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FUSION OVER SUBLANGUAGES

ASSAF HASSON AND MARTIN HILS

Abstract. Generalising Hrushovski’s fusion technique we construct the free fusion of two strongly

minimal theories T1, T2 intersecting in a totally categorical sub-theory T0. We show that if, e.g., T0 is the

theory of infinite vector spaces over a finite field then the fusion theory Tù exists, is complete and ù-stable

of rank ù. We give a detailed geometrical analysis of Tù , proving that if both T1, T2 are 1-based then, Tù

can be collapsed into a strongly minimal theory, if some additional technical conditions hold—all trivially

satisfied if T0 is the theory of infinite vector spaces over a finite field Fq .

§1. Introduction. In [17] the fusion technique for the construction of strongly
minimal sets is introduced. In this paper Hrushovski notes that “ . . . it seems likely
that . . . ifT1, T2 are strongly minimal sets with DMP andT1∩T2 is the theory of in-
finite vector spaces over a finite field thenT1∪T2 has a stronglyminimal expansion”.
In the present paper we suggest a first step towards proving this observation.
Given two strongly minimal theories T1, T2 (with DMP) the fusion construction
can be roughly divided into three main steps:

(1) Define a class C of finite (or more generally finitely generated)L (T1)∪L (T2)-
structures and a notion≤ of a strong substructure, such that (C ,≤) (is countable
and) has the Joint Embedding Property and the Amalgamation Property.

(2) Show that the Fraı̈ssé limit of (C ,≤) is a saturatedmodel of a first order theory
T . In the present context we will be mostly interested in fusions such that
T is ù-stable of rank ù (we denote it Tù), in which case Tù will usually be
coordinatised by strongly minimal locally finite types together with a unique
(up to domination equivalence) generic type of rank ù.

(3) Collapse all the strongly minimal dimensions of T into finite sets, to obtain a
new strongly minimal theory T̂ . This stage of the construction can be viewed as
a construction and axiomatisation of smooth approximations to a (saturated)
model of Tù with respect to the requirement that in the approximation every
strongly minimal set of Tù has finitely many solutions.

In the original construction, T1 and T2 are fused to obtain ‘as little interaction
as possible’ between them in the fusion theory Tù (as in (2) above). In particular,
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the language of the fusion is the disjoint union ofL (T1) withL (T2) over equality.
In this work we investigate the possibility of changing the language of the fusion,
requiring the interpretation of T1 and T2 in a model of the fused theory T to share
a non-trivial common reduct.
Towards this end we show that if T1 ∩ T2 = T0 is totally categorical then with
a few slight technical changes using extensively the modularity of T0 the first stage
of Hrushovski’s construction—the free amalgamation—can be worked out (Sec-
tions 2–4). We then show that if, e.g., T0 is the theory of infinite vector spaces
over a finite field, then the second stage of the construction can be carried out as
well. In that case the Fraı̈ssé limit is a saturated model of its first order theory, Tù ,
an ù-stable theory of rank ù with a unique generic type (of rank ù in general).
All the remaining regular types are strongly minimal. Furthermore, we show that
every strongly minimal set definable in Tù has precisely the structure inherited from
L0 (possibly after an expansion by finitely many constants). Consequently, every
strongly minimal set of T is locally modular and locally finite (Sections 5–6).
Generalising the last stage of Hrushovski’s construction—the collapse of the
infinite rank structure into a stronglyminimal one—proved to bemore delicate than
the generalisation of the first two steps. The first difficulty is due to the emergence
of affine sets—locally modular non-modular strongly minimal sets—inTù , with the
resultingdistinction (whichdoesnot exist forL0 = {=})betweenorthogonality and
almost orthogonality. This calls for a more delicate axiomatisation of the collapse,
similar in spirit to the construction of envelopes in [8]. A second important difficulty
which does not occur in the original case concerns definability of orthogonality in
the theory Tù . In the case of L0 = {=}, orthogonality of any two sets (definable
without quantifiers in the fused theory) could be checked directly by comparing
their respective L1- and L2-parts over their respective canonical bases. But if we
discard this assumption onL0, this need no longer be true, and parameters may, a
priori, have an important role to play in this analysis. A third important difficulty
relates to a very delicate technical point—the analysis of the possible interactions
of orthogonal strongly minimal types over a parameter set over which only one
of them is based. Rather miraculously (and quite implicitly) Hrushovski, in his
original fusion paper, shows that for L0 = {=} this sort of interaction between
orthogonal strongly minimal types can only be very limited. His arguments do not,
however, translate to the case whereL0 has a non-trivial geometry.
In the present work we were not able to give a complete proof of the collapse of
Tù in the general case, but we give a detailed ‘site survey’ of the fused theory Tù ,
preparing the ground for an eventual proof of the collapse. Our work towards the
general collapse can be partitioned in two:

• A thorough geometrical analysis of the fused theoryTù resulting in a concrete
presentation of all the strongly minimal dimensions (i.e., non-orthogonality
classes of strongly minimal types) of Tù , together with a good understanding
of all the possible occurrences of non-orthogonality between strongly minimal
sets in Tù (Section 7).

• A suggested strategy for dealing with affine sets.

The above analysis already proves the collapse e.g., under the additional (very
strong) assumption that T1 and T2 are both 1-based expansions of the theory of
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an infinite vector space over some finite field Fq (the abelian fusion context which is
treated in Section 8). The main merit of carrying out the construction in this special
case lies not so much in the new structures it produces (as those will have a modular
geometry) butmore in that the solution suggested here for dealing with affine spaces
is not restricted to the 1-based case, and can be translated almost unaltered to the
general setting. The collapse in the 1-based case as well as the general strategy for
a general collapse are perhaps best stated in terms of envelopes, as developed by the
first author in [12].
At the request of the referee, two appendices are added to the main text.
In Appendix Awe give a quick survey of themore general context in which we be-
lieve one should look in order to perform the collapse under less restrictive assump-
tions than those in Section 8. Wepoint out how touse the results of Section 7 in order
to solve the first of the problems discussed above (definability of orthogonality) and
the precise statement of the third problem which we were to date unable to solve.
A problem closely related to the collapse of Hrushovski’s fusion is that of collaps-
ing Poizat’s bicoloured fields. In the case of black-and-white fields—algebraically
closed fields with a distinguished subset—due to its similarity with the collapse of
the fusion overL0 = {=}, the collapse could be carried out. However, the red-and-
white fields—algebraically closed fields with a distinguished subgroup of its additive
group (see [21])—proved much harder to collapse, and indeed those fields have not
yet been collapsed. In Appendix B we point out the geometric and structural sim-
ilarities between the fusion over a common totally categorical and projective (i.e.,
modular non-trivial) theory and the red-and-white fields of positive characteristic.
It follows that the same difficulties which arise when trying to collapse the fusion,
also arise in the red-and-white field context, and we formulate our collapsing strat-
egy for the former in a sufficiently general way so that it applies to the latter, too.
Finally, let us remark that large parts of this work (especially sections 2–5) were
discovered independently by the two authors.

§2. Preliminaries and notation. First we indicate the context in which we work
and fix some notation. We consider complete strongly minimal theories T1 and T2,
in countable languages L1 and L2 respectively, having a common reduct T0 :=
T1↾L0 = T2↾L0, whereL0 := L1 ∩L2. Of course T0 is strongly minimal, too.
To simplify the exposition, we assume that the theoriesTi have quantifier elimina-
tion (in the corresponding, not necessarily relational languagesLi , for i = 0, 1, 2).
We denote by acli the algebraic closure in the sense of Ti . and require that acli(∅)
is infinite for i ∈ {1, 2} (so equal to the prime model of Ti). This can always be
achieved by Morleyising and adding some constants to the language, if necessary.
Note that the latter assumption has weak elimination of imaginaries in Ti (i = 1, 2)
as a consequence, and that these theories are not ℵ0-categorical. In order to avoid
trivial cases, let us further assume that the expansions T0 ⊆ Ti be essential, in the
sense that in a monster model C of Ti there exist Li -definable (over parameters)
sets which are notL0-definable. Most of the time we suppose in addition:

(Geom) For both i = 1, 2, acli does not coincide with acl0 (not even over some set
of parameters), i.e., the expansions are not geometry preserving.

We always assume T0 to be modular. Here are other restrictive (and crucial)
conditions we often require:
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• T0 is ℵ0-categorical.
• For i = 1 or i = 2 the expansion T0 ⊆ Ti preserves multiplicities, i.e., if
a ∈ acl0(b), then mult0(a/b) = multi(a/b).

From 3.4 on, T0 is assumed to be ℵ0-categorical throughout, as is condition
(Geom). The preservation of multiplicities (or more precisely good control, a con-
sequence thereof) is assumed from Section 5 on.

Remark 2.1. (1) If acl0 = dcl0, then any s.m. expansion ofT0 preserves multiplic-
ities.

(2) If a strongly minimal expansion T0 ⊆ T1 is essential and preserves multiplicities,
then this expansion is not geometry preserving.

(3) If T0 is ℵ0-categorical, the modularity assumption is no restriction, since T0 is
always locally modular in this case, so modular after adding some constant.

Proof. (1) is easy, and (2) is shown as follows. First, it is an (easy) exercise that
if a s.m. expansion preserves multiplicities, then it preserves also Morley degrees,
i.e., if ϕ(x, b) is definable inL0, then MDT0(ϕ(x, b)) = MDT1(ϕ(x, b)) (note that
for Morley rank, this equality always holds in s.m. expansions). Now choose an
L1-definable (with parameters b) set X which is notL0-definable and of minimal
MRDT1 (in lexicographic order) with this property. A generic solution a of X
then has d1(a/b)) < d0(a/b). If a1 is an L1-basis of a over b, one then has
a ⊆ acl1(ba1) and a * acl0(ba1), thuswitnessing that the geometry is not preserved
in the expansion.
(3) is a theorem of Zil’ber. ⊣

We now proceed as in [17], although in notation and techniques, our exposition
is closer to [20]. ForL := L1 ∪L2 define C̃ as the class of allL -structures which
are models ofT1 andT2. ForA ⊆ M ∈ C̃ define 〈A〉 as the smallest superset ofA in
M which is algebraically closed in the sense of T1 and T2. Equivalently, 〈·〉 denotes
the transitive closure of the operators acl1 and acl2. We callM finitely generated (in
the sense of 〈·〉), ifM = 〈b〉 for some finite tuple b ∈M . Let C denote the class of
all finitely generated structures in C̃ . For notational convenience we write AB for
A ∪ B, and A ⊆ù B means that A is a finite subset of B.

Definition 2.2. LetM ∈ C̃ , A ⊆ù M and B ⊆M .

(1) ä(A) := d1(A) + d2(A) − d0(A), the predimension of A, where di denotes the
Morley rank in the sense of Ti .

(2) ä(A/B) := d1(A/B) + d2(A/B)− d0(A/B).
(3) C̃0 := {M ∈ C̃ | ä(A) ≥ 0 ∀A ⊆ù M}, C0 := C̃0 ∩ C . Elements of C̃0 are called
fusions.

(4) If M ∈ C̃0, dM(A) := min{ä(Ã) | A ⊆ Ã ⊆ù M}, the dimension of A in
M. Similarly, we define the relative dimension dM(A/B) := min{dM(AB0) −
dM(B0) | B0 ⊆ù B}.

(5) ForM ∈ C0, we put ä(M) := min{ä(A) | A ⊆ù M and 〈A〉 = M}. Similarly,
ifM is finitely generated over A ⊆M , one can define ä(M/A).

(6) For C ⊆ B, both acl0-closed subsets of a given structure in C̃ , one puts C ≤ B
(C is selfsufficient or strong in B) if and only if for all finite tuples b from B one
has ä(b/C ) ≥ 0.
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Fusions will normally be denoted byK,L etc. whereas k, l etc. aremostly reserved
for finitely generated fusions (i.e., structures in C0). If the ambient fusionK is clear
from the context we just write d instead of dK . Note that if B happens to be finite,
then ä(A/B) = ä(AB) − ä(B).
It is convenient to extend the notion of a strong subset to arbitrary subsets
C ⊆ B of some fusion. We put C ≤ B if and only if acl0(C ) ≤ acl0(B). This use
is justified, since the definition does not depend on the particular embedding of B
into an ambient fusion. By definition, we have C̃0 = {M ∈ C̃ | ∅ ≤M}. Note also
that ä(A) = ä(acl0(A)).

Remark 2.3. The requirement of referring to acl0-closed sets in the definition of≤
is necessary since we want to obtain a transitive notion. If, for arbitrary C ⊆ B one
merely requires ä(b/C ) to be nonnegative for all finite tuples b in B, then already in
the easiest cases (e.g., vector spaces) transitivity can fail.

Remark 2.4. If T0 is ℵ0-categorical, C̃0 is an elementary class.

Proof. Let ϕi(x) beLi -formulas, for i = 1, 2, with MR(ϕi (x)) = mi . For such
a pair we include the following (which is definable since T0 is ℵ0-categorical) as an
axiom: ∀x{[ϕ1(x) ∧ ϕ2(x)]→ [d0(x) ≤ m1 +m2]}. ⊣

Definition 2.5. Let K ∈ C̃0 be a fusion and A ⊆ K . We say that A controls K
if 〈A〉 = K and A ≤ K . If B ⊆ K is another subset, A controls K over B if AB
controls K .

We observe that for finite A we have ä(〈A〉) ≤ ä(A), and equality holds if and
only if 〈A〉 is controlled by A.

§3. Free amalgam and some ä-arithmetics. We first gather some easy facts about
the predimension ä which we will use constantly, sometimes without explicit refer-
ence. Comparing our lemma with [17, Lemma 1], one sees that we must switch to
acl0-closed sets most of the time, since modularity of T0 has to be used. The proof
is only a slight variation of the one given in [17]. Nevertheless, we prefer to give it
in detail for the sake of completeness.

Lemma 3.1. Let K ∈ C̃ , and suppose that all the sets and tuples that appear are
contained in K .

(1) (submodularity) ä(c/acl0(Ac) ∩ acl0(AB)) ≥ ä(c/AB).
(2) (transitivity) If A ≤ B ≤ C , then A ≤ C .
(3) (continuity) If (Ai )i∈I is a directed system of subsets of C such that Ai ≤ C for
all i , then

⋃

i∈I Ai ≤ C .
(4) LetA1, A2 be acl0-closed subsets ofB, both selfsufficient inB. ThenA1∩A2 ≤ B.

Now suppose thatK ∈ C̃0. Computing d with respect to this K , we then have:

(5) For any A ⊆ K there is a minimal superset A ⊇ A (depending on K) such that
A ≤ K andA is acl0-closed. IfA is finite, A is the acl0-closure of a finite set (so in
particular is finite if T0 is ℵ0-categorical ). Moreover, one then has d(A) = ä(A).

(6) LetA ⊆ B ⊆ C be finite. Then we have d(C/A) = d(C/B)+d(B/A), d(B/A) ≤
d(C/A) and d(C/A) ≥ d(C/B).

(7) d(a/B) ∈ {0, 1} for any singleton a, and the geometric closure operator
clgeom(B) := {a ∈ K | d(a/B) = 0} defines a pregeometry, i.e., is monotone,
transitive and satisfies the Steinitz exchange property.
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Proof. (1) follows from the fact that T0 is modular and T1, T2 are submodular.
To show (2), by our definition of selfsufficiency we can clearly assume that A, B
and C are acl0-closed. Now, ä(c/A) = ä(c/acl0(Ac) ∩B) + ä(acl0(Ac) ∩B/A) for
any c ∈ C . The term to the left is at least ä(c/B) by (1), and so both terms are
nonnegative by hypothesis. (3) is easy.
In (4), by transitivity it is sufficient to prove that A1 ∩ A2 ≤ A1, which is true by
submodularity. To prove (5), we first reduce it to the case of a finite set A. Note
that by (4) the operatorA 7→ A is well-defined on finite sets and monotone where it
is defined. By (3) it is easy to see thatA =

⋃

A0⊆ùA
A0 has the desired property. IfA

is finite, there are (finite) supersets of A which are selfsufficient in K , since K ∈ C̃0.
Thus, (5) follows from (4).

