
MODEL THEORY OF VALUED FIELDS

MARTIN HILS

1. Introduction

These lecture notes contain the material of my course ‘Model Theory of Valued
Fields’ as given during the second week of the Münster Month in Model Theory.

Here is a short overview of the notes. We start with a section on the model
theory of ordered abelian groups (Section 2). After a short preliminary section on
the model theory of valued fields (Section 3), we then present some fundamental
results about the theory ACVF of algebraically closed non-trivially valued fields in
Section 4. At the end of the section, we point to some more recent and advanced
topics in the study of ACVF.

Section 5 is devoted to Kaplansky theory. The results of this section play a key
role in our treatment of the Ax-Kochen-Ershov principle on henselian valued fields
of equal-characteristic 0 in Section 6. Our approach to the AKE principle is via Pas’
Theorem on the elimination of field quantifiers for henselian valued fields of equal-
characteristic 0 in the three-sorted Denef-Pas language with angular components.
We finish the notes with a glimpse on p-adic model theory. The text is organised
so that similarities between the various contexts are highlighted.

The algebraic results on valued fields presented in Franziska Jahnke’s notes will
be used throughout the text. Some of the material we present here (e.g., Pas’
Theorem) will play a crucial role in Immanuel Halupczok’s introductory notes on
motivic integration.

2. Model Theory of Ordered Abelian Groups

We consider ordered abelian groups in the language Loag = {0,≤,+}. The
theory of all ordered abelian groups in Loag is denoted by OAG, the theory of
non-trivial divisible ordered abelian groups by DOAG. The latter is axiomatised by

• OAG;
• ∃xx 6= 0, and
• for each n ≥ 1, an axiom of the form ∀x∃y y + · · ·+ y︸ ︷︷ ︸

n times

= x.

The following exercise is easy.

Exercise 2.1. Let Γ |= DOAG. Then the order on Γ is dense without endpoints,
i.e., Γ |= DLO.

We now give a useful criterion for quantifier elimination. For simplicity we only
state the version for countable languages.

Fact 2.2. Let T be an L-theory, with L countable. The following are equivalent:
1



2 MARTIN HILS

(a) T has quantifier elimination (QE):
for every L-formula ϕ(x) = ϕ(x1, . . . , xn) (in n ≥ 1 variables) there is a
quantifier free formula ψ(x) such that T |= ∀x (ϕ↔ ψ).

(b) Let M,N |= T , where M is countable and N is ℵ1-saturated. Let A ⊆ M
be a substructure. Then every L-embedding f : A ↪→ N extends to an
L-embedding f̃ : M ↪→ N .

Proposition 2.3. The theory DOAG is complete and has quantifier elimination.

Proof. Since {0} embeds as a substructure in any model of DOAG, quantifier elim-
ination implies completeness.

To prove quantifier elimination, we first show the existence of a divisible hull for
ordered abelian groups.

Lemma 2.4. Any ordered abelian group (A, 0,≤,+) admits a divisible hull, i.e.,
there is a divisible ordered abelian group B ≥ A with the following property:

(∗) Every embedding f : A ↪→ C into a divisible ordered abelian group C extends
uniquely to an embedding of B into C.

Moreover, the property (∗) determines B uniquely up to unique isomorphism over
A. We denote it by Div(A). Note that the factor group Div(A)/A is torsion.

Proof of the lemma. Set B := A⊗ZQ as an abelian group. Then we have B = { an |
a ∈ A,n ∈ Z, n ≥ 1}, where a

n = a′

n′ iff n′a = na′. Now we set a
n ≤

a′

n′ :⇔ n′a ≤ na′.
It is straightforward to verify that B gets the structure of an ordered abelian

group in this way and that ι : A ↪→ B, a 7→ a
1 is an embedding which has the

desired properties. The details are left to the reader. �

We now show quantifier elimination in DOAG, using Fact 2.2. Let Γ,Γ′ |=
DOAG, where |Γ| = ℵ0 and Γ′ is ℵ1-saturated. Let A ≤ Γ be a substructure and
f : A ↪→ Γ′ an Loag-embedding.

Step 1: We may assume A is a group.
Indeed, define f̃(−a) := −f(a). It is easy to see that f̃ defines an Loag-embedding
of the group generated by A into Γ′.

Step 2: We may assume that A is a divisible subgroup.
Indeed, by Lemma 2.4, f extends to an embedding of Div(A) into Γ′. This yields
the result.

Step 3: Let γ ∈ Γ\A = Γ\Div(A). Then f extends to an embedding f̃ : 〈A, γ〉 ↪→ Γ′.
Since Γ/A is torsion free, 〈A, γ〉 = A ⊕ Z · γ as groups. The order on 〈A, γ〉 is
determined by the cut of γ over A, i.e., by the couple (L(γ/A), R(γ/A)), where
L(γ/A) = {a ∈ A | a < γ} and R(γ/A) = {a ∈ A | a > γ}. Indeed, let
a+ zγ, a′ + z′γ ∈ 〈A, γ〉. Assume that z < z′. (The other cases are similar.) Then

a+ zγ ≤ a′ + z′γ ⇐⇒ a− a′ ≤ (z′ − z)γ ⇐⇒ a− a′

z′ − z
< γ ⇐⇒ a− a′

z′ − z
∈ L(γ/A).

As Γ′ |= DOAG, we have Γ′ |= DLO by Exercise 2.1. The image of the cut
(L(γ/A), R(γ/A) under f is a cut over f(A) which is realised in Γ′ by ℵ1-saturation

of Γ′, say by γ′ ∈ Γ′. Then γ 7→ γ′ induces an embedding f̃ : 〈A, γ〉 ↪→ Γ′ which
extends f .

Now choose an enumeration {γn | n ∈ ω} of Γ. Repeating steps 2 and 3, we
may construct an increasing sequence of embeddings fn : An ↪→ Γ′ extending f
such that γn ∈ An for all n. Then f̃ :=

⋃
n∈ω fn does the job. �
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Corollary 2.5. DOAG is o-minimal.

Proof. Let Γ |= DOAG. Any atomic formula ϕ(x) (with parameters in Γ) in one
variable is equivalent to either a tautology or the negation of a tautology or to
a formula of the form nx ≤ γ or to one of the form nx = γ, where n ∈ N and
γ ∈ Γ. These define intervals (possibly singletons or the empty set). We conclude
by quantifier elimination (Proposition 2.3). �

Exercise 2.6. Let Lpres = Loag ∪ {1,≡n, n ≥ 2}. Presburger arithmetic is the
Lpres-theory PRES which is given by the following axioms:

(i) OAG;
(ii) ”1 is the smallest positive element”;

(iii) ∀xy (x ≡n y ↔ ∃z x+ nz = y) (one axiom for each n ≥ 2), and

(iv) ∀x (
∨n−1
i=0 x ≡n 1 + · · ·+ 1︸ ︷︷ ︸

i times

) (one axiom for each n ≥ 2).

(1) Observe that Z = (Z, 0, 1,+,≤,≡n) |= PRES and that Z is a definitional
expansion of the underlying ordered abelian group.

(2) Show that PRES is complete and eliminates quantifiers.

Let us now mention (without proof) an important general model-theoretic result
about ordered abelian groups.

Fact 2.7 (Gurevich-Schmitt [6]). Every ordered abelian group is NIP.

3. Preliminaries on the Model Theory of Valued Fields

Recall that a valued field (K, v) is a field K together with a (surjective) valuation
map v : K → Γ ∪ {∞}, where Γ is an ordered abelian group – the value group –
and ∞ a new element > Γ, such that the following hold for all x, y ∈ K:

(i) v(x) =∞⇐⇒ x = 0;
(ii) v(x · y) = v(x) + v(y);
(iii) v(x+ y) ≥ min{v(x), v(y)}.

Notation and conventions 3.1. Let (K, v) be a valued field.

• The value group is denoted by Γv.
• Ov := {x ∈ K | v(x) ≥ 0} denotes the valuation ring.
• mv := {x ∈ K | v(x) > 0} denotes the (unique) maximal ideal of Ov.
• res : Ov � kv := Ov/mv, a 7→ res(a) = a is the residue map, and kv is the

residue field.

If the valuation map v is clear from the context, we sometimes write ΓK ,OK ,mK , kK
instead of Γv,Ov,mv, kv.

Various languages for valued fields. In order to treat valued fields as first
order structures, one has to choose a language. We now present three languages
(1-sorted, 2-sorted and 3-sorted), all having the same expressive power.

The 1-sorted language Ldiv = LRing ∪ {|}, where LRing = {0, 1,+,−,×} is the ring
language and ”|” is a binary relation symbol. It has one sort VF for the valued field.
A valued field (K, v) gives rise to an Ldiv-structure by setting x|y :⇐⇒ v(x) ≤ v(y).

The 2-sorted language LΓ with sorts VF for the valued field and Γ for the value
group (including ∞). It has LRing on the VF-sort, Loag ∪ {∞} on the Γ-sort as
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well as a function symbol val : VF → Γ. A valued field (K, v) gives rise to an
LΓ-structure in the obvious way.

The 3-sorted language LΓk with sorts VF, Γ and k (for the residue field). In
addition to LΓ, it has Lring(a copy of LRing) on sort k and a function symbol
Res : VF×VF→ k. A valued field (K, v) gives rise to an LΓk-structure by setting

Res(a, b) :=

{
res(ab ) if b 6= 0 and a

b ∈ Ov;
0 otherwise.

