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Introduction

One can probably say that the story of Bounded forcing axioms begins in 1970 with the
publication of [M—S] by Donald Martin. There he formulates what came to be known
as Martin’s Axiom. This stood in connection with the publication of [S-T] where the
consistency of Souslin’s hypothesis was established by iterated forcing. Martin’s axiom
proved to be a useful tool even for mathematicians whose main focus is not set theory.
For this recall that for any regular uncountable x ZFC +2% = k + MA is relatively
consistent to ZFC. So anybody whose everyday mathematical practice could be formal-
ized within ZFC—we suppose that this is the case for most mathematicians—simply
could try to prove a certain statement from Martin’s axiom. If she succeeded in this
endeavour she would in particular have proved that —p is unprovable from ZFC—while
not necessarily knowing anything about forcing or constructibility. Although in its for-
mulation Martin’s axiom is not a Bounded Forcing Axiom it can be considered as such
since it is equivalent to its bounded form—see for example [Kul, lemma I1.3.1.. In the
eighties there were several important developments. Axiom A was defined by James
Baumgartner, the theory of proper forcing was developed by Saharon Shelah and the
forcing axioms PFA and MM were formulated in [Ba 2|, [F-M-S] respectively. Attention
shifted to the bounded forms somehow after the publication of [G-S] and [Bag 1]. While
the latter article showed that Bounded Forcing Axioms allow an attractive characteri-
zation as absoluteness statement between the ground model and generic extensions, the
former yielded an equiconsistency result showing that unlike in the case of MA not only
is BPFA not equivalent to PFA but in addition it has considerably lower consistency
strength.

Mainly this thesis presents the results of [G-S]. The first three chapters provide
the basis for this. While in the first chapter the necessary large cardinal notions are
introduced—the one of reflecting and regular ¥, —correct cardinals—the second chapter
contains an introduction to proper forcing as well as Axiom A forcing. In the third
chapter the main theorem of [Bag 1] is stated and proved and the forcing axiom BMFA

is introduced.



Introduction

The fourth chapter proves the consistency of BPFA from the existence of a reflecting
cardinal k by an iterated forcing construction of length x. Here the proof is written
down in a new—more semantically—oriented—way.

The goal of the fifth chapter is dual to the one of chapter four. Here it is proved that
if BAAFA holds then N, is reflecting in L.

The sixth chapter then aims at the construction of a model of BAAFA +- BPFA.

Finally the seventh and last chapter contains some remarks on questions left open
by the thesis as well as historical explanations and semi-philosophical considerations
concerning the continuum problem.

In the course of writing this thesis I already decided at an early point not to aim at
methodical purity. This shows for example in the fourth chapter where some arguments
are carried out for reflecting cardinals and others for regular ¥5—correct cardinals. In the
case of arbitrary posets against complete Boolean algebras this decision turned out to
be a wise one. The canonical kind of forcing notion in the context of Bounded Forcing
Axioms seems to consist in complete Boolean algebras since for those there provably
exists an equivalent principle of generic absoluteness. However at some point I decided to
take a closer look at Axiom A forcing notions and it turned out that—at least according
to my experience—the canonical kind of forcing notion seems to be the arbitrary poset.
Since I was unable to prove that for every Axiom A poset the corresponding regular open
algebra satisfies Axiom A too I decided to introduce the notions of being reasonable, the
reasonable hull and Axiom A*—see definition 2.22. This sometimes caused an excess of
technicality—such as in corollary 2.39 but dealing with such technical problems in the
proof of such a corollary seemed better to me than to look for individual tricky solutions
in many other proofs. Finally the creative part of this thesis consists in the formulation
of BMFA in definition 3.7 and the construction of a model of ZFC + BMAFA +—-BPFA

in theorem 6.7. .
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1 Reflecting and X.;,—correct cardinals

We are going to introduce some large cardinal notions—the notion of a reflecting cardinal
and the notion of a regular ¥,,—correct cardinal. These large cardinal notions fall between
inaccessiblity and Mahloness in the hierarchy of consistency strength. We start with

some technical remarks:

1.1. LEMMA.
e “r = H,.” is a As-assertion for any cardinal .

Since the model relation between a set and a formula can be formulated by restricting

the quantifiers of the formula to the set we immediately attain:

o “H, = “p(a)”” is a Ag-assertion for any cardinal s such that a € H,.

Proof. First note that z € H,, is El({x, KJ}) This is the case since it can be written

as follows:
Ja<kryDx,feFunc: f:a—y (1.1)

Here the general quantifier expressing f’s being onto is bounded by y.

Now we can write z = H, in a 3, ({x, x})—fashion as follows:
VyG:z::yEHH/\‘v’y(yéH,{\/yex) (1.2)

The first part of the formula is 21({36, Ii}) since “x € H,” is, the second consists of
a II;—formula preceded by an unbounded general quantifier which renders it II;. This

shows that it can be conceived of as a X5 ({z, k})— as well as a II5({z, x})formula. So
it is Ay ({z, K}). .

We will see soon that the reflecting cardinals are precisely the regular Y,—correct
cardinals. The main cause for this lies in the following fact which links the sets of

hereditarily limited cardinality H, with the class of Y,—assertions.



1 Reflecting and Y., —correct cardinals

1.2. LEMMA. If k € Card\Ny, a € H,;, ¢(a) is a dp—formula in the language of set
theory and H, = “p(a)” then p(a).

Proof. Let ¢ be a ¥y—formula in the language of set theory, x a cardinal and suppose
that

H, E “Taevyy(z, y,a)". (1.3)

Towards a contradiction assume that

Vedy—p(z,y, a). (1.4)

Choose a witness for the truth of (1.3), i.e. a b € H,, such that

H, = “Vyy(b,y,a)". (1.5)

By (1.4) we have Jy—)(b,y,a). Take a witness ¢ for the truth of this statement then
—tp(b, ¢,a) and clearly ¢ ¢ H,. Let A := trcl(c) then A > k and Hy+ = “~)(b, c,a)”.
Set p1 := trcl({a, b}) + Ng. Since a,b € H,, we have yu < k. So by the Lowenheim-Skolem
theorem one can take an elementary submodel M < Hy+ such that M D trcl({a,b}) and
M € [Hy+]*. Now we can form the Mostowski-collapse of M—call it N. Let 7 : M «—
N be the collapsing function. Since trcl({a,b}) C M we have 7(a) = a and 7(b) = b.
But M | “~¢(b,c,a)” so N = “~1p(b,7(c),a)”. Furthermore 7(c) € N C H,+ C H,
hence H, = “~t)(b,7(c),a)”. This contradicts (1.5). =

1.3. COROLLARY. Vk € Card: H, <a, V

1.4. DEFINITION. A cardinal k is called reflecting if and only if. ..

e ...it is regular and the following holds:

e Whenever a € H,, ¢ is a formula in the language of set theory, A is a successor
cardinal and Hy = “p(a)” there exists a yu € Card Nk such that a € H, and

H, = “pla)”

This is not the notion of reflecting cardinal which is introduced in [Je 2] on page 697.
This becomes clear when one compares the results which are following here with the

fact that Jech’s notion has a consistency strength well above the one of “There exists a
Mabhlo cardinal.”.



1.5. LEMMA. The following are equivalent for an ordinal .

(1) & is regular and whenever A is a successor cardinal, a € H,, ¢ is a formula in the
language of set theory and H, | “p(a)” there exists a successor cardinal p < k
such that a € H, and H, = “p(a)”.

(2) k is reflecting.

(3) k is regular and whenever A € Card, a € H,, ¢ is a formula in the language of
set theory and Hy = “p(a)” there exists a p € Card Nk such that a € H, and

H, - “pla)".
Proof.
e (1) = (2): This is trivial.

e (2) = (3): Let A be a cardinal, a € H,, and ¢ a formula such that H, = “p(a)”.
Suppose w.l.o.g. that A > k. We have

Hy+ = “u € Card: H, = ¢(a)”. (1.6)
By (2) there is a 9 € Card Nk such that
Hy = “Iu € Card: H, = ¢(a)”. (1.7)

Let 1 € Hy witness this then a € H,, p1is really a cardinal and Hy = “H,, = ¢(a)”.
But then by lemma 1.1 in conjunction with lemma 1.2 H,, = “¢(a)” really holds

true.

e (3) = (1): Let X be a successor cardinal, a € H,, and suppose that Hy = “p(a)”.
Then the following holds true:

H) | “There exists a largest cardinal and ¢(a) is valid.” (1.8)
By (3) there has to be a u € Card Nk such that
H, |= “There exists a largest cardinal and ¢(a) is valid.”. (1.9)

But then p has to be a successor cardinal.



1 Reflecting and Y., —correct cardinals

1.6. DEFINITION. An ordinal « is called X, —correct if and only if V, <y, V.
1.7. LEMMA. A regular cardinal is ¥;—correct iff it is inaccessible.

Proof.

e («<): If k is inaccessible then in particular it is regular and H, = V,.. Let a € Vj,
and ¢(a) be a ¥y—formula. Then ¢(a), =¢(a) are both ¥s—formulae. So lemma 1.2
implies that V,, = “p(a)” = ¢(a) and V, E “—¢(a)” = —p(a). Hence V,; <5, V.

e (=): Let k be X;—correct and regular. It suffices to show that x is a strong limit
cardinal. To this end let A € Card Nk. Since every infinite cardinal is a limit

ordinal one can argue as follows:

AC V) (1.10)
=VXCAXXCV, (1.11)
=VXCAXXeVy (1.12)
< PB(A) C Vi (1.13)
= PA) € Vg2 CV, (1.14)

Now one considers the following statement which is 3; ({8(\)}) and hence %;(V,,):
Ja < Q, f € Func: a— PB(N). (1.15)

K is 3p-correct so there are « € QNV,, = &, f € Func NV, such that f : a— P(N).
Clearly 2* < aso 2* € V,, and 2* < k. So & is a strong limit cardinal and hence

inaccessible.

1.8. LEMMA. A regular cardinal is reflecting iff it is ¥o—correct.

Proof.



e (=) : Let k be a reflecting cardinal.

— First we show that x is ¥—correct. So let a € Vj; and suppose Jxp(z, a) holds
where ¢ is a Yyp-formula in the language of set theory. Let b be a witness to
this, i.e. choose a b such that ¢(b,a) holds. Define A := trcl({a,b}). Then
Hy+ | “Jre(x,a)”. Since k is reflecting there exists a cardinal p < & such
that H, = “Jrp(x,a)”. But then V., = “Jrp(x,a)” since V, D H, D H,,.

— Since & is regular and ¥;—correct it is inaccessible by lemma 1.7 hence V,, =
H,. Solet a € V, and ¢(a) be a Yo—statement. Of course by lemma 1.2
if Vi, E “p(a)” then ¢(a). If on the other hand ¢(a) the reflection theorem
implies that there is a cardinal A > k such that Hy = “¢(a)”—use for example
[Ku], IV.7.5 and let Z be the functional relation o — Hy,,. Since & is reflecting
there is a cardinal p < & such that H, = “p(a)”. Because & is inaccessible

one can apply lemma 1.2 within V. This shows that V, = “p(a)”.

e (<) : Let k be regular and Ys—correct. Suppose a € H,, A € Card and ¢ is a
formula in the language of set theory such that Hy = “p(a)”. Then

du € Card: H, = “p(a)” (1.16)

is true and by lemma 1.1 a Yy-statement. So it holds in V. Let p € Card Nk be
a witness to this fact. Then H, = “p(a)” and p is a cardinal.

In the following proofs we are going to use the fact that the satisfaction relation is
Aj—definable—see for example [De 2|, Chapter I, section 9. This means there is a 3;—
formula ¢y and a II;—formula ¢ such that for every formula v, every set M and every
a€ M:

Sat(M, a, [{)]) = M |= “P(a)” <= ¢s(M, a, [{)]) <= n(M, a, [¢]) (1.17)

By [¢] we refer to the Godel-number of ¢. In the following proofs we suppose that
the satisfaction relation above has been defined for a bijective Godel-numbering of all

Yo—formulae by natural numbers.

1.9. LEMMA. “ais X,—correct.” is II,,—expressible whenever n € w \ 2 and “«a is

regular and >;—correct.” is II;—expressible. Therefore:
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“ac is regular and X, —correct.” is II,—expressible whenever n € w \ 1.

Proof. Note that trcl(X) is A;(X)—definable and “x = V,” is a II;({z, a})-relation
since “rk(z) < o” is a Ay({z,a})-relation. Then for n € w\ 2 we can express “«a is

Y.,—correct.” as

Vm < w, a((rk(a) <a A3z .. Vepen(trd({a, 21, ... 2,}), (a, 21, ... 2,),m)) (1.18)

— Vw(w =V, — 3dx; € wVry € w...on(w, (a,xq,. .. ,xn),m)))
if n is even and as

Vim < w,a((rk(a) <a Az Awgpstrd{a,z, .. 20}, (@21, 2,),m)) (1.19)

— Vw(w =V, — dr; € wVrs € w...pp(w, (a,xq, ... ,xn),m)))

if n is odd. Here the dots stand for alternating (blocks of ) quantifiers or for the variables
bound by them. Note that the formula is at least Il since “w = V,,” in the second line
is not Y;-definable. This in fact proves the first assertion of the lemma since ¥, —
downwards—absoluteness implies II,,—upwards—absoluteness which in turn implies X, 41—
upwards—absoluteness.

For the second one we use lemma 1.7 which allows us to characterize regular >i;—
correct cardinals as inaccessibles. But being regular is II; and being a strong limit is I,

too—consider
V3 < o, f € Func (Vo € dom(f) : x C f) — Iy < oz 7y ¢ ran(f)). (1.20)

The third assertion now follows immediately from the the other two when one again

considers the fact that being regular is I1;. o

1.10. CoROLLARY. Let n € w\ 1. Then: There are unboundedly many ¥, —correct

regular cardinals below every regular >, ,;—correct cardinal.

Proof. Let n € w\ 1 and & be regular and X, ;—correct. Then obviously « is regular

and X, —correct and hence for every a < k a witness to the truth of

I\ € Reg\a : “\ is X, —correct.” (1.21)



which is a 3,11 ({a})-assertion by lemma 1.9. So if we choose a < & arbitrarily we get
Vi E “IN € Reg\a : “Nis ¥, —correct.”. If X is a witness to this then

N =<, Vi <2, V (1.22)

n+1

so A is in fact X, —correct and of course it is regular too since every witness to its
singularity would have rank at most A\, meaning—its rank would in particular be smaller
than k. —

1.11. DEFINITION. Levy’s scheme is the following collection of formulae:

{Vk € Card, (a3) p<r ((“(cv3) p<r is a sequence of ordinals.” AV3 < k : ¢(ag)) (1.23)
— p(sup ag)) — Ik € Reg: (p(li)‘(p is a formula in the languaga of set theory.}.
B<k

Each formula of this collection is claiming that whenever ¢ defines a club—class this very
class has a regular member. This amounts to the statement that Reg is stationary in €2,
i.e. that € is Mahlo.

1.12. LEMMA. If n < w and Levy’s scheme holds then there is a stationary proper

class of regular ¥,,—correct cardinals.

Proof. Let C* be any closed unbounded proper class and n < w. We have to show that
C contains a regular ¥,,—correct cardinal—as element. To this end we again consider

the X,,—satisfaction relation. More precisely we define an a C w as follows:
a = {n < w‘EI:ch ... Sat (trcl(:c,y, ) (T, ), n)} (1.24)

In this formula as well as in the following one—which is clearly true—the dots stand for

n — 2 alternating (blocks of) quantifiers.
Vn < w(n € a <« JyVy...Sat (trcl(:z, Yy ), (T,y, .., n)) (1.25)

It is a well-known fact that true sentences in the language of set theory reflect down to
V, for a closed unbounded proper class of ordinals «. Let C” be such a closed unbounded
proper class. Then C := C' N C* is again a closed unbounded proper class. Since Levy’s
scheme holds, C' has a regular member—call it k. But then x is clearly an element of

C* and it is also ¥, —correct since V,; reflects the statement (1.25). -
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1.13. COROLLARY. If k is Mahlo then for every n < w the set {)\ < K‘VH E “Ais

regular and ancorrect.”} is stationary in &.

Proof. By definition the set of regular A below a Mahlo cardinal x is stationary, i.e.
every set which is club in x contains a regular cardinal. This in particular holds for all
closed unbounded subsets of k£ which are definable with parameters from V,.. But these
are precisely the closed unbounded proper classes from V,.’s point of view. So Levy’s
scheme holds true in V.. An application of lemma 1.12 within V, yields the desired

result. —

This corollary establishs that the regular X,,—correct cardinals lie consistencywise be-
low a Mahlo—cardinal.
Many large cardinal notions relativize to inner models, in order for our account of

reflecting cardinals to be complete we prove that this is indeed the case for them too.
1.14. LEMMA. Every reflecting cardinal is reflecting in L.

Proof. Suppose k is a reflecting cardinal. Let A\ € Q2 \ k be a successor cardinal in L,
a € HE, p a formula in the language of set theory and suppose that Hf = “p(a)”. We
have to find a y € Card” Nk such that H: = “p(a)”.

To this end let v be a successor cardinal which is large enough so that H, = “Hf =

©(a)”. Since & is reflecting, there exists a cardinal y < k such that
H, = “Ju € Card” : Hlf E o(a)”. (1.26)

Let ;1 € H, be a witness to this. Now “u € Card” : H = ¢(a)” is a II;-assertion. This

is the case since it can be written as
L, = “pla)” NVa < Q: L, = “pe Card”. (1.27)

and the function a — L, is Ay by [Je 2], lemma 13.14. So by lemma 1.2 y €
Card” AH[ = “p(a)”. Obviously p < r so we are finished. -

1.15. LEMMA. If n < w and 07 exists then all uncountable cardinals are ¥, —correct
in L.



Proof. Suppose ¢ is a formula in the language of set theory, k € Card \Ry, a € L,
and L | “p(a)”. By applying the reflection theorem within L we get a A € Card \R,
such that Ly | “p(a)”. But then by [De 2], theorem V.2.12 L, = “p(a)”. -
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2 Axiom A and properness

In this chapter we are going to introduce two attributes of forcing notions, the one called
Axiom A and the attribute of being proper. Axiom A was introduced by James E. Baum-
gartner in [Ba 1] while properness is an idea of Saharon Shelah. Both attributes share
two nice properties. One is that they are both generalizations both of being countably
closed and of satisfying the countable chain condition, the other is that each attribute
is preserved under iterations with countable support. In both cases the generalizations
are made carefully enough in order to preserve N; in the generic extension—a prop-
erty shared by the countably closed notions of forcing as well as by those satisfying the
countable chain condition.

We start with an abstract discussion of properness.

2.1 Properness

2.1. DEFINITION. Given a notion of forcing P, the proper (P, p)-game for p € P is
the game where in move n, Player I plays a maximal antichain A,,, followed by Player
IT playing countable subsets of the antichains previously played by her opponent Bj C
Ao, ..., B! C A,.

Player II wins iff 3¢ < pVn < w : Uk@)\n BF is predense below q.

2.2. DEFINITION. We call a notion of forcing P proper if and only if for every p € P,
Player I has a winning strategy in the proper (P,p)-game. The class of all proper
notions of forcing will be denoted by B, throughout this thesis.

2.3. REMARK. Indeed, looking at it from II’s point of view, the rules of the game
are formulated in a friendly manner. It would make no difference for example, if II in
each move was allowed only to play a singleton instead of a countable set, because she
could remember all other elements she would like to play and play them at future moves
instead—all II needs is a fixed injection f : w? < w. We will use this fact in some

proofs.

11



2 Axiom A and properness

2.4. DEFINITION. The proper (P, p)*—game is played as follows: In the n'* move,
Player I plays ordinal names «,, and Player II plays ordinals 3,. Player II wins iff
Jg<pqlFp Ym<wIn<w: dp =06,".

2.5. LEMMA. Player II has a winning strategy in the proper (P, p)*—game if she has
one in the proper (P, p)-game.

Proof. Let P be a partial order, p € P and let there be a play of the proper (P, p)*—
game. Player I plays ordinal names ¢,. Associate to each ¢, a maximal antichain
A,, with the property that Vn < wVa € A,38¢ < Q: alkp “q, = Bﬁ” and assume
Player I would play these instead of the ordinal names. Since Player II has a winning
strategy in the proper (P, p)-game, she can play countable sets B C Ay, ..., B! C A,.
Let f : w «— w?® be a fixed bijection such that Vn < w : f(n) = w? - k+w-l+m
with £+ 1 < n and let €)' : w «— B]" be enumerations of the sets B)". Suppose
f(n) =w? - k+w-1l+m. Then let Player II play the ordinal 3, := ;I’zﬂ(m) in move n.

