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Let S be a semiabelian variety over an algebraically closed field, and let X be an

irreducible subvariety not contained in a translate of a proper algebraic subgroup of

S. We show that the number of irreducible components of [n]−1(X) is bounded uniformly

in n, and moreover that the bound is uniform in families Xt.

We prove this by Galois-theoretic methods. This proof can be formulated purely

model theoretically, and applies in the more general context of divisible abelian groups

of finite Morley rank. In this latter context, we deduce a definability result under the

assumption of the definable multiplicity property (DMP). We give sufficient conditions

for finite Morley rank groups to have the DMP, and hence give examples where our defin-

ability result holds.
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1 Introduction

Let S be a semiabelian variety over an algebraically closed field of characteristic p≥ 0,

and let X be an irreducible subvariety. We say that X is Kummer-generic (in S) if [n]−1(X)

is irreducible for all n. Here, [n] : S→ S denotes the multiplication-by-n map.

It is easy to see that, since S has Zariski-dense torsion, a necessary requirement

for X to be Kummer-generic is that it is not contained in any translate of a proper alge-

braic subgroup of S—we call such X free.

If X is free, it does not follow that X itself is Kummer-generic. For example,

X := {(x, y) | y= (1+ x)2} ⊆G2
m is irreducible and free, but [2]−1(X)= {(x, y) | y2 = (1+ x2)2}

is not irreducible, since (y+ 1+ x2)(y− (1+ x2))= y2 − (1+ x2)2.

However, we prove:

Theorem 1.1. Suppose X ⊆ S is free. Then for some n, any irreducible component

of [n]−1(X) is Kummer-generic in S. �

Theorem 1.2. Suppose S→ T is a parametrized family of semiabelian varieties and

X ⊆ S is a family of subvarieties. Then {t | Xt is Kummer-generic in St} is a construc-

tible set. �

Here, a family S→ T of semiabelian varieties is assumed to have uniform group

structure, that is, a morphism + : S× S→ S restricting to the group morphisms +t : St ×
St→ St of the semiabelian varieties St.

In fact, we prove Theorem 1.2 by proving a uniform version of Theorem 1.1,

Proposition 2.3.

Moreover, we prove generalizations of Theorems 1.1 and 1.2 (Theorems 6.4

and 6.7, respectively) in the context of divisible abelian groups of finite Morley rank.

Theorems 1.1 and 1.2 may easily be derived from these more abstract counterparts,

in fact with the slightly weaker assumption that the algebraic group be commuta-

tive and divisible. Nonetheless, we think it worth keeping the (purely algebraic) proofs

of Theorems 1.1 and 1.2.

Versions of Theorem 1.1 have appeared previously in work on the model theory

of universal covers of commutative algebraic groups, under the guise of “the n= 1 case

of the Thumbtack Lemma”. Zilber [30] proves Theorem 1.1 in the case that S=Gn
m is an

algebraic torus in characteristic 0, by consideration of divisors on a projective normal

model of the function field of X; in [3] it was noted that this argument goes through

in positive characteristic. The second author [11, 12] proved Theorem 1.1 for Abelian
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varieties in characteristic 0 by complex analytic and homotopic methods—in fact, the

proof there proceeds by considering the fundamental group action on the universal

covering space, and does not explicitly use the group structure on the abelian variety.

The first author [2] gave an alternative proof appealing to Lang–Néron’s function field

Mordell–Weil theorem.

Meanwhile, versions of Theorem 1.2 have arisen in the study of ‘green fields’,

fields expanded by a predicate for a generic multiplicative subgroup. In considering the

theory of generic automorphisms of green fields, the third author [14] found that he

needed Theorem 1.2 for tori, and proved it by a finer consideration of divisors in the

style of Zilber’s proof of Theorem 1.1 for tori. Subsequently, it was observed by Roche

that Theorem 1.2 for tori is a necessary part of the “collapse” of the green fields onto

so-called bad fields by Baudisch, Martin Pizarro, Wagner and the third author [1].

The present work has corresponding applications. Indeed, in his thesis [27],

Roche considers the so-called octarine fields, certain expansions of abelian varieties

by a predicate for a nonalgebraic subgroup, a context which is similar to bad fields.

