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Abstract. We study the domination monoid in various classes of structures arising from the
model theory of henselian valuations, including RV-expansions of henselian valued fields of
residue characteristic 0 (and, more generally, of benign valued fields), p-adically closed fields,
monotone D-henselian differential valued fields with many constants, regular ordered abelian
groups, and pure short exact sequences of abelian structures. We obtain Ax–Kochen–Ershov
type reductions to suitable fully embedded families of sorts in quite general settings, and full
computations in concrete ones.

In their seminal work [HHM08] on stable domination, Haskell, Hrushovski and Macpherson
introduced the domination monoid Ĩnv(U), and showed that in algebraically closed valued fields
it decomposes as Ĩnv(k(U))× Ĩnv(Γ(U)), where k denotes the residue field and Γ the value group.1

A similar result was proven in [EHM19] in the case of real closed fields with a convex valuation.
This paper revolves around understanding Ĩnv(U) in more general classes of valued fields, and
expansions thereof. A special case of our results is the following.
Theorem A (Corollary 6.22). Let T be the theory of a henselian valued field of equicharacteristic
0, or algebraically maximal Kaplansky, possibly enriched on k and Γ. If all k×/(k×)n are finite,

Ĩnv(U) ∼= Ĩnv(k(U))× Ĩnv(Γ(U))

More generally, we obtain a two-step reduction, first to leading term structures, and then, using
technology on pure short exact sequences recently developed in [ACGZ20], to k and Γ, albeit in a
form which, in general, is (necessarily) slightly more involved. We also compute Ĩnv(Γ(U)) when
the theory of Γ has an archimedean model, and prove several accessory statements.

Before stating our results in more detail, let us give an informal account of the context (see
Section 1 for the precise definitions). The starting point is the space Sinv(U) of invariant types
over a monster model U. It is a dense subspace of S(U), whose points may be canonically ex-
tended to larger parameter sets. Such extensions allow to define the tensor product, or Morley
product, obtaining a semigroup (Sinv(U),⊗). The space Sinv(U) also comes with a preorder ≥D,
called domination: roughly, p ≥D q means that q is recoverable from p plus a small amount of
information. The quotient by the induced equivalence relation, domination-equivalence ∼D, is
then a poset, denoted by (Ĩnv(U),≥D). If ⊗ respects ≥D, i.e. if (Sinv,⊗,≥D) is a preordered
semigroup, then ∼D is a congruence with respect to ⊗ and we say that the domination monoid
is well-defined, and equip (Ĩnv(U),≥D) with the operation induced by ⊗. Compatibility of ⊗ and
≥D in a given theory can be shown by using certain sufficient criteria, isolated in [Men20b] and
applied e.g. in [Menb], or by finding a nice system of representatives for ∼D-classes (cf. Proposi-
tion 1.6). Nevertheless, in general, ⊗ may fail to respect ≥D [Men20b]. Hence, when dealing with
Ĩnv(U) in a given structure, one needs to understand whether it is well-defined as a monoid; and,
when dealing with it in the abstract, the monoid structure cannot be taken for granted.

2020 Mathematics Subject Classification. Primary: 03C45. Secondary: 03C60, 03C64, 12J10, 12L12.
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1Strictly speaking, [HHM08] works with Inv(U), which is in general different, but coincides with Ĩnv(U) in their
setting. See [Men20a, Remark 2.1.14 and Theorem 5.2.22].
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Recall that to each valued field K is associated a short exact sequence RV of abelian groups
augmented by an absorbing element 1→ (k,×)→ (K,×)/(1+m)→ Γ∪{∞} → 0. This sequence
is interpretable in K, and this interpretation endows it with extra structure. The amount of
induced structure clearly depends on whether K has extra structure itself, but at a bare minimum
k will carry the language of fields and Γ that of ordered abelian groups. By [Fle11], henselian
valued fields of residue characteristic 0 eliminate quantifiers relatively to RV, and the latter is
fully embedded with the structure described above. Actually, this holds resplendently, in the sense
that it is still true after arbitrary expansions of RV. The same result holds in the algebraically
maximal Kaplansky case, by [HH19]. These are known after [Tou18] as classes of benign valued
fields and, in several contexts, they turn out to be particularly amenable to model-theoretic
investigation. One of our main results says that the context of domination is no exception.

Theorem B (Theorem 6.21). In every RV-expansion of a benign theory of valued fields there is
an isomorphism of posets

Ĩnv(U) ∼= Ĩnv(RV(U))

If ⊗ respects ≥D in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

Having reduced Ĩnv(U) to the short exact sequence RV, the next step is to reduce it to its
kernel k and quotient Γ. If we now add an angular component map, the sequenceRV splits and we
obtain a product decomposition as in Theorem A (Remark 6.4). Without an angular component,
a product decomposition is not always possible; nevertheless, k and Γ still exert a tight control on
RV. In fact, this behaviour turns out not to be peculiar ofRV, and to hold e.g. in every short exact
sequences of abelian groups with torsion-free quotient. Even more generally, a decomposition
theorem is possible in short exact sequences of abelian structures, provided they satisfy a purity
assumption (Definition 4.5), using the relative quantifier elimination from [ACGZ20]. For reasons
to be clarified later (Remark 4.19), in this context it is more natural to look at types in infinitely
many variables, say κ, hence at the corresponding analogue Ĩnvκ(U) of the domination monoid.

Theorem C (Corollary 4.12). Let U be a pure short exact sequence 0 → A → B → C → 0 of
L-abelian structures, where A and C may carry extra structure. Let κ ≥ |L| be a small cardinal.
There is an expansion AF of A by imaginary sorts yielding an isomorphism of posets

Ĩnvκ(U) ∼= Ĩnvκ(AF (U))× Ĩnvκ(C(U))

If ⊗ respects ≥D in both AF (U) and C(U), then ⊗ respects ≥D in U, and the above is an iso-
morphism of monoids.

In algebraically or real closed valued fields, the reduction of the monoid Ĩnv(U) to Ĩnv(k(U))×
Ĩnv(Γ(U)) is complemented by an explicit computation of the factors, carried out in [HHM08,
Mena]. In particular, if Γ(U) is a divisible ordered abelian group, then Ĩnv(Γ(U)) is isomorphic to
the upper semilattice of finite sets of invariant convex subgroups of Γ(U) (see Definition 3.16). A
further contribution of the present work is the computation of Ĩnv(U) in the next simplest class of
theories of ordered abelian groups, namely those with an archimedean model, known as regular.

Theorem D (Corollary 3.40). Let T be the theory of a regular ordered abelian group and κ a
small infinite cardinal. Denote by κ̂ the ordered monoid of cardinals smaller or equal than κ with
cardinal sum, by X the set of invariant convex subgroups of U, by P≤κ(X) the upper semilattice
of its subsets of size at most κ, and by PT the set of primes p such that U/pU is infinite. Then
Ĩnvκ(Ueq) is well-defined, and

Ĩnvκ(Ueq) ∼= P≤κ(X)×
∏
PT

κ̂
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In particular, Theorem D applies to Presburger Arithmetic, the theory of (Z,+, <). Pairing
this (or rather, its version for finitary types) with a suitable generalisation of Theorem B, we
obtain the following.

Theorem E (Corollary 7.9). In the theory Th(Qp) of p-adically closed fields, ⊗ respects ≥D. If
X is the set of invariant convex subgroups of Γ(U), then Ĩnv(U) ∼= P<ω(X).

We also obtain a similar result (Corollary 7.7) for Witt vectors over Falg
p . Finally, we move

to the context of monotone D-henselian differential valued fields with many constants. While
Theorem B does not generalise to this context (Remark 8.6), we prove in Theorem 8.3 that its
analogue for Ĩnvκ(U) does. In the model companion VDFEC , we produce a full computation.

Theorem F (Theorem 8.5). In VDFEC, for every small infinite cardinal κ, the monoid Ĩnvκ(U)
is well-defined, and we have isomorphisms

Ĩnvκ(U) ∼= Ĩnvκ(k(U))× Ĩnvκ(Γ(U)) ∼=
≤κ∏
δ(U)

κ̂×P≤κ(X)

where X is the set of invariant convex subgroups of Γ(U), δ(U) is a certain cardinal, and
∏≤κ
δ(U) κ̂

denotes the submonoid of
∏
δ(U) κ̂ consisting of δ(U)-sequences with support of size at most κ.

Similar results hold in the setting of σ-henselian valued difference fields (Remark 8.7).
The paper is structured as follows. In the first two sections we recall some preliminary notions

and facts, and deal with some easy observations about orthogonality of invariant types. In Sec-
tion 3 we prove Theorem D, while in Section 4 we study expanded pure short exact sequences of
abelian structures, proving Theorem C. The results from these two sections are then combined
in Section 5 to deal with the case of ordered abelian groups with finitely many definable convex
subgroups. In Section 6 we prove Theorem B, and illustrate how it may be combined with The-
orem C to obtain statements such as Theorem A. Section 7 deals with finitely ramified mixed
characteristic henselian valued fields and includes a proof of Theorem E, and Section 8 deals with
the differential case, including a proof of Theorem F. Some open questions are listed in Section 9.
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1. Preliminaries

1.1. Notation and conventions. The set of natural numbers is denoted by ω and always
contains 0. The set of prime natural numbers is denoted by P.

We denote by L a possibly multi-sorted first-order language, by |L| the cardinality of the set of
its formulas, and by T a complete L-theory. Sorts are denoted by upright letters, as in A,K, k,Γ,
and families of sorts by calligraphic letters such as A.

Lowercase Latin letters such as a, b, c and x, y, z denote tuples of parameters and variables
respectively. Given a tuple a, we denote by ai its i-th element, starting from 0, and by |a| its
length, so for example a = (a0, . . . , a|a|−1). If A is a set of parameters, we often write a ∈ A in
place of a ∈ A|a|. Tuples of variables denoted by different letters, as in p(x) ∪ q(y), are assumed
to be disjoint. Terms may contain parameters, as in t(x, d). We write e.g. t(x) if they do not.



THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS 4

Formally, a monster model for us will be a pair (U, κ(U)) such that κ(U) is a strong limit
cardinal, i.e. closed under i, and of cofinality larger than |L|, and U is a κ(U)-saturated and
κ(U)-strongly homogeneous model of T . When a monster model is fixed, “small” means “of size
< κ(U)”. In practice, we will usually just write U and rarely refer to κ(U). We write A ⊂+ U to
say that A is a small subset of U, and M ≺+ U for small elementary substructures. Definable
means U-definable unless otherwise stated.

If κ is a cardinal, S<κ(A) stands for the union of all spaces of types over A in fewer than κ
variables. We also write S(A) for S<ω(A). If X is an A-definable set, we denote by SX(A) the
space of types over A concentrating on X, and by SX<ω (A) the disjoint union of all SXn(A). We
use similar notations with X replaced by a formula ϕ defining it. If C is a family of sorts, SC<ω (A)
denotes the disjoint union of all spaces of types in finitely many variables, each with sort in C.

If p ∈ S(A) is a type and f an A-definable function with domain in p, we denote by f∗p the
pushforward {ϕ(y) ∈ L(A) | p(x) ` ϕ(f(x))}. A global type is a type in S(U). Realisations of
global types and sets B ⊇ U live inside a larger monster model, denoted by U1.

1.2. Invariant types. If A ⊆ B, a type p ∈ S(B) is A-invariant iff, for all d, d′ ∈ B, whenever
p ` ϕ(x, d) and d′ ≡A d then p ` ϕ(x, d′). An invariant type is a global type which is A-invariant
for some small A. The space of global A-invariant [resp. invariant] types concentrating on X is
denoted by Sinv

X (U, A) [resp. Sinv
X (U)]. We use conventions analogous to those we employ for usual

type spaces, and write e.g. Sinv(U).
If p ∈ Sinv(U, A) and B ⊇ U, there is a unique A-invariant extension of p to a type over B. It

does not depend on A, and we denote it by p | B. If p(x), q(y) ∈ S(U), p is A-invariant, and b � q,
we define ϕ(x, y, d) ∈ (p⊗q)(x, y) iff (p | Ub) ` ϕ(x, b, d). This does not depend on b, nor on A, and
yields a global type p⊗ q, which is A-invariant if and only if q is. The operation ⊗ is associative,
and endows Sinv

<ω(U) with the structure of a monoid, the neutral element being the unique 0-type,
i.e. the elementary diagram of U. For further details, see e.g. [Men20a, Subsection 2.1.2].

1.3. Domination. We briefly recall some definitions and facts about domination, and refer the
reader to [Men20b,Men20a] for a more thorough treatment.

Definition 1.1.

1. If p(x), q(y) ∈ S(U), let Spq(A) be the set of types over A in variables xy extending
(p(x) � A) ∪ (q(y) � A).

2. We say that p(x) ∈ S(U) dominates q(y) ∈ S(U), and write p ≥D q, iff there are a small
A ⊂+ U and r ∈ Spq(A) such that p(x) ∪ r(x, y) ` q(y).

3. We say that p, q ∈ S(U) are domination-equivalent, and write p ∼D q, iff p ≥D q and
q ≥D p. We denote the domination-equivalence class of p by JpK.

4. The domination poset Ĩnv(U) is the quotient of Sinv(U) by ∼D, equipped with the partial
order induced by ≥D, denoted by the same symbol.

In other words, domination is the semi-isolation counterpart to Fs
κ(U)-isolation in the sense

of [She90, Chapter IV]. For a theory where the two notions are distinct, see [Menb, Example 3.3].
In what follows we will be mostly concerned with domination on invariant types. When de-

scribing a witness to p ≥D q, we write e.g. “let r contain ϕ(x, y)” with the meaning “let r ∈ Spq(A)
contain ϕ(x, y), for an A such that p, q ∈ Sinv(U, A)”.

Fact 1.2 ([Men20b, Lemma 1.14]). Let p0, p1, q ∈ S(U). If p0, p1 are invariant and p0 ≥D p1,
then p0 ⊗ q ≥D p1 ⊗ q.
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Definition 1.3. We say that ⊗ respects ≥D iff q0 ≥D q1 implies p⊗ q0 ≥D p⊗ q1. If this is the
case, the domination monoid is the expansion of Ĩnv(U) by the operation induced by ⊗, denoted
by the same symbol. We also say that Ĩnv(U) is well-defined2 in place of “⊗ respects ≥D”.

Domination witnessed by algebraicity is always compatible with ⊗, as made precise below.

Fact 1.4 ([Men20b, Proposition 1.23]). Suppose that p ∈ Sinv(U), that q0, q1 ∈ S(U), and that
for i < 2 there are realisations ai � qi such that a1 ∈ acl(Ua0). Then p⊗ q0 ≥D p⊗ q1.

Frequently, we will consider a family of sorts, say A = {As | s ∈ S}, as a standalone structure,
by equipping it with the traces of some ∅-definable relations. Such an A is called fully embedded
iff every subset of (As0 × . . . × Asn)(U) is definable3 in U if and only if it is definable in A(U).
For brevity, when we talk of a fully embedded A in the abstract, as in Fact 1.5 below, we tacitly
consider a structure on A to be fixed.

Fact 1.5 ([Men20b, Proposition 2.3.31]). Let A be a fully embedded family of sorts, and let
ι : SA<ω (A(U))→ S(U) send a type of A(U) to the unique type of U it entails.

1. p is invariant if and only if ι(p) is, and ι � Sinv(A(U)) is an injective ⊗-homomorphism.
2. ι induces an embedding of posets ῑ : Ĩnv(A(U)) ↪→ Ĩnv(U).
3. If ⊗ respects ≥D in both A(U) and U, then ῑ is also an embedding of monoids.

Proposition 1.6. Let A be fully embedded, and suppose that for each p ∈ Sinv(U) there is a
tuple τp of definable functions with codomains in A such that, for each p, q ∈ Sinv(U), we have
p ∼D τp∗ p and p⊗ q ∼D τp∗ p⊗ τ q∗ q. If ⊗ respects ≥D in A(U), then ⊗ respects ≥D in U.