Now playing this way is a winning strategy for II—Proof:

IT wins in the proper (P, p)-game, so there is a ¢ <p p such that Vn < w : | B
is predense below ¢g. This very ¢ witnesses that II wins the proper (P;p)*—game. Let

mew\n

n < w. In move n, I played &,. Now Umew\n B™ is predense below ¢q. Let m € w\ n

and b € B™ be such that b|pg. Let [ := ¢™ '(b) and k := m —n. Then ¢ IFp “c, =

Verfrk(l)n

/Bffl(wzn-l—wk-‘rl) = /Gn
So we have shown that Vn < wam < w : ¢qlFp “&,, = Bm”. But then clearly ¢ IFp “a&,, =

2 »
We are now going to introduce two alternative characterizations of properness.

2.6. DEFINITION. Let us call Kk € Reg sufficiently large for P iff k > 9P

The idea behind this terminology is that we can then consider a H, and countable
elementary submodels M < H, and analyse P as well as dense sets, predense sets, dense
open sets, antichains and filters (in V') in these M, where we may add parameters to

the language of H.,.

2.7. LEMMA. Let P be a partial order, s be sufficiently large for P and M < H,. The

following assertions are equivalent for ¢ € IP:

(1) For all antichains A € M: AN M is predense below g.

12



2.1 Properness

(2) For all ordinal names & € M: Vp <p q3Ir <pp,S € M : 7 lFp “a = 3.

(3) qlFp “T' N M is P-generic over M.”.

Proof. (1) = (2): Let g be such that (1) is fulfilled, let A be a maximal antichain
whose elements decide &, i.e. Ya € A3B, : a lbp “4 = (,7. Let p <p ¢ be arbitrary.
Then 3a € AN M : al|pp. alFp “6 = 3,7, Let s € P be such that r <p a,p. Then
rlkp “a = 3,”. .

(2) = (3): Suppose q |fp “T' N M is P-generic over M.”. Take a maximal antichain
A€ MNP(P) and a p <p g such that p lkp “ANTNM =0". Let A € Card™ ande € M
such that M |= “e : A «— A is an enumeration of A.”. Then ¥ := {(0, a)le(6) = a} is
an ordinal name in M. Suppose r <p p and 7 IFp “4 = 3” for a § € M. Then (B, a) €%
forana}H»r,sorH—p“def‘ﬂfl”.é =

(3) = (1): Suppose (3) holds and A is a maximal antichain in M. Then clearly
q lFp “ANT 2 (7. But then there is an r <p ¢ and an a € A such that r IFp “a € T'.

But then r||pa, so we can choose an s <p r,a. Then s <p a,q, so (1) holds. =

2.8. DEFINITION. A condition ¢ is called (M, P)-generic iff one of the assertions
above holds.

2.9. LEMMA. If P is a notion of forcing, x is sufficiently large for P and there is a
club C C [H|<“" of models M < H,; such that

VM eCpe MNP3q<pp: qis (M,P)—generic, (2.1)
then PP is proper.

Proof. Let p € P be arbitrary. The following is a winning strategy for II in the
proper (P, p)—game. In move 0, choose a My € C such that Ay € My. In any move
n € w\ 1, choose a M,, € C such that M,, D M,,_; U {A,}. In every move n < w, play
the countable sets Bf := Ay N M,,..., B} .= A, N M,. Define M,, :=J,_, M,. Cis
club, so M, € C. Let ¢ <p p be (M, P)-generic. Vn < w : UmEW\n B = A, N M, and

Vn <w: A, N M, is predense below ¢, so Vn < w : |J B is predense below ¢, so

mew\n

IT won. p was arbitrarily chosen, so PP is proper. o
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2 Axiom A and properness

2.10. LEMMA. Being proper is a Ys—property.

Proof. Let P be a notion of forcing The following formula describes the existence of
a winning strategy in the proper (P,p)-game. Let AJ' denote the set of all maximal

antichains in P.

3f € Func : dom(f) = (AF)~Y AV(z,y) € f,(n,A) € z3(n,b) ey: be A
AY(Aglk <w) € (Ap)“Fg < pVr e Pyym <wIn € w\ m :
F((Axlk < n)) = (belk < n) A bnllpg (2.2)

Here all but the quantifiers at the beginning of one of the first two lines are bounded.
So the assertion is Y5 in the parameters P and p. Now if the above formula is preceded
by “Vp € P” we have a formulation of properness. Since the additional quantifier is

bounded, being proper is itself a Yy—assertion. —

2.11. LEMMA. If P is a notion of forcing, p € P is such that Player II has a winning
strategy in the proper (IP,p)*—game, k is sufficiently large for P and M > P,p is a

countable elementary submodel of H, then there is an (M, P)—generic ¢ <p p.

Proof. Since H, = “P is proper.” and M < H, there exists a 0, € M such that
M = “o, is a winning strategy for Player II in the proper (P, p)*—game.”. Let e : w —
MP® be an enumeration of all ordinal names in M and let I play e(n) in move n. Let II
in the n'™ move play the ordinal 3, according to o, and let ¢ witness that II wins. So
qglFp “Vm<wdn <w: &, = ﬁn”. Let r <p ¢ and & € MF be any ordinal name. Since
there is an m < w such that & = cu,, ¢ IFp “In < w: & = F,”. So one can take an

s <prand an n < w such that s lkp “a& = 3,”. So ¢ <p p is (M, P)—generic. =

2.12. REMARK. Of course if x is sufficiently large for P and additionally whenever
M > P is an elementary submodel of H,, and p € P N M there is an (M, P)-generic
condition ¢ <p p then of course there is a club C' C [H,|<“" of elementary submodels of
H, such that (2.1) holds—simply the club {M|M € [H,]<** AM < H, AP € M}. So

we arrive at the following...

2.13. RESUMEE. The four last lemmata together with the remark showed us the
equivalence of the following four statements for a notion of forcing P thereby yielding

up to now four different possible characterizations of properness:

14



2.1 Properness

(1) P is proper.
(2) Vp € P : Player II has a winning strategy in the proper (P, p)*-game.

(3) For every k € Card sufficiently large for P, every countable elementary submodel
M > P of H, and every p € M N P there exists a ¢ <p p that is (M, P)—generic.

(4) For every for P sufficiently large x € Reg there is a club C C [H,]“' of models
M < H,, such that

VM eCpePnN M3q<pp: qis (M,P)-generic. (2.3)

Proof.
e (1) = (2): By lemma 2.5.
e (2) = (3): By lemma 2.11.
e (3) = (4): By remark 2.12.

e (4) = (1): By lemma 2.9.

There still is another possiblity to characterize properness which we just state

here—we are not going to use it.

2.14. THEOREM. Let P be any notion of forcing. P is proper if and only if for every

cardinal k each set stationary in [k]<“! remains stationary in the generic extension.

For a proof as well as details regarding clubs and stationary sets in [k]|<“* see [Je 2],

page 605, pp. 100 respectively.

2.15. LEMMA. Suppose P is a proper notion of forcing. Then forcing with P does not
collapse Wy. In fact, if C* is a countable set of ordinals in the generic extension M|G],
there is a set C', countable in the ground model M such that C* C C.

Proof. Suppose that P is proper, C is a P-name and p € P is a condition such that

plkp “C is countable.”. We can choose a P-name f which testifies this, i.e.

plkp “f rw—s C7. (2.4)

15



2 Axiom A and properness

Let us confuse f(n) with a name for f(n) where G is P-generic. Furthermore let us
choose a ¢ <p p arbitrarily. Our goal is to find a countable set of ordinals C' and an
r <p ¢ such that r IFp “C' € C”. If we consider a play of the proper (P, ¢)* game P’s
properness implies that Player II has a winning strategy in this game—Ilet us fix one

and call it o,. Now in the role of Player I we can force our opponent to deliver C' and r.
e In move n Player I plays the ordinal name ¢, := f(n).
e Next II plays according to her strategy, i.e. 5, := o,(do, ..., ay).
Let C' := {ﬁn‘n < w}. IT wins this play of the game, so there exists an r <p ¢ such that
rikp “Ym<win <w:d,, = Bn”—in other words: r IFp “f“w c C”. Since r <p p and
by (2.4) this implies that 7 IFp “C C C”. =

A property of properness most welcome is its preservation under products.

2.16. THEOREM. If P, is an iterated forcing construction of length « of proper

forcing notions with countable support then P, is proper.

For a proof see for example [Je 2], pp. 604 or [Ab], pp. 15.

2.2 Axiom A and a property of classes of forcing notions

We are now going to introduce Axiom A and explain the relationship between c.c.c.,
o—closed, Axiom A and proper notions of forcing. Moreover we will define a property of
classes of forcing notions which seems to be necessary in order to be able to deal with

Axiom A and Boolean algebras at the same time.

2.17. DEFINITION. A notion of forcing P = (P, <p) satisfies Aziom A iff there exists
a sequence (<, |[n < w) of ever stronger partial orderings on the set P strengthening

<p, that is we have
P x P O<p=<pD<D<ED -+ DKoo L (2.5)

such that

e Whenever (p,|n < w) is a sequence of conditions from P such that Vn < w :

DPnt1 <p P there is a p, € P such that Vn <w : p, < pp.
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2.2 Axiom A and a property of classes of forcing notions

e For any ordinal P-name ¢, any condition p € P and any n < w there exists a
condition ¢ € P and a countable set of ordinals B such that ¢ <p p and ¢q IFp “a@ €
B”.

2.18. LEMMA. There are (at least) two possibilities to rephrase the second condition

in the definition of Axiom A forcing notions P = (P, <p). Equivalent are:

(1) If p € P, A is an antichain maximal below p and n < w then there exists a ¢ <} p
such that {ala € A A allpq} < Ry.

(2) If pe P, D C P is dense below p and n < w then there exists a B € [D]<“* and a
q <p p such that B is predense below g.

(3) If & is a P-name, p IFp “@ < " and n < w then there exists a ¢ <} p and a
countable set of ordinals C' such that ¢ IFp “a € C”.

Proof. We assume throughout that P = (P, <p) is a notion of forcing and P x P D
<p= <EOD D <]%D D ... is a sequence for which the first condition in definition of Axiom A
forcing notions holds true.

(1) = (2): Let p,n and D be as above. Choose an antichain A C D which is maximal
under all antichains which are subsets of D. Then of course it is also maximal below p
since if it was not and b was a witness for this, i.e. Ya € A: a_Lpb then by density of D
one could take a ¢ € D such that ¢ < b. Then Va € A: alpc—1.

Let ¢ be as in (1) and define B := {a|la € A A a|pq}. By (1) B is countable. But B
is also predense below ¢. For if r < ¢ is arbitrarily chosen since A is maximal below p
there is an a € A such that al||pr. Then al|pq so a € B. 4 ((1) = (2))

(2) = (3): Let p,n and & be given. Let D := {q‘q ePANJa<Q:qlkp “a= a”}.
D is dense. Then there exists a ¢ <" p and a B € [D]<“' which is predense below g.
Define C' := {|J{albFp “e =’ }|b € B}. Then ¢ lp “é € c”. 4 ((2) = (3))

(3) = (1): Let p,n and A be as above. Let x := A and e : kK «—— A be an enumeration.
Then p IFp “e < £”. By (3) there is a countable set of ordinals C' and a ¢ <" p such that
qlFp “e € C”. But {a‘a € ANalpg} CeC e [A]5. 4 ((3) = (1)) =

2.19. LEMmMA. Every notion of forcing that satisfies the c.c.c. also satisfies Axiom A.

Proof. Let P = (P, <p) be a c.c.c. forcing notion. Define <j:= idp for every n < w.
Then clearly the first condition is fulfilled. But the second one is fulfilled too for if p € P
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2 Axiom A and properness

and an ordinal P-name & are given one can choose an antichain A deciding & which is
maximal in below p. P satisfies the c.c.c. so A < X;. Let B € [Q]<*" be such that
Vge A3 € B: qlFp “a¢ = 3. Then {q <p p‘q IFp “a € B”} is dense below p. Hence
plkp “é € B, .

2.20. LEMMA. Every countably closed notion of forcing satisfies Axiom A.

Proof. Let P = (P, <p) be a countably closed notion of forcing. Define <p:=<p for
every n < w. Then the first condition is fulfilled by countable closedness. If p € P and
an ordinal P-name & are given one simply chooses a condition ¢ <p p which decides d.

Then of course the second condition is fulfilled. —

Now we call to mind Kunen’s notion of dense embedding—see [Ku], Definition VIIL.7.7.

2.21. DEFINITION. Suppose P, Q are partially ordered sets. Then § : P — Q is a
dense embedding if and only if

(1) Vp,q € P: 6(p) <q 0(q),
(2) Vp,q € P:d(p)Lod(q),
(3) 0P is dense in Q.

2.22. DEFINITION.

e Let us call a class of forcing notions C reasonable by definition if and only if the

following holds:

Suppose P is a forcing notion in C, Q is any forcing notion, there exist a  (2.6)
complete Boolean algebra B and dense embeddings dp : P — B, g : Q — B.
Then Q € C.

e Furthermore for a class of forcing notions C let us define the reasonable hull th(C)

as follows:

th(C) := {P|P is a forcing notion and there exists a forcing (2.7)
notion Q € C, a complete Boolean algebra

and dense embeddings op : P — B, §p : Q — B}.
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2.2 Axiom A and a property of classes of forcing notions

o We call M :=th(.HM) the class of forcing notions satisfying Axiom A*.

[Ku], 11.3.3. says that for any poset IP there is at least one complete Boolean algebra
in which P can be densely embedded. The following lemma shows that this complete

Boolean algebra is unique up to isomorphism.

2.23. LEMMA. Let P be a poset and B, E complete Boolean algebras. If there are

dense embeddings d : P — BT, 0g : P — E* then B and [E are isomorphic.

Proof. Let P,B,E, g and dg be as above. Then the following is an isomorphism
between B and E.
po:B ~ E (2.8)
br— \/ {6x(p)|p € P A dg(p) <z b}.

(1) ¢(0p) = 0. This follows easily from p(0p) = \/ and \/ ) = Og.

(2) Ya,b € B: p(a) <g ¢(b). Suppose that a < b. Then {5E(p)}p € PAdp) <p
a} C {de(p)|p € P A 0r(p) <g b} and hence ¢(a) <g @(b).

(3) a €& b = @(a) Lg w(b). Suppose towards a contradiction that a € b but
p(a) < p(b). By separativity there exists a ¢ € B such that ¢ <g a but cLgb. Let
p € P be such that dg(p) <p ¢ then d5(p) <p a but dg(p)Lgb. We have

Vg € P(55(q) <p b — 05(p)Leds(q)) (2.9)
— Vg € P(0(q) <e b — pLpq) 2.10)
— Vg € P(d(q) <g b — &(p)Lede(q)) (2.11)

This shows that ¢(b) <g —0r(p). But dg(p) <p @ implies that dg(p) <g ¢(a). So
(5]];(]9) <]E —|5]E(p). But then 51[;(])) = @E*é

(4) Surjectivity. Let e € E be given. Define b := \/ {5B(p)‘p € P A Og(p) <g e}. We
show ¢(b) = e.

e Suppose p(b) £ e. By separativity there is an element in E at least as strong
as ¢(b) but incompatible with e. Since dg P is dense in [E there is also such
an element in g P. So there is a p € P such that dg(p) <g (b) but dg(p) Lxe.
By definition of ¢ there is a ¢ € P such that dg(q) <g b and Jg(q)||edr(p).
Then p||pg—Ilet r <p p,q. In particular we have dp(r) <p b. Now by definition
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2 Axiom A and properness

of b there is an s € P such that dg(s) <g e and dg(s)||gd(r). Then s||pr—Ilet
t <pr,s. Then t <p 7 <p p so 0g(t) <g dr(p) hence dg(t)Le. But also t <p s
80 Og(t) <g de(s) < e—4

e Suppose e £ p(b). As above there is a p € P such that dg(p) <g e but

Or(p)Lrp(b). By definition of b the first assertion implies that dg(p) <p
b. By definition of ¢ the second assertion yields Vg € P(dp(q) <p b —

e(p) Lede(q)). So 0x(p) Lk (p)—4

(5) VB CB: \/ ob) = o(\/ ).

beB beB

In order to prove this let B C B be given.

e Since by (2) Vb € B: p(b) <g ¢©(V,epb) clearly \/, 5 0(b) <& ©(V,ep5 D).
e Suppose that ¢(\/,c5b) Le Vyep ©(b). Using separativity of <g and density

of 0g P in IE choose a p € IP such that

z(p) <e ¢( \/ b), (2.12)
beB
but de(p) Ls \/ ¢ (b). (2.13)
beB

By definition of ¢ there is a ¢ € P such that dg(q) <z \/,cp5 b and ds(q)||zds(p).
The last assertion implies p||pq. Let r <p p,q witness this. Since dp(r) <p
08(q) <B V,4epb there is a b € B such that dg(r)|gb. Let s € P be such
that dg(s) <p b and 0p(s)||pdp(r). Then r|/ps so choose a t <p 7,s. Ip(t) <p
Og(s) <p b follows so 0g(t) <g ©(b) <k V,ep @(b) by definition of . On the
other hand ¢ <p 7 <p p s0 dg(t) <g Ie(p)Le Vyep ©(b)—4

(6) ¢(=b) = —¢(b). This follows from (1)—(5) and the fact that —b = \/ {alve(c <
O0VegaVvegb)}.

(7) ¢(1p) = 1g. This is an easy consequence of (1) and (6).

(8) /\ o(b) = o /\ b). This follows from (5) and (6).

beB

beB

(9) Injectivity. Follows from (3) and the fact that <p is antisymmetric.
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2.2 Axiom A and a property of classes of forcing notions

We are denoting this uniquely determined complete Boolean algebra by ro(P). The
functional relation ro is denoted as here because one attains the algebra by considering
all regular open subsets of IP in the canonical topology on P, i.e. the topology with base
clopen sets U, := {q‘q eEPAq<p p}. An important point here is of course that forcing
with ro(IP) always yields the same generic extension as forcing with P. See for example
[Je 2], pp. 204 or [Ku], VIL.7.11. .

2.24. LEMMA. The classes of c.c.c., the class of forcing notions which preserve

stationary subsets of Ny and B, are reasonable.

Proof.

e c.c.c.: Suppose P and Q are posets, B is a complete Boolean algebra and dp :
P — B as well as dg : Q — B are dense embeddings. Let A be an uncountable
antichain in Q. Then dg"A is an uncountable antichain in B. Since dp P is dense
in B there is an antichain A’ C Jp P which is a refinement of A. Of course A’ is
also uncountable. But then by the first condition in the definition of the notion of
dense embeddings, 6 1"A’ is an uncountable antichain in P. By contraposition we
see that Q satisfies the c.c.c. if P does.

e stat.pres.: If P and Q are posets, B is a complete Boolean algebra and ép : P — B,
dg — B are dense embeddings then by [Ku], theorem 7.11 P and B yield the same
generic extensions and Q and B yield the same generic extensions. So P and Q
yield the same generic extensions. Since to preserve stationary subsets of N; is
a property defined via the generic extension, the class of forcing notions which

preserve stationary subsets of N; is resonable.

e P One can argue just as above using theorem 2.14 which allows one to define
properness via attributes of the generic extension. Since we did not prove this

theorem we nevertheless give a direct proof here.

Let P be a proper notion of forcing, Q any notion of forcing, B a complete Boolean
algebra and dp : P — B, Jgp : Q — B dense embeddings. We want to show that
Q is proper too. Let ¢ € Q be given. By density of dp P choose a p € P such
that dp(p) <p dg(g). We are now going to use II’s winning strategy in the proper
(P, p)-game to define a winning strategy for her in the proper (Q,¢)—game. In
order to prove this strategy to be winning Player I and II will simultaneously play

a proper (P, p)-game.
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2 Axiom A and properness

— In move n Player I plays a maximal antichain A,, C Q. Then because dg is
a dense embedding dg°A,, is a maximal antichain in B. Since dp P is dense
in B we can choose an antichain B, C dp IP refining dg'A,. If ¢, is a choice
function with domain D,, := {515 1“{6}‘6 € Bn} then E,, := ¢, D,, is a maximal
antichain in P and dp E,, = B,. This E, is the antichain played by I in the
proper (P, p)-game. Now by her winning strategy in the proper (P, p)-game
Player 11 plays C}}, € [E,,]<“" for m < n. Back in the proper (Q, ¢)-game she
plays F := {a € A,|3c € CF, : dp(c) <p dp(a)}. For every m < n since CT,

is countable and A,, is an antichain this subset of A,, is clearly countable.

Now suppose that these simultaneous plays have been finished. We know that
Player II won the proper (P, p)-game, i.e. there exists an r <p p such that for all
m < w UHEW\m " is predense below r. Now choose—in the role of Player II-—an
s <g ¢ such that dg(s) <p 0p(r)—this can be achieved by first choosing a u € Q
such that dg(u) <p 0p(r) <p 0p(p) <p dp(q). Then u and ¢ are compatible so one

can take an s <@ ¢, v which provides what was demanded.