In order to be able to perform the “collapse” in this context, definability of Kummer-

genericity (for abelian varieties in characteristic 0) is needed.

A case of Theorem 1.1, for hypersurfaces in tori in characteristic 0, appears in the

work of Ritt [26, Section 8] in the context of factorizing exponential sums.

The key idea of our proof is due to Ofer Gabber. In fact, he provided a proof

(sketch) of Theorems 1.1 and 1.2, going via (étale) fundamental groups. We worked

out the details and simplified his proof. In particular, we were able to extract the

‘Galois theoretic’ essence of the arguments and give proofs that do not use algebraic

geometry in an essential way, replacing the use of the étale fundamental group of the

variety by the absolute Galois group of the function field of the variety. Galois the-

ory is available in a first-order structure [23], and the statements and proofs trans-

fer to this abstract model theoretic setting. Analyzing the proofs, one sees that, in

model theoretic terms, we use only that the complete theories ACFp of algebraically

closed fields have finite Morley rank and the DMP. Analyzing this, we find that we can

prove analogous statements to Theorems 1.1 and 1.2 under more general conditions

(partially even for type-definable groups of finite relative Morley rank); we do this in

Section 6, transferring the relevant portions of Kummer theory to the more abstract

setting.

First, in Section 4, we establish a criterion for a group G of finite Morley rank

(maybe with additional structure) to have the DMP which turns out to be very useful

in practice. We show that G has the DMP if and only if the generic automorphism is
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axiomatizable in G. Indeed, this equivalence holds for nonmultidimensional theories

with all dimensions strongly minimal. This generalizes the case of strongly minimal

theories which was proved by Hasson and Hrushovski [13].

These results apply to any group of finite Morley rank definable in the

theory DCF0 of differentially closed fields of characteristic 0 (such groups are [17,

Proposition 2.4]) definably isomorphic to groups of the form (G, s)# = {x∈G | s(x)= δx}
for (G, s) an algebraic D-group), as well as to groups definable in compact complex man-

ifolds (which are known [22, 28] to be definable extensions of definably compact groups

by linear algebraic groups), and we thus obtain Theorems 1.1 and 1.2 in these contexts.

In the differential case, we use that the generic automorphism is axiomatizable in DCF0

(a result of Hrushovski, see [19]); in the compact complex analytic case, we obtain the

axiomatizability of the generic automorphism using a result of Radin [25] which asserts

that irreducibility is definable in families.

Finally, we would like to mention an instance of the type-definable case. Let A be

an abelian variety which is defined over a nonperfect separably closed field K of char-

acteristic p> 0 (of finite degree of imperfection), and let A# be the biggest p-divisible

subgroup of A(K) (equivalently, A# may be defined as the smallest type-definable sub-

group which is Zariski-dense in A). Then Theorem 1.1 holds in A# (for relatively definable

subsets), since A# has relative finite Morley rank [5].

2 Kummer Theory

We first reformulate Kummer genericity as a condition on the image of the absolute

Galois group of a function field on the product of the Tate modules.

Let S be a semiabelian variety over an algebraically closed field. By standard

results, S is divisible.

Let l ∈N. The l-torsion S[l] of S is finite by l-divisibility of S and dimension con-

cerns. So, S[l] is a finite abelian group of exponent l, hence isomorphic to some (Z/ lZ)kl

if l is a prime number.

Let T = TS be the inverse limit of the torsion

T = lim←−
n

S[n]

with respect to the multiplication-by-m maps

[m] : S[mn]→ S[n].
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Splitting into primary components, we have an isomorphism of profinite groups:

T ∼=ΠlZ
kl
l .

(Although we will not need this, in fact kl depends only on whether l = p: if 0→
T→ S→ A→ 0 is exact with A an abelian variety and T a torus, then kl = 2 dim(A)+
dim(T) if l 	= p, and 0≤ kp≤ dim(A). It is worth noting that we need no assumption on A

being ordinary in order to prove our results.)

Let X ⊆ S be an irreducible subvariety, let K be algebraically closed such that X

and S are defined over K, and let b∈ X be a generic point over K.

Let G :=Gal(K(b)alg/K(b)).