Proof. By Fact 1.2 it is enough to show that if q0 ≥D q1 then p ⊗ q0 ≥D p ⊗ q1. Note that τ
induces an inverse of ῑ. By assumption, p⊗ q0 ∼D τp∗ p⊗ τ q0∗ q0 and τp∗ p⊗ τ q1∗ q1 ∼D p⊗ q1. Since
⊗ respects ≥D in A(U), we obtain τp∗ p⊗ τ q0∗ q0 ≥D τp∗ p⊗ τ q1∗ q1, and we are done. �

1.4. A word on ∗-types. In what follow, we will sometimes need to deal with types in a (small)
infinite number of variables, also known in the literature as ∗-types. We define Ĩnvκ(U) as the
quotient of S<κ+(U) by ∼D. Note that, by padding with realised coordinates and permuting
variables, every ∼D-class has a representative with variables indexed by κ. We leave to the
reader easy tasks such as defining the α-th power p(α), for α an ordinal, or such as convincing
themself that basic statements such as Fact 1.5 generalise. Nevertheless, it is not clear if well-
definedness of Ĩnv(U) implies well-definedness of Ĩnvκ(U) (the converse is easy). We leave this open
as Question 9.1. In the rest of the paper we will say e.g. “⊗ preserves ≥D” with the understanding
that, whenever ∗-types are involved, this is to be read as “⊗ preserves ≥D on ∗-types”.

2. Orthogonality

Definition 2.1.
1. We say that p, q ∈ S(A) are weakly orthogonal, and write p ⊥w q, iff p(x) ∪ q(y) implies

a complete xy-type over A.
2. We say that p, q ∈ Sinv(U) are orthogonal, and write p ⊥ q, iff for every B ⊇ U we have

(p | B) ⊥w (q | B).
3. Two definable sets ϕ,ψ are orthogonal iff for every n,m ∈ ω, every p ∈ Sϕn(U), and every
q ∈ Sψm(U), we have p ⊥w q.

4. Two families of sorts A, C are orthogonal iff every cartesian product of sorts in A is
orthogonal to every cartesian product of sorts in C.

2As a partially ordered monoid. Because Ĩnv(U) is always well-defined as a poset, this should cause no confusion.
3Recall that when we say “definable” we mean “definable with parameters”.
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Remark 2.2. The following statements are well-known (and easy to prove).
1. If p ∈ S(A) is weakly orthogonal to itself, then it is realised in dcl(A).
2. If p, q ∈ Sinv(U) and p ⊥w q, then p(x)⊗ q(y) = q(y)⊗ p(x): they both coincide with (the

unique completion of) p(x) ∪ q(y).
3. Two definable sets ϕ,ψ are orthogonal if and only if every definable subset of ϕm(x) ∧
ψn(y), where x, y are disjoint tuples of variables, is a finite union of rectangles, i.e. can
be defined by a finite disjunction of formulas of the form θ(x) ∧ η(y).

4. If two definable sets are orthogonal and M is any model containing the parameters used
to define them, then the definition of orthogonality still holds after replacing U with M .

5. Adding imaginaries preserves orthogonality, in the following sense. Let A be a family
of sorts, and let Ã be a larger family, consisting of A together with imaginary sorts
obtained as definable quotients of products of elements of A. Let C̃ be obtained similarly
from another family of sorts C. If A and C are orthogonal, then so are Ã and C̃.

Fact 2.3 ([Men20b, Proposition 3.13]). Suppose that p0, p1 ∈ Sinv(U) and q ∈ S(U). If p0 ≥D p1

and p0 ⊥w q, then p1 ⊥w q. In particular, if p0 ≥D q and p0 ⊥w q, then q is realised.

As a consequence, ⊥w induces a well-defined relation on the domination poset, which we may
therefore expand to (Ĩnv(U),≥D,⊥w). By [Men20b, Proposition 2.3.31] the map ῑ from Fact 1.5
is a homomorphism for both ⊥w and 6⊥w. We prove the analogous statements for orthogonality.

Proposition 2.4. Let p0, p1, q ∈ Sinv(U). If p0 ⊥ q and p0 ≥D p1, then p1 ⊥ q. In particular, ⊥
induces a well-defined relation on Ĩnv(U).

Proof. Fix r witnessing p0 ≥D p1 and let B ⊇ U. Let b � p1 | B and c � q | B. By [Men20b,
Lemma 1.13] (p0 | B) ∪ r ` (p1 | B). Let a be such that ab � (p0 | B) ∪ r. Since p0 ⊥ q, we have
(p0 | B) ⊥w (q | B), hence a � p0 | Bc. By [Men20b, Lemma 1.13] we have (p0 | Bc)∪r ` (p1 | Bc).
Therefore b � p1 | Bc, and we are done. �

Proposition 2.5. Let A be a fully embedded family of sorts, and let ι be the natural map
SA<ω (A(U)) → S(U). Its restriction ι � Sinv

A<ω (A(U)) is both a ⊥-homomorphism and a 6⊥-
homomorphism. In particular, so is the induced map ῑ : Ĩnv(A(U)) ↪→ Ĩnv(U).

Proof. Let p, q ∈ Sinv
A<ω (A(U)) be orthogonal and let U1 � U be |U|+-saturated and |U|+-strongly

homogeneous. We show that, for ϕ(x, y, z) ∈ L(U) and d ∈ U1, if (ιp(x)⊗ ιq(y)) | U1 ` ϕ(x, y, d)
then (ιp | Ud)(x)∪(ιq | Ud)(y) ` ϕ(x, y, d). By full embeddedness, there are χ(x, y, w) ∈ LA(A(U))
and e ∈ A(U1) such that U1 � ∀x, y (χ(x, y, e)↔ ϕ(x, y, d)). Because (p | A(U)e) ⊥w (q | A(U)e),
there are θp(x,w), θq(y, w) ∈ LA(A(U)) such that (p | A(U)e) ` θp(x, e), (q | A(U)e) ` θq(y, e),
and A(U1) � ∀x, y ((θp(x, e) ∧ θq(y, e))→ χ(x, y, e)). Since p, q are invariant, we have inclusions

πp(x) := {θp(x, e′) | e′ ∈ U1, e ≡Ud e
′} ⊆ ιp | U1

πq(y) := {θq(y, e′) | e′ ∈ U1, e ≡Ud e
′} ⊆ ιq | U1

Hence πp, πq are consistent, and since they are fixed by Aut(U1/Ud) they are equivalent to partial
types σp, σq over Ud. But σp ⊆ ιp | Ud, σq ⊆ ιq | Ud, and by construction σp(x)∪σq(y) ` ϕ(x, y, d).

Suppose now that there is B ⊆ A(U1) such that (p | B) 6⊥w (q | B). Since the roles of p and
q are symmetric, it is enough to show that (p | B) ` (ιp | B). Suppose ϕ(x,w, t) ∈ L(∅), d ∈ U,
e ∈ B, and ιp(x) | B ` ϕ(x, d, e). Since x, t are A-variables , and d ∈ U, full embeddedness yields
an LA(A(U))-formula ψ(x, t) equivalent to ϕ(x, d, t). So ψ(x, e) ∈ p | B and we are done.

The “in particular” part follows from Proposition 2.4. �
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Lemma 2.6. Let p, q0, q1 ∈ S(U), and assume that p ⊥w q0 and that (p(x) ∪ q0(y)) ≥D q1(z),
witnessed by a small type r ∈ Sp⊗q0,q1(M). Suppose furthermore that

(r � x) ⊥w (r � yz) (1)

Then q0 ≥D q1, witnessed by r � yz.

Proof. Let χ(z, d) ∈ q1(z) be given. By assumption there is a formula ρ(x, y, z) ∈ r such that
p(x) ∪ q0(y) ` ∀z (ρ(x, y, z) → χ(z, d)). By (1) there are ρ0(x) and ρ1(y, z) in r such that
p(x) ∪ q0(y) ` ∀z ((ρ0(x) ∧ ρ1(y, z))→ χ(z, d)). By spelling this out, there is ϕ(x, e) ∈ p(x) such
that q0(y) ` ∀x, z

(
ϕ(x, e) ∧ ρ0(x) ∧ ρ1(y, z))→ χ(z, d)

)
, and in particular

q0(y) ` ∀z
((
ρ1(y, z) ∧ ∃x (ϕ(x, e) ∧ ρ0(x))

)
→ χ(z, d)

)
Since z does not appear in ∃x (ϕ(x, e)∧ρ0(x)), and the latter is true in U since ϕ(x, e)∧ρ0(x) ∈ p,
we obtain q0(y) ` ∀z

(
ρ1(y, z)→ χ(z, d)

)
. As ρ1(y, z) ∈ r � yz, we are done. �

Corollary 2.7. Suppose that A, C are orthogonal families of sorts. Let p ∈ Sinv
A<ω (U) and q0, q1 ∈

Sinv
C<ω (U). If (p ∪ q0) ≥D q1, then q0 ≥D q1.

Proof. By point 4 of Remark 2.2 and Lemma 2.6. �

Corollary 2.8. Suppose that A, C are orthogonal, fully embedded families of sorts. Assume that
for every p ∈ Sinv(U) there are some pA ∈ Sinv

A<ω (U) and pC ∈ Sinv
C<ω (U) such that p ∼D pA ∪ pC .

Then the map JpK 7→ (JpAK, JpCK) is an isomorphism of posets Ĩnv(U) → Ĩnv(A(U)) × Ĩnv(C(U)).
Moreover, if ⊗ respects ≥D, then this is also an isomorphism of monoids.

Proof. By Fact 1.5 we have embeddings of posets Ĩnv(A(U)) ↪→ Ĩnv(U) and Ĩnv(C(U)) ↪→ Ĩnv(U),
yielding an embedding Ĩnv(A(U))× Ĩnv(C(U)) ↪→ Ĩnv(U). It is therefore enough to show that the
natural candidate for its inverse, JpK 7→ (JpAK, JpCK), is well-defined and a morphism of posets.

Suppose that p ∼D pA ∪ pC and p ∼D qA ∪ qC . Then (pA ∪ pC) ∼D (qA ∪ qC), so in particular
(pA ∪ pC) ≥D qA. By Corollary 2.7, this implies pA ≥D qA, and arguing similarly we obtain
JpAK = JqAK and JqAK = JqCK. Suppose now that (pA ∪ pC) ∼D p ≥D q ∼D (qA ∪ qC). Again by
Corollary 2.7 we must have pA ≥D qA and pC ≥D qC .

The “moreover” part is immediate. �

Example 2.9. Let A, C be two structures in disjoint languages, and let T be the theory of their
disjoint union, with corresponding families of sorts A and C. It is easy to see that A and C are
orthogonal, and that every invariant type from A is orthogonal to every invariant type from C.
Therefore, for U � T , we have that Ĩnv(U) is isomorphic as a poset to Ĩnv(A(U))× Ĩnv(C(U)), and
is well-defined as a monoid if and only if both factors are.

Orthogonality is preserved by products. The proof is folklore, and essentially the same as in
the stable case, but we record it here for convenience.

Proposition 2.10. If p0, p1, q ∈ Sinv(U) and for i < 2 we have pi ⊥ q then p0 ⊗ p1 ⊥ q.
Proof. Let ab � p0 ⊗ p1 and c � q. Because p1 ⊥ q we have c � q | Ub, and by definition of ⊗ we
have a � p0 | Ub. Since p0 ⊥ q, this entails c � q | Uab, and we are done. �

It is an easy exercise to show that if p, q ∈ Sinv(U,M) are weakly orthogonal and U1 � U
is |M |+-saturated and |M |+-strongly homogeneous, then (p | U1) and (q | U1) are still weakly
orthogonal. Nevertheless, this can fail for arbitrary B ⊇ U; in other words, weak orthogonality is
indeed weaker than orthogonality. While this is folklore,4 we could not find any example in print,
so we conclude this section by recording an instance of this phenomenon.

4The second author would like to thank E. Hrushovski for pointing this out.
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Counterexample 2.11. There is a theory with invariant types p, q such that p ⊥w q but p 6⊥ q.

Proof. Let L be a two-sorted language with sorts P,O (points, orders) and a single relation
symbol R(P2,O). Let K be the class of finite L-structures where, for every d ∈ O, the relation
R(x, y, d) is a linear order. We use the notation x ≤d y. A routine argument shows that K is a
(strong) amalgamation class. Let T be the theory of its Fraïssé limit. In models of T , every ≤d
is a dense linear order without endpoints and, given any pairwise distinct d0, . . . , dn ∈ O(U) and
nonempty intervals (ai, bi)di , the intersection

⋂
i≤n(ai, bi)di is infinite.

Fix a small M � T , and let p(x) be the 1-type of sort P saying that for every d ∈ O(U),
according to ≤d, the point x is just right of M , that is, p(x) = {m <d x <d e | d ∈ O(U),m ∈
M, e ∈ P(U), e > M}. Let q(y) be the 1-type of sort P saying that for every d ∈ O(U), according
to ≤d, the point y is bigger than P(U). By quantifier elimination, p is complete and M -invariant,
in fact finitely satisfiable in M . Similarly, q is an ∅-definable, hence ∅-invariant type.

By quantifier elimination, p ⊥w q. Let b be a point of sort O such that M is ≤b-cofinal in U,
and set B := Ub. Then (q(y) | B) ` y ≥b P(U) and (p(x) | B) ` x ≥b P(U), and both x <b y and
y <b x are consistent with (p(x) | B) ∪ (q(y) | B), which is therefore not complete. �

3. Regular ordered abelian groups

In this section we study the domination monoid in certain theories of (linearly) ordered abelian
groups, henceforth oags. Model-theoretically, the simplest oags are the divisible ones. Their theory
is o-minimal and their domination monoid was one of the first ones to be computed (see [HHM08,
Mena]). It is isomorphic to the finite powerset semilattice (P<ω(X),∪,⊆), with X the set of
invariant convex subgroups of U, and weakly orthogonal classes of types correspond to disjoint
finite sets. Divisible oags eliminate quantifiers in the language Loag := {+, 0,−, <}. In this section
we compute the domination monoid in the next simplest case.

Definition 3.1.
1. A (nontrivial) oag is discrete iff it has a minimum positive element. Otherwise, it is dense.
2. The Presburger language is LPres := {+, 0,−, <, 1,≡n| n ∈ ω}.
3. An oag M is viewed as an LPres-structure by interpreting +, 0,−, < in the natural way,

1 as the minimum positive element if M is discrete and as 0 if M is dense, and ≡n as
congruence modulo nM .

4. An oag is regular iff it eliminates quantifiers in LPres.

Fact 3.2 ([RZ60,Zak61,Con62,Wei86,CH11]). For an oag M , the following are equivalent.
1. M is regular.
2. The only definable convex subgroups of M are {0} and M .
3. The theory of M has an archimedean model, i.e. one Loag-embeddable in (R,+, 0,−, <).
4. For every n > 1, if the interval [a, b] contains at least n elements, then it contains an

element divisible by n.
5. Every quotient of M by a nontrivial convex subgroup is divisible.

Fact 3.3 ([RZ60,Zak61]). Every discrete regular oag is a model of Presburger Arithmetic, i.e. it
is elementarily equivalent to Z. If M,N are dense regular oags, then M ≡ N if and only if, for
each p prime, M/pM and N/pN are either both infinite or have the same finite size.

Notation 3.4. For the rest of the section we adopt the following (not entirely standard) con-
ventions. Let M be an oag and A ⊆M .

1. A>0 denotes {a ∈ A | a > 0}.
2. 〈A〉 denotes the group generated by A.
3. div(M) denotes the divisible hull of M .
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4. We allow intervals to have endpoints in the divisible hull. In other words, an interval in
M is a set of the form {x ∈ M | a @0 x @1 b}, for suitable a, b ∈ div(M) ∪ {±∞} and
{@0,@1} ⊆ {<,≤}.