We finally show that this implies that for all m < w that UHEW\m E" is predense
below s. To this end let m < w and u <g s be arbitrarily chosen. By the argument
above take a t <p r such that dp(t) <p dg(u). Since e

r there is an n € w\ m and a ¢ € C7, such that t||pc. But then dp(t)||gdp(c). Since

C} is predense below

6p B, was a refinement of dg A,, there is an a € A,,—and hence € F"—such that

do(a) =p dp(c). So dg(a)|lpdg(w) which implies a||gu.

But not all proper forcing notions satisfy Axiom A*. We now give an example of a
forcing notion P € B, \ 4"

2.25. EXAMPLE. Consider the forcing notion P which adds a club subset of ¥; with

finite conditions. P := (P, <p) where

P := {p € Func | dom(p) € [R{]** A ran(p) C ®; A (2.14)

3f D p: fis a normal function.}

and p <p q <= p D q.

In order to prove that this forcing notion is indeed proper, but fails to satisfy Axiom

A* we will now introduce another game.
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2.2 Axiom A and a property of classes of forcing notions

2.26. DEFINITION. Let P be any notion of forcing and p € P. The strengthened
proper (P, p)—game is defined as follows: Let n < w. In move n Player I plays an ordinal
P-name a;,, i.e. a P-name such that 1p IFp “@ < 27 while Player II responds by playing
a B, € [Q<“'. Player II wins if and only if 3¢ < p: ¢lFp “Vn < w: d, € B,”.

2.27. LEMMA.

(1) Let P € M. Then for every p € P Player II has a winning strategy in the
strengthened proper (P, p)—game.

(2) If P is a notion of forcing, p € P and Player II has a winning strategy in the
strengthened proper (P, p)-game then she has one in the proper (P, p)*—game.

Proof.

e Ad (1): Let P be any forcing satisfying Axiom A*. Then there is a forcing notion
Q € M, a complete Boolean algebra B and dense embeddings dp : P — B and
0g : Q — B. Now let p € P be arbitrarily chosen and choose a gy € Q such that
do(qo) <g Op(p)—this is possible because 6'Q is dense in B. We start a play of
the strengthened proper (P, p)-game. The following is a winning strategy for II:

Construct a descending sequence of conditions (g,|n < w) in Q like this:

— In move n Player I plays an ordinal P-name d,,.

— After that in the role of Player II the existence of the dense embeddings
op: P — B, dp : Q — B allows us to choose a Q-name +,, which names the
same object as &,—this is possible by [Ku|, VII.7.12, VII.7.13. By definition

of Axiom A forcing we can choose a gn11 <@ ¢, and a B, € [Q]<“ such that
Gny1 Fo “m € By (2.15)

At the end of the game we have defined a sequence ¢q 2% Q1 2(5 ... S0 by definition
of Axiom A forcing there is a ¢, € Q such that

Vn < w:q, <O ¢ and thus (2.16)
Qo lFg “VYn < w: 4, € B,”. (2.17)

¢w <@ ¢o implies dg(qn) <p 0g(qgo). Choose an r € P such that dp(r) <p do(qw)-
Since dp(r) <p do(qw) <m dp(q) <p dp(p) we have in particular op(r)||sdp(p). By
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2 Axiom A and properness

definition of dense embeddings it follows that 7||pp. Choose a witness for this, i.e.

an s <p p,r. Then dp(s) <p dp(q,) and thus
slkp “Yn < w:a, € B, (2.18)

So obviously playing like this is a winning strategy for Player II.

Ad (2): Suppose P is a notion of forcing, p € P and Player II has a winning strategy
in the strengthened proper (P,p)-game. Let f : w «— w? be any bijection such
that Vn < w: f(n) < w-n. Now let there be a play of the proper (P, p)*—game.
In move n Player I plays an ordinal P-name «,. Let B,, be the set II would play
according to her winning strategy in the strengthened proper (P, p)-game. Choose
an enumeration e, : w «— B, of this set. Then if f(n) = w -k + m II plays the
ordinal 3, := ex(m).

Playing like this is a winning strategy for II. In order to see this let ¢ <p p be
such that ¢ IFp “Yn < w: d, € B,”. This ¢ is our witness. Suppose ¢ lffp “Vm <
w3In < w: &y = B,. Then there would be an r <p ¢ and an n < w such that
ke “dn & Unew Gy, But r <p q,qlFp “d, € By, and B, C Un<w Bm—4

2.28. COROLLARY. M CR,.

2.29. LEMMA. Let P be the forcing from example 2.25. P € B, \ 4",
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Proof.

e Choose a p € P arbitrarily. We will define a winning strategy in the proper

(P, p)—game, thereby showing P to be proper. So let there be a play of the proper
(P, p)-game and o := max(ran(p)). Suppose in move n Player I just played a
maximal antichain A,. Then Player II chooses an indecomposable ordinal a1 €
Ny \ (v, + 1) such that

VE <n,0 < apdy < anVp C B x G3g € A NP(y X v): plleg. (2.19)

Then she plays the sets B} := {p € Ak‘p C Qpy1 X ozn+1} for k£ < n. Obviously

these sets are countable.



2.2 Axiom A and a property of classes of forcing notions

Now we want to see that this is possible at all. We are going to define an ascending

sequence of ordinals (7,,/m < w) as follows:
— 7)o := min {C < Nl}wC = an},

— N1 1= MaXpy (min {( € Nl\(nm—i—l)‘Vp € W x w3 € Ay NP (w xwS) :

pliea} ).

Set a1 := wPm<wm - Clearly oy, is an indecomposable ordinal smaller than
N;. In order to see that (2.19) holds let £ < n and # < a,41 be given. There is
an m < w with w” > . Then by definition of the n,, we get Vp C # x fdq €

A NP(wm+L x Wt pllpg. But w1 < 1.

Now we have to prove that in fact this is a winning strategy for Player II. To this
end set oy, = sup,,., &, and ¢ :=p U {(aw, aw)}. q is a condition in IP. In order to

show this let f : X; — N; be a normal function extending p. Then one can define

g:®¥ — Ry (2.20)

f(B) iff f(5) < ao

b —
a0+ (8= f'(ap)) otherwise.

g is a normal function extending ¢. By definition it is a normal function. From
the fact that o, is indecomposable we get that o, — f~!(ap) = . Again because

of a,,’s indecomposablility g(a,) = a,, follows.

Choose now any r <p ¢ and an n < w. Set s := 7 N (q, X ). Since r is finite we
have that s C a,, X a,, for some m € w \ n already. To be even more specific we
have s C 3 x 3 for some 3 < a,,. By definition of the a4 it follows that there is a
v <a,andatecA, NP(y xv) such that s||pt. Now r Ut <p r,t witnesses that
UkEw\n BF is predense below ¢ since t € B™™! and r Ut € P. Towards showing
the latter note that r Ut =sUt U (r\ s). s Ut is a condition since s||pt. So let
f D sUt,g D r benormal functions and let v := max (dom(s U t)) Then the

following is a normal function extending r U ¢:

h: Nl — Nl (221)
£(8) iff 3 < 4
Pre=f)+(B—7) iffBea.\y
g(f) otherwise.
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This shows P € R,.

Now we will show that Player I has a winning strategy in the strengthened proper
(P, p)—game. Together with lemma 2.27 this implies P ¢ 4"

So let there be a play of the strengthened proper (P, p)-game where in move n I
plays ordinal names «;,, and II plays countable sets of ordinals B,, . The following

is a winning strategy for I:

— In move 0 she plays dgy := 0 and sets (y := w.

— In move n+1 she chooses an indecomposable ordinal (3,11 from N\ (sup(Bn)+

B + 1) and plays the following name:
i1 = {1 AGart, MY |7 € X0\ B} (2:22)

Choose now an arbitrary ¢ <p p. We have to show that there are n < w, r <p ¢
such that r IFp “a, ¢ B,”. So let 3, := sup,_, 3, and 7 := max (dom(q) N f.)
where we assume w.l.o.g. that ¢ 2 (). Take an n < w such that 3, > 7. Again
w.lo.g. we may assume that ¢(y) < sup(B,) since otherwise we already have
qFp “d, ¢ B,”. Define r := q U {(Bn,sup(By) + B,)}. In order to see that r is
a condition suppose f is a normal function extending q. Then the following is a

normal function extending 7.

qg: Nl — Nl (223)

sup(Bn) + 140 iff 6 € (Bupr +1)\ (v +1)
f(9) otherwise.

0 —

The important points here are that on every limit ordinal ¢ is defined by the same
clause as its immediate predecessors, both clauses define segmentwise continuous
functions, sup(B,) > ¢(v) = f(7) and finally (3,4, is indecomposable and greater
than sup(B,,) by II's strategy hence g(fpe1+1) = f(Bnr1+1) = Bua1+1 > Bos1 =
9(Bns1)-

But clearly r IFp “d,, = sup(Bn) + (4,7 so in particular r IFp “a, ¢ B,”. This

concludes the proof.
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We have seen that the following holds:

ceee. C M 2 od (2.24)

Mn
Re

Of course we did not show officially that M ¢ c.c.c. or that M ¢ ocl but this follows

easily from c.c.c.,ocd C M and the fact that neither c.c.c. C ocl nor oc C c.c.c..

2.3 Preservation of Axiom A

The goal of this section is the preservation of Axiom A in iterations with countable
support. We will however start by stating a fact which was clear from the very beginning

of the analysis of the notion of “Axiom A”.

2.30. LEMMA. If P is a forcing notion satisfying Axiom A and 1p IFp “7 is a forcing
notion satisfying Axiom A.” then P is a forcing notion satisfying Axiom A. Moreover
if p, € P is a witness for the truth of the first condition defining Axiom A forcings for

P then there is a P-name o, such that (p,, 0,) is such a witness for P % 7.

Proof. We define:
(P, 0) SBur (¢, 7) = p<pqgAplbe "o 5777, (2.25)
We will now check that this definition yields the sequence of partial orders sought.
e Let ((pn,04)|n < w) be a sequence of conditions from P+ 7 such that

Vn < w: (Pnst1s Ont1) <per (Pns On)- (2.26)
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Let p,, be such that Vn < w : p, <g p,. Then we obviously have that Vn < w :

Y

14 n )
o IFp “Opt1 2 0, and

Pw IFp “(0n|n < w) is a sequence of length w of conditions (2.27)

from 7 such that Vn < w : 0,41 < 0,,.7.

Here (0,|n < w) has to be understood as a name for the sequence of the inter-
pretations of the 0,. Such a name can be easily constructed depending on the
particular coding of ordered pairs and sequences employed. Since m was forced
to satisfy Axiom A and by the maximal principle we know of the existence of a

P-name o, such that p, IFp “Vn < w: o, T 0,”. But then

Vn <w: (Pus0w) <pex (Pns n)- (2.28)

Let (pp,0) € P*m,n < w be arbitrarily chosen and & be any ordinal P  7-
name. One can conceive of & as a P-name for an ordinal m-name via the following

recursively defined morphism:

p VT — VT (2.29)
{(m, (qi,n)) ‘Z € ]} — {(I/Z-,qi)‘i € ]}.

where v; is a canonical name for the ordered pair (¢(7;), 7¢) where G is P-generic.
Now we argue as follows:

7 is forced to satisfy Axiom A so we have
IplFp “97 <, 0,B: 7l “p(&) € B AB < X". (2.30)
By the maximal principle we can choose P-names 7,  such that
Lo lhp “T <0 0 AT IFr “p(d) € BAB <R (2.31)
We can also find a P-name 7 for an enumeration of the set named by (:
Ip IFp “7 <r 0 A7 is a function with dom(n) = w A 7 IF; “p(&) € Fw”” (2.32)

Now construct by cisfinite induction a descending chain of conditions in P as
follows—let ppy1 <" pm and By, € [Q<“* be such that p,,41 IFp “n(m) € B,,”
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for all m < w. Then let p, be such that Vm < w : p, <I’§+" pm and B, =
U,n<w Bm- Now from

po IFp “T I “p(a) € B, (2.33)

it follows that
(Pus 7) IFpur “cc € B, (2.34)
_|

2.31. COROLLARY. Any finite iteration of Axiom A forcings satisfies Axiom A.

Here some comment is in order. Note that here we employ the definition of iterated
forcing of [Ba 1] or [Je 2]—mnot of [Ku]. Kunen requires the second components of the
forcing conditions in two-step-iterations to be elements of dom(7). With this definition
one could indeed prove that the iteration of countably closed forcings with Axiom A
forcings or the iteration of Axiom A forcings with c.c.c. forcings each satisfy Axiom A.
The general proof would at least not be possible like this since one would require the
first component to decide the second one within dom (7). Nevertheless we are following
Kunen to the extent that we do not require the partial orders to be antisymmetric.
Why we do this will become obvious in the proof of the fact that CS—Iterations preserve
Axiom A.

The following definition will be utilized to prove that CS—Iterations preserve Axiom

A.

2.32. DEFINITION.  Let P, = (((Pﬁ,gﬁ,]lg),(ﬂg,#g,@;))\ﬂ < oz) be an iterated

forcing construction with countable support such that
VB < a: 1glrp, “mg satisfies Axiom A.” (2.35)
o IfpgeP,, n <wand F € [a]<¥ define

p<"qi=p<gAVBEF: pl Bk, “p(B) <5 a(B). (2.36)
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e Furthermore call ((p,, F},)|n < w) a fusion sequence iff

Vn < w:pasr < p, (2.37)
Vn<w:F, CF1, (2.38)
U F, = U supt(pn). (2.39)
n<w n<w

The following, due to Baumgartner is known as the fusion lemma:

2.33. LEmmA. IfP, = (((Pg,gg,llﬁ) (75, <8,€5))|8 < a) is an iterated forcing

construction with countable support and ((pn,Fn)|n < w)) is a fusion sequence then

there exists a p,, € P, such that

30

Vn <w: py, <" op,. (2.40)

Proof. We wil define p,, by defining p,,(3) by induction on j.

e Suppose § =+ 1 for some v < «.

Ifvy ¢ U supt(pn) let po(7y) = ¢, (2.41)

n<w

Otherwise the final condition in the definition of fusion sequences tells us that
dn < w: vy € F,. So one can define n := min {n‘n <wAr € Fn} and thus a

sequence (v,|n < w) of P -names by setting v, := ppin(y) for all m < w. Then

1

Pu [ 7 ke, “vo A L (2.42)

since Vn < w : p, [y < pn [y by the inductive hypothesis and ppyny1 IFp, “Vmir <

vy for m < w by the first condition in the definition of fusion sequences.

So since 1, IFp, “m, satisfies Axiom A.” and by the maximal principle there exists

a P,-name 1 such that
PulyIFp, “Vm <w: p<" 1,7 (2.43)

Let p(v) == p.
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e Suppose [ € a N Lim. Define

plB:={]J (). (2.44)

P provides what was demanded. 4

2.34. LEMMA. Suppose p € P,,n < w,F € [a]<¥ and & is a P-name such that

plFp “& < 7. Then there exists a ¢ <" p and a countable set of ordinals C' such that
qlkp “a e Q).

Proof. Let a < Q, F € [a]"¥,n < w,p € P, and a P,-name & be given such that

plFp, “a < Q7. We will prove the lemma by induction on «.

e a = 3+1. In this case we can interpret ¢ as a Pg-name for a mg-name. Doing this

one gets the following:

plB1Fe, “p(B) IFx, “a < Q7. (2.45)

Now one can use the fact that 15 IFp, “mg satisfies Axiom A.”. This yields
pl Bk, “Jg < p(B),C e[ gl “aecC. (2.46)

By the maximal principle there are Pg-names n,( such that p [ 8 IFp, “n <3
p(B) A ¢ € Func Adom(¢) = w An by, “Im < w: da = (¢(m)"”. Now we can use
the inductive hypothesis to define by a second induction—this time on m < w—a

fusion sequence ((¢n, Frn)|m < w) together with a sequence (C,|m < w) such that

Vm < w: Cp, € [Q<“*. In what follows, by ((m) we mean a Pg-name for the m™
value of the interpretation of . Suppose m < w is given.
(

pl B if m<n

melym_l

some ¢ < m—1 such that
— Let ¢, := 156 fm=1

q “_]pﬁ “C(m) € Cm—(n-{-l)”

\for some Cp,—(nt1) € [~ otherwise.

— Choose an enumeration e, : w «— supt(g).
Fnpg it m<n
(FNpB)uy U erm otherwise.

k<m

— Define F,, :=
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Now ((qm, F.)m < w) is clearly a fusion sequence. By the fusion lemma there

exists a ¢ € Pg such that Vm < w: ¢ <§’”’m Gm- So in particular q <gmﬁ’" p. Also

since Vm < w: @myny1 IFp, “C(m) € O, we have that Ym < w: q IFp, “((m) €
Cp”. Define C :=J,,., Cm- By p[B1IFp, “nlkr, “Im <w:é = ((m)”” we get:

qlFe, “nlks, “a@ € C” (2.47)
and so in the normal interpretation of d:
¢ (n) IFp, “a € C”. (2.48)

But ¢ <§ﬂﬁ’" plBandpl B lkp, “n <j p(B)”. So regardless of whether or not
0 € F we have that

¢"(n) <" p. (2.49)

This concludes the proof of the successor step.

o € Lim. Set 3 := max(F) + 1. Since F < w and « € Lim it follows that 8 < a.

We now can conceive of & as a Pg-name for an ordinal %‘;—name, then we get
plBlke, “pl(a\ B) II—%Q fa < Q7. (2.50)
5

Then there is a Pg-name 7 for an element of %‘; and a Pg-name ¢ for an ordinal
such that

PIBIe, “n <s p1(@\B) Aplhs, 6= (7 (251)
B B

By the inductive hypothesis we know that there is a ¢ <j p [ and a countable
set of ordinals C' such that g IFp, “C € C”. But then

q ”_]P’ﬁ ccn ||—D3’_a = Cv?aw (252)
I's
which in turn means with the normal interpretation of &

¢ nlkp, “aeC”. (2.53)
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Since F' C 3 we also immediately get ¢™(n) <Z™ p. This concludes the proof of
the limit step and thereby the whole proof.

2.35. LEMMA. Whenever P is a nontrivial forcing notion and v 2 ) is a P-name there

are at least Ny P-names v, (n < w) such that
Vn<w: Iplkp “v=1v,". (2.54)
Proof. By induction on n.

e Choose an arbitrary (po,o) € v and let vy := v.

o If v,,p, are given let A, be a nontrivial—meaning A, shall have at least two
elements—antichain in P maximal below p,, and let v, 1 := v, U {(p, o) ‘ pE An} \

{(pn, a)}. Finally choose an arbitrary p,,1 € A,.

Obviously this inductive definition provides the necessary P-names. -

We are now going to define a function which together with the preceding lemmata

allows us to define the necessary partial orders to prove the theorem below.

2.36. DEFINITION. By lemma 2.35 for every 3 < « there exists a function
Fs: {1/}1/ is a Pg-name and Ip € Py : plbp, “ve 5"} — w (2.55)
such that for every Pg-name v with 3p € Pg : plbp, “v € m57:
Fﬁ“{,u‘,u is a Pg-name and 15 lFp, “u=1"} = w. (2.56)
Fix furthermore for every X € [a] a bijection
Gx :Xw<—>{f}f€Xw/\Vn<w:f_1‘:‘{n}<w}. (2.57)

Then for every p € P we can define a function f, as follows:
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fp i supt(p) — w (2.58)
b +—
0 it 8 =0
Fs(p(B)) iff € Q\1Asupt(p) <w

Gupt(p) ({(% E,(p(7))|y € supt(p) }) (8) iff e Q\1Asupt(p) >w

With the help of these functions we can now define the partial orders <¢ for n < w.
o Let p < qiff p<, ¢ for any p,q € P,.

o Let formew\1
D <fp71“(n+1)7n q
p<aqiff ¢ f,>f, and
fr(n+1) = f(n+1).

2.37. LEMMA. Whenever g € P, and f €%**@ ¢ such that f(0) = 0 and Vn < w :

f~''n < w hold there exists an ¢; € P, such that f = Jq; and

VF € [supt(q)]~“,n < w,p € Po(q <" p e qp < p). (2.59)

Proof. We distinguish two cases:

e supt(q) < w. In this case whenever § € supt(q) let v be a Pg-name such that
15 lkp, “q(8) = vs” and Fy(vg) = f(B).

e supt(q) = w. Then if 3 € supt(q) let vz be a Pg-name such that 15 IFp, “¢(3) =
vg” and Gs_ulpt(q) o f(B) = Fs(va).

