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Abstract We study countable universes similar to a free action of a group G.
It turns out that this is equivalent to the study of free semi-actions of G, with
two universes being transformable iff one corresponding free semi-action can
be obtained from the other by a finite alteration. In the case of a free group G
(in finitely many or countably many generators), a classification is given.
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1 Introduction

In [2], the concept of the universe of a first order structure is introduced. This
provides the appropriate framework to study the boolean algebra of param-
eter-definable sets of a (first order) structure without sticking to a particular
language. In the category of universes, transformations play the role of isomor-
phisms, whereas similarity replaces the usual elementary equivalence between
first order structures.

Several fundamental questions about universes are raised in [2]. Probably the
most intriguing one is Problem 7 in [2], the classification problem for countable
universes similar to an uncountably categorical universe.
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There is an example of a two-dimensional universe having exactly two
similar non-transformable countable universes. It is the universe of the follow-
ing first order L-structure, where L := {s, P}: the function s is a bijection without
cycles, P is an infinite coinfinite unary predicate such that in every s-orbit at
most one element is in P. See [2, 8.5] for details. Note that in this structure, both
dimensions are given by minimal types with a trivial pregeometry.

The present study of the universe of a free G-action (G some countable
group) grew out of the attempt to find a similar example which is uncountably
categorical or even strongly minimal. Since a free group action is the prototype
of a trivial strongly minimal theory, it seemed to be very natural to look at these
universes.

The main result of the paper is Theorem 1, the classification of universes
similar to the free action of a free group F(k) (for 1 ≤ k ≤ ω). If k �= 1, ω,
we show that there is no “prime universe”: the class of countable non-trans-
formable universes similar to the free F(k)-action is given by (Z ∪ {∞}, <). In
particular, this shows that the most obvious analogue of the Baldwin-Lachlan
theorem is false for uncountably categorical universes.

The paper is organised as follows. In Sect. 2, we gather some general facts
about universes. After that, free semi-actions and semi-free actions of a group
G are introduced in Sect. 3. We then show, in Sect. 4, that the universes similar
to an (infinite) free action of some group G are exactly the ones associated
to free semi-actions of G. Moreover, properties of (finitely generated) groups
such as amenability and the number of ends are discussed with regard to the
classification problem. In Sect. 5, we prove our main result. We equally settle
the classification problem for finitely generated abelian groups. Finally, we list
some open problems.

We would like to thank Bruno Poizat for many helpful discussions on the
subject.

2 Universes

We give a brief summary about the concept of a universe in model theory as
introduced by Poizat [2].

Definition 2.1 A universe U is given by an infinite set M (the base set of the uni-
verse) and subfamilies Dn(U) ⊆ P(Mn) for every n ≥ 1 (the definable subsets
in the sense of U) satisfying the following properties:

1. Boolean Combinations: Dn(U) is a boolean algebra for all n ≥ 1.
2. Product: If X ∈ Dn(U) and Y ∈ Dm(U), then X × Y ∈ Dm+n(U). All

diagonals �i,j := {(x1, . . . , xn) ∈ Mn | xi = xj} are definable.
3. Projection: If X ∈ Dn+1(U), then �(X) ∈ Dn(U), where � : Mn+1 → Mn is

the projection on the first n coordinates.
4. Parameters: The singleton {m} is in D1(U) for any m ∈ M.

If M = (M, Ri) is an infinite first order L-structure, the universe attached
to M, denoted U := UL(M), is simply defined to consist of the base set M
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together with all L-definable (with parameters) subsets of Mn, n ≥ 1. Such an
M is called a generating structure for U. The minimal cardinality of a set of rela-
tions generating U is called the width of U. The universe U is thin if its width is
equal to 1. This means that there is a finite set of definable sets generating U.

We now define some notions in the realm of universes which are analogous to
isomorphism, elementary extension and elementary equivalence, respectively,
for first order structures.

Definition 2.2 Let U and U′ be universes, with base sets M and M′, respectively.

1. We call U transformable to U′ if there is a bijection � : M → M′ of the
corresponding base sets such that �(Dn(U)) = Dn(U′) for all n. Such a � is
called a transformation between U and U′. Notation: � : U 
 U′.