Remark 3.2. Given a valued field (K, v), the structures associated to it in the
languages Ldiv, LΓ and LΓk are mutually biinterpetable in each other, uniformly
for all valued fields.

As an example, let us indicate how to interpret the corresponding LΓk-structure
(K,Γv, kv) in (K, |). We have

• x ∈ Ov ⇐⇒ 1|x;
• x ∈ O×v ⇐⇒ (1|x ∧ x|1);
• x ∈ mv ⇐⇒ (1|x ∧ x 6 |1.

It follows that kv = Ov/mv and Γv = K×/O×v are interpretable in (K, |). Moreover,
for a, b ∈ K× one has a|b if and only if a/O×v ≤ b/O×v in Γv. Thus Loag is in this
way interpretable in (K, |). We leave the argument for the other parts of LΓk as an
exercise.

4. Algebraically Closed Valued Fields

In this section, we treat the basic model theory of non-trivially valued alge-
braically closed fields. The corresponding theory is the model-completion of the
theory of valued fields. Its study started with work of Abraham Robinson.

Definition 4.1. In any of the languages Ldiv, LΓ, LΓk, let ACVF be the theory of
non-trivially valued algebraically closed fields.

Lemma 4.2. Let (K, v) be a valued field and let valg be an extension of v to a valua-
tion on Kalg, an algebraic closure of K. Then kv ⊆ kvalg and Γv ⊆ Γvalg canonically,
and with these identifications we have kvalg = (kv)

alg and Γvalg = Div(Γv).
In particular, if (K, v) |= ACVF, then kv |= ACF and Γv |= DOAG.

Proof. The inclusions kvalg ⊆ (kv)
alg and Γvalg ⊆ Div(Γv) both follow from the

weak version of the Fundamental Inequality [11, Theorem 2.8].
Next, we show that kvalg is algebraically closed. For this, let p(X) ∈ kvalg [X],

p(X) = Xd + βd−1X
d−1 + · · ·+ β0, where d ≥ 1. Now choose a lifting

p̃(X) = Xd + bd−1X
d−1 + · · ·+ b0 ∈ Ovalg [X],

i.e., bi = βi for all i. Since Kalg is algebraically closed, p̃(X) =
∏d
i=1(X−ai), where

ai ∈ Kalg. As Ovalg is integrally closed in Kalg ([11, Proposition 1.14]), ai ∈ Ovalg
for all i, and so p(X) =

∏d
i=1(X − αi), where αi = ai.

To finish the proof, we need to show that Γvalg is divisible. Let γ ∈ Div(Γvalg)
and let n ≥ 1 be minimal such that nγ ∈ Γvalg . Choose a ∈ Kalg such that
valg(a) = nγ. We find b ∈ Kalg such that bn = a. It follows that valg(b) = γ. �

The following result is proved in [11, Example 2.5].
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Proposition 4.3. Let (K, v) be a valued field and γ̃ ∈ Γ̃ ≥ Γv. Then there is a
unique extension w of v to K(X) such that for all polynomials

∑
i aiX

i ∈ K[X]
one has w(

∑
i aiX

i) = min{v(ai) + iγ̃}.
(a) If γ̃ = 0, then w is called the Gauss extension of v. This extension is determined

by w(X) = 0 and res(X) 6∈ kalgv , and it satisfies kw = kv(res(X)), Γw = Γv.
(b) If γ̃ 6∈ Div(Γv), the extension is determined by w(X) = γ̃, and it satisfies

kw = kv and Γw = Γv ⊕ Z · γ̃ as pure groups.

Corollary 4.4. Let (K, v) be a valued field with K = Kalg, and let w be an exten-
sion of v to K(X). Then there are three mutually exclusive cases:

(a) (inertial) kw ) kv. Then there are a ∈ K× and b ∈ K such that t = aX + b
has valuation 0 and t 6∈ kalgv = kv, i.e., w is the Gauss extension with respect
to t. One has kw = kv(t) and Γw = Γv.

(b) (ramified) Γw ) Γv. Then there exists c ∈ K such that γ̃ = w(X − c) 6∈ Γv =
Div(Γv), and one has kw = kv and Γw = Γv ⊕ Z · γ̃.

(c) (immediate) kw = kv and Γw = Γv. This is equivalent to:
(IM) The set I(X/K) := {w(X − c) | c ∈ K} has no maximal element.

Let (cα)α<λ be a sequence in K (λ a limit ordinal) such that (γα = w(X −
cα))α<λ is cofinal in I(X/K). Then the extension w is determined by w(X −
cα) = γα for all α < λ.

Proof. The three cases are clearly mutually exclusive.
In case (b), as K is algebraically closed, there must be a linear polynomial

aX − d ∈ K[X] such that w(aX − d) 6∈ Γv. But then a 6= 0 and c := d/a works.
We finish by Proposition 4.3(b).

Now consider case (a). Let f(X) ∈ K(X) be a rational function such that
w(f(X)) = 0 and res(f(X)) 6∈ kv. By the previous paragraph, we know that
Γw = Γv in this case. As K = Kalg, we may thus write

f(X) =

∏
i(aiX + bi)∏
i(a
′
iX + b′i)

,

with all linear polynomials involved of valuation 0. Thus, the residue of one of them
is not in kv.

It is easy to see that in cases (a) and (b) the set I(X/K) contains a maximal
element. We leave the proof as an exercise. Conversely, assume the extension
(K(X), w)/(K, v) is immediate (i.e., Γw = Γv and kw = kv), and let c ∈ K. Then
w(X − c) ∈ Γv. So there is b ∈ K× such that v(b) = w(X − c). As kw = kv, there
is d ∈ K such that w

(
X−c
b − d

)
> 0. It follows that w(X − c − db) > w(X − c),

showing that w(X − c) is not maximal in I(X/K). The fact that the extension is
determined by w(X−cα) = γα for all α < λ is left to the reader (easy exercise). �

The following result was (essentially) proved by Robinson in [15].

Theorem 4.5 (Robinson). (1) The theory ACVF eliminates quantifiers in Ldiv.
(2) Its completions are given by ACVFp,q, where (p, q) is the pair of characteristics

(char(K), char(kv)) ∈ {(0, 0), (0, p), (p, p) | p prime}.

Proof. Part (2) follows from (1). Indeed, (Q, vtriv), (Q, vp) and (Fp, vtriv), re-
spectively, are common substructures for all models of ACVF0,0, ACVF0,p and
ACVFp,p, respectively. Here we have used the classification of valuations on Q (see
[11, Proposition 1.15]).
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We now prove quantifier elimination (part (1)). Let K,K ′ |= ACVF with K
countable and K ′ ℵ1-saturated. Let A ≤ K be a substructure and let f : A ↪→ K ′

be an Ldiv-embedding. We need to extend f to the whole of K.

Step 1: We may assume A is a field.

Indeed, f extends to f̃ : Q(A) ↪→ K ′ in LRing. Moreover, as a
b |
c
d ⇐⇒ ad|bc, the

map f̃ automatically preserves ”|”.

Step 2: We may assume that A = Aalg.

Indeed, f extends to an LRing-embedding f̃ : Aalg ↪→ K ′. Now, O1 := f̃(OK ∩Aalg)

and O2 := f̃(Aalg)∩OK′ are both extensions of the valuation ring Of(A) to f(A)alg.

By the conjugation theorem1 ([11, Theorem 2.13 and Fact 2.14]), there is σ ∈
Aut(f(A)alg/f(A)) such that σ(O1) = O2. Then σ ◦ f̃ is an Ldiv-embedding of Aalg

extending f .

Step 3: Let b ∈ K \A = K \Aalg. Then f extends to an embedding f̃ : A(b) ↪→ K ′.

Case 1: kA(b) ) kA. Up to an affine change of coordinates (over A), we may assume

that b ∈ OK and b 6∈ kA = kalg
A . So A(b)/A is the Gauss extension. By ℵ1-

saturation of K ′ there is b′ ∈ K ′ such that b′ ∈ OK′ and b′ 6∈ kf(A) = kalg
f(A).

Then b 7→ b′ defines an extension of f to A(b), by Proposition 4.3(a).

Case 2: ΓA(b) ) ΓA. Up to translation by an element of A, we may assume that
γ = v(b) 6∈ ΓA = Div(ΓA). Let (L(γ/ΓA), R(γ/ΓA) be the cut of γ over
Γ(A). Its image in Γf(A) under the induced map fΓ is realised in ΓK′ , by
ℵ1-saturation of K ′, say by γ′. Now let b′ ∈ K ′ be such that v′(b′) = γ′.
Then b 7→ b′ defines an extension of f to A(b), by Proposition 4.3(b).

Case 3: A(b)/A is an immediate extension. Choose a sequence (cα)α<ω in A such
that γα = v(b − cα) is strictly increasing and cofinal in I(b/A). Now let
α1, . . . , αn < ω be given. Let β < ω such that β > αi for all i. It follows
from the ultrametric triangular inequality that

v(cβ − cαi) = v(b− cαi) for all i,

as v(b − cβ) = γβ > v(b − cαi). The same is true for the images of the
cα’s under f . By ℵ1-saturation of K ′ we thus find b′ ∈ K ′ such that
v′ (b′ − f(cα)) = fΓ(v(b− cα)) = fΓ(γα) for all α < λ. By Corollary 4.4(c),
b 7→ b′ defines an extension of f to A(b). �

Definition 4.6. Let (K, v) be a valued field, a ∈ K and γ ∈ ΓK \ {∞}. Then

• B>γ(a) := {b ∈ K | v(b− a) > γ} is called the open ball, and
• B≥γ(a) := {b ∈ K | v(b− a) ≥ γ} the closed ball

of (valuative) radius γ around a.

