σ ∧ β is a proper and complete Boolean algebra such (4.4)

that ∀A ∈ α : A remains a maximal antichain in β
)
→ βγ(α,σ)

is such a β, otherwise βγ(α,σ) is the trivial Boolean algebra.”.

Now we can use f for bookkeeping. Set πγ := βγ
eη(ξ) iff f(γ) = κ · η + ξ for γ < κ.

Note that since the πγ are all chosen from Hκ all initial segments Pγ—where γ < κ—of

our iterated forcing construction Pκ are in Hκ too.

• Pκ has the κ–c.c.—Proof:

Suppose towards a contradiction that
{
pα

∣∣α < κ
}

was an antichain in Pκ. Consider

B :=
{
supt(pα)

∣∣α < κ
}
. We distinguish two cases:

– If B = κ apply lemma 4.4 for λ := ℵ1. Then there is a ∆–system C ⊂ B with

root r of size κ. Then define D :=
{
pα

∣∣α < κ ∧ supt(pα) ∈ C
}
.

– If B < κ then by the pigeonhole principle there exists an r ∈ [κ]<ω1 and an

s ∈ [κ]κ such that ∀α ∈ s : supt(pα) = r. Define D :=
{
pα

∣∣α ∈ s
}
.

Set γ := sup(r) + 1. In both cases
{
p ↾ γ

∣∣p ∈ D
}

is an antichain of size κ in Pγ.

But Pγ ∈ Hκ so in particular Pγ < κ.  ⊣ (Pκ has the κ–c.c..)

This immediately implies that κ remains a cardinal in the generic extension.

• Pκ is proper.

This is simply a consequence of theorem 2.16 since 11γ 
Pγ
“πγ is proper.” for all

γ < κ. ⊣ (Pκ is proper.)

• Now we show that V [Gκ] |= “κ 6 ℵ2”—Proof:

The iterated forcing construction as a whole is proper so in particular ℵ1 is pre-

served.(As a consequence we dispense with the superscripts when talking about

ℵ1.) But all cardinals between ℵ1 and κ are collapsed. In order to see this we

1The word “otherwise” in (4.4) refers to the part of (4.4) in brackets.
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consider the following notion of forcing:

Q := (Q,6Q) where (4.5)

Q :=
{
f : C →֒ ℵ1

∣∣C ∈ [ℵ1]
<ω1

}
and

p 6Q q :⇐⇒ p ⊃ q.

Now let λ ∈ (Card ∩κ\ℵ2)
V and A :=

{
Aη

∣∣η < λ
}

a family of maximal antichains

where Aη :=
{
{(ξ, η)}

∣∣ξ < ℵ1

}
for every η < λ. Furthermore let σ, α be P0–names

from Hκ for QV ,A respectively. Eventually σ, α are considered—say in step γ < κ

in the iteration. Note that id : QV →֒ QV [Gγ ] is a dense embedding. The first

two conditions in the definition of dense embedings are easily fulfilled. Lemma

2.15 implies that Q is dense in QV [Gγ ]. B∗ :=
(
ro(Q)

)V [Gγ ]
is a complete Boolean

algebra which is proper in V [Gγ ] since it is defined there from a countably closed

and hence proper forcing notion. Since QV [Gγ ] is separative the canonical dense

embedding from QV [Gγ ] into B∗ is one–to–one. So there exists a one–to–one dense

embedding from QV into B∗. By an isomorphic correction as in remark 3.4 we

attain a complete and proper Boolean algebra B such that Q is dense in B. So

every maximal antichain from QV stays maximal in B, in particular all from A.

So we showed that in V [Gγ] there exists a complete and proper Boolean algebra

extending QV such that all A ∈ A stay maximal. Now by definition of our forcing

iteration π
Gγ
γ is such a thing. But then F γ+1

γ ∈ V [Gγ+1] is a filter meeting every

Aη and
⋃ (

QV [Gγ ] ∩ F γ+1
γ

)
: ℵ1 ←→ λ. So V [Gγ+1] |= “λ < ℵ2” and hence in

particular

V [Gκ] |= “λ < ℵ2”. (4.6)

Since λ was arbitrarily chosen from the cardinals below κ that finishes this part.

⊣ (V [Gκ] |= “κ 6 ℵ2”)

• Next we want to see that V [Gκ] |= “2ℵ1 6 κ”—Proof:

From fact 4.5 we know that every subset of ℵ1 in V [Gκ] is already in some V [Gγ ]

where γ < κ. Every set in P(ℵ1) ∩ V [Gγ ] is represented by a nice Pγ–name.

Pγ ∈ Hκ, let λγ := Pγ + ℵ1. There are at most (2λγ )
ℵ1 = 2λγ < κ such names. So

there are at most Σγ<κ2
λγ 6 κ · κ = κ subsets of ℵ1 in V [Gκ]. Note that at this

point we needed κ’s regularity.

⊣ (V [Gκ] |= “2ℵ1 6 κ”)
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4 The consistency of BPFA

Since 2ℵ1 > ℵ1 this also shows for the second time that κ is not collapsed and

so remains a cardinal in the generic extension. Moreover it is now clear that

V [Gκ] |= “κ = ℵ2”. Note that if we succeed in showing V [Gκ] |= “ BPFA ” because

of BPFA⇒ MAℵ1
⇒ 2ℵ0 > ℵ2 we will be finished.

• Finally V [Gκ] |= “ BPFA ”—Proof:

At first we work in V [Gκ]. Let B∗ be a proper Boolean algebra andAB∗ :=
{
Aη

∣∣η <
ℵ1

}
a given family of maximal antichains in B∗ all of which have size at most ℵ1.

By an isomorphic correction choose a B and an isomorphism ψ : B∗ ≃ B such that

the subalgebra S finitely generated by A =
{
ψ“Aη

∣∣η < ℵ1

}
is in Hℵ2

. Clearly B is

also proper and A is again a family of maximal antichains. By lemma 3.3 A and

S are coded by subsets of ℵ1 which by fact 4.5 already appear at an intermediate

stage in the iteration. So choose a γ < κ such that S,A ∈ V [Gγ ].

Claim: For all η ∈ κ \ γ in V [Gη] there exists a complete and proper Boolean

superalgebra B′ of S such that all antichains from A remain maximal in B′. In fact

if p ∈ Pκ

Gη
, β is a Pκ

Gη
–name such that

p 
 Pκ
Gη

“β is a proper Boolean superalgebra of Š such that (4.7)

all antichains from Ǎ remain maximal in β.”,

Q :=
{
q ∈ Pκ

Gη

∣∣q 6 Pκ
Gη

p
}
, Q := (Q,6 Pκ

Gη

↾Q) and β+ is a Pκ

Gη
–name for (βGκ)

+
then

B′ := ro(Q ⋆ β+) is such an algebra up to isomorphism.

Note that the existence of such p, β is witnessed by B’s existence in V [Gκ].

Proof of Claim: Let η ∈ κ \ γ be arbitrarily chosen and let p, β,Q,Q and B′ be as

above. Let δ : Q⋆β+ −→ B′+ be the canonical dense embedding. At the beginning

we prove that B′ can be seen as an extension of S by the following embedding:

χ : S −→ B′ (4.8)

s 7−→




δ
(
(p, š)

)
iff s 6= 00S

00B′ otherwise.

– It is immediate that 00S = 00B′ and 11S = 11B′ .

– Also χ(¬s) = ¬χ(s) for all s ∈ S. In order to show this let s ∈ S \ {00S, 11S}

be arbitrarily chosen. Suppose towards a contradiction that χ(¬s) 6= ¬χ(s).

Since the partial order on a Boolean algebra is in particular antisymmetric
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we can infer that χ(¬s) 66B′ ¬χ(s) or ¬χ(s) 66B′ χ(¬s). So we distinguish

these two cases:

∗ χ(¬s) 66B′ ¬χ(s). Since B′ is a Boolean algebra this means that χ(¬s)‖B′+χ(s).

By density of δ’s image choose a (q, τ) such that δ
(
(q, τ)

)
6B′ χ(¬s), χ(s).

Then (p, š)‖Q⋆β+(q, τ)—let (r, ν) 6Q⋆β+ (q, τ), (p, š) be a witness for this.

Furthermore let (t, ϑ) 6Q⋆β+ (r, ν), (p, ¬̌s) witness (r, ν)‖Q⋆β+(p, ¬̌s). So

t 
Q “ϑ ∈ β+ ∧ ϑ 4β š, ¬̌s” which is clearly nonsense.

∗ ¬χ(s) 66B′ χ(¬s). Since B′ is a Boolean algebra the canonical par-

tial order on it is separative. Using this fact and the density of δ’s

image one can find a (q, τ) ∈ Q ⋆ β+ such that δ
(
(q, τ)

)
6B′ ¬χ(s)

but δ
(
(q, τ)

)
⊥B′+χ(¬s). So δ

(
(q, τ)

)
⊥B′+χ(s) and hence (q, τ)⊥Q⋆β+(p, š).

But also (q, τ)⊥Q⋆β+(p, ¬̌s). Since q 6Q p this implies q 
Q “τ ∈

β+ ∧ τ⊥β+ š, ¬̌s”— ⊣
(
χ(¬s) = ¬χ(s)

)

– Finally χ(s∧ t) = χ(s)∧χ(t) for all s, t ∈ S. Again by separativity it suffices

to distinguish two cases in search for a contradiction:

∗ χ(s ∧ t) 66B′ χ(s) ∧ χ(t). By separativity and density choose a (q, τ) ∈

Q⋆β+ such that δ
(
(q, τ)

)
6B′ χ(s∧t) but δ

(
(q, τ)

)
⊥B′+

(
χ(s)∧χ(t)

)
. Since

(q, τ)‖Q⋆β+

(
p, (s∧ t)̌

)
we can choose a (r, ν) 6Q⋆β+ (q, τ),

(
p, (s∧ t)̌

)
. We

distinguish two subcases:

· δ
(
(r, ν)

)
⊥B′+χ(s). Then (r, ν)⊥Q⋆β+(p, š) but also (r, ν) 6Q⋆β+ (p, (s∧

t)̌ ). So r 
Q “ν ∈ β+ ∧ ν 4β (s ∧ t)̌ ∧ ν⊥β+s”— 

· δ
(
(r, ν)

)
‖B′+χ(s). Then we can choose a (u, ϑ) 6Q⋆β+ (r, ν) such

that δ
(
(u, ϑ)

)
6B′ χ(s). Since (u, ϑ) 6Q⋆β+ (q, τ) it follows that

δ
(
(u, ϑ)

)
⊥B′+χ(t). So (u, ϑ) 6Q⋆β+

(
p, (s ∧ t)̌

)
but (u, ϑ)⊥Q⋆β+(p, ť).