5. A cut (L,R) is given by subsets L,R ⊆ M such that L ≤ R and L ∪ R = M . We call
such a cut realised iff L ∩R 6= ∅, and nonrealised otherwise.

6. The cut (L,R) of p ∈ S1(M) is given by L = {m ∈ M | p(x) ` x ≥ m} and R = {m ∈
M | p(x) ` x ≤ m}. The cut of c ∈ N �M in M is defined to be tp(c/M).

7. We say that c ∈ N �M fills a cut if the latter equals the cut of c.
8. For a ∈ M , we denote by a+ the cut (L,R) with L = {m ∈ M | m ≤ a} and R = {m ∈
M | a < m}, and similarly for a−. Analogous notions are defined for a ∈ div(M).

Remark 3.5.
1. Intervals in our sense are still definable in the language of oags. For example, (a/n,+∞)

is defined by a < n · x.
2. If (L,R) is a cut then |L ∩R| ≤ 1.
3. A type is realised if and only if the corresponding cut is.
4. By regularity, a 1-type overM � T is determined by a cut inM together with a choice of

cosets modulo each nM (where if M/nM is infinite a type p(x) may say that the coset
x+ nM is new, i.e. not represented in M) which is consistent with the theory of M as a
pure group.

5. By the Chinese Remainder Theorem, if p, q are distinct primes and i, j positive integers,
then the imaginary sortsM/piM andM/qjM are orthogonal, and to specify a consistent
choice of cosets it is enough to do so modulo prime powers.

Lemma 3.6. Let M be a dense oag. Then, for every n > 0, every coset of nM is dense in M .
In particular, given any nonrealised p ∈ S1(M), and any choice of cosets of the nM (including
possibly new ones if M/nM is infinite) which is consistent with the theory of M as a pure group,
there is q ∈ S1(M) concentrating on these cosets and in the same cut as p.

Proof. By density and point 4 of Fact 3.2, every nM is dense, and since translations are homeo-
morphisms for the order topology we are done. �

3.1. Imaginaries in regular ordered abelian groups. In general, adding imaginary sorts to
U may result in an enlargement of Ĩnv(U) (see [Men20b, Corollary 3.8]). Nevertheless, it is easy
to see that if T eliminates imaginaries, even weakly or geometrically, then the natural embedding
Ĩnv(U) ↪→ Ĩnv(Ueq) is an isomorphism. Therefore, in this subsection we present a language in
which regular oags weakly eliminate imaginaries.

Recall that T has weak elimination of imaginaries iff for every imaginary e there is a real
tuple a such that e ∈ dcleq(a) and a ∈ acleq(e). In this subsection, we give a natural language
in which every regular ordered abelian group admits weak elimination of imaginaries. A more
general version of this result was independently obtained by Mariana Vicaría in [Vic21].

We first recall some notions from [Hru14] (see also [Joh20]).

Definition 3.7. We say that T has density of definable types if for every nonempty U-definable
set D there is an acleq(pDq)-definable global type concentrating on D.

The following result is proven in [Joh20, proof of Claim 4.2].

Fact 3.8. Suppose T contains a home sort K, i.e. a sort K such that Ueq = dcleq(K(U)). Assume
that for every nonempty U-definable subset D ⊆ K1 there is an acleq(pDq)-definable global type
concentrating on D. Then T has density of definable types.

The following is [Hru14, Lemma 2.9]. A proof may be inferred from [Joh20, proof of Theorem 4.1].



THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS 10

Fact 3.9. Suppose that T has density of definable types and that every global definable type
admits a canonical base in the sorts of T . Then T has weak elimination of imaginaries.

Let p be a prime number and n ≥ 1. Let Tpn be the Lab-theory of
⊕

i∈ω Z/pnZ, where
Lab = {0,+,−}. The following is well known.

Fact 3.10.
1. Let A be an infinite abelian group. Then A � Tpn if and only if pA = {a ∈ A | pn−1a = 0}.
2. Tpn has quantifier elimination and is totally categorical.
3. If A � Tpn , then pA is a model of Tpn−1 , and the induced structure on pA is that of a

pure abelian group.
4. Tpn has weak elimination of imaginaries.

Proof. We sketch the argument for part (4). As every stable theory has density of definable
types, by Fact 3.9 it is enough to show that for every model A of Tpn , the canonical base of every
(definable) type q ∈ SN (A) is interdefinable with a real tuple.

Since A is in particular an ω-stable one-based group, such a type q is the generic type of a coset
a+B, where a ∈ AN and B is an acleq(∅)-definable connected subgroup of AN . It is not hard to
see, by quantifier elimination, that B is defined by C · x = 0 for some matrix C ∈ Matm×N (Z).
By the Elementary Divisor Theorem, replacing C with CQ for some Q ∈ GLN (Z(p)) if necessary,
we may assume that B = pm1A⊕ . . .⊕ pmkA⊕ (0)N−k ≤ AN , where 0 ≤ mi < n for 1 ≤ i ≤ k.
We thus obtain an ∅-definable isomorphism

fB : AN/B ∼= A/pm1A⊕ . . .⊕A/pmkA⊕AN−k ∼= pn−m1A⊕ . . .⊕ pn−mkA⊕AN−k

Let a′ := fB(a+B) ∈ AN . Then dcleq(Cb(q)) = dcleq(pa+Bq) = dcleq(a′). �

Let Tp∞ be the following multi-sorted theory:
• for every n > 0 there is a sort Qpn , endowed with a copy of Lab;
• for every n > 0 there is a function symbol ρpn+1 : Qpn+1 → Qpn ;
• M � Tp∞ if and only if, for all n > 0, Qpn(M) � Tpn and ρpn+1 : Qpn+1(M) → Qpn(M)

is a surjective group homomorphism with kernel pn Qpn+1(M).

Corollary 3.11. The theory Tp∞ is complete, totally categorical, and has quantifier elimination
and weak elimination of imaginaries.

Proof. Immediate from Fact 3.10. �

We now consider a regular oagM . Since it is well known that Presburger Arithmetic eliminates
imaginaries, we may assume that M is dense.

We view M as a structure in the language with one sort for the oag itself, endowed with Loag,
one sort Qpn for each prime p and each n > 0, endowed with Lab and interpreted as the group
M/pnM , functions πpn for the quotient map from M to M/pnM and functions ρpn+1 for the
canonical surjection M/pn+1M → M/pnM . For every prime p, let dp ∈ N ∪ {∞} be such that
(M : pM) = pdp . Set T := Th(M). We leave the easy proof of the following lemma to the reader.

Lemma 3.12. The theory T has quantifier elimination. Letting U � T , we have the following.
1. For every p prime and n > 0, the sort Qpn(U) equipped with the abelian group structure

is fully embedded.
2. If dp = ∞, the structure given by (Qpn(U))n>0 together with the maps ρpn+1 is fully

embedded and a model of Tp∞ with no extra structure. If dp is finite, every sort Qpn(U)
is finite.

Theorem 3.13. The theory T has weak elimination of imaginaries.
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Proof. We will use Fact 3.9 together with Fact 3.8.
Let D be a nonempty definable subset of the home sort. By quantifier elimination,D is a finite

union of singletons and (nonempty) definable sets of the form

D′ = {x ∈ U | a < x < b, πpn1
1

(x) ∈ X1, . . . , πpnkk
(x) ∈ Xk}

where a ∈ div(U)∪{−∞}, b ∈ div(U)∪{∞}, p1, . . . , pk are pairwise distinct primes, n1, . . . , nk ∈
ω \ {0}, and Xi ⊆ Qp

ni
i

(U) is a definable set for i = 1, . . . , k.

Setting n :=
∏k
i=1 p

ni
i , we have U/nU ∼=

∏k
i=1 Qp

ni
i

(U). As every coset of nU is dense in U, it
thus follows that D′ is dense in the interval (a, b). In particular, inf(D) exists in div(U)∪ {−∞}.

Claim. There is an acleq(pDq)-definable global type q concentrating on D.

Proof of Claim. If D admits a minimum a, this is clear, as we may just take as q the realised
type given by a. Otherwise, let a := inf(D). We then find a < b ∈ U, distinct primes p1, . . . , pk,
natural numbers n1, . . . , nk and definable sets Xi ⊆ Qp

ni
i

for i = 1, . . . , k such that

{x ∈ D | x < b} = {x ∈ U | a < x < b and πpnii (x) ∈ Xi for i = 1, . . . , k}

Note that, for every b′ such that a < b′ < b, one has

{x ∈ D | x < b′} = {x ∈ U | a < x < b′ and πpnii (x) ∈ Xi for i = 1, . . . , k}

Therefore we have pXiq ∈ dcleq(pDq) for all i. As Tp∞i is stable, there is an inverse system of
global acleq(pXiq)-definable types qpmi , with qpnii concentrating on Xi. For everym > 0 and prime
p different from p1, . . . , pk we let qpm be the realised type of 0 ∈ U/pmU, which is ∅-definable.
Lemma 3.6 ensures consistency of the set of formulas

q(x) := {a < x < e | e ∈ U, e > a} ∪
⋃

p∈P,m>0

qpm(πpm(x))

By quantifier elimination, q is a global acleq(pDq)-definable type concentrating on D. �
claim

Suppose that q(x0, . . . , xn) is a global definable type, with x0, . . . , xn variables from the main
sort. We need to show that Cb(q) is interdefinable with a tuple from the sorts of U. We may
assume that if (a0, . . . , an) � q, then (a0, . . . , an) is Q-linearly independent over U.

By quantifier elimination, q is then determined by the following data:
• the (definable) cuts Ck of

∑n
i=0 kiai in (U, <), for each k = (k0 . . . , kn) ∈ Zn+1, and

• the global definable types qpn for each prime p and ` > 0, where qp` :=
(
πp`
)
∗ q.

By Fact 3.10, for every p and ` the theory Tp` has weak elimination of imaginaries, hence
Cb(qp`) is interdefinable with a finite tuple in Qp`(U). We may thus conclude, since Cb(q) is
interdefinable with the tuple given by all the Cb(qp`) together with all elements bk ∈ U such that
Ck equals (bk/m)+ or (bk/m)− for some m > 0. �

Remark 3.14. For the above to go through, we need to have in our language the sorts Qpn even
when they are finite. An alternative is to name enough constants, e.g. by naming a model.

3.2. Moving to the right of a convex subgroup.

Assumption 3.15. Until the end of the section, T is the complete LPres-theory of a regular oag.
Imaginary sorts are not in our language until further notice.

Definition 3.16. Let B ⊆M .
1. A type q(x) ∈ S1(M) is right of B iff q(x) ` {x > d | d ∈ B} ∪ {x < d | d ∈M,d > B}.
2. An element of an elementary extension of M is right of B if its type over M is.
3. A convex subgroup H of U is [A-]invariant iff there is an [A-]invariant type to its right.
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Remark 3.17. Let p be an M -invariant type. If the corresponding cut (L,R) is definable, then
it is M -definable. If it is not definable, then exactly one between the cofinality of L and the
coinitiality of R is small, and M contains a set cofinal in L or coinitial in R respectively.

In particular, in a regular oag a nontrivial convex subgroup H of U is invariant if and only
if the cofinality of H or the coinitiality of (U \H)>0 is small, while the trivial subgroup {0} is
invariant if and only if U is dense.

Example 3.18. Let M be a small model, and let p be the global M -invariant type right of M
and divisible by every n. In other words, p(x) := {x > m | m ∈M}∪{x < d | d > M}∪{x ≡n 0 |
n ∈ ω \ {0}}. If (L,R) is the cut of p, then M is cofinal in L. It is easy to see that p(x1)⊗ p(x0)
is axiomatised by p(x1) ∪ p(x0) together with 〈x1〉>0 < 〈x0〉>0.

Fact 3.19 ([CH11, Corollary 1.10]). Definable functions in oags are piecewise affine: if M is
an oag and f : Mn → M is an A-definable function, then there is a partition of M in finitely
many A-definable sets such that the restriction of f to each such set is affine, that is, of the form
x 7→ 1

s (a+
∑
i rixi), for suitable a ∈ dcl(A) and ri, s ∈ Z.

Lemma 3.20. In the theory of a regular oag, suppose that p ∈ Sinv
1 (U) and f is a definable

function such that f∗p is right of a convex subgroup. Then p ∼D f∗p.

Proof. Clearly p ≥D f∗p. By Fact 3.19, f is piecewise affine. Because f∗p is not realised, f cannot
be constant at p, hence it is invertible at p, and we have f∗p ≥D f−1

∗ (f∗p) = p. �

Lemma 3.21. In Presburger Arithmetic, for every nonrealised p ∈ Sinv
1 (U) there are d ∈ U and

k ∈ Z \ {0} such that, if f(t) := kt+ d, then f∗p is right of an invariant convex subgroup.

Proof. By Fact 3.2, U/Z is divisible. It is easy to see that U/Z inherits saturation and strong
homogeneity from U, and the conclusion follows by lifting the analogous result [HHM08, Corol-
lary 13.11] (see also [Mena, Proposition 4.8]) from U/Z. �

From the previous lemmas we obtain the following.

Corollary 3.22. In Presburger Arithmetic, every invariant 1-type is domination-equivalent to
a type right of an invariant convex subgroup.

The rest of the subsection is dedicated to generalising the corollary above to the regular case.

Assumption 3.23. Until the end of the subsection, T denotes the complete theory of a dense
regular oag M .

Proposition 3.24. Let b ∈ U \M be divisible by every n > 1 and let B := 〈Mb〉 = M + Qb. If
M>0 is coinitial in B>0, then M ≺ B ≺ U.

Proof. The natural embedding of M in B is easily seen to be pure, i.e. for every n > 1 we have
nB ∩M = nM . Moreover, if c = a+ γb, with a ∈M and γ ∈ Q, then for every n we clearly have
c− a ∈ nB, hence B/nB may be naturally identified with M/nM .

We now show that B is a dense regular oag. Because M is dense and M>0 is coinitial in
B>0, it follows that B is as well dense. In particular, nonempty intervals in B are infinite, so
by Fact 3.2, we need to show that every nonempty (c, d) ⊆ B contains an element divisible by
n. By assumption, (0, d − c) intersects M , hence contains an interval I of M , hence represents
all elements of M/nM by Lemma 3.6. These can be identified with the elements of B/nB, as
observed above, so there is e ∈ I such that c + e ∈ nB. Clearly, c + e ∈ (c, d), completing the
proof that B is regular.

By Fact 3.3 and the identification of M/nM with B/nB, we obtain B ≡M . Since the embed-
ding ofM in B is pure,M is an LPres-substructure of B. By definition of regularity, i.e. quantifier
elimination in LPres, we have the conclusion. �
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The following notion was introduced in [HHM08] in the setting of divisible ordered abelian
groups. Below, it will turn out to be useful also in the dense regular case.

Definition 3.25. An extension M < N of oags is an i-extension iff there is no b ∈ N>0 such
that the set {m ∈M | m < b} is closed under sum.

Lemma 3.26. Let H be a convex subgroup of M and N > M . The set of elements of N right
of H is closed under sum.

Proof. If H = M , the statement is trivial. If H = {0}, let 0 < c, d < M>0 and pick a ∈ M>0.
By density, there is b ∈ M with 0 < b < a, and since b and a − b are both in M>0 we conclude
c+d < b+a−b = a. If H is proper nontrivial, by Fact 3.2 the quotientM/H is divisible, and the
conclusion follows from the previous case applied to M/H viewed as a subgroup of the quotient
of N by the convex hull of H. �

Corollary 3.27. An extension M < N of oags, with M dense regular, is an i-extension if and
only if the map H 7→ H ∩M is a bijection between the convex subgroups of N and M .