We omit the easy proof of the following fact.

Fact 4.7. Let (K, v) be a valued field. The set of open balls then is an open basis
for a topology τv (the valuation topology) which turns K into a topological field.

Remark 4.8. Let (K, v) be a valued field.

(1) Both ’open’ and ’closed’ balls in K are open for the valuation topology.

1If one wants to avoid the conjugation theorem for infinite algebraic normal extensions, one
may extend f to any finite normal extension and iterate this process.
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(2) If B,B′ are two balls (open or closed) in K, then either B ∩ B′ = ∅ or
B ⊆ B′ or B′ ⊆ B.

Proof. It is a consequence of the ultrametric triangular inequality that every ele-
ment of a ball is a center. Both parts of the remark follow from this. �

Definition and Remark 4.9. Let (K, v) be a valued field.

• A generalised ball in K is a ’closed’ ball or an ’open’ ball, a singleton or K
itself. Note that part (2) of Remark 4.8 is true for generalised balls.

• A Swiss cheese in K is a set B \
⋃n−1
i=0 Bi, where n ∈ N and B,Bi are

generalised balls such that Bi ( B for all i.

Lemma 4.10. Let A ⊆ M |= T , and let Φ be a set of formulas in variables
x1, . . . , xn, with parameters in A. Suppose that for p 6= q in Sn(A) there is ϕ(x) ∈ Φ
such that p ` ϕ if and only if q ` ¬ϕ. Then every formula over A in x1, . . . , xn is
equivalent to a (finite) Boolean combination of formulas in Φ.

Proof. This follows easily from compactness and is left to the reader. �

Corollary 4.11. Let K |= ACVF, and let D ⊆ K be a definable set (with param-
eters). Then D is a finite disjoint union of Swiss cheeses.

Proof. Let us start with an easy observation whose proof we leave as an exercise:

Claim. Any finite Boolean combination of generalised balls is a finite disjoint union
of Swiss cheeses.

By Lemma 4.10, it suffices to show that if K |= ACVF, then the 1-types over K
are separated by generalised balls. This follows from our analysis of the extension
of v to K(X) (Corollary 4.4). For convenience, we will give the arguments in detail.

Let p(x) ∈ S1(K). By quantifier elimination (Theorem 4.5), p is determined by
the quantifier free formulas it contains. Let a |= p. If p is realised, then p ` x = a,
and all other q’s imply x 6= a.

From now on, assume that a is transcendental over K.
If kK(a) ) kK , there are c ∈ K× and d ∈ K such that t = ca + d gives the

Gauss extension. Then a ∈ B≥v(1/c)(−d/c) and a 6∈ B>v(1/c)(e) for all e ∈ K. This
determines the isomorphism type of K(a)/K (and thus the quantifier free part of
p) completely.

If the value group grows, i.e., ΓK(a) ) ΓK , there is c ∈ K such that v(a − c) =
γ̃ 6∈ ΓK . Then for γ ∈ L(γ̃/ΓK) we have

p(x) ` x ∈ B≥γ(c)

and for γ ∈ R(γ̃/ΓK) we have p(x) ` x 6∈ B≥γ(e) for all e ∈ K. This determines
the isomorphism type of K(a)/K completely.

Finally, if K(a)/K is immediate, choose a sequence (cα)α<λ in K such that
(γα)α<λ is cofinal in I(a/K). Then p(x) ` x ∈ B≥γα(cα) for all α < λ, which
determines the isomorphism type of K(a)/K completely. �

Exercise 4.12 (Holly’s Theorem). Say that two Swiss cheeses C = B \
⋃n−1
i=0 Bi

and C ′ = B′ \
⋃n′−1
i=0 B′i are trivially nested if B = B′i or B′ = Bi for some i.

Let K |= ACVF, and let D ⊆ K be a definable subset. Show that D is a finite

union of disjoint non-trivially nested Swiss cheeses Ci = Bi \
⋃ni−1
j=0 Bij and that
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this decomposition is unique, up to permutation (both of the Swiss cheeses and of
the ’holes’ inside a given cheese).

Corollary 4.13. Let A ⊆ K |= ACVF. Then the following holds:

(1) acl(A) = Q(〈A〉)alg

(2) dcl(A) =
(
Q(〈A〉)perf

)h
Here, 〈A〉 denotes the subring generated by the set A, Q(B) the field of fractions

of the ring B, Lperf the perfect closure of a field L, and Lh the henselization of a
valued field L. (See [11, Section 4.2] for a discussion of the henselization.)

Proof. The inclusion Q(〈A〉)alg ⊆ acl(A) is clear. Now let t ∈ K \ Q(〈A〉)alg, and
let K ′ < K be an |A|+-saturated elementary extension. Let ε ∈ K ′ \ {0} such that
v(ε) > ΓK . Then t 7→ t + ε defines an isomorphism Q(〈A〉)(t) ∼=A Q(〈A〉)(t + ε).
Indeed, whenever p(t) 6= 0 for a polynomial p(X) ∈ K[X], there is an open ball B
containing t such that v(p(t′)) = v(p(t)) for all t′ ∈ B. (This may be seen using
the fact that the function defined by p is continuous.) By quantifier elimination,
it follows that tp(t/A) = tp(t + ε/A). As there are infinitely many such ε’s, we
conclude that t 6∈ acl(A) which shows (1).

We now prove (2). Note that the inclusion Q(〈A〉)perf ⊆ dcl(A) is clear. It is a
general fact that if (K, v) is henselian and K0 ⊆ K is a subfield, then Kh

0 ⊆ dcl(K0),
by the universal property of the henselization ([11, Theorem 4.8]). Thus we know(
Q(〈A〉)perf

)h ⊆ dcl(A). Moreover, by the first part we have dcl(A) ⊆ Q(〈A〉)alg.

The extension K1 := Q(〈A〉)alg/
(
Q(〈A〉)perf

)h
=: K0 is a Galois extension. Let

a ∈ K1 \K0. By Galois theory there is σ ∈ Gal(K1/K0) such that σ(a) 6= a. As
K0 is henselian and K1/K0 is algebraic, σ preserves OK1

, so is an elementary map
by quantifier elimination. This shows a 6∈ dcl(A). �

Theorem 4.14. Every completion of ACVF is NIP.

Proof. It is enough to show that all formulas ϕ(x; y) with x a single variable are
NIP (see [17, Proposition 3.7]).

By Corollary 4.11 every definable set of a model is a finite Boolean combination
of generalised balls. Given ϕ(x; y), by compactness there is an integer N = N(ϕ)
such that any instance ϕ(x; b) of ϕ defines a set Db which is a Boolean combination
of ≤ N generalised balls. The (definable) family of generalised balls is of VC-
dimension 2, so in particular is NIP. (Indeed, B ∩ B′ 6= ∅ implies B ⊆ B′ or
B′ ⊆ B.) As any Boolean combination of NIP formulas is NIP, ϕ is NIP. �

Exercise 4.15 (Dimension for definable sets in ACVF). Let K |= ACVF, and let
ϕ(K) = D ⊆ Kn be a definable set. Let K ′ < K be sufficiently saturated. Let

• alg.dim(D) := max{tr.deg(K(a)/K) |K ′ |= ϕ(a)}, called the algebraic
dimension of D, and
• top.dim(D), the topological dimension of D, be equal to the maximal m

such that there exists a projection π : Kn → Km with non-empty interior,
i.e., such that

int(π(D)) = {b ∈ π(D) | there is Ω ⊆ Km open s.t. b ∈ Ω ⊆ π(D)} 6= ∅.

Show the following properties:

(1) alg.dim(D ∪D′) = max{alg.dim(D), alg.dim(D′)}.
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(2) If f : D � D′ is a definable surjection, then alg.dim(D) ≥ alg.dim(D′).

(3) If D ⊆ Kn, then its algebraic dimension is given by
max{m | ∃ projection π : Kn → Km such that alg.dim(π(D)) = m}.

(4) top.dim(Od) = d = alg.dim(Od). More generally, if D ⊆ Kd has non-
empty interior, then top.dim(D) = d = alg.dim(D).

(5) If D ⊆ Kd for d > 0 and alg.dim(D) = d, then int(D) 6= ∅.
(6) Conclude that top.dim(D) = alg.dim(D) for every definable set D. It fol-

lows in particular that the topological dimension is invariant under definable
bijections and that the algebraic dimension is definable in parameters.

Exercise 4.16 (The prime models of the completions of ACVF). Show that the
followong structures are the (unique) prime models of their respective theory:

• (Q(X)alg, vX), where vX is the X-adic valuation (characteristic (0, 0));
• (Qalg, vp), where vp is the p-adic valuation (characteristic (0, p)), and
• (Fp(X)alg, vX), where vX is the X-adic valuation (characteristic (p, p)).

Theorem 4.17. The theory ACVF eliminates quantifiers in LΓ as well as in LΓk.

Proof. We prove the result for LΓk, using Fact 2.2. The proof of the other result is
similar, and it is a formal consequence.

Let K = (K,ΓK , kK) and K′ = (K ′,ΓK′ , kK′) be models of ACVF such that
|K| = ℵ0 and K′ is ℵ1-saturated. Let

A = (VF(A),Γ(A),k(A)) ≤ K

be a substructure. Observe that val(A) ( Γ(A) and Res(A2) ( k(A) are possible.
Let f = (fVF, fΓ, fk) : A ↪→ K′ be an LΓk-embedding. We need to extend f to the
whole of K.