In both cases this is possible because of the choice of the functions Fj3. Now define
vg iff § € supt(q)

15 otherwise.

qr(B) =
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A close look at ¢;'s definition reveals that V3 < a : 1z IFp, “¢(8) = ¢(8)” and
f = fq;- So we have for any F' € [a]<“:

g<""p (2.60)
— g <PAVBEF: Iylks, “q <57 (2.61)
= qr SpAVBEF: 1gle, “qr <5 p” (2.62)
= q; <" p. (2.63)

This of course uses that ¢ < p = ¢y < p. In order to see that this is true assume the

contrary, i.e. assume there would exist a p € P, such that ¢ < p while g; £ p. Then let
B < a be minimal such that q; [ 8 1Fp, “qr(3) s p(B)". But 1 lFp, “qr(8) = q(3)” so
qr 1 B IFe, “q(B) s p(B)"—4 n

2.38. THEOREM. (Piotr Koszmider, 1993) If P, = (((Pg, <o, 1p), (75, <,28)) 1B < a>

is an iterated forcing construction with countable support such that
VB < a: lglkp, “ms satisfies Axiom A.” (2.64)
then the partial orders defined above witness that P, satisfies Axiom A too.

The following proof is due to Piotr Koszmider and was first given in [Ko|]—interestingly
enough—more than nine years after James Baumgartner introduced Axiom A in [Ba 1].
Proof.

e We have that p <% ¢ <= p <, ¢ for any p, q € P, by definition.

e Suppose that p <**! ¢ for some p,q € P, and an n < w.

Yt 1),n ‘

(n+2)mtl g since ;' (n+2) D f; " (n+1) and

ot S o
- p <& q implies p <&

1slFp, “mp satisfies Axiom A.”.

— If f, D f, then clearly f, D f,.

— fp D fyhence f7 1 (n4+1) D fr'(n+1). In order to see that also f, ' (n+1) C
[V (n+1) let 3 € supt(p) be such that f,(3) < n. Since f;'(n+2) =
fq_l“(n+2) we see that f,(3) < n+2. Butif f,(8) =n+1 then by f, D f, we
would have f,(3) = n+1—4 So f € f; ' (n+1) after all—hence f, " (n+1) =
fl(n+1).
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e Suppose that we have been given a sequence py =° p; =!' py =2 .... Define
0 iff n=20
F, =
L (n41) iffn>0.
Now one is able to check that p; >0 p; =01 py 222 s a fusion sequence:

— Png1 < p,, holds for every n < w by definition—note here that p; >0 p;

means the same as p; > p; which is in turn implied by p; = p;.
— Since fp,., D fp, for every n < w we have that F,, = f,! “(n+1) C f,} "(n+
2) - Fn_;’_l.

— Finally one has to prove U F, = U supt(py)-

n<w n<w
¥ “C 7 : This is simple—if § € U,., Fn = Uney, fph, (n + 1) then 3 €
L (n+1) for some n < w. But then § € supt(pni1) for this very n by
definition of the f,.

* “ D7 Let B € U,.,supt(p,). Then there is an n < w such that
B € supt(py) so since ran(f,,) = w there is an m < w with the property
b € fp_nl“(m + 1). One can assume w.l.o.g. that m > n. That means
(B,k) € fp, for some k < m. But f,, C - C fp, C fp... 50 (B, k) €

fomsr and hence g e f-1 {k} C f1 “(m+1) =F, C U, Fr

Pm+1 Pm+1

By lemma 2.33 we know of the existence of a ¢ € P, such that Vn < w : ¢ <" p,
Now define f := U Fpn-

new\1

— fisafunction since if (3, m), (5,n) € f thereisak < wsuch that (5,m), (3,n) €
fp, but f,, is a function so m = n. Hence f is a function.

— f(0) = 0 since f,,(0) = 0.

—Vn<w: f7{n} <wsince Vm,n <w: fy'{n} <wandVn <w: f(n+
=1, Ll “(n+1). Towards proving the latter statement let n < w be arbitrarily
chosen. That f~"(n+1) D f, 1 (n+1) is trivial so let 3 € f~*(n+1). Then
there exist m < w, k < n such that (4, k) € f,,, where one can assume w.l.o.g.
that m > n. Since Vi € m\n: f,! "(I+1) = f, (14 1) it follows by a finite
induction that (8,k) € f,, so B € f, 1 (n+1).

Our p,, sought will be the ¢y of lemma 2.37 with respect to the recently defined
condition g and the very recently defined function f. So p, := q;. We want to see

that Vn < w : p, <, pn. Once again we distinguish two cases:
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— n =0 : We know that p, <! p; so in particular p, < p;. Also we know that
p1 <o Po, 1. p1 < po. So by transitivity p, < po, i.e. p, <o po by definition.

-—new\l:
* fpo D fpo since fp, = f, [ = U fpm and U Jom D fou-
m<w m<w
« [l (n+1) = fq_fl“(n +1) = f"(n+1)=f,"(n+1) as it was proved
earlier.
% po IR gince

cq <" pnso g < pp hence VB <t gl B<gpal BAG] B IFp,
“q(8) < pn(B)”. One can see by an induction on [ that this implies
VB <a:qlB<p.lBAg!lBIFe, “q(3) < pa(B)”. But then
Pw = qf < Pn-

- Let B € flzulu(njL )=fYn+1)= fl;}“(n+ 1). From g <" p,, we
get q [ B IFp, “q(B8) < pa(B)”. Again by an induction on 3 one can
see that gy [ 3 <g ¢q[ 8. This yields gy [ B IFp, “qr(8) < pa(B)”.

e Let p e Py,n < w and & be a P,-name such that p IFp, “a@ < Q7. By lemma
— 1«
2.34 there is a ¢ <£” (nt+1)n

“ € C”. Now let e : w +— supt(g) be an enumeration and define a function f as

p and a countable set of ordinals C' such that ¢ IFp,

follows:

f supt(q) — w (2.65)

fo(B) iff 3 € supt(p)
e(B)+n+1 otherwise.

Since by f’s definition Ym < w: f~'{m} < w by lemma 2.37 there exists a q; € P,
such that f, = f and

VF € [supt(q)]=,m < w,r € Po(q <™ r s qp <5 ). (2.66)

We have f,, = f D fp, and f~"(n 4+ 1) = f,"(n + 1), both by definition of f.

p
Because of (2.66) we also get

«

L . 1
g <STIT p o g TN p g g I, (2.67)

But the inequality on the right hand side is true so the same holds for the inequality
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on the left hand side. So ¢ <" p. With F' =0 or m = 0 (2.66) implies that since

q <EB™q, qr <. q. So we can conclude that
qr IFp, “a € C”. (2.68)

This finishes the proof.

We also need the fact that countable support iterations of forcings from 4" are in M".
This seems to be easier to believe than to prove, nevertheless a proof is given below.
For the proof we use the fact that the regular open algebra of a poset P is unique up
to isomorphism—Ilemma 2.23 provides this and that “it” can be characterized as “the”

complete Boolean algebra such that P can be mapped densely into it.

2.39. COROLLARY. If P, is an iterated forcing construction of length a of forcing
notions from 4" with countable support, then P, € 4"

Proof. By induction. We are going to define a sequence of complete Boolean alge-

bras (B, |y < a) together with an iterated forcing construction <((@w <o, lg,), (¥, <o,

€0 )Y < a) by induction on 7. Our inductive hypothesis for v is that V§ < v: 1¢ g,
“1)¢ satisfies Axiom A.”(, hence Q. € M by theorem 2.38) and that P, and Q, can both
be mapped densely into B,,.

o Let QQ = ]P)Q.

e a = v+ 1 for some v < Q. By the inductive hypothesis we have Q, € .4
and we know that there is a complete Boolean algebra B, and dense embeddings
op, : P, — B,, g, : Q, — B,. These mappings allow us to conceive of B, as
a superset of (the set of equivalence classes of) P,, Q, and thus of P,—names and
Q, names as certain kinds of B, —names. In this sense because of P,’s and Q,’s
density in B, for every B, name there exists a P,-name and a Q, name which
both name the same object in every B,—generic extension. Now 1, IFp “m, € M~
holds. We fix witnesses for this, i.e. B,-names 1., 3,, 0, d,—where 1), is chosen

as a Q,—name such that

Ig, IFp, “¢, € M, 3, is a complete Boolean algebra and (2.69)

Op, : Ty — 3,0y, 1 1y — [3, are dense embeddings.”.

38



2.3 Preservation of Axiom A

Then Q, xv,, € M by theorem 2.38 and so it suffices to show that Q, %1, can be
densely mapped into B,;; := ro(P, x 7). Recall that B, consists of all regular

cuts in P, x 7. Define:

041+ Qy by — Bty (2.70)
(¢:7) = {(p,0)|(p,0) € By 7y A G, (p) <, I, (0)
A dp,(p) ke, “Or,(0) <5, 0y, (7).

Of course the elements of ran(dg,,,) are cuts.

— They are also regular—Proof:
Let (¢,7) € Q, 1, and (p,0) € P, xm, \ §((q, 7)). We distinguish two cases:
* 0p. (p) <g, dg,(q). By definition of dg_,,, dp, (p) VB, “Or, (0) <3, 0y, (7)".
So one can choose an r <g_ dp, (p) such that r lkg  “0. (o) L, oy, (7)".
By the maximal principle, since Boolean algebras are separative and be-
cause of d,_’s density we can then choose a P,-name 7 for an element of
7,’s interpretation such that r kg, “n <x, o A (n)Lg dy, (7)". Take
an s € P, such that dp (s) <g, r. We have (s,77) <p,ur, (p,o) and
Clam N g, (g,7) = 0.
* Not so. Since B, is separative one can then choose a b € B, such that
b <g, op,(p) and bly dg, (¢). By density of dp, one can then find an
r € P, with 0p_ (r) <g, b. So C(,,) N dg.,, (g, 7)) = 0.
—(The cuts are regular.)
— The mapping defined in (2.70) is a dense embedding—Proof:

* Clearly for ¢,s € Q41 s <g ¢ implies dg.,,(s) C dg,,,(q).

* Let (¢,7)Lg,,,(r,n) and suppose that (p, o) € dg, ., (¢, 7)) Ndg,., (r,n))-
Choose an s € Q, such that dg (s) <g dp,(p). Then by dg, (s) <g,
op,(p) <m, dg,(q) we have dg, (q)|ls, dg,(s) and thus g|/g,s. Choose a
t <g ¢,s. By the same argument t||q,r for which we choose a witness
u <g, r,t. Now dg, (u) IFs, “0y. (7)[/s,0s,(n)”. So by contraposition of
the second condition defining dense embeddings, u kg, “7{/g,n”. By the
maximal principle choose a Q,—name witnessing this, i.e. a name y such
that u l-g, “X <y, 7,n”. But then clearly (u, x) <q¢,,, (¢,7),(r,n).

* Let C be any regular nonempty cut in P, x m,. Let (p,0) € C witness

(C’s nonemptyness. Since dg is dense there exists a ¢ € Q such that
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do(q) <, Op,(p). Since 1, Ik “dy : ) — [ is a dense embedding.”
by the maximal principle there exists a name 7—which can be chosen as
a Q-name—such that 1g_ IFp, “0y(7) < 6x,(0)”. The definition of dg.
in (2.70) yields C(,-) C C so we are finished. 4 ((2.70) is dense.)

e a € Lim. The inductive hypothesis implies that V§ < v : 1g, IFg, “i¢ satisfies
Axiom A.”. Theorem 2.38 tells us that then Q, also satisfies Axiom A. We will
show that Q, can be mapped densely into B, := ro(P,). The following function
does just this:

5Q'y : Q,y — B,y (2.71)
qr— {p € Py|VE < v: b (p1€) <m, dac(q1€)}-

As above now it can be easily seen that the elements of ran(dg, ) are cuts.

— They are regular—Proof: Choose ¢ € Q, and p € P, such that p & dg_(q).
Then by definition of dg, there exists a § < v such that dp,_, (pl(€+1)) LBe. s
0Qe.1 (q (€ + 1)) Choose the least ¢ with this property, then dp (p [ ) Vs,
“Ore (D(€)) <, Oy (q(€))”. Then there is a b € B, such that b <g, dp,(p [ £)
and b I, “Or, (p(&)) Ape Oy (q(&))”. By separativity of [¢’s interpretation,
under usage of the maximal principle and by density of dr.’s interpretation
there exists a Pe-name 7 such that b lbg, “n <, p(€) A 6x, (1) Ls, 0y, (a(€))”.
Choose an r € P¢ such that dp, (1) <g, b and define

selP, (2.72)
r(v) iff v <g,

vieqn o iffr=¢,
p(v) iffvevy\¢

Then s <p, p and Cs N d,(q) = 0.
— g, is a dense embedding—Proof:
* Clearly if ¢, s € Q, and s <g ¢ then dg, (s) C dg, (q)-

* Suppose ¢, € Q, and p € dg, (¢q) N dg, (r). We are inductively going to
construct an s <g, ¢,7. Our inductive hypothesis for § < 7 is s [ § <g,

qr&r1EN g (sT€) <m, e (PIE)-
- Suppose £ < v and s [ £ has been constructed. Clearly dp,(p [ &) IFs,



2.3 Preservation of Axiom A

“Ore (D(E)) < O (4(8))1 0y (r(€))”. Now we choose a name 7 for
an element of ¢’s interpretation such that 1p, I, “dy (1) <g,
Or (p(€))”. Together with the second condition in the definition
of dense embeddings these forcing relations imply dp,(p [ &) IFg,
“Nlyeq(€)”. Let x be a name such that dp, (p [ &) IFe, “X <y 1,9(£)”-
By the kind of argument just applied dp, (p [ &) IFs, “X||y:7(£)” so let
finally be s5(¢) a Q¢ name such that dp, (p[§) I, “s(§) <y X, 7(£)”.
Together with the inductive hypothesis for £ this proves the inductive
hypothesis for € + 1. The limit step is trivial if one supposes w.l.0.g.
that the Boolean algebras form an ascending chain.

* Let C' be any regular nonempty cut in P, and let p € C witness its
nonemptyness. One can define a ¢ € Q, with dg, (¢) C C inductively.
The inductive hypothesis for § < v is dg, (¢ &) <p, I (P[§).

- Suppose ¢ [ § has been defined. 1p, lFp, “dy, @ ¢ — [¢ is a
dense embedding.” hence by the maximal principle and the fact that
0ge : Q¢ — B¢ is a dense embedding one can choose a Q¢—name 7
for an element of ¢¢’s interpretation such that 1g, I, “0y, (1) <g,
Ore ((€))7. Let (&) == .
This inductive construction provides a ¢ € Q, such that g, (q) <g,
dp.(p). So by definition of dg, we have dg_ (¢) C C.
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3 An equivalent formulation and
BAFA

In chapter 2 we introduced Axiom A* and elucidated the relationship between partial
orders and complete Boolean algebras. The reason for this is that Axiom A was designed
for arbitrary posets while Bounded Forcing Axioms are commonly stated by reference
to Boolean algebras. For the latter fact there are two reasons. On the one hand the
Bounded Forcing Axiom for a specific poset might in fact be trivially true if all its
maximal antichains are large. On the other hand in the construction of a model for
BPFA in the following chapter one needs a Boolean algebra in order to construct a sub—
forcing—notion of limited size which contains all antichains in question but nevertheless
always contains a witness for the compatibility of two conditions in the larger notion of
forcing. Even if one has a dense embedding from some arbitrary poset in this Boolean
algebra and each antichain from the family considered lies in its image it is in general
unclear how to construct a filter for the family of preimages of the antichains. So in
order to define the Bounded Forcing Axioms properly let 28 denote the class of Boolean

algebras.

3.1. DEFINITION. If k, A € Card and C is a class of forcing notions, the forcing axiom
for C and k, bounded by A—BFA(A, k, A) says that whenever P is a forcing notion in C
and A is a family of less than x maximal antichains each of which has size less than A,
there is a filter G C P such that VA € A: AN G D (. In the following we are going to

list some common forcing axioms.

Martin’s Axiom—MA is BFA(c.c.c. N8, 2% Q).

The proper forcing axiom—PFA is BFA(R, N8, Ny, Q).

Martin’s Maximum—MM is BFA(C N 9B, Ry, ), where C is the class of all forcing
notions that do not destroy the stationarity of any set S C Nj.

The bounded proper forcing axiom—BPFA is BFA(R, NB, Ny, Ny).
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e Bounded Martin’s maximum—BMM is BFA(C N B, Ry, Ny), where C is as in Mar-

tin’s maximum.

3.2. DEFINITION. If n is a natural number, Cy a class of forcing notions and C; any
class then X,,(Cy, Cy)-absoluteness is the following assertion:

Whenever P € Cy,a € C; and ¢ is a X,-formula in the language of set theory then
1p IFp “p(a)” iff p(a).

3.3. LEMMA. For any x € Card\w there is a A;({x})-definable surjection ¢ :
PB(r) —> Hpr.

Proof. There is—see the proof of theorem 1.10.12 in [Ku]—a A; ({x})-definable well-
order of k x k of length k. So one can define a bijection ¢ : £ X k «— £ in a Ay ({k})-
fashion. This function can be used to code relations on x as subsets of x. Furthermore
if R is a binary and well-founded relation on s let 7y : (k, R) = (7K, €) denote the

function collapsing  onto a transitive set. This function is A; ({x, R}). We define

 P(k) —» Hyr (3.1)
U {:B € WR“/{‘Vy Enpk:x ¢ y} if R:= 1A and
Ar— (k, R) is well-founded
0 otherwise.

We essentially have to verify two claims:

e ¢ is surjective. In order to show this let a € H,+ be given and set X := trcl ({a}).
We have that X = m +1 < k+ 1 = k. Fix any surjection f : K — X and
define £ := {(a, 8)|f(«) € f(B)}. By definition ¢ is a well-founded relation on x.
Moreover it is extensional on any S C k such that f [ S is one to one. Let . denote
the collapsing function of the transitive collapse of (k, ¢), then 7. : (k,¢) = (X, €)
and 7. : (S,e) ~ (X, €) for any S C & such that f [ S is one to one and S is
maximal with respect to this property. We have that

{reX|VyeX:zdy}={a} (3.2)

Thus by setting A := ¢’ we get p(A) = a.

e pis A;. We know that ¢ is A ({«}) and that the collapsing function is A; in the

parameters k, R and thus in the parameters x, A. The only quantifier occuring in
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¢’s definition is bounded. So it remains to be shown that being well-founded is
Ay

— “(k, R) is well-founded.” is II; since it can be written as follows:

Vf:w— kIn <w=(f(n+1) R f(n) (3.3)

— On the other hand it is ¥; because the following formulation is possible:
Elf(dom(f) — kAran(f) C QAVa, B < Q@ R — f(a) < f(ﬁ))) (3.4)

_1

3.4. REMARK. In many arguments to come, given a family A of maximal antichains

in a Boolean algebra B we will consider the subalgebra finitely generated by A, that is

S::{ A \/b‘Ce [[{be]B%EAeA:beAvﬁbeA}rwrw} (3.5)

BeC beB

We also will sometimes use the fact that given a regular cardinal s such that A is a
family of less than x subsets—mnormally maximal antichains—of a Boolean algebra B*
each of which has size smaller than x the Boolean subalgebra S* finitely generated by A
has size smaller than x. Because of this fact it is simple to construct a Boolean algebra
B isomorphic to B* by an isomorphism v : B* ~ B such that ¢'S* € H,.. In general this
finitely generated subalgebra will not be complete. For the remaining part of this thesis
we employ the following convention: We are repeatedly going to talk about a notion of
forcing extending another one—that is P C Q. where P = (P, <p) and Q = (@, <g) may
be arbitrary posets, separative posets, Boolean algebras, complete Boolean algebras or
other notions of forcing. Important in this respect is only the fact that a partial order
is given or canonically definable on the forcing notions and that not only the subset
relation holds with respect to P and () but also p <p ¢ if and only if p <g ¢ for all
p,q € P. One can for example up to isomorphism conceive of P and Q this way if P is
antisymmetric and separative and there exists a dense embedding ¢ : P <— Q which then
has to be one-to—one. But of course in the general case P C Q by no means implies that
P has to be dense in Q.
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The following theorem was proved by Joan Bagaria during the summer of 1995, pre-

sented in Oberwolfach in January 1996 and appeared in print in [Bag 1].

3.5. THEOREM. (Joan Bagaria, 2000) Let x € Card, cf(k) > w and B be a Boolean

algebra. The following expressions are equivalent.

(1) 21 ({B}, PB(x))-absoluteness,

(2) X,({B}, H,+)-absoluteness,

(3) BFA({B}, x*, k").