Hence u 
Q “ϑ ∈ β+ ∧ ϑ 4β (s ∧ t)̌ ∧ ϑ⊥β+ ť”— 

∗ χ(s) ∧ χ(t) 66B′ χ(s ∧ t). By separativity and density choose a condition

(q, τ) from Q⋆β+ such that δ
(
(q, τ)

)
6B′ χ(s)∧χ(t) but δ

(
(q, τ)

)
⊥B′+χ(s∧

t). Since obviously (q, τ)‖Q⋆β+(p, š) we can choose a condition (r, ν) 6Q⋆β+

(q, τ), (p, š) and subsequently a (u, ϑ) 6Q⋆β+ (r, ν), (p, ť) by the same

form of argument. (u, ϑ)⊥Q⋆β+

(
p, (s ∧ t)̌

)
so u 
Q “ϑ ∈ β+ ∧ ϑ 4β

š, ť ∧ ϑ⊥β+ š ∧ ť”— ⊣
(
χ(s ∧ t) = χ(s) ∧ χ(t)

)

– This actually implies that χ is one–to–one. For if s, t ∈ S and s 6= t by

antisymmetry we can suppose w.l.o.g. that s 66S t. Then by separativity

there exists a u ∈ S+ with u 6S s—that is u ∧S s = u such that u⊥S+t—that

it u ∧S t = 00S. But then χ(u) ∧B′ χ(s) = χ(u) and χ(u) ∧B′ χ(t) = 00B′ . If
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4 The consistency of BPFA

χ(s) = χ(t) we would have χ(u) = 00B′ and hence u = 00B′— 

⊣ (χ is one–to–one.)

– Suppose towards a contradiction that A ∈ A and that b′ ∈ B′ is incompatible

with all elements from A. Since δ“(Q⋆β) is dense in B′ there is a (q, τ) ∈ Q⋆β

such that δ
(
(q, τ)) 6 b′. We have

∀a ∈ A : δ
(
(q, τ)

)
⊥B′χ(a). (4.9)

Since δ is a dense embedding it follows immediately that

∀a ∈ A : (q, τ)⊥Q⋆β(p, ǎ). (4.10)

But then

∀a ∈ A : q 
Q “τ⊥β ǎ”. (4.11)

Proof of (4.11):

Suppose otherwise. From p = 11Q we get q 6Q p. So there would be an a ∈ A

and an r 6Q q such that r 
Q “τ‖βǎ”—that is r 
Q “∃ξ 4β τ, ǎ”. By the

maximal principle there exists a Q–name ξ such that r 
Q “ξ 4β τ, ǎ”. But

then (r, ξ) 6Q⋆β (q, τ), (p, ǎ) contradicting (4.10). ⊣(4.11)

But (4.11) says that q 
Q “Ǎ is no longer maximal in β.” contradicting (4.7).

⊣(All antichains from A remain maximal in B′.)

⊣(Claim)

As S is a Boolean algebra one in particular can conceive of it as a separative poset.

Now let σ be a Pγ–name for S and α be a Pγ–name for A. Then by definition of

our bookkeeping function f at some later point in the iteration the pair of them

is considered—in fact at η := f−1
(
κ · γ + e−1

γ

(
(σ, α)

))
. We have

V [Gη] |= “∃B′
(
B′ is a complete and proper Boolean superalgebra (4.12)

of S and ∀A ∈ A : A is a maximal antichain in B′.
)
”.

Lemma 2.10 implies that the assertion believed by V [Gη] is Σ2

(
{S,A}

)
. Since

Pη ∈ Hκ lemma 4.3 implies that κ is still reflecting and thus by lemma 1.8 Σ2–
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correct in V [Gη]. But then of course

Hκ[Gη] |= “∃B′
(
B′ is a complete and proper Boolean superalgebra (4.13)

of S and ∀A ∈ A : A is a maximal antichain in B′.”
)
.

Let E ∈ Hκ[Gη] be a witness to this, then because of κ’s inaccessiblity and lemma

1.2:

V [Gη] |= “E ∈ Hκ,E is a complete and proper Boolean superalgebra (4.14)

of S and ∀A ∈ A : A is a maximal antichain in E.”.

Suppose now that σ is a Pη–name for S and α is a Pη–name for A. Then by

definition of our iterated forcing construction πη is chosen in such a way that

11η 
Pη
“πη ∈ Ḣκ, πη is a complete and proper Boolean superalgebra (4.15)

of σ and every antichain from α stays maximal in πη.”.

Hence in our iterated forcing construction F η+1
η ∈ V [Gη+1] ⊂ V [Gκ] is a filter

π
Gη+1
η –generic over V [Gη]. That means it intersects every maximal antichain in

π
Gη+1
η especially all those from A.

But now H := ψ−1“(F η+1
η ∩ S) is an AB∗–generic filter. The following diagram

illustrates the situation:

S∗
Tt

id

��

{{

ϕ

##
S 
 j

id

��

- 


id

##
∈ Hκ ∋ E ∈ Prop

V [Gη ]

B∗
cc

ψ

;;∈ Prop ∋ B

⊣ (V [Gκ] |= “ BPFA”)

⊣
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5 The consistency strength of BAAFA

and BPFA

It turns out that the existence of a reflecting cardinal is indeed equiconsistent with

BAAFA as well as BPFA. In order to show this we need some more definitions. AA∗ ⊂ Prop

implies that BPFA ⇒ BAAFA so it suffices to show that BAAFA has the consistency

strength of a reflecting cardinal.

5.1. Lemma. Let T be a tree. The following two assertions are equivalent:

(1) ∃f : T −→ ω ∀s, t ∈ T
(
s <T t→ f(s) 6= f(t)

)
.

(2) There is a sequence (An|n < ω) of antichains such that T =
⋃
n<ω An.

Here of course <T :=6T \(=↾ T ).

Proof. (2) ⇒ (1). Define f by setting t 7→ min
{
n
∣∣n < ω ∧ t ∈ An

}
for t ∈ T .

(1) ⇒ (2). Set An := f−1“{n}. ⊣

5.2. Definition. A tree T is called special by definition if and only if the assertions

above hold. The function f in clause (1) is called the specializing function.

5.3. Definition. Jensen’s global square-principle, denoted � asserts the existence of

a sequence (Cα|α ∈ Lim \Reg) the size of a proper class with the following properties

for any α ∈ Lim \Reg:

• Cα is club in α,

• otyp(Cα) < α,

• ∀β ∈ lim(Cα) : β /∈ Reg ∧Cβ = Cα ∩ β.

The following theorem asserts the existence of a well-known state of affairs.
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5 The consistency strength of BAAFA and BPFA

5.4. Theorem. L |= “�”.

This is proved for example in [De 2], VI.6. A careful analysis of this proof yields the

following. . .

5.5. Fact. There is a Σ1

(
{ℵ1}

)
–definable witness for the truth of � in L. To put it

more formally:

There is a Σ1

(
{ℵ1}

)
–formula ϕ such that for every L–singular limit ordinal α there

exists exactly one Cα such that ϕ(α,Cα).

We now sketch this analysis:

Proof. Devlin’s proof starts at the bottom of page 286. On page 288 he defines

Q :=
{
α
∣∣Φ“(α × α) ⊂ α

}
where Φ is Gödel’s pairing function—which is ∆1–definable.

So Q is ∆1–definable too. He proceeds by distinguishing five cases.

(1) α < ℵ1.

In the first case Cα shall be any ω–sequence cofinal in α. So we can take the

<L–least one—which is Σ1–definable.

(2) α > ℵ1 and α /∈ Q.

(3) α > ℵ1, α ∈ Q and sup(Q ∩ α) < α.

In cases two and three the sets Cα are defined via ordinal arithmetic. These

definitions are all absolute and the reason for this is that they are ∆1 since in the

end they are defined by transfinite recursion where every single step is ∆1.

For the two remaining cases Devlin defines:

β := “the least β such that α is singular over Jβ.” (5.1)

and n := “the least n such that α is Σn–singular over Jβ. (5.2)

(4) α > ℵ1, α ∈ lim(Q), n = 1 and β is a successor ordinal.

Case four is similar to case one. The cofinality of α is ω so one can take any

ω–sequence cofinal in α. Again one can simply take the Σ1–definable <L–least

one.

(5) α > ℵ1, α ∈ lim(Q) and (n > 1 or β is a limit ordinal).
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In the last case Cα is eventually defined on page 294:

Cα :=
{
αt(ν)

∣∣ν < θ̃
}

(5.3)

This uses the function t defined on page 293 by transfinite recursion from Gödel’s

pairing function, the parameter κ defined on page 291, the sequences (αν) and

(Xν), α itself, the function α 7→ Jα, the n + 1st standard–parameter over β and

the canonical Σ1 Skolem function h̺n−2
β

,An−2
β

. Indeed this whole construction—the

heart of which is the recursive definition of the functions k andm and the sequences

(Xν) and (αν) on page 291—amounts to a Σ1–definition. The important points in

this respect are the following:

• All fine–structural elements of the construction—the canonical Σ1–Skolem

functions, the standard codes and the standard parameters are Σ1–definable.

• The function β 7→ Jβ is Σ1–definable—see for example [De 2], corollary

VI.2.6.