Step 1: We may assume k(A) = kK .

Indeed, this follows from the fact that the theory ACF of algebraically closed fields
eliminates quantifiers.

Step 2: We may assume that Γ(A) = ΓK .

This is a consequence of quantifier elimination in DOAG (Proposition 2.3).

Step 3: We may assume that VF(A) is a field.

Clearly, we may extend fVF to Q(VF(A)) by putting val(a/b) := val(a) − val(b)
and Res(a/b, c/d) := Res(ad, bc).

Step 4: We may assume that kVF(A) = kK .

To see this, let α ∈ kK \ kVF(A). Enumerating kK and iterating if necessary, it is

enough to show that f may be extended to an embedding f̃ which is defined on
some a ∈ K with res(a) = α.

Case 1: α ∈ kalgVF(A). Let p(X) = Xn + βn−1X
n−1 + · · · + β0 be the minimal

polynomial of α over kVF(A), and let p(X) = Xn + bn−1 + · · · b0 be a lift of p to
OVF(A). Then

p(X) =

n∏
i=1

(X − ai) with ai ∈ OVF(A)alg for all i,

and so there must be some i such that ai = α.
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Similarly, find a zero a′ of the polynomial fVF(p(X)) such that res(a′) = fk(α).
We now claim that a 7→ a′ defines an extension of f . To see this, note that
[kVF(A)(α) : kVF(A)] = n ≥ [VF(A)(a) : VF(A)]. By the weak fundamental
inequality ([11, Theorem 2.8]), it follows that [VF(A)(a) : VF(A)] = n (in par-
ticular p(X) is irreducible) and that the valuation v �VF(A) extends uniquely to
VF(A)(a). The same is true for the corresponding images under f in K′, and so
the isomorphism of fields given by a 7→ a′ respects the valuation.

Case 2: α is transcendental over kVF(A). Choose any a ∈ OK and a′ ∈ OK′ with

a = α and a′ = fk(α). Then a 7→ a′ defines an extension of the embedding, by
uniqueness of the Gauss extension.

Step 5: We may assume that val(VF(A)) = ΓK .

Let γ ∈ ΓK \ΓVF(A). It is enough to show that we may extend f to an embedding

f̃ which is defined on some a ∈ K with val(a) = γ.

Case 1: γ ∈ Div(ΓVF(A)). Let n ≥ 2 be minimal such that δ = nγ ∈ ΓVF(A).
Choose c ∈ VF(A) such that val(c) = δ, then choose a ∈ K with an = c. Similarly,
choose a′ ∈ K ′ with a′n = fVF(c). As in Step 4, Case 1, by the fundamental
inequality, a 7→ a′ works.

Case 2: γ 6∈ Div(ΓVF(A)). Choose a ∈ K and a′ ∈ K ′ such that val(a) = γ and
val(a′) = fΓ(γ). Then a 7→ a′ works (exercise).

Step 6: Extend f to the whole of K, when the valued field extension K/VF(A) is
immediate. This is possible by quantifier elimination in Ldiv (Theorem 4.5), as
x|y ⇐⇒ val(x) ≤ val(y), i.e., ”|” is quantifier-free definable in LΓk. �

Definition 4.18. An ∅-definable set D ⊆ Mn is called stably embedded in M if
any M -definable subset of Dk (for all k) is definable with parameters from D.

Corollary 4.19. Let K = (K,ΓK , kK) |= ACVF. Then the following hold:

(1) The value group ΓK is stably embedded in K, and the structure induced on
ΓK by K is that of a pure model of DOAG (with a constant named for
val(p) in case of mixed characteristic (0, p)).

(2) The residue field kK is stably embedded in K, and the structure induced on
kK by K is that of a pure algebraically closed field.

(3) kK ⊥ ΓK , i.e., every definable subset of knK × ΓmK (for all n,m) is a finite
union of sets of the form D×E, where D ⊆ knK and E ⊆ ΓmK are definable.

Proof. We prove (2). Parts (1) and (3) are left as exercises.
By quantifier elimination (Theorem 4.17), every definable set X ⊆ knK is a finite

union of sets which are defined by formulas ϕ(x) of the form

ϕVF(a, b)∧ϕΓ(val(F1(a, b), . . . , val(Fl(a, b), γ)∧ϕk(Res(a1, b1), . . . ,Res(an, bn), α, x),

where ϕVF(y, z) is a quantifier free formula in LRing, ϕΓ(u, v) is a quantifier free
formula in Loag, ϕk(s, t, x) is a quantifier free Lring-formula, F1, . . . , Fl are polyno-

mials over Z or Fp, a, b are parameters from K, γ from ΓK and α from kK .
Such a formula ϕ(x) defines either ∅ or the set given by ϕk(β1, . . . , βn, α, x),

where βi = Res(ai, bi) ∈ kK . The result follows. �

Exercise 4.20. Let K = (K,ΓK , kK) |= ACVF. The aim of this exercise is to
show that there are no definable functions f : knK → Km or f : ΓnK → Km with
infinite image. Here are some hints:
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(1) Show that one may assume n = 1.
(2) Show that any infinite definable set D ⊆ K embeds definably OK .
(3) Observe that both val : OK → ΓK and res : OK → kK have infinite image.
(4) Use kK ⊥ ΓK to conclude.

More advanced topics in the model theory of algebraically closed valued
fields. In these notes, we only presented the basic layer of the model theory of
ACVF. However, there have been important developments in the last decade, and
we would like to mention some of these briefly, also to suggest further reading.

Through their work on ACVF ([8, 9]), Haskell, Hrushovski and Macpherson
have made available methods of stability theory, and more generally of geomet-
ric model theory, for the study of valued fields. They classify the imaginaries
in ACVF, and they develop a theory of stable domination. The more advanced
model theory of ACVF has already had important applications, e.g., Hrushovski-
Kazhdan’s new kind of motivic integration (see [7]) or Hrushovski-Loeser’s work on
non-archimedean geometry.

Classification of imaginaries. By the quantifier elimination result we proved (The-
orem 4.5), we know exactly the definable sets in models of ACVF. Classifying the
imaginaries in this setting, i.e., the definable quotients, is a much more involved
task, and it is essential for geometric model theory. In [8] such a classification is
given. It is enough to add to the valued field sort VF certain natural definable
quotients, called the geometric sorts, so that all definable quotients in ACVF may
be embedded into finite products of sorts. For any n ≥ 1, one adds

• the set Sn of OK-lattices2 in Kn, given by GLn(K)/GLn(OK), and
• the union Tn of all s/ms, where s is an OK-lattice in Kn.

Note that ΓK ∼= S1(K) and kK ⊆ T1(K), canonically, so the geometric sorts may
be seen as higher dimensional analogs of the value group and the residue field.

Stable domination. If B is a C-definable ball, an element a ∈ B is called generic
in B over C if it is not contained in any C-definable finite union of proper subballs
of B. By quantifier elimination and compactness, there is a unique type pB|C of a
generic element in B over C. Now, if a |= pO|C and C ⊆ C ′ ⊆ K |= ACVF, then

a |= pO|C ′ if and only if res(a) 6∈ kalg
C′ , i.e., if res(a) is generic over kC′ in the residue

field k, which is a stable stably embedded definable set in ACVF. This means
that pO is stably dominated : its generic extension is controlled by the image of a
realisation under definable maps to stable stably embedded sets. Over a model, the
stable stably embedded sets are all in the definable closure of k, but over arbitrary
parameter sets, more general ones have to be considered. It is not hard to see that
the generic type pB of a ball B is stably dominated if and only if B is a closed ball.

In [9], it is shown that if M |= ACVF is maximally valued (cf. the following
section) and a is any tuple, tp(a/M,dcl(Ma)∩Γ) is stably dominated. Thus, types
in ACVF are controlled in a strong sense by the value group and the residue field.

A model-theoretic approach to non-archimedean geometry. Using the full machin-
ery of geometric model theory in ACVF, in recent celebrated work ([10], see also
[3]), Hrushovski and Loeser have developed a model-theoretic approach to non-
archimedean geometry. In particular, they have obtained very general topological

2An OK -lattice in Kn is a free OK -submodule of rank n.
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tameness results for the (Berkovich) analytification V an of an algebraic variety V
defined over a valued field, without any smoothness assumption on V .

5. Kaplansky Theory

In this section, we give a brief introduction to Kaplansky theory. In his beautiful
1942 paper [12], building on earlier work of Ostrowski, Kaplansky developed a the-
ory of pseudo-convergence which turned out to be crucial for a good understanding
of maximally valued fields, i.e., valued fields which do not admit proper immediate
extensions. These play a prominent role in the model theory of valued fields, e.g.,
in the proof of the Ax-Kochen-Ershov theorem as we will see in Section 6. Maybe
due to its ’analytic’ flavor, Kaplansky theory tends to be neglected by algebraists.

Definition 5.1. Let (K, v) be a valued field.

(1) A sequence (cα)α<λ in K (where λ is some limit ordinal) is called pseudo-
Cauchy (PC) if there is α0 < λ such that v(cα3

− cα2
) > v(cα2

− cα1
) for

all α0 ≤ α1 < α2 < α3 < λ.

Note that for any α ≥ α0, one has

γα := v(cα − cα+1) = v(cα − cα′) for all α < α′ < λ.