46

Proof.

e (1) = (2): Suppose (1) holds true, p(e) is a 3j-formula in the language of set

theory, a € H,+ and B is a complete Boolean algebra such that 1p IFg “p(a)”.
Let f : PB(k) —» H.+ be the A;(k)-definable surjection from lemma 3.3 and let
b C k be such that f(b) = a. Then ¢ := ¢ o f is a Xj-formula in the language
of set theory and 1p IFg “i(b)”. By (1) ¢(b) is really true. But then ¢(a) is true
too. 4 ((1) = (2))

(2) = (3): Suppose (2) holds and Ag = {A,|a < k} is a family of at most
maximal antichains of cardinality at most k. By remark 3.4 let D be isomorphic
to B by an isomorphism 1 : B ~ ID such that the subalgebra finitely generated by
the family Ap = {w“Aa‘a < K} is in H,. Then in particular Ap is in H,. We
have that

1g IFg “¢ T is Ap—generic.”. (3.6)
By (2) we can infer

JdH Cc D : H is Ap—generic. (3.7)
But then for such an H it follows that

“YH is Ap—generic. 3.8
(G g



e (3) = (1): This is the laborious part. Suppose that BFA ({B}, s, ™) holds true,

a C K, ¢ is a Xp—formula in the language of set theory and
1p I “Trp(z,a)”. (3.9)

Let G be B-generic. At first we argue in V[G]. We know that & is still a cardinal
there because BFA ({B}, ", x*) implies MA,. Since Jzp(z,a) is a ;- and so
in particular a Ily-statement lemma 1.2 implies that H.+ = “Jre(x,a)”. Let
M < H,: be such that xk U {a} € M and M = k. Now let f : K «—— M be an
enumeration such that f(1) = a and f(2-«a) = «a for all & < k. Note that f can

be chosen to be one-to-one since {{a}‘a < H} C M because M is an elementary
submodel of H,.+.

Since k is still a cardinal and € is well-founded, for every o < k there exists
a function g, : @ — & such that ¢,(8) < ga(7) whenever f(3) € f(v) for all

B,7 < a—though of course in general not vice versa.

Now back to V. We are going to produce a transitive model containing a which
satisfies dxp(z,a). Because our generic filter G was arbitrarily chosen there is a

B-name = for M and B-names f, o, 41, ... for f,go, g1, ... such that

[E E “Jre(z,a)’], [[f(l) —a],[Va <k:f(2-a)=a] and (3.10)
[V3,v < oz(f(ﬂ) e f(7) = 4a(B) < ga(y 7))] for a < £ are all equal to 1.

For every formula ¢ and every (fy,...[3,) €<“k consider the maximal antichains

A?l},(ﬁo ..... ) = ({[[a is minimal such that= | “ (f(a), f(BO), e f(Bn))”ﬂ}a < H}
(3.11)

U{E = B (@, f(Bo), -, FG)T}) \ {08},

together with the maximal antichains:

ALy = {l0a(3) = Ay < s} \ {06}, 8 < @ < 5. (3.12)

By BFA ({B}, <™, x™) there exists a filter H meeting all these antichains. Now we
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define a binary relation R on k as follows:

R:={(a,B)|e,3 <k A[f(a) € f(B)] € H}. (3.13)

Notice the following;:

— R is extensional—Proof:
Let o < 8 < k. [f(&) # f(B)] = 1g. So by the definition of the antichains
in (3.11) there exists a v < & such that [y is minimal such that f(y) €
f(@) A f(B)] € H. But then v € {n < kln Ra} A{n < kln R B}
- (R is extensional)

— R is well-founded—Proof:

Suppose towards a contradiction that this is wrong and let (8,|n < w) be a
sequence of ordinals from x such that (3,, R 3, whenever n < m < w. Define
v = (Sup, <, Bn) + 1. Since cf(k) > w it follows that v < k. Then we can
consider ¢,. We have that [f(3,) € f(3,)] € H foralln < m < w. As a
consequence [§4(Bm) < g4(Ba)] € H for all n < m < w. But H intersects
each Al ; . So this gives us a sequence of ordinals (y,/n < w) such that
[9+(6n) = ] € H for all n < w. By choice of g, this sequence must be
decreasing. This is absurd. 4 (R is well-founded.)

Now we consider the Mostowski—collapse (N, €) of the structure (k, R), let 7 :
(k, R) ~ (N, €) denote the collapsing morphism.

Claim: ©(1) = a.
Proof of Claim:

Let us define X := {a‘a =1VvViIP<kr:a=2- ﬂ}. Note that X is closed under
R,ie. if 6 € X and a R § then a € X. Define

0: X ~rkU{a} (3.14)
a iffa=1
o
g iff 2.0 =a.

Since 1p € H and because of (3.10) we have o R 3 if and only if o(a) € o(5).

So ¢ is an isomorphism from (X, R) onto the transitive structure ({a} U k, €). By
uniqueness of the collapsing function and since X is closed under R it follows that
T X = p. —(Claim)



By induction on the complexity of a formula 1 in the language of set theory
one can see that (k, R) | “¢(0o, ..., 8,)"—with the symbol € interpreted as the
relation R—if [Z = “¢(f(50), ey f(Bn))”ﬂ € H. So in the case of ¢ this means
that again with this interpretation (k, R) | “¢p(«, 1)” for some a < . But then
(N,€) E “p(r(a),a)” and since ¢ is a Sp—formula and N is transitive really
¢(m(a), @) and in particular Jzp(z,a). 4 ((3) = (1))

_1

3.6. COROLLARY. Let C be any class of forcing notions and k € Card. Then the

following are equivalent:

(1) %:(C,PB(r))-absoluteness,

(2) £,(C, H,+)-absoluteness,
(tf) ) absoluteness,
(tf) ) absoluteness,
(tf) ) N B, P )) absoluteness,
(tf) )N B H,ﬁ) absoluteness,

(7) BFA(tf)( )N B, kT k).

Proof.

(1) (2)
The equivalences (5) < (7) and (6) < (7) follow from theorem 3.5. The other equiv-
alences follow from the definition of the reasonable hull and the fact that for any forcing

notion P forcing with ro(P) always yields the same generic extension as forcing with P.
_|
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Now we are going to introduce a new bounded forcing axiom—BMFA—the bounded
Axiom A forcing axiom. The reason for us doing so is that it is a natural as well as
proper weakening of BPFA which nevertheless has the same consistency strength. We
will not define BMAFA <= BFA(.M N B, Ny, Ny) though. The reason is simply that it
seems to be unknown whether 4 is reasonable. So in order to be able to treat BMAFA

just as the other Forcing Axioms we make the following definition:
3.7. DEFINITION.

BMFA <= BFA(M N B, Ny, Ny) is the Bounded Aziom A forcing Axiom.
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4 The consistency of BPFA

This chapter aims at the definition of an iterated forcing construction by which one
attains a generic extension in which BPFA holds true. For this one needs a reflecting
cardinal. The iteration will consist of proper notions of forcing and will have this cardinal
as length. In order to describe the iteration and to prove that it provides what was
demanded we need some technical knowledge.

Two technical lemmata are immediately following in order to eventually prove lemma
4.3. They are concerned with technical aspects of forcing and do not touch the central

line of argument which starts with 4.3.

4.1. LEMMA. Let k € Card,P € H.+ and X\ € Reg such that A > 2. Then for every
P-name o there is a P-name 7 € H, such that 1p IFp “o € HA = o = 7”7 where H,\
is a P-name for the set of all sets with transitive closure smaller than A in the generic

extension.

Proof. By induction on the rank of ¢. Suppose the claim has been proved for all
P-names o with rk(c) < a. Now let o be a P-name of rank o and A C P an antichain
maximal in the set {p € IP" plkp “o € Hy” } We are now going to construct a name 7,
for every p € A. Let e : u — H), be an enumeration of all P-names from H) for the

appropriate ;1 € Card. Define 7, inductively as follows:
o 7o := 0.

e If 75 has been defined set 7541 := 75 U ({e(8)} x Ag) where A is an antichain
maximal in the set {g <p p}q e “e(8) € 0" AVy < B: qlbp “e(v) #e(8)"}.

e If v € Lim and 75 has been defined for all ordinals 8 < v then set 7, := ,_, 75-

In fact only less than A of these antichains can be nonempty—{ﬂ < ,u‘Ag 2 (Z)} < A—
Proof:
Suppose otherwise. Then there is a @ € [u]* such that V3 € Q : Ag 2 (. Since there

are at most 2" subsets of P there are at most 2 nonempty antichains in P. So by the
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pigeonhole principle there is an S € [Q]* such that V3,7 € S : Ag = A,. Take a
q € Anincs)- Then for any two 3,7 € S: qlFp “e(B) € 0 Ae(y) € o Ae(B) # e(y)”.
Define a name ¢ := {e(3)|# € S} x {1p}. Then ¢ IFp “C=AAN(CoeHy. 4

Set 7, := (Us., 75 So we now have constructed a name 7 for a subset of 0. Since A
is regular, 7 € Hy. We still have to show that p IFp “c = 77. To this end let ¢ <p p
and v a P-name such that g IFp “v € ¢”7. We will show that {7“ S P}r Fp “v € T”}
is dense below ¢. So let r <p ¢ be arbitrary and let n € dom(o),s < r be such that
slkp “v =n". rk(n) < a so by the inductive hypothesis there is a P-name ¥ € H), such
that 1p IFp “0 = n”. At some point in the construction 9 is considered. We distinguish

two cases:

o There is a t € A.-1(9 such that s|pt which is witnessed by u <p s,t. Then

ulkp ‘v=n=9Avderm soullkp ‘ver andu<ps<pr.

o slpt for all t € Ac-1(y). Define X := {8 < e '(V)|s Ifp “e(B) # ¥ }. Because
of s Ikp “9 € ¢” and the maximality condition for A.-1(9 we have that X 2 0.
Let § := min X, £ := e(f) and ¢t <p s be such that ¢ IFp “¢ = ¥”. Then Ag
is predense below t so there are u € P, v € Ag such that v <p t,v. But then
ulbp ‘v=n=9v=ANEeT. Soullkp “ver and u<pt <p s <pr.

So we succeeded in finding for each p € A a name 7, € H) such that p IFp “o = 7,7, Set
T = UpeATp. Since each 7, was in H, and ALKP<Kk<28<\ 7€ H,.

Now let ¢ € P be such that ¢ IFp “o € HA”. We will show that {7“ <p q}r Fp “o =17
is dense below q. To this end let » <p ¢ be arbitrary and take a p € A such that
pllpr. Let s <p p,r be a witness to this fact. Then clearly s IFp “c = 7,7. But also

slkp “1, = 77 since Vt € A\ {p},u € ran(r) : v € P;, A is an antichain and s <p p.

4.2. LEMMA. Let k € Card, P € H,+ a forcing notion and A € Reg such that A\ > 2~.

Then for every formula ¢ and every a € H)y:

lp H_I[D L((H))\ ’: “()O(CL)”” @ H(}\) ): “]LI[D H_I[D L‘QO(CL)””

Proof. By induction on the complexity of the formula ¢. We define rk(3zip(z)) =
rk(¢(e)) + 1, tk(¢p — 7) :=rk(¢)) + 1k(7) + 1 and rk(L) := 0. Then for all formulae ¢
with rk(p) =0 Hy | “lplFp “@ <> 177 and 1p IFp “H) | “p < 177

e ¢ = 1. This is trivial.
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e p =1 — 7 for some formulae ¢, 7.

Suppose p IFp “Hy E “¢p — 777, We distinguish two cases.

— 1k(7) > 0. Let A C P, be an antichain maximal below p deciding H, = “¢”
and Hy = “77. X > 2 > kT > trcl(A) hence A € Hy, Hy, = “A is an
antichain maximal in below p.”. g lkp “Hy) = “"” or g Ibp “H, = “77” for
every ¢ € A. By the inductive hypothesis Hy |= “qlFp “—0”” or Hy = “q IFp
“r77 for every q € A. But then Hy = “plFp “¢p — 777.

— rk(7) = 0 In this case 7 = L. We prove the statement by contraposition.
Suppose Hy = ‘plkp “¢9 — L7, Then Hy = “p Wfp “¢p — 177, So Hy
“Ig <p p : q IFp “Y”” hence there is a ¢ <p p with Hy, E “q IFp “¢"".
By the inductive hypothesis ¢ IFp “H) = “¢”” so p fp “Hy ¥~ ‘0" hence
Pl “Hy b — 177,

Assume that Hy | “plkp “¢b — 777. Again we distinguish two cases.

— rk(¢)) > 0. Suppose p Ifp “Hy = “t» — 777, Then there is a ¢ <p p such that
qlFp “Hy [~ 9 — 77, But then g Ibp “Hy | “¢0”” and ¢ IFp “Hy | “>777.
By the inductive hypothesis Hy = “q IFp “¢0”” so Hy | “q IFp “7”” by our
assumption. But—again by the inductive hypothesis Hy | “q IFp “=777. 4

— rk(¢) = 0. Then ¢» = L and ¢ is equivalent to T but then this is clearly

trivial.

o = dx(x).

— Suppose p IFp “Hy = “Jzp(z)””. Then plbp “Ixr € Hy : Hy E “Y(x)””. So
by the maximal principle there is a P-name o such that p IFp “oc € H\A H) =
“P(o)””. By lemma 4.1 we can assume w.l.o.g. that 0 € H). So H, |
“pIFp “¢(0)”” by the inductive hypothesis hence Hy = “p IFp “Jzip(z)”” in

particular.

— Assume Hy = “plFp “ayp(z)””. Then Hy = “Jz : p lFp “¢(x)”” so there is a
P-name o € H) such that Hy = “p IFp “¢(0)””. By the inductive hypothesis
plFp “Hy | “(0)””. So in particular p Ikp “Jz € Hy : Hy | “¢(z)”” but
then plkp “H) | “Jaip(x)””.

At the end we have to prove p lkp “Hy = “oc € 777 & Hy E “plkp “o € 777 for every
p € P and P-names 0,7 € H,. Clearly in this case p lFp “H) = “oc € 777 < plkp “o €
77. So it suffices to prove plrp “oc € 77 < Hy = “plrp “o € 777, This will be done by
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an induction on rk(7) in which we distinguish two cases:
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4 The consistency of BPFA

e rk(7) = 0. Then 7 is a name for the empty set hence p IFp “o € 77, Hy = “p IFp

79

“o € 177 are both clearly false.

e rk(7) > 0. Suppose p IFp “o € 7. By definition of the forcing relation this means
that D, , == {q‘EI(C,r) eET(g<prNglkp ‘o= C”)} is dense below p. But then
by the inductive hypothesis Df; =D, and Hy = “D, , is dense below p.”, so by
the inductive hypothesis Hy = “p lkp “o € 777.

On the other side assume that Hy = “p IFp “o € 77”7. Then there is Df¢ € H,
and Hy = “D, . is dense below p.”. Again Df¢ = D, . and D, ; is really dense
below p. With the inductive hypothesis it follows that p IFp “o € 77.

7

Because H) satisfies extensionality we do not need to deal with “=". o

4.3. LEMMA. Let k be a reflecting cardinal and P € H, a forcing notion. Then

1p IFp “k is reflecting.”.

Proof. Let k and IP be as above. Since reflecting cardinals are in particular inaccessible
and hence limit cardinals by the lemmata 1.7 and 1.8 we can fix a A € Card Nk such
that P € Hy. Now let a € H,, u € Card \k and suppose that

Le Ibp “H, = “p(a)”. (4.1)

Lemma 4.2 implies H,, = “Ip IFp “@(a)””. If v is large enough then by lemma 1.1
H, E “H, E “lp IFp “p(a)””” and in particular

H, = <30 € Card\\ : Hy = “1p IFp “p(a)"”” (4.2)

Let 9 be a witness to this. Lemma 1.2 implies that ¥y > X is in fact a cardinal and
in conjunction with lemma 1.1 it also yields Hy | “lp IFp “p(a)””. Since 9 > A
and P € H,, forcing with P does not collapse ¢. Finally by lemma 4.2 we attain
1p lFp “Hy | “p(a)””.

At this point we cite a generalized A—system—lemma.
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4.4. LEMMA. ([Ku], I1.1.6. Theorem) Let A € Card \w and £ € Reg\A™ such that
Y < K [V < k. If Bis a family of size at least x such that Vo € B: T < A then
there is a C € [B]" that forms a A-system.

We will need this in order to see that a certain forcing notion fulfills a particular chain

condition.

4.5. Facrt. If a € Lim, P, is an iterated forcing construction of length o with finite
or countable support, G, is P,—generic, (8 < cf(a))V[G“} and S € P(F) N V[G,] then
already S € V[G,] for some v < a.

Proof. We can suppose w.l.o.g. that cf(«) is uncountable since otherwise (3 is a
natural number which instantaneously renders the statement above true. Let o be a
P,—name for S. For every 6 € S let ps € G, be such that ps IFp, “5 € o”. Let
7 1= SUP;cg <sup (supt (pg))). Since the support of every condition is countable and the
cofinality of « is uncountable and greater than 3, v < a. Then S = {5 < B‘Elp € Gy
plFp, “0 € 0” } The exact value of v of course depends on S but that is not the point.
IFp, is definable in V' so S is already definable from G,. -

4.6. THEOREM. (Saharon Shelah, 1995) Let s be a reflecting cardinal. Then there is
a r—c.c. proper notion of forcing P such that whenever G is P-generic over V, V[G] =
“ZFC + BPFA 2% = 2%t = N, = .

The following proof is an analogue of the classical construction of a generic extension
for ZFC +- CH + MA by iterated forcing as written down for example in [Ku], chapter
8, §6 which has been adapted for the proof of the statement above. The theorem was
first proved with a slightly different notation in [G—S].

Proof. Let f : k «— k2 be a bijection with the property that Vy < k : f(y) <
K- (7+1)—in fact a surjection with this feature would suffice. We are going to define an
iterated forcing construction with countable support (((IPL,, <, L), (7, <, 57)) |y < Ii)
as follows: Let v < k and

ey K {(O’, a)‘a, o € H, are P, names and 1p_ IFp, “o € H is a separative (4.3)

partial order and « is a family of maximal antichains in a.”}
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4 The consistency of BPFA

be an enumeration. Whenever 1 < 7 one canonically can embed P, into P,,. Hence we
always can conceive of IP,-names as P,~names in such a situation. So for the names o,
from (4.3) let 3/, ,, be a P,—name from H, such that!

Ip, IFp, (3/6 € Hy : Do A [(is aproper and complete Boolean algebra such (4.4)

that VA € o : A remains a maximal antichain in /6) — ﬁ(”a o)

is such a (3, otherwise ﬁ?a o) is the trivial Boolean algebra.”.

Now we can use f for bookkeeping. Set 7, := 6;,@) iff f(y)=k-n+¢fory<k.

Note that since the 7., are all chosen from H,; all initial segments P,—where v < x—of

our iterated forcing construction P, are in H, too.

e P, has the k—c.c.—Proof:
Suppose towards a contradiction that {pa ‘a < KJ} was an antichain in P,. Consider

B := {supt(pa)|a < k}. We distinguish two cases:

— If B = k apply lemma 4.4 for \ := X;. Then there is a A-system C C B with
root r of size k. Then define D := {pa‘a < K A supt(p,) € C}.

— If B < & then by the pigeonhole principle there exists an 7 € [k]<“* and an
s € [k]" such that Vo € s : supt(pa) = r. Define D := {p,|a € s}.

Set v := sup(r) + 1. In both cases {p fv‘p € D} is an antichain of size x in P,.
But P, € H, so in particular P, < . 4 4 (P, has the k—c.c..)

This immediately implies that x remains a cardinal in the generic extension.

e [P, is proper.
This is simply a consequence of theorem 2.16 since 1, IFp, “m, is proper.” for all

v < K. - (P, is proper.)

e Now we show that V[G,] = “k < Ny”—Proof:
The iterated forcing construction as a whole is proper so in particular N; is pre-
served.(As a consequence we dispense with the superscripts when talking about

N;.) But all cardinals between N; and x are collapsed. In order to see this we

!The word “otherwise” in (4.4) refers to the part of (4.4) in brackets.
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consider the following notion of forcing;:

Q = (Q, <g) where (4.5)
Q:={f:C—¥|CeX]*} and
P<Qq:<==DpDy.

Now let A € (Card Nk \Ry)Y and A := {A,|n < A} a family of maximal antichains
where A, := {{(f, 77)}}5 < Nl} for every n < A. Furthermore let o, a be Py—names
from H, for QV, A respectively. Eventually o, o are considered—say in step v < &
in the iteration. Note that id : Q¥ — QVI%] is a dense embedding. The first
two conditions in the definition of dense embedings are easily fulfilled. Lemma
2.15 implies that Q is dense in QY] B* := (ro(@))V[GW] is a complete Boolean
algebra which is proper in V[G,] since it is defined there from a countably closed

G4l is separative the canonical dense

and hence proper forcing notion. Since Q"
embedding from Q"% into B* is one-to—one. So there exists a one-to-one dense
embedding from QY into B*. By an isomorphic correction as in remark 3.4 we
attain a complete and proper Boolean algebra B such that Q is dense in B. So

every maximal antichain from QV stays maximal in B, in particular all from A.

So we showed that in V[G,] there exists a complete and proper Boolean algebra
extending Q" such that all A € A stay maximal. Now by definition of our forcing
iteration 7" is such a thing. But then Ftt € V[Gy44] is a filter meeting every
Ay and J QYT N EFTY) 2 Ry «— A So V[Go] E “A < Ry and hence in

particular
VG E “A < Ny, (4.6)

Since A was arbitrarily chosen from the cardinals below x that finishes this part.