The Kummer pairing provides a continuous homomorphism

θ : G→ T,

σ �→ (σ (bn)− bn)n,

where the bn are arbitrary such that mbnm = bn and b1 = b; this is a well-defined homo-

morphism, since the torsion of S is algebraic and hence contained in S(K).

Let Z = ZX ≤ T be the image of θ . This does not depend on the choices of K and

b. It follows from continuity of θ that Z is a closed subgroup of T .

Say X is n-Kummer-generic in S if and only if [n]−1(X) is irreducible.

Lemma 2.1. X is n-Kummer-generic in S iff Z + nT = T ; hence X is Kummer-generic in S

iff Z = T . �

Proof. The map [n] is closed—indeed, since [n] generically has finite fibres, there exists

an open U ⊆ S such that [n] �[n]−1(U ) is finite in the sense of algebraic geometry, and hence

closed; covering S with translates of U , we see that [n] is closed.

It follows that some irreducible component Y⊆ [n]−1 X is such that [n]Y= X. If Y′

is another irreducible component, by considering its generic we see that Y′ ⊆Y + ζ ⊆
[n]−1 X for some ζ ∈ S[n]; hence, Y′ =Y + ζ . So {Y + ζ |ζ ∈ S[n]} is the irreducible decompo-

sition of [n]−1 X.

Let b be generic in X over K and let bn∈Y be such that nbn= b, so bn is generic

in Y over K. Then

Z + nT = T

⇔ bn is conjugate over K to bn+ ζ for all ζ ∈ S[n]
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⇔Y=Y + ζ for all ζ ∈ S[n]

⇔ [n]−1 X is irreducible.

The last equivalence is by our description of the decomposition. �

Lemma 2.2. X is Kummer-generic in S iff X is l-Kummer-generic in S for all

primes l. �

Proof. By Lemma 2.1, X is l-Kummer-generic iff Z + lT = T ; taking l-primary compo-

nents Zl of Z and Tl of T , this is equivalent to Zl + lTl = Tl . But Tl
∼=Z

kl
l , and Zl is a

closed subgroup and hence a Zl-submodule, so Zl + lTl = Tl iff Zl = Tl (to see this: note

Zl + lTl = Tl implies that, with respect to the isomorphism Tl
∼=Z

kl
l , the submodule Zl con-

tains the columns of a matrix equal modulo lZl to the identity matrix; but this matrix

has determinant in Z∗l =Zl \ lZl , hence is invertible in Matkl (Zl)). The lemma follows

easily. �

In the next section, we prove:

Proposition 2.3. Let Xt⊆ St be a family of free irreducible subvarieties of a family

of semiabelian varieties. Then ZXt is of finite index in TSt , and moreover this index is

bounded. �

Proof of Theorem 1.1 from Proposition 2.3. By Proposition 2.3 with a constant family,

Z is of finite index in T , say m. So m annihilates T/Z , hence mT ≤ Z . If Y is an irreducible

component of [m]−1 X, it follows that ZY = T , that is, that Y is Kummer-generic in S. �

Proof of Theorem 1.2 from Proposition 2.3. It is clear that Kummer-genericity implies

irreducibility. Irreducibility is a constructible condition—the set of t for which Xt is irre-

ducible is constructible—so we may assume that every Xt in our family is irreducible.

Since the torsion of S is Zariski-dense, Kummer-genericity implies freeness.

Freeness is also a constructible condition—indeed, by Claim 1, X ⊆ S is free iff the sum-

mation map Σ : X2d→ S is surjective, where d= dim(S). So, we may assume that for all

t, Xt is free in St.

Irreducibility is a constructible condition, hence so is l-Kummer-genericity. By

Lemma 2.2 and Proposition 2.3, for Kummer-genericity we need check only finitely many

primes l; hence, Kummer-genericity is also a constructible condition. �
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3 Proof of Proposition 2.3

We prove this for a fixed X ⊆ S, and then note that the proof gives uniformity in families.

Let d := dim(S).