2. An inclusion M ⊆ M′ gives rise to an elementary extension of universes
U � U′ if there are a signature L and L-structures M �L M′ such that
U = UL(M) and U′ = UL(M′).

3. The universe U is similar to U′ if U and U′ have a common elementary
extension.

Note that if U � U′, then for any generating L-structure M of U, there is
M �L M′ such that U(M′) = U′.

Fact 2.3 [2, 7.2] Similarity between universes is an equivalence relation.

The concept of types does not make sense in universes, and so a fortiori satu-
ration cannot be defined, either. On the other hand, κ-compactness survives as
a reasonable notion (every family F of definable sets with the finite intersection
property has non-empty intersection, provided |F | < κ).

Fact 2.4 [2, 7.4]

1. Let U be a κ-compact universe of width smaller than κ , and suppose that
U′ = UL(M′) is similar to U, where M′ is an L-structure, for some L with
|L| < κ . Then there is M ≡L M′ such that UL(M) = U.

2. Suppose that M is a κ-saturated L-structure. Then any generating L′-structure
of UL(M) is κ-saturated (in the language L′), provided |L′| < κ .

A universe U is called κ-categorical, if any two universes U1, U2 which are
similar to U and of cardinality κ are transformable. Here, by the cardinality
of a universe we mean the cardinality of its base set. Concerning categoricity,
we have the following (part (1) is [2, 8.2], and (2) can be easily deduced from
Sects. 7 and 8 of the same paper):

Proposition 2.5 1. Let U be a universe of finite or countable width. If U is
κ-categorical for some uncountable κ , it is λ-categorical for every uncount-
able λ.

2. Let L be countable and M an infinite L-structure whose theory is uncountably
categorical. Then, UL(M) is an uncountably categorical universe.
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This is Morley’s categoricity theorem for universes of finite or countable
width. In fact, it can easily be reduced to the version for first order structures.
As we already mentioned in the introduction, the classification of countable
universes similar to an ℵ1-categorical one is an open problem. It is not clear
what could be the general version of a Baldwin–Lachlan type theorem about
universes.

3 Semifree actions and free semi-actions

Let M be an infinite set and Sym(M) the group of permutations of M. For
f , f ′ ∈ Sym(M) set f ∼ f ′ if f and f ′ coincide almost everywhere. Let π :
Sym(M) → Sym(M)/∼ be the canonical map. For f ∈ Sym(M), call f/∼ the
germ of f .

A subgroup G ≤ Sym(M)/∼ is said to be trivialisable, if there is a homomor-
phism λ : G → Sym(M) such that π ◦ λ = id. This means that there is a system
of representatives for G closed under multiplication (also called a lift).

Given M and G ≤ Sym(M)/ ∼ we build the first order structure M :=
(M, fi, i ∈ I), where fi ∈ π−1(G) for all i ∈ I and 〈fi/∼, i ∈ I〉 = G. Since any two
generating sets are interdefinable (with parameters in M), the choice of (fi)i∈I
will not be relevant in the sequel.

Note that if M � M∗, then for every word w one has w(fi1 , . . . , fim) ∼ id iff
w(f ∗

i1 , . . . , f ∗
im) ∼ id∗. Thus, it is clear what we mean by G ≤ Sym(M∗)/∼.

Definition 3.1 Let M = (M, fi, i ∈ I) be a structure as described above, with
G := 〈fi/∼, | i ∈ I〉 ≤ Sym(M)/∼.

• M is called a semi-action (of G) if there is an elementary extension M∗ � M
such that G ≤ Sym(M∗)/∼ can be trivialised.

• The semi-action is free if there exists M∗ � M such that G ≤ Sym(M∗)/∼
can be trivialised in a way that the action one obtains is free.

• A free semi-action M that can be trivialised on M to a (not necessarily free)
G-action is called a semifree action.

Remark 3.2 If G is finitely presented, then every semi-action M of G can be
trivialised (on M).

Proof Let G = 〈g1, . . . , gn | R1, . . . , Rm〉, and let M be a semi-action of G.
W.l.o.g. M = (M, f1, . . . , fn), where fi/∼= gi. Suppose that this semi-action is
trivialised on M∗ � M. Thus, there are h∗

i ∼ f ∗
i such that gi �→ h∗

i gives rise to
a lift of G to Sym(M∗), i.e. Rj(h∗

1, . . . , h∗
n) = id∗ for 1 ≤ j ≤ m holds.