A VIG] F *r <)

Next we want to see that V[G,] E “2% < k”"—Proof:

From fact 4.5 we know that every subset of N; in V[G,] is already in some V[G,]
where v < k. Every set in P(Ny) N V[G,] is represented by a nice P,-name.
P, € H,, let \, := P, +X,. There are at most (QA”)Nl = 2M < k such names. So
there are at most X,.,2" < k- k =  subsets of X; in V[G,]. Note that at this

point we needed k’s regularity.

4 (VG | 2% <)
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4 The consistency of BPFA

Since 2% > N; this also shows for the second time that x is not collapsed and
so remains a cardinal in the generic extension. Moreover it is now clear that
VIG.] E “k = Ry”. Note that if we succeed in showing V[G,] = “ BPFA” because
of BPFA = MAy, = 2% > R, we will be finished.

e Finally V|G,] E “BPFA”—Proof:

At first we work in V[G,]. Let B* be a proper Boolean algebra and Ag- := {An ‘77 <
Nl} a given family of maximal antichains in B* all of which have size at most N;.
By an isomorphic correction choose a B and an isomorphism v : B* ~ B such that
the subalgebra S finitely generated by A = {@b“An}n < Nl} is in Hy,. Clearly B is
also proper and A is again a family of maximal antichains. By lemma 3.3 A and
S are coded by subsets of N; which by fact 4.5 already appear at an intermediate
stage in the iteration. So choose a v < k such that S, A € V[G,].

Claim: For all n € x \ v in V[G,] there exists a complete and proper Boolean

superalgebra B’ of S such that all antichains from 4 remain maximal in B’. In fact

if pe %, G is a %’;fname such that

P II—%H “A is a proper Boolean superalgebra of S such that (4.7)
n

all antichains from A remain maximal in (.”,

Q= {1 € Blo <z p} Q= (Q <51 Q) and 5% is a Z name for (3%)" then

B :=ro(Q + #1) is such an algebra up to isomorphism.
Note that the existence of such p, [ is witnessed by B’s existence in V[G,].

Proof of Claim: Let n € k\ v be arbitrarily chosen and let p, 3, Q,Q and B’ be as
above. Let ¢ : Q%" — BT be the canonical dense embedding. At the beginning

we prove that B’ can be seen as an extension of S by the following embedding:

X:S— B (4.8)
5((p.5) iff s 4 0

Op otherwise.

S —

— It is immediate that Og = Op and 1g = 1p.
— Also x(—s) = —x(s) for all s € S. In order to show this let s € S\ {0s, 15}
be arbitrarily chosen. Suppose towards a contradiction that x(—s) # —x(s).

Since the partial order on a Boolean algebra is in particular antisymmetric
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we can infer that x(—s) € —x(s) or =x(s) L x(—s). So we distinguish

these two cases:

x x(—s) €p —x(s). Since B’ is a Boolean algebra this means that x(—s)||g—+x(s)-
By density of §’s image choose a (¢, 7) such that 6 ((¢q, 7)) <z x(—s), x(s).
Then (p, 3)||gss+ (g, 7)—let (r,v) <gup+ (¢,7), (p, §) be a witness for this.
Furthermore let (¢,9) <gup+ (7,7), (p, 7s) witness (7, V)| gss+(p, 7). So
tlkg “0 € Bt AU <3 8, —s” which is clearly nonsense.

x —x(s) €p x(—s). Since B’ is a Boolean algebra the canonical par-
tial order on it is separative. Using this fact and the density of s
image one can find a (¢,7) € Q = 3% such that 6((¢,7)) <p —x(s)
but 6((q, 7)) Le+x(—s). So 6((¢, 7))L+ x(s) and hence (g, 7) Lgug+(p, 3).
But also (g, 7)Lg«g+(p,—s). Since ¢ <g p this implies ¢ kg “7 €
BT ATLge8,—8"—4 = (x(=s) = ~x(s))

— Finally x(s At) = x(s) A x(t) for all s,t € S. Again by separativity it suffices

to distinguish two cases in search for a contradiction:

x x(s A t) €p x(s) A x(t). By separativity and density choose a (q,7) €
Qx 3" such that §((¢q, 7)) < x(sAt) but 8((¢, 7)) Le~+ (x(s) Ax(¢)). Since
(¢, 7)|lgus+ (p, (s At)) we can choose a (r,v) <ges+ (¢,7), (b, (s AL)). We
distinguish two subcases:

- 8((r,v)) Le+x(s). Then (r,v) Lgug+(p, §) but also (r,v) <gus+ (p, (SA

t)). Sorlkg ‘vetAv =<5 (sANt) ANvlges”—4
- 6((r,v))le+x(s). Then we can choose a (u,¥) <gug+ (r,v) such
that 0((u,9)) <p x(s). Since (u,9) <gug+ (¢,7) it follows that
6 ((u,9)) L+ x(t). So (u,9) <gug+ (p, (s At)) but (u,d)Lgug+(p,E).

Hence ulFg “0 € BT A9 <5 (s AE) NI Lgst"—
x x(s) A x(t) €p x(s At). By separativity and density choose a condition
(¢, 7) from Q3% such that 6((q, 7)) <m x(s)Ax(t) but §((¢, 7)) Le+x(sA
t). Since obviously (g, 7)||g«s+ (P, §) we can choose a condition (7, v) <gus+
(q,7), (p,3) and subsequently a (u,?¥) <gus+ (r,v),(p,f) by the same
form of argument. (u,?)Lg.s+(p, (s At)) so u kg “0 € Bt AU <3
S ANV L3 NT—1 4 (x(s At) = x(s) A x(1))
— This actually implies that y is one-to—one. For if s;,t € S and s # t by
antisymmetry we can suppose w.l.o.g. that s €s t. Then by separativity
there exists a v € ST with © <g s—that is © Ag s = u such that ulg+t—that

it u Ast = 0s. But then x(u) Ap x(s) = x(u) and x(u) A x(t) = Op. If
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4 The consistency of BPFA
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x(s) = x(t) we would have y(u) = Op and hence u = Op—

- (x is one-to—one.)

— Suppose towards a contradiction that A € A and that ' € B’ is incompatible
with all elements from A. Since § (Q%(3) is dense in B’ there is a (¢, 7) € Q%[
such that 6((¢, 7)) < V. We have

Va € A:6((q, 7)) Lex(a). (4.9)
Since 0 is a dense embedding it follows immediately that
Va € A:(q,7)Lows(p, a). (4.10)
But then
Vae A:qlkg “TLga”. (4.11)

Proof of (4.11):

Suppose otherwise. From p = 1g we get ¢ <g p. So there would be ana € A
and an r <g ¢ such that r IFq “7|/ga”—that is r IFg “3¢ <5 7,a”. By the
maximal principle there exists a Q-name & such that r IFg “¢ <3 7,4”. But
then (r, &) <q«s (¢,7), (p, @) contradicting (4.10). —(4.11)

But (4.11) says that ¢ IFg “A is no longer maximal in 3.” contradicting (4.7).

—(All antichains from A remain maximal in B'.)
—(Claim)

As S is a Boolean algebra one in particular can conceive of it as a separative poset.
Now let o be a P, name for S and o be a P,-name for A. Then by definition of
our bookkeeping function f at some later point in the iteration the pair of them
is considered—in fact at 1 := f~! (FL Y Fey ! ((a, a))). We have

VI[G,] = “IB'(B’ is a complete and proper Boolean superalgebra (4.12)
of S and VA € A: A is a maximal antichain in ]B'.) "

Lemma 2.10 implies that the assertion believed by VI[G,] is $5({S, A}). Since
P, € H, lemma 4.3 implies that « is still reflecting and thus by lemma 1.8 35—



correct in V[G,]. But then of course

H,[G,] = “IB'(B’ is a complete and proper Boolean superalgebra (4.13)
of S and VA € A : A is a maximal antichain in B'.”).

Let E € H,|G,] be a witness to this, then because of x’s inaccessiblity and lemma
1.2:

V|G, = “E € H,,E is a complete and proper Boolean superalgebra  (4.14)

of S and VA € A : A is a maximal antichain in E.”.

Suppose now that o is a P,-name for S and a is a P, name for A. Then by

definition of our iterated forcing construction m, is chosen in such a way that

1, Ikp, “m, € H,, Ty, is a complete and proper Boolean superalgebra (4.15)
of o and every antichain from « stays maximal in 7,.”.

Hence in our iterated forcing construction FJ*' € V[G,1] C VIG,] is a filter

m,; "' —generic over V[G,]. That means it intersects every maximal antichain in

7 especially all those from A.

But now H := ¢~"(F*' N'S) is an Ag--generic filter. The following diagram

illustrates the situation:

TOp
id > id

4 (V[G,] = “BPFA”)

_{
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5 The consistency strength of BAAFA
and BPFA

It turns out that the existence of a reflecting cardinal is indeed equiconsistent with
BMFA as well as BPFA. In order to show this we need some more definitions. M4* C R,
implies that BPFA = BMFA so it suffices to show that BMAAFA has the consistency

strength of a reflecting cardinal.
5.1. LEMMA. Let T be a tree. The following two assertions are equivalent:
(1) 3f: T — wVs,t € T(s <r t — f(s) # f(t)).
(2) There is a sequence (A,|n < w) of antichains such that "= |J,,_ An.
Here of course <p:=<7 \(=T).

Proof. (2) = (1). Define f by setting ¢ — min {n}n <wAteA,}forteT.
(1) = (2). Set A, := f~'{n}. =

5.2. DEFINITION. A tree T is called special by definition if and only if the assertions

above hold. The function f in clause (1) is called the specializing function.

5.3. DEFINITION. Jensen’s global square-principle, denoted [J asserts the existence of
a sequence (C,|a € Lim \ Reg) the size of a proper class with the following properties

for any o € Lim \ Reg:
e () is club in «,
e otyp(Ca) < a,

o V3 €lim(C,): f ¢ RegNCs=C,N B.

The following theorem asserts the existence of a well-known state of affairs.
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5 The consistency strength of BMFA and BPFA
5.4. THEOREM. L = “O0".

This is proved for example in [De 2], VI.6. A careful analysis of this proof yields the

following. . .

5.5. FACT. There is a ¥; ({N;})-definable witness for the truth of O in L. To put it
more formally:

There is a 3, ({X;})—formula ¢ such that for every L-singular limit ordinal o there
exists exactly one C, such that ¢(a, C,).

We now sketch this analysis:

Proof. Devlin’s proof starts at the bottom of page 286. On page 288 he defines
Q = {a|®(a x @) C a} where ® is Godel’s pairing function—which is A;—definable.
So @ is Aj;—definable too. He proceeds by distinguishing five cases.

(1) a < Ny,

In the first case C, shall be any w-sequence cofinal in . So we can take the
<1 —least one—which is ¥;—definable.

(2) a>N; and a ¢ Q.

(3) >Ny, a € and sup(Q Na) < a.

In cases two and three the sets C, are defined via ordinal arithmetic. These
definitions are all absolute and the reason for this is that they are A; since in the

end they are defined by transfinite recursion where every single step is A;.

For the two remaining cases Devlin defines:

B3 := “the least [ such that « is singular over J3.” (5.1)

and n := “the least n such that « is ¥, —singular over Js. (5.2)

(4) a >Ny, a€lim(Q),n=1and [ is a successor ordinal.

Case four is similar to case one. The cofinality of a is w so one can take any
w-sequence cofinal in . Again one can simply take the ¥;—definable < -least

one.

(5) a >Ny, a€lim(Q) and (n > 1 or 3 is a limit ordinal).
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In the last case C, is eventually defined on page 294:
Ca = {O&t(,,)}l/ < é} (53)

This uses the function ¢ defined on page 293 by transfinite recursion from Godel’s
pairing function, the parameter x defined on page 291, the sequences («,) and
(X,), « itself, the function a — J,, the n + 1% standard-parameter over § and
the canonical ¥; Skolem function A gi2,An2 Indeed this whole construction—the
heart of which is the recursive definition of the functions £ and m and the sequences
(X,) and () on page 291—amounts to a 3;—definition. The important points in

this respect are the following:

e All fine-structural elements of the construction—the canonical >;—Skolem

functions, the standard codes and the standard parameters are ¥;—definable.

e The function § +— Jsz is X;-definable—see for example [De 2], corollary
VI1.2.6.

e Whenever the formulation “Let ... be the least ordinal such that ...” appears,
notice that 3 +— Jg, h, h;, etc. are X;—definable functions, not ¥,-definable
yet otherwise arbitrary relations. So “e € J3” as well as “e ¢ J3” are both
P ({ﬁ})fdeﬁnable predicates and hence denying the property “e € J,” for
all ordinals 7 smaller than 3 does not “contaminate” the definition with a

IT,—statement. Similar considerations obtain for h, h,, etc.

e A set recursively defined by Y;—statements is at whole Y;—definable—see for

example [Je 2], lemma 13.12.

Finally we have to check that the cases can be distinguished in a Y;—fashion. “e € Q”
is a Aj—predicate, a supremum of a set of ordinals can simply be calculated by taking
the union, so sup(Q N a) < o and « € lim(Q) are both A ({a}).

Now only the definition of § in (5.1) and the definition of n in (5.2) remain to be
checked. The first can be formulated thus:

HA(ACa/\UA:a/\otyp(A)<a/\A€J5)/\ (5.4)
Vy < B,A€ Jy((ACa/\UA:a) —otyp(4) = a).

For the latter we use the fact that the property “m is the Godel-number of a ¥,—
formula.” is Ay ({m, n}). If we denote this property by FC then we can express (5.2) as
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5 The consistency strength of BMFA and BPFA
follows:

EIAGJg,m<w(ACoz/\UA:oz/\otyp(A)<a (5.5)
ASat(Jg, A, m) AFC(m,n)) AVk <n,m <wdA € Jg:
FC(m, k) A Sat(Jg, A,m) NACaA UA = a A otyp(4) < a.

5.6. REMARK. If (C,|a € Lim \ Reg) is a witness to the truth of OJ there is a tree 7,
which corresponds to this sequence in a canonical way. Define 7 := (Lim \ Reg, <) and
set B < v <= [ is a limit point of C,. < is reflexive, transitive and antisymmetrical.
It also inherits the property of being well-ordered from the ordinals. So < is a strict

partial well-order. Finally

V3,7 € Lim\ Reg (3 € Lim\Reg(Bxn Ay <n) — B<7Vy=<45), (56
so 1" is a tree.

Proof. We will only prove the last assertion.

Let 3,7, n be singular limit ordinals such that 3,y < 1. Suppose w.l.o.g. that § < 7.
7 is a limit point of (), so C,, = C;, N 7. Since 3 is a limit point of C}, and 8 < v, B is
a limit point of C,. So B8 < n. The other postulates regarding 7 are comparably simple

to prove. —

For the rest of this chapter we fix a witness for the the truth of [0 in L, i.e. we
fix a class—sized sequence (C,|a € Lim\ Reg) and we suppose it to be ¥;—definable.
We are going to analyse initial segments of its corresponding tree. The tree will be
denoted as 7o = (Lim \ Reg, <g). When writing 75 [ S for S C Lim\ Reg we mean
(S, <o N (S x S))

5.7. LEMMA. If 0% does not exist, then Va > Ry : cfV (a+L) >a.

Proof. Suppose towards a contradiction that the lemma is false, i.e. that a > Ny,
0# does not exist but cf" (oﬁL) < @”. Let C C a™™ be a cofinal subset of at” such

that otyp(C) < @. Since 0% does not exist Jensen’s Covering lemma holds true. X; U C'
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is uncountable and so there is an S € L such that S D 8, U C yet S =N, UC. Let
X := Sna*?’, then X is cofinal in a** and X € L. Since L satisfies full Choice and hence
in particular all its successor cardinals are regular we infer that otyp(X) = a*”. At the
same time X < S =X; UC < Xy + C < @ and hence otyp(X) < a. Contradiction!

5.8. LEMMA. Suppose g is regularin L, C* € L a club set in g such that C*NReg” =
and C' C C* a club set in p such that otyp(C') = w;. Then all branches in 75| C' are

countable.

Proof. Throughout this proof when we use the phrase “cofinal branch” we are not
referring to this branch being cofinal in the tree but to the fact that the set of the
elements of this branch is cofinal in p. So suppose towards a contradiction that b C C'

is an uncountable branch. Since otyp(b) = w; it is cofinal.
There is exactly one cofinal branch in 7] C*. (5.7)

Proof of (5.7):

e There is at least one: b* := {7 e C”
o] C*.

dn € b\ v :v =<on} is a cofinal branch in

For if v € b* and w.l.o.g. § € v N b* there are witnesses 1, v € b such that 3 <o n
and v <g v. Since b is a branch there is a ( € b such that ¢ >g n,v. Hence
G,v <o ¢ which implies § <g . So b* is a branch.

b* is also cofinal in p since b is cofinal in ¢ and clearly b* D b.

e There is at most one: Suppose that b* and ¢* are both cofinal branches in 7 [ C*.
Suppose [y € b* A ¢*. W.lo.g. assume that §y € b* \ ¢*. Define two sequences
(Baln < w), (7n|n < w) as follows:

Yn :=min(c* \ 5,) (5.8)
Bra1 = min(b* \ v,) (5.9)

Since C* is a club ¢ := sup, ., 3, = sup,..,, 7» is an element of C*. Choose an

n € ¢* \ ¢. Then since v, is a limit point of C, and C,, = C,, N, for all n < w
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5 The consistency strength of BMFA and BPFA

we have that ¢ is a limit point of C, and C; = C,, N ¢. Furthermore choose a
v € b*\ (. Like before—since (3, is a limit point of C, and C3, = C, N 3, for all
n < w it follows that ¢ is a limit point of €, and C; = C, N (. So ¢ € b* N c*. By
¢ € b* we get By <g ¢ which in conjunction with { € ¢* implies 3y € ¢*. Contra-
diction! —(5.7)

Since there is exactly one cofinal branch in 75 | C* it can be defined from C*. If b* is

this branch then obviously

b*:{veC*

n < gﬂgec*\n;yg%; C}. (5.10)

C, isin L. p is regular

Since C* € L this means that in fact b* € L. Moreover [,

in L hence otyp(U, ;- C) = ¢. Since the C, are end-extensions of each other and b* is

unbounded in p this implies that
Vn < o3y € b" \ n: otyp(C,) = 7. (5.11)

Now we are finally approaching contradiction. We can construct a sequence of ordinals

(n|n < w) inductively as follows:

Y0 =0 (5.12)
Va1 :=min {n € b*| otyp(C;) = 7}

Since otyp(C,) < v for all v € Lim \ Reg this sequence has to be properly ascending.
Let ¢ := sup, ., 7. Since C* is club ¢ is an element of C*. Obviously cf(() = w so C;
exists. Since b* is cofinal we can choose an 7 € b* \ (. Because 7, is a limit point of C,
and C,, = C, N, for all n < w it follows that ¢ is a limit point of C;, and C¢r = C;, N (.
Let £ := otyp(C¢). £ < ¢ by the properties of the square-sequence. By definition of ¢
there exists an n < w such that otyp(C,,,) > £. But v, <n (—again by definition of (.
Contradiction! -

5.9. DEFINITION. For trees 7 = (T, <7) let Q7 = (Q, <g) be the following notion
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of forcing:

Q:={f| dom(f) € [T Aran(f) Cw (5.13)
AVn <w,s,t € fV(n)(skrt At LT s)}
PSQq:+==pDq

Subsequent occurences of Q refer to this notion of forcing. We want to see that Q

satisfies the c.c.c. for a certain kind of trees, for this we recall the following...

5.10. DEFINITION. Let X D (. An Ultrafilter U over X is called uniform by
definition iff U c [X]¥.

5.11. LEMMA. Whenever 7 is a tree whose chains are all countable, Q7 satisfies the

countable chain condition.

Proof. Suppose P € [Q]?*'. We have to show that P is no antichain so suppose it
was one. U := {dom(q)}q € P} is an uncountable family of finite sets so the A-system-
lemma can be applied. Let D € [U]?*' be a A-system with root r and P’ := {q €
P} dom(q) € D}. Since {q € Q} dom(q) = r} < Ny there is a ¢ € @ with dom(q) = r
such that P, := {p € P’}p [r = q} is uncountable. Fix such a ¢, let n := max {l <
w}{p € Pyldom(p\ ¢) <1} <®;} and P* := {p € P;|dom(p\ ¢q) = n}. Clearly P>
and P*C P, C P'C P.