Claim 1. The summation map

Σ : Xd→ S

is dominant. �

Proof. It suffices to show that if k≤d and the image of the k-ary summation map

Xk :=Σk
1(X

k) has dimension dim(Xk) <d, then dim(Xk + X) > dim(Xk). Translating, we

may assume 0 ∈ X. By irreducibility it is then enough to see that, taking Zariski clo-

sures, (Xk + X)Zar 	= XZar
k ; but else, we would have (Xk + Xk)

Zar = XZar
k , whence XZar

k is a

(proper) subgroup, contradicting freeness of X. �

Let K be an algebraically closed field over which X and S are defined.

Let a∈ S be generic over K.

Let G̃ :=Gal(K(a)alg/K(a)).

Let P be the set of (absolutely) irreducible components of Σ−1(a).

G̃ acts naturally on P . The action is transitive, since Xd is irreducible and, by

smoothness of S and the dimension theorem, all irreducible components of Σ−1(a) have

full dimension dim(Xd)− dim(S).

Let Z = ZX ≤ TS = T , defined as above.

Claim 2. Let V ∈ P . The map θ̃ : G̃→ T

θ̃ : σ �→ (σ (an)− an)n

(where (an) is such that manm = an and a1 = a) induces a group epimorphism

G̃→ T/Z

whose kernel contains StabG̃(V); hence the index of Z in T divides |G̃/StabG̃(V)| = |P |,
and in particular is finite. �

Proof. Obviously, S is Kummer-generic in itself, as [n]−1(S)= S is irreducible for all n.

Thus, ZS = T , showing that the map θ̃ is surjective.

Now let b̄ be generic in V over K(a). Note that b̄ is generic in Xd over K.
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Let σ ∈ StabG̃(V)≤ G̃. Then σ extends to τ ∈Gal(K(a, b̄)alg/K(a, b̄)). Choose (b̄n)n∈N
satisfying mb̄nm = b̄n and b̄1 = b̄. We then have

θ̃ (σ )= (σ (Σ b̄n)−Σ b̄n)n

= (Σ(τ b̄n− b̄n))n

= (τ (b̄n)1 − (b̄n)1)n+ · · · + (τ (b̄n)d− (b̄n)d)n.

But this is an element from Z + . . .+ Z = Z , and so θ̃ induces a map as stated. �

This claim proves the nonuniform part of Proposition 2.3. Since the number of

irreducible components of the generic fibre of Σ is bounded uniformly in families, we

obtain Proposition 2.3.

In our initial proof, we used the following remark to reduce the statement to the

case of curves. This is no longer needed, and so we include it without proof. (One may

use arguments similar to [24, Proof of Lemme 3.1].)

Remark 1. Let X ⊆ S be a Kummer-generic variety of dimension at least 2. Let H ⊆ S be

a generic hyperplane (with respect to some embedding of S into some Pn). Then X ∩ H is

Kummer-generic. �

We would also like to remark that the proof of Proposition 2.3 applies generally

to endomorphisms of abelian algebraic groups with finite kernel, in particular to the

Artin–Schreier map ℘ : Gn
a→Gn

a; x̄ �→ (xp
i − xi)i in characteristic p 	= 0, and its composi-

tional iterates ℘(m). We therefore obtain an analog of Theorem 1.1:

Remark 2. Say X ⊆Gn
a is Artin–Schreier-generic iff (℘(m))−1 X is irreducible for all m. So

if X ⊆Gn
a is free in the sense that the summation map Σ : Xn→Gn

a is dominant, then for

some m each irreducible component of (℘(m))−1 X is Artin–Schreier-generic. �

4 DMP in Groups of Finite Morley Rank

The aim of the rest of this paper is to give model theoretic generalizations of

Theorems 1.1 and 1.2. We use standard model theoretic terminology and concepts;

see, for example, [20] for these.

We show here a number of results which will be useful when generalizing our

results for semiabelian varieties to groups of finite Morley rank.

 at U
PM

C
 on July 23, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Some Definability Results in Abstract Kummer Theory 3983

In this and the following section, we will often write x, y, . . . for (finite) tuples of

variables; similarly, a,b, . . .may denote tuples of elements. The Morley rank of a (partial)

type π will be denoted RM(π), its Morley degree by DM(π). Moreover, we write RDM(π)

for the pair (RM(π),DM(π)).