Since F := {x ∈ M∗ | h∗
i (x) �= f ∗

i (x) for some i} is a finite set (of cardinality N,
say), and since there are only finitely many relations to be considered, the fact
that there is a lift of G obtained by altering the fi only on the set {x1, . . . , xN}
can be expressed by a first order formula. So G can be trivialised on M, since
M � M∗. Clearly, if G were merely finitely generated we would get a par-
tial type on a finite tuple, such that every solution of this type gives rise to a
trivialisation of the semi-action. ��
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Lemma 3.3 Let M = (M, fi, i ∈ I) be a semi-action.

1. Th(M) has quantifier elimination in the language where all fi and f −1
i are

named.
2. M is strongly minimal iff for all f �∼ f ′ ∈ 〈fi | i ∈ I〉 the set {x ∈ M | f (x) =

f ′(x)} is finite. In particular, a free semi-action is strongly minimal.

Proof Part (1) is standard (using a back-and-forth). In fact, this is even true for
any structure built from a set of bijections and their inverses. It need not be a
semi-action. Now, (2) follows immediately from (1). ��

We now consider a strongly minimal semi-action M with group of germs G.
Let M � M∗ and α ∈ M∗ \ M. Since α is generic, for f , f ′ ∈ F := 〈fi | i ∈ I〉
one has f (α) = f ′(α) iff f ∼ f ′. Thus, M∗ is the disjoint union of M and a set
A∗ equipped with a free G-action, the action of F on A∗ being induced by π .
We further infer from the above lemma that acl(∅) is given by the union of all
F-orbits that are not equal to regular G-orbits. Clearly, the models are classified
by the number of regular G-orbits.

4 Universes and free semi-actions

In this section, we study universes of (semi-)free (semi-)actions and transforma-
tions between them. The following lemma shows why free semi-actions provide
the appropriate framework for the study of universes of free group actions. If
G is a group and κ , λ are cardinal numbers, let us denote by UG(κ) the universe
associated to a free G-action with κ orbits, and by UG(κ)+̇λ the universe of a
G-action with κ regular and λ trivial orbits.

Lemma 4.1 The class of universes similar to the universe of an infinite free action
of some group G is exactly the class of universes associated to (infinite) free semi-
actions of G.

Proof Clearly, by definition, the universe associated to an infinite free semi-
action of G is similar to the universe UG(κ) of an infinite free G-action. On the
other hand, in order to study the similarity class, it is sufficient to look at elemen-
tary restrictions of universes of UG(λ) for some λ. Suppose V � UG(λ) =: U,
and choose a language L generating V. Thus, in particular M := ML(V) �
ML(U) =: N , where our notation means the structure attached to the lan-
guage L, i.e. to a set of definable sets in the corresponding universe. We will use
the following easy fact (the proof of which is left to the reader):

Fact 4.2 Let T be a trivial strongly minimal theory. Then every germ of definable
(with parameters) bijections has a representative over the prime model of T.

Thus, for every g ∈ G there is an L-definable (with parameters in M) bijec-
tion fg such that g ∼ fg inside Sym(N). Let L′ be the signature with constants for
elements of M and function symbols for the (fg)g∈G. Obviously, the G-action on
U can be recovered from L′(N), showing that L′ is generating for U. A fortiori,
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every L(N)-definable set can be L′(N)-defined. Since M �L N, the same is true
for L(M) w.r.t. L′(M), showing that V is the universe of a free semi-action of G.

In [2], the following notions are introduced:

Definition 4.3 Let T be a complete L-theory and C the class of all universes
similar to U(M), where M is some model of T.

1. T is ubiquitous (for C) if every universe in C equals U(M′) for some M′ |� T.
2. T is classifying if for all models M and M′ of T, the following holds: UL(M) 


UL(M′) iff M 
L M′.

We first study some easy properties of a group G leading to classifying
and/or ubiquitous free G-actions. For brevity, a group G is called ubiquitous
(classifying) if the infinite free G-action is. From now on, all groups will be
countable and infinite, so the properties “ubiquitous” and “classifying” have to
be checked only on countable universes, since the corresponding universes are
uncountably categorical by Proposition 2.5(2). Note that any transformation
� : U 
 U′ induces an isomorphism �/∼ between the groups of germs of
definable bijections in U and U′, respectively.