Now we have that

Vp,r € P*3z € dom(p \ ¢),y € dom(r \ q)(z <7y V y <7 7). (5.14)

Otherwise for a counterexample {p, r} we would have pUr <q p, r contradicting the fact
that P* is an antichain. For each p € P* let e, : n «— dom(p \ ¢) be an enumeration.
Define Of := {p|p € P* A (e,(1) <7 2V & <7 €,(1)) } for every z € U,ep- dom(p\ ¢) and

every | < n. Now because of (2) we can write O as a finite union for all p € P*:

r= J Uor (5.15)

z€dom(p\gq) I<n

Choose a uniform ultrafilter U over P*. Then one can pick z, € dom(p \ ¢), !, < n such
that OZ” € U for every p € P*. We have that

VI < n(b := {z,|p € P* Al, =1} is a chain in T.) (5.16)
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5 The consistency strength of BMFA and BPFA

Proof of (5.16):

Take | < n and y,z € b. Then y = 25,2 = x, and [, = [ = [, for p,r € P*.
Because of Of,07 € U we have Oy N Of € U. U is uniform hence Oy N Of > N;. We
ensured that Vp,r € P*(dom(p \q) Ndom(r\q) =0Vp= q) SO as a consequence
Z = {ep(l)}p € O/ N Of} is uncountable. Z C ¢¥ U ¢* U (TY N T?) but ¢¥,¢* < Xy. So
Ny < Z\ (U KTYNT? and TY N'T* 2 () in particular. But then y <7 2 V 2 <71
y. 1(5.16)

Let m := max {l < n|[{p € P*|l, <1} < X;}. Then m < n and by, is an uncountable
chain in 7. 4 -

5.12. LEMMA. Suppose 7 is a tree with N; elements whose branches are all countable
and let G be Qr-generic. Then V[G] = “T is special.”.

Proof. Let 7 be as above and G be Qr-generic. Then | JG is a specializing function
for 7. As a union of functions it clearly is a function itself. Moreover, dom(|JG) = T
since D, := {q}q €EQANs € dom(q)} is dense for every s € T. On the other hand
D, = {q‘q €cQANqgHn) D (D} is dense for each n < w so ran(f) = w. Suppose
counterfactually that there are s,t € T such that (| G)(s) = (UG)(t), yet s <7 t. First
take a p € Dy N G, then a ¢ € D, N G such that ¢ <g p. It follows that ¢(s) = q(t). § 4

Now we will prove the following theorem:
5.13. THEOREM. (Saharon Shelah, 1995) If BAAFA holds, then X, is reflecting in L.

In [G-S] Shelah proved that BPFA = “N, is reflecting in L”. Later on Stevo
Todorcevi¢ gave a simplified proof for this. In fact he already proved the theorem
above. Before we will enter the proof some comments on the idea are given. If one
looks at the formulation of Bounded Forcing Axioms in terms of forcing absoluteness it
can be considered a straightforward idea to collapse x below N, with a proper notion of
forcing—“Ja < Wy : L, E “p(a)”” is a Xj—assertion because one typically formulates
this assertion by restricting the quantifiers in ¢ to L, and the function o +— L, is A
by [Je 2], lemma 13.14. Unfortunately this direct approach does not work since we also
require this o to be a cardinal (in L). Since being a cardinal is a II;-property we would
end up with a Ys-assertion which does not lead us anywhere. The solution is to find a

Y1-formalizable strengthening of the quality of being a cardinal in L.
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Proof.(Stevo Todorc¢evi¢) We are distinguishing two cases.

Case 1: 07 exists.

Then we are finished quickly. N, is regular so all the more it is regular in L. But
it is also Yo—correct in L by lemma 1.15. Finally lemma 1.8 implies that it has to be
reflecting in L.

Case 2: 07 does not exist.

First recall that H: = L, for all x € Card”. Suppose ¢ is a first order formula in the
language of set theory, a € Ly, and k € {()\J’)L‘)\ € Card" } \ R, such that

Ly |= “p(a)”. (5.17)

Let P := Fn(Ry, x,8;) be the usual forcing which adds a surjection from X; to x with
countable conditions. We have that 1p IFp “K = ¥;” so 1p IFp “cf(k) < wy”. But then
1p IFp “cf(k) = w,” since Lemma 5.7 yields that cf"(k) > wy and because of P’s being

o—closed, forcing with P adds no new countable sets. So we arrive at
V[G] = “Ik € Reg” ﬁ?%(cf(m) =w AL, “<p(a)”)”. (5.18)

Kk is a successor cardinal in L so in particular £ is not Mahlo in L. Let C* € P(r) N L
be a club witnessing this, i.e. C* N Reg” = 0. Let (7,]a < R;) be a properly ascending
sequence of ordinals from V[G] which is cofinal in x. Then by setting E := {min(C"\
Ya)|a < X1} and €' := E Ulim(E) one can see that there is a club subset C of  of order
type w; containing solely limit ordinals singular in L.

Lemma 5.8 says that
VIG] = “All branches of 75| C are countable.”. (5.19)

Now by lemma 5.12 we are able to add a specializing function with Q7 c. Q¢
satisfies the countable chain condition by lemma 5.11. So let H be Qg jc-generic over

VI[G]. | H is a specializing function for 75| C. Consider the following statement:

Ik <Ry, C, f: C - wla€ Ly ALy = “p(a)” A\CNRegh =10 (5.20)
Notyp(C) =w;y AC is club in kK A f is a specializing function for 7 [C’).

This is indeed a 3 ({X;})-assertion. In order to see this notice that

o K< Ng = E'f . Nl —» k—this is 21 ({Nl})
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5 The consistency strength of BMFA and BPFA

e Cis unbounded in k =V3 < kIy <k : vy € C\ f—this is Xo({x}).

C is closed in k = V[ < H((C is unbounded in B A € Lim) — 8 € C)—again
this is o ({x}).

e otyp(C) < a is Al({C’,a}): It can be characterized as 30 < o, f : C — 3 : “f is

order—preserving.” but also as 3f : « — C': “f is order—preserving.”

As a consequence otyp(C) = a is Ay({C, a}) too since it in turn can be charac-
terized as otyp(C) < a+ 1 A otyp(C) £ a.

e CNRegt =0 =Va e C’EIﬂ,A(A €LgNACanotyp(A) <a A Ais unbounded
in o)—this is Xy ({C}) since the function 3 +— Lg is £; by [Je 2], lemma 13.14

e o is a limit point of A=VE <adye Ana) (8 + 1) —this is Xo({a, A}).

e fisaspecializing function for 75| C' = ran(f) = wAdom(f) = CAVa, € C(aisa
limit point of Cs — f(a) # f(6)), this is X; ({X1}) since Cp is ¥ ({X; })—definable
from ( by fact 5.5.

So we arrived at
VIG][H] E “(5.20)". (5.21)

But (5.20) is a ¥;-statement in the single parameter X; € Hy, and BMFA holds. P
is countably closed and Q7 ¢ satisfies the countable chain condition. By the lemmata
2.20, 2.19 and 2.30 it follows that P x Q7 c € M C M. So by corollary 3.6 (5.20)
already holds in V. Finally we have to prove that the a mentioned in (5.20) is an
L—cardinal. In fact it is even regular. This is not excessively surprising since we know
by lemma 1.5 that in this context one can replace the requirement of the existence of
an a € Card” NR, with L, = “p(a)” by the call for an o < R, which is a successor
cardinal—and hence regular—in L with this property without limiting the scope of our
notion of “reflecting cardinal”.
So the k from (5.20) is regular in L—Proof:

Suppose it was not. Then C); from the sequence corresponding to 7 exists. First notice
that

cf(k) = wy. (5.22)
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This is because C'is club in k£ and otyp(C') = w;. By definition cf(k) < wy. If cf(k) =
w there would be a properly ascending sequence (7,| < w) cofinal in k. Then C =
Un<o(C N Yng1 \ 7m). By the pigeonhole principle then there has to be an n < w
such that C' N Y,41 \ 7m = V. Since otyp(C) = w; it follows that C'\ .41 = 0. C is
unbounded in & S0 Y41 = K.4 —(5.22)

Since k < Ny we immediately have that

>

— N, (5.23)
Let now lim(C,) denote the set of limit points of C,,. Then we have
C Nlim(Cy) = Ny. (5.24)

(5.23) easily implies C N1im(C,) < X;. For the other direction suppose otyp (C'N
lim(Cy)) < wy. Since cf(k) = wy it follows that f := sup (C' N1lim(C,)) < k. Now define

inductively for n < w:

Y = min(Cy \ Bn), (5.25)
Bps1 :=min (C'\ (7, +1)). (5.26)

Let v, = Sup, <, Yn- Yw € C N1Im(Cy) \ (o +1).4 4 (5.24)
But it also is a fact that

C N lim(Cy) is a chain in 7,4, [ C. (5.27)

In order to see this let 5,7 € C N lim(C}) be different. W.l.o.g. one can assume that
B < . Since both 3 and v are limit points of C, it follows that C3 = C, N § and
C, = C, N~. But then 3 is also a limit point of C,, and C3 = C, N —in other words,
B <1e - = (5.27)
But now (5.27) immediately yields a contradiction since f : C' — w was supposed to
be a specializing function yet by (5.24) and the pigeonhole principle there have to be
different 3,y € C N lim(C,.) with f(3) = f(7). - (k € Regh)

_{
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6 BAFA does not imply BPFA

When one considers the fact that by the use of a reflecting cardinal BPFA can be forced
while at the same time BAAFA suffices in order to have N, reflecting in L, the question
whether BMFA =!BPFA is not a remote one. To put the question more formally:
Is there a model of set theory which satisfies BMAFA but fails to satisfy BPFA? The
question arises in particular because we have just seen that BMFA and BPFA have the
same consistency strength. If that would not be the case one simply could start with
a large cardinal insufficient for forcing BPFA and force BMFA—this is for example
the situation with BMM and BPFA(or BMM and BSPFA)—see [Sch 2]. But if a
ZFC-statement p implies a ZFC—statement ¢ and both statements are consistent modulo
the same large cardinal in general it is unclear whether p A —¢q is consistent and if yes
modulo which large cardinal. As a trivial example p implies p but there is no model of
p A —p. Clearly the minimal consistency strength of p A —¢q is the consistency strength
of p, =q respectively.

After all—in this situation a reflecting cardinal suffices to arrive at a model of
BMAMFA A—BPFA. In order to see this recall the forcing which adds a set club be-
low N; with finite conditions. An important fact in this respect is that it is absolute

between transitive models with the same N;.

6.1. LEMMA. Let IP be the forcing adding a set club below N; with finite conditions—
see example 2.25. “p € P is a A ({®;})-relation.

Proof. P has been defined as follows:

P := {p|p is a function with dom(p) € [R;]<* and ran(p) C ¥, (6.1)
such that there is a normal function with

domain N; and range cofinal in 8; extending p.}.

e In order to see that “p € P” is a X;-relation it suffices to analyse the original

definition from example 2.25 which we restated in (6.1). So note that. ..

'For once in mathematics “=" here does not stand for the material implication.
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6 BMFA does not imply BPFA

— “dom(p) € [Ny]<“” if and only if “In < w, f : n —» dom(p)” and that f’s

being onto can be expressed by a general quantifier bounded by dom(p).

— “There is a normal function with domain 8; and range cofinal in X; extending

p.” can be expressed as follows:

3f > p(f € Func AVa, B € dom(f)(a < 8= f(a) < f(B)  (6.2)
AVa € LimNdom(f), 0 < f(a)Iy < a: f(vy) > ﬁ).

e [t seems to be somewhat more involved to find a II;—formulation for “p € P”. The
I1,—definition provided below relies on the fact that whether a normal function
extending a given p exists is mainly a question of ordinal distance. First note that
“dom(p) € [N;]<“” if and only if “Af : w < dom(p)” which is a II;-assertion since
f’s being one—to—one is expressed by a general quantifier. So let p be a function
such that dom(p) € [N;]<“ and ran(p) C ;.

Claim: There is a normal function extending p if and only if there is one extending

{(a,p(a)), (ﬂ,p(ﬂ))} for every a, 3 € dom(p) such that o < 3 and #y € dom(p) :
a<y<p.

Proof:

— Necessity is trivial for if there is a normal function extending p then clearly

this normal function extends every subset of p too.

— In order to prove sufficiency let n := dom(p) and e : n «— dom(p) be an
order—preserving enumeration. For m < nlet f,, D {(e(m), (poe)(m)), (e(m+
1), (poe) (m—l—l))} be a normal function. Then clearly the following is a normal

function extending p:

f : Nl — Nl (63)

fo(a) iff @ <e(1)

ar— ¢ fu(a) iffe(m) <a<e(m+1)

\fn—1(0é) iff e(n—1) < .

Each f,, is continuous. Whenever one considers an infinitely ascending se-
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quence of countable ordinals the pigeonhole principle implies that infinitely—
and hence cofinally—many of them fall into an intervall on which f is de-
fined to be identical with some f,,. The limit of these ordinals then also
lies in this very intervall. So f is continuous too. Moreover suppose that
a < (. Then there is an m < n such that a < e(m + 1) < (. Hence

fla) = fm(a) < (fmoe)(m+1) = (fmir0€)(m+1) < fni1(B8) = f(5).

Now the following formula provides a II;—formulation for “p € P”:

Vo, B € dom(p) (v < B A Fy €dom(p) i a <y Ay <) — (6.4)
(pla) < p(B) A B < p(B) A pla, B) A (B € Lim — ¢(a, B)))-

We are going to show that there exists a normal function with domain R; and range
cofinal in N; extending p if and only if (6.4) holds for suitable II;—formulae ¢, 1.
To this end suppose that p(a) < p(3) and 5 < p(3) hold true for all a, 8 € dom(p)
such that #y € dom(p) : @ < v < F—otherwise the sought-after normal function

could not exist for trivial reasons. We define ¢ and 1) as follows:

0 =Vy < BAg: p(B) \ p(@) — v\ a: “g is order-preserving.”, (6.5)

Y =Vy < p(B)In < BYC < BAg: p(B) \ v — ¢\ n: “gis orderpreserving.”.
(6.6)

One cannot simply dispense with the involved extra—treatment of limit ordinals.
Whereas ¢ suffices as a characterization if 3 is a successor ordinal it does not if it
is a limit ordinal—clearly p((3) then has to be a limit ordinal too. But even this

does not suffice—there is for example no normal function extending {(w? w?+w)}.

— Suppose there are a, 3 € dom(p) with #y € dom(p) : @ < vy < 3 such that
(6.5) fails although there is a normal function extending p. Let us call this
normal function f. By the failure of (6.5) let v < B and g : p(8)\p(a) — v\«
be order—preserving. Then go (f [ ) : f\ @« — 7\ « is order—preserving

and so one is able to define an order—preserving function

h:8—~ (6.7)
iff n<a
(go (f13)(n) otherwise.

T]P—)
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6 BMFA does not imply BPFA

yet v < f—1¢
— Suppose furthermore that there are v € dom(p), f € Lim Ndom(p) with
Py € dom(p) : @ < v < B and that there is a normal function f extending

{(o, p(@)), (B,p(3))} although ¢ («, 3) fails. By the failure of ¢ («, 3) choose
a v < p(f) such that

Vn < B¢ < B,9:p(B)\v— C\n: “gis order—preserving.”. (6.8)

Since as a normal function f is continuous in  one can define 7 := min {f }5 <
QA f(€) = ~}. By (6.8) let ¢ < 3 and g be an order—preserving function
from p(3) \ v into ¢ \ 7. Then go (f 1 (3\n)) is an order—preserving function
from 3\ n into ¢ \ n—4¢ (—one attains contradiction just as in (6.7))

— Now suppose that (6.5) holds for all a, 3 € dom(p) such that By € dom(p) :
a < vy < [ yet there is no normal function extending p. The claim implies
that there is a least a € dom(p) such that with 3 := min (dom(p) \ (a + 1))
there is no normal function extending {(a, p(a)), (6, p(ﬁ))} We distinguish
two cases:

% (3 is a successor ordinal. (6.5) expresses that otyp (p(3)\p(c)) > otyp(v\

«) for every v < —in other words: otyp (p(8) \ p(ar)) = otyp(8 \ ).
But then there has to be an order—preserving function from [\ « into

p(B3) \ p(a). In particular

g: 08\ a—pB)\p(a) (6.9)
n pla)+(n—a)

is such a function. Note that it is in particular continuous at limit ordi-
nals. The choice of a implies that there is a normal function f* extending
pl (. But then

fiRy — Ry (6.10)

f(n) iff n < «
9(n) iff nef\a
p(B) + (n—B) otherwise

T] >
is a normal function extending p| (5 + 1) contradicting the choice of a.
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* ( is a limit ordinal. First note that ¢(«, 3) implies in particular that
p(F) is a limit ordinal. Now we choose a properly ascending sequence
(Xn|n < w) of countable ordinals cofinal in p(/3). By the choice of a there
exists a normal function f* extending p[ 5. For & < p(3) let n(§) denote

the minimal n such that y,, > £. Define inductively?

frli—®y (6.11)
G iff e < a
supg.e f(¥)  iff € €LimNB\ (a+ 1)
& Xnen(®) iff ¢
fW)+1 iff r
\p(ﬁ) + (£ — B) otherwise, i.e. iff £ > .

Here ¢ and r stand for the following cases:

q:&=19+1 for some ¥ € 8\ a and

otyp(8\ 9) < otyp (p(8) \ Xtnop)®))-
r:&=1v+1 for some ¥ € 8\ a and

otyp(8\ 9) > otyp (0(B) \ X(nof)())-

Now f really is a normal function with domain RN; and range cofinal in
N; extending p [ (8 + 1). This is immediately clear by the definition on
a+ 1 and on 8y \ . For the part of f’s domain lying in between note
the following:

- The second case in (6.11) ensures that f is continuous at limit ordi-
nals.

- Furthermore take note of the fact that ¢(a, 3) yields otyp(fG \ a) <
otyp (p(8)\p(a)). The discrimination between cases ¢ and r in (6 11)
inductively ensures that V& € 8\ o : otyp(8 \ £) < otyp (p(8) \ f(£))
and hence in particular f(3\ «) C p(8) \ p(c).

- Suppose f'3 would not be cofinal in p(3). Let n < w be minimal

2For the clause in the middle note that we can conceive of n as a function n : p(8) — w.
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6 BMFA does not imply BPFA
such that y,, > sup(f8). Then for y, in the role of v in ¢ we attain

In < BY¢ < Bhg : p(B) \ xn — ¢\ 1 : “g is order—preserving.”.
(6.12)

Choose such an n < 3. Then

V¢ < B otyp (p(B) \ xn) > otyp(¢ \ 7). (6.13)

But this means that otyp (p(8) \ x») > otyp(8\ n). If one now
considers a successor ordinal £ € 3\ n which is large enough such
that there is no m < n fulfilling y,, > f(§) one sees that by case ¢ in
(6.11) one must have f(§) > x, and hence f(§+1) > x4

But f should not exist in light of our choice of a—

6.2. COROLLARY.  Let still P be the forcing adding a club below R; with finite
conditions. P is identical in every inner model and in every forcing extension which

share their N;.

Proof. Let M, N be transitive models of ZFC, "M = RV and M c N. M could be
an inner model of V or N a forcing extension of M. Since “p € P” is A; by lemma 6.1
we have that “X C P” is A;({®y, X'}) and hence absolute between M and N. Suppose
towards a contradiction that P” # PN, Then obviously PM C P¥. Choose p € PN\ PM.
p € [Ny]< so obviously p € M. Since p € P is A;({p,N;}) it follows that p € PM.
Contradiction! 4

The idea behind the construction of a model of BAAFA A—BPFA is to force BAAFA
with some forcing satisfying Axiom A* and then to argue that BPFA cannot hold in the
generic extension. For this we need the following lemma:

6.3. LEMMA. To satisfy Axiom A is a Yp-property.

Proof. Let P = (P, <p) be a poset. First recognize the following facts:
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e That a set D is dense below some condition p € P is ¥¢({D, P})—as the following

formula shows:

Vge Plg<pp—3JreD:r<pq). (6.14)

e That a set C is countable is X; ({C'})—the following formula says that C'is count-
able:

37(f is a function withdom(f) =w A Ve € C3n <w: f(n) =c¢). (6.15)

The following formula describes what it means for P to satisfy Axiom A—remember

lemma 2.18:

X, (<h |n < w)
<VSCP:SeX/\P><P3<P:<° AVn < w <"l A

V(pn|n < w)(Vn < W(pp € P A ppy1 <" pn)
— 3p, € P(Vn <w : p, <" pu)) A
Vpe Pn<w,D e X(D is dense below p

—dg e P,C € X(q <" p,C C D is countable and predense below q))) (6.16)

Here in the first line there is an unbounded existential quantifier while the two lines
following start with an unbounded general quantifier. All other quantifiers appearing
in this formula are bounded. Being countable is 3; but the corresponding assertion in
the formula above is not preceded by any unbounded general quantifier. Hence it is
Yo({P}). This is also the reason for the reference to P’s powerset. One would simplify
the notation at the beginning at the price of ending up with an unbounded general

quantifier preceding the assertion of the countability of C' by dispensing with it. o
In fact this result is not quite enough. One also has to contemplate the following

fact—which is not very deep.