Proof. If b witnesses that M < N is not an i-extension, by Lemma 3.26 the convex subgroups
generated by b and by {m ∈M | |m| < b} restrict to the same convex subgroup ofM . Conversely,
if H0 ⊆ H1 are convex subgroups of N with the same restriction to M , and b ∈ (H1 \ H0)>0,
then {m ∈M | |m| < b} is closed under sum. �

Proposition 3.28. Every M � T has a maximal elementary i-extension.

Proof. The size of an i-extension is bounded by [HHM08, proof of Lemma 13.9], and both i-
extensions and elementary extensions are transitive and closed under unions of chains (for a
proof, see [Men20a, Lemma 4.2.16]). Now apply Zorn’s Lemma. �

Proposition 3.29. Suppose M � T has no proper elementary i-extension and let p ∈ S1(M)
be nonrealised. Then there are a ∈ M and β ∈ Z \ {0} such that, if f(t) = a + βt, then the
pushforward f∗p is right of a convex subgroup.

Proof. Let b � p, and suppose first that b is divisible by every n. Consider B := 〈Mb〉 = M +Qb.
We have two subcases.

1. There are a′ ∈ M and β′ ∈ Q such that 0 < a′ + β′b < M>0. By Lemma 3.26, we may
multiply by the denominator of β′ and still obtain a positive element smaller than M>0,
so we have the conclusion with the convex subgroup {0}.

2. If instead there is no such a′+β′b, then M>0 is coinitial in B>0, and by Proposition 3.24
B �M . By maximality of M , there must be convex subgroups H0 ( H1 of B such that
H0∩M = H1∩M . Hence any positive a+βb ∈ H1 \H0 is right of H0∩M . We conclude
again by clearing the denominator of β and using Lemma 3.26.

This shows the conclusion when b is divisible by all n. In the general case, by Lemma 3.6, there
is c ∈ U with the same cut in M as b which is divisible by every n. As we just proved, there
is f(t) := a + βt, with β ∈ Z and a ∈ M , such that the cut of f(c) in M is that of a convex
subgroup. Because f(t) sends intervals to intervals, it sends cuts to cuts, hence the cut of f(b)
equals that of f(c). �

Corollary 3.30. Every nonrealised p ∈ Sinv
1 (U) is domination-equivalent to a type right of an

invariant convex subgroup.

Proof. If p is M -invariant, up to enlarging M we may assume that it has no proper elementary
i-extension. Let f(t) be an M -definable function given by Proposition 3.29 applied to p � M .
Then f∗p is M -invariant, and it is routine to check that its cut is that of a convex subgroup of
U. Now apply Lemma 3.20. �
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3.3. Computing the domination monoid.

Lemma 3.31. Let H0 ( H1 be convex subgroups of M � T , and for i < 2 let qi(xi) ∈ S1(M)
be right of Hi. Suppose that there is no prime p ∈ P such that both qi(xi) prove that xi is in a
new coset modulo some p`i Then q0 ⊥w q1.

Proof. By assumption and quantifier elimination we only need to show that the cut of every
k0x

0 + k1x
1 is determined by q0(x0) ∪ q1(x1). If k1 = 0 we are done. But, if k1 6= 0, it follows

from Lemma 3.26 that k0x
0 + k1x

1 and k1x
1 have the same cut. �

Proposition 3.32. Suppose that qH(x) ∈ Sinv
1 (U) is right of the convex subgroup H and pre-

scribes realised cosets modulo every n for x. For an invariant ∗-type q, the following are equivalent.
1. For every (equivalently, some) b � q, no type right of H in realised in 〈Ub〉.
2. qH ⊥w q.
3. qH commutes with q.
4. qH ⊥ q.

Proof. To show 1 ⇒ 2, consider qH(x) ∪ q(y). By assumption on qH we only need to deal with
inequalities of the form kx +

∑
i<|y| kiyi + d ≥ 0, but 1 gives immediately that the cut of kx

in 〈Ub〉 is determined. If 1 fails, as witnessed by f(b), say, then qH(x) ⊗ q(y) and q(y) ⊗ qH(x)
disagree on the formula f(y) < x, proving 3⇒ 1, and 2⇒ 3 holds for every type in every theory.

We are left to show 2⇒ 4, the converse being trivial. Suppose that B ⊇ U is such that (qH |
B) 6⊥w (q | B). Because the cosets modulo every n of a realisation of qH are all realised in U, this
can only happen if some inequality of the form kx+

∑
i<|y| kiyi+d ≥ 0, with ki ∈ Z and d ∈ 〈B〉,

is not decided. Hence, if 4 fails, it fails for the pushforward of q under the map y 7→
∑
i<|y| kiyi,

and we may therefore assume that q is a 1-type. By Corollary 3.30 and Proposition 2.4, we may
furthermore assume that q is right of a convex subgroup. We have thus reduced to the case of
two 1-types q0(x), q1(y), to the right of distinct (by 2) convex subgroups H0 ( H1, where for
some i < 2 the cosets of a realisation of qi are realised. Clearly, q0 | B and q1 | B concentrate
right of convex subgroups of 〈B〉, and the cosets of qi are still realised. To conclude, observe that
since H0 ( H1, by Lemma 3.26 the cut of kxx + kyy in 〈B〉 must coincide with that of kyy if
ky 6= 0, and with that of kxx otherwise. �

Lemma 3.33. Let c be a possibly infinite tuple, of cardinality λ. Then, in 〈Mc〉, at most λ cuts
of convex subgroups of M are filled. Moreover, for every p ∈ P and k ∈ ω \ {0}, at most λ new
cosets modulo pk are represented in 〈Mc〉.

Proof. The first statement is obtained by arguing with Q-linear dimension in the respective
divisible hulls. The “moreover” statement is similarly clear since, for fixed pk, a single element
can contribute at most one new coset modulo pk. �

Note that if, say, c0, is in a new coset modulo p2 but in a realised one modulo p, then there is
a point in dcl(Uc0) which is in a new coset modulo p.

Definition 3.34. Let q be an invariant global ∗-type, and c � q. LetH(q) be the set of cuts of con-
vex subgroups of U filled in 〈Uc〉 and, for p ∈ P, let κp(q) := dimFp

((dcl(Uc)/(pdcl(Uc)))/(U/pU)).

Theorem 3.35. Let p, q be invariant ∗-types. Then p ≥D q if and only if
1. H(p) ⊇ H(q), and
2. for every p ∈ P we have κp(p) ≥ κp(q).

Hence, the ∼D-class of q is determined by H(q) and the function p 7→ κp(q).
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Proof. Most of the proof will consist in finding a nice representative q′ for the ∼D-class of q. Let
c � q, and use Lemma 3.33 to index on a suitable cardinal κ, bounded by the cardinality of c, the
(necessarily invariant) convex subgroups Hj whose cuts are filled in 〈Uc〉. Since we may assume
that q is not realised, Corollary 3.30 tells us that κ 6= 0. For j < κ, let qj be the type right of
Hj divisible by every nonzero integer. For each p ∈ P, let κp := κp(q), which is bounded by the
cardinality of c by Lemma 3.33, and set µ := supp∈P κp. Choose types (q′j | j < µ) in the same
cut as q0 and whose product represents these new cosets, say by taking as q′j the 1-type of a new
element in the cut of q0 which is in a new coset modulo p if j < κp, and divisible by p otherwise.

Let q′ :=
⊗

j<µ q
′
j ⊗

⊗
j<κ qj . We show that q′(y) ≥D q(x). Partition y as yµyκ according to

the definition of q′. Let b ∈ dcl(Uc) be a maximal tuple amongst those with these properties:
1. each bk falls in the cut of an invariant convex subgroup, and
2. if bk < bk′ then 〈bj〉>0 < 〈bk′〉>0.

Note that, since κ 6= ∅, a point in the cut of an invariant convex subgroup does exist, hence so
does such a tuple b, and a maximal one exists because the size of b is at most that of c, by looking
at Q-linear dimension over U in the divisible hull. By Fact 3.19 definable functions are piecewise
affine and, by clearing denominators using Lemma 3.26, we may assume that b ∈ 〈Uc〉.

Write bk = fk(c), for suitable affine functions fk. Let M ≺+ U be large enough to contain
the parameters of the fk, such that q and q′ are M -invariant, and such that M has no proper
elementary i-extension. Let r ∈ Sqq′(M) contain the following formulas.

1. If the cut of bk has small cofinality on the right, by choice of q′ there is j < κ such that
yκj is in the same cut as bk according to q′. In this case, put in r the formula fk(x) > yκj .

2. If the cut of bk has small cofinality on the left, choose j as in the previous point and put
in r the formula fk(x) < yκj .

3. Suppose that for some d ∈ U the type q proves that xi − d is divisible by p` but xi is in
a new coset modulo p`+1. Since q is M -invariant, we may find such a d in M . Put in r
the formula p`+1 | ((xi − d)− p` · yµj ), for a suitable j < µ, making sure to use different
j’s for different new cosets.

Note that if, say, p` | (xi − xi′), this information is contained in q � ∅ ⊆ r. This, together with
point 3 above, ensures that the restriction of q to the language LPres \ {<} (with parameters
from U) is recovered by q′ ∪ r.

Claim. q′ ∪ r entails the quantifier-free |b|-type of the fk(x) over U in the language {+, 0, 1, <}.

Proof of Claim. It is enough to show that the cut of every
∑
k βkfk(x) in U is decided, where

only finitely many βk ∈ Z are nonzero. By choice of r and Remark 3.17, q′ ∪ r determines the
cut of each fk(x) over U. Moreover, r contains the information that 〈fk(x)〉>0 < 〈fk′(x)〉>0 (for
bk < bk′). By this, the fact that the fk(x) are right of convex subgroups, and Lemma 3.26, the
cut of

∑
k βkfk(x) must be that of sign(βk)fk(x), with k the largest such that βk 6= 0. �

claim

We are left to show that q′∪ r decides the cut of every
∑
i γixi in U. After possibly composing

with an M -definable injective affine function, by i-completeness of M we may assume that we
are dealing with a term of the form

∑
i γixi + d, with d ∈ M , whose cut in M is right of a

convex subgroup of M . Since tp(
∑
i γixi + d/U) is M -invariant,

∑
i γixi + d is in the cut of a(n

M -invariant) convex subgroup of U. By maximality of b, there must be k and positive integers
n,m such that nbk ≤ m (

∑
i γixi + d) ≤ (n+ 1)bk. Therefore we have

r ` nfk(x) ≤ m

(∑
i

γixi + d

)
≤ (n+ 1)fk(x)

and we conclude, by applying the Claim, that q′ ≥D q.
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Similar arguments show that q ≥D q′. It is moreover clear that, if p satisfies 1 and 2 from
the conclusion, and p′ is defined analogously to q′, then p′ ≥D q′. That 1 is necessary to have
p ≥D q follows from Proposition 3.32 and Fact 2.3. As for 2, suppose that for some p ∈ P we have
κp(q) > κp(p). We reach a contradiction by finding a type dominated by q but not by p. We may
assume that 1 holds. Choose any cut in H(q) = H(p), and let p0 be the 1-type in that cut in a
new coset modulo p but divisible by every other prime. It is enough to show that if κ > κp(p)

then p(x) does not dominate p(κ)
0 (y). Suppose r(x, y) ∈ S

pp
(κ)
0

(M) witnesses domination. Because
κ > κp(p), there must be j such that, for every U-definable function f , we have p∪ r 6` f(x) = yj .
It follows that, if d ∈ U is in a coset modulo p not represented in M , then p∪ r is consistent with
yj ≡p d, hence p ∪ r 6` p(κ)

0 . �

Proposition 3.36. For all invariant ∗-types p, q and p ∈ P, we have H(p ⊗ q) = H(p) ∪ H(q)
and κp(p⊗ q) = κp(p) + κp(q).

Proof. By Proposition 3.32, in its notation, Hi is precisely the set of convex invariant subgroups
H such that qi 6⊥ qH . By Proposition 2.10, we therefore have the first statement. The second one
is an easy consequence of the definition of ⊗. �

Definition 3.37. Let X be the set of invariant convex subgroups of U and let K = P<ω(X)×∏bdd
PT ω, where PT is the set of primes p such that ifM � T then pM has infinite index, and

∏bdd
PT ω

denotes the bounded PT -indexed sequences of natural numbers. Equip K with the operation
(∪,+), with + denoting pointwise addition.

Corollary 3.38. The monoid Ĩnv(U) is well-defined and isomorphic to

K \ {(a, b) ∈ K | a = ∅, b 6= 0}

Proof. Send JpK to (H(p), p 7→ κp(p)). By Theorem 3.35 this is well-defined and an embedding
of posets and, by Proposition 3.36, it is also a morphism of monoids. Surjectivity can be shown
by building a suitable q′ as in the proof of Theorem 3.35. �

By using Theorem 3.13 and adapting the arguments of this subsection to work in the language
with the sorts Qpn , which by Lemma 3.12 are fully embedded with the structure of an abelian
group, it is possible to compute Ĩnv(Ueq). We leave the details to the reader.

Corollary 3.39. The monoid Ĩnv(Ueq) is well-defined and isomorphic to

K \ {(a, b) ∈ K | a = ∅, supp(b) infinite}

Since Theorem 3.35 was proven for ∗-types, we similarly obtain the following.

Corollary 3.40 (Theorem D). Let T be the theory of a regular oag and κ a small infinite
cardinal. Denote by κ̂ the ordered monoid of cardinals smaller or equal than κ with cardinal sum,
and by X be the set of invariant convex subgroups of U. Then Ĩnvκ(Ueq) is well-defined, and

Ĩnvκ(Ueq) ∼= P≤κ(X)×
∏
PT

κ̂

If we denote the right hand side by K, then the composition of the embedding Ĩnvκ(U) ↪→
Ĩnvκ(Ueq) with the isomorphism above has image K \ {(a, b) ∈ K | a = ∅, b 6= 0}.
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4. Pure short exact sequences

In this section we study short exact sequences of abelian structures 0 → A ι−→ B ν−→ C → 0
which satisfy a purity assumption, and where A and C may be equipped with extra structure.
We view them as multi-sorted structures, and use the relative quantifier elimination results
from [ACGZ20] to describe the domination poset in terms of A and C. A decomposition of
the form Ĩnv(A(U))× Ĩnv(C(U)) only holds in special cases, while in general we will need to look
at ∗-types and introduce a family of imaginaries of A which depends on B.

Let us start by recalling the setting of [ACGZ20]. For the sake of readability, we will use
notations such as t(x) for a tuple of terms, 0 for a tuple of zeroes of the appropriate length, etc.
Tuples of the same length may be added, and tuples of appropriate lengths used as arguments,
as in f(t(x, 0)− d) = 0.

Definition 4.1. Let L be a language with sorts indexed by a set S, relation symbols (Ri) and
function symbols (fj). An L-abelian structure is an L-structure A = ((As); (Ri), (fj)) with the
following properties.

1. The sorts As are abelian groups, equipped with pairwise disjoint copies of the language
Lab = {+, 0,−} of abelian groups.

2. Each Ri is a subgroup of As0 × . . .×Asm , for certain s0, . . . , sm ∈ S.
3. Each fj is a group homomorphism As0 × . . .×Asn → As, for certain s0, . . . , sn, s ∈ S.

For example, a chain complex of modules may be viewed as an abelian structure.
Recall that the class of pp formulas is obtained from the class of atomic formulas over ∅

by closing under conjunction and existential quantification. In an L-abelian structure, each pp
formula defines a subgroup of a suitable product of sorts.

Definition 4.2. A fundamental family of pp formulas for an L-abelian structure A is a family
F of pp formulas such that, in A, every pp formula is equivalent to a conjunction of formulas of
the form ϕ(t(x)), with ϕ(w) ∈ F and t(x) a tuple of L-terms.

Example 4.3. In the simplest possible example of abelian structure, namely an abelian group,
the family F := {∃y x = n · y | n ∈ ω} is always fundamental (see [Hod93, Lemma A.2.1]). In
an arbitrary abelian structure, one may always resort to taking as F the set of all pp formulas,
which is trivially fundamental.