(2) Let (cα)α<λ be a PC sequence in K, with notations from (1). An element
a ∈ K is a pseudo-limit (PL) of (cα) if v(a− cα) = γα for all α ≥ α0. We
will denote this by (cα)⇒ a.

(3) The valued field (K, v) is called pseudo-complete3 if every PC sequence in
K has a PL in K.

The following are useful observations. Their easy proofs are left to the reader.

Remark 5.2. (1) If (cα)⇒ a and b is such that v(a− b) > γα for all α ≥ α0,
then (cα)⇒ b. In particular, pseudo-limits are not necessarily unique.

(2) If (cα)α<λ is PC, either v(cα) is eventually strictly increasing (which hap-
pens iff (cα)⇒ 0) or v(cα) is eventually constant.

Lemma 5.3. Let (L,w)/(K, v) be an immediate extension of valued fields, and let
a ∈ L \K. Then there is a PC sequence (cα)α<λ in K without PL in K and such
that (cα)⇒ a.

In particular, any pseudo-complete valued field is maximally valued and thus
henselian.

Proof. By the proof of Corollary 4.4(c), the set I(a/K) has no maximal element.
Now choose inductively elements cα ∈ K such that the sequence (γα = v(a − cα))
is strictly increasing and cofinal in I(a/K). Then (cα) ⇒ a by construction. If
b ∈ K, by cofinality of the sequence, we have γα > v(a− b) for all sufficiently large
α, and so (cα) 6⇒ b. This proves the lemma. (Note that maximally valued fields
are henselian, since the henselisation (Kh, vh) is an immediate extension of (K, v)
which is proper precisely in case (K, v) is not henselian.) �

We will see later that the converse of the lemma is true, so that the pseudo-
complete valued fields are just the maximally valued ones.

3Valued fields with this property are sometimes called spherically complete.
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Lemma 5.4. Let λ be a limit ordinal and let (cα)α<λ be a sequence in (K, v). Let
a ∈ K such that v(a − cα) is eventually strictly increasing. Then (cα) is pseudo-
Cauchy and (cα)⇒ a.

Proof. This follows more or less from the definitions and is left as an exercise. �

The following lemma is very useful in practice.

Lemma 5.5. Let (cα)α<λ be a PC sequence in (K, v). Then there is an elementary
extension (K ′, v′) < (K, v) and an element a′ ∈ K ′ such that (cα)⇒ a′.

Proof. The set of formulas π(x) := {v(x − cα) = γα | α0 ≤ α < λ)} is finitely
satisfiable in (K, v). Indeed, given finitely many α1, . . . , αn < λ, let β > αi for all
i. Then v(cβ − cαi) = γαi for all i. By compactness there is (K ′, v′) < (K, v) and
an element a′ ∈ K ′ such that |= π(a′), i.e., (cα)⇒ a′. �

Proposition 5.6. The Hahn series field k((tΓ)) is pseudo-complete, hence also
maximally valued and henselian.

Proof. Recall that the Hahn series field K = k((tΓ)) is given by

k((tΓ)) =

a =
∑
γ∈Γ

aγt
γ | aγ ∈ k, supp(a) is well-ordered

 ,

with valuation v(a) = min(supp(a)), where supp(a) = {γ ∈ Γ | aγ 6= 0}. One has
kK = k and ΓK = Γ.

To prove that K is pseudo-complete, we use a diagonalization argument. Let
(aα)α<λ be a PC sequence in K, say aα =

∑
γ∈Γ aα,γt

γ . Let α0 and γα be as

in the definition of a PC sequence. For all α′ > α ≥ α0 and γ < γα, one has
γα = v(aα′ − aα), so aα,γ = aα′,γ . Let

bγ =

{
aγ,α if γ < γα for some α < λ;

0 otherwise.

This is well-defined by the above. Put b =
∑
bγt

γ . Clearly, (aα) ⇒ b. We
need to check that b ∈ K, and in particular that supp(b) is well-ordered. Let
γ ∈ supp(b). Then there exists α such that γα > γ, and so (−∞, γ] ∩ supp(b) =
(−∞, γ]∩ supp(aα). The right hand side is well-ordered, which means every initial
segment of supp(b) is well-ordered, and hence supp(b) is well-ordered. �

Lemma 5.7. Let Γ |= OAG and (γα)α<λ a strictly increasing sequence in Γ with
λ a limit ordinal. Let δ1, . . . , δn ∈ Γ and k1, . . . , kn ∈ N pairwise distinct integers.
Define, for i = 1, . . . , n,

fi(x) = kix+ δi.

Then there exists i0 ∈ {1, . . . , n} such that fi0(γα) < fj(γα) for all j 6= i0, eventu-
ally.

Proof. Easy exercise by induction on n. �

Below, we will make use of the following formal version of the Taylor expansion.

Lemma 5.8. Let P (X) ∈ K[X], deg(P ) ≤ n. Then there exist P0, . . . , Pn ∈ K[X]
such that P (X + Y ) =

∑n
i=0 Pi(X)Y i. One has P0(X) = P (X), P1(X) = P ′(X),

and deg(Pi) ≤ n− i.
Moreover, if P (X) ∈ OK [X], then Pi ∈ OK [X] for all i.



14 MARTIN HILS

Proof. For P (X) = Xn, one has Pi(X) =
(
n
i

)
Xn−i, so the result is clear in this

case. Extend to arbitrary P by K-linearity. �

Proposition 5.9 (Pseudo-continuity of polynomial functions). Let (aα)α<λ be a
PC sequence in (K, v), and let P (X) ∈ K[X] rK. Then (P (aα))α<λ is PC and if
(aα)⇒ a, then (P (aα))⇒ P (a).

Proof. By Lemma 5.5 we may assume there is some PL a ∈ K, i.e., (aα)⇒ a. Let
X = a and Y = aα − a. By Lemma 5.8, we get

P (aα)− P (a) = P1(a)(aα − a) + P2(a)(aα − a)2 + . . .+ Pn(a)(aα − a)n.

Now, v
(
Pi(a)(aα − a)i

)
= v(Pi(a)) + iγα; by Lemma 5.7 (taking δi = v(Pi(a)),

x = γα and ki = i) there exists i0 such that eventually

v
(
Pi0(a)(aα − a)i0

)
< v

(
Pj(a)(aα − a)j

)
for all j 6= i0. Then v (P (aα)− P (a)) = δi0 + i0γα is eventually strictly increasing
in α. By Lemma 5.4, (P (aα))α<λ is PC and has P (a) as a PL. �

Definition 5.10. Let (aα)α<λ be a PC sequence in (K, v). We say that (aα)α<λ
is of transcendental type over K if (P (aα)) 6⇒ 0 for any P (X) ∈ K[X] r K.
Otherwise, it is of algebraic type over K.

Theorem 5.11. Let (aα)α<λ be PC in (K, v) of transcendental type over K. Then
v admits a unique extension w to K(X) such that w(P (X)) is the eventual value
of v(P (aα)) for all P (X) ∈ K[X] rK. This extension is immediate and satisfies
(aα) ⇒ X. Moreover, if (L,w) is an extension of (K, v) with a ∈ L such that
(aα) ⇒ a, then X 7→ a defines an isomorphism over K. In particular, all pseudo-
limits of (aα) are transcendental over K.

Proof. It is easy to see that w defines a valuation. E.g., for axiom (iii), let f, g ∈
K[X] rK. Then w(f + g) equals the eventual value of v(f(aα) + g(aα)). But we
have v(f(aα) + g(aα)) ≥ min{v(f(aα)), v(g(aα))} for all α, and the right hand side
is eventually equal to min{w(f(X)), w(g(X))}, so we may conclude.

Clearly, Γw = Γv holds. To see that the extension is immediate, let w(f/g) = 0.
As Γw = Γv, we may assume w(f) = w(g) = 0. It is enough to check that
res(f(X)) ∈ kK .

We know from pseudo-continuity that f(aα)⇒ f(X), as (aα)⇒ X by construc-
tion. Thus, w(f(X)− f(aα)) is eventually strictly increasing. On the other hand,
v(f(aα)) = 0 eventually. It follows that w(f(X) − f(aα)) > 0 eventually, and so
res(f(X)) = res(f(aα)). Thus (K(X), w)/(K, v) is immediate. The moreover part
is left as an exercise. �

Theorem 5.12. Let (aα)α<λ be a PC sequence in (K, v), without PL in K, of
algebraic type over K. Let µ(X) ∈ K[X] r K be a non-constqant polynomial of
minimal degree such that (µ(aα))⇒ 0. Then µ is irreducible and deg(µ) ≥ 2. There
is an immediate algebraic extension K(a) of K which is completely determined by
the following two properties:

(1) (aα)⇒ a
(2) µ(a) = 0

Proof. The proof of this theorem is similar to the previous one, albeit slightly more
complicated. It uses Euclidean division. We refer to Kaplansky’s original paper
[12] for the details. �
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Remark 5.13. Note that µ is not unique in Theorem 5.12, and that the isomor-
phism type of the extension K(a) depends on the choice of µ.

Corollary 5.14. Let (K, v) be a valued field.