6.4. LEMMA. Being a complete Boolean algebra is a II;—assertion.

Proof. Let B = (B, 0p, 1, -5, Ap, Vg) be a Boolean algebra. That B is a Boolean
algebra is > ({]B%}) whenever the ordered pair is reasonably coded. It is complete iff the
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6 BMFA does not imply BPFA

infinitary product exists for every subset of its domain B. The following formula says

that this state of affairs obtains:

VX(XCB—3beBYreX bAgz =1 (6.17)

So being a complete Boolean algebra is a II;—property. -

6.5. COROLLARY. To satisfy Axiom A* is a Yy—property.

Proof. Let P be a notion of forcing. P satisfies Axiom A* iff the following holds:

dB, Q, dp, dg (B is a complete Boolean algebra, QQ is a notion of forcing (6.18)
satisfying Axiom A and dp : P — B, g : Q — B are dense embeddings.)

Now since being a complete Boolean algebra is II; by lemma 6.4, being a notion of
forcing satisfying Axiom A is 35 by lemma 6.3 and the assertions about dp and dg in
(6.18) are all 3 the proof is finished. —i

6.6. LEMMA. Let (ay,|n < w) be a sequence of countable indecomposable ordinals and
(Ba|n < w) a sequence of ordinals such that Vn < w : 3, < a,41. Consider the forcing

Q which adds a club with finite conditions below 8;. The following sets are dense in Q:
Dgg:)):::’ = {q‘q EQAIN<w,yeR\ B (an,7) € q}. (6.19)
Proof. Choose any p € Q. Let a, := sup,., &,, 7 := max (dom(p) N a,) and

n ;= min {m}m <wAn< am}. Let f witness that p € Q by being a normal function

extending p. We distinguish two cases:

e f(ap,) = (.. Then instantaneously all is well. Set ¢ := p U {(an,f(an))}. f
witnesses that ¢ € Q.

o f(an) < Bn. Then set ¢ :=p U {(an, Bn + an)}. One can define a normal function
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g extending ¢ as follows:

g: Nl — Nl, (620)

f6)  Mfse (n+1)U R\ (g1 + 1)
Bn+d ifd € (apr+1)\(n+1).

g clearly is a normal function on 7+ 1, (a1 + 1) \ (n + 1) and Ry \ (g1 + 1)

because f and 0 — (3, + 0 are normal functions. Moreover we have

9n) = f(n) < flaw) < fn < Bn+n+1=gn+1) (6.21)
and g(an—l—l) = 6n + Qpt1 = Qi (622>
< Op+1 +1 < .f(an—i-l + 1) = g(an—i-l + 1)

In any of both cases ¢ € QN Dgg:)):z is an extension of p. Since p was arbitrarily chosen

this shows the density of Dggnl))nlz =

We now present a variation of our forcing construction from chapter 4:

6.7. THEOREM. (Thilo Weinert, 2007) Let s be a reflecting cardinal. Then there is a
forcing P € M* that satisfies the k—c.c. such that whenever G is P-generic

V[G] | “ZFC+ BMFA +-BPFA +2% = 2% = Ry". (6.23)

Proof. The first part of the proof is almost identical to the proof of theorem 4.6.
Simply substitute every occurrence of “proper forcing notion” in the proof of theorem
4.6 by “forcing notion from .M. Then corollary 2.39 takes the role of theorem 2.16 and
corollary 6.5 takes the role of lemma 2.10. This shows that

VI[G] E “ZFC+ BMFA 428 = 2% = R,”, (6.24)

We provide the following diagram in order to call into mind the idea of the proof:
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6 BMFA does not imply BPFA

We will now show 1p, IFp, “7“BPFA”. Suppose towards a contradiction that this is
wrong, i.e. suppose there was a p € P, such that p IFp, “BPFA”. Consider now the
forcing from example 2.25 that adds a club with finite conditions below X;. In this proof
let us call it Q.

D:={D|D C QA D is dense. } (6.25)

We are indeed analysing this very set defined in our ground model V' and not the set
defined by the same conditions in the generic extension. 1p_ IFp, “VD € D:D <Ry
since every D € D is a subset of Q and hence (D < Ry)" for all D € D already. Also
1p, IFp, “% < Ny” since @ = N; and if X is the least inaccessible D™ <\ <k
Note that one can argue as in the proof of theorem 4.6 in order to see that P, adds
a surjection from N; to each a < k. Now as usual let G > p be a P,—generic filter.
Corollary 6.2 yields that @ still can be defined as “the forcing notion adding a club with
finite conditions below N;” in V[G]. In conjuction with lemma 2.29 this in particular
yields that Q remains proper in V[G]. Now let B be the regular open algebra of Q
calculated in V[G] and let 6 : Q@ — B be the corresponding dense embedding. Let
furthermore Dp := {5“D‘D € D}. That a set D is dense in a poset Q is X ({D, Q}) hence
Ip, IFp, “YD € D : “Dis dense in Q.””. But then V[G] = “Dg < Ry AVD € Dg(D < X,

and D is dense in B.)”. Moreover B is proper. So after all it must be the case that
plp. “IH : H is a Dg-generic filter over B.”. (6.26)

Now we are going to show that with the help of such a filter H one can define a certain

normal function. In order to do this note that the sets

D, = {q € Q|a € dom(q)}. (6.27)
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are dense in Q. Now in the generic extension we define our normal function as follows:

f . Nl — Nl (628)
o — the unique § < ®; such that 3¢ € Q(a € dom(q) A g(e) = 3 A é(q) € H)

Note the following:

e This is indeed well-defined. On the one hand there always is such a (3 because
0'D}, € Dy. On the other hand: If 3,y < Ny are given such that 3¢,r € Q(a €
dom(q) N dom(r) A g(a) = B A r(a) = v A 6(q),6(r) € H) then d(q),d(r) are
compatible in B and hence ¢, r are compatible in Q. But then ¢(«) = r(«) which

in turn implies 8 = 7.

e Let a < ( and suppose towards a contradiction that f(a) > f(5). By definition
of f this means that there are ¢,r € Q such that ¢(«) > r(5) yet §(q),d(r) € H.
So d(q)||s+0(r) and hence ¢||pr. This means that we can take a witness s <g ¢,r
for this. But this is absurd since s(a) > s(8) although there should be a normal

function extending s.

o Let a be a limit ordinal. We want to show that f(a) < sups, f(5). So let
B € f(a) be arbitrarily chosen. We have to find a v < « such that f(y) > 8. By
definition of f let ¢ € Q be such that o € dom(q) and 6(q) € H. Consider the
following set, defined in V!

D:={reQlqlgrVv (r<gAran(r) Ngla)\320)} (6.29)

Note that D is dense in Q. So we can take an r € D such that 6(r) € H.
Since §(q)||g+0(r) the definition of D shows r <g g as well as the existence of an
n € ran(r) N g(a) \ B. Set v := r~1(n) then obviously v < a and r is a witness to
the fact that f(v) > 5.

We now start a play of the strengthened proper game from chapter 2 in P, below p. Since
P, satisfies Axiom A* we know by clause (1) of lemma 2.27 that Player II must have a
winning strategy in this game. We will now show that under the current presuppositions
Player I has a winning strategy in this game. This will be our contradiction.

The game proceeds as follows:

e In the first move, I plays a name for f(0).
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6 BMFA does not imply BPFA

e In the n'™ move II plays a B, € [N;]<“.

e In move n + 1 I chooses an indecomposable ordinal a1 € X; \ (sup B, + 1) and

plays a name for f(ay,11).

This game yields a sequence of indecomposable countable ordinals («,|n < w)—here ag
is just zero. By setting 3, := sup(B,,)+1 for every n < w one gets a sequence ([,|n < w)
with the property that Vn < w : 6, < ay,41. So we can consider Dgg:)):j: from (6.19).
Lemma 6.6 tells us that DE;:))::;” is dense. Our play of the strengthened proper game

took place in V' so Dggnl))nf:’ € D. Hence if A is a name for H and 4 is a name for § we
get
« Ay (an)n<w ”
plFp, “ANé D(ﬁn)n; 0. (6.30)

Now let p be a P,—name for f. We will show that
plFp, “In < w:play,) > 6,7, (6.31)

To this end choose r <p, p arbitrarily. Because of (6.30) there is a t <p, r and a
qe DE;:))::;” such that ¢ IFp_ “6(g) € A”. By definition of Dgg:))::;” there are n < w,~y €
N \ G, such that (a,,7) € ¢. So by definition of f it follows that

tlFe, “u(d,) =37 (6.32)

Since r was arbitrarily chosen this shows (6.31). Since B,, C 3, for every n < w (6.31)
implies that I has a winning strategy in the strengthened proper game in P, below p.

But P,, € M4, so II had to have a winning strategy. 4 o
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{ History and questions

7.1 Some history

In the introduction we gave a compact overview of Bounded Forcing Axioms. We did,
however, not touch the subject of the consequences of Forcing Axioms on the class of
possible cardinalities of the continuum. Martin’s Axiom does not decide the size of
the continuum. A forcing axiom which does—although this was not recognized at the
time—first appeared fourteen years after Martin’s article in [Ba 2]—the Proper forcing
axiom. There it is introduced and moreover proven consistent modulo the existence of
a supercompact cardinal. Then in 1988 Martin’s Maximum is formulated in [F-M-S]
and also proven consistent—again modulo the existence of a supercompact cardinal. It
is also shown in this paper that MM = ¢ = R,. Later on it was established—see [Be]
and [V]—that indeed PFA suffices for this. Roughly at the same time Sakaé Fuchino
wrote the article [Fu] in which he showed that for a large class of classes of forcing
notions!—which in particular includes the class of proper forcing notions—BFA(C, , Q)

is equivalent to the following statement:

For any two structures A, B of size at most &, if an (7.1)
embedding from A into B can be forced to exist by a

forcing notion from C then some such embedding exists.

Fuchino also discussed whether for some classes of forcing notions “embedding” might
be replaced by “isomorphism” without weakening the statement. For the class of proper
forcing notions this was answered in the negative by Goldstern and Shelah in [G—S] three
years later. In this undertaking the bounded proper forcing axiom was formulated and
proven to be equiconsistent to the existence of a reflecting cardinal. In the year 2000
Bagaria’s article [Bag 1] appeared in which Bounded Forcing Axioms were interpreted

as assertions of absoluteness between the ground model and generic extensions. Two

1Believe it or not—we are still doing first order set theory.
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years after that Stevo Todorcevi¢ showed in [To 3] that BMM = ¢ = Y,. This was
further improved by Justin Tatch Moore who showed in [Mo] that indeed BPFA suffices
for this, i.e. BPFA = ¢ = N,.

7.2 Open questions

Although there has been a considerable amount of progress in the understanding of
Bounded Forcing Axioms in recent years it seems not that difficult to formulate questions
which cannot be answered outright. In the light of the basic elucidations regarding
BMAFA in the chapters 5, 6 and the recent historical comments one may for example ask

the following:

7.1. QUESTION.
e Does BMTFA decide the size of the continuum?

e If it does not: what is the consistency strength of BMFA +2%0 > R,?

The first part of this question is somewhat reminiscent of the question asked by Bagaria
in [Bag 3]: Questions 6.8.(4). There he formulated the following:

7.2. QUESTION. Let o—closed % ccc be the class of forcing notions consisting of an

iteration of a o—closed poset followed by a ccc poset. Such posets are proper?. Does

BFA (0—closed * ccc, Ny, No)3 imply ¢ = Ny?

The iterated forcing constructions by which we attained the generic extensions in
which BPFA, BMAFA hold respectively were defined referring not as commonly done to
¥;—formulae and parameters from Hy, as in [C—V] or—which is a special case of this—to
structures on Ny and endomorphisms of these structures as done in [G—S] but rather to
filters and maximal antichains. In the light of what is really needed to attain the generic

extensions in question one can make the following...

7.3. DEFINITION. Let C be a reasonable class of forcing notions. A cardinal x is
called C-reflecting if and only if

e x is regular.

2They even satisfy Axiom A.
3In fact something different is written there. But considering his explanations preceding this question
this is obviously what he wanted to ask.
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e If B € C is a Boolean algebra and A is a family of maximal antichains of B such that
the to subalgebra S finitely generated by A is in H, then there exists a Boolean
algebra E € C N H, such that E D S and VA € A: A is a maximal antichain in E.

In the light of this definition what one used to attain the generic extensions in which
BMAFA, BPFA hold respectively was the fact that reflecting cardinals are M*—reflecting

and B,-reflecting respectively. Clearly for all cardinals x:
K is reflecting = & is R, —reflecting = x is M reflecting . (7.2)

But since in both forcing extensions the M*—reflecting(R,-reflecting) cardinal is rendered

N, and BMFA = “N, is reflecting in L.” one also gets
L = “All M —reflecting cardinals are reflecting.”. (7.3)

This leads to the somewhat amorphous. ..

7.4. QUESTION. Can (7.3) be generalized so that one attains a purely combinatorial

definition of reflecting cardinals?

Another fact worth noting isthat we had to introduce the notion of being reasonable
in order to formulate a natural version of BAAFA. We could have dispensed with this if

we knew that .M is reasonable. So easily one arrives at asking the following. ..
7.5. QUESTION. Is .M reasonable?

In fact .M might not be reasonable. On page 50 BAAFA was said to be a natural
weakening of BPFA. A good reason for this is that .M can be seen as a natural class
of forcing notions. An argument for this in turn is that Axiom A is a straightforward
generalization from properties of Sacks forcing, Laver forcing, Mathias forcing, Silver
forcing, etc.. But first of all these properties are just combinatorial attributes of the
posets and it is not clear at all why for example they should also apply to the respective
regular open algebra. Note for example that whenever B is a o—complete Boolean
algebra, BT cannot be o—closed. So the the positive elements of the regular open algebra
of a o—closed poset do not themselves form a o—closed poset.

So at the end of this thesis we have reached the classical state of mind: We managed
to give one answer—theorem 6.7—but are indeed left behind with three open questions:
7.1, 7.4 and 7.5.
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7.3 Is the continuum problem solved?

Since the time of Godel some set theorists—mostly those who endorse realism as the
appropriate philosophical attitude towards mathematics—have argued that a proof of
the undecidability of a statement from the axioms of ZFC should not be viewed as the
final solution. Rather one could hope for axioms which—added to ZFC—would provide
a solution, they claimed. Godel himself argued this way on behalf of the continuum
hypothesis in [Gd]. Later on in the development several statements had been formulated
by set theorists that actually were denoted as axioms—such as for example large cardinal
axioms, the Axiom of Constructibility—also known as V' = L or Martin’s Axiom. But
the designation of these statements axioms was more due to the fact that they were
easily seen to be unprovable from ZFC yet useful in set theory. Neither was there a
great effort to argue for some such principle to be true nor was it even proposed to
be employed as a generally usable presupposition in proofs. Later on Penelope Maddy
endorsed a pair of heuristic principles which she called “Maximize” and “Unify”—see
[Ma]—to be used to judge how suitable certain statements in the language of set theory
are to be added to ZFC. The idea is on the one hand not to refrain from analysing certain
mathematical structures just because one added an axiom to ZFC which implies that
they do not exist—that is the content of the principle “Maximize”. On the other hand
one wishes to provide a unique framework for mathematics—this is what is demanded
by “Unify”. If one dispensed with “Maximize” one could add any statement consistent
with ZFC to ZFC and thus attain a theory answering more questions than ZFC alone. If
alternatively one did not employ “Unify” the best solution would be to allow a plenitude
of theories which could then be analysed simultaneously. Her paradigmatic example in
this respect is to judge the theory ZFC+V = L against ZFC + “0% exists.”. These
theories contradict each other. However, it is possible to reinterpret the first theory in
the second one simply by relativizing every formula to L. Furthermore Maddy proves
that by the second theory there exists an isomorphism type which does not exist in
any model of the first theory. So by Maddy’s argumentation it would be advisable to
prefer the second theory over the first. In [Bag 2] Joan Bagaria follows this line of
thought. There he also adds another criterion by which—in the context of his article—
one should judge several axiom candidates against each other—the criterion of fairness
as he calls it. Additional axioms should neither discriminate between formulae of the
same logical comlexity—as given by the Levy hierarchy—mnor between sets of the same

complexity, i.e.e.g. sets of the same rank or of the same hereditary cardinality. This
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in mind, he goes on to argue that because of the possible characterization as principles
of generic absoluteness the Bounded Forcing Axioms are indeed “real axioms” and that
they were at least as natural as axioms of large cardinals. In [Bag 3] Bagaria gives a
comprehensive overview on statements of generic absoluteness. On the one hand he
discusses generic absoluteness for formulae higher in the Levy hierarchy but only with
hereditary countable parameters. These principles are consistent with the continuum
hypothesis. On the other hand not so much seems to be known on generic absoluteness
with respect to ¥;-formulae with parameters from Hy,. If one considers the class of c.c.c.
notions of forcing the corresponding principle will just be MAy,. One cannot however
state the principle consistently even only for all o—closed forcing notions since one can
add a surjection f : Ny —» N, with countable conditions. The statement that such a
surjection exists is Zl({Nl, Ng}) and this notion of forcing is countably closed. So the
principle implies Ny < Ny and is hence inconsistent. This however does not exclude the
possibility of the existence of a natural class of forcing notions properly extending the one
of those satisfying the countable chain condition in respect to which generic absoluteness
of ¥;-formulae with parameters from Hy, is consistent. All the same the class of proper
notions of forcing can be considered a natural one but it nevertheless was not trivial
to isolate. So the claim that the continuum problem is solved because BPFA implies
that 2% = R, is probably premature, for even those who believe that the extension of
ZFC is a reasonable goal and additionally follow Bagaria in his argumentation regarding
the question what criteria one should adopt to judge between different—and sometimes
inconsistent—candidates for axiomhood can demand that one has to argue why Bounded
Forcing Axioms should be preferred over alternative principles of generic absoluteness.
While in the context of various principles of generic absoluteness one certainly could
find arguments in favour of the Bounded Forcing Axioms it seems hardly probable that
even every platonist could be convinced this way at present. But our knowledge will—
hopefully—increase so eventually such an argumentation might be successful or one

might find other hints on how big the continuum really is.
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A Notation

o () denotes the class of all ordinals,
e Lim the class of all limit ordinals,
e Card the class of all cardinals,
e Reg the class of all regular cardinals,
e Func the class of all functions,
o the canonical name for a generic filter,
o trcl(X) the transitive closure of X,
e otyp(C) the order type of C,
e lim(C) the set of C’s limit points,
o X the cardinality of X,
o X the pointwise image of X under f,
o P(X) the power set of X,
o XY the set of all functions from X into Y,
B the class of Boolean algebras,
e c.c.C. the class of forcing notions satisfying the countable chain condition,
e ocl the class of countably closed forcing notions,
o P, the class of proper notions of forcing,
o M the class of notions of forcing satisfying Axiom A,
e th(C) the reasonable hull of C and
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A Notation

o M the class of notions of forcing satisfying Axiom A*.

Closed unbounded sets are often abbreviated as “clubs”. C,D,C, 2 are used—mnot C
,2,C,D. The size of the font is a tribute to the sometimes excessive usage of indices.
Indices are not always used solely if unavoidable. Sometimes they simply shall insinuate
meaning—meaning they are supposed to simplify not to complicate the reading. M < N
means that M is an elementary submodel of N and M <y, N means that M is a
submodel of N and M and N believe in the same X,-assertions. When speaking of
a formula which may contain parameteres we often dispense with its designation as
v(ag, - . .,a,) but write just p(a) instead.

The term “forcing notion” is often used in this thesis. This is a somewhat vague
notion, since one can force with partially ordered sets, Boolean algebras, topological
spaces and other kinds of objects. At some places “Boolean algebra” is used instead
of “forcing notion”. The easiest way perhaps is, always to conceive of a forcing notion
as a poset and of a Boolean algebra as a poset which can be embedded bijectively into
a “real” Boolean algebra(We for example do not care about the “fact” that posets are
pairs while Boolean algebras are sextupels.). However—we do suppose that the class of
forcing notions is Yg-definable—as is the class of posets. This is necessary in order to
ensure the correctness of some calculations of complexity.

The terminology of iterated forcing is essentially the one of [Ku|. There nevertheless
is an important detail which is different. As it is said in the text in the definition of the
two—step iteration we do not require the name of a condition to be in the domain of the
name of the forcing notion. This follows the treatment of Baumgartner in [Ba 1].

As a notational variant of Kunen’s iterated forcing construction we employ the fol-

lowing;:

(((Pw <5 L)y < a), (1, <, 69) 1y < a)) (A.1)

which we nevertheless often abbreviate as P,. When argueing about some specific it-
erated forcing construction we usually dispense with mentioning the canonical dense
embeddings between the various P.. The filter Kunen calls H in [Ku], lemma VIII.5.13
is called Fg“ in this thesis—it is mentioned in the proof of theorem 4.6. Finally we
sometimes need to talk about an intermediate segment of our iterated forcing construc-

tion. If P, is an iterated forcing construction of length @ and v < < «, %‘i denotes

the segment of P, between v and 3 as interpreted by the filter G, . % shall then be our

canonical Pg—name for this object.
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