• Whenever the formulation “Let . . . be the least ordinal such that . . . ” appears,

notice that β 7→ Jβ, h, hτ , etc. are Σ1–definable functions, not Σ1–definable

yet otherwise arbitrary relations. So “• ∈ Jβ” as well as “• /∈ Jβ” are both

Σ1

(
{β}

)
–definable predicates and hence denying the property “• ∈ Jγ” for

all ordinals γ smaller than β does not “contaminate” the definition with a

Π1–statement. Similar considerations obtain for h, hτ , etc.

• A set recursively defined by Σ1–statements is at whole Σ1–definable—see for

example [Je 2], lemma 13.12.

Finally we have to check that the cases can be distinguished in a Σ1–fashion. “• ∈ Q”

is a ∆1–predicate, a supremum of a set of ordinals can simply be calculated by taking

the union, so sup(Q ∩ α) < α and α ∈ lim(Q) are both ∆1

(
{α}

)
.

Now only the definition of β in (5.1) and the definition of n in (5.2) remain to be

checked. The first can be formulated thus:

∃A
(
A ⊂ α ∧

⋃
A = α ∧ otyp(A) < α ∧ A ∈ Jβ

)
∧ (5.4)

∀γ < β,A ∈ Jγ
(
(A ⊂ α ∧

⋃
A = α)→ otyp(A) = α

)
.

For the latter we use the fact that the property “m is the Gödel-number of a Σn–

formula.” is ∆1

(
{m,n}

)
. If we denote this property by FC then we can express (5.2) as
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5 The consistency strength of BAAFA and BPFA

follows:

∃A ∈ Jβ, m < ω
(
A ⊂ α ∧

⋃
A = α ∧ otyp(A) < α (5.5)

∧ Sat(Jβ, A,m) ∧ FC(m,n)
)
∧ ∀k < n,m < ω∄A ∈ Jβ :

FC(m, k) ∧ Sat(Jβ, A,m) ∧ A ⊂ α ∧
⋃

A = α ∧ otyp(A) < α.

⊣

5.6. Remark. If (Cα|α ∈ Lim \Reg) is a witness to the truth of � there is a tree T ,

which corresponds to this sequence in a canonical way. Define T := (Lim \Reg,4) and

set β 4 γ :⇐⇒ β is a limit point of Cγ. 4 is reflexive, transitive and antisymmetrical.

It also inherits the property of being well-ordered from the ordinals. So 4 is a strict

partial well-order. Finally

∀β, γ ∈ Lim \Reg
(
∃η ∈ Lim \Reg(β 4 η ∧ γ 4 η)→ (β 4 γ ∨ γ 4 β)

)
, (5.6)

so T is a tree.

Proof. We will only prove the last assertion.

Let β, γ, η be singular limit ordinals such that β, γ 4 η. Suppose w.l.o.g. that β < γ.

γ is a limit point of Cη so Cγ = Cη ∩ γ. Since β is a limit point of Cη and β < γ, β is

a limit point of Cγ. So β 4 η. The other postulates regarding T are comparably simple

to prove. ⊣

For the rest of this chapter we fix a witness for the the truth of � in L, i.e. we

fix a class–sized sequence (Cα|α ∈ Lim \Reg) and we suppose it to be Σ1–definable.

We are going to analyse initial segments of its corresponding tree. The tree will be

denoted as T� = (Lim \Reg,4�). When writing T� ↾ S for S ⊂ Lim \Reg we mean(
S,4� ∩ (S × S)

)
.

5.7. Lemma. If 0# does not exist, then ∀α > ℵ2 : cfV
(
α+L

)
> αV .

Proof. Suppose towards a contradiction that the lemma is false, i.e. that α > ℵ2,

0# does not exist but cfV
(
α+L

)
< αV . Let C ⊂ α+L be a cofinal subset of α+L such

that otyp(C) < α. Since 0# does not exist Jensen’s Covering lemma holds true. ℵ1 ∪ C

66



is uncountable and so there is an S ∈ L such that S ⊃ ℵ1 ∪ C yet S = ℵ1 ∪ C. Let

X := S∩α+L, thenX is cofinal in α+L andX ∈ L. Since L satisfies full Choice and hence

in particular all its successor cardinals are regular we infer that otyp(X) = α+L. At the

same time X 6 S = ℵ1 ∪ C 6 ℵ1 + C < α and hence otyp(X) < α. Contradiction!

⊣

5.8. Lemma. Suppose ̺ is regular in L, C∗ ∈ L a club set in ̺ such that C∗∩RegL = ∅

and C ⊂ C∗ a club set in ̺ such that otyp(C) = ω1. Then all branches in T� ↾ C are

countable.

Proof. Throughout this proof when we use the phrase “cofinal branch” we are not

referring to this branch being cofinal in the tree but to the fact that the set of the

elements of this branch is cofinal in ̺. So suppose towards a contradiction that b ⊂ C

is an uncountable branch. Since otyp(b) = ω1 it is cofinal.

There is exactly one cofinal branch in T�↾C∗. (5.7)

Proof of (5.7):

• There is at least one: b∗ :=
{
γ ∈ C∗

∣∣∃η ∈ b \ γ : γ 4� η
}

is a cofinal branch in

T�↾C∗.

For if γ ∈ b∗ and w.l.o.g. β ∈ γ ∩ b∗ there are witnesses η, ν ∈ b such that β 4� η

and γ 4� ν. Since b is a branch there is a ζ ∈ b such that ζ <� η, ν. Hence

β, γ 4� ζ which implies β 4� γ. So b∗ is a branch.

b∗ is also cofinal in ̺ since b is cofinal in ̺ and clearly b∗ ⊃ b.

• There is at most one: Suppose that b∗ and c∗ are both cofinal branches in T�↾C∗.

Suppose β0 ∈ b∗ △ c∗. W.l.o.g. assume that β0 ∈ b∗ \ c∗. Define two sequences

(βn|n < ω), (γn|n < ω) as follows:

γn := min(c∗ \ βn) (5.8)

βn+1 := min(b∗ \ γn) (5.9)

Since C∗ is a club ζ := supn<ω βn = supn<ω γn is an element of C∗. Choose an

η ∈ c∗ \ ζ . Then since γn is a limit point of Cη and Cγn
= Cη ∩ γn for all n < ω
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5 The consistency strength of BAAFA and BPFA

we have that ζ is a limit point of Cη and Cζ = Cη ∩ ζ . Furthermore choose a

ν ∈ b∗ \ ζ . Like before—since βn is a limit point of Cν and Cβn
= Cν ∩ βn for all

n < ω it follows that ζ is a limit point of Cν and Cζ = Cν ∩ ζ . So ζ ∈ b∗ ∩ c∗. By

ζ ∈ b∗ we get β0 4� ζ which in conjunction with ζ ∈ c∗ implies β0 ∈ c
∗. Contra-

diction! ⊣(5.7)

Since there is exactly one cofinal branch in T� ↾ C∗ it can be defined from C∗. If b∗ is

this branch then obviously

b∗ =
{
γ ∈ C∗

∣∣∀η < ̺∃ζ ∈ C∗ \ η : γ 6Tw�∗
χ

ζ
}
. (5.10)

Since C∗ ∈ L this means that in fact b∗ ∈ L. Moreover
⋃
γ∈b∗ Cγ is in L. ̺ is regular

in L hence otyp(
⋃
γ∈b∗ Cγ) = ̺. Since the Cγ are end-extensions of each other and b∗ is

unbounded in ̺ this implies that

∀η < ̺∃γ ∈ b∗ \ η : otyp(Cγ) > η. (5.11)

Now we are finally approaching contradiction. We can construct a sequence of ordinals

(γn|n < ω) inductively as follows:

γ0 := 0 (5.12)

γn+1 := min
{
η ∈ b∗

∣∣ otyp(Cη) > γn
}
.

Since otyp(Cγ) < γ for all γ ∈ Lim \Reg this sequence has to be properly ascending.

Let ζ := supn<ω γn. Since C∗ is club ζ is an element of C∗. Obviously cf(ζ) = ω so Cζ

exists. Since b∗ is cofinal we can choose an η ∈ b∗ \ ζ . Because γn is a limit point of Cη

and Cγn
= Cη ∩ γn for all n < ω it follows that ζ is a limit point of Cη and Cζ = Cη ∩ ζ .

Let ξ := otyp(Cζ). ξ < ζ by the properties of the square-sequence. By definition of ζ

there exists an n < ω such that otyp(Cγn
) > ξ. But γn 4� ζ—again by definition of ζ .

Contradiction! ⊣

5.9. Definition. For trees T = (T,6T ) let QT = (Q,6Q) be the following notion
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of forcing:

Q :=
{
f
∣∣ dom(f) ∈ [T ]<ω ∧ ran(f) ⊂ ω (5.13)

∧∀n < ω, s, t ∈ f−1“(n)(s 66T t ∧ t 66T s)
}

p 6Q q :⇐⇒p ⊃ q

Subsequent occurences of QT refer to this notion of forcing. We want to see that QT

satisfies the c.c.c. for a certain kind of trees, for this we recall the following...

5.10. Definition. Let X ) ∅. An Ultrafilter U over X is called uniform by

definition iff U ⊂ [X]X .

5.11. Lemma. Whenever T is a tree whose chains are all countable, QT satisfies the

countable chain condition.

Proof. Suppose P ∈ [Q]>ω1 . We have to show that P is no antichain so suppose it

was one. U :=
{
dom(q)

∣∣q ∈ P
}

is an uncountable family of finite sets so the ∆-system-

lemma can be applied. Let D ∈ [U ]>ω1 be a ∆-system with root r and P ′ :=
{
q ∈

P
∣∣ dom(q) ∈ D

}
. Since

{
q ∈ Q

∣∣ dom(q) = r
}
< ℵ1 there is a q ∈ Q with dom(q) = r

such that Pq :=
{
p ∈ P ′

∣∣p ↾ r = q
}

is uncountable. Fix such a q, let n := max
{
l <

ω
∣∣{p ∈ Pq|dom(p \ q) < l} < ℵ1

}
and P ∗ :=

{
p ∈ Pq

∣∣dom(p \ q) = n
}
. Clearly P ∗ > ℵ1

and P ∗ ⊂ Pq ⊂ P ′ ⊂ P .