(1) (K, v) is maximally valued if and only if it is pseudo-complete.
(2) (K, v) is algebraically maximal (i.e., does not admit a proper immediate

algebraic extension) if and only if every PC sequence of algebraic type over
K has a PL in K

Proof. ad (1): ”→” is by Lemma 5.3, and ”←” follows from Theorem 5.11 together
with Theorem 5.12.
ad (2): ”→” follows from Theorem 5.12. For ”←”, use that if L/K immediate,
then any a ∈ LrK is a PL of a PC sequence in K without PL in K (Lemma 5.3).
If a is algebraic and (aα)⇒ a, with aα ∈ K, then the sequence (aα) is of algebraic
type over K, by the last part of Theorem 5.11. �

Corollary 5.15. If (K, v) is of residue characteristic 0 then Kh is the (unique)
maximal algebraic immediate extension of K. I.e., (K, v) is henselian if and only
if it is algebraically maximal.

Proof. If (K, v) is henselian and char(kK) = 0, then by the fundamental equality
([11, Fact 2.17]), for every finite extension L/K we get [L : K] = e · f , where
e = (ΓL : ΓK) and f = [kL : kK ]. Hence L cannot be a proper immediate
extension. �

The next result, dealing with the existence of maximally valued immediate ex-
tensions, is due to Krull. The issue of uniqueness of such extensions is more delicate.
Kaplansky addresses it in his paper [12]. We do not present this here, as we will
not need it in our course.

Fact 5.16 (Krull). (1) Let (K, v) be a valued field. Then |K| ≤ |kK ||ΓK |.
(2) Any valued field admits a maximally valued immediate extension.

Proof. We give a short proof due to Gravett (see [5]). For γ ∈ ΓK , consider
the subgroups γmK := {x ∈ K | v(x) > γ} and γOK := {x ∈ K | v(x) ≥ γ}
of the additive group of K. Then γmK ⊆ γOK . Each coset of γOK contains
exactly |kK | cosets of γmK . Using the axiom of choice, we find a family of maps
fγ : K/γmK → kK such that for all γ and all a + γmK , b + γmK ∈ K/γmK , if
a+ γOK = b+ γOK and fγ(a+ γmK) = fγ(b+ γmK), then a+ γmK = b+ γmK .

Now associate to each a ∈ K the function ga : ΓK → kK given by γ 7→ fγ(a +
γmK). It is easy to see that a 7→ ga is injective. Indeed, if a 6= b, then for
γ = v(a− b) we get ga(γ) 6= gb(γ). This proves (1).

Part (2) follows from (1) by Zorn’s Lemma. �

6. Pas’ Theorem and the Ax-Kochen-Ershov Principle

In this section we prove Pas’ theorem (from [14]) and deduce from it the cel-
ebrated results due to Ax-Kochen and Ershov on the model theory of henselian
valued fields in residue characteristic 0.

The notion of an angular component we introduce now was originally used in the
context of cell decomposition in p-adic fields. We will not treat cell decomposition
in these notes, but we will use angular components in Pas’ theorem which is our
route to the Ax-Kochen Ershov principle.
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Definition 6.1. Let (K, v) be a valued field. An angular component map for (K, v)
is a map ac : K → kK satisfying

(1) ac(x) = 0 iff x = 0;
(2) ac |K× : K× → k×K is a group homomorphism, and
(3) ac |O×K = res |O×K .

We call (K, v, ac) an ac-valued field.

Examples 6.2. (1) Let K = k((tΓ)) be the Hahn series field. Then sending
any non-zero element a =

∑
aγt

γ to the first non-zero coefficient, i.e.,
a 7→ av(a), defines an ac map.

(2) In (Qp, vp), sending any a ∈ Q×p with p-adic expansion a =
∑
aip

i (where
ai ∈ {0, . . . , p− 1}) to ac(a) = avp mod p defines an ac map.

Remark 6.3. There exist henselian valued fields that do not admit an angular
component map.

Lemma 6.4. Let s : ΓK → K× be a cross-section, i.e., a group homomorphism
such that val ◦s = idΓK . Then

ac(x) =

{
res
(

x
s(val(x))

)
, if x 6= 0;

0, otherwise

is an angular component map.

Proof. This follows from the definitions. We leave the proof to the reader. �

Note that the two examples in 6.2 come from the cross-sections γ 7→ tγ , and
i 7→ pi, respectively.

Definition 6.5. The Denef-Pas language LDP is the three-sorted language with
sorts VF, Γ, k, the usual languages on each sort, val : VF→ Γ, and ac : VF→ k.

We consider ac-valued fields in LDP. Observe that res : VF → k is (quantifier
free) definable in LDP, as res(x) = ac(x) for x ∈ O× and res(x) = 0 otherwise.

Definition 6.6. The theory of henselian ac-valued fields of equicharacteristic 0 is
denoted by TPas.

Note that k((tΓ)) |= TPas for any ordered abelian group Γ and any field k of
characteristic 0.

Theorem 6.7 (Pas’ Theorem [14]). The theory TPas eliminates VF-quantifiers.

Remark 6.8. The language LΓk would not suffice to eliminate VF-quantifiers.
Indeed, consider for example K = Q((t)). The substructures A = (Q((t2)),Z,Q)
and B = (Q((2t2)),Z,Q) contain the full value group and the full residue field of
K. The map t2 7→ 2t2 extends to an LΓk-isomorphism A ∼= B, but this is not an
elementary map in the sense of K, as in K, t2 is a square, but 2t2 is not.

Before we start the proof of Pas’ theorem, we show two lemmas.

Lemma 6.9. Let (K, v, acK) be an ac-valued field.

(1) If x ∈ K× and y ∈ B>v(x)(x) then acK(y) = acK(x).
(2) If (L,w) ⊇ (K, v) is unramified, i.e., if Γw = Γv, then acK uniquely extends

to an ac map on L.
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(3) If (L,w, acL) ⊇ (K, v, acK), then the extension acL is determined by its
values on representatives of generators of the quotient group ΓL/ΓK .

Proof. ad (1): If y ∈ B>v(x)(x) then y = ax for some a ∈ 1+mK , and so by axioms
(2) and (3) of an ac map we get ac(a) = res(1) = 1 and ac(x) = ac(y)..

ad (2): For b ∈ L× let a ∈ K× be such that v(a) = w(b). Then acL(b) =
acK(a) resL(b/a) is well-defined, and is the only option that works.

ad (3): Similar to (2). �

Lemma 6.10. Let (L,w) ⊇ (K, v) be valued fields of residue characteristic 0 with
(L,w) henselian and kL = kK . Then the following holds for any n > 0.

(1) For any a ∈ mL there is b ∈ L such that bn = 1 + a
(2) Let γ ∈ ΓL ∩Div(ΓK) and let n > 0 be minimal such that nγ ∈ ΓK . Then

there is b ∈ L such that w(b) = γ and bn ∈ K.

Proof. Part (1) is by Hensel’s Lemma. Now let γ and n be as in (2). Choose c ∈ K
such that v(c) = nγ. Let a ∈ L be such that w(a) = γ. As kL = kK , multiplying
c by some unit in O×K , we may assume that res(anc−1) = 1. Then an = c(1 + ε)
for some ε ∈ mL, and by (1), 1 + ε = dn for some d ∈ L. Thus, c = (a/d)n, and so
b = a/d works. �

Proof of Theorem 6.7. Let K = (K,ΓK , kK , ac) and L = (L,ΓL, kL, ac) be mod-
els of TPas. Assume that K is countable and that L is ℵ1-saturated. Now let
A = (VF(A),Γ(A),k(A)) ≤ K. Assume f = (fVF, fΓ, fk) : A ↪→ L is an LDP-
embedding such that fΓ is Loag ∪ {∞}-elementary and fk is Lring-elementary. By
Fact 2.2 it is enough to show that f extends to an embedding of K.

Step 0: We may assume that Γ(A) = ΓK and k(A) = kK .

Indeed, this follows from the fact that the respective maps fΓ and fk are elementary
and L is ℵ1-saturated.

Step 1: We may assume that VF(A) is a field.

Indeed, as a map of rings, fVF extends to an embedding f̃VF defined on the field
generated by VF(A). As v(a/b) = v(a)− v(b) and ac(a/b) = ac(a)/ ac(b), the map

f̃ = (f̃VF, fΓ, fk) is an LDP-embedding.

Step 2: We may extend f so that res(VF(A)) = kK .

To see this, let α ∈ kK r res(VF(A)). If α 6∈ kalg
VF(A) then use the Gauss extension

together with Lemma 6.9(2). (We leave the details as an exercise.) Otherwise,
consider the minimal polynomial P (X) = Xd + βd−1X

d−1 + . . . + β0 for α over
kVF(A). Take any lift P (X) = Xd + bd−1X

d−1 + . . .+ b0 of P to OVF(A). Since the

residue characteristic is 0, α is a simple root of P (X), and so by Hensel’s lemma,
there is a ∈ OVF(A)alg with P (a) = 0 and res(a) = α. Find b ∈ L such that b
is a root of fVF(P (X)) and res(b) = fk(α); then a 7→ b works. Indeed, by the
fundamental inequality the valuation extends uniquely in this field extension, and
the value group does not grow. From the latter, we deduce that ac extends uniquely,
using Lemma 6.9(2).

Step 3: We may extend f so that ΓVF(A) = ΓK .

Indeed, let γ ∈ ΓK r ΓVF(A). If γ 6∈ Div(ΓVF(A)) then extending the valued field
map is easy, but we also need to take care of ac. Let a ∈ K such that v(a) = γ.
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As kVF(A) = kK by step 2, we have ac(a) = ac(c) for some c ∈ O×VF(A) ⊆ VF(A).

Thus, replacing a by a/c, we may assume ac(a) = 1. Similarly, we find b ∈ L such
that v(b) = fΓ(γ) and ac(b) = 1. Lemma 6.9(3) together with Proposition 4.3(b)
imply that a 7→ b defines an extension.