Claim. If A and B are finite, then d(B/A) = d(AB) − d(A).

The claim gives (6) and the fact that the minimum occurring in the definition of
relative dimension is a limit. To prove the claim we take A′ ⊆ A and compute:

d(AB) ≤ ä(A′B ∪ A) ≤ ä(A′B) + ä(A)− ä(A′B ∩ A)

≤ ä(A′B) + ä(A)− d(A′) = d(A′B) + d(A)− d(A′).

The inequalities follow from (in this order): AB ⊆ A′B ∪ A, submodularity,
A′ ⊆ A′B ∩ A and (5).
We finally prove (7). It is immediate to reduce to finiteB, since clgeom is obviously
continuous. Monotonicity and transitivity of clgeom follow from (6). Since d(Ba) ≤
ä(Ba) ≤ ä(B) + ä(a/B) ≤ d(B) + 1, one has d(a/B) ∈ {0, 1}. By (6), d(a/B) +
d(c/Ba) = d(ac/B) = d(c/B) + d(a/Bc). Now, if d(a/B) = 1 and d(c/Ba) = 0,
necessarily d(a/Bc) = 0. This gives Steinitz exchange. ⊣

We now introduce yet another closure operator for which will be reserved the
term selfsufficient closure.

Definition 3.2. Let K be a fusion and A ⊆ K . Then we put clK(A) := 〈A〉
(for A as in (5) above), the selfsufficient closure of A (in K).

The selfsufficient closure of A equals the least subfusion of K which contains A
and which is strong in K . Most of the time we write cl instead of clK . Note that
acl0(A) ⊆ A ⊆ cl(A) ⊆ clgeom(A).
Observe that since clgeom gives rise to a pregeometry, there is a notion of dimension
attached to it. Clearly, this dimension equals the one we already defined (on finite
sets), and from now on, d(A/B) will denote this dimension for arbitrary A and B.

Remark 3.3. If K ≤ L are fusions and A ⊆ K then dK (A) = dL(A), clK(A) =
clL(A), and A calculated in K or in L amounts to the same.

Proof. By transitivity of ≤, A calculated in K and L amounts to the same.
Moreover, we already know by the preceding lemma that for any finite A, dM (A) =
ä(A), if A is calculated inM . Thus, using the proof of (5) of Lemma 3.1 dK(A) =
ä(A) = dL(A) and clK(A) = 〈A〉 = clL(A) follows too. ⊣

Convention 3.4. From now on it will be assumed throughout the rest of the
paper that T0 is ℵ0-categorical and that the expansions T0 ⊆ Ti are not geometry
preserving (assumption (Geom)).
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Definition 3.5. The triple (T0, T1, T2) is said to have good control if whenever
K ∈ C̃ is controlled by A, then (the L -isomorphism type of) K is determined by
qftpL (A).

Lemma 3.6. If one of the two expansions T0 ⊆ Ti preserves multiplicities, then
(T0, T1, T2) has good control. In particular, if dcl0 = acl0, any context (T0, T1, T2)
has good control.

Proof. W.l.o.g. we can assume that T0 ⊆ T1 preserves multiplicities. By abuse
of natural language, in the course of this proof maps which preserve the quantifier
freeL -type will be calledL -isomorphisms. Let é : A ∼= A′ be anL -isomorphism,
withA controllingK ∈ C̃ , A′ controllingK ′. By induction, it suffices to show that é
extends to anL -isomorphism é̃ : acli(A) ∼= acli(A′), for i = 1, 2.
First, we show that acl0(A) ∼=L acl0(A′). Just choose any L2-elementary map
é̃ : acl0(A) ∼= acl0(A′) extending é (T2 hasQE hence é extends to anL2-isomorphism
acl2(A) ∼= acl2(A′) and so inparticular to acl0(A)). Trivially, é̃ isL0-elementary, too.
As T0 ⊆ T1 preserves multiplicities, any ó ∈ AutL0(acl0(A)/A) is L1-elementary.
Thus, é̃ is anL1-elementary map, too and so anL -isomorphism, so wemay assume
that é̃ = é.
We now treat the case of acl1. Let é1 : acl1(A) ∼= acl1(A

′) be an auxiliary L1-
isomorphism extending é, and choose B, an L0-basis of acl1(A) over A, and put
B ′ := é(B) ⊆ acl1(A

′). Since A ≤ acl1(A), for any b ⊆ù B one has d2(b/A) =
d0(b/A), so B isL2-independent over A (similarly B ′ over A′). Thus, é↾AB : AB ∼=
A′B ′ is anL -isomorphism extending é.
The fact that é extends to an L -isomorphism acl2(A) ∼= acl2(A′) follows in a
similar way (although this case is easier since any L2-isomorphism extending é
would do), and we conclude by induction.
Finally, note that if dcl0 = acl0, then any s.m. expansion Ti of T0 preserves
multiplicities. ⊣

Corollary 3.7. Assuming good control, the class C0 is countable, as is (the number
of isomorphism classes in) {l ∈ C0 | k ≤ l}, for every k ∈ C0.

Proof. First, note that every k ∈ C0 is controlled by a finite tuple b. Just take a
finite tuple b0 generating k and choose b ⊇ b0 with minimal predimension. Such a
b controls k. In T1 and in T2 there exist only countably many types of finite tuples
over ∅, whence the countability of C0 follows from Lemma 3.6. Before proceeding
to prove the second part of the corollary we introduce a useful definition:

Definition 3.8. Let k, l ∈ C̃0 with k ≤ l . A pair of finite tuples (a/b) is called
a controlling pair for the extension k ≤ l if: b controls k and ab controls l (so
a controls l over k, too) and tp

Li
(a/k) is a non-forking extension of tp

Li
(a/b)

over k. A controlling pair (a/b) is strong, if tpLi (a/b) is stationary for i = 1, 2.

Now fix k ∈ C0. Note that, since k |= Ti for i ∈ {1, 2}, for any k ≤ l ∈ C̃0 strong
controlling pairs exist. If (a/b) is such a pair, qftp

L
(ab) completely determines

k ≤ l , in the sense that fixing a′b′ |= qftp
L
(ab), any isomorphism of k′ := 〈b

′
〉

with k extends to an isomorphism of l ′ := 〈a′b
′
〉 with l . Hence, {k ≤ l | l ∈ C0} is

countable. ⊣

The following example appears in [17] and shows that one cannot hope to find
strongly minimal expansions in an arbitrary context of a fusion over a sublanguage.
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It even provides an example where noM ∈ C̃ can be superstable with a unique type
of maximal rank.

Example 3.9. Let G1 := Z/4, G2 := Z/2 × Z/2 and consider Ti := theory of
the free action of Gi on an infinite set in the language Li with function symbols
for elements of Gi . T0 := theory of an equivalence relation E, all classes of
which contain 4 elements, where L0 = {E}. T0 is obtained as a reduct of Ti by
interpreting E as the orbits of Gi . Now supposeM |= T1 ∪ T2 is strongly minimal
(or more generally has a unique type of maximal rank < ∞). Let a ∈ G1 be an
element of order 4. For generic x we have a · x = c · x for some id 6= c ∈ G2
with c2 = id. Since a · x is generic, too, this leads to the following contradiction:
x 6= a2 · x = c · (a · x) = c2 · x = x.
What makes this example work is the lack of good control in the fusion context
(T0, T1, T2). Strictly speaking, (T0, T1, T2) does not fit in our framework (hypothesis
(Geom) is not satisfied, and acli(∅) is finite). This problem disappears once wework
with larger groups G ′

i ) Gi and name some constants.

Construction of the free amalgam in C̃ . Let K ⊆ L,M be three elements of C̃ .
To such a triple one wants to associate (canonically, if we have good control) a
free amalgam N := M ⊗K L. It turns out that the right candidate is an N ∈ C̃ ,
N ⊇M,L such that:

(α) M |⌣
i

K
L, for i = 1, 2 (where |⌣

i means independence in the sense of Ti) and

(â) ML controls N .

If we assume good control, (α) and (â) together determineN completely, asK |= Ti
and soLi -types are stationary overK . Recall that for i ∈ {0, 1, 2} the free amalgam

⊗i is defined (just defineM⊗iK L as theTi -prime model overMLwhereM |⌣
i

K
L).

To see that free amalgams always exist (in C̃ ) it will suffice to show the following
lemma (apply it for pi := tpLi (ML/K), whereM |⌣

i

K
L).

Lemma 3.10. Let K ∈ C̃ . Suppose that for i = 1, 2 complete (infinitary)Li -types
pi(xI ) over K are given, such that p0 := p1↾L0 = p2↾L0 . Then there is L ∈ C̃ and
A ⊆ L, A |= p1 ∪ p2 such that L is controlled by A over K .

Proof. In this proof, for convenience we suppose thatL is relational. By Robin-
son’s consistency lemma, there is A |= p1 ∪ p2. Clearly, KA |= T ∀

1 ∪ T ∀
2 . We now

show that for any B |= T ∀
1 ∪ T ∀

2 there is an L ∈ C̃ controlled by B.
By transitivity and continuity of selfsufficiency, using Zorn’s lemma, we can find
a set B̃ with B ≤ B̃, B̃ |= T ∀

1 ∪ T ∀
2 and B̃ ⊆ 〈B〉 such that B̃ is maximal with these

properties. It is easy to see that B̃ has to be acl0-closed. Now suppose B̃ were not
acl1-closed, say. Choose B ′ = acl0(B̃b′) ⊇ B̃, where B ′ |= T ∀

1 and b
′ ∈ acl1(B̃) \ B̃

is a singleton. We make B ′ into a T ∀
2 -model (over B̃) in such a way that b

′ is

L2-generic over B̃ . Since then b
′ isL0-generic (over B̃) in bothL1 andL2, the two

constructions coincide inL0. Over B̃, every tuple a fromB ′ which does not entirely
lie in B̃ is interalgebraic inL0 with b′, and thus ä(a/B̃) = ä(b′/B̃) = 0+1−1 = 0.
So B̃ ≤ B ′ follows. This contradicts the maximality of B̃ . ⊣

Notation. Let K∗ be some big fusion. For B ⊆ A,C ⊆ K∗ we put A |⌣
d

B
C if

d(A/B) = d(A/BC ), i.e., if A and C are d-independent over B.
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Lemma 3.11. Let K1, K2 be two fusions strongly embedded in K∗. Put K0 :=
K1 ∩K2 and L := 〈K1K2〉. The following are equivalent:

(1) K1 |⌣
d

K0
K2.

(2) L is isomorphic to a free amalgamK1 ⊗K0 K2 and L is strong in K
∗.

(3) K1 |⌣
i

K0
K2 (i = 1, 2) and K1K2 ≤ K

∗.

Proof. (2) ⇐⇒ (3) is easy. In order to show the remaining part, we first observe
that both (1) and (2) are finitary statements over K0 in the sense that their content
is true if and only if it is true for all strong subfusions of Ki finitely generated over
K0. Thus, we may assume that Ki/K0 is finitely generated for i = 1, 2. We now
show (3)⇒ (1). From the hypotheses in (3) we deduce

d(K1/K2) = ä(K1/K2) = ä(K1/K0) = d(K1/K0),

whence (1) follows (as K1K2 ≤ K∗ implying d (K1K2/K0) = ä(K1K2/K0)).

For the other direction, byK1 |⌣
d

K0
K2, in the followingwe have equality through-

out

d(K1/K2) ≤ ä(K1/K2) ≤ ä(K1/K0)d(K1/K0).

Here, the second inequality is just submodularity. Going from left to right, this

means that K1K2 ≤ K∗ and K1 |⌣
i

K0
K2 for i = 1, 2 (since K1 |⌣

0

K0
K2 by modu-

larity of T0). ⊣

Fact 3.12. Let T ′ be strongly minimal and modular. Then the lattice of acl-closed
sets is modular. This means the following: If C and A ⊆ B are acl-closed sets, then
acl(A(B ∩C )) = B ∩ acl(AC ).

Proof. Of course this fact is well-known since the 70’s and the source of the term
‘modular’. Nevertheless, we give a proof.
It is clear how to reduce to d′(BC ) <∞, so let us suppose this (here, d′ denotes
the dimension in the sense of T ′). Since acl(A(B ∩C )) ⊆ B ∩ acl(AC ) is obvious,
it suffices to show that d′(B ∩C/A) = d′(B ∩ acl(AC )/A) holds. By modularity of
T ′ we have C |⌣A∩C

A and C |⌣B∩C
B ∩ acl(AC ). Thus,

d′(B ∩ C/A) = d′(B ∩C/A ∩ C ) = d′(C/A ∩ C )− d′(C/B ∩ C )

= d′(C/A)− d′(C/B ∩ acl(AC )) = d′(B ∩ acl(AC )/A). ⊣

Lemma 3.13 (asymmetric amalgamation). Let K,L,M ∈ C̃0, K ≤ L, K ⊆ M .
ThenM is selfsufficient in any free amalgam N := L⊗K M , andN is in C̃0.

Proof. The construction of a (or the) free amalgam gives LM ≤ N . Thus, in
order to proveM ≤ N it suffices to showM ≤ LM . We recall that this requires
ä(A/M ) ≥ 0 for every A ⊆ù acl0(LM ). So suppose we are given such a set A. Put
B := acl0(AM ). By Fact 3.12, B = acl0((B ∩L)M ). Thus, A is inter-L0-algebraic
over M with some A′ ⊆ù L. So ä(A/M ) = ä(A′/M ) which is equal to ä(A′/K),

sinceM |⌣
i

K
L for i ∈ {0, 1, 2} (by construction). But ä(A′/K) is nonnegative by

K ≤ L. Finally, N ∈ C̃0, since ∅ ≤M andM ≤ N . ⊣

Definition 3.14. M ∈ C̃0 is rich if for every k ≤ l in C0, k ≤ M there exists a
selfsufficient k-embedding of l inM .
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Proposition 3.15. Assuming good control, there is a rich countableM ∈ C̃0, and
it is unique up to isomorphism (we call it the genericmodel ). Moreover, every two rich
structures in C̃0 areL∞,ù-equivalent.

Proof. The class (C0,≤) has the amalgamation property by Lemma 3.13. As
〈∅〉 ∈ C0 embeds strongly in every member of this class, joint embedding is guar-
anteed, too. The necessary countability results are shown in Corollary 3.7, so that,
by the usual Fraı̈ssé method, a countable rich structure in C̃0 can be constructed.
Finally, the L∞,ù-equivalence of two rich structures is true almost by definition,
and so uniqueness of the generic model follows, since it is rich and countable. ⊣

§4. Decomposition of finitely generated extensions.

Definition 4.1. Let K ≤ L be an extension in C̃0 (we suppose that L ≤ K∗ for
some ambient K∗). The extension is called

• finitely generated if L = cl(Ka) for some finite a ∈ L,
• generic if L = 〈Ka〉 for a singleton a with d(a/K) = 1,
• parasitic if it is finitely generated and ä(L/K) = 0,
• primitive if it is parasitic, proper and there is noK ′ ∈ C̃0 such thatK $ K ′ $ L
and K ′ ≤ L.

Lemma 4.2. Let K ≤ K ′ ≤ K∗, and K ≤ L ≤ K∗ with L primitive over K . Then
either L ⊆ K ′ or L′ := 〈LK ′〉 equals a free amalgam K ′ ⊗K L (and L

′ ≤ K∗).

Proof. Clearly, L |⌣
d

L∩K ′
K ′, Now, if L ∩ K ′ ) K , then L ⊆ K ′, since L/K is

primitive. Else, we conclude by Lemma 3.11. ⊣

Technically it is convenient to consider a concept of primitiveness for extensions
of acl0-closed subsets of some fusion. In order to avoid confusions the term primitive
will only be used for extensions of fusions.