Remark 4.4. In an L-abelian structure, each L-term t(x) is built from homomorphisms fj of
abelian groups by taking Z-linear combinations and compositions. Hence, t(x) is itself a homo-
morphism of abelian groups.

Definition 4.5. Fix a language L of abelian structures.
1. We define the language Labc := La∪Lb∪Lc∪{ιs, νs | s ∈ S}, where La, Lb, Lc are pairwise

disjoint copies of L, with families of sorts A, B, C respectively, while ιs : As → Bs and
νs : Bs → Cs are function symbols. We use notations such as ι : A → B, ν : B → C with
the obvious meaning. An A-sort is simply a sort in A, and similarly for other families
of sorts. Juxtaposition denotes union, so if we speak e.g. of the AC-sorts we mean the
collection of all A-sorts and C-sorts. If L is a single-sorted language, we simply write
e.g. A in place of A.

2. A pure short exact sequence of abelian L-structures, denoted by

0→ A ι−→ B ν−→ C → 0

is an Labc-structure where the following hold.5

5In fact, 2e) follows from the other conditions. Analogously for condition 2d). See [ACGZ20, Lemma 4.14].
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a) A,B, C are L-abelian structures.
b) ι : A → B, ν : B → C are homomorphisms of L-abelian structures.
c) ι is injective, ν is surjective, and im(ι) = ker(ν).
d) ϕ(A) = ι−1(ϕ(B)) holds for each pp L-formula ϕ.
e) ϕ(C) = ν(ϕ(B)) holds for each pp L-formula ϕ.

3. Given a pure short exact sequence of abelian structures as above, and a family of pp
formulas F fundamental for B, define the following.
a) For each ϕ(x) ∈ F , denote by Ax the product of A-sorts corresponding to the tuple

x, and let Aϕ be the quotient group Ax/ϕ(A) and πϕ : Ax → Aϕ the associated
projection map.

b) For each ϕ(x) ∈ F , define ρϕ : Bx → Aϕ as follows. Set ρϕ = 0 outside ν−1(ϕ(C)). On
ν−1(ϕ(C)) = ϕ(B)+ι(Ax), define it as the composition of the group homomorphisms

ϕ(B) + ι(Ax)→ (ϕ(B) + ι(Ax))/ϕ(B) ∼= ι(Ax)/(ϕ(B) ∩ ι(Ax)) ∼= Aϕ

c) The language Labcq is the expansion of Labc by the family of sorts AF := (Aϕ)ϕ∈F
and maps ρϕ, πϕ.

d) The language Lacq is the restriction of Labc to the ACAF -sorts, with symbols La ∪
Lc ∪ {πϕ | ϕ ∈ F}.

e) A special term is one of the form νs(x), for x a variable from a B-sort, or of the form
ρϕ(t(x)), with x a tuple of variables from the B-sorts and t a tuple of Lb-terms.

4. Let L∗ac be an expansion of La ∪ Lc with the same sorts.
a) Denote by L∗abc, L

∗
abcq, L

∗
acq the corresponding expansions of Labc, Labcq, Lacq.

b) A pure short exact sequence as above, with a fixed fundamental family F for B
and with arbitrary L∗ac-structure on the AC-sorts, is viewed as an L∗abcq-structure
in the natural way. We call such a structure an expanded pure short exact sequence
of abelian L-structures.

c) The reducts of an expanded pure short exact sequence to L∗abc and L∗acq are defined
by restricting to the sorts from Labc and Lacq respectively.

Example 4.6. A short exact sequence of abelian groups 0 → A → B → C → 0 is pure if and
only if, for each n, we have nB ∩ A = nA. This holds, for example, if C is torsion-free, and in
particular in the special cases below. We may take as F that of Example 4.3.

1. Suppose that the expansion L∗ac endows A, C with the structure of ordered abelian groups.
Note that one then recovers, definably, an ordered abelian group structure on B, induced
by declaring that ι(A) is convex. Because of this, and of fact that the kernel of a morphism
of oags is convex, this setting is equivalent to that of a short exact sequence of oags. This
will be used in Section 5, with B an oag and A a suitably chosen convex subgroup. The
sorts Aϕ coincide with the quotients A/nA.

2. In Section 6 we will deal, in the valued field context, with the sequence

1→ k× → RV \ {0} → Γ→ 0

In this case, the extra structure in L∗ac is induced by the field structure on k and the
order on Γ. The sorts Aϕ are in this case k×/(k×)n.

Without loss of generality, we may assume that, for each variable x from an A-sort As, the
formula ϕ := x = 0 is in F , and identify As with Aϕ = As/0As. In other words, we may and will
assume that A ⊆ AF .

Remark 4.7. Since pp formulas commute with cartesian products, every split short exact se-
quence is pure. Note that, since purity is a first-order property, in order to show that a short
exact sequence is pure it is enough to show that some elementarily equivalent structure splits.
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Remark 4.8. Even if a short exact sequence splits, it need not do so definably. Note that, in
point 4 of Definition 4.5, we are not allowed to add a splitting map. If we do, then matters
simplify considerably. For instance, if in L∗ac there is no symbol involving A and C jointly, after
adding a splitting map the short exact sequence becomes interdefinable with the disjoint union
of A and C and, by Example 2.9, Ĩnv(U) decomposes as a product.

Fact 4.9. Let ϕ(xa, xb, xc) be an L∗abcq-formula with xa a tuple of variables from the AF -sorts,
while xb, xc are tuples of B-sorts and C-sorts variables respectively. There are an L∗acq-formula
ψ and special terms σi such that, in the common L∗abcq-theory of all expanded pure short exact
sequences, ϕ(xa, xb, xc)↔ ψ(xa, σ1(xb), . . . , σm(xb), xc).

Proof. For ϕ an L∗abc-formula and xa a tuple ofA-sorts variables, this is [ACGZ20, Corollary 4.20].
In general, let y be a tuple of A-sorts variables compatible with writing xa = πy, where π is the
tuple of projections (πi | i < |xa|) from a suitable cartesian product of A-sorts to the sort of xa

i .
By using the natural interpretation of L∗abcq in L∗abc, we find an L∗abc-formula θ with

ϕ(xa, xb, xc)↔ ∃y
(
θ(y, xb, xc) ∧ π(y) = xa

)
and the conclusion follows easily by applying [ACGZ20, Corollary 4.20] to θ. �

Before using this fact to study domination in short exact sequences let us note one of its
immediate consequences.

Corollary 4.10. The L∗acq-reduct is fully embedded. In particular, A and C are orthogonal if
and only if they are such in the L∗acq-reduct. Even more in particular, if L∗ac does not contain
any symbol involving simultaneously A and C, then the corresponding expansions of A and C are
fully embedded and orthogonal.

Given Fact 4.9, we could hope that an expanded pure short exact sequence is controlled,
domination-wise, by its L∗acq-part. This is indeed true, provided we are allowed to pass to ∗-types.
This is a necessity since, in general, there are finite tuples from B that cannot be domination-
equivalent to any finitary tuple from the L∗acq-reduct; see Remark 4.19. Therefore, in what follows,
we will freely use types in infinitely many variables. See Subsection 1.4.

Proposition 4.11. Consider an expanded pure short exact sequence of L-abelian structures,
let F be a fundamental family for B, and let κ ≥ |L| be a small cardinal. There is a family of
κ-tuples of definable functions {τp | p ∈ Sκ(U)} with the following properties.

1. The domain of the functions in each tuple τp is a product of sorts appearing in the sorts
of the variables of p, possibly with repetitions.

2. Each τp is partitioned as (ρp, νp) in such a way that:
a) Each function in ρp is either an identity map on one of the Aϕ, or has domain a

cartesian product of B-sorts and codomain one of the Aϕ.
b) Each function in νp is either the identity map on a C-sort, or is one of the νs.

3. For each p ∈ Sκ(U) we have p ∼D τp∗ p.
4. For each p, q ∈ Sinv

κ (U) we have p⊗ q ∼D τp∗ p⊗ τ q∗ q.
Proof. Let abc � p(xa, xb, xc), where the tuples a, b, c realise the variables xa, xb, xc of p from
the AF -sorts, B-sorts, and C-sorts respectively. We define the tuples νp and ρp as follows.

1. For each coordinate in xc of sort Cs, put in νp the corresponding identity map on Cs.
2. For each coordinate in xb of sort Bs, put in νp the corresponding map νs : Bs → Cs.
3. For each coordinate in xa of sort Aϕ, put in ρp the corresponding identity map on Aϕ.
4. For each finite tuple of Lb-terms t(xb, w) and ϕ ∈ F , if there is d ∈ U such that p `
t(xb, 0)−d ∈ ν−1(ϕ(C)), choose such a d, call it dp,ϕ,t, and put in ρp the map ρϕ(t(xb, 0)−
dp,ϕ,t).
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Let τp be the concatenation of ρp and νp, let q(y) := τp∗ p(x), let Dp be the set of all dp,ϕ,t as
above, and let r(x, y) ∈ Spq(Dp) be be the small type saying “q(y) = τ∗p(x)”. Clearly p ∪ r ` q,
and we show below that q ∪ r ` p.

By Fact 4.9, we only need to show that q ∪ r recovers the formulas

ϕ(xa, da, σ1(xb, d1), . . . , σm(xb, dm), xc, dc)

implied by p, where the σi are special terms, ϕ is an L∗acq-formula, and the d− are tuples of
parameters from the appropriate sorts of U. Let us say that q ∪ r has access to the term (with
parameters) σ(xb, d) iff for some U-definable function f we have q(y) ∪ r(x, y) ` f(y) = σ(xb, d).
We show below that q ∪ r has access to all special terms with parameters, which clearly implies
that q ∪ r ` p.

By construction, q∪r has access to each νs(xb
i ). Because ν is a homomorphism of L-structures,

q∪ r also has access to each ν(t0(xb, d)), for t0 an Lb-term. In particular, q∪ r decides whether a
given tuple t(xb, d) of Lb-terms is in ν−1(ϕ(C)) or not. If not, then q ∪ r entails ρϕ(t(xb, d)) = 0.

Suppose instead that q∪r ` t(xb, d) ∈ ν−1(ϕ(C)). By Remark 4.4, we have t(xb, d) = t(xb, 0)+
t(0, d), and by construction and the fact that p is consistent with q ∪ r we have that p entails
t(xb, 0)− dp,ϕ,t ∈ ν−1(ϕ(C)). Note that this formula is over Dp, hence is in r. It follows that

q ∪ r ` t(0, d) + dp,ϕ,t = t(xb, 0) + t(0, d)− (t(xb, 0)− dp,ϕ,t) ∈ ν−1(ϕ(C))
But t(0, d) +dp,ϕ,t ∈ U, and ρϕ is a homomorphism of L-structures when restricted to ν−1(ϕ(C)).
Because of this, and because q ∪ r has access, by construction, to ρϕ(t(xb, 0)− dp,ϕ,t), it also has
access to ρϕ(t(xb, 0) − dp,ϕ,t) + ρϕ(t(0, d) + dp,ϕ,t) = ρϕ(t(xb, d)). Therefore q ∪ r has access to
all special terms with parameters, hence q ∼D p and we are only left to prove point 4.

By definition of ⊗, if p(x) ⊗ q(y) ` t(x, y, d) ∈ ν−1(ϕ(C)), then there is b̃ ∈ U with p(x) `
t(x, b̃, d) ∈ ν−1(ϕ(C)). Hence, by arguing as above, p ` t(x, 0, 0)− dp,ϕ,t ∈ ν−1(ϕ(C)). So

p(x)⊗ q(y) ` ν−1(ϕ(C)) 3 t(x, y, d)− t(x, 0, 0) + dp,ϕ,t = t(0, y, 0) + t(0, 0, d) + dp,ϕ,t

and because t(0, 0, d) + dp,ϕ,t ∈ U, by construction we have q(y) ` t(0, y, 0)− dq,ϕ,t ∈ ν−1(ϕ(C)).
Similar arguments as above show that, in order to have access to ρϕ(t(x, y, d)), it is enough to
have access to ρϕ(t(x, 0, 0)− dp,ϕ,t) and to ρϕ(t(0, y, 0)− dq,ϕ,t), and the conclusion follows. �

Corollary 4.12 (Theorem C). Suppose that U is an expanded pure short exact sequences of
L-abelian structures and κ ≥ |L| is a small cardinal.

1. There is an isomorphism of posets Ĩnvκ(U) ∼= Ĩnvκ(U � L∗acq).
2. If ⊗ respects ≥D in U � L∗acq, then the same is true in U, and the above is also an

isomorphism of monoids.
3. If A and C are orthogonal, then there is an isomorphism of posets

Ĩnvκ(U) ∼= Ĩnvκ(AF (U))× Ĩnvκ(C(U))

Moreover, if ⊗ respects ≥D in both AF (U) and C(U), then the same is true in U, and the
above is also an isomorphism of monoids.

Proof.
1. By Fact 1.5 we have an embedding of posets Ĩnvκ(U � L∗acq) ↪→ Ĩnvκ(U). This embedding

is surjective by Proposition 4.11, its inverse being induced by the maps τ .
2. By Proposition 4.11 we may apply Proposition 1.6 to the family of sorts AFC.
3. By combining the previous point with Corollary 2.8. �

Remark 4.13. The reader may find in [ACGZ20, Section 4] some variants of Fact 4.9 for settings
such as abelian groups augmented by an absorbing element. These in turn yield variants of
Proposition 4.11 and its consequences, with no significant difference in the proofs.
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When specialised to abelian groups, the results above enjoy a form of local finiteness.

Notation 4.14. From now until the end of the section, L is just the language of abelian groups,
and F the family of formulas {∃y x = n · y | n ∈ ω}. We will write for instance ρn : B → A/nA
in place of ρϕ : B→ Aϕ, and identify A with A/0A for notational convenience.

Definition 4.15. A ∗-type p(x) is locally finitary iff x has finitely many coordinates of each sort.

Proposition 4.16. Let L be the language of abelian groups, and consider a pure short exact
sequence equipped with an L∗abcq-structure. Let p(x) be a locally finitary global type. Then, in
Proposition 4.11, we may choose τp in such a way that τp∗ p is locally finitary.

Proof. Write p(x) = p(xa, xb, xc) as in the proof of Proposition 4.11, and recall that a term in
the language of abelian groups is just a Z-linear combination. If k = (ki)i<|xb| ∈ Z|xb|, denote
k · xb :=

∑
i<|xb| kix

b
i . For each n ∈ ω, consider the set

Kp
n := {k ∈ Z|x

b| | ∃d ∈ B(U) p ` k · xb − d ∈ ν−1(nC)}

It is easy to see that Kp
n is a subgroup of Z|xb|, hence is finitely generated, say by kn0 , . . . , knm(n).

Choose witnesses dp,n,i of the fact that kni ∈ Kp
n. Proceed as in the proof of Proposition 4.11 but,

instead of putting in ρp each ρϕ(t(xb, 0)− dp,ϕ,t), just ensure that ρp extends the tuple

(ρn(kni · xb − dp,n,i))n∈ω,i≤m(n)

So τp consists of the tuple above, a finite tuple of identity maps on sorts A/nA or C, and finitely
many copies of ν hence, in its codomain, each sort appears only finitely many times. Therefore,
τp∗ p is locally finitary.

The proof of Proposition 4.11 now goes through, with a pair of modifications which we now
spell out. The first one concerns proving access to each ρn(t(xb, d)). Fix n and t(xb, d). Without
loss of generality d is a singleton and t(xb, d) = ` ·xb− d. If p ` t(xb, d) ∈ ν−1(nC), by definition
we have ` ∈ Kp

n, so we may write ` =
∑
i≤m(n) eik

n
i for suitable ei ∈ Z. This allows us to rewrite

t(xb, d) = ` · xb − d =

 ∑
i≤m(n)

eik
n
i

 · xb − d =
∑

i≤m(n)

ei(k
n
i · xb − dp,n,i) +

∑
i≤m(n)

eidp,n,i − d

Since ` ·xb−d and all kni ·xb−dp,n,i are in ν−1(nC), so is
∑
i≤m(n) eidp,n,i−d. Since ρn � ν−1(nC)

is a homomorphism and
∑
i≤m(n) eidp,n,i − d ∈ U, we have that q ∪ r has access to ρn(t(xb, d)).