Definition 4.1. We say that the theory T is almost ℵ1-categorical if T is nonmultidi-

mensional, with all dimensions strongly minimal, that is, there is a fixed set of strongly

minimal sets {Di | i ∈ I } (in Teq) such that every nonalgebraic type is nonorthogonal to

one of the Di’s. �

Note that in the previous definition we do not assume that the language is

countable.

Observe that T is almost ℵ1-categorical iff Teq is. Moreover, in an almost

ℵ1-categorical theory, there are only finitely many nonorthogonality classes of strongly

minimal types, so we may assume that I is finite. For background on almost

ℵ1-categorical theories, in particular, a proof of the following fact, we refer to [21].

Fact 4.2. Let T be almost ℵ1-categorical.

Then, in Teq, Morley rank is finite, definable, and equal to Lascar U-rank. �

Let T be a theory of finite Morley rank. Recall the following definitions:

• Morley rank is definable in T if for every formula ϕ(x, y) and every r ∈N there

is a formula θ(y) such that RM(ϕ(x,a))= r iff |� θ(a).
• T has the DMP if for every formula ϕ(x, y) and every (r,d) ∈N2 there is a for-

mula θ(y) such that RDM(ϕ(x,a))= (r,d) iff |� θ(a).

To establish the DMP, by compactness, it is enough to show that whenever

RDM(ϕ(x,a))= (r,d), there is θ(y) ∈ tp(a) such that RDM(ϕ(x,a′))= (r,d) whenever

|� θ(a′).

Remark 3. Almost ℵ1-categorical theories were introduced in [4]; though stated in terms

of extensions of models, his definition is quite close to the one we use. These theories

were further studied by Erimbetov [10], who, in particular, proved the finiteness of Mor-

ley rank. �

Fact 4.3 (Lascar [18]). Let G be a group of finite Morley rank and T =Th(G). Then T is

almost ℵ1-categorical. In particular, Morley rank is finite, definable, and equal to Lascar

U-rank. �
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Definition 4.4. Let p(x) be a stationary type. Then p is said to be uniformly of Morley

degree 1 if there is a formula ϕ(x,a) ∈ p and θ(y) ∈ tp(a) such that p is the unique generic

type in ϕ(x,a) and DM(ϕ(x,a′))= 1 whenever |� θ(a′). �

Note that if Morley rank is definable in T and p is uniformly of Morley degree 1,

we may witness this by formulas ϕ and θ such that RM(ϕ(x,a′))=RM(p) whenever

|� θ(a′).
For p,q ∈ S(B), we say that p is a finite cover of q if there are a |� p and b |� q

such that b∈ dcl(Ba) and a∈ acl(Bb). The proof of the following lemma is easy and left

to the reader.

Lemma 4.5. Assume that Morley rank is finite and definable in T , and let p be uniformly

of Morley degree 1.

1. If q is parallel to p, then q is uniformly of Morley degree 1.

2. If p is a finite cover of q, then q is uniformly of Morley degree 1.

3. T has the DMP iff every stationary type is uniformly of Morley degree 1. �

Lemma 4.6. Assume that Morley rank is finite, definable, and equal to U-rank in

T = Teq. Then T has the DMP iff every strongly minimal type is uniformly of Morley

degree 1. �

Proof. For T strongly minimal, this is shown in [15].

The condition is clearly necessary. In order to show that it is sufficient, it

is enough to show that any stationary type p is uniformly of Morley degree 1, by

Lemma 4.5(3). We prove this by induction on RM(p)= r, the case r = 1 being true by

assumption (and r = 0 being trivial).

Assume the result is true for types of Morley rank ≤ r and let p(x) ∈ S(B) be

stationary, RM(p)= r + 1.

Since 0<U(p) < ω, there is a minimal type p1(x1) (i.e., U(p1)= 1) such that p 	⊥
p1 (see [20, Lemma 2.5.1]). By Lemma 4.5(1), we may replace p and p1 by nonforking

extensions and thus assume that p, p1 ∈ S(M) for some model M and p 	⊥a p1, whereby

there are a |� p and a1 |� p1 such that a1 ∈ acl(Ma). By Lemma 4.5(2), we may replace p

by the finite cover tp(aa1/M) and thus assume that p1 is given by the restriction of p(x)

to a subtuple x1 of the variables. Let a2 be such that a= a1a2. By assumption, U=RM,

so p1 is strongly minimal. Let q(x2)= tp(a2/Ma1). By ω-stability, tp(a2/Mã1) is stationary
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for some finite ã1 with a1 ⊆ ã1 ⊆ acl(Ma1). Enlarging a1 if necessary, we may thus assume

that q is stationary.