Lemma 4.4 Suppose that U = UG(κ)+̇λ 
 UG(κ ′)+̇λ′ = U′. Then, there is a
transformation � : U 
 U′ such that �/∼= id : G → G, where G is identified
with the group of germs of definable bijections in U and U′, respectively.

Proof Let �0 : U 
 U′ be any transformation. Then, �0/∼∈ Aut(G) (with the
obvious identifications). Note that for every α ∈ Aut(G) there is a self-transfor-
mation 	α of U′ such that 	α/∼= α. Just use α on every regular orbit and the
identity on trivial orbits. Thus, composing �0 with a suitable self-transformation
of U′, we get a transformation � : U 
 U′ as desired. ��
Remark 4.5 Let G be a group containing a subgroup H of finite index which is
classifying. Then, G is classifying, too.

Proof Suppose that � : U = UG(m) 
 UG(m′) = U′ is a transformation, for
some m, m′ ∈ N

∗. Using Lemma 4.4, we may assume that � induces the identity
on G. Put i := [G : H], and let LG ⊇ LH be the signatures for G-actions and
H-actions, respectively. Then, U = ULG(M) and U′ = ULG(M′), where M and
M′ are free G-actions with m and m′ regular orbits, respectively.

Since one regular G-orbit gives rise to i regular H-orbits, one gets ULH (M) =
UH(i · m) and ULH (M′) = UH(i · m′), and so using the same map (on points) we
get � : UH(i · m) 
 UH(i · m′). Since H is classifying, this means i · m = i · m′, so
m = m′ and G is shown to be classifying. ��

Let us mention that it is not clear in general if the roles of G and H can be
interchanged in Remark 4.5.

Let 
 be an infinite graph with finite valency, and let K be a finite subgraph.
Put n(K) equal to the number of infinite connected components of 
 \ K. The
number of ends of 
 is defined as end(
) := sup{n(K) | K ⊆ω 
}. If G is a finitely
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generated (infinite) group, we define end(G) := end(
), where 
 is the Cayley
graph of G for some finite system of generators. It is easy to see that this defi-
nition does not depend on the particular choice of the generators. In fact, the
definition of end(
) is invariant under quasi-isometries, and Cayley graphs with
respect to different (finite) systems of generators are quasi-isometric. Groups
of the form G1 × G2, where both G1 and G2 are infinite, have one end. For
G := Z × G0 with G0 some finite group, one has end(G) = 2. For k ≥ 2, the
free group on k generators has infinitely many ends. More generally, if G1 and
G2 are non-trivial groups, not both isomorphic to Z/2, then end(G1 ∗ G2) = ∞.

Proposition 4.6 Let G be finitely generated with end(G) = 1. Then, the following
holds:
1. The group G is classifying.
2. Every semi-free G-action is free.
3. If G is finitely presented, then G is ubiquitous.

Proof Note that (3) follows from (2) together with Remark 3.2.
In order to show (2), we consider V � UG(m) =: U, where we suppose that

V be given by a semi-free G-action, for G = 〈g1, . . . , gn〉. By Fact 2.4 we may
assume that m ∈ N∪{ℵ0}, but it is easy to see that it suffices to check elementary
restrictions of UG(m) for all finite m. This is due to finite width, but we will not
use this. Let g′

i ∼ gi be those bijections defining the semi-free G-action on V,
and define the exceptional locus for this alteration as follows:

E := {x ∈ U | gi(x) �= g′
i(x) or g−1

i (x) �= (g′
i)

−1(x) for some i}.

Let Ẽ be the union of E and all finite connected components of U \ E, so Ẽ is
finite.

Claim The G-action on U via g′
1, . . . , g′

n is free.

To show the claim, for g ∈ G denote g′ the bijection of U which we obtain
in the following way: if g = w(g1, . . . , gn), then g′ := w(g′

1, . . . , g′
n). Since the

alteration defines a G-action, this assignment is independent of the particular
choice of w.