The only remaining details concern point 4 of Proposition 4.11, and boil down to proving
Kp⊗q
n = Kp

n ×Kq
n, where we identify e.g. Kp

n with Kp
n × {0}. By construction Kp

n ∩Kq
n = {0},

so we only need to show generation. Suppose that (k, `) ∈ Kp⊗q
n , i.e. there is d ∈ B(U) such

that p(x) ⊗ q(y) ` k · x + ` · y − d ∈ ν−1(nC). By definition of ⊗, there is b̃ ∈ B(U) with
p(x) ` k ·x+ ` · b̃− d ∈ ν−1(nC). In particular, k ∈ Kp

n. Moreover, p(x)⊗ q(y) ` k ·x+ ` · y− d−
k · x− ` · b̃+ d ∈ ν−1(nC), so q(y) ` ` · y − (` · b̃− d) ∈ ν−1(nC), hence ` ∈ Kq

n, as required. �

Remark 4.17. In the case of abelian groups, we therefore have an analogue of Corollary 4.12
where κ-types are replaced by locally finitary ω-types.

We leave to the reader the easy task to explicitly state the analogue mentioned above (and to
define the correct analogue of Ĩnv(U)), but let us point out the following special case.

Corollary 4.18. Let U be an expanded pure short exact sequences of abelian groups where, for
all n > 0, the sort A/nA is finite. If A and C are orthogonal, there is an isomorphism of posets

Ĩnv(U) ∼= Ĩnv(A(U))× Ĩnv(C(U)) (2)

If ⊗ respects ≥D in A and C, then ⊗ respects ≥D, and the above is an isomorphism of monoids.
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Proof. Use Proposition 4.16 and observe that for each p we may replace τp by its composition
with the projection on the nonrealised coordinates of τp∗ p and still have the same results. If for
all positive n the sort A/nA is finite, and p is a finitary type, this yields another finitary type.
The conclusion now follows as in the proof of Corollary 4.12. �

Remark 4.19. The product decomposition fails in general if we insist on using only A instead of
all the A/nA. For example, let A be a regular oag divisible by all primes except 2, and with [A : 2A]
infinite, and let C � DOAG. Consider the expanded short exact sequence 0 → A → B → C → 0.
As pointed out in Example 4.6, the sequence induces a group ordering on B. Consider the type
p(y) concentrating on B, at +∞, and in a new coset modulo 2B. If q is any nonrealised 1-type
of an element of sort A divisible by all n, then p ⊥w q. It follows that p cannot dominate any
nonrealised type in a cartesian power of A: such a type must have a coordinate in a nonrealised
cut, and hence dominate a type q as above. So, if we had a product decomposition as in (2), then
p would be domination-equivalent to a type in a cartesian power of C. This is a contradiction,
because C is orthogonal to (A/nA)n<ω, while p dominates a nonrealised type in A/2A.

Remark 4.20. Analogously, one sees that ω-types are a necessity: let A be a regular oag with
each [A : nA] infinite, C � DOAG, and take as p ∈ SB(U) the type at +∞ in a new coset of each
nA. For each n > 1, there is a nonrealised 1-type qn of sort A/nA such that p ≥D qn. One shows
that the only way for a finitary type in ((A/nA)n∈ω,C) to dominate all of the qn is to have a
nonrealised coordinate in the sort A, hence to dominate a type orthogonal to p.

5. Finitely many definable convex subgroups

The results of the previous two sections may be combined to describe domination in oags
with only finitely many definable convex subgroups. While we are primarily interested in the
case where such subgroups are already Loag-definable, our proofs work also if the subgroups are
definable “by fiat” using additional unary predicates, hence we work in this more general setting.

Assumption 5.1. In this section we let G be an oag equipped with extra unary predicates
H0, . . . ,Hs. We assume that each Hi defines a convex subgroup, that Hi ( Hi+1, that H0 = {0},
that Hs = G, and that the Hi exhaust the list of definable convex subgroups of G.

So the situation is 0 = H0 ( H1 ( . . . ( Hs−1 ( Hs = G. Since the Hi are convex, each G/Hi

is still an oag, and in particular torsion free; hence, for each 1 ≤ i < s, the short exact sequence
0 → Hi/Hi−1 → G/Hi−1 → G/Hi → 0 is pure. As pointed out in Example 4.6, since the order
on G/Hi−1 is definable from the orders on Hi/Hi−1 and G/Hi, this is (interdefinable with) an
expanded pure short exact sequence of abelian groups.

Lemma 5.2. All the oags Hi+1/Hi are regular.

Proof. By Fact 3.2 it suffices to check that Hi+1/Hi has no proper nontrivial definable convex
subgroups. Any such subgroup would yield one in G, against Assumption 5.1. �

Definition 5.3. We work with the following sorts.
1. For 0 ≤ i < s we have a sort Si for G/Hi carrying the language of oags together with

predicates for Hj/Hi, for i < j < s.
2. For 1 ≤ i < s and n ∈ ω we also have sorts Qi,n for Hi/(nHi + Hi−1) carrying the

language of abelian groups. We denote by Qi the family of sorts (Qi,n)n<ω.
We add to our language the canonical projection and inclusion maps together with, for each n ∈ ω
and 1 ≤ i ≤ s − 1, the maps ρn,i : Si−1 → Qi,n as in Notation 4.14, relative to the short exact
sequence 0→ Qi,0 → Si−1 → Si → 0.

Lemma 5.4. For each i the following statements hold.
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1. The family of sorts Qi is fully embedded.
2. The sort Si is fully embedded.
3. The family of sorts Qi is orthogonal to Si.
4. For each j 6= i, the families Qi and Qj are orthogonal.

Proof. By Corollary 4.10 and point 5 of Remark 2.2. �

Theorem 5.5. Let G be as in Assumption 5.1, viewed as a structure in the language of Defini-
tion 5.3, and let κ be a small infinite cardinal. Then ⊗ respects ≥D, and

Ĩnvκ(U) ∼= Ĩnvκ(Ss−1(U))×
s−1∏
i=1

Ĩnvκ(Qi(U))

Proof. By the lemmas above, Corollary 4.12, Corollary 3.40, and induction. �

If the Hi are already definable in Loag,6 a result of Mariana Vicaría [Vic21] yields weak
elimination of imaginaries in the language with sorts Si/nSi for 0 ≤ i < s and n ∈ ω. The special
cases of Zn and Zn × Q with the lexicographic ordering have been independently obtained by
Martina Liccardo in [Lic21] in a slightly different language.

Corollary 5.6. Let G be a pure oag with only finitely many definable convex subgroups 0 =
H0 ( H1 ( . . . ( Hs−1 ( Hs = G, and κ a small infinite cardinal. Then ⊗ respects ≥D, and

Ĩnvκ(Ueq) ∼=
s∏
i=1

Ĩnvκ(Qi(U))

Proof Sketch. After adding the sorts from Vicaría’s result and, for 1 ≤ i ≤ s and n ∈ ω, the
Qi,n (note that the sorts Qs,n = Ss−1/nSs−1 were not in our previous language), the family of
sorts used in Theorem 5.5 is fully embedded, and so are the short exact sequences 0 → Qi,n →
Si−1/nSi−1 → Si/nSi → 0, to which Corollary 4.12 may be applied. From this, we obtain an
embedding

∏s
i=1 Ĩnvκ(Qi(U)) ↪→ Ĩnvκ(Ueq). We leave to the reader to check surjectivity and

transfer of compatibility of ⊗ and ≥D, by showing that every ∗-type is dominated by its image
among a suitable tuple of definable maps. �

We believe that Vicaría’s proof, hence also that of the previous corollary, should go through also
in the case where the Hi are explicitly named by predicates, i.e. not necessarily Loag-definable.

Remark 5.7. It follows from Theorem 5.5 and Corollary 3.40 that, if all the G/nG are finite,
then every element of Ĩnvκ(U) is idempotent.

Remark 5.8. It is possible to obtain a suitable version of Theorem 5.5 for locally finitary types.
As we saw in Remark 4.19, for these objects the product decomposition fails in general. In fact,
it is possible to build examples where there are 1-types in the home sort S0 whose “cut part” is
for example in Sj−1, but with “coset parts” in sorts Qi,n for multiple i ≤ j.

6. Benign valued fields

In this section we prove, under suitable assumptions, the existence of an isomorphism Ĩnv(U) ∼=
Ĩnv(RV(U)), where RV is a certain expanded pure short exact sequence associated to a valued
field. We will take an axiomatic approach which, in the next sections, will allow us to generalise
our results to wider settings with minimal modifications. In a nutshell, we will assume that T is
a complete RV-expansion of a theory of henselian valued fields with elimination of K-quantifiers

6Oags with finitely many definable convex subgroups are known as polyregular. Note that every Hi must be fixed
by every automorphism, and is therefore ∅-definable.
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and “enough maximal saturated models”7 (see below for the precise definitions). In particular,
our results hold in every benign valued field in the sense of [Tou18]8, namely, henselian valued
fields which are either: of equicharacteristic 0, or algebraically maximal Kaplansky.

We briefly recall the definition and main properties of the leading term structure RV, and
refer the reader to [Fle11] for further details. To a valued field K one may associate the short
exact sequence 1 → k× → K×/(1 + m) → Γ → 0. After adding absorbing elements 0, 0, ∞
to the three middle terms, this may be viewed as a short exact sequence of abelian monoids
1→ k→ K/(1+m)→ Γ∪{∞} → 0. As pointed out in Remark 4.13, we may harmlessly conflate
the two settings. The middle term K/(1 +m) is called the leading term structure RV, and comes
with a natural map rv : K → K/(1 + m) = RV through which the valuation v : K → Γ ∪ {∞}
factors. It is common to abuse the notation and still denote by Γ the monoid Γ ∪ {∞}, and by
v : RV→ Γ the map in the short exact sequence above.

Besides the structure of a (multiplicatively written) monoid, RV is equipped with a “partially
defined sum”. More precisely, it is equipped with a ternary relation ⊕(x0, x1, x2), defined as

⊕(x0, x1, x2)
def⇐⇒ ∃y0, y1, y2 ∈ K

(
y2 = y0 + y1 ∧

∧
i<3

rv(yi) = xi

)
When there is a unique x2 such that ⊕(x0, x1, x2), we write x0⊕x1 = x2, and say that x0⊕x1 is
well-defined. It turns out that rv(x)⊕rv(y) is well-defined if and only if v(x+y) = min{v(x), v(y)}.
If we say that

⊕
i<` xi is well-defined, we mean that, regardless of the choice of parentheses and

order of the summands, the “sum” is well-defined and always yields the same result.
Let RV be the expansion of the short exact sequence 1 → k

ι−→ RV
v−→ Γ → 0 by the field

structure on k and the order on Γ.

Remark 6.1. The structure RV induces an expansion of RV, which turns out to be precisely
that given by multiplication and the ternary relation ⊕ (see e.g. [ACGZ20, Lemma 5.17]).

This expansion is biinterpretable with RV, and can be axiomatised independently, see [Tou18,
Appendix B]. Hence, we may view RV as a standalone structure (RV, ·,⊕), and as such it is fully
embedded in the structure (K,RV, rv), and in the expanded pure short exact sequence RV.

Remark 6.2. By the Five Lemma, an extension of valued fields is immediate, i.e. does not
change k nor Γ, if and only if it does not change RV.

Definition 6.3. Let L be a language as follows.
1. The sorts are K, k,RV,Γ.
2. There are function symbols rv : K→ RV, ι : k→ RV, v : RV→ Γ.
3. K and k carry disjoint copies of the language of rings.
4. Γ = Γ∪{∞} carries the (additive) language of ordered groups, together with an absorbing

element ∞ and an extra constant symbol v(Char(K)).
5. RV carries the (multiplicative) language of groups, together with an absorbing element

0 and a ternary relation symbol ⊕.
6. We denote by RV the reduct to the sorts k,RV,Γ.
7. There may be other arbitrary symbols on RV, i.e., as long as they do not involve K.

We say that T is an RV-expansion of a theory T ′ of valued fields, iff T is a complete L-theory,
K � T ′, and the sorts and symbols from (1)–(5) above are interpreted in the natural way.

7The latter follows if maximal immediate extensions of models of T are unique and elementary. See Corollary 6.14.
8 [Tou18, Definition 1.57] allows {k}-{Γ}-expansions in the definition of benign. Since we are shortly going to
allow more general expansions, the difference is immaterial for our purposes.
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In the rest of the section, T is a theory as above. For notational simplicity, we will freely
confuse the sort k with the image of its embedding ι in RV.

Remark 6.4. Angular components factor through the map rv, yielding a splitting of RV. There-
fore, the Denef–Pas language (and in fact each of its {k,Γ}-expansions9) may be seen as an
RV-expansion. Note that in that case RV is definably isomorphic to k× Γ.

Fact 6.5. Fix a language L as in Definition 6.3 and a prime p. Each of the following incomplete
theories eliminates K-sorted quantifiers.

1. The theory of all RV-expansions of henselian valued fields of residue characteristic 0.
2. The theory of all RV-expansions of algebraically maximal Kaplansky valued fields of

residue characteristic p.

Proof. See [Fle11, Proposition 4.3] for residue characteristic 0 case and [HH19, Corollary A.3]
for the algebraically maximal Kaplansky case. �

Remark 6.6. Suppose that T eliminates K-sorted quantifiers. Then every formula is equivalent
to one of the form ϕ(x, rv(f0(y)), . . . , rv(fm(y))), where ϕ(x, z0, . . . , zm) is a formula inRV, x and
z tuples of RV-variables, y a tuple of K-variables, and the fi polynomials with integer coefficients.
In particular, RV is fully embedded.

Proof. By inspecting the formulas without K-sort quantifiers and observing that, for example, if
y is of sort K then T ` y = 0↔ rv(y) = 0. �

Definition 6.7. Let K0 ⊆ K1 be an extension of valued fields. A basis (ai)i of a K0-vector
subspace of K1 is separating10 iff for all finite tuples d from K`

0 and pairwise distinct indices ij ,

v

∑
j<`

djaij

 = min
j<`

(
v(dj) + v(aij )

)
Fact 6.8. A basis (ai)i is separating if and only if each sum

⊕
j<` rv(dj) rv(aij ) is well-defined.

If this is the case, it equals rv
(∑

j<` djaij

)
.

Lemma 6.9. Let p ∈ Sinv
K≤ω

(U,M0), let M0 � M ≺+ U ⊆ B, and let a � p | B. Let (fi)i∈I
be a family of M -definable functions Kω → K such that (fi(a))i∈I is a separating basis of the
K(M)-vector space they generate. Assume that one of the following conditions hold:

1. M is |M0|+-saturated, or
2. p is definable.

Then (fi(a))i∈I is a separating basis of the K(B)-vector space they generate.

Proof. Towards a contradiction, suppose there are an L(M)-formula

ϕ(x,w) := v

(∑
i<`

wifi(x)

)
> min

i<`
{v(wi) + v(fi(x))}

and a tuple d ∈ B such that a � ϕ(x, d). Let H be the set of parameters appearing in f0, . . . , fk−1,
i.e. appearing in ϕ(x,w). If M is |M0|+-saturated, let d̃ ∈ M be such that d̃ ≡M0H d, while if p
is definable let d̃ ∈M be a realisation of dpϕ. By choice of d̃, we have a � ϕ(x, d̃), contradicting
that (fi(a))i∈I is separating over M . �

9A {k,Γ}-expansion is an expansion where the new symbols only involve the sorts k and Γ. Symbols involving
both at the same time are allowed; if we want to exclude this possibility, we speak of {k}-{Γ}-expansions.