Now we have that

∀p, r ∈ P ∗∃x ∈ dom(p \ q), y ∈ dom(r \ q)(x 6T y ∨ y 6T x). (5.14)

Otherwise for a counterexample {p, r} we would have p∪ r 6Q p, r contradicting the fact

that P ∗ is an antichain. For each p ∈ P ∗ let ep : n ←→ dom(p \ q) be an enumeration.

Define Ox
l :=

{
p
∣∣p ∈ P ∗ ∧

(
ep(l) 6T x ∨ x 6T ep(l)

)}
for every x ∈

⋃
p∈P ∗ dom(p \ q) and

every l < n. Now because of (2) we can write O as a finite union for all p ∈ P ∗:

P ∗ =
⋃

x∈dom(p\q)

⋃

l<n

Ox
l . (5.15)

Choose a uniform ultrafilter U over P ∗. Then one can pick xp ∈ dom(p \ q), lp < n such

that O
xp

lp
∈ U for every p ∈ P ∗. We have that

∀l < n
(
bl :=

{
xp

∣∣p ∈ P ∗ ∧ lp = l
}

is a chain in T .
)

(5.16)
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5 The consistency strength of BAAFA and BPFA

Proof of (5.16):

Take l < n and y, z ∈ bl. Then y = xp, z = xr and lp = l = lr for p, r ∈ P ∗.

Because of Oy
l , O

z
l ∈ U we have Oy

l ∩ O
z
l ∈ U . U is uniform hence Oy

l ∩ O
z
l > ℵ1. We

ensured that ∀p, r ∈ P ∗
(
dom(p \ q) ∩ dom(r \ q) = ∅ ∨ p = q

)
so as a consequence

Z :=
{
ep(l)

∣∣p ∈ Oy
l ∩ O

z
l

}
is uncountable. Z ⊂ cy ∪ cz ∪ (T y ∩ T z) but cy, cz < ℵ1. So

ℵ1 6 Z \ (cy ∪ cz) 6 T y ∩ T z and T y ∩ T z ) ∅ in particular. But then y 6T z ∨ z 6T

y. ⊣(5.16)

Let m := max
{
l 6 n

∣∣{p ∈ P ∗|lp < l} < ℵ1

}
. Then m < n and bm is an uncountable

chain in T .  ⊣

5.12. Lemma. Suppose T is a tree with ℵ1 elements whose branches are all countable

and let G be QT -generic. Then V [G] |= “T is special.”.

Proof. Let T be as above and G be QT -generic. Then
⋃
G is a specializing function

for T . As a union of functions it clearly is a function itself. Moreover, dom(
⋃
G) = T

since Ds :=
{
q
∣∣q ∈ Q ∧ s ∈ dom(q)

}
is dense for every s ∈ T . On the other hand

Dn :=
{
q
∣∣q ∈ Q ∧ q−1“(n) ) ∅

}
is dense for each n < ω so ran(f) = ω. Suppose

counterfactually that there are s, t ∈ T such that (
⋃
G)(s) = (

⋃
G)(t), yet s 6T t. First

take a p ∈ Ds ∩ G, then a q ∈ Dt ∩G such that q 6Q p. It follows that q(s) = q(t).  ⊣

Now we will prove the following theorem:

5.13. Theorem. (Saharon Shelah, 1995) If BAAFA holds, then ℵ2 is reflecting in L.

In [G–S] Shelah proved that BPFA ⇒ “ℵ2 is reflecting in L”. Later on Stevo

Todorčević gave a simplified proof for this. In fact he already proved the theorem

above. Before we will enter the proof some comments on the idea are given. If one

looks at the formulation of Bounded Forcing Axioms in terms of forcing absoluteness it

can be considered a straightforward idea to collapse κ below ℵ2 with a proper notion of

forcing—“∃α < ℵ2 : Lα |= “ϕ(a)”” is a Σ1–assertion because one typically formulates

this assertion by restricting the quantifiers in ϕ to Lα and the function α 7→ Lα is ∆1

by [Je 2], lemma 13.14. Unfortunately this direct approach does not work since we also

require this α to be a cardinal (in L). Since being a cardinal is a Π1-property we would

end up with a Σ2-assertion which does not lead us anywhere. The solution is to find a

Σ1-formalizable strengthening of the quality of being a cardinal in L.
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Proof.(Stevo Todorčević) We are distinguishing two cases.

Case 1: 0# exists.

Then we are finished quickly. ℵ2 is regular so all the more it is regular in L. But

it is also Σ2–correct in L by lemma 1.15. Finally lemma 1.8 implies that it has to be

reflecting in L.

Case 2: 0# does not exist.

First recall that HL
κ = Lκ for all κ ∈ CardL. Suppose ϕ is a first order formula in the

language of set theory, a ∈ Lℵ2
and κ ∈

{
(λ+)

L
∣∣λ ∈ CardL

}
\ ℵ2 such that

Lκ |= “ϕ(a)”. (5.17)

Let P := Fn(ℵ1, κ,ℵ1) be the usual forcing which adds a surjection from ℵ1 to κ with

countable conditions. We have that 11P 
P “κ = ℵ1” so 11P 
P “ cf(κ) 6 ω1”. But then

11P 
P “ cf(κ) = ω1” since Lemma 5.7 yields that cfV(κ) > ω2 and because of P’s being

σ–closed, forcing with P adds no new countable sets. So we arrive at

V [G] |= “∃κ ∈ RegL ∩ℵ2

(
cf(κ) = ω1 ∧ Lκ |= “ϕ(a)”

)
”. (5.18)

κ is a successor cardinal in L so in particular κ is not Mahlo in L. Let C∗ ∈ P(κ) ∩ L

be a club witnessing this, i.e. C∗ ∩ RegL = ∅. Let (γα|α < ℵ1) be a properly ascending

sequence of ordinals from V [G] which is cofinal in κ. Then by setting E :=
{
min(C \

γα)
∣∣α < ℵ1

}
and C := E ∪ lim(E) one can see that there is a club subset C of κ of order

type ω1 containing solely limit ordinals singular in L.

Lemma 5.8 says that

V [G] |= “All branches of T�↾C are countable.”. (5.19)

Now by lemma 5.12 we are able to add a specializing function with QT�↾C . QT�↾C

satisfies the countable chain condition by lemma 5.11. So let H be QT�↾C-generic over

V [G].
⋃
H is a specializing function for T�↾C. Consider the following statement:

∃κ < ℵ2, C, f : C → ω
(
a ∈ Lκ ∧ Lκ |= “ϕ(a)” ∧ C ∩ RegL = ∅ (5.20)

∧ otyp(C) = ω1 ∧ C is club in κ ∧ f is a specializing function for T�↾C
)
.

This is indeed a Σ1

(
{ℵ1}

)
-assertion. In order to see this notice that

• κ < ℵ2 ≡ ∃f : ℵ1 →−→ κ—this is Σ1

(
{ℵ1}

)
.
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5 The consistency strength of BAAFA and BPFA

• C is unbounded in κ ≡ ∀β < κ ∃γ < κ : γ ∈ C \ β—this is Σ0

(
{κ}

)
.

• C is closed in κ ≡ ∀β < κ
(
(C is unbounded in β ∧ β ∈ Lim) → β ∈ C

)
—again

this is Σ0

(
{κ}

)
.

• otyp(C) < α is ∆1

(
{C, α}

)
: It can be characterized as ∃β < α, f : C −→ β : “f is

order–preserving.” but also as ∄f : α −→ C : “f is order–preserving.”

As a consequence otyp(C) = α is ∆1({C, α}) too since it in turn can be charac-

terized as otyp(C) < α + 1 ∧ otyp(C) 6< α.

• C ∩ RegL = ∅ ≡ ∀α ∈ C ∃β,A
(
A ∈ Lβ ∧ A ⊂ α ∧ otyp(A) < α ∧ A is unbounded

in α
)
—this is Σ1

(
{C}

)
since the function β 7→ Lβ is Σ1 by [Je 2], lemma 13.14

• α is a limit point of A ≡ ∀β < α ∃γ ∈ A ∩ α \ (β + 1)—this is Σ0({α,A}).

• f is a specializing function for T�↾C ≡ ran(f) = ω∧dom(f) = C∧∀α, β ∈ C
(
α is a

limit point of Cβ → f(α) 6= f(β)
)
, this is Σ1

(
{ℵ1}

)
since Cβ is Σ1

(
{ℵ1}

)
–definable

from β by fact 5.5.

So we arrived at

V [G][H ] |= “(5.20)”. (5.21)

But (5.20) is a Σ1–statement in the single parameter ℵ1 ∈ Hℵ2
and BAAFA holds. P

is countably closed and QT�↾C satisfies the countable chain condition. By the lemmata

2.20, 2.19 and 2.30 it follows that P ⋆ QT�↾C ∈ AA ⊂ AA
∗. So by corollary 3.6 (5.20)

already holds in V . Finally we have to prove that the α mentioned in (5.20) is an

L–cardinal. In fact it is even regular. This is not excessively surprising since we know

by lemma 1.5 that in this context one can replace the requirement of the existence of

an α ∈ CardL ∩ℵ2 with Lα |= “ϕ(a)” by the call for an α < ℵ2 which is a successor

cardinal—and hence regular—in L with this property without limiting the scope of our

notion of “reflecting cardinal”.