For every e ∈ Ẽ we choose y in G · e \ Ẽ from the unique infinite component.
If g · y = e, we let σ(e) := g′ · y (note that σ does not depend on the choice of y).
It is now easy to see that σ is a permutation of Ẽ, so (extending σ identically
to all of U) can be considered as an element of Symfin(U). We pretend that for
all g ∈ G, the equality g = σ−1g′σ holds. For x ∈ U arbitrary, choose y ∈ U \ Ẽ
and g0 ∈ G such that x = g0 ·y. We then compute (use the definition of σ twice)

g · x = (gg0) · y = σ−1σ(gg0) · y = σ−1(g′g′
0) · y

= σ−1g′(g′
0 · y) = (σ−1g′)(σ · g0 · y) = (σ−1g′σ) · x.

Thus, the alteration is a free G-action, and (2) is shown. On the other hand,
the number of orbits does not change in the above proof (and σ is an isomor-
phism of the original G-action with the altered version), so (1) follows, too.
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The preceding proof can be readily modified to show a bit more.

Remark 4.7 Let G be finitely generated with end(G) = 1. Then UG(κ)+̇λ 

UG(κ ′)+̇λ′ iff κ = κ ′ and λ = λ′.

We observe that the content of this remark does not hold for the group of
integers Z, since UZ(1) 
 UZ(1)+̇n for all n ∈ N. If e.g. n = 1, just alter the action
of a generator s of Z on Z = UZ(1) to s′, putting s′(0) := 2 and s′(1) := 1 and s′
equal to s outside {0, 1}. Nevertheless, there is a class of groups (containing Z),
where things are not too strange.

Recall that a (discrete) group G is called amenable if there is a finitely additive
(right-)invariant probability measure on G. All finite and all abelian groups are
amenable. The class of amenable groups is closed under subgroups, quotients,
extensions and direct limits. In particular, every solvable group is amenable,
and a group G is amenable if and only if all finitely generated subgroups of G
are amenable. For background on amenable groups we refer to [1].

Proposition 4.8 Let G be a finitely generated infinite amenable group. Suppose
that UG(m)+̇n 
 UG(m′)+̇n′. Then m = m′. In particular, G is classifying.

Proof Suppose there is a transformation � : U := UG(m)+̇n 
 U′ := UG(m′)+̇
n′, with underlying sets M and M′. Let G be generated by (g1, . . . , gk) and let
µ be a right-invariant probability measure on G. Using Lemma 4.4, we may
assume that g′ := �−1(g) and g have the same germ for all g ∈ G. Now choose
a finite set K ⊆ M containing the trivial orbits of U, the preimage under � of
the trivial orbits of U′ and the exceptional locus of the alteration (computed in
the generators (g1, . . . , gk)). Let A1, . . . , AN be the connected components of
M \ K. Every time we think of the altered G-action on M induced by �, we will
write G′ and g′, respectively.

For x ∈ M with G · x ⊇ Ai we put Gi(x) := {g ∈ G | g · x ∈ Ai}. Note that if
y is another element from the same orbit, say y = g · x, then Gi(y) = Gi(x)g−1.
The same is true for the altered action. Let x′, y′ ∈ M with G′ · x′ ⊇ Ai and
suppose that y′ = g′ · x′. Putting G′

i(x
′) := {g ∈ G | g′ · x′ ∈ Ai}, we compute

G′
i(y

′) = G′
i(x

′)g−1 (as subsets of G). As Ai is connected and disjoint from the
exceptional locus, one has Gi(ai) = G′

i(ai) for all ai ∈ Ai.
Let O1, . . . , Om ⊆ M be the regular orbits for the unaltered G-action, and

O′
1, . . . , O′

m′ ⊆ M the regular orbits for the (altered) G′-action. For k = 1, . . . , m
choose xk ∈ Ok, similarly x′

k ∈ O′
k.

The family F := {A1, . . . , AN} can be partitioned into m subfamilies F1, . . . , Fm
in such a way that for k = 1, . . . , m the set ∪Ai∈Fk Ai is a cofinite subset of
Ok = G · xk. This means that {Gi(xk) | Ai ∈ Fk} is a partition of a cofinite set of
G (1 ≤ k ≤ m).

Analogously, there is a partition of F into m′ subfamilies F ′
1, . . . , F ′

m′ , ulti-
mately leading to partitions {G′

i(x
′
k) | Ai ∈ F ′

k} of cofinite subsets of G (for
1 ≤ k ≤ m′).