If γ ∈ Div(ΓVF(A)), let n ≥ 2 be minimal such that nγ ∈ ΓVF(A). By Lemma
6.10(2), we find a ∈ K such that v(a) = γ and an ∈ VF(A). By the fundamental
inequality, the valued field extension is completely determined (since [VF(A)(a) :
VF(A)] = n = (ΓVF(A)(a) : ΓVF(A))). To preserve ac, we need to find b ∈ L
such that val(b) = fΓ(γ) and ac(b) = fk(ac(a)); by Lemma 6.9(3), this is enough.
Now, by Lemma 6.10(2) again, there exists c ∈ L such that cn ∈ fVF(VF(A)) and
val(c) = fΓ(γ). We have fk(kK) 4 kL by assumption, hence ac(c) ∈ fk(kK) =
kfVF(VF(A)), since by elementarity, fk(kK) is relatively algebraically closed in kL.

Thus there exists d ∈ fVF(O×VF(A)) such that res(d) = fk(ac(a)) ac(c−1). The

element b := cd is as wanted.

We now have f : (VF(A),Γ(A),k(A)) ↪→ L with Γ(A) = ΓK = ΓVF(A) and
k(A) = kK = kVF(A), so K/VF(A) is an immediate extension. By Lemma 6.9(2),
any further extensions of f which preserve val and res will preserve ac, as the value
group remains unchanged.

Step 4: We may assume VF(A) is henselian.

Indeed, f extends uniquely to VF(A)h by the universal property of the henseliza-
tion.

Step 5: Let VF(A) = VF(A)h, and let a ∈ K r VF(A). Then f extends to an
embedding of VF(A)(a).

By Lemma 5.3, there exists a PC sequence (aα)α<ω in VF(A) without PL in
VF(A) such that (aα) ⇒ a. By Corollary 5.15, VF(A) is algebraically maximal.
But then Corollary 5.14(2) tells us that (aα)α<ω is of transcendental type over
VF(A). Theorem 5.11 then implies that the extension VF(A)(a)/VF(A) is com-
pletely determined by (aα) ⇒ a. By saturation of L, we can find b ∈ L such that
(fVF(aα))⇒ b, and thus a 7→ b works.

Iterating the last two steps, we may extend f to the whole of K. �

Corollary 6.11. (1) The completions of TPas are given by TPas ∪ Th(k) ∪
Th(Γ), where k is a field of characteristic zero and Γ an ordered abelian
group. In particular, k((tΓ)) |= TPas ∪ Th(k) ∪ Th(Γ).

(2) Let K,L |= TPas. Then

(a) K ≡ L iff
[
kK ≡Lring

kL and ΓK ≡Loag
ΓL
]
, and

(b) If K ⊆ L then K � L iff [kK � kL and ΓK � ΓL].

Proof. In (2b), ”⇒” is clear, and ”⇐” is given by Pas’ Theorem.
In (2a), ”⇒” is clear. To show ”⇐”, consider Q as a common substructure of

kK and kL, and (0) as a common substructure of ΓK ,ΓL. The corresponding map
f : K ⊇ (Q, (0),Q, acK) ∼= (Q, (0),Q, acL) ⊆ L is an LDP-isomorphism which is
elementary on the level of residue fields (as kK ≡ kL by assumption) and on the
level of value groups (as ΓK ≡ ΓL by assumption). It follows from Pas’ Theorem
that f is elementary.

Finally, (1) follows from (2b). �



MODEL THEORY OF VALUED FIELDS 19

Corollary 6.12. Let K = (K,ΓK , kK) |= TPas. Then the following holds:

(1) ΓK is stably embedded in K, and the induced structure is that of a pure
ordered abelian group.

(2) kK is stably embedded in K, and the induced structure is that of a pure field.
(3) kK ⊥ ΓK

Proof. The proof is more or less the same as in ACVF (Corollary 4.19). �

Corollary 6.13 (The famous AKE transfer principle). Let ϕ be a sentence in LDP.
Then there is N = N(ϕ) ∈ N such that for all primes p > N we have Qp |= ϕ iff
Fp((t)) |= ϕ.

Proof. Suppose not, and let ϕ be a counterexample. Let X be an infinite set of
primes such that Qp |= ¬ϕ iff Fp((t)) |= ϕ for all p ∈ X. Let U be a non-principal
ultrafilter on the set of primes such that X ∈ U .

For p prime, let Kp = Fp((t)) if Fp((t)) |= ϕ, and Kp = Qp otherwise; similarly,
let Lp = Qp if Qp |= ϕ and Lp = Fp((t)) otherwise. Then K =

∏
U Kp and

L =
∏
U Lp are models of TPas. (In particular they have equicharacteristic 0 and

are henselian.) We have ΓK = ZU = ΓL and kK =
∏
U Fp = kL. By Corollary

6.11(2a), we deduce from this that K ≡ L.
But X ⊆ {p prime | Kp |= ϕ} ∩ {p prime | Lp |= ¬ϕ}; since X ∈ U , we must

have K |= ϕ and L |= ¬ϕ, which is a contradiction. �

Example 6.14 (An application: the approximate solution of Artin’s Conjecture).
For i, d ≥ 1, say that a field K is Ci(d) if every homogeneous polynomial of degree
d in more than di variables with coefficients in K has a non-trivial zero in K. We
say that K is Ci if it is Ci(d) for all d.

A couple of facts:

(1) Finite fields are C1 (Chevalley).
(2) If k is Ci, then k((t)) is Ci+1 (Greenberg). In particular, Fp((t)) is C2.

Artin’s Conjecture asserts that Qp is C2 for all p. This conjecture is not true;
counterexamples were found by Terjanian in 1966. But it is approximately true, in
the following sense:

Theorem. For all d there exists N(d) ∈ N such that for all p > N(d), Qp is C2(d).

Indeed, for each d there is an LRing-sentence ϕd expressing that a field is C2(d).
The result then follows from the transfer principle, with N(d) = N(ϕd).

Exercise 6.15. Let K |= TPas. Then Th(K) is decidable iff Th(kK) and Th(ΓK)
are decidable. For example, C((t)) has a decidable theory as an LDP-structure (and
hence also as an LΓk-structure and as a field).

We now quote a result due to Delon. A rather direct proof of it may be found
in [16].

Theorem 6.16 (Delon). Let K |= TPas. Then K is NIP iff kK is NIP.

Delon’s theorem initially contained the condition that the value group be NIP
as well. But this condition is always satisfied, by the Theorem of Gurevich-Schmitt
(Fact 2.7).
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Theorem 6.17 (Ax-Kochen-Ershov principle). Let K and L be two henselian val-
ued fields of equicharacterisic 0 in LΓk. Then

(1) K ≡ L iff [kK ≡ kL and ΓK ≡ ΓL].
(2) If K ⊆ L then K � L iff [kK � kL and ΓK � ΓL].

Remark 6.18. The main difference between this theorem and Corollary 6.12 is that
AKE does not require an angular component map. We will reduce it to Corollary
6.12 by observing that although there are henselian valued fields without angular
component maps, all ℵ1-saturated valued fields do admit an ac map.

In order to perform the reduction to the language with angular components, we
need a result from the model theory of modules, namely that ℵ1-saturated modules
are ’pure-injective’. The following fact states the result in the case of abelian groups.
The proof is not difficult and may be found, e.g., in [2, Chapter II, Theorem 27].

Recall that if A ≤ B are abelian groups, A is called a pure subgroup of B if for
every n ≥ 2, whenever an element a ∈ A is divisible by n in B, it is already divisible
by n in A. This condition is in particular satisfied when B/A is torsion-free.

Fact 6.19. Let A,B,U be abelian groups with U ℵ1-saturated. Assume that A
is a pure subgroup of B. Then every homomorphism f : A → U extends to a
homomorphism f̃ : B → U .

Proof of Theorem 6.17. Let K′ � K and L′ � L be ℵ1-saturated elementary ex-
tensions. By Fact 6.19, the short exact sequence of abelian groups given by the
valuation map

1 −→ O×K′ −→ K ′× −→ ΓK′ −→ 0

is split. Indeed, 6.19 applied to U = A = O×K′ ≤ B = K ′× and f = idU yields

a homomorphism f̃ : K ′× → O×K′ such that f̃ �O×
K′

= id, since ΓK′ is torsion free.

The valuation map restricted to ker(f̃) is then an isomorphism, so its inverse sK′ :
ΓK′ → K ′× is a cross-section. Similarly, we find a cross-section sL′ in L′, and by
Lemma 6.4 these cross-sections give rise to ac maps so that (K′, acK′), (L′, acL′) |=
TPas. Now by Corollary 6.11(2a), we get K′ ≡ L′ in LDP, and hence also in the
reduct LΓk. Thus K ≡ K′ ≡ L′ ≡ L. This proves part (1).