So the κ from (5.20) is regular in L—Proof:

Suppose it was not. Then Cκ from the sequence corresponding to T� exists. First notice

that

cf(κ) = ω1. (5.22)
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This is because C is club in κ and otyp(C) = ω1. By definition cf(κ) 6 ω1. If cf(κ) =

ω there would be a properly ascending sequence (γn| < ω) cofinal in κ. Then C =
⋃
n<ω(C ∩ γn+1 \ γn). By the pigeonhole principle then there has to be an n < ω

such that C ∩ γn+1 \ γn = ℵ1. Since otyp(C) = ω1 it follows that C \ γn+1 = ∅. C is

unbounded in κ so γn+1 > κ. ⊣(5.22)

Since κ < ℵ2 we immediately have that

Cκ = ℵ1. (5.23)

Let now lim(Cκ) denote the set of limit points of Cκ. Then we have

C ∩ lim(Cκ) = ℵ1. (5.24)

(5.23) easily implies C ∩ lim(Cκ) 6 ℵ1. For the other direction suppose otyp
(
C ∩

lim(Cκ)
)
< ω1. Since cf(κ) = ω1 it follows that β0 := sup

(
C ∩ lim(Cκ)

)
< κ. Now define

inductively for n < ω:

γn := min(Cκ \ βn), (5.25)

βn+1 := min
(
C \ (γn + 1)

)
. (5.26)

Let γω := supn<ω γn. γω ∈ C ∩ lim(Cκ) \ (β0 + 1). ⊣ (5.24)

But it also is a fact that

C ∩ lim(Cκ) is a chain in Tκ+ω ↾C. (5.27)

In order to see this let β, γ ∈ C ∩ lim(Cκ) be different. W.l.o.g. one can assume that

β < γ. Since both β and γ are limit points of Cκ it follows that Cβ = Cκ ∩ β and

Cγ = Cκ ∩ γ. But then β is also a limit point of Cγ and Cβ = Cγ ∩ β—in other words,

β 4T�↾C γ. ⊣ (5.27)

But now (5.27) immediately yields a contradiction since f : C −→ ω was supposed to

be a specializing function yet by (5.24) and the pigeonhole principle there have to be

different β, γ ∈ C ∩ lim(Cκ) with f(β) = f(γ). ⊣ (κ ∈ RegL)

⊣
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6 BAAFA does not imply BPFA

When one considers the fact that by the use of a reflecting cardinal BPFA can be forced

while at the same time BAAFA suffices in order to have ℵ2 reflecting in L, the question

whether BAAFA ⇒1 BPFA is not a remote one. To put the question more formally:

Is there a model of set theory which satisfies BAAFA but fails to satisfy BPFA? The

question arises in particular because we have just seen that BAAFA and BPFA have the

same consistency strength. If that would not be the case one simply could start with

a large cardinal insufficient for forcing BPFA and force BAAFA—this is for example

the situation with BMM and BPFA(or BMM and BSPFA)—see [Sch 2]. But if a

ZFC–statement p implies a ZFC–statement q and both statements are consistent modulo

the same large cardinal in general it is unclear whether p ∧ ¬q is consistent and if yes

modulo which large cardinal. As a trivial example p implies p but there is no model of

p ∧ ¬p. Clearly the minimal consistency strength of p ∧ ¬q is the consistency strength

of p,¬q respectively.

After all—in this situation a reflecting cardinal suffices to arrive at a model of

BAAFA ∧¬BPFA. In order to see this recall the forcing which adds a set club be-

low ℵ1 with finite conditions. An important fact in this respect is that it is absolute

between transitive models with the same ℵ1.

6.1. Lemma. Let P be the forcing adding a set club below ℵ1 with finite conditions—

see example 2.25. “p ∈ P” is a ∆1

(
{ℵ1}

)
-relation.

Proof. P has been defined as follows:

P :=
{
p
∣∣p is a function with dom(p) ∈ [ℵ1]

<ω and ran(p) ⊂ ℵ1 (6.1)

such that there is a normal function with

domain ℵ1 and range cofinal in ℵ1 extending p.
}
.

• In order to see that “p ∈ P” is a Σ1–relation it suffices to analyse the original

definition from example 2.25 which we restated in (6.1). So note that. . .

1For once in mathematics “⇒” here does not stand for the material implication.
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6 BAAFA does not imply BPFA

– “ dom(p) ∈ [ℵ1]
<ω” if and only if “∃n < ω, f : n →−→ dom(p)” and that f ’s

being onto can be expressed by a general quantifier bounded by dom(p).

– “There is a normal function with domain ℵ1 and range cofinal in ℵ1 extending

p.” can be expressed as follows:

∃f ⊃ p
(
f ∈ Func ∧∀α, β ∈ dom(f)

(
α < β → f(α) < f(β)

)
(6.2)

∧∀α ∈ Lim ∩ dom(f), β < f(α)∃γ < α : f(γ) > β
)
.

• It seems to be somewhat more involved to find a Π1–formulation for “p ∈ P”. The

Π1–definition provided below relies on the fact that whether a normal function

extending a given p exists is mainly a question of ordinal distance. First note that

“ dom(p) ∈ [ℵ1]
<ω” if and only if “∄f : ω →֒ dom(p)” which is a Π1–assertion since

f ’s being one–to–one is expressed by a general quantifier. So let p be a function

such that dom(p) ∈ [ℵ1]
<ω and ran(p) ⊂ ℵ1.

Claim: There is a normal function extending p if and only if there is one extending{(
α, p(α)

)
,
(
β, p(β)

)}
for every α, β ∈ dom(p) such that α < β and ∄γ ∈ dom(p) :

α < γ < β.

Proof:

– Necessity is trivial for if there is a normal function extending p then clearly

this normal function extends every subset of p too.

– In order to prove sufficiency let n := dom(p) and e : n ←→ dom(p) be an

order–preserving enumeration. Form < n let fm ⊃
{(
e(m), (p◦e)(m)

)
,
(
e(m+

1), (p◦e)(m+1)
)}

be a normal function. Then clearly the following is a normal

function extending p:

f : ℵ1 −→ ℵ1 (6.3)

α 7−→






f0(α) iff α 6 e(1)
...

fm(α) iff e(m) < α 6 e(m+ 1)
...

fn−1(α) iff e(n− 1) < α.

Each fm is continuous. Whenever one considers an infinitely ascending se-
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quence of countable ordinals the pigeonhole principle implies that infinitely—

and hence cofinally—many of them fall into an intervall on which f is de-

fined to be identical with some fm. The limit of these ordinals then also

lies in this very intervall. So f is continuous too. Moreover suppose that

α < β. Then there is an m < n such that α 6 e(m + 1) < β. Hence

f(α) = fm(α) 6 (fm ◦ e)(m+ 1) = (fm+1 ◦ e)(m+ 1) < fm+1(β) = f(β).

Now the following formula provides a Π1–formulation for “p ∈ P”:

∀α, β ∈ dom(p)
(
(α < β ∧ ∄γ ∈ dom(p) : α < γ ∧ γ < β)→ (6.4)

(
p(α) < p(β) ∧ β 6 p(β) ∧ ϕ(α, β) ∧ (β ∈ Lim→ ψ(α, β))

))
.

We are going to show that there exists a normal function with domain ℵ1 and range

cofinal in ℵ1 extending p if and only if (6.4) holds for suitable Π1–formulae ϕ, ψ.

To this end suppose that p(α) < p(β) and β 6 p(β) hold true for all α, β ∈ dom(p)

such that ∄γ ∈ dom(p) : α < γ < β—otherwise the sought–after normal function

could not exist for trivial reasons. We define ϕ and ψ as follows:

ϕ ≡∀γ < β∄g : p(β) \ p(α) −→ γ \ α : “g is order–preserving.”, (6.5)

ψ ≡∀γ < p(β)∃η < β∀ζ < β∄g : p(β) \ γ → ζ \ η : “g is order–preserving.”.

(6.6)

One cannot simply dispense with the involved extra–treatment of limit ordinals.

Whereas ϕ suffices as a characterization if β is a successor ordinal it does not if it

is a limit ordinal—clearly p(β) then has to be a limit ordinal too. But even this

does not suffice—there is for example no normal function extending {(ω2, ω2+ω)}.

– Suppose there are α, β ∈ dom(p) with ∄γ ∈ dom(p) : α < γ < β such that

(6.5) fails although there is a normal function extending p. Let us call this

normal function f . By the failure of (6.5) let γ < β and g : p(β)\p(α) −→ γ\α

be order–preserving. Then g ◦ (f ↾ β) : β \ α −→ γ \ α is order–preserving

and so one is able to define an order–preserving function

h : β −→ γ (6.7)

η 7−→




η iff η < α
(
g ◦ (f ↾ β)

)
(η) otherwise.
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yet γ < β— 

– Suppose furthermore that there are α ∈ dom(p), β ∈ Lim ∩ dom(p) with

∄γ ∈ dom(p) : α < γ < β and that there is a normal function f extending{
(α, p(α)

)
, (β, p(β)

)}
although ψ(α, β) fails. By the failure of ψ(α, β) choose

a γ < p(β) such that

∀η < β∃ζ < β, g : p(β) \ γ −→ ζ \ η : “g is order–preserving.”. (6.8)

Since as a normal function f is continuous in β one can define η := min
{
ξ
∣∣ξ <

Ω ∧ f(ξ) > γ
}
. By (6.8) let ζ < β and g be an order–preserving function

from p(β) \ γ into ζ \ η. Then g ◦
(
f ↾ (β \ η)

)
is an order–preserving function

from β \ η into ζ \ η— 
(
—one attains contradiction just as in (6.7)

)

– Now suppose that (6.5) holds for all α, β ∈ dom(p) such that ∄γ ∈ dom(p) :

α < γ < β yet there is no normal function extending p. The claim implies

that there is a least α ∈ dom(p) such that with β := min
(
dom(p) \ (α + 1)

)

there is no normal function extending
{(
α, p(α)

)
,
(
β, p(β)

)}
. We distinguish

two cases:

∗ β is a successor ordinal. (6.5) expresses that otyp
(
p(β)\p(α)

)
> otyp(γ \

α) for every γ < β—in other words: otyp
(
p(β) \ p(α)

)
> otyp(β \ α).