Definition 4.3. LetB ⊆ A ⊆ K ∈ C̃0. The extensionA/B is called prime, if both
A and B are acl0-closed, d0(A/B) is finite and ≥ 2, ä(A/B) = 0 and ä(A′/B) > 0
for every acl0-closed A′ with B ( A′ ( A. d0(A/B) is called the length of the
extension.

Remark. By our definition we exclude the “prime extensions of length 1”, corre-
sponding to A := acl0(Bα), where α is in exactly one of acli(B), i = 1, 2.

We recall that for A ⊆ K ∈ C̃0 we defined A as well as cl(A), the selfsufficient
closure of A (see 3.1(5) and 3.2, respectively).

Lemma 4.4. Let A/B be a prime extension of length n (inside K ∈ C̃0) and let
B ⊆ B ′ ⊆ K with B ′ acl0-closed. Put A′ := acl0(AB ′). One then has:

(1) If B ′ |⌣
i

B
A for i = 1, 2, thenA′/B ′ is prime of length n. In particularB ′ |⌣

0

B
A.

(2) ä(A/B ′) = ä(A′/B ′) ≤ 0, where equality holds if and only if either A ⊆ B ′ or
A′/B ′ is prime (of length n).

(3) If B ′ = B ′, then either A ⊆ B ′ or A′/B ′ is prime of length n.

Proof. For any singleton a ∈ A \ B one has d1(a/B) = d2(a/B) = 1 by the
fact that A/B is prime and n ≥ 2 (by the definition of a prime extension). So, if

B ′ |⌣
1

B
A, one has 1 = d1(a/B ′) ≤ d0(a/B ′), thus A ∩ B ′ = B. From modularity

of T0 one deduces B ′ |⌣
0

B
A. We can now prove (1) using Fact 3.12.
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In (2), submodularity gives ä(A′/B ′) = ä(A/B ′) ≤ ä(A/A∩B ′). By definition of
a prime extension, ä(A/A∩B ′) is negative unlessA∩B ′ is equal toA orB, in which

case it is 0. Thus, if equality holds, either A ⊆ B ′ or A |⌣
0

B
B ′ (by modularity

of T0), so d0(A/B ′) = d0(A/B) = n. In this latter case, one deduces that for

i = 1, 2 di(A/B ′) = di(A/B), too, whence B ′ |⌣
i

B
A. The rest of (2) follows by

(1). Note that the hypothesis of (3) forces ä(A/B ′) ≥ 0, and so (2) applies. ⊣

For convenience we introduce some notation which will be used in several proofs
proceeding by induction. The operators 〈·〉n1 , 〈·〉

n
2 and 〈·〉n (n ∈ N) give rise to

different filtrations of 〈·〉.

Definition 4.5. For X ⊆ K and n ∈ N we now define 〈X 〉n1 , 〈X 〉n2 and 〈X 〉n.

First, put 〈X 〉01 := 〈X 〉02 := 〈X 〉0 := acl0(X ). Inductively set 〈X 〉m+1i := acli(〈X 〉m),
and 〈X 〉m+1 := acl0(〈X 〉m+11 ∪ 〈X 〉m+12 ).

Lemma 4.6. Let B ⊆ A ⊆ K ∈ C̃0 with A/B prime. If A ⊆ cl(D) for some
D ⊇ B, then A ⊆ D.

Proof. Using Lemma 4.4(3)we easily reduce to the case whereB = B ⊆ D = D.
Now, let m be minimal with A ⊆ 〈D〉mi for some i . We may assume that this
is the case for i = 1. If m ≥ 1, Lemma 4.4 forces A′/B ′ to be prime, where
B ′ := 〈D〉m−12 and A′ := acl0(AB

′), as B ′ = B ′. By primality, no a ∈ A′ \ B ′ is
Li -algebraic over B ′, for i = 1 or 2. This contradicts the fact that (by definition)
〈D〉m1 = acl1(B

′). Thus, m = 0 and the lemma is proved. ⊣

Proposition 4.7. For any parasitic extension K ≤ L the following holds:

(1) There is a finite decomposition K = K0 ≤ K1 ≤ · · · ≤ Kn = L such that
Ki ≤ Ki+1 is primitive.

(2) The decomposition is essentially unique, i.e., for any other decomposition K =
K ′
0 ≤ K

′
1 ≤ · · · ≤ K ′

n′ = L into primitive extensions we have n = n
′. Moreover,

assuming good control and setting Li := L ⊗Ki−1 Ki as well as L
′
i := L ⊗K ′

i−1

K ′
i ( for 1 ≤ i ≤ n), then, up to permutation, (L1, . . . , Ln) is isomorphic to
(L′
1, . . . , L

′
n).

Proof. In order to prove the existence part (1), we choose first a finite tuple a
controlling L overK . Now, choose A1 withK ( A1 ⊆ acl0(Ka) andA1 = A1 such
thatA1 is minimal with these properties. Since d0(a/K) is finite, such anA1 always
exists. By minimality it is easy to see that A1/K is prime. Put K1 := 〈A1〉.
It is easy to check that L is controlled by a overK1. Since d0(a/K) > d0(a/K1),
part (1) of the proposition follows by induction on d0(a/K) once we prove:

Lemma 4.8. Let K ≤ A1 ≤ K∗ with K ∈ C̃0 and A1/K prime. Then, K1 := 〈A1〉
is a primitive extension of K .

Proof of the lemma. We have to show that cl(Kα) = K1 for every α ∈ K1 \K .
For α ∈ A1 this is the case by primality of A1/K , since then Kα = A1. If
α ∈ acl1(A1) \ A1 we haveKα ⊆ acl0(A1α) = A1α. Now, by modularity of T0,

d0(A1/K) + 1 = d0(A1α/K) = d0(A1/K) + d0(Kα/K)− d0(Kα ∩ A1/K).(∗)

Since 0 = d(α/K) < ä(α/K) = 1, the dimension d0(Kα/K) is at least 2, from
which we deduce by (∗) that there is α′ ∈ Kα ∩ (A1 \ K). So, by the first case
cl(Kα) = K1.



372 ASSAF HASSON AND MARTIN HILS

A similar argument works for α ∈ acl2(A1) \ A1. Now, every element α of K1
can be attained by adding a finite number of elements α1, . . . , αm = α with αj+1 ∈
acli(A1α1 . . . αj). So, working with A′

1 := acl0(A1α1 . . . αm−1) instead of A1, the

same argument shows that Kα ∩ (A′
1 \ K) is nonempty, and thus we are done by

induction over d0(A′
1/A1). ⊣

For themomentwe are not yet able to prove (2). This will be done in Section 6. ⊣

Corollary 4.9. Let K ≤ L be finitely generated (with L selfsufficient in K∗),
d(L/K) = d . Then there is a decomposition K = K0 ≤ K1 ≤ · · · ≤ Kd+n = L,
where Ki over Ki−1 is generic for i ≤ d and primitive for i > d .

Proof. First pick a d-basis a1, . . . , ad of L over K and then put Ki := 〈Ki−1ai〉.
Now Kd ≤ L is parasitic, so one concludes by Proposition 4.7. ⊣

We end the section with two lemmas.

Lemma 4.10. Let k ⊆ A, B ⊆ K , where we assume that A = A, B = B ,
ä(B/A) = 0 and [acl1(B) ∪ acl2(B)] ∩ A = k. Then 〈B〉 ∩A = k.

Proof. Set B ′ := acl1(B). We have B ′ |⌣
0

k
A by assumption, so B ′ |⌣

0

B
A.

Because ä(B/A) = 0 this implies ä(B ′/AB) ≤ 0. Hence, B ′ |⌣
2

B
A (as A = A) and

thus acl2(B ′) ∩ A ⊆ acl2(B) ∩ A = k follows. Since B = B we know that B ≤ B ′

so that ä(B ′/B) = 0 hence also ä(B ′/A) = 0 and B ′ = B ′. By symmetry the same
is true for B ′′ := acl2(B), and the claim follows by induction. ⊣

Lemma 4.11. Let K ≤ L be primitive. Then there is a unique minimal A = A ⊃ K
controlling L/K . A/K is prime, and we put the length of L/K equal to the length
of A/K .

Proof. Note that ifK ⊆ A′, then L is controlled by A′ if and only ifA′ ) K and
ä(A′/K) = 0. Consider A = A and B = B , where K ⊆ A,B and both A and B
control L. Suppose that A is minimal such. By Lemma 4.10 there is an element
b ∈ acl1(B) ∩ A, b /∈ K . Since A = Kb we deduce that A ⊆ acl0(Bb) = Bb. By
modularity of T0 and the fact that d0(A/K) and d0(B/K) both equal at least 2,
we have A ∩ B ) K , whence A ⊆ B by minimality of A. Finiteness of d0(A/K)
is clear. ⊣

§5. Axiomatisation. From now on we assume good control throughout the paper.
In this section we axiomatise the theory of the generic model which we denote by
Tù . It turns out that being rich is model-theoretically significant, since the rich
models are exactly the ù-saturatedmodels of Tù . This is shown in Proposition 5.3.
Before we start, we would like to stress that at this stage (the free fusion) no DMP
assumption about the theories Ti is required.

Definition 5.1. Let k, l ∈ C0 with k ≤ l primitive. A controlling pair (A,B) for
l/k is called prime, if A/B is a prime extension.

We recall that by definition of a controlling pair (see 3.8)B andA are finite,B con-
trols k,A controls l and k |⌣

i

B
A for i = 1, 2. Thus, by Lemma 4.4,Ak := acl0(Ak)

is a prime extension of k. Therefore, it coincides with the minimal controlling set
found in Lemma 4.11.

Lemma 5.2. Let k, l ∈ C0 with k ≤ l primitive, and B0 ⊆ù k. Then there exists
B ⊇ B0 and A ⊇ B such that (A,B) is a prime controlling pair for l/k.
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Proof. Take Ã ⊇ k as given by Lemma 4.11 and choose anL0-basis a of Ã/k.

Choose B ⊆ù k controlling k such that B0 ⊆ B = B and a |⌣
i

B
k, for i = 1, 2.

Now, put A := acl0(Ba). It is routine to check that A/B works. ⊣

We now consider A/B, a prime controlling pair of length n controlling some
k ≤ l , where we assume that a enumerates A and b enumerates B. For all finite
c ⊆ k such that tp

Li
(a/bc) is stationary for i ∈ {0, 1, 2} consider Li -formulas

(i = 1, 2)ϕil/k(x, u) (depending only onA/B) and ϕ̃
i
l/k(x, u, z) (depending onA/B

and c) with the following properties (choose ϕ̃0l/k(x, u, z) isolating tpL0(abc)):

(0) ϕ̃il/k(x, u, z) ⊢ ϕ
i
l/k(x, u) ∧ ϕ̃

0
l/k(x, u, z).

(1) For i ∈ {1, 2}, ϕ̃il/k(x, b, c) isLi -stationary, |= ϕ̃
i
l/k(a, b, c), and a isLi -generic

in ϕil/k(x, b) over k.

(2) If b
′
, c′ are such that ϕ̃il/k(x, b

′
, c′) is not empty, then MRi(ϕ̃il/k(x, b

′
, c′)) =

MRi(ϕil/k(x, b
′
)) = MRi(ϕil/k(x, b)).

(3) For all partitions x = x1x2 with 0 < m := d0(a1/a2b) < n there are k1, k2 ∈ N
such that k1 + k2 < m and MRi(ϕil/k(x1, a

′
2, b

′
)) ≤ ki for all a

′
2, b

′
.

Finding ϕ̃0l/k is easy because T0 is ℵ0-categorical, so (0) is a triviality. For (1)

we use the fact that A/B is a prime controlling pair, (2) and (3) are possible by
definability of MR inLi (for (3) we use the total categoricity of T0 again). Hence,
one can always findϕ1l/k , ϕ̃

1
l/k , ϕ

2
l/k , ϕ̃

2
l/k such that (0)–(3) hold. Note that the choice

of the above formulas depends not only on l/k but also on c, a fact that is not
reflected by the notation in the hope of keeping it readable.
For every primitive l/k we now choose a prime controlling pair A/B. Moreover,
for c1 ⊇ c as above we choose the formulas in a coherent way, i.e., so that ϕ̃il/k,c1
implies ϕ̃il/k , where ϕ̃

i
l/k,c1

are the formulas we choose for A/B and c1. Putting

èl/k,c(u, z) := {(u, z) ||= ∃xϕ̃1l/k(x, u, z) ∧ ∃xϕ̃2l/k(x, u, z)}, the axiom correspond-

ing toA/B and c is as follows (note that for every primitive extension we chose one
prime controlling pair A/B, but due to the varying c ∈ k there are infinitely many
axioms concerning A/B):

øk/l,c := ∀u ∀z{èl/k,c(u, z)→ ∃x[ϕ̃1l/k(x, u, z) ∧ ϕ̃
2
l/k(x, u, z)]}.

The above axioms should be seen as a first order approximation of the statement
“for every k ≤ M (whereM is some rich model) and every extension k ≤ l where
k and l are finitely generated, there exists an embedding f : l → M such that
f↾k = id and f(l) ≤M”.
Decomposing parasitic into primitive extensions and using the fact (which we
prove in Lemma 5.4) that the generic type can be approximated by parasitic types it
follows that if one can approximate the existence of such embeddings in the case of
primitive extensions l ≥ k, one can approximate this for arbitrary l ≥ k as well. By
Lemma 5.2 and the definition of controlling, it is enough to ensure that the types of
controlling pairs are realised as strong subsets. The formulas ϕ̃il/k are introduced in

order to ensure that for any finite set of parameters c ⊆ k there exists an approximate
solution to qftp(A/k) which isL0-independent from c over B. As we will see, this
guarantees that in a saturated modelM , l can be strongly k-embedded intoM .
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Let T ′
ù be the theory axiomatised by Th(C̃0) ∪ {øl/k,c : l/k primitive, c ⊆ù k ≤

l ≤M ∈ C̃0 generic}.

Proposition 5.3. The theoriesT ′
ù andTù coincide, and the rich structures in C̃0 are

precisely the ù-saturated models of T ′
ù . In particular, the generic model is saturated.

Proof. Let K ∈ C̃0 be rich. We first show that K |= T ′
ù . Let b

′
c′ ∈ K , with

K |= èl/k,c(b
′
, c ′) for some primitive l/k and c ⊆ k. We have to find a solution of

ϕ̃1l/k(x, b
′
, c′) ∧ ϕ̃2l/k(x, b

′
, c′) in K . Set k′ := cl(b

′
c′) ≤ K , so k′ is in C0. We now

construct a certain primitive extension l ′ of k′ such that l ′ contains a solution of

ϕ̃1l/k(x, b
′
, c′) ∧ ϕ̃2l/k(x, b

′
, c′). Once such an extension l ′ is found we are done by

the fact that K is rich. Just take the image of the solution under the k′-embedding
of l ′ in K .
We build l ′ as follows. For i = 1, 2, let p′i be some genericLi -type in ϕ̃i(x, b

′
, c′)

over k′, and choose a′i |= p
′
i (in some k

′
i <Li k

′). So by (2) wemust have a′i |⌣
i

b
′ k′.