Moreover, the Lascar inequalities and RM=U imply that RM(q)= r.

Using definability of Morley rank and the induction hypothesis, we may find an

L-formula ϕ(x2, x1, z), b∈M and θ(z) ∈ tp(b) such that

(i) p is the unique generic type in ϕ(x2, x1,b) over M;

(ii) RM(ϕ(x2, x1,b′))= r + 1 whenever |� θ(b′);
(iii) ψ(x1,b′)=∃x2ϕ(x2, x1,b′) is strongly minimal whenever |� θ(b′) (in particu-

lar, p1 is the unique generic type in ψ(x1,b) over M);

(iv) whenever ϕ(x2,a′1,b
′) is consistent, RDM(ϕ(x2,a′1,b

′))= (r,1).

It is routine to check that ϕ(x2, x1,b) and θ(z) witness that p is uniformly of

Morley degree 1. �

It follows, in particular, from the previous lemma that in any strongly mini-

mal theory without the DMP, there is a strongly minimal type p which is not uni-

formly of Morley degree 1. To illustrate this, let us recall the following example due

to Hrushovski [15].

Example 4.7. Let V be a nontrivial vector space over Q and 0 	= v0 ∈ V . Let D = V × {0,1}
equipped with the projection π : D→ V and the function f : D→ D, f(v, i)= (v + v0, i).

Then T =Th(D) is strongly minimal without the DMP. For any b∈ D, the formula ϕ(x, y,b)

given by π(x)= π(y)+ π(b) is of Morley rank 1, and it is strongly minimal iff π(b) 	∈Z · v0.

(For b∈Z · v0, one has DM(ϕ(x, y,b))= 2.)

Thus, for generic b the (unique) generic type p(x, y) of ϕ(x, y,b) is strongly

minimal and not uniformly of Morley degree 1. In particular, if q(x) denotes the generic

1-type in T , p and q are nonorthogonal strongly minimal types, q is uniformly of Morley

degree 1 and p is not. �

Lemma 4.8. Let T be almost ℵ1-categorical, and let ϕ(x, z) be a formula. There is N ∈N

such that DM(ϕ(x,b))≤ N for all b. �

Proof. Adding parameters to the language if necessary, we may assume that there

are strongly minimal sets (Di)1≤i≤k defined over ∅ such that every nonalgebraic type

is nonorthogonal to one of the Di’s.
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Claim. Every global type p(x) is a generic type in some ϕ(x,b), where ϕ(x, z) is an L-

formula for which the statement of the lemma is true. �

We prove the claim by induction on r =RM(p), the case r = 0 being trivial.

Let p be strongly minimal. By assumption, p 	⊥ Di for some i. Let Di be defined by

ψi(y). Since p(x) is a global type, there is ϕ(x,b) ∈ p and a finite-to-finite correspondence

χ(x, y, c) between ϕ(x,b) and ψi(y). Let m,n∈N such that χ(x, y, c) generically induces

an m-to-n correspondence (i.e., outside a finite set). We may assume that b= c and that

χ(x, y,b′) generically induces an m-to-ncorrespondence between ϕ(x,b′) and ψi(y)when-

ever ϕ(x,b′) is consistent. Since ψi(y) is strongly minimal, DM(ϕ(x,b′))≤m for all b′. This

proves the case r = 1.

For the induction step, we argue as in the proof of Lemma 4.6. Let RM(p)= r + 1.

Replacing p by a finite cover, we may assume that p(x)= p(x1x2) and, by induction, that

there is an L-formula ϕ(x2, x1, z) and b∈M such that

• p is the unique generic type in ϕ(x2, x1,b) over M;

• RM(ϕ(x2, x1,b′))= r + 1 whenever it is consistent;

• ψ(x1,b′)=∃x2ϕ(x2, x1,b′) is of Morley rank 1 and degree ≤ N1 whenever it is

consistent;

• whenever ϕ(x2,a′1,b
′) is consistent, it is of Morley rank r and degree ≤ N2.