But then there has to be an order–preserving function from β \ α into

p(β) \ p(α). In particular

g : β \ α −→ p(β) \ p(α) (6.9)

η 7−→ p(α) + (η − α)

is such a function. Note that it is in particular continuous at limit ordi-

nals. The choice of α implies that there is a normal function f ∗ extending

p↾ β. But then

f : ℵ1 −→ ℵ1 (6.10)

η 7−→






f ∗(η) iff η < α

g(η) iff η ∈ β \ α

p(β) + (η − β) otherwise

is a normal function extending p↾ (β + 1) contradicting the choice of α.
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∗ β is a limit ordinal. First note that ψ(α, β) implies in particular that

p(β) is a limit ordinal. Now we choose a properly ascending sequence

(χn|n < ω) of countable ordinals cofinal in p(β). By the choice of α there

exists a normal function f ∗ extending p↾ β. For ξ < p(β) let n(ξ) denote

the minimal n such that χn > ξ. Define inductively2

f : ℵ1 −→ ℵ1 (6.11)

ξ 7−→





f ∗(ξ) iff ξ 6 α

supϑ<ξ f(ϑ) iff ξ ∈ Lim ∩β \ (α + 1)

χ(n◦f)(ϑ) iff q

f(ϑ) + 1 iff r

p(β) + (ξ − β) otherwise, i.e. iff ξ > β.

Here q and r stand for the following cases:

q : ξ = ϑ+ 1 for some ϑ ∈ β \ α and

otyp(β \ ϑ) 6 otyp
(
p(β) \ χ(n◦f)(ϑ)

)
.

r : ξ = ϑ+ 1 for some ϑ ∈ β \ α and

otyp(β \ ϑ) > otyp
(
p(β) \ χ(n◦f)(ϑ)

)
.

Now f really is a normal function with domain ℵ1 and range cofinal in

ℵ1 extending p ↾ (β + 1). This is immediately clear by the definition on

α + 1 and on ℵ1 \ β. For the part of f ’s domain lying in between note

the following:

· The second case in (6.11) ensures that f is continuous at limit ordi-

nals.

· Furthermore take note of the fact that ϕ(α, β) yields otyp(β \ α) 6

otyp
(
p(β)\p(α)

)
. The discrimination between cases q and r in (6.11)

inductively ensures that ∀ξ ∈ β \ α : otyp(β \ ξ) 6 otyp
(
p(β) \ f(ξ)

)

and hence in particular f“(β \ α) ⊂ p(β) \ p(α).

· Suppose f“β would not be cofinal in p(β). Let n < ω be minimal

2For the clause in the middle note that we can conceive of n as a function n : p(β) −→ ω.

79
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such that χn > sup(f“β). Then for χn in the role of γ in ψ we attain

∃η < β∀ζ < β∄g : p(β) \ χn → ζ \ η : “g is order–preserving.”.

(6.12)

Choose such an η < β. Then

∀ζ < β : otyp
(
p(β) \ χn

)
> otyp(ζ \ η). (6.13)

But this means that otyp
(
p(β) \ χn

)
> otyp(β \ η). If one now

considers a successor ordinal ξ ∈ β \ η which is large enough such

that there is no m < n fulfilling χm > f(ξ) one sees that by case q in

(6.11) one must have f(ξ) > χn and hence f(ξ + 1) > χn— 

But f should not exist in light of our choice of α— 

⊣

6.2. Corollary. Let still P be the forcing adding a club below ℵ1 with finite

conditions. P is identical in every inner model and in every forcing extension which

share their ℵ1.

Proof. Let M,N be transitive models of ZFC, ℵM1 = ℵN1 and M ⊂ N . M could be

an inner model of N or N a forcing extension of M . Since “p ∈ P” is ∆1 by lemma 6.1

we have that “X ⊂ P” is ∆1({ℵ1, X}) and hence absolute between M and N . Suppose

towards a contradiction that PM 6= PN . Then obviously PM ( PN . Choose p ∈ PN \PM .

p ∈ [ℵ1]
<ω so obviously p ∈ M . Since p ∈ P is ∆1({p,ℵ1}) it follows that p ∈ PM .

Contradiction! ⊣

The idea behind the construction of a model of BAAFA ∧¬BPFA is to force BAAFA

with some forcing satisfying Axiom A* and then to argue that BPFA cannot hold in the

generic extension. For this we need the following lemma:

6.3. Lemma. To satisfy Axiom A is a Σ2-property.

Proof. Let P = (P,6P) be a poset. First recognize the following facts:
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• That a set D is dense below some condition p ∈ P is Σ0({D,P})—as the following

formula shows:

∀q ∈ P (q 6P p→ ∃r ∈ D : r 6P q). (6.14)

• That a set C is countable is Σ1({C})—the following formula says that C is count-

able:

∃f
(
f is a function with dom(f) = ω ∧ ∀c ∈ C∃n < ω : f(n) = c

)
. (6.15)

The following formula describes what it means for P to satisfy Axiom A—remember

lemma 2.18:

∃X, (6n |n < ω)
(
∀S ⊂ P : S ∈ X ∧ P × P ⊃6P=60 ∧∀n < ω : 6n+1⊂6n ∧

∀(pn|n < ω)
(
∀n < ω(pn ∈ P ∧ pn+1 6n pn)

→ ∃pω ∈ P (∀n < ω : pω 6n pn)
)
∧

∀p ∈ P, n < ω,D ∈ X
(
D is dense below p

→ ∃q ∈ P,C ∈ X(q 6n p, C ⊂ D is countable and predense below q)
))
. (6.16)

Here in the first line there is an unbounded existential quantifier while the two lines

following start with an unbounded general quantifier. All other quantifiers appearing

in this formula are bounded. Being countable is Σ1 but the corresponding assertion in

the formula above is not preceded by any unbounded general quantifier. Hence it is

Σ2({P}). This is also the reason for the reference to P ’s powerset. One would simplify

the notation at the beginning at the price of ending up with an unbounded general

quantifier preceding the assertion of the countability of C by dispensing with it. ⊣

In fact this result is not quite enough. One also has to contemplate the following

fact—which is not very deep.

6.4. Lemma. Being a complete Boolean algebra is a Π1–assertion.

Proof. Let B = (B, 00B, 11B,¬B,∧B,∨B) be a Boolean algebra. That B is a Boolean

algebra is Σ0

(
{B}

)
whenever the ordered pair is reasonably coded. It is complete iff the
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6 BAAFA does not imply BPFA

infinitary product exists for every subset of its domain B. The following formula says

that this state of affairs obtains:

∀X
(
X ⊂ B → ∃b ∈ B∀x ∈ X : b ∧B x = b

)
(6.17)

So being a complete Boolean algebra is a Π1–property. ⊣

6.5. Corollary. To satisfy Axiom A* is a Σ2–property.

Proof. Let P be a notion of forcing. P satisfies Axiom A* iff the following holds:

∃B,Q, δP, δQ

(
B is a complete Boolean algebra, Q is a notion of forcing (6.18)

satisfying Axiom A and δP : P −→ B, δQ : Q −→ B are dense embeddings.
)

Now since being a complete Boolean algebra is Π1 by lemma 6.4, being a notion of

forcing satisfying Axiom A is Σ2 by lemma 6.3 and the assertions about δP and δQ in

(6.18) are all Σ0 the proof is finished. ⊣

6.6. Lemma. Let (αn|n < ω) be a sequence of countable indecomposable ordinals and

(βn|n < ω) a sequence of ordinals such that ∀n < ω : βn < αn+1. Consider the forcing

Q which adds a club with finite conditions below ℵ1. The following sets are dense in Q:

D
(αn)n<ω

(βn)n<ω
:=

{
q
∣∣q ∈ Q ∧ ∃n < ω, γ ∈ ℵ1 \ βn : (αn, γ) ∈ q

}
. (6.19)

Proof. Choose any p ∈ Q. Let αω := supn<ω αn, η := max
(
dom(p) ∩ αω

)
and

n := min
{
m

∣∣m < ω ∧ η < αm
}
. Let f witness that p ∈ Q by being a normal function

extending p. We distinguish two cases:

• f(αn) > βn. Then instantaneously all is well. Set q := p ∪
{(
αn, f(αn)

)
}. f

witnesses that q ∈ Q.

• f(αn) < βn. Then set q := p ∪ {(αn, βn + αn)}. One can define a normal function
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g extending q as follows:

g : ℵ1 −→ ℵ1, (6.20)

δ 7−→




f(δ) iff δ ∈

(
η + 1

)
∪

(
ℵ1 \ (αn+1 + 1)

)

βn + δ iff δ ∈ (αn+1 + 1) \ (η + 1).

g clearly is a normal function on η + 1, (αn+1 + 1) \ (η + 1) and ℵ1 \ (αn+1 + 1)

because f and δ 7→ βn + δ are normal functions. Moreover we have

g(η) = f(η) < f(αn) < βn < βn + η + 1 = g(η + 1) (6.21)

and g(αn+1) = βn + αn+1 = αn+1 (6.22)

< αn+1 + 1 6 f(αn+1 + 1) = g(αn+1 + 1).

In any of both cases q ∈ Q∩D(αn)n<ω

(βn)n<ω
is an extension of p. Since p was arbitrarily chosen

this shows the density of D
(αn)n<ω

(βn)n<ω
. ⊣

We now present a variation of our forcing construction from chapter 4:

6.7. Theorem. (Thilo Weinert, 2007) Let κ be a reflecting cardinal. Then there is a

forcing P ∈ AA∗ that satisfies the κ–c.c. such that whenever G is P-generic

V [G] |= “ ZFC+ BAAFA +¬BPFA+2ℵ0 = 2ℵ1 = ℵ2”. (6.23)

Proof. The first part of the proof is almost identical to the proof of theorem 4.6.