As in the proof of Lemma 4.4 we know that a′i |⌣
0

b
′ k′. On the other hand, by the

definition of the ϕ̃il/k , we have tpL0(a
′
1/b

′
c′) = tpL0(a

′
2/b

′
c′), and thus by station-

arity of thisL0-type, p′1↾L0 = p
′
2↾L0. By Lemma 3.10 there is an extension l

′ ≥ k′

which is controlled by some a ′ |= p′1 ∪ p
′
2 over k

′. From Lemma 4.4(1) we deduce
that k′ ≤ A1 := acl0(k′a

′) is prime, whence l ′ is a primitive extension by Lemma
4.8. This shows in particular that T ′

ù is consistent, since rich models exist.
We prove next thatù-saturatedmodels ofT ′

ù are rich. Once this is established the
whole proposition is proved, i.e., it follows that T ′

ù = Tù and that any rich model
is ù-saturated, since any two rich structures are L∞,ù-equivalent, ù-saturation is
invariant underL∞,ù-equivalences and every structure hasù-saturated elementary
extensions.
SupposeK |= T ′

ù isù-saturated and k ≤ K is finitely generated. For any k ≤ l ∈
C0 we have to find a strong k-embedding intoK . We first treat the case of a primitive
extension k ≤ l . Take the prime controlling pair A/B we chose for (the isomor-
phism type of) this extension in the axiomatisation, and choose some c over which
theLi -types of a/b are stationary for i ∈ {0, 1, 2}. Now look at the Li -formulas
ϕil/k(x, u), ϕ̃

i
l/k(x, u, z) which we chose satisfying (0)–(3). Let pi be the (by (1))

uniqueLi -generic type in ϕ̃
i
l/k(x, b, c). Note that any a0 |= p1 ∪ p2 would give rise

to a k-embedding of l into K . As a consequence of the fact that k ≤ K we get that

ϕ̃1l/k(x, b, c) ∧ ϕ̃
2
l/k(x, b, c) ∧ x

0

|⌣
bc

k ⊢ p1 ∪ p2

but our axioms explicitly state that any finite approximation of this type is realised
in any model, and by saturation the type itself is realised in K .
Finally, we treat the case of a generic extension k ≤ l = 〈ka〉, with d(a/k) = 1,
a being a singleton. We need a lemma:

Lemma 5.4. The generic type can be approximated by parasitic types, i.e., if a is
generic over k, then for every formula ϕ(x) with parameters in k satisfied by a there
is an a′ ∈ K such that ä(a′/k) = 0 and K |= ϕ(a′).

Proof of the lemma. Assume that k is controlled by b. Let us first observe that
a is generic over k if and only if, for every n ∈ N, a satisfies qn(x). Here qn(x)
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denotes the following partial type over b:

∀y1 . . . ynä(xy/b) ≥ 1.

To prove the lemma it is thus sufficient to find singletons an ∈ K such that
d0(An/b) ≥ n, where An denotes the finite set ban. We will construct a parasitic
extension k ≤ ln = cl(kan) with an as required.
Recall the definition of 〈·〉n in 4.5. The construction of ln goes as follows. First,
consider A := 〈ka〉n , where a is generic over k. By assumption (Geom) clearly A
is neither acl1-closed nor acl2-closed, so we can choose ci ∈ acli(A) \ A. We now
apply Lemma 3.10 to pi := tpi(acl0(Aci)/k) over k, which provides an extension
ln/k which is easily seen to be parasitic. If an ∈ Bn |= p1 ∪ p2 is the element cor-
responding to a ∈ A, then cl(kan) = ln and we see that Ãn := kan ⊆ 〈kan〉n+1 and
Ãn * 〈kan〉n (by construction). Therefore, d0(An/b) ≥ d0(Ãn/k) ≥ n + 1. Note

that the last inequality follows from the fact that if Ãn ∩ 〈kan〉m = Ãn ∩ 〈kan〉m+1

for some m, then Ãn ⊆ 〈kan〉m. ⊣

Combining the preceding lemma with the first part of the proof and the exis-
tence of a finite decomposition of ln/k into primitive extensions, we conclude, by
ù-saturation ofK , that if l/k is generic, then l can be strongly k-embedded intoK .
This concludes the proof of the Proposition. ⊣

Corollary 5.5 (Quantifier elimination for strong subsets). Let A and A′ be (not
necessarily finite) tuples in K |= Tù . Then tp(A) = tp(A′) if and only if A ∼=L A′.
Thus, Tù is near model complete (i.e., has QE to the level of boolean combinations of
existential formulas). ⊣

Proof. Once the corollary is shown for finite tuples, it follows for infinite tuples.
We may thus work with finite A and A′. Suppose that A ∼=L A′. Due to good
control, this extends to an isomorphism of cl(A) and cl(A′). By Proposition 5.3,
saturated models of Tù are rich. Thus, by a back-and-forth argument, we deduce
that tp(A) = tp(A′). The other implication is clear.
As usual, near model completeness follows. ⊣

Lemma 5.6. Selfsufficient closure equals algebraic closure in the sense of Tù , i.e.,
for all A one has cl(A) = aclTù (A).

Proof. The inclusion cl(A) ⊆ aclTù (A) being obvious, it suffices to show that
K := cl(A) is algebraically closed. Let K ≤ K∗ |= Tù and α ∈ K∗ \ K , so we
get K ≤ cl(Kα) =: L ≤ K∗. For n ∈ N let L1, . . . , Ln be isomorphic copies of L
over K . Provided K∗ is sufficiently saturated, the free amalgam L1 ⊗K · · · ⊗K Ln
can be strongly embedded into K∗. Thus, α /∈ aclTù (K). ⊣

Lemma 5.7. (1) Let a, b ∈ K |= Tù , with b ≤ K and ä(a/b) = 0. Then tp(a/b)
is isolated.

(2) Let k ∈ C0 be a finitely generated fusion, embedded strongly into the ambient
model. If l/k is a primitive extension andA/B is a prime controlling pair for l/k,
then tp(A/k) is isolated.

Proof. Choose Li -formulas ϕi(x, b) such that tpLi (a/b) is the only generic

type in ϕi(x, b) over b and let ϕ0(x, b) isolate tpL0(a/b). The fact that∧
2
i=0ϕi(x, b)

isolates tp(a/b) follows from Corollary 5.5, as b ≤ K .
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To show (2), we choose Li -formulas ϕi (x, c i) such that tpLi (A/k) is the only
generic type in ϕi(x, c i) over k. W.l.o.g. we can suppose that the c i contain B
and ø(x, c) := ϕ1(x, c1) ∧ ϕ2(x, c2) implies tp(x/B) = tp(A/B). We conclude,
combining Lemma 4.4 with Lemma 4.6, that tp(A/k) is isolated by ø(x, c). ⊣

§6. ù-stability and ranks. From now on we will be working in a monster model
K∗ |= Tù .

Lemma 6.1. Tù is stable.

Proof. Let K ≤ K∗ and α ∈ K∗. To determine tp(α/K) we have to look at
L := cl(Kα), which is equal to 〈Ka〉 for some finite a ∈ K∗ controlling L over
K . Now choose k finitely generated and selfsufficient in K such that d(a/K) =
ä(a/K) = ä(a/k) = d(a/k), and let l := 〈ka〉 (which is strong in K∗). By
Lemma 3.11 we know that l and K are in free position over their intersection k′,
with L ∼= l ⊗k′ K . Now tp(a/k

′) together with the choice of k′ ⊆ K determine
completely tp(α/K), whence |S(K)| ≤ 2ℵ0 · |K |ℵ0 . ⊣

Lemma 6.2. LetK ≤ L ≤ K∗ andK ′ ≤ K∗ withK ′ ⊇ K . If we putL′ := 〈K ′L〉,
the following are equivalent:

(1) L |⌣K
K ′,

(2) L′ ∼= L⊗K K ′ and L′ is strong in K∗.

Proof. Note that p := tp(L/K) can always be extended to a type over K ′ as
described in (2). We can clearly suppose that K ′ |= Tù . Then, since this extension
is invariant under all automorphisms (of K ′ over K) by the uniqueness of the free
amalgam, it must coincide with the unique non-forking extension of p to K ′. ⊣

Remark 6.3. (1) Alternatively, one can prove stability in showing that (2) in
Lemma 6.2 gives rise to a notion of independence (including ‘boundedness of free
extensions’). This gives stability of the theory, and the notion of independence
has to coincide with the non-forking relation, see e.g., [1, VII.1].

(2) From Lemma 6.2 together with Lemma 5.6 one deduces that in Tù types over
(real ) algebraically closed sets are stationary. ⊣

Observe that in view of this characterisation of non-forking in Tù , the content
of Lemma 4.2 is exactly that U(L/K) = 1 if K ≤ L is primitive. By the Lascar
inequalities this determines the U-rank of every parasitic extension, too. There are
enough isolating formulas, in the sense that ifK ≤ L is parasitic (L being controlled
by a over K) then we find ϕ(x, b) ∈ p := tp(a/K) isolating p from all other types
q with U(q) ≥ U(p). Thus, Morley rank exists and equals U-rank on parasitic
types . The only 1-type we missed so far is the generic type. But any of its forking
extensions is necessarily parasitic which means that we may conclude:

Proposition 6.4. Tù is ù-stable. The Lascar rank of a parasitic extension equals
its Morley rank and is given by the length of a decomposition into primitive extensions
(so in particular is finite). Lascar rank and Morley rank of the generic are ≤ ù. ⊣

Note that this partially settles the second part of Proposition 4.7. We now show
the “uniqueness” result. Combining Lemma 3.11 with Lemma 6.2 one gets

Lemma 6.5. Let L be a parasitic extension of K = cl(K) and M = cl(M ) an

arbitrary extension of K . Then L |⌣K
M iff L ∩M = K iff L |⌣

0

K
M . ⊣
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In the context of Proposition 4.7 (and with notation there) we know that since
K1 6 |⌣K

L, there is some minimal i0 such thatK1 6 |⌣K ′

i0−1

K ′
i0
. Thus, K1⊗K K ′

i0−1
≃

K ′
i0
, whence L1 ≃ L

′
i0
, too. Since the length of the decomposition for L/K1 is n− 1,

we can inductively assume that the uniqueness result holds for K1 ≤ · · · ≤ Kn = L
and K1 ≤ K ′′

2 ≤ · · · ≤ K ′′
n = L, where K

′′
i equals K1 ⊗K K

′
i−1 for i < i0 and K

′
i for

i ≥ i0. This finishes the proof of 4.7.

Corollary 6.6. Parasitic types (andmore generally types orthogonal to the generic
type) are 1-based. In particular, the pregeometry of a primitive type is locally modular.
If T0 has a trivial pregeometry, then the pregeometry of every primitive type is trivial.

Proof. The characterisation of non-forking for parasitic extensions inLemma6.5
proves 1-basedness for parasitic types. Now consider a type p which is orthogonal
to the generic type. Then, p is analysable in parasitic types (even in primitive types).
It is known that types which are analysable in 1-based types are 1-based. Thus, p is
1-based, too.
Local modularity of primitive types is a consequence. The last statement of the
corollary (about trivial pregeometries) will follow from Remark 6.9. ⊣

Example 6.7. Let T1 = T2 = ACFp, T0 being the theory of Fp-vector spaces.
Over some fusionK we take a, a′ Fp-independent overK . We further demand that,
for some b ∈ K , we have a = b ∗1 a′ as well as a = b ∗2 a′, where ∗i denotes
multiplication in the sense of Ti . By Lemma 3.10, this defines a primitive extension
L of K which is controlled by aa′ over K . Since tp(aa′/K) is a group generic, its
pregeometry cannot be trivial.

The following proposition, important in itself, provides an alternative proof (via
Zil’ber’s characterisation of the geometry of ℵ0-categorical strongly minimal sets)
for the fact that every primitive type is locally modular.

Proposition 6.8. Let A/B be a prime controlling pair for the primitive extension
l/k, where k is strong. Then tp(A/k) contains a totally categorical strongly minimal
formula. There is even such a formula which isolates tp(A/k).

Proof. By Lemma 5.7 we can choose B ⊆ C = C ⊆ù k, c an enumeration ofC ,
and an L (C )-formula ø(x, c) isolating tp(A/k). We show that ø(x, c) defines a
locally finite strongly minimal set, which will settle everything. Strong minimality
is clear by the choice of the formula, and local finiteness is a consequence of the
following claim:

Claim. Let M |= Tù and D := ø(M, c). For E ⊆ D we then have aclS(E) =
acl0(EC ) ∩ D, where S := Th(D), in the language consisting of the traces for all
C -definable sets.

To prove this claim, we can clearly assume thatE is finite. Note that ä(E/C ) = 0
(≥ 0 is obvious, and≤ 0 follows from Lemma 4.4 and induction on the cardinality
of E). One has aclS(E) = aclTù(EC ) ∩D. As aclTù = cl, for any e ∈ aclS(E), the
fact that e ∈ acl0(EC ) follows from Lemma 4.6. ⊣

In fact, the proof of the preceding claim gives a bit more:

Remark 6.9. Let A1, . . . , An, A′ be prime over C = C . Then A′ ⊆ cl(∪ni=1Ai) iff
A′ ⊆ acl0(∪ni=1Ai). ⊣
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Definition 6.10. An expansionT0 ⊆ T1 of stronglyminimal (complete) theories
is called relatively trivial if for all a ∈ M |= T1 we have acl1(a) = acl

u
1(acl0(a)),

where aclu(A) :=
⋃

x∈A acl(x) denotes the unitary algebraic closure.

Following [19], a pregeometry is called (locally) projective if it is (locally) modular
non-trivial.

Remark 6.11. (1) A relatively trivial expansion remains so if a set of parameters
is added.

(2) If T0 is a trivial strongly minimal theory, then the expansionT1 is relatively trivial
if and only if it has a trivial pregeometry.

(3) A relatively trivial expansion of a (locally) projective theory is geometry preserv-
ing.

Proof. Only the last point deserves an argument. By (1), we can assume T0
to be projective. Clearly, a relatively trivial expansion of a modular pregeometry
is modular, so T1 is projective, too. There is a strongly minimal abelian group A
interpretable inM |= T0, A not almost orthogonal toM (over ∅). W.l.o.g. we can
suppose that M = A. Recall that the geometry of a modular strongly minimal
group is determined by its field of definable quasi-endomorphisms. Thus, if the
expansion is not geometry preserving, necessarily the inclusion K0 ⊆ K1 must be
strict, where Ki denotes the field of quasi-endomorphisms of A definable in Ti .
Now choose α ∈ K1 \K0. For b1, b2 independent generics we claim that b1+αb2 ∈
acl1(b1b2) \ acl

u
1(acl0(b1b2)) (attention: this is an abuse of notation, since this

computation takes place in A/H for a certain finite group H ⊆ acl1(∅)). Suppose,
maybe factoring out some larger finite group,we had b1+αb2 = α

′(â1b1+â2b2)with
α′ ∈ K1, âi ∈ K0. Then, α′â2 = α and α′â1 = id (since this is true generically).
Thus, â−11 = α

′ and finally α = â−11 â2, contradicting the choice of α. ⊣

We now supply a partial converse to the first part of the preceding remark.

Lemma 6.12. Assume T0 modular, and let A ⊆M∗ |= T1 be a set of parameters.

(1) If T0(A) ⊆ T1(A) is relatively trivial, so is T0 ⊆ T1.
(2) If T0 ⊆ T1 is not relatively trivial, there exists a natural number n such that,
whenever d1(A/∅) ≥ n, we have aclu1(acl0(Aa1a2)) ( acl1(Aa1a2) for every
L1-generic (over A) pair a1, a2.

Proof. To prove (1), suppose that T0 ⊆ T1 is not relatively trivial, and choose
an L1-independent generic tuple b and an element a such that a ∈ acl1(b) \

aclu1(acl0(b)). In addition, suppose that ab |⌣
1
A, so in particular a /∈ acl1(A).

Since the expansion T0(A) ⊆ T1(A) is relatively trivial, there is b′ ∈ acl0(Ab)
such that a ∈ acl1(Ab′). Now, since T0 is modular (and b′ is not in acl1(A))
there is some b′′ ∈ acl0(b) which is L0-interalgebraic with b′ over acl1(A). Thus,

a ∈ acl1(Ab′′). But we have abb′′ |⌣
1A and therefore a |⌣

1

b′′
A, from which we

deduce that a ∈ acl1(b′′). This is a contradiction, so (1) is proved.
The proof of (2) is just a variation of this. If the length of the tuple b used in
the proof is m, then n := m − 2 will do. We only have to be careful in choosing
tp1(a/b). In fact we should minimise the length of b (inside acl0(b)) first, and then

work with a generic (over ∅) tuple c1, . . . , cm−2 ∈ A, thus replacing b by ca1a2. ⊣
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The following proposition shows that the free fusion is not necessarily of ‘infinite
rank’, so one should maybe stick to the distinction non-collapsed vs. collapsed
instead of infinite rank vs. finite rank. Moreover—as the referee pointed out to us—
it clarifies the last section of [4], where conditions are studied which make possible
exact rank computations.