For part (2), let (L′,K′) � (L,K) be an ℵ1-saturated extension of the pairs.
We have already shown that there is a cross-section sK′ : ΓK′ → K ′×. By Fact
6.19 again, sK′ extends to a cross-section sL′ : ΓL′ → L′× which gives rise to a
compatible couple of ac maps. Indeed, let f̃ : K ′× → O×K′ be the homomorphism

found in the proof of (1). SinceO×L′∩K ′× = O×K′ , there is a (unique) homomorphism

g : O×L′K ′× → O
×
L′ extending idO×

L′
∪f̃ . We apply Fact 6.19 to U = O×L′ , A =

O×L′K ′× ≤ B = L′× and g, purity of O×L′K ′× in L′× being a consequence of the fact

that K′ is an elementary substructure of L′, as then L′×/
(
O×L′K ′×

) ∼= ΓL′/ΓK′ is
torsion free. We conclude by Corollary 6.11(2b). �

7. A Glimpse on p-adic Model Theory

In this last section, we give a glimpse on the basic model theory of p-adic fields,
stressing the analogies with what we have seen so far. In particular we present
some results by Macintyre from [13].
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Definition 7.1. Let p be a prime number. The theory pCF (of p-adically closed
fields) is given by:

• (K, v) is a henselian valued field of characteristic (0, p);
• kK = Fp, and
• ΓK |= PRES, with 1 = val(p).

Lemma 7.2. In Qp, the valuation ring Zp is LRing(∅)-definable. If p 6= 2 then

Zp = {x ∈ Qp : ∃y(1 + px2 = y2)}
and if p = 2 then

Z2 = {x ∈ Q2 : ∃y(1 + 2x3 = y3)}.
Indeed, these definitions of the valuation ring work in all models of pCF.

Proof. If p 6= 2, by Hensel’s lemma, we get ”⊆” as if f(X) = X2 − (1 + ε) then
f ′(X) = 2X. For the reverse direction, if x /∈ Zp, then v(x) < 0, so

v(1 + px2) = v(px2) = 1 + 2v(x) /∈ 2Z
and in particular 1 + px2 is not a square. The argument for p = 2 is similar. �

Remark 7.3. Ax found a formula that defines the valuation ring in a way that
does not depend on p and indeed defines the valuation ring in any henselian valued
field with value group Z.

Corollary 7.4. As the valuation ring in models of pCF is uniformly definable in
LRing, we may view pCF as a theory in LRings.
Definition 7.5. Macintyre’s language LMac is equal to LRing∪{Pn : n ≥ 2}, where
each Pn is a unary predicate.

For K |= pCF, we interpret Pn(K) = {xn : x ∈ K}. The proof of the following
result is quite similar to that of Pas’ Theorem.

Theorem 7.6 (Macintyre). The theory pCF is complete and has quantifier elimi-
nation in LMac.

Definition and Remark 7.7. Let K |= pCF and m ≥ 1. Then

Um(K) = 1 + pmOK ≤ (O×K , ·)
is an open subgroup, and we have Um(K)/Um+1(K) ∼= Fp and O×K/U1(K) ∼= F×p .

Thus, Um(K) ≤ O×K is of finite index for all m.

For n ≥ 2, set P ∗n(K) = Pn(K) r {0}.
Lemma 7.8. Let n ≥ 2 and K |= pCF.

(1) If m > 2vp(n) then Um(K) ⊆ P ∗n(K)
(2) P ∗n(K) ≤ (K∗, ·) is an open subgroup of finite index and all cosets are

represented by integers.

Proof. Part (1) follows from Hensel’s Lemma.

For part (2), note that Cn = {x ∈ K× : v(x) ∈ nΓK} is a subgroup of K× of
index n, with all cosets represented by integers (1, p, p2, . . . , pn−1). Now,

Cn/P
∗
n(K) = O×K/P

∗
n(K) ∩ O×K ,

as one easily shows (exercise). Thus, we are done by (1), as Um(K) ≤ O×K is of
finite index, and it is not difficult to see that all cosets of it are represented by
integers. �
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It follows that in pCF we have |= Pn(x) iff (x = 0 ∨ P ∗n(x)), and ¬Pn(x) iff∨ln
i=1 P

∗
n(zix), for certain integers ln and z1, . . . , zln . Below, we write L∗Mac for

LRing ∪ {P ∗n : n ≥ 2}.

Corollary 7.9. Every formula ϕ(x1, . . . , xn) in L∗Mac is equivalent in pCF to a

finite positive boolean combination of formulas of the following forms (for f ∈ Z[X],
n ≥ 2):

(1) f(x) = 0,
(2) f(x) 6= 0,
(3) P ∗n(f(x)).

Corollary 7.10. The theory pCF is model-complete in LRing.

Proof. The formulas of the first two kinds in Corollary 7.9 are quantifier free in
LRing, those of the third kind are (equivalent in pCF to) existential LRing-formulas.
By Corollary 7.9, any LRing-formula is thus equivalent to an existential one in pCF,
yielding model-completeness. �

Corollary 7.11. Let K |= pCF, and let D ⊆ K be a definable subset. If D is
infinite then D has non-empty interior. More generally, alg.dim = top.dim for all
definable sets D ⊆ Km.

Proof. Let D ⊆ K be definable and infinite. By Corollary 7.9, D is a finite union
of sets given by formulas of the form(

r∧
i=1

fi(x) = 0

)
∧

(
s∧
i=1

gi(x) 6= 0

)
∧

(
t∧
i=1

P ∗ni(hi(x))

)
.

We may thus assume that D is defined by a single formula of this form. As it is
infinite, the polynomials fi must be identically 0 for all i. But then what remains
is open with respect to the valuation topology, and hence has non-empty interior.

The proof that alg.dim = top.dim is left as an exercise, and follows the same
lines as in ACVF (cf. Exercise 4.15). �

Corollary 7.12. Let A ⊆ K |= pCF. Then acl(A) = Q(〈A〉)alg ∩K � K.

Proof. The inclusion ”⊇” is clear. For the reverse, it is enough to show that K0 =
Q(〈A〉)alg ∩ K |= pCF; then by model-completeness, we get K0 � K, so K0 is
algebraically closed in K.

Clearly, kK0
= Fp and v(p) is the minimal positive element in ΓK0

. As any
relatively algebraically closed subfield of a henselian field is henselian (easy exer-
cise), K0 is henselian. It remains to show that ΓK0

|= PRES. To do this, it is
enough to show that Div(ΓK0) ∩ ΓK = ΓK0 . This follows from the following slight
generalization of Lemma 6.10, the proof of which we leave to the reader. �

Lemma 7.13. Let (L,w) ⊇ (K, v) be valued fields of mixed characteristic (0, p).
Assume (L,w) is henselian, kL = kK and w(p) is the minimal positive element in
ΓL. Then the following holds.

(1) Let n ≥ 1 and a ∈ L such that w(a) > 2w(n). Then there is b ∈ L such
that bn = 1 + a and w(b− 1) > w(n).

(2) Let γ ∈ ΓL ∩Div(ΓK). Assume that n ≥ 1 is minimal such that nγ ∈ ΓK .
Then there is b ∈ L such that w(b) = γ and bn ∈ K.



MODEL THEORY OF VALUED FIELDS 23

Remark 7.14. In fact, a much stronger result holds in pCF, by a theorem of van
den Dries, namely that the theory pCF admits definable Skolem functions, i.e., for
all A ⊆ K |= pCF, dcl(A) � K. In particular, acl = dcl in pCF.

We mention one more result (without proof) which is in the spirit of what we
have seen in the earlier sections.

Theorem 7.15. The theory pCF is NIP (Bélair), and in fact is dp-minimal (Dolich-
Lippel-Goodrick).
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352 (2013), pp. 459–507.

[4] Antonio Engler and Alexander Prestel. Valued Fields. Springer Monographs in Math-

ematics. Springer-Verlag, Berlin-New York, 2005.
[5] Kenneth A. H. Gravett. Note on a result of Krull. Proc. Cambridge Philos. Soc.

52(1956), p. 379.

[6] Yuri Gurevich and Peter H. Schmitt. The theory of ordered abelian groups does not
have the independence property. Trans. Amer. Math. Soc. 284 (1984), pp. 171–182.

[7] Immanuel Halupczok. An introduction to motivic integration. This volume.
[8] Deirdre Haskell, Ehud Hrushovski and Dugald Macpherson. Definable sets in alge-

braically closed valued fields. Part I: elimination of imaginaries. J. Reine Angew.

Math. 597 (2006), pp. 175–236.
[9] Deirdre Haskell, Ehud Hrushovski and Dugald Macpherson. Stable domination and

independence in algebraically closed valued fields. Lecture Notes in Logic, vol. 30.

Association for Symbolic Logic, Chicago, IL, 2008.
[10] Ehud Hrushovski and François Loeser. Non-archimedean Tame Topology and Stably

Dominated Types. Annals of Mathematics Studies, vol. 192. Princeton University

Press, Princeton-Oxford, 2016.
[11] Franziska Jahnke. An introduction to valued fields. This volume.
[12] Irving Kaplansky. Maximal fields with valuations. Duke Math. J. 9 (1942), pp. 303–

321.
[13] Angus Macintyre. On definable subsets of p-adic fields, J. Symbolic Logic 41 (1976),

pp. 605–610.
[14] Johan Pas. Uniform p-adic cell decomposition and local zeta functions. J. Reine

Angew. Math. 399 (1989), pp. 137–172.
[15] Abraham Robinson. Complete theories. North-Holland Publishing Co., Amsterdam,

1956.
[16] Pierre Simon. A guide to NIP theories. Lecture Notes in Logic vol. 44. Association

for Symbolic Logic, Chicago, IL; Cambridge University Press, Cambridge, 2015.
[17] Pierre Simon. NIP and definably amenable groups. This volume.

Institut für Mathematische Logik und Grundlagenforschung, University of Münster,

Einsteinstr. 62, 48149 Münster, Germany
E-mail address: hils@uni-muenster.de