Simply substitute every occurrence of “proper forcing notion” in the proof of theorem

4.6 by “forcing notion from AA∗”. Then corollary 2.39 takes the role of theorem 2.16 and

corollary 6.5 takes the role of lemma 2.10. This shows that

V [G] |= “ ZFC+ BAAFA +2ℵ0 = 2ℵ1 = ℵ2”. (6.24)

We provide the following diagram in order to call into mind the idea of the proof:

83



6 BAAFA does not imply BPFA

S∗
Tt

id

��

{{

ϕ

##
S 
 j

id

��

- 


id

##
∈ Hκ ∋ E ∈ AA∗V [Gη]

B∗
cc

ψ

;;∈ AA∗ ∋ B

We will now show 11Pκ

Pκ

“¬BPFA ”. Suppose towards a contradiction that this is

wrong, i.e. suppose there was a p ∈ Pκ such that p 
Pκ
“ BPFA”. Consider now the

forcing from example 2.25 that adds a club with finite conditions below ℵ1. In this proof

let us call it Q.

D :=
{
D

∣∣D ⊂ Q ∧ D is dense.
}

(6.25)

We are indeed analysing this very set defined in our ground model V and not the set

defined by the same conditions in the generic extension. 11Pκ

Pκ

“∀D ∈ Ď : D < ℵ2”

since every D ∈ D is a subset of Q and hence (D < ℵ2)
V for all D ∈ D already. Also

11Pκ

Pκ

“Ď < ℵ2” since Q = ℵ1 and if λ is the least inaccessible D 6 2ℵ1 < λ < κ.

Note that one can argue as in the proof of theorem 4.6 in order to see that Pκ adds

a surjection from ℵ1 to each α < κ. Now as usual let G ∋ p be a Pκ–generic filter.

Corollary 6.2 yields that Q still can be defined as “the forcing notion adding a club with

finite conditions below ℵ1” in V [G]. In conjuction with lemma 2.29 this in particular

yields that Q remains proper in V [G]. Now let B be the regular open algebra of Q

calculated in V [G] and let δ : Q −→ B be the corresponding dense embedding. Let

furthermoreDB :=
{
δ“D

∣∣D ∈ D
}
. That a setD is dense in a poset Q is Σ0

(
{D,Q}

)
hence

11Pκ

Pκ

“∀D ∈ Ď : “D is dense in Q.””. But then V [G] |= “DB < ℵ2 ∧∀D ∈ DB(D < ℵ2

and D is dense in B.)”. Moreover B is proper. So after all it must be the case that

p 
Pκ
“∃H : H is a ĎB-generic filter over B.”. (6.26)

Now we are going to show that with the help of such a filter H one can define a certain

normal function. In order to do this note that the sets

D∗
α :=

{
q ∈ Q

∣∣α ∈ dom(q)
}
. (6.27)
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are dense in Q. Now in the generic extension we define our normal function as follows:

f : ℵ1 −→ ℵ1 (6.28)

α 7−→ the unique β < ℵ1 such that ∃q ∈ Q
(
α ∈ dom(q) ∧ q(α) = β ∧ δ(q) ∈ H

)

Note the following:

• This is indeed well–defined. On the one hand there always is such a β because

δ“D∗
α ∈ DB. On the other hand: If β, γ < ℵ1 are given such that ∃q, r ∈ Q

(
α ∈

dom(q) ∩ dom(r) ∧ q(α) = β ∧ r(α) = γ ∧ δ(q), δ(r) ∈ H
)

then δ(q), δ(r) are

compatible in B and hence q, r are compatible in Q. But then q(α) = r(α) which

in turn implies β = γ.

• Let α < β and suppose towards a contradiction that f(α) > f(β). By definition

of f this means that there are q, r ∈ Q such that q(α) > r(β) yet δ(q), δ(r) ∈ H .

So δ(q)‖B+δ(r) and hence q‖Qr. This means that we can take a witness s 6Q q, r

for this. But this is absurd since s(α) > s(β) although there should be a normal

function extending s.

• Let α be a limit ordinal. We want to show that f(α) 6 supβ<α f(β). So let

β ∈ f(α) be arbitrarily chosen. We have to find a γ < α such that f(γ) > β. By

definition of f let q ∈ Q be such that α ∈ dom(q) and δ(q) ∈ H . Consider the

following set, defined in V !

D :=
{
r ∈ Q

∣∣q⊥Qr ∨ (r 6 q ∧ ran(r) ∩ q(α) \ β ) ∅)
}

(6.29)

Note that D is dense in Q. So we can take an r ∈ D such that δ(r) ∈ H .

Since δ(q)‖B+δ(r) the definition of D shows r 6Q q as well as the existence of an

η ∈ ran(r) ∩ q(α) \ β. Set γ := r−1(η) then obviously γ < α and r is a witness to

the fact that f(γ) > β.

We now start a play of the strengthened proper game from chapter 2 in Pκ below p. Since

Pκ satisfies Axiom A* we know by clause (1) of lemma 2.27 that Player II must have a

winning strategy in this game. We will now show that under the current presuppositions

Player I has a winning strategy in this game. This will be our contradiction.

The game proceeds as follows:

• In the first move, I plays a name for f(0).

85



6 BAAFA does not imply BPFA

• In the nth move II plays a Bn ∈ [ℵ1]
<ω1.

• In move n + 1 I chooses an indecomposable ordinal αn+1 ∈ ℵ1 \ (supBn + 1) and

plays a name for f(αn+1).

This game yields a sequence of indecomposable countable ordinals (αn|n < ω)—here α0

is just zero. By setting βn := sup(Bn)+1 for every n < ω one gets a sequence (βn|n < ω)

with the property that ∀n < ω : βn < αn+1. So we can consider D
(αn)n<ω

(βn)n<ω
from (6.19).

Lemma 6.6 tells us that D
(αn)n<ω

(βn)n<ω
is dense. Our play of the strengthened proper game

took place in V so D
(αn)n<ω

(βn)n<ω
∈ D. Hence if Λ is a name for H and δ̇ is a name for δ we

get

p 
Pκ
“Λ ∩ δ̇“Ď(αn)n<ω

(βn)n<ω
) ∅”. (6.30)

Now let µ be a Pκ–name for f . We will show that

p 
Pκ
“∃n < ω : µ(α̌n) > β̌n”. (6.31)

To this end choose r 6Pκ
p arbitrarily. Because of (6.30) there is a t 6Pκ

r and a

q ∈ D
(αn)n<ω

(βn)n<ω
such that t 
Pκ

“δ̇(q̌) ∈ Λ”. By definition of D
(αn)n<ω

(βn)n<ω
there are n < ω, γ ∈

ℵ1 \ βn such that (αn, γ) ∈ q. So by definition of f it follows that

t 
Pκ
“µ(α̌n) = γ̌”. (6.32)

Since r was arbitrarily chosen this shows (6.31). Since Bn ⊂ βn for every n < ω (6.31)

implies that I has a winning strategy in the strengthened proper game in Pκ below p.

But Pκ ∈ AA∗, so II had to have a winning strategy.  ⊣
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7 History and questions

7.1 Some history

In the introduction we gave a compact overview of Bounded Forcing Axioms. We did,

however, not touch the subject of the consequences of Forcing Axioms on the class of

possible cardinalities of the continuum. Martin’s Axiom does not decide the size of

the continuum. A forcing axiom which does—although this was not recognized at the

time—first appeared fourteen years after Martin’s article in [Ba 2]—the Proper forcing

axiom. There it is introduced and moreover proven consistent modulo the existence of

a supercompact cardinal. Then in 1988 Martin’s Maximum is formulated in [F–M–S]

and also proven consistent—again modulo the existence of a supercompact cardinal. It

is also shown in this paper that MM ⇒ c = ℵ2. Later on it was established—see [Be]

and [V]—that indeed PFA suffices for this. Roughly at the same time Sakaé Fuchino

wrote the article [Fu] in which he showed that for a large class of classes of forcing

notions1—which in particular includes the class of proper forcing notions—BFA(C, κ,Ω)

is equivalent to the following statement:

For any two structures A,B of size at most κ, if an (7.1)

embedding from A into B can be forced to exist by a

forcing notion from C then some such embedding exists.

Fuchino also discussed whether for some classes of forcing notions “embedding” might

be replaced by “isomorphism” without weakening the statement. For the class of proper

forcing notions this was answered in the negative by Goldstern and Shelah in [G–S] three

years later. In this undertaking the bounded proper forcing axiom was formulated and

proven to be equiconsistent to the existence of a reflecting cardinal. In the year 2000

Bagaria’s article [Bag 1] appeared in which Bounded Forcing Axioms were interpreted

as assertions of absoluteness between the ground model and generic extensions. Two

1Believe it or not—we are still doing first order set theory.
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years after that Stevo Todorčević showed in [To 3] that BMM ⇒ c = ℵ2. This was

further improved by Justin Tatch Moore who showed in [Mo] that indeed BPFA suffices

for this, i.e. BPFA⇒ c = ℵ2.

7.2 Open questions

Although there has been a considerable amount of progress in the understanding of

Bounded Forcing Axioms in recent years it seems not that difficult to formulate questions

which cannot be answered outright. In the light of the basic elucidations regarding

BAAFA in the chapters 5, 6 and the recent historical comments one may for example ask

the following:

7.1. Question.

• Does BAAFA decide the size of the continuum?

• If it does not: what is the consistency strength of BAAFA +2ℵ0 > ℵ2?

The first part of this question is somewhat reminiscent of the question asked by Bagaria

in [Bag 3]: Questions 6.8.(4). There he formulated the following:

7.2. Question. Let σ–closed ∗ ccc be the class of forcing notions consisting of an

iteration of a σ–closed poset followed by a ccc poset. Such posets are proper2. Does

BFA(σ–closed ∗ ccc, ℵ2,ℵ2)
3 imply c = ℵ2?

The iterated forcing constructions by which we attained the generic extensions in

which BPFA,BAAFA hold respectively were defined referring not as commonly done to

Σ1–formulae and parameters from Hℵ2
as in [C–V] or—which is a special case of this—to

structures on ℵ1 and endomorphisms of these structures as done in [G–S] but rather to

filters and maximal antichains. In the light of what is really needed to attain the generic

extensions in question one can make the following...

7.3. Definition. Let C be a reasonable class of forcing notions. A cardinal κ is

called C–reflecting if and only if

• κ is regular.