Proposition 6.13 (Rank Dichotomy). Let g denote the generic type.

(1) If T1 and T2 are trivial thenU(g) = 1 andMR(g) = 2.
(2) If one of the Ti is not trivial, thenU(g) = MR(g) = ù.

Proof. The proof of part (1) is rather easy, and we do not give all the details. In
fact, the triviality assumptions have 〈·〉 = cl as a consequence. In addition, in this
context the operator 〈·〉 satisfies the Steinitz exchange property and is trivial (in the
sense that 〈A〉 = ∪a∈A〈a〉 for allA). From this one establishes U(p) = 1 for all non-
algebraic 1-types, especially for the generic type g. The general context guarantees
that the number of different non-algebraic 1-types is infinite (this is shown in the
proof of Lemma 5.4, where g is approximated by parasitic types). Hence we may
conclude that MR(g) = 2.
In order to show (2), w.l.o.g. wemay assume thatT1 is not trivial, so the expansion
T0 ⊆ T1 is not relatively trivial by Remark 6.11. We first prove the following

Claim. If k ≤ l = 〈ka〉 is generic, there exists a′ ∈ acl1(acl2(A)) such that
acl1(ka′) ∩ acl2(ka) = k.

Since we always assume that acl2(∅) is infinite, in particular d1(k) is infinite
for every fusion k ∈ C0. By condition (Geom), necessarily d1(acl2(ka)/k) ≥ 2,
so (as d1(k/∅) is infinite) we can apply the second part of Lemma 6.12 and find
a′ ∈ acl1(acl2(ka)) \ acl

u
1(acl2(ka)). Thus, acl1(ka

′) ∩ acl2(ka) = k follows and
the claim is established. Note that, since a′ is not in acl2(ka), it follows that
acl2(ka′) ∩ acl2(ka) = k, too.
In order to see that l ′ := 〈ka′〉 ( l we apply Lemma 4.10 to A := acl2(ka) and
B := acl0(ka′). Note that l ′/k is generic, too, and so U(l ′/k) = U(l/k). On the
other hand, U(l/l ′) = n for some 0 < n ∈ N, as l/l ′ is parasitic and l ′ ( l .
Now, by the Lascar inequalities, U(l/l ′)+U(l ′/k) = n+U(g) ≤ U(l/k) = U(g),
where n > 0. Since U(g) ≤ ù by Proposition 6.4, necessarily U(g) = ù, as
n +m > m for every finite m. MR(g) = ù follows. ⊣

Remark 6.14. Let K ≤ L ≤M with K ≤ M finitely generated. Then, K ≤ L is
finitely generated, too.

Proof. Picking a finite d-basis of L/K we reduce to the case ä(L/K) = 0. By
Proposition 6.4, we have U(M/K) = ù · m + n, for some n,m ∈ N. The length of
chains of primitive extensions in M starting with K is thus bounded by n, due to
the Lascar inequalities. ⊣

Remark 6.15. If the hypothesis of good control is dropped, there is still a rea-
sonable theory of the free fusion. This is studied in [14], where among other things
the following is shown: (ℵ1)-rich structures in C̃0 are model theoretically meaning-
ful, i.e., sufficiently saturated models of their common L -theory Tù . This theory
is no longer complete. Its completions are given by fixing qftpL (〈∅〉), more gener-
ally tp(A) = tp(A′) iff cl(A) ∼=L cl(A′). Every completion is supersimple, and one

has A |⌣B
C if and only if cl(AB) ∩ cl(BC ) = cl(B) and cl(AB) |⌣

d

cl(B)
cl(BC ).

SU-rank is calculated as is U-rank under the assumption of good control.
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We give two examples illustrating the situation without good control:

Examples. (1) Recall Example 3.9. Here, every completion of Tù is superstable.
None of them is ù-stable, not even small, since there are 2ℵ0 d-generic types
over ∅. More generally, if both T1 and T2 are trivial, then every completion of
the corresponding Tù is superstable, as types over cl-closed sets are stationary.

(2) T0 := theory of an equivalence relation E, all classes consisting of 3 elements,
except one one-element class {0},
T1 := F2-vector spaces, expanding E via Exy : ⇔ x = αy for some α ∈ F∗

4 =
{1, ë, ë2},
T2 := theory of the following action of a groupG strictly containing a subgroup
G2 = {id, ì, ì2} ∼= Z/3: G acts trivially on 0 and freely on the complement
of {0}. Here, Exy : ⇔ x = αy for some α ∈ G2.
In this example (in any completion T of Tù), no d-generic type is stationary
over any parameter set, in particular T is unstable. To see this, take x, b d-
generic and independent overA = cl(A). Now, p := tp(x/A) has a non-forking
extension to Ab with ì(x + b) = ë(x + b) and one with ì(x + b) = ë2(x + b),
so p is not stationary.

§7. Non-orthogonality of types in Tù . In order to understand the “dimensions”
of Tù (i.e., the non-orthogonality classes of regular types) we need not consider
imaginary types. This can be seen as follows. Primitive types are s.m. by 6.4, so
in particular regular. The generic type is clearly regular. Thus, 4.7. shows that
every real type is (almost) analysable in real regular types. Since imaginary types
are always analysable in real types, this means that every type (even imaginary)
is (almost) analysable in real regular types. We are thus lead to a study of non-
orthogonality of types giving rise to primitive extensions.

Definition 7.1. Let k ≤ K∗ and l/k be primitive of length n. p := tp
L
(a/k) is

an admissible type if a is an L0-basis of some A over k, where A is as in Lemma
4.11. One has p ∈ Sn(k), and we put np := n, the length of the admissible type p.
We will usually not distinguish between p and its parallelism class.

We note that admissible types are stationary. It follows from Proposition 6.8 that
every admissible type (once based over a finitely generated strong fusion) is isolated
by a totally categorical strongly minimal formula. All dimensions of Tù (except
the generic, of course) are given by admissible types, since for every minimal type
orthogonal to the generic there is an admissible type which is not orthogonal to it.
So it is sufficient to study (almost) orthogonality within this class of types.
Let p, q ∈ S(k) be admissible types (k = cl(k)). If p 6⊥ak q, there are a |= p

and b |= q such that a and b are interalgebraic over k and so cl(ka) = cl(kb) by
Lemma 5.6. By the uniqueness part of Lemma 4.11 and the definition of admissible
types, this means that a and b are inter-L0-algebraic over k.
When p, q are stationary types based on k, by abuse of notation, p ⊥ak q always
means p|k ⊥ak q|k.
We will only be interested in the case thatT0 is non-trivial. First, note that totally
categorical strongly minimal trivial theories are basically equivalence relations with
finite classes, and therefore, not of great interest. Second, if T0 is trivial then by
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Corollary 6.6 so is every strongly minimal set in Tù . It is then easy to check that
the original construction of the collapsed fusion given in [17] goes through virtually
unaltered.
Recall that if T0 is an uncountably categorical theory containing a strongly min-
imal set whose geometry is non-trivial, then in some expansion of T0 by constants
there is a definable infinite 1-based group (see [22, Ch. III]). Since we do not mind
adding finitely many constants toT0 wemay as well assume that the group is already
definable in T0. The assumption that T0 has a definable strongly minimal 1-based
group is enough to obtain most of the results in this section (see also Remark 8.4),
but for the sake of clarity and completeness we make the following

Convention 7.2. From now on, T0 is the theory of a 1-based totally categorical
(not necessarily pure) group.

For convenience, we further assume that M0 := acl0(∅) = dcl0(∅). By ù-
categoricity, M0 is a finite subgroup of any model M of T0. As we still assume
good control, it might help to think of T0 being such that M0 = {0}, which en-
sures good control for any expansions T1 and T2, as dcl0 = acl0 in this case (see
Lemma 3.6).
Let ði : M

2n →M n be the projection maps (ð1 mapping on the first n, ð2 on the
last n coordinates). Consider an L0(∅)-definable subgroupW ≤ M 2n , connected
of Morley rank n (in T0), such that ð1(A) = ð2(A) =M n . Call such aW a corre-
spondence. For generic (a, b) ∈W this means that d0(a) = d0(b) = n and a, b are
inter-L0-algebraic. Now, as T0 is a locally modular strongly minimal group, its pre-
geometry is determined by the field of definable quasi-endomorphisms ofM |= T0
which has to be a finite field Fq by ù-categoricity (see [19, Section 4.5] for details
on locally modular groups). Thus, on the quotientM/M0, the correspondenceW
coincides with the graph of some ΓW ∈ GLn(Fq). Since T0 is a modular group,
whenever p 6⊥ak q for admissible types p, q ∈ Sn(k) there is a correspondence W
and c, c′ ∈ k such that for some a |= p, a′ |= q one has (a − c, a ′ − c′) ∈ W .
As ð1(W ) = M n and k |= T0, w.l.o.g. c = (0, . . . , 0). For p ∈ Sn(B) admissible
we put

TstabW (p) := {c | There are a, a′ |= p | c with (a, a ′ − c) ∈W }.

ModuloM0, this justmeans a
′ = ΓW a+c. Becausep is a definable type, TstabW (p)

is definable over B. It is a twisted (slightly coarsened) stabiliser.
Moreover, if p is admissible and (a1, a2) |= p(2), we put ∆p := stp(a1 −
a2/Cb(p)).

Lemma 7.3. Suppose p is admissible, with infinite TstabW (p) for some correspon-
denceW as above. Then stab(p) is strongly minimal with generic type ∆p. Moreover,
∆p is admissible.

Proof. TstabW (p) is infinite if and only if it hasU-rank 1 (since U(TstabW (q)) ≤
U(q) holds for all types q, as in the case of non-twisted stabilisers). Let c1, . . . , cN
be realisations of TstabW (p), independent and generic over Ba, where p is over B,
a |= p↾B and N the order of ΓW in GLn(Fq). Now put a1 := a and choose
inductively a i+1 |= p satisfying (a i , ai+1 − c i) ∈W . Then, the following holds:

• a2 |= p | c1 (in particular a2 |⌣B
c1),
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• a1 |⌣B
a2 (since U(a1a2/B) = U(a2c1/B) = U(a1c1/B) = 2).

In the same way we get

• ai+1 |= p | c1 . . . c i ,
• a1, . . . , aN+1 is a Morley sequence in p.

ModuloM0, we have

aN+1 = ΓW aN + cN = · · · = ΓNW a1 + Γ
N−1
W c1 + · · ·+ ΓW cN−1 + cN ,

Since ΓNW = idwe get thataN+1 = a1+c̃ |= p | c̃ for some c̃ algebraic over c1 . . . cN .
As 2 = U(a1aN+1/B) = U(aN+1c̃/B) and aN+1 |⌣B

c̃, one has U(c̃/B) = 1. On

the other hand, since a1 |⌣B
aN+1, we have c̃ |= ∆p. Now, everything follows

easily. ⊣

We can gather all this in the following:

Proposition 7.4. Let p be an admissible type.

(1) p is trivial iff U(∆p) = 2 iff stab(p) is finite.
(2) p is non-trivial iff U(∆p) = 1 (and ∆p is admissible) iff stab(p) is strongly
minimal (with generic type ∆p).

(3) In case (2) ∆p is non-orthogonal to p. It is a modular representative in the non-
orthogonality class of p defined over the same parameters as p (its existence is
promised by a general result of Hrushovski, see e.g., [19, Prop. 5.2.1]), and p is
generic for a coset of stab(p).

Proof. Assume that p is based on B = cl(B). If (a1, a2) |= p
(2), then a1 − a2

and a2 are interalgebraic (in Tù) overBa1. Therefore p 6⊥ ∆p and U(∆p) ∈ {1, 2}.
We now show (2). If U(∆p) = 1, then (by rank considerations) ∆p ⊢ stab(p),
whence stab(p) is infinite, and so strongly minimal with generic type ∆p by
Lemma 7.3. In the other direction, if stab(p) is strongly minimal, ∆p is admis-
sible of U-rank 1 by the same lemma. To prove the other equivalence, note that
if stab(p) is strongly minimal (with generic ∆p), then p is non-orthogonal to a
group generic, so can not be trivial. On the other hand, if p is non-trivial, there
exist a0, . . . , am−1 pairwise independent solutions of p which are dependent. We
suppose that m is minimal with these properties (in fact m = 3 or m = 4, but
we don’t use this). Thus, a0 and a1 are interalgebraic over Ba2 . . . am−1. It fol-
lows from Lemma 4.11 that (a0, a1 − c) ∈ W for some correspondence W and
some c ∈ acl(Ba2 . . . am−1) \ B. Since a0 |⌣B

a1 and c |⌣B
ai for i = 0, 1 we

have c |= TstabW (p) and U(TstabW (p)) ≥ 1, so stab(p) is strongly minimal by
Lemma 7.3.
This finishes the proof of (2). Using U(∆p) ∈ {1, 2}, (1) follows from (2).
Finally, observe that the locally modular geometry of ∆p is in fact modular, as ∆p
is the generic type of a group. This finishes (3). ⊣

We want to stress that not all admissible types are modular, as is shown by the
following example.

Example. Let T0 be the theory of an infinite F2-vector space and both T1 and
T2 the theory of an infinite F4-vector space, where the prime model is named by
constants. In this situation 〈·〉 = cl holds, since 2di(a/B) ≥ d0(a/B) for any
acli -closed set B (i = 1, 2), but we do not use this. Consider the admissible type
p over k := 〈∅〉 given by the equations x = ë1 ∗1 y and x = ë2 ∗2 y + c, where
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ëi ∈ F4 \ F2, 0 6= c ∈ acl2(∅) and ∗i denotes the multiplication in the sense of Ti .
This type is non-trivial with ∆p given by the equations x = ë1 ∗1 y and x = ë2 ∗2 y.
Now we suppose, for contradiction, that p is modular. Then, p and ∆p are not
almost orthogonal over k (see [19, Cor. 2.5.5]) and thus one can find x∆y∆ |= ∆p

and x0y0 |= p which are F2-interdefinable over k, i.e.,
(

x∆
y∆

)

= Γ

(

x0
y0

)

+

(

a
b

)

for

some Γ ∈ GL2(F2) and a, b ∈ k.
Recall that ë3i = 1, 1 + ëi = ë

2
i and 1 + ë

2
i = ëi . For simplicity we will write ëiz

instead of ëi ∗i z. This should not lead to confusions.

Case Γ =

(

0 1
1 0

)

. From x∆ = y0 + a and y∆ = x0 + b we deduce

ë1a = ë1(x∆ + y0) = ë
2
1y∆ + x0ë

2
1y∆ + y∆ + b = ë1y∆ + b = x∆ + b.

Thus, x∆ ∈ k, a contradiction. Similar computations show that Γ =

(

1 0
1 1

)

and

Γ =

(

1 1
0 1

)

are impossible.

Case Γ =

(

0 1
1 1

)

. One first shows that a = ë1b and a = ë2b + c̃ hold,

where 0 6= ë2c =: c̃ ∈ acl2(∅). It is easy (albeit somewhat lengthy) to see that
tp(ab/c̃) is admissible (show that d0(ab/c̃) = 2, and d1(A/c̃) = d2(A/c̃) = 1 for
all {0, c̃} ( A ⊆ acl0(abc̃) = 〈abc̃〉F2). On the other hand, since {0, c̃} ≤ k = 〈c̃〉,
such a, b ∈ k cannot exist, e.g., by induction using the hierarchies 〈c̃〉ni .