Then ϕ(x2, x1,b′) is of Morley degree ≤ N1N2 for every b′, so the claim is proved.

Now let ϕ(x, z) be given. For a parameter b with DM(ϕ(x,b))=d, let p1, . . . , pd be

the (global) generic types of ϕ(x,b). By the claim, for 1≤ i ≤d, there exists a formula

χ(x, zi), a parameter bi and Ni ∈N such that pi is generic in χi(x,bi) and DM(ϕ(x,b′i))≤ Ni

for every b′i. Since Morley rank is definable, there is θ(y) ∈ tp(b) such that whenever |�
θ(b′), there are b′1, . . . ,b

′
d with RM(ϕ(x,b′) ∧ ¬∨d

i=1 χi(x,b′i)) <RM(ϕ(x,b′))=RM(χi(x,b′i))

for i = 1, . . . ,d. So DM(ϕ(x,b′))≤∑d
i=1 Ni if |� θ(b′).

Since such a formula exists for every b, we are done by compactness. �

Now let T be a theory which is complete and has quantifier elimination (QE)

in some language L, and let σ 	∈L be a new unary function symbol. Consider Tσ := T ∪
{σ is an L-automorphism}, a theory in the language L ∪ {σ }. Denote by T A the model

companion of Tσ if it exists.

In the proof of the following result, we proceed as in [13], where Corollary 4.11

is shown for T strongly minimal.
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Proposition 4.9. Let T be stable, and assume that T A exists. Then, for strongly minimal

types in T , being uniformly of Morley degree 1 is invariant under nonorthogonality. �

Proof. Let p and q be strongly minimal types such that p 	⊥ q and q is uniformly of

Morley degree 1. We have to show that p is uniformly of Morley degree 1. As in the proof

of Lemma 4.6, using Lemma 4.5, we may assume that p= tp(β/M) is a finite cover of

q= tp(b/M), and even that b is a subtuple of β.

Let β1 = β, β2, . . . , βn be the Mb-conjugates of β, and put β̄1 = (β1, . . . , βn). We may

assume that p= tp(β̄1/M). Then, if β̄1, . . . , β̄r are the Mb-conjugates of β̄1, any β̄i is of the

form
β̄i = (βτi(1), . . . βτi(n))

for some τi ∈ Sn. Moreover, by construction,

G := {τi | 1≤ i ≤ r} ≤ Sn

is a subgroup of Sn.

Since q is uniformly of Morley degree 1 by assumption, there are L-formulas

ϕ̃(x̄, y), ϕ(x, y), a parameter a∈M, a formula θ(y) ∈ r(y)= tp(a), and a definable function

π from the x̄-sort to the x-sort satisfying the following properties:

(i) ϕ̃(x̄,a) and ϕ(x,a) are strongly minimal, with generic types p and q, respec-

tively;

(ii) whenever |� θ(a′), ϕ(x,a′) is strongly minimal, and π defines a surjection

from ϕ̃(x̄,a′) onto ϕ(x,a′);

(iii) whenever |� θ(a′), denoting D̃a′ and Da′ the sets defined by ϕ̃(x̄,a′) and

ϕ(x,a′), resp., all fibres of the map π : D̃a′ � Da′ are regular G-orbits for the

definable action of G (by permutation) on the x̄-sort, that is, if b′ ∈ Da′ , then

| π−1(b′) |= |G| and if π−1(b′)= {β̄ ′1, . . . , β̄ ′s}, letting β̄ ′1 = (β ′1, . . . , β ′n), any β̄ ′i is

of the form (β ′τ(1), . . . , β
′
τ(n)) for some τ ∈G.