2They even satisfy Axiom A.
3In fact something different is written there. But considering his explanations preceding this question

this is obviously what he wanted to ask.
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7.2 Open questions

• If B ∈ C is a Boolean algebra andA is a family of maximal antichains of B such that

the to subalgebra S finitely generated by A is in Hκ then there exists a Boolean

algebra E ∈ C ∩ Hκ such that E ⊃ S and ∀A ∈ A : A is a maximal antichain in E.

In the light of this definition what one used to attain the generic extensions in which

BAAFA,BPFA hold respectively was the fact that reflecting cardinals are AA∗–reflecting

and Prop–reflecting respectively. Clearly for all cardinals κ:

κ is reflecting =⇒ κ is Prop –reflecting =⇒ κ is AA∗–reflecting . (7.2)

But since in both forcing extensions theAA∗–reflecting(Prop–reflecting) cardinal is rendered

ℵ2 and BAAFA⇒ “ℵ2 is reflecting in L.” one also gets

L |= “All AA∗–reflecting cardinals are reflecting.”. (7.3)

This leads to the somewhat amorphous. . .

7.4. Question. Can (7.3) be generalized so that one attains a purely combinatorial

definition of reflecting cardinals?

Another fact worth noting isthat we had to introduce the notion of being reasonable

in order to formulate a natural version of BAAFA. We could have dispensed with this if

we knew that AA is reasonable. So easily one arrives at asking the following. . .

7.5. Question. Is AA reasonable?

In fact AA might not be reasonable. On page 50 BAAFA was said to be a natural

weakening of BPFA. A good reason for this is that AA can be seen as a natural class

of forcing notions. An argument for this in turn is that Axiom A is a straightforward

generalization from properties of Sacks forcing, Laver forcing, Mathias forcing, Silver

forcing, etc.. But first of all these properties are just combinatorial attributes of the

posets and it is not clear at all why for example they should also apply to the respective

regular open algebra. Note for example that whenever B is a σ–complete Boolean

algebra, B+ cannot be σ–closed. So the the positive elements of the regular open algebra

of a σ–closed poset do not themselves form a σ–closed poset.

So at the end of this thesis we have reached the classical state of mind: We managed

to give one answer—theorem 6.7—but are indeed left behind with three open questions:

7.1, 7.4 and 7.5.
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7 History and questions

7.3 Is the continuum problem solved?

Since the time of Gödel some set theorists—mostly those who endorse realism as the

appropriate philosophical attitude towards mathematics—have argued that a proof of

the undecidability of a statement from the axioms of ZFC should not be viewed as the

final solution. Rather one could hope for axioms which—added to ZFC—would provide

a solution, they claimed. Gödel himself argued this way on behalf of the continuum

hypothesis in [Gö]. Later on in the development several statements had been formulated

by set theorists that actually were denoted as axioms—such as for example large cardinal

axioms, the Axiom of Constructibility—also known as V = L or Martin’s Axiom. But

the designation of these statements axioms was more due to the fact that they were

easily seen to be unprovable from ZFC yet useful in set theory. Neither was there a

great effort to argue for some such principle to be true nor was it even proposed to

be employed as a generally usable presupposition in proofs. Later on Penelope Maddy

endorsed a pair of heuristic principles which she called “Maximize” and “Unify”—see

[Ma]—to be used to judge how suitable certain statements in the language of set theory

are to be added to ZFC. The idea is on the one hand not to refrain from analysing certain

mathematical structures just because one added an axiom to ZFC which implies that

they do not exist—that is the content of the principle “Maximize”. On the other hand

one wishes to provide a unique framework for mathematics—this is what is demanded

by “Unify”. If one dispensed with “Maximize” one could add any statement consistent

with ZFC to ZFC and thus attain a theory answering more questions than ZFC alone. If

alternatively one did not employ “Unify” the best solution would be to allow a plenitude

of theories which could then be analysed simultaneously. Her paradigmatic example in

this respect is to judge the theory ZFC +V = L against ZFC+ “0# exists.”. These

theories contradict each other. However, it is possible to reinterpret the first theory in

the second one simply by relativizing every formula to L. Furthermore Maddy proves

that by the second theory there exists an isomorphism type which does not exist in

any model of the first theory. So by Maddy’s argumentation it would be advisable to

prefer the second theory over the first. In [Bag 2] Joan Bagaria follows this line of

thought. There he also adds another criterion by which—in the context of his article—

one should judge several axiom candidates against each other—the criterion of fairness

as he calls it. Additional axioms should neither discriminate between formulae of the

same logical comlexity—as given by the Levy hierarchy—nor between sets of the same

complexity, i.e.e.g. sets of the same rank or of the same hereditary cardinality. This
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in mind, he goes on to argue that because of the possible characterization as principles

of generic absoluteness the Bounded Forcing Axioms are indeed “real axioms” and that

they were at least as natural as axioms of large cardinals. In [Bag 3] Bagaria gives a

comprehensive overview on statements of generic absoluteness. On the one hand he

discusses generic absoluteness for formulae higher in the Levy hierarchy but only with

hereditary countable parameters. These principles are consistent with the continuum

hypothesis. On the other hand not so much seems to be known on generic absoluteness

with respect to Σ1–formulae with parameters fromHℵ3
. If one considers the class of c.c.c.

notions of forcing the corresponding principle will just be MAℵ2
. One cannot however

state the principle consistently even only for all σ–closed forcing notions since one can

add a surjection f : ℵ1 →−→ ℵ2 with countable conditions. The statement that such a

surjection exists is Σ1

(
{ℵ1,ℵ2}

)
and this notion of forcing is countably closed. So the

principle implies ℵ2 < ℵ2 and is hence inconsistent. This however does not exclude the

possibility of the existence of a natural class of forcing notions properly extending the one

of those satisfying the countable chain condition in respect to which generic absoluteness

of Σ1–formulae with parameters from Hℵ3
is consistent. All the same the class of proper

notions of forcing can be considered a natural one but it nevertheless was not trivial

to isolate. So the claim that the continuum problem is solved because BPFA implies

that 2ℵ0 = ℵ2 is probably premature, for even those who believe that the extension of

ZFC is a reasonable goal and additionally follow Bagaria in his argumentation regarding

the question what criteria one should adopt to judge between different—and sometimes

inconsistent—candidates for axiomhood can demand that one has to argue why Bounded

Forcing Axioms should be preferred over alternative principles of generic absoluteness.

While in the context of various principles of generic absoluteness one certainly could

find arguments in favour of the Bounded Forcing Axioms it seems hardly probable that

even every platonist could be convinced this way at present. But our knowledge will—

hopefully—increase so eventually such an argumentation might be successful or one

might find other hints on how big the continuum really is.
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A Notation

• Ω denotes the class of all ordinals,

• Lim the class of all limit ordinals,

• Card the class of all cardinals,

• Reg the class of all regular cardinals,

• Func the class of all functions,

• Γ the canonical name for a generic filter,

• trcl(X) the transitive closure of X,

• otyp(C) the order type of C,

• lim(C) the set of C’s limit points,

• X the cardinality of X,

• f“X the pointwise image of X under f ,

• P(X) the power set of X,

• XY the set of all functions from X into Y ,

• B the class of Boolean algebras,

• c.c.c. the class of forcing notions satisfying the countable chain condition,

• σcl the class of countably closed forcing notions,

• Prop the class of proper notions of forcing,

• AA the class of notions of forcing satisfying Axiom A,

• rh(C) the reasonable hull of C and
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A Notation

• AA∗ the class of notions of forcing satisfying Axiom A*.

Closed unbounded sets are often abbreviated as “clubs”. ⊂,⊃,(,) are used—not ⊆

,⊇,⊂,⊃. The size of the font is a tribute to the sometimes excessive usage of indices.

Indices are not always used solely if unavoidable. Sometimes they simply shall insinuate

meaning—meaning they are supposed to simplify not to complicate the reading. M ≺ N

means that M is an elementary submodel of N and M ≺Σn
N means that M is a

submodel of N and M and N believe in the same Σn-assertions. When speaking of

a formula which may contain parameteres we often dispense with its designation as

ϕ(a0, . . . , an) but write just ϕ(a) instead.

The term “forcing notion” is often used in this thesis. This is a somewhat vague

notion, since one can force with partially ordered sets, Boolean algebras, topological

spaces and other kinds of objects. At some places “Boolean algebra” is used instead

of “forcing notion”. The easiest way perhaps is, always to conceive of a forcing notion

as a poset and of a Boolean algebra as a poset which can be embedded bijectively into

a “real” Boolean algebra(We for example do not care about the “fact” that posets are

pairs while Boolean algebras are sextupels.). However—we do suppose that the class of

forcing notions is Σ0-definable—as is the class of posets. This is necessary in order to

ensure the correctness of some calculations of complexity.

The terminology of iterated forcing is essentially the one of [Ku]. There nevertheless

is an important detail which is different. As it is said in the text in the definition of the

two–step iteration we do not require the name of a condition to be in the domain of the

name of the forcing notion. This follows the treatment of Baumgartner in [Ba 1].

As a notational variant of Kunen’s iterated forcing construction we employ the fol-

lowing:

((
(Pγ,6γ, 11γ)|γ < α

)
,
(
(πγ ,4γ, εγ)|γ < α

))
(A.1)

which we nevertheless often abbreviate as Pα. When argueing about some specific it-

erated forcing construction we usually dispense with mentioning the canonical dense

embeddings between the various Pγ . The filter Kunen calls Hξ in [Ku], lemma VIII.5.13

is called F ξ+1
ξ in this thesis—it is mentioned in the proof of theorem 4.6. Finally we

sometimes need to talk about an intermediate segment of our iterated forcing construc-

tion. If Pα is an iterated forcing construction of length α and γ < β 6 α,
Pβ

Gγ
denotes

the segment of Pα between γ and β as interpreted by the filter Gγ .
P̌β

Γγ
shall then be our

canonical Pβ–name for this object.
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