10In the literature, the terms separated basis, or valuation basis are also used. If such a basis exists for every finite
dimensional K0-vector subspace, the extension is called vs-defectless or separated.
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By Lemma 6.9, saturation ofM allows to lift separating bases. Since maximality ofM guaran-
tees the existence of enough such bases (see Lemma 6.16 below), we give the following definition.

Definition 6.10. We say that T has enough saturated maximal models iff for every κ > |L|,
for every M0 � T of size at most κ there is M � M0 of size at most i2(κ) which is maximally
complete and |M0|+-saturated.

Remark 6.11. If we restrict the attention to definable types, saturation is not necessary to lift
separating bases (cf. Lemma 6.9), and it is enough to assume only “enough maximal models” for
weak versions of the results of this section to go through.

The following proposition is folklore; we include a proof for convenience.

Proposition 6.12. Let T be an RV-expansion of a theory of henselian valued fields eliminating
K-quantifiers, where everyM � T has a unique maximal immediate extension up to isomorphism
over M . If M ′ � T is maximal, κ > |L|, and RV(M ′) is κ-saturated, then M ′ is κ-saturated.

Proof. We may assume that κ is a successor, hence regular, because if κ is limit then κ-saturation
is the same as λ-saturation for all λ < κ. It is enough to prove the following: if M ≡ M ′ is κ-
saturated, then the set S of partial elementary maps between M andM ′ with domain of size less
than κ has the back-and-forth property. In fact, we only need the “forth” part (and at any rate,
the “back” part is true by κ-saturation of M). So assume f ∈ S, with

f : A = (K(A),RV(A))→ A′ = (K(A′),RV(A′))

and suppose that A ⊆ B ⊆ M , with |B| < κ. In order to extend f to some g ∈ S with domain
containing B, consider the following two constructions.

Construction 1: Enlarge A to an elementary substructure. That is, there are A1 ⊇ A and
f1 : A1 → A′1 extending f such that f1 ∈ S and A1 � M . To do this, we find A′1 with
A′ ⊆ A′1 �M ′ and |A′1| < κ using Löwenheim-Skolem, and invoke κ-saturation of M to
obtain the desired A1, f1.

Construction 2: For a given B̂ such that A ⊆ B̂ ⊆ M and |B̂| < κ, enlarge RV(A) so
that it contains RV(B̂). That is, there are A1 ⊇ A and f1 : A1 → A′1 extending f such
that f1 ∈ S and RV(A1) ⊇ RV(B̂). This is done by simply extending f on RV using
κ-saturation of RV(M ′), and then using elimination of K-quantifiers to obtain that the
extension is still an elementary map.

By repeated applications of the construction above, we find an elementary chain (Mn)n∈ω
of elementary submodels of M , with A ⊆ M0, and fn ∈ S with domain Mn such that f0 ⊇ f ,
fn+1 ⊇ fn, and that if Bn is the structure generated by MnB then RV(Bn) ⊆ RV(Mn+1). Let
Mω :=

⋃
n∈ωMn and let fω :=

⋃
n∈ω fn. Since κ is regular and uncountable we have f ∈ S, and

by construction the structure Bω generated byMωB is K-generated and an immediate extension
ofMω. SinceM ′ is maximal and the maximal immediate extension ofMω is uniquely determined
up to Mω-isomorphism, we may extend fω to a map g ∈ S with domain Bω ⊇ B. �

Remark 6.13. If k and Γ are orthogonal, then it is enough to assume that k(M ′) and Γ(M ′)
are κ-saturated. This also applies to the case of {k}-{Γ}-expansion of the Denef–Pas language.

Proof. For the first part, use ℵ1-saturation of k(M ′) to obtain angular component maps and pass
to a {k}-{Γ}-expansion of the Denef–Pas language, then observe that saturation is inherited by
reducts. The second part is by Remark 6.4. �

Corollary 6.14. Suppose that T satisfies the assumptions of Proposition 6.12, and furthermore
that every maximal immediate extension of every M � T is an elementary extension. Then T
has enough saturated maximal models.



THE DOMINATION MONOID IN HENSELIAN VALUED FIELDS 27

Proof. Given κ > |L| and M0 � T of size |M0| ≤ κ, find M1 � M0 which is |M0|+-saturated
of size |M1| ≤ i(|M0|). Let M be a maximal immediate extension of M1. Then RV(M) =
RV(M1), and the latter is |M0|+-saturated because M1 is. By assumption, M � M1, and by
Proposition 6.12 M is |M0|+-saturated. To conclude, observe that, since by Krull’s inequality
(see [Dri14, Proposition 3.6]) we have |K| ≤ kΓ, we obtain

|M | ≤ |k(M)||Γ(M)| = |k(M1)||Γ(M1)| ≤ i(|M0|)i(|M0|) = i2(|M0|) �

Corollary 6.15. Every RV-expansion of a benign T has enough saturated maximal models.

Proof. Maximal immediate extensions are unique by [Kap42, Theorem 5]. It easy to see that the
assumptions of Fact 6.5 are preserved by taking maximal immediate extensions, hence elementar-
ity follows from elimination of K-quantifiers. The conclusion then follows by Corollary 6.14. �

Lemma 6.16. Let a � p ∈ Sinv
Kn (U,M0) and M0 ≺M ≺+ U.

1. If M is maximally complete, then there is a sequence (fi)i<ω of polynomials in K(M)[x]
such that {fi(a) | i < ω} is a separating basis of K(M)[a].

2. If M is |M0|+-saturated then, for each (fi)i<ω as above, {fi(a) | i < ω} is a separating
basis of K(U)[a].

3. If q ∈ SK<ω (U), (a, b) � p⊗ q, and (fpi (a))i<ω, (fqj (b))j<ω are separating bases of K(U)[a]

and K(U)[b], then (fpi (a) · fqj (b))i<ω,j<ω is a separating basis of K(U)[ab].

Proof. The first part is by [Bau82, Lemma 3] (and does not require saturation, see also [HHM08,
Lemma 12.2]) and the second one by Lemma 6.9 applied to (fi)i<ω, and we only need to prove
the last part. The fact that the tuple (fpi (a) · fqj (b))i<ω,j<ω is linearly independent follows from
the definition of ⊗, and clearly it generates K(U)[ab] as a K(U)-vector space. Let us check that
this basis is separating. Let B be the structure generated by Ub. By Lemma 6.9, (fpi (a))i<ω is a
separating basis of the K(B)-vector space K(B)[a]. Therefore we have

v
(∑
i,j

dijf
p
i (a)fqj (b)

)
= v
(∑

i

(∑
j

dijf
q
j (b)

)
fpi (a)

)
= min

i

(
v
(∑

j

dijf
q
j (b)

)
+ v(fpi (a))

)
= min

i

(
min
j

(
v(dij) + v(fqj (b))

)
+ v(fpi (a))

)
= min

i,j

(
v(dij) + v(fqj (b)) + v(fpi (a))

)
= min

i,j

(
v(dij) + v(fqj (b) · fpi (a))

)
�

Proposition 6.17. Suppose that T eliminates K-quantifiers and has enough saturated maximal
models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω (U) such that p ∼D q. More precisely, let
p(x, z) ∈ Sinv(U,M0), where x is a tuple of K-variables and z a tuple of RV-variables. Let
(a, c) � p(x, z), let M � M0 be |M0|+-saturated and maximally complete, and let (fi)i<ω be
given by Lemma 6.16 applied to a and M . Then p is domination-equivalent to the ∗-type

q(y, t) := tp(rv(fi(a))i<ω, c/U)

witnessed by
r(x, z, y, t) := tp(a, c, rv(fi(a))i<ω, c/M)

Proof. That p ∪ r ` q is trivial, so let us show q ∪ r ` p.
By Fact 6.5, it is enough to show that q ∪ r has access to every rv(f(x)), that is, that for

every f ∈ K(U)[x], there is a U-definable function g such that q ∪ r ` rv(f(x)) = g(y). Write
f(x) =

∑
i<` difi(x). By Fact 6.8, we have rv(f(a)) =

⊕
i<` rv(di) rv(fi(a)), and we only need to

ensure that q ∪ r “knows this”, i.e. that q ∪ r ` rv(f(x)) =
⊕

i<` rv(di) rv(fi(x)). But by Fact 6.8
whether the (fi(a))i<ω form a separating basis or not only depends on the type of their images
in RV, which is part of q by definition. �
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The work done so far is enough to obtain an infinitary version of Theorem B. After stating
such a version, we will proceed to finitise it.

Remark 6.18. Separating bases of vector spaces of uncountable dimension are not guaranteed
to exist. Nevertheless, a ∗-type version of Lemma 6.16 still holds, with the fi(a) now enumerating
separating bases of all countable dimensional subspaces of K(M)[a].

Corollary 6.19. If κ is a small infinite cardinal, there is an isomorphism of posets Ĩnvκ(U) ∼=
Ĩnvκ(RV(U)). If ⊗ respects ≥D on ∗-types in RV(U), then the same holds in U, and the above is
also an isomorphism of monoids.

Proof. By the ∗-types versions of Proposition 6.17, Lemma 6.16, and Proposition 1.6. �

Lemma 6.20. Let M0 ≺+ M ≺+ U, let e � q ∈ Sinv
RVω (U,M0). Let I ⊆ ω be such that (v(ei))i∈I

generates Q〈Γ(U)v(e)〉 over QΓ(U) as Q-vector spaces. Let G ⊆ RV be the closure of RV(U)e
under the RV product, the corresponding inverse function, and well-defined sums ⊕. Let (gj)j∈J ⊆
dcl(Ue) ∩ k be such that k ∩ G ⊆ acl(U(gj)j∈J). Let b := (ei, gj | i ∈ I, j ∈ J). Then there is
M ≺ N ≺+ U such that e and b are interalgebraic over N .

Proof. Fix ` ∈ ω \ I. By assumption, there are n` > 0, d` ∈ U, a finite I0 ⊆ I and, for i ∈ I0,
integers n`,i ∈ Z , such that

n`v(e`) = v(d`) +
∑
i∈I0

n`,iv(ei)

By M0-invariance, we may assume that d` ∈M . Let h`(x) be the M -definable function

h`(y) :=
yn``

d`
∏
i∈I0 y

n`,i
i

By construction, v(h`(e)) = 0, hence h`(e) ∈ k× so by assumption on (gj)j∈J we have h`(e) ∈
acl(U(gj)j∈J). Let N � M be a small model such that {h`(e) | ` ∈ ω \ I} ⊆ acl(N(gj)j∈J) and
{gj | j ∈ J} ⊆ dcl(Ne).

By definition of h`, for each ` ∈ ω \ I, we therefore have en`` ∈ acl(Mb). Moreover, since Γ is
ordered and the kernel of v : RV→ Γ is the multiplicative group of a field, RV has finite torsion,
hence e` is algebraic over en`` . It follows that e ∈ acl(Mb), and we are done. �

Theorem 6.21 (Theorem B). Let T be an RV-expansion of a benign theory of valued fields,
or more generally an RV-expansion of a theory of valued fields with enough saturated maximal
models eliminating K-quantifiers. There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(RV(U)). If ⊗
respects ≥D in RV(U), then ⊗ respects ≥D in U, and the above is an isomorphism of monoids.

Proof. Fix p(x, z) ∈ Sinv(U) and ac � p, where x is a tuple of K-variables and z a tuple of RV-
variables. Let (fi)i<ω be given by Lemma 6.16. As usual, denote by U(a) the field generated by a
over U. Since trdeg(U(a)/U) is finite, by the Abhyankar inequality so is dimQ(QΓ(U(a))/QΓ(U)).
By rearranging the fi we may assume that m is such that v(fi(a))i<m generates QΓ(U(a)) over
QΓ(U). Again by the Abhyankar inequality, trdeg(k(U(a))/ k(U)) is finite. Let (gj | j < n) be
a transcendence basis of k(U(a)) over k(U). By choice of the fj and Fact 6.8, each gj is in the
closure of RV(U)(rv(fi(a)))i<ω under the group operation, inverse, and well-defined sums ⊕, so
we may write gj = hj(a) for suitable definable functions hj . We are now in a position to apply
Lemma 6.20 with e = (rv(fi(a)))i<ω, the gj defined above, and I = {i ∈ ω | i < m}. Together
with Proposition 6.17, we obtain

p ∼D p′ := tp(rv(fi(a))i<m, (hj(a))j<n, c/U) (3)

Therefore, every (finitary) type is equivalent to one in RV. By full embeddedness of RV, and
Fact 1.5, we obtain the required isomorphism of posets.
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By Proposition 1.6 it is enough to show that if p′, q′ are obtained from p, q as in (3) above,
then p ⊗ q ∼D p′ ⊗ q′. Denote by ρp(x, z) := (rv(fpi (x))i<mp , (h

p
j (x))j<np , id

p(z)) the tuple of
definable functions from (3), and similarly for q and p ⊗ q. By point 3 of Lemma 6.16 we may
take as (fp⊗qi )i<ω (a reindexing on ω of) the concatenation of (fpi )i<ω with (fqi )i<ω. By the
properties of ⊗, the concatenation of (fpi (a))i<mp and (fqi (b))i<mq is a basis of the vector space
Q〈Γ(U)(v(fpi (a)))i<ω(v(fqi (b)))i<ω〉 over QΓ(U), and it follows that as (fp⊗qi )i<mp⊗q we may take
the concatenation of (fpi )i<mp with (fqi )i<mq . Similarly, as (hp⊗qj )j<np⊗q and idp⊗q we may take
the concatenation of the respective tuples for p and q, and ultimately we obtain that as ρp⊗q we
may take the concatenation of ρp with ρq. By (3), we have p⊗ q ∼D p′⊗ q′ and we are done. �

In the case of {k,Γ}-expansions, we are in the setting of Section 4, therefore Corollary 6.19 and
Theorem 6.21 may be combined with the results from Section 4. We spell out a particularly nice
case (in particular, we assume to be dealing with {k}-{Γ}-expansions), and leave to the reader
the task of stating the more general versions.

Corollary 6.22 (Theorem A). Let T be a complete {k}-{Γ}-expansion of a benign theory of
valued fields where, for all n > 1, the group k×/(k×)n is finite. There is an isomorphism of posets

Ĩnv(U) ∼= Ĩnv(k(U))× Ĩnv(Γ(U))

If ⊗ respects ≥D in k and Γ, then ⊗ respects ≥D, and the above is an isomorphism of monoids.

Proof. Apply Theorem 6.21. By Fact 6.5, if the extra structure on RV involves only k and Γ,
and never both at the same time, then the sorts k and Γ are orthogonal. By Remark 6.1, RV is
an expanded pure short exact sequence, and we may therefore conclude by Corollary 4.18. �

Note that, by full embeddedness, the conclusion remains true if we remove the sort RV and
introduce symbols for the valuation v : K → Γ and the modified residue map Res: K2 → k.
The algebraically closed and real closed cases of the corollary above (without extra structure on
RV) were obtained in [HHM08] and [EHM19] respectively. To see how the results about stable
domination, or domination by a family of sorts in the sense of [EHM19, Definition 1.7], can be
translated in our context, see [Mena, Section 6].

We leave the following remark, for the benefit of the reader interested in computing the image
of the embedding Ĩnv(K(U)) ↪→ Ĩnv(U).

Remark 6.23. The proof of Theorem 6.21, with trivial changes, yields the analogous statement
in the language with only two sorts, K and RV.

7. Mixed characteristic henselian valued fields

In this section, K is a henselian valued field of characteristic (0, p), for p a prime. An analogue
of Fact 6.5 holds, in a language which we are now going to describe.