The cases Γ = id and Γ =

(

1 1
1 0

)

are treated in the same way. ⊣

We now present a general way to construct almost orthogonal admissible types.
Let p(x) ∈ Sn(k) be admissible (k = cl(k)), and c ∈ K∗ an n-tuple. We de-
fine a new type pc(x), an admissible type over l := cl(kc), as follows: Choose
ϕi (x, bi) ∈ Li such that p↾Li is its unique generic type over k. Now let p1 be the
non-forking extension of p↾L1 to l (anL1-type) and let p2,c be the unique generic

L2-type over l contained in ϕ2(x − c, b2). It is routine to check that the L -type
pc over l which we get applying Lemma 3.10 to p1 and p2,c—namely p1 ∪ p2,c plus
“strong”—is admissible.

Lemma 7.5. Let p ∈ Sn(k) be admissible and c a d-generic n-tuple over k. Then
p ⊥akc pc .

Proof. Suppose otherwise. Then, by Remark 6.9, there are a |= p | kc and
a ′ |= pc such that a and a

′ are inter-L0-algebraic over kc. Put A := acl0(ka) and
A′ := acl0(ka

′). One has

(∗) A |⌣
i

k
c, for i = 1, 2,

(∗∗) A′ |⌣
1

k
c and A′ 6 |⌣

2

k
c.

(∗) is clear by construction, as is the first part of (∗∗), since ϕ1(x, b1) does not
L1-fork over k. On the other hand, ϕ2(x − c, b2) does L2-fork over k. This
can be seen as follows. Take a in ϕ(x, b2), generic over l . Then, MR2(c/k, a) =
MR2(a + c/k, a), as c and a + c are interdefinable over k, a. Thus, a + c is an
L2-generic tuple over k, a, and so over k as well. But MR2(ϕ2(x − c, b2)) =



384 ASSAF HASSON AND MARTIN HILS

MR2(ϕ2(x, b2)) < n, since p is an admissible type. As a + c ∈ ϕ2(x − c, b2), this
formulaL2-forks over k. The second assertion in (∗∗) follows.
Now (∗) together with (∗∗) forces A′ * A, so 0 < d0(A′/A ∩ A′). As c realises
the d-generic n-type over A, we have d(A′/A) = di(A′/A) for i = 0, 1, 2, and by
modularity of T0, these are equal to d0(A′/A ∩ A′) > 0 (and to di(A′/A ∩ A′)
for i = 1, 2). On the other hand, using (∗∗) and putting C := acl0(kc), we get
d1(A′/A∩A′)d1(A′/(A∩A′)C ) < d0(A′/(A∩A′)C ) = d0(A′/A∩A′) by primality
of acl0(A′C ) over C , unless d0(A′/A ∩ A′) = 0. Contradiction. ⊣

In the presence of a type-definable group G a strong type p extending “x ∈ G”
will be called a subgroup type if it is the generic type of a type-definable connected
subgroupofG . Ifp is the generic typeof a (right) coset of a type-definable connected
subgroup of G , we will call it a coset type. Of course, these notions depend on the
group G we are considering. We first make an easy observation. Let G be type-
definable in a stable theory, and let p be a strong type (over A = acleq(A), say)
extending “x ∈ G”. Then, stab(p) (the left stabiliser) is defined as

{g ∈ G | a |= p | A, g implies g · a |= p | A, g},

where · is the multiplication in G . It is type-definable over A. We put ∆p :=
tp(a · a′−1/A), where (a, a′) |= p(2). The following is standard:

(i) p is a subgroup type iff p ⊢ stab(p) (iff p = ∆p).
(ii) p is a coset type iff ∆p ⊢ stab(p).

Combining (ii) with (the proof of) Proposition 7.4, we obtain the following result,
where the group G in question is given by a cartesian power of the L0-definable
group structure over which we work.

Corollary 7.6. Let p be an admissible type and pi its restriction toLi . Then, p
is non-trivial if and only if both p1 and p2 are coset types. ⊣

One would like to know when the primitive extension given by some admissible
type is trivial, if this type is moved within a definable family of such types. The
following definability result is easy (and should be known).

Lemma 7.7. Let T be the theory of an uncountably categorical group G and let
ϕ(x, u) be a formula such that whenever ϕ(x, b) is consistent, thenMRD(ϕ(x, b)) =
(m, 1), and denote pb the unique generic type of ϕ(x, b). The set of all b such that pb
is a subgroup type is then definable, as is the set of all b such that pb is a coset type.

Proof. The proof uses the observations (i) and (ii), transformed into definable
conditions in the particular situation of the lemma. Recall that in T , Morley rank is
finite and definable. Moreover it is equal to U-rank, whence additive. This enables
us to single out those b where pb is a subgroup type (a coset type, respectively).
Consider øsub(x, y, u) := ϕ(x · y, u) and put

èsub := {b |MR([ϕ(x, b)× ϕ(y, b)] ∩ øsub(x, y, b)) = 2m}.

Then, èsub is a definable set and it describes the set of all b such thatpb is a subgroup

type. To see this, take α |= pb and â |= pb | α. If |= èsub(b) we have |= ϕ(α · â, b).

Thus MR(α · â/b) ≤ m. From this and MR(α, â/b) = 2m we deduce α |⌣ b
α · â .

The converse is easy.
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One proceeds in the same way for the set of b giving rise to coset types pb .

First put øco(x, y, z, u) := ϕ(x · y−1 · z, u). The set in question is then given by
èco := {b |MR([ϕ(x, b)× ϕ(y, b)× ϕ(z, b)] ∩ øco(x, y, z, b)) = 3m}. ⊣

Proposition 7.8. Suppose that T1 and T2 have DMP. Then the following holds:

(1) Tù has DMP for sets of finite Morley rank.
(2) There is a countable set of pairs ofL -formulas {ϕi(x, y), èi (y)} such that

• ϕi(x, b) is strongly minimal and its generic type is admissible whenever |=
èi(b).

• For every admissible type p there exists i and b |= èi(y) such that p is the
generic type of ϕi(x, b).

• For every i and b, if |= èi(b)holds andϕi(x, b)has a trivial (locally projective)
geometry, then ϕi(x, b′) has a trivial (locally projective) geometry for every
b′ |= èi(y).

• For every i 6= j and every bi |= èi(y), bj |= èj(y) one has ϕi(x, bi) ⊥
ϕj(x, bj).

Proof. We leave the details as an exercise to the reader. Just note that Corol-
lary 7.6 with Lemma 7.7 allow to definably distinguish trivial admissible types from
locally projective ones. ⊣

We refer to Appendix A for detailed discussion of how strongly minimal dimen-
sions can be coded in Tù .

Lemma 7.9. Let p be a locally projective admissible type based on k = cl(k).
For i = 1, 2, let Ni be the Li(k)-definable cosets of subgroups Gi of M n such that
pi := p↾Li is the unique generic ofNi (as promised by Corollary 7.6). Then N1 ∩N2
is strongly minimal with generic type p.

Proof. Since we can take larger k if necessary, it is sufficient to show that p is
the unique non-algebraic type over k. Let b ∈ N1 ∩ N2 with b /∈ k, so b is not
algebraic over k. Suppose that Ni = Gi + c i . By (the proof of) Proposition 6.8
we can choose Li -formulas ϕi ⊆ Gi such that p is the unique generic of ϕ1 ∧ ϕ2.
Now choose a |= ∆p | cl(kb). By Li -genericity, a + b |= pi | cl(b) for i = 1, 2.
Thus, a + b |= p | cl(kb). Now, since b /∈ aclTù (k) and U(a/kb) = 1, we must
have U(a, a + b/k) = U(a, b/k) ≥ 2, so a |⌣ k

a + b. So, as a + b is generic,

b = (a + b)− a isLi -generic in both N1 and N2, showing that b |= p. ⊣

Suppose p = ∆p is an admissible type over the (finitely generated) fusion
k = cl(k). Then, by Proposition 6.8, G := stab(p) is a strongly minimal totally
categorical modular group. Thus, its geometry is given by its skew-field QE(G) of
quasi-endomorphisms. By omega-categoricity,QE(G) is in fact a finite field. If Fq
is the field of quasi-endomorphisms ofM |= T0, then clearly QE(G) embeds into
Matn(Fq). We give two examples to illustrate what kind of situations can occur.

Examples. (1) Let T0 be the theory of vector spaces over F2. For i = 1, 2, let Ti
be the theory of vector spaces over Fi := F2. As in a previous example we
choose primitive third roots of unity ëi ∈ Fi . The admissible type p is given
by x = ë1 ∗1 y ∧ x = ë2 ∗2 y, where one requires x, y F2-independent over ∅.
G is given by {(x, y) | x = ëi ∗i y for i = 1, 2}. Then F4 ⊆ QE(G), since
(ë2, ë) : G → G, (x, y) 7→ (ë21 ∗1 x, ë1 ∗1 y) is a quasi-endomorphism of order 3.
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(2) Let Ti be the theory of infinite vector spaces over Fi , where F0 := F4, F1 := F2
and where F2 is a skew-field containing F4 such that there is ë2 ∈ F2 and ë ∈ F4
such that ë2ëë

−1
2 /∈ {ë, ë−1}, i.e., F2 does not normalise F4. Such skew-fields

exist, e.g., a quotient field of F4 ∗F2 K for some proper extension K of F2.
Now choose ë1 ∈ F1, a primitive element forF8. Let p be given by x = ëi ∗i y,
for i = 1, 2. It is not too hard (but a bit tedious) to see that QE(stab(p)) =
F2 ( F4.

With the collapse already in mind, we should first have a look at the easiest fusion
context, which is the case where Ti = vector spaces over Fi , where F1 and F2 are
skew-field extensions of F0 = Fq . More generally we can consider two strongly
minimal modular expansions of T0. Recall that we restricted our context to those
T0 which are theories of a (modular) totally categorical group.

Lemma 7.10. Tù is 1-based if and only if both T1 and T2 are 1-based.

Proof. Note that since all theories we consider contain T0 as a reduct, they are
theories of a group. Thus an expansion is an abelian structure-exactly if it is 1-based.
Now, if both T1 and T2 are 1-based, so is every completion of T1 ∪ T2, see [11]. In
particular, Tù is 1-based. For the converse, it suffices to note that a reduct of an
abelian structure stays abelian, provided the group law persists in the reduct (see
[19, Prop. 4.6.4]). ⊣

Definition 7.11. The situation described in the preceding lemma will be referred
to as the abelian fusion context.

Proposition 7.12. In the abelian fusion context, we have the following:

(1) Tù is non-multidimensional.
(2) In Tù , no admissible type is trivial.

Proof. In an abelian structure, every type is non-orthogonal to a group generic
which does not fork over ∅. This proves both (1) and (2).
Note though that we can deduce a more concrete argument from the analysis of
primitive extensions we already presented. If ϕi(x, b) are stationary Li -formulas
giving rise to a primitive extension l/k (when we apply Lemma 3.10 to the generic
types pi of ϕi over k), then since the Ti are abelian, these are just generic types of
cosets of acli(∅)-definable subgroupsHi ofM n . If p is the admissible type given by
the pi , then ∆p is the admissible type corresponding toH1 andH2, and it gives rise
to a primitive extension of 〈∅〉. ⊣

In fact, there is a general result linking the two notions.

Proposition 7.13. If in Tù there exists an admissible type with a trivial pre-
geometry, then Tù is multidimensional.

Proof. Let p be an admissible type (defined over k) whose associated geometry
is trivial. Let (c i), i ∈ I be a long sequence of d-generic tuples, independent over k.
It follows immediately from Lemma 7.5 that for i 6= j pc i ⊥ pcj , since almost
orthogonality and orthogonality are the same for trivial types. We conclude that
there exists an unbounded number of non-orthogonality classes of types, which
implies multidimensionality. ⊣

We have seen that the abelian fusion context implies the non-multidimensionality
of Tù which in turn implies that no admissible type is trivial. It seems to be a rather
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intricate issue to decide if these implications are strict. An answer to this question
will rely on the representability of certain (finite) matroids inside Ti .

§8. The collapse in the abelian fusion context. In this section we show that the
collapse can be done in the abelian fusion context (and more generally in a 1-based
setting). We give a self contained direct proof of this, and leave it to Appendix A
to outline briefly how this fits into the general context of envelopes as developed
in [12].
Recall that in the abelian fusion context we treat the case of two 1-based ex-
pansions Ti of the theory T0 of a (not necessarily pure) totally categorical group.
For convenience we suppose that dcli(∅) = acli(∅) for i ∈ {0, 1, 2}. Of course
this can be achieved by adding constants to the language. Inspecting the proof of
Proposition 7.12 (and with the notation therein) we see that every admissible type
is nonorthogonal to an admissible type p such that its restriction pi toLi is a sub-
group type based on ∅, so pi is the generic type of some connectedLi(∅)-definable
subgroup Gi of (V0,+)np , where (V0,+) is the underlyingL0-definable group over
which we are working. Thus, p(x) is the generic type of the s.m. group G1 ∩ G2,
and it can be isolated by the quantifier free formulaG1(x)∧G2(x)∧ pd0(x) = npq.
Let D be the (bounded!) set of all admissible types of this form. From the
discussion in Section 7 we know that for p, q ∈ D we have p 6⊥ q if and only if
there is a correspondenceW and anL0-generic (a, a

′) ofW such that a |= p and
a ′ |= q.
Now consider any function ì : D → N ∪ {∞} such that ì is invariant under
non-orthogonality. Put

C̃
ì
0 := {M ∈ C̃0 | dimM (p) ≤ ì(p) for all p ∈ D }.

This just means that a structure in C̃ ì0 contains at most ì(p) independent solutions
of p for all p ∈ D . This class is elementary. Indeed, using e.g., Lemma 4.4, it is
easy to see that d0(pM ) = np · dimM (p) which gives dimM (p) in a rather explicit
form, showing that dimM (p) ≤ n is a quantifier free definable condition for all n.
As before we denote by C ì0 the subclass of finitely generated structures (in the
sense of 〈·〉).

Lemma 8.1 (Economic Amalgamation). (C ì0 ,≤) has the amalgamation property.

Proof. Using the decomposition of finitely generated extensions (4.7) and iden-
tifying d-bases first, it suffices to treat the following case: l is a primitive extension
of k and k ≤ m is arbitrary. We have to show that if l, m ∈ C̃ ì0 , there exists (in C̃

ì
0 )

an amalgam of l with m over k. Our goal is to take advantage of the geometrical
analysis of Tù carried out in the previous section so wemay assume w.l.o.g. that k is
strongly embedded in K∗, some big saturated model of Tù . Let p be an admissible
type associated to l/k.
There are now two cases:
Case 1: p 6⊥ak ∆p. This is meaningful, by the assumption that we are working in
a model of Tù (and 6⊥ is used with respect to this theory).
W.l.o.g. wemay assume thatp = ∆p. If dimk(p) < dimm(p) we can find a copy of
l inm over k andm is itself an amalgam (an economic one). If dimk(p) = dimm(p),
then we take m′ := l ⊗k m as amalgam. Observe that if K ≤ L is a primitive
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extension in C̃ ì0 , given by a solution of p, then dimL(p
′) = dimK(p′) + 1 (if these

numbers are finite) for all p′ ∈ D with p′ 6⊥ p, and dimL(q) = dimK(q) for all
q ∈ D orthogonal to p (since they are all based on ∅). Using this for m′ and m
we get that dimm′(p′) = diml (p

′) for all p′ 6⊥ p and dimm′(q) = dimm(q) for all
q ⊥ p. Thus, if l, m ∈ C ì0 we obtain that the free amalgamm

′ is in the class C ì0 .
Case 2: p ⊥ak ∆p. Since ∆p is modular (and p 6⊥ ∆p), we have p 6⊥am ∆p if
and only if m contains a solution of p which is generic over k (this follows from a
result of Hrushovski, see e.g., [19, 5.2.5.]). If this is the case, then there is a copy
of l/k in m and we can amalgamate “economically”. Otherwise, we take the free
amalgam m′ and nonetheless we end up with dimm′(∆p) = dimm(∆p) (so clearly
dimm′(q) = dimm(q) for all q ∈ D ), thus staying in the class. ⊣

Since one can amalgamate in the class (C ì0 ,≤), there exists a generic modelM
ì

for this class. We now consider T ì, the L -theory of Mì. For every choice of a
ì-function we will see that Mì is a saturated model of T ì. This is achieved by
axiomatising T ì via T ′ì and identifying rich structures in C̃ ì0 with ù-saturated
models of T ′ì, exactly as we did in the free case.
T ′ì is axiomatised as follows (in (3) we think of p(x) ∈ D given by G1(x) ∧
G2(x) ∧ pd0(x) = npq as explained above):

(1) Th(C̃0),
(2) dim(p) = ì(p) for all p ∈ D ,
(3) ∀y ∃z{z ∈ G1 ∧ z ∈ [y +G2]} for all p(x) ∈ D .