By what we have said (using an element ai ∈ Ai to do the transition), it
follows that for i = 1, . . . , N, the set G′

i(x
′
k) is a right-translate of Gi(xk), so
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µ(G′
i(x

′
i)) = µ(Gi(xi)), as µ is right-invariant. Thus,

m = mµ(G) =
N∑

i=1

µ(Gi(xi)) =
N∑

i=1

µ(G′
i(x

′
i)) = m′µ(G) = m′,

since finite subsets of G have measure 0 and µ is finitely additive. ��

5 Classification of semifree actions of free groups

In this section, we will study semifree actions of the free group on k generators
F(k), for k ∈ N

∗ ∪ {ω}.
We will tacitly use the following easy fact, the proof of which is left to the

reader (essentially, one has to use Lemma 4.4).

Fact 5.1 For i = 1, 2, let Ui := UG(κi)+̇λi and U′
i := UG(κ ′

i )+̇λ′
i. Suppose that

U1 
 U′
1 and U2 
 U′

2. Then, UG(κ1 + κ2)+̇(λ1 + λ2) 
 UG(κ ′
1 + κ ′

2)+̇(λ′
1 + λ′

2).

The following easy observation is crucial:

Remark 5.2 Let k ∈ N
∗ ∪ {ω}, and set G := F(k). Then UG(1) 
 UG(k)+̇1. In

particular, UG(n)+̇m is semifree for all n ∈ N
∗ ∪ {ω} and m ∈ N.

Proof Suppose that F(k) is freely generated by elements (gi)1≤i≤k. Choose
e ∈ UG(1) =: U arbitrary and define g′

i ∼ gi in the following way:
Put g′

i(e) := e, g′
i(g

−1
i · e) := gi · e and leave gi unaltered outside {e, g−1

i · e}.
It is straightforward to check that the (g′

i)1≤i≤k define a G-action on U which
consists of k regular orbits and one trivial orbit (the set {e}). ��
Lemma 5.3 Let U := UF(k)(n), for some finite k. Then every elementary restric-
tion of U is of the form UF(k)(n′)+̇m′.

Proof Let G := 〈g1, . . . , gk〉 = F(k). Consider V � U, where the embedding
is elementary with respect to a G-action via (g′

i)i≤k, such that (on U) one has
g′

i ∼ gi.
Let E ⊆ U be a finite set containing the exceptional locus of this alteration

and such that it contains an element from every regular orbit. Define Ẽ as the
set of all x ∈ U lying on the shortest path (for the unaltered action) from e1 to e2
for some e1, e2 ∈ E . By construction, Ẽ is a finite superset of E, and it contains
the shortest path between any two of its elements. Now, U \ Ẽ is the finite union
of its connected components A1, . . . , AN which are all infinite. For every such
component Aj there is a unique element xj ∈ Aj such that hj · xj ∈ Ẽ for some
(unique) hj ∈ {g1, . . . , gk, g−1

1 , . . . , g−1
k }. Thus, the set of connected components

is in 1:1 correspondence with S := S1(Ẽ) := {x ∈ U | dist(x, Ẽ) = 1}, where U is
equipped with the word metric dist with respect to the generators (g1, . . . , gk).
For xj ∈ S there is some n ∈ N

∗ such that (h′
j)

n(xj) �∈ Ẽ, since h′
j is bijective.
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Obviously, if n is minimal such, (h′
j)

n(xj) is in S. It is equal to some xσ(j), where

σ ∈ SN with σ 2 = id and σ(j) �= j for j = 1, . . . , N, so N is even.
Now consider an orbit X ⊆ U for the altered action. By definition, if Aj∩X �=

∅, then Aj∪Aσ(j) ⊆ X. Since V equals U minus a finite number of (regular) orbits

for the altered action, one has V = ∪̇l
i=1(Aji ∪ Aσ(ji))∪̇EV , where EV := V ∩ Ẽ

is finite and l ≥ 1. We now alter (g′
α)1≤α≤k on V, defining g′′

α � EV := id � EV ,
g′′
α(xji) := xσ(ji) if hji = gα , else g′′

α := g′
α . This shows that V 
 UG(l)+̇|EV |. ��

Lemma 5.4 Let k be finite and G = F(k). The following are equivalent:

1. UG(n)+̇m 
 UG(n′)+̇m′
2. n − (k − 1)m = n′ − (k − 1)m′.
In particular, G is classifying.

Proof (2)⇒(1) follows from Remark 5.2. For the other direction, suppose
that UG(n)+̇m 
 UG(n′)+̇m′ =: U, given by G-actions via (g1, . . . , gk) and
(g′

1, . . . , g′
k), respectively (with g′

i ∼ gi as usual). Choose Ẽ ⊆ U finite such that
Ẽ contains the exceptional locus for the alteration, all trivial orbits for both
actions and at least one element from every regular orbit (for both actions),
and such that Ẽ is closed by shortest paths for both actions. Note that any set
E′ ⊇ E which is closed by shortest paths for one action is automatically closed
by shortest paths for both actions. This can be shown by induction on the length
of the shortest path, using that outside E′ we have gi = g′

i and g−1
i = g′−1

i .
Let O1, . . . , On be the regular G-orbits in U, and O′

1, . . . , O′
n′ the regular

orbits for the altered action. Put Ẽi := Ẽ ∩ Oi. Then,

S1(Ẽi) = S1(Ẽ) ∩ Oi and S1(Ẽ′
i) = S1(Ẽ) ∩ O′

i. (5.1)

Now suppose that K is a finite subset of some regular G-orbit which is closed
under shortest paths. By induction on the cardinality of K, one shows:

|S1(K)| = (2k − 2) · |K| + 2. (5.2)

Summing up and using (5.1) as well as (5.2), this yields

|S1(Ẽ)| = (2k − 2)(|Ẽ| − m) + 2n = (2k − 2)(|Ẽ| − m′) + 2n′,

as S1(Ẽ) calculated for both actions amounts to the same. ��
Theorem 1 (Classification of semifree actions of free groups) The classes Cl(G)

of countable semifree G-actions (up to transformation) with elementary embed-
dings are as follows:

1. If G := Z, then Cl(G) = (N∗ ∪ {∞}, ≤).
2. If G := F(k) for some finite k ≥ 2, then Cl(G) = (Z ∪ {∞}, ≤).
3. If G = F(ω), then Cl(G) consists of one element, i.e. the universe of a free

G-action is totally categorical.
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Proof Parts (1) and (2) follow from Lemma 5.3 together with Lemma 5.4. That
the universe associated to the countable saturated free G-action is not trans-
formable into a universe of the form UG(m)+̇n follows from Fact 2.4(2), since
the universe is thin.

We now show (3). By Remark 5.2 we know that for G := F(ω) one has

UG(1)= UG(ω)+̇1 = UG(ω)+̇(UG(ω)+̇1) = UG(ω)+̇UG(1)= UG(ω) = UG(1)+̇1,

so all countable free G-actions have the same universe. Suppose G is freely gen-
erated by (gi)i<ω. It remains to show the ubiquity of G. So let V � UG(1) be a
semifree G-action, say given by g′

i ∼ gi. Restricting the language to (g′
1, . . . , g′

k),
we get a semifree F(k)-action on V. The same is true for F(k+1), hence one can
finitely alter the (g′

i)i≤k on V to obtain a free F(k)-action with infinitely many
orbits, since F(k) is of infinite index in F(k + 1).

The idea is to adapt the proof of Lemma 5.3 and do the alterations step by
step. That this can be done is the content of the following lemma. ��
Lemma 5.5 Let M be a semifree F(k + 1)-action with infinitely many regluar
F(k + 1)-orbits, where F(k + 1) = 〈g1, . . . , gk+1〉. Suppose that (g1, . . . , gk) gives
rise to a free F(k)-action on M. Then there is some g′

k+1 ∼ gk+1 such that the
F(k + 1)-action via (g1, . . . , gk, g′

k+1) is free.