For n ∈ ω, let mn := {x ∈ K | v(x) > v(pn)}. Define RVn to be the multiplicative mon-
oid RVn := K/(1 + mn), and RV×n := RVn \ {0}. For each n, denote by rvn : K → RVn the
quotient map. Additionally, for m > n, we have natural maps rvm,n : RVm → RVn. Moreover,
the valuation v : K → Γ induces maps RVn → Γ, which we still denote by v. Let kn be the
kernel of this map, yielding a short exact sequence 1 → kn → RVn

v−→ Γ → 0. We also have
ternary relations ⊕n, defined analogously to ⊕, and again x⊕n y is well-defined precisely when
v(x+y) = min{v(x), v(y)}. Note that for n = 0 we recover the notions from the previous section.
Moreover, we have the following more general version of Fact 6.8.

Fact 7.1. A basis (ai)i is separating if and only if, for each n ∈ ω, each sum rvn(d0) rvn(ai0)⊕n
. . .⊕n rvn(d`) rvn(ai`) is well-defined, if and only if this happens for n = 0. If this is the case, it
equals rvn

(∑
j≤` djaij

)
.
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Definition 7.2. Let L be a language as follows.
1. We have sorts K,Γ and, for each n ∈ ω, sorts kn,RVn.
2. There are function symbols rvn : K→ RVn, ι : kn → RVn, v : RVn → Γ.
3. K carries a copy of the language of rings.
4. Γ = Γ∪{∞} carries the (additive) language of ordered groups, together with an absorbing

element ∞ and an extra constant symbol v(Char(K)).
5. Each RVn and kn carries the (multiplicative) language of groups, together with a ternary

relation symbol ⊕n.
6. We denote by RV∗ the reduct to the sorts kn,RVn,Γ.
7. There may be other arbitrary symbols on RV∗, i.e., as long as they do not involve K.

We say that T is an RV∗-expansion of a theory T ′ of valued fields, iff T is a complete L-theory,
K � T ′, and the sorts and symbols from (1)–(5) above are interpreted in the natural way.

In the rest of the section, we work in a T as above, with T ′ a theory of henselian valued fields
of characteristic (0, p). For notational simplicity, we will freely confuse the sort kn with the image
of its embedding in RVn.

Fact 7.3 ( [Fle11, Proposition 4.3]). RV∗-expansions of theories of henselian valued fields of
mixed characteristic eliminate K-quantifiers. In particular, every formula is equivalent to one of
the form ϕ(x, rvn0

(f0(y)), . . . , rvnm(fm(y))), for ϕ(x, z0, . . . , zm) a formula in RV∗, x a tuple of
RV∗-variables, z a tuple of RV∗-variables, y a tuple of K-variables, and the fi polynomials with
integer coefficients. In particular, RV∗ is fully embedded.

Proposition 7.4. Suppose that T eliminates K-quantifiers and has enough saturated maximal
models. For every p ∈ Sinv(U) there is q ∈ Sinv

RVω∗ (U) such that p ∼D q. More precisely, let p(x, z) ∈
Sinv(U,M0), where x is a tuple of K-variables and z a tuple of RV∗-variables. Let (a, c) � p(x, z),
let M �M0 be |M0|+-saturated and maximally complete, and let (fi)i<ω be given by the ∗-type
version of Lemma 6.16 applied to a and M (cf. Remark 6.18). Then p is domination-equivalent
to q(y, t) := tp(rvn(fi(a))i,n<ω, c/U), witnessed by r(x, z, y, t) := tp(a, c, rvn(fi(a))i,n<ω, c/M).
If κ ≥ |L| is a small cardinal, there is an isomorphism of posets Ĩnvκ(U) ∼= Ĩnvκ(RV∗(U)). If ⊗
respects ≥D in RV∗(U), then the same holds in U, and the above is an isomorphism of monoids.

Proof. Adapt the proofs of Lemma 6.16, Proposition 6.17 and Corollary 6.19, replacing Fact 6.5
and Fact 6.8 by Fact 7.3 and Fact 7.1 respectively. �

The assumptions of Proposition 7.4 are satisfied in a number of cases of interest. Besides the
algebraically closed case (where the computation of Ĩnv(U) is already known from [HHM08]), we
note the following.

Remark 7.5. Every RV∗-expansion of a finitely ramified henselian valued field has enough
saturated models.

Proof. Finite ramification ensures that immediate extensions are precisely those where RV∗
does not change. Together with Fact 7.3, this ensures that maximal immediate extensions are
elementary, and by [Dri14, Corollary 4.29] they are also unique. We may therefore adapt the
proof of Proposition 6.12, replacing RV with RV∗. �

Remark 7.6. RV∗ may be viewed as a short exact sequence of abelian structures, each consisting
of an inverse system of abelian groups. It is well known that, in a sufficiently saturated elementary
extension, there exists a compatible system of angular components or, in other words, a splitting
of this short exact sequence, which is therefore pure. Hence, the results from Section 4 apply to
this setting, for example by taking as F the family of all pp formulas.
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If the residue field has elimination of imaginaries, e.g. if it is algebraically closed, we can then
get rid of the imaginaries arising from F and obtain a product decomposition. We state a special
case as an example application of the results above.

Corollary 7.7. In the theory of the Witt vectors over Falg
p , the domination monoid is well defined.

If X is the set of invariant convex subgroups of Γ(U) and κ is a small infinite cardinal,

Ĩnvκ(U) ∼= Ĩnvκ(k(U))× Ĩnvκ(Γ(U)) ∼= κ̂×P≤κ(X)

Remark 7.8. The product decomposition does not hold for finitary types: using discreteness of
the value group, it is possible to build a pro-definable surjection K → kω (see [Tou18, proof of
Remark 3.23]), hence a 1-type in K dominating the type of an infinite independent tuple in k.

However, finitisation is possible in the case of the p-adics.

Corollary 7.9 (Theorem E). Let T be a complete {Γ}-expansion of the theory Th(Qp) of p-
adically closed fields. There is an isomorphism of posets Ĩnv(U) ∼= Ĩnv(Γ(U)). If ⊗ respects ≥D in
Γ(U), then the same holds in U, and the above is also an isomorphism of monoids. In particular,
in Th(Qp), ⊗ respects ≥D and, if X is the set of invariant convex subgroups of Γ(U), then

(Ĩnv(U),⊗,≥D) ∼= (P<ω(X),∪,⊇)

Proof. By Remark 7.5 we may apply Proposition 7.4. Since each kn is finite, each RVn is a finite
cover of Γ, and it follows that each type in RVn is algebraic over a type in Γ. We conclude by
using the Abhyankar inequality and Proposition 1.6. The “in particular” part then follows from
Corollary 3.38. �

8. D-henselian valued fields with many constants

In this section we deal with certain differential valued fields. Since the proofs are adaptations
of those in Section 6, we will give sketches and leave it to the reader to fill in the details.

We let T be a complete theory subject to the following requirements.
1. The sorts are K, k,Γ,RV, as in Section 6, naturally interpreted. We use the notation RV.
2. k (hence K) has characteristic 0.
3. K and k carry a derivation11 ∂, commuting with the residue map.
4. K is monotone, i.e. v(∂x) ≥ v(x).
5. K has many constants12, i.e. for every γ ∈ Γ there is x ∈ K with ∂x = 0 and v(x) = γ.
6. K is D-henselian, i.e. the following holds. If P (X) ∈ O{X} = O[∂iX]i∈ω is a differential

polynomial over the valuation ring O, and a ∈ O is such that v(P (a)) > 0 and for some i
we have v(dP/ d(∂iX))(a) = 0, then there is b ∈ O such that P (b) = 0 and v(a− b) > 0.

7. RV may carry additional structure.

Fact 8.1. The common theory of all the T as above (in a fixed language) eliminates K-quantifiers.

Proof. This is [Sca03, Theorem 6.4 and Corollary 5.8]. See also [ADH17, Corollary 8.3.3]. �

Proposition 8.2. T has enough saturated maximal models.

Proof sketch. By [Sca03, Remark 6.2], k is, in the terminology of [ADH17], linearly surjective,
so by [ADH17, Theorem 7.4.3] T has uniqueness of maximal immediate extensions. Let N be a
maximal immediate extension ofM . Then N is monotone by [ADH17, Lemma 6.3.5], D-henselian
by [ADH17, Theorem 7.4.3], and clearly has many constants. By elimination of K-quantifiers,
M ≺ N . Therefore, the proofs of Proposition 6.12 and Corollary 6.14 may be adapted. �

11We use the same symbol for both derivations.
12Here we are following the terminology of [ADH17]. In [Sca03], this condition is called having enough constants.
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Theorem 8.3. Let κ be a small infinite cardinal. There is an isomorphism of posets Ĩnvκ(U) ∼=
Ĩnvκ(RV(U)). If ⊗ respects ≥D in RV(U), then the same holds in U, and the above is also an
isomorphism of monoids.

Proof sketch. By elimination of K-quantifiers, RV(M) is fully embedded in M . If we replace
“polynomial” by “differential polynomial”, K(M)[a] by K(M){a}, and so on, in the statements of
Lemma 6.16 and Proposition 6.17, essentially the same proofs go through. We can then conclude
as in the proof of Corollary 6.19. �

The derivation ∂ on K induces a map ∂RV on RV which, for all γ ∈ Γ, fixes v−1(γ) ∪ {0}
setwise, defined by ∂RV(rv(x)) = rv(∂(x)) iff v(∂(x)) = v(x), and ∂RV(rv(x)) = 0 otherwise,
which extends the derivation ∂ on k.

Lemma 8.4. ∂RV is definable from the the short exact sequence structure, the differential field
structure on k, and a predicate for C := {c ∈ RV | ∂RV(c) = 0}.

Proof. Suppose that a ∈ RV and v(a) /∈ {0,∞}. Since K has many constants, there is c ∈ RV(M)
with ∂RV(c) = 0 and v(c) = v(a). Then a/c ∈ k(U), and we have ∂RV(a) = c∂(a/c). Because this
does not depend on the choice of c, the function y = ∂RV(x) is ∅-definable by the formula

ϕ(x, y) := ∃z ∈ C
((
v(z) = v(x)

)
∧
(
y = z∂(x/z)

))
�

If our language had a section of the valuation, or an angular component compatible with ∂,
we could recover C from the constant field of k, and conclude by using (the ∗-types version of)
Remark 4.8. Yet, the absence of definable splitting is not a serious obstacle. For simplicity, we
only give a result in the model companion VDFEC , related to [Rid19, Proposition 3.2].

Theorem 8.5 (Theorem F). In VDFEC , for every small infinite cardinal κ, the monoid Ĩnvκ(U)
is well-defined, and we have isomorphisms

Ĩnvκ(U) ∼= Ĩnvκ(k(U))× Ĩnvκ(Γ(U)) ∼=
≤κ∏
δ(U)

κ̂×P≤κ(X)

where X is the set of invariant convex subgroups of Γ(U), δ(U) is a cardinal, and
∏≤κ
δ(U) κ̂ denotes

the submonoid of
∏
δ(U) κ̂ consisting of δ(U)-sequences with support of size at most κ.

Proof. By Theorem 8.3 we reduce to RV. Let LC := Lab ∪ {C}, with C a unary predicate.
Expand the language of RV by a predicate C on each sort, interpreted as the constants in both
k and RV and as the full Γ in Γ, obtaining a short exact sequence of LC-abelian structures13,
expanded by the differential field structure on k and the order on Γ. By virtue of Lemma 8.4,
we may apply the material from Section 4, say by taking as a fundamental family that of all
pp LC-formulas, provided we show that RV is pure. If M � VDFEC is ℵ1-saturated then, since
M has many constants, we may find a section s : Γ(M) → RV(M) of the valuation with image
included in C(RV(M)). Hence RV(M) splits as a short exact sequence of LC-abelian structures,
so purity follows by Remark 4.7. Since k is a model of DCF0, which eliminates imaginaries, we
may get rid of the auxiliary sorts Aϕ. We conclude by Corollary 3.40 and the fact that DCF0 is
ω-stable multidimensional (see [Men20b, Section 5] for the relation between our setting and that
of domination via forking independence in stable theories). �

Even in the existentially closed case VDFEC , finitisation is not only not to be expected (for
instance because of [Rid19, Proposition 4.2]), but in fact not possible at all.

13To be precise, of abelian structures augmented by an absorbing element. See Remark 4.13.
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Remark 8.6. In VDFEC , it is possible to construct a 1-type p ∈ Sinv
K (U) such that the types

((v ◦ ∂n)∗p)n∈ω are pairwise weakly orthogonal, and in particular not domination-equivalent.

Computing the image of the home sort in finitely many variables seems difficult.

Remark 8.7. Most arguments in this section may be adapted to theories of σ-henselian valued
difference fields of residue characteristic 0. An analogue of Theorem 8.3 goes through because,
by [DO15, Theorem 5.8 and Theorem 7.3], there is still a quantifier reduction to RV and a
σ-Kaplansky theory yielding uniqueness and elementarity of maximal immediate extensions. In
(every completion of) the model companion of the isometric case (see [BMS07]), in sufficiently
saturated models there is a section of the valuation with values in the fixed field. Hence, it is also
possible to obtain the decomposition Ĩnvκ(U) ∼= Ĩnvκ(k(U))× Ĩnvκ(Γ(U)), by regarding RV as a
pure short exact sequence of Z[σ]-modules, and using elimination of imaginaries in ACFA0. The
same goes through if we move from the isometric to the multiplicative setting, provided that, in
the notation of [Pal12], ρ is transcendental. This applies for example to the model companion of
the contractive (or ω-increasing) case (see [Azg10]).

9. Open questions

Our first question concerns transfer of compatibility of ⊗ with ≥D.

Question 9.1. If ⊗ respects ≥D on finitary types, does ⊗ necessarily respect ≥D on ∗-types?

In algebraically closed or real closed valued fields, the decomposition Ĩnv(U) ∼= Ĩnv(k(U)) ×
Ĩnv(Γ(U)) remains valid after passing to T eq, as can be shown using resolutions (see [HHM08,
EHM19,Mena]). A natural question is whether Theorem 6.21 generalises to T eq, or at least to
TG , the expansion of T by the geometric sorts of [HHM06].

Question 9.2. Let T be anRV-expansion of a theory of valued fields with enough saturated max-
imal models eliminating K-quantifiers. Are there conditions guaranteeing that the isomorphism
Ĩnv(U) ∼= Ĩnv(RV(U)) holds in TG , or even in T eq? Does compatibility of ≥D with ⊗ transfer?

By Corollary 7.9, in the theory of the p-adics, every element of Ĩnv(U) is idempotent. That
of Qp is notoriously a distal theory. Moreover, by [ACGZ20, Theorem 3.13], the theories from
Remark 5.7 are distal, too. To this date, in every distal theory in which Ĩnv(U) has been computed,
it has turned out to be well-defined, and each of its elements idempotent. In [Sim15, Chapter 9],
the notion of a distal type is defined, and a theory is distal if and only if every invariant type
is distal (distal types are automatically invariant). It follows easily from the definition of “distal
type” that if p is distal then p(ω) ∼D p(ω+1). All of this motivates the following question.

Question 9.3. Let p be a distal type. Is it true that p ∼D p(2)?

By [Mena, Lemma 2.3] the answer is positive for 1-types in o-minimal theories.
While idempotents may also arise in the stable case (see [Men20a, Subsection 3.2.4]), in

a stable theory Ĩnv(U) necessarily contains a copy of (ω,+) (see [Men20b, Proposition 5.20]).
Moreover, idempotency seems hardly compatible with the Independence Property. Hence, while
idempotency modulo domination-equivalence does not characterise distal types, it is not excluded
that it characterise distal theories.

Question 9.4. Is it true that T is distal if and only if, for every p ∈ Sinv(U), we have p ∼D p(2)?

In light of this question, and of [ACGZ20, Main Theorem], it would be interesting to have a
computation of Ĩnv(U) in an infinitely ramified mixed characteristic henselian valued field with
distal value group and distal, or even finite, residue field.
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