We note that the axioms in (3) could be replaced by an axiom scheme expressing
that “every s.m. affine space definable in a model has a point”. The axioms given
in (3) just do not mention all definable s.m. affine spaces. Instead, a certain choice
of families of affine spaces is required to have a point, which turns out to be enough.

Claim. The rich structures in C̃ ì0 are exactly the ù-saturated models of T
′ì. In

particular, T ′ì equals T ì and is complete.

We first show that ù-saturated models of T ′ì are rich structures in C̃ ì0 . Approx-
imating the generic extension by parasitic ones in the class is an easy application of
compactness and left to the reader. Now, the same reduction and case distinction
as in the proof of Lemma 8.1 shows that the only difficulty appears in the case of
a primitive extension given by an admissible type q with q ⊥ak ∆q (we think of a
primitive extension l/k given by q). We know that there areLi -definable subgroups
Gi and tuples c1, c2 such that ∆q is given by (G1(x), G2(x)), whereas q is given by
(c1 + G1(x), c2 + G2(x))). Putting c := c2 − c1 and passing to a type not almost
orthogonal to q, we can assume that q is given by (G1(x), c + G2(x)). But this is
exactly the situation taken care of in T ′ì(3), so there is a solution a to (G1, c +G2),
a strongly minimal set by Lemma 7.9. Now, a is automatically generic, since every
solution turns q modular. This shows that an ù-saturated modelM of T ′ì is rich.
Now assume thatM ∈ C̃ ì0 is rich. We show thatM |= T ′ì. As in the free fusion
this will suffice to establish the claim. Clearly,M satisfies (1) and (2). So suppose
we haveG1, G2 and c ∈M as in (3). Put k := cl(c) ≤M , and let q be the admissible
type given by (the generic types of)G1 and c +G2. The proof of Lemma 8.1 shows
that if q ⊥ak ∆q, then 〈ka〉 ∈ C̃ ì0 , where a |= q, and so by richness there is an

isomorphic copy of a in M . If q 6⊥ak ∆q there is a correspondence W and b ∈ k



FUSION OVER SUBLANGUAGES 389

such that (a′, a−b) ∈W for some a |= q, a′ |= ∆q. Observe that bothG1∧G2 and
G1∧[c+G2] are closed underf(x, y, z) := x+y−z. Of course,W is closed underf,
too. Now choose a′1, a

′
2 independent generic solutions of ∆q over k, in the sense of

Tù . As a
′
3 := a

′
1 + a

′
2 |= ∆q | k we deduce that for the corresponding ai |= q, for

i = 1, 2, 3 one has |= W (a′i , a i − b). Applying f we see that (0, ã − b) ∈ W for
some ã ∈ G1 ∧ [c +G2]. So ã ∈ acl0(b) ⊆ k and ã is the desired solution.
We observe that, due to non-multidimensionality, no finite-to-one condition on
the ì-function is needed to obtain saturation of the generic model, as opposed to
[18], [17] and [3]. It follows that a counter-example in the style of [3, Section 4]
cannot be constructed in this context. On the other hand, already in the case when
two vector spaces (over skew-fields F1 and F2, respectively) are fused over equality,
such a condition is needed since Tù is then multidimensional. We note that In this
case, the resulting fused theory is not 1-based. So, quite paradoxically, the fusion
over the Fq-vector space structure for some finite common subfield Fq of F1 and F2
is less complicated than the fusion over mere equality.
Note that the aforementioned counter-example in [3] arises from admissible types
based on tuples a that are not strongly embedded in the universe.

Theorem 8.2. Supposeì(p) is finite for all p ∈ D . ThenT ì is a complete strongly
minimal theory. Moreover, it is 1-based and model complete.

Proof. Completeness has already been shown, and 1-basedness holds for any
completion of T1 ∪ T2, as we mentioned earlier. By a theorem of Lindström, an
ℵ1-categorical theory admitting a ∀∃-axiomatisation is model complete. Thus, since
the axiomswe gave forT ′ì are clearly ∀∃, strongminimality hasmodel completeness
as a consequence. We note that this technique to show model-completeness of a
collapsed theory was first used by Holland in [16].
We now consider Mì, the countable ù-saturated model of T ì. Let Mì 4 N ,
with n ∈ N \ Mì. As in the free case, the fact that every ù-saturated model
is rich means that the type of a strong tuple is determined by its quantifier free
type. Thus, there is only one type of a d-generic element. We claim that n has
to realise this type, i.e., d(n/Mì) = 1. Else we could find Mì ≤ N1 ≤ cl(Mìn)
with N1/Mì primitive, given by some admissible type q̃. Choose k ≤ Mì finitely
generated such that q̃ is based on k, and set q := q̃↾k. Since Mì is rich, Mì

contains a solution of q. Thus, q̃ is modular, so non-orthogonal to p := ∆q. One
has ì(p) = dimMì(p) < dimN1(p), and so N1 /∈ C̃

ì
0 , a contradiction. Thus we

have seen that there is only one non-realised 1-type overMì, and strongminimality
follows. ⊣

As in the case of the fusion over the infinite structureless set we can add the
following:

Remark 8.3. (1) The expansions Ti ⊆ T ì preserve Morley rank and Morley
degree.

(2) LetM |= T ì and Vi ⊆M n beLi -definable without parameters. Assume Vi has
empty intersection with every L0-definable hyperplane in M n, and MR(V1) +
MR(V2) < n. Then V1 ∩ V2 = ∅. If Z is ∅-definable inL1 and inL2, then Z is
∅-definable inL0.

(3) The expansions Ti ⊆ T
ì are essential, and thus there is no maximal abelian

strongly minimal structure of bounded exponent (in a countable language).
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Proof. Every strongly minimal expansion is rank preserving. Now suppose that
MD(ϕ1(x, b)) = 1. For the sake of simplicity, we give the proof for T0 = vector
spaces over Fq . Shrinking ϕ1(x, b) if necessary and using an Fq-definable bijec-
tion, we can assume that |= ϕ1(a/b) implies Fq-genericity of a over b. Moreover
we suppose that b is strong. For a ∈ M |= T ì generic in ϕ1(x, b) we have
d1(a/b) + d2(a/b)− d0(a/b) ≥ d(a/b) = d1(a/b), the last equality holding since
the expansion is rank preserving. Thus, a is L2-generic over b and ab is strong.
By quantifier elimination for strong subsets this means there is only oneL -generic
type in ϕ1(x, b). This shows (1).
The first part of (2) is just a consequence of ä(a) ≥ 0. Now let Z ⊆ M n be
Li (∅)-definable for i = 1, 2. Clearly, Z is L0-definable if for every complete L0-
type p0 over ∅, either Z ⊇ p0 or Zc ⊇ p0. Using definable bijections, it suffices to
treat the case where p0 is the L0-generic type ofM n . Suppose, for contradiction,
thatZ ∩p0 6= ∅ 6= Zc ∩p0. W.l.o.g. MR(Z ∩p0) =: m < n. For a ∈ Z ∩p0 generic
we then havem = d(a) ≤ d1(a) + d2(a)− d0(a) = 2m − n < m, a contradiction.
(3) is easy, and we leave it to the reader. ⊣

We remark that—as we already mentioned in the previous section—the same
results can beobtained ifweonly assume that there is a definable group inT0 (andT1,
T2 are 1-based). The crucial point in the above proof is the non-multidimensionality
of Tù . The axiom analogous to T ′ì(3) just says that “every affine strongly minimal
space has a point”. For a detailed exposition of this (in a more general setting)
see [12].
In the following remark, we mention another generalisation, the proof of which
entirely rests on our analysis of Tù , the theory of the free fusion. Its content is
made precise and explained in detail in [15], and it provides a formal reduction of
the collapsing problem to the case where T0 is (essentially) the theory of an infinite
vector space over a finite field and the case where T0 is the theory of an infinite
structureless set (the case treated in the original fusion paper [17]).

Remark 8.4. Let (T0, T1, T2) be a fusion context (having good control ), and such
that T0 is ℵ0-categorical and modular (it might be trivial here). Suppose there is an
L0-interpretable set D′

0 such that T
′
i , the theory of D

′
0 induced by Li , is s.m. for

i = 0, 1, 2. Then, if one can find a s.m. collapse of T ′
ù , the free fusion in the context

(T ′
0 , T

′
1 , T

′
2), one can collapse Tù , the free fusion in the original context (T0, T1, T2),

onto a s.m. theory, too. ⊣

Either way, we can now state the following result:

Theorem 8.5. Let (T0, T1, T2) be a fusion context having good control, and assume
that T1 and T2 are 1-based. If T0 is trivial, we further assume that the Ti have the
DMP. Then, the theory of the free fusionTù can be collapsed onto a strongly minimal
theory expanding bothT1 andT2, with their expansion sharing a common reduct which
models T0.

Proof. One can either use Remark 8.4 to reduce to the case done in [17] if T0 is
trivial, and to Theorem 8.2 in case T0 is modular non-trivial.
Aswe alreadymentioned above, in caseT0 is trivial, one could also simply redo the
proof from [17], and, in case T0 is modular non-trivial, use that the corresponding
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Tù is non-multidimensional, and so give a proof similar to the one in the abelian
fusion context (see [12]). ⊣

Example 8.6. Let F1, F2 be skew-field extensions of F0 := Fq , and let Ti be the
theory of infinite Fi -vector spaces. Thus, we are in the abelian fusion context. Set
R := F1 ∗F0 F2, where ∗F0 denotes the coproduct of non-commutative rings over

K0 (we refer to [10] for background on skew-fields etc.). Clearly, every M ∈ C̃0
is an R-module. It is easy to see that for a d-generic and 0 6= r ∈ R the element
r · a is d-generic, too. One can use an appropriate Fq-basis of R (see [10, p. 97])
to show that if a is generic over k = cl(k), then 〈ka〉 = k ⊕ R as R-modules, and
rather explicitly d(a/k ∪ {r · a}) = 0. Thus, for a strongly minimal fusion T ì,
R naturally embeds into the skew-field of quasi-endomorphisms. This shows in
particular that R does have a field of fractions. It is known by algebraic methods
that R even has a universal field of fractions (combine Thm. 4.C. and Thm. 5.3.2.
in [10]). Since our construction is very canonical, we conjecture that the field of
quasi-endomorphisms of T ì (any ì) coincides with the universal field of fractions
ofR promised algebraically. Let us finally remark that this argument does not need
the collapsed fusion, since the forking geometry of the generic type of Tù (which is
locally modular regular) is given by a skew-field, too.

There is an interesting difference between the pure algebraic content of the previ-
ous example and the slightly more general (model-theoretic) abelian fusion context,
though. The construction of a (universal) skew-field extension of K1 ∗K0 K2 works
equally well over any skew-field K0, whereas in the abelian fusion context, ù-
categoricity of T0 seems crucial for the collapse. This is illustrated by the following
example mentioned in the introduction of [17].

Example. Let T0 be the theory of Q-vector spaces, with two Q-independent
elements c, d named as constants. Let T1 be the theory of Q[i ]-vector spaces, with
i · c = d , T2 the theory of vector spaces over Q(X ), with X · c = d .
In anyM |= T1 ∪ T2, N := ker(i − X ) is a proper non-trivial Q-subspace ofM ,
since c ∈ N and d /∈ N . In particular,M is not strongly minimal.

Remark 8.7. First order logic is not the right framework in which one should con-
sider fusion contexts over a non-ℵ0-categorical T0. Even the class C̃0 in which we were
working all the time is not first order in this case. But this class can be axiomatised in
Lù1 ,ù, and the construction goes through practically unaltered. In the corresponding
abelian fusion context, one can axiomatise a collapsed fusion that turns out to be a
quasi-minimal excellent class, so in particular categorical in all uncountable cardinal-
ities. To this aim, one has to work withLù1,ù(Q)-axioms stating that for all finite A
and all parasitic types p ∈ S(A), |p(M )| = ℵ0 in a model M of the theory. For a
smooth introduction to these issues, see e.g., [2].

Added in proof: In the period after the submission of this paper the collapse of
both the fusion over vector spaces and Poizat’s field with an additive subgroup were
announced by Baudisch, Martin-Pizarro and Ziegler [7]. Although their exposition
differs significantly from ours, their work can be easily translated into the context in
which we areworking. Once this translation is done a proof that inTù orthogonality
is equivalent to almost total orthogonality (see Appendix A below) follows easily
from Lemmas 5.4 and 7.3 of [7]. With this result in hand, as we projected in
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the appendix, the completion of the collapse is almost a formality. We refer the
interested reader to [13] for the details. It is also worth noting that the results of the
Berlin Group together with the results of this paper—see Remark 8.4—completely
settle the question of the fusion over sublanguages for totally categorical T0 and
T1, T2 strongly minimal with DMP (with the case of the non-stable free fusions
taken care of in [15]).

Appendix A. Envelopes and a view towards a collapse in general. The grail of the
quest we set upon in this paper is, of course, the collapse of Tù into a strongly
minimal theory in full generality. This goal, valuable for the new strongly minimal
sets and geometries it will give rise to is all the more interesting due to the many
geometrical similarities it shares with Poizat’s red-and-white fields in positive char-
acteristic. Indeed, the geometrical analysis of the two structures is so similar that
we believe that a successful collapse of the one will be a considerable step towards
collapsing the other. Our aim in this appendix is to suggest an axiomatic frame-
work which generalizes what we did in the abelian fusion context, and into which
the two contexts fit. We believe that this framework is the right one for studying
(and obtaining) the collapse for both. We discuss further the relations between the
fusion and bicoloured fields in Appendix B.
In Section 8we gave a full proof of the collapse ofTù in the abelian fusion context.
In this appendix we outline the concept of envelopes which is at the origin of the
collapse in the abelian fusion context, and we give an overview of what we consider
to be the main obstacle on the way to obtaining the full result.
Our approach to the problem of the collapse is closely related to the theory of
smoothly approximable structures, as developed in [8] and more recently in [9],
whose terminology we will be using throughout this appendix. To be more precise,
our view is that the collapse consists in developing a theory of envelopes for Tù . In-
deed, this point of view justifies the use of the term ‘collapse’, as it consists of finding
and axiomatising substructures (of a monster model) of Tù which are strongly min-
imal and smoothly approximate it. We give some details of the suggested strategy.
Let T be an ù-stable theory in a countable language such that

(I) T has a unique (up to domination equivalence) generic 1-type pù of rank ù,
and the remaining regular types are all strongly minimal.

(II) Every strongly minimal set of T is locally finite.

For most purposes, instead of (I) it is sufficient to require

(I)′ T has a unique regular type pù of rank ù (up to non-orthogonality), and the
remaining regular types are all strongly minimal.

A set of (pairs of)L -formulas {ϕi(x, y), èi (y)}i∈N is called a complete system of
codes (for T ) if the following holds:

(0) Whenever |= èi(b), the set ϕi (x, b) is strongly minimal.
(1) For every strongly minimal type p in T there exists i ∈ N and b such that

|= è(b) and p 6⊥ ϕi (x, b).
(2) For every i and b, if |= èi(b) holds and ϕi (x, b) has a trivial (locally projective)
geometry, then ϕi(x, b

′) has a trivial (locally projective) geometry for every
b′ |= èi(y).