Proof From the hypotheses we infer that one can finitely alter g1, . . . , gk+1 on
M in order to obtain a free F(k+1)-action. Let E ⊆ M be the exceptional locus
of such an alteration, and choose a finite set Ẽ ⊇ E which is closed by shortest
paths (for both actions in sight). We now define g′

k+1 ∼ gk+1 as follows: on Ẽ,

g′
k+1 is the identity, and for x ∈ M\Ẽ one puts g′

k+1(x) := gn
k+1(x), where n ∈ N

∗

is minimal such that gn
k+1(x) �∈ Ẽ. Let Ẽ = {e1, . . . , eN}. Choose N new regular

F(k + 1)-orbits in M \ Ẽ, say X1 = F(k + 1) · x1, . . . , XN = F(k + 1) · xN . Finally,
alter g′

k+1 again to the following bijection g′′
k+1:

• g′′
k+1(xi) := ei for i = 1, . . . , N,

• g′′
k+1(ei) := g′

k+1(xi)[= gk+1(xi)] for i = 1, . . . , N and
• g′′

k+1(x) := g′
k+1(x) else.

It is fairly easy to see that (g1, . . . , gk, g′′
k+1) defines a free F(k + 1)-action

on M. ��
In particular, we see that there is a totally categorical universe interpreting

non-omega-categorical universes. Already in [2], an example of an omega-cat-
egorical universe that interprets a non-omega-categorical one appears.

Before we finish the paper raising a series of questions, we mention the
following:

Proposition 5.6 Finitely generated abelian groups are ubiquitous and classifying.
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Proof Let G be finitely generated and abelian. If rk(G) ≥ 2, then end(G) = 1,
so we conclude by Proposition 4.6. Since the result is trivial for finite groups, the
only remaining case is G 
 Z × A0, where A0 is finite abelian. In fact, we even
show that for an arbitrary finite group G0, the group G := Z × G0 is classifying
and ubiquitous. Let s be a generator of Z and G0 = {g1, . . . , gN}.

By Lemma 4.8, G is classifying. Now, consider U := UG(n) and an elemen-
tary restriction V � U. Combining Lemma 4.1 with Remark 3.2, we see that
V is given by a semifree G-action M. Moreover, due to the finiteness of G0,
a straight forward refinement of the argument given in the proof of 3.2 shows
that we may suppose that the underlying G0-action on M is free. Suppose that
the G-action M is given by s′ ∼ s and g′

1 ∼ g1, . . . , g′
N ∼ gN .

The semi-free Z-action on U given by s′ consists of Nn regular Z-orbits
O′

1, . . . , O′
Nn and a finite number of finite orbits K1, . . . , K�.

We show:

(I) For 1 �= gk ∈ G0 and any x ∈ O′
i, the element g′

k ·x is in O′
j for some j �= i.

In other words, via g′
1, . . . , g′

N , the group G0 freely permutes the regular
〈s′〉-orbits.

(II) Let K := ∪�
i=1Ki. Then, |K| is divisible by N.

It is clear that K is invariant under g′
1, . . . , g′

N . Since the corresponding G0-
action is free, it follows that |K| is divisible by |G0| = N. This shows (II). Now
consider 1 �= gk ∈ G0 and x ∈ O′

i. By what we have said, g′
k ·x ∈ O′

j for some j. If
j = i, then g′

k ·x = (s′)z0 ·x for some z0 ∈ Z, and so g′
k ·((s′)n ·x) = ((s′)n(s′)z0)·x =

(s′)z0 · ((s′)n · x) for all n. This means that g′
k and (s′)z0 coincide on infinitely

many elements, and thus, using semi-freeness, g′
k ∼ s′, a contradiction. This

proves (I).
Since U \ V is a union of regular G-orbits, the Z-action on M consists of Nm

regular orbits (for some 1 ≤ m ≤ n) together with K. Let s′′ be the identity
map on K and equal to s′ outside K. The G-semi-action on M given by s′′ and
the g′

k is then still a semifree action, and (I) and (II) are true for this action,
too. Now define a final alteration on M as follows: every G0-orbit from K is put
“transversally” into a block of N regular Z-orbits that are permuted by G0 (for
this we have to use (I)) in a way to obtain a regular G-orbit. ��

6 Open problems

In this final section we gather some open problems concerning free semi-actions
of groups.

Pb.1: Find a (finitely generated) group G and a free semi-action M of G that
can not be trivialised to an action on M.

Pb.2: Is there a finitely generated group G which is not classifying?
Pb.3: What can be said in general for larger classes of groups, e.g. hyperbolic

groups or more generally automatic groups?
Pb.4: Find a reasonable cohomological description for the set of all free semi-

actions.
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