(3) For every i 6= j and every bi |= èi(y), bj |= èj(y) one hasϕi(x, bi) ⊥ ϕj(x, bj).
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The complete system of codes is called almost normalised if for every non-
orthogonality class P of strongly minimal types there are only finitely many bl
such that |= èi(bl ) and the generic type of ϕi (x, bl ) is in P. We then call any such
type an almost canonical representative (for P). If there is a unique such type for any
non-orthogonality class P, the system is called normalised, and the corresponding
types are canonical representatives. The following lemma is just Proposition 7.8,
and it will help to clarify the definition of envelopes in the present context:

Lemma A.1. Assume that T1 and T2 are both strongly minimal satisfying the as-
sumptions given in 3.4. Assume in addition that both have DMP. Then there exists
complete system of codes for Tù , all instances of which are admissible types. ⊣

A little more delicate is the next lemma:

Lemma A.2. Working inL (Tù)
eq , there is a complete normalised system of codes

for Tù . ⊣

Note that in order to obtain the stronger orthogonality assumption on code
families {ϕi(x, y), èi (y)}wemust pass to imaginary sorts, the problem being that—
in general—we cannot hope to find, within the class of admissible types, a canonical
representative of the non-orthogonality classes for those strongly minimal sets in
Tù with trivial geometry. Of course, as follows from Section 7, the code families
concerning locally-projective sets can be almost normalised already on admissible
types.
Now choose any function ì : N → N ∪ {∞}, and define:

Definition A.3. Suppose that T is ù-stable and satisfies (I)′,(II), and suppose
that {ϕi(x, y), èi (y)} is a complete normalised system of codes for T . LetM |= T
be a saturated model. A set E ⊆ M is a ì-envelope if it is maximal satisfying the
following requirements:

(1) E = acl(E).
(2) For all i ∈ N and every b ∈ èi(E), dimE(pi(x, b)) ≤ ì(i) (for pi(x, b) the
generic type of ϕi(x, b)).

Roughly, our approach for tackling the problem of the collapse consists of the
following stages:

(1) Show that for a suitable choice of theì-function,ì-envelopes are homogeneous
(in Tù).

(2) For every ì as above, give an axiomatisation of the theory of ì-envelopes and
thus show that being a ì-envelope is first order.

More precisely, since (unlike in the abelian fusion context treated in Section 8)
it will most probably not be possible to axiomatise envelopes as such, the idea will
be to use pseudo Morley sequences—a definable “good enough” approximation of
Morley sequences (of length ì(i))—more or less in the spirit of the axiomatisation
of [17]. Thus, our strategy would be better restated in terms of pseudo-ì-envelopes,
namely for:

Definition A.4. Let M |= T be a saturated model, {ϕi(x, y), èi (y)} be a com-
plete normalised system of codes. A set E ⊆ M is a pseudo-ì-envelope if it is
maximal satisfying the following requirements:

(1) E = acl(E).
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(2) For all i ∈ N and every b ∈ èi(E),

¬(∃x̄0, . . . , x̄ì(i))øì(i)+1(x̄0, . . . , x̄ì(i), b)

(for some “good enough” approximation øì(i)+1 ∈ p⊗ì(i)+1b (x, b) chosen in
advance).

Quite clearly, working with ì-envelopes is easier than working with pseudo-
envelopes. However, already in this setting we were not able to prove that if the set
Sì := {i : ì(i) < ∞} is infinite, envelopes in Tù are homogeneous (at this stage
we were only able to prove homogeneity of envelopes under the assumption that T0
is the theory of infinite vector spaces over Fp—p a prime number—and that Sì is
finite). As we see it, this is the main obstacle towards collapsing Tù . This last claim
is partly justified by a thorough analysis of the theory of envelopes and smooth
approximations carried out in [12]. Using the terminology thereof, we believe that
the most important step towards collapsing Tù (or indeed for red-and-white fields
of positive characteristic, see the following appendix) would be proving that Tù
satisfies the assumption on the extension of types for each one of the formulas
ϕi (x, y) above. Explicitly, what needs to be shown is:

Problem A.5. Let {ϕi(x, y), èi (y)} be a complete normalised system of codes,
M |= Tù a saturated model.

• For any i ∈ N,(small) B = acl(B) ⊆ M , b |= èi(y) and generic a |=
pi(x, b)↾B , for any j ∈ N and b′ ∈ Ba such that |= èj(b′) define ∆(b, b′,
i, j, B) := dimBa/B(pj(x, b

′)), where Ba = acl(Ba) and

dimC/D p : max{k : ∃(b1 . . . , bk |= p
⊗k)(bi ⊆ C, bi ∩D 6= bi)}.

• Define for all i ∈ N a function Oi : N → N ∪ {∞} by

Oi(j) := max{∆(b, b
′, i, j, B) : |= èi(b), |= èj(b

′), B}.

Is there some i ∈ N such thatOi(j) is unbounded?

The above problem merits a few words of explanation. Of course, if i = j and
b = b′ then ∆(b, b′, i, j, B) = 1 and if b′ ∈ B and we are not in the previous case
then pi(x, b) ⊥ pj(x, b′) and therefore ∆(b, b′, i, j, B) = 0. The interesting case is
therefore when b′ ∈ Ba \B, in which case ∆(b, b′, i, j, B) reduces to dimBa (pj(x, b)).
Under the assumption that b′ ∈ acl(ba) it is proved in [12] that dimBa (pj(x, b

′)) =
dimacl(ba)(pj(x, b

′)), and we are therefore in safe territory. Defining:

Definition A.6. Let b |= èi . Say that pi(x, b) admits an obstruction, if there
exists some B = acl(B) ⊆M such that for every a |= p↾B there exists some j ∈ N
and d ∈ Ba \ (B ∪ acl(ba)) satisfying èj such that dimBa (pj(x, d )) > 0, and call
dimBa (pj(x, d )) the size of the obstruction.

So Problem A.5 reduces to:

Problem A.7. Is there a definable family of stronglyminimal sets inTù witnessing
obstructions of unbounded size?

It is worth noting that, e.g., in the fusion over T0 with trivial geometry the
corresponding theory Tù admits only bounded obstructions. Generalising the
notion of a type admitting no obstruction we suggest the following:
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Definition A.8. Let p, q ∈ S(C) be strongly minimal types. p is almost totally
orthogonal to q if there exists n(q) ∈ N such that for every B ⊇ Cb(p), everym ∈ N
and every a |= p⊗m ↾B , setting Ba = acl(Ba), dimBa/B q ≤ n(q). If n(q) = 0 we
say that p is totally orthogonal to q.

We note that total orthogonality agrees with orthogonality whenever the latter
is defined. I.e., if p ⊥ q and Cb(p), Cb(q) ⊆ B then clearly for all a |= p ↾B ,
dimBa q = dimB q, so dimBa/B q = 0, with the other direction being obvious. The
same is clearly true of almost total orthogonality. It follows that total orthogonality
is of interest only when Cb(p) ⊆ B and q ⊥ B (using the transitivity of non-
orthogonality for strongly minimal sets). Thus, if p and q are strongly minimal sets
based on ∅ and p ⊥ q, they are totally orthogonal to each other. In fact, in that case
we have an even stronger property, if p ⊥ q then for every set B and every a |= p↾B ,
dimBa q = dimB q. In particular, the same is true in the abelian fusion context
(see the proof of the Economic Amalgamation Lemma 8.1). As we have already
mentioned in the case thatT0 is trivial, in the corresponding theoryTù orthogonality
(of strongly minimal types) is equivalent to almost total orthogonality, and if T0
is the theory of infinite vector spaces over Fp, then orthogonality is equivalent to
almost total orthogonality. So it is clear that this notion is meaningful even in
theories with a fairly complicated structure. It would be interesting to characterise,
say, those ù-stable theories T in which (almost) total orthogonality is equivalent
to orthogonality, and possibly even more relevant to the present problem, those
theories in which almost total orthogonality is uniform, i.e., n(q) in the above
definition can be chosen independently of q.
Having said all of the above, we now show how the collapse in the abelian
fusion context can be seen as a special case of a general result about envelopes.
Axiomatically, the situation is as follows:
Suppose the complete ù-stable theory T satisfies (I),(II) and that it is non-
multidimensional. This means that the following holds, too:

(III) There exists a set D of strongly minimal sets such that:
• For all J ∈ D , J is definable over acl(∅).
• For all J1 6= J2 ∈ D , J1 ⊥ J2.
• For every strongly minimal setD definable in T there exists J ∈ D such
that J 6⊥ D.

We may choose the elements of D strictly minimal and modular, and we may
assume that T has QE. Call this the bounded context.
Now consider any ì-function ì : D → N ∪ {∞} (there is no finite-to-one re-
striction). Then, ì-envelopes exist in T , and they are homogeneous [12]. If E is a
ì-envelope, dimE(J ) = ì(J ) for all J ∈ D . Note that this property usually does
not hold for (pseudo-)envelopes in an unbounded context. This is the reason why
it is more difficult to establish homogeneity for (pseudo)-envelopes in general.
For any L -structure A |= T ∀, say that A is a ì-envelope if A is equal to its
ì-envelope when considered as a substructure of the prime model of T overA. The
following result is shown in [12]:

Theorem A.9. In the bounded context, the class of ì-envelopes is axiomatisable.
Its theory T ì has quantifier elimination inL . If ì(J ) is finite for all J ∈ D , then T ì

is strongly minimal.
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Appendix B. Relations to bicoloured fields. In this appendix we gather some re-
sults and observations which show the structural similarities between the fusion
and the bicoloured field context. In fact, we show that bicoloured fields (black-
and-white in any characteristic, red-and-white in positive characteristic) are covered
by the axiomatic framework we presented in the previous appendix, as far as the
geometrical analysis of the corresponding theory Tù is concerned, thereby also
suggesting a common strategy for a future collapse. We do not treat Poizat’s green
fields—algebraically closed fields (of characteristic 0) with a distinguished subgroup
of the multiplicative group of the field—in what follows. We note that the original
fusion and black-and-white fields were (partially) treated in a unified way in [3].
First, we give a quick overview of black-and-white fields. A black-and-white field
is an algebraically closed field K together with a subset N = N(K) ⊆ K (its black
points; the others are white), such that any A ⊆ù K has positive predimension, i.e.,
ä(A) := 2 · td(A)− |N ∩ A| ≥ 0. One works with fields of any fixed characteristic.
The corresponding notion of strong embedding is defined using ä as in the case of
fusions. The class (C0,≤) of all ‘finitely generated’ black-and-white fields has the
joint embedding property, the amalgamation property and is countable.
As in the fusion context one gets a dimension function d and a closure operator
A 7→ A. Field theoretic algebraic closure aclf corresponds to 〈·〉, and selfsufficient

closure is defined as cl(A) := aclf(A). Every finitely generated strong extension
of black-and-white fields L/K can be decomposed into a finite tower of extensions
Ki/Ki−1 which are either primitive, or black generic (i.e., Ki = aclf(Ki−1b) for
some black point b with d(b/Ki−1) = 1), or white generic (i.e., Ki = aclf(Ki−1a)
for some white point a with d(a/Ki−1) = 2). Let Tù be the theory of the generic
model. The following theorem can be quite easily obtained using [20] and [3].

Theorem B.1. (1) Tù is ù-stable of rank ù · 2.
(2) Let p be the black generic (a regular type). Then, dimension corresponds to
p-weight wp.

(3) Parasitic types (more generally types q orthogonal to p, i.e., such thatwp(q) = 0)
are 1-based. Primitive types are trivial strongly minimal and can be isolated by
totally categorical formulas.

(4) Non-orthogonality between admissible types (chosen in a similar way to the
fusion context) is definable. Only permutations of the variables can give rise to
non-orthogonality. There is an almost normalised system of codes such that every
instance is admissible (exactly as in [17]). ⊣

Using this knowledge about Tù , the corresponding collapsed black-and-white
field (of Morley Rank 2) can be obtained exactly as the collapsed original fu-
sion. This was recently worked out by Baudisch, Martin-Pizarro and Ziegler in
[6], whereas Baldwin-Holland [3] proceeded in a slightly different way. In any
case what one can show is that—for a suitable choice of the ì-function and cor-
responding pseudo-Morley sequences—pseudo-ì-envelopes are homogeneous and
axiomatisable.
Combining [20], [3] and subsequent work by Baldwin-Holland [5], one gets the
following theorem, which is entirely reproved in [6].

Theorem B.2. There is a black-and-white field (Kì, N) with the following proper-
ties:
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(1) MR(K) = 2 andN is strongly minimal.
(2) The theory of (K,N) is model-complete.
(3) Morley rank and Lascar rank are the same and equal to d. ⊣

In [12] it is shown that B.2 can formally be deduced from the results in B.1.
As was noted in [3], the theory of algebraically closed fields in the above can be
replaced by any other strongly minimal theory T which has DMP. Elimination of
imaginaries in T makes things technically easier, but this property is not essential.
As far as the non-collapsed theoryTù is concerned, no DMP assumption is needed.
This was already mentioned in [20].
In fact, in analogy with the fusion over sublanguages, we can also work in a
relative context and just consider a strongly minimal expansion T0 ⊆ T1 and study
bicoloured structures with respect to this setting, i.e., naming a predicate R for an
L0-substructure and considering the predimension ä(A) := 2 · d1(A)− d0(R ∩A).
For the same reasons as in the relative fusion context, it is essential to work with
a modular theory T0. In what follows we also assume that T0 is ℵ0-categorical,
although in the context which seems to be most interesting for applications (Poizat’s
green fields), this is not the case.
In order tomake the exposition clearer wewill now explain the case whenT0 is the
theory of infinite vector spaces over some finite field F , the red-and-white context.
If T1 is the theory of algebraically closed fields of characteristic p > 0 and F = Fp,
we are dealing with Poizat’s red-and-white fields. This is the context we will work
in, but the same results hold in the general setting. We denote by Tù the theory of
the Fraı̈ssé limit of the class (C0,≤) of red-and-white fields in characteristic p > 0
as defined in [21].
Performing the natural adaptations (e.g., forA ⊆ K ∈ C̃0we takeAas the smallest

Fp-subspace of K containing A which is strong in K), we get results analogous to
Theorem B.1. The first two parts of the following theorem can be extracted from
[21], and the remaining part is shown in a similar way to the corresponding results
in the fusion over sublanguages.

Theorem B.3. (1) Tù is ù-stable of rank ù · 2.
(2) Let p be the red generic. Then, d-dimension corresponds to p-weight, and the
white generic has p-weight 2.

(3) Parasitic types (more generally types q orthogonal to p, i.e., such thatwp(q) = 0)
are 1-based. Primitive types are locally modular strongly minimal and can be
isolated by totally categorical formulas.

(4) Non-orthogonality between admissible types (chosen in a similar way to the
fusion context) is definable. It is given by the action of the group of affine linear
transformations (w.r.t. the Fp-vector space structure) on admissible types.

(5) There is a complete system of codes for admissible types. Moreover, one can
definably distinguish trivial types from locally projective ones, and the transition
to the modular representative in the same non-orthogonality class is uniformly
definable. ⊣

Among other things, it follows from B.3 that conditions (I)′ and (II) hold for Tù
in the red-and-white context, and that the strategy of its collapse by the construction
of envelopes, as presented in the previous appendix, may prove a fruitful one.
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As we already mentioned, there is still no collapse available for the red-and-white
fields, the difficulties being completely analogous to those in the fusion over vector
spaces.
As in the case of the fusion over vector spaces (see Lemma A.2), one cannot
avoid the introduction of imaginary elements in order to obtain (almost) canonical
representatives (for the types with trivial geometry). For details on this see [15].
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