Claim. For any τ ∈G, there is an L-formula θτ (y) ∈ r(y) implying θ(y) such that, in T A,

the following implication holds:

θτ (y) ∧ σ(y)= y� ∃x∃x̄
[
π(x̄)= x∧ σ(x)= x∧ ϕ̃(x̄, y) ∧

n∧
i=1

σ(xi)= xτ(i)

]
. ��

Proof of the claim. By compactness, it is enough to show that

r(y) ∪ {σ(y)= y} � ∃x∃x̄
[
π(x̄)= x∧ σ(x)= x∧ ϕ̃(x̄, y) ∧

n∧
i=1

σ(xi)= xτ(i)

]
.
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Let (M′, σ ) |� T Aand a′ ∈M′ such that σ(a′)= a′ and |� r(a′). Then, D̃a′ is strongly minimal

(in T ). Let β̄ ′ = (β ′1, . . . , β ′n) be generic in D̃a′ over M′. Then τ · β̄ ′ := (βτ(1), . . . , βτ(n)) is also

generic in D̃a′ over M′. Thus, tpL(β̄
′/M′)= tpL(τ · β̄ ′/M′). Since σ(a′)= a′, it follows that

σ �acl(a′) ∪{β ′i �→ β ′τ(i) | 1≤ i ≤ s} is an elementary map. So, in some elementary extension of

(M′, σ ), there is such a tuple β̄ ′ such that σ(β ′i)= β ′τ(i) for all i. Moreover, by construction,

π(β̄ ′)= π(σ(β̄ ′)), so σ(π(β̄ ′))= π(β̄ ′). This proves the claim.

Let θ̃ (y)=∧
τ∈G θτ (y). We will show that ϕ̃(x̄,a′) is strongly minimal whenever

|� θ̃ (a′). This will finish the proof.

From now on, we may proceed exactly as in [13].

By (ii), RM(D̃a′)= 1. Let δ̄ and δ̄′ be generic in D̃a′ over a′. We have to show that

stp(δ̄/a′)= stp(δ̄′/a′). Since Da′ is strongly minimal by (i), stp(π(δ̄)/a′)= stp(π(δ̄′)/a′), so

we may assume that π(δ̄)= π(δ̄′)=d.

By (iii), G acts regularly on π−1(d), via

τ · δ̄ρ = τ · (δρ(1), . . . , δρ(n))= δ̄τρ (for ρ ∈G).

In particular, there is ρ ′ ∈G such that ρ ′ · δ̄ = δ̄ρ ′ = δ̄′. Consider

H := {τ ∈G | id �acl(a′) ∪{δ̄ �→ τ · δ̄} is an elementary map}.

Note that τ is in H iff there is an element ρ ∈G such that id �acl(a′) ∪{ρ · δ̄ �→ (τρ) · δ̄} is an

elementary map iff id �acl(a′) ∪{ρ · δ̄ �→ (τρ) · δ̄ | ρ ∈G} is an elementary map. In particular,

H ≤G is a subgroup.

Let id 	= τ ∈G. We may embed (acl(a′), id) into some model (M′, σ ) |� T A. By the

claim, there is β̄τ ∈ D̃a′ such that σ(β̄τ )= τ · β̄τ = (βττ(1), . . . , βττ(n)). As τ 	= id, β̄τ 	∈ acl(a′),

so bτ = π(β̄τ ) is generic in Da′ over a′. Let α : acl(a′d)∼= acl(a′bτ ) be an elementary map

extending id �acl(a′) ∪{d �→ bτ }. Clearly, σ ′ = α−1 ◦ σ ◦ α is an elementary permutation of

acl(a′d) fixing acl(a′) ∪ {d}. Moreover, if α−1(β̄τ )= τ ′ · δ̄, then α−1(ρ · β̄τ )= (τ ′ρ) · δ̄ for every

ρ ∈G, and an easy calculation shows that τ ′ττ ′−1 ∈ H ; indeed,

(α−1 ◦ σ ◦ α)(δ̄τ ′)= α−1(σ (β̄τ ))= α−1(τ · β̄τ )= (τ ′τ) · δ̄ = ((τ ′ττ ′−1)τ ′) · δ̄ = τ ′ττ ′−1 · δ̄τ ′ .

Thus, all conjugacy classes in G are represented in H , showing that H =G

(see [13]). This completes the proof. �

Corollary 4.10. Let T be stable, and assume that T A exists. Let X be definable and

T ′ =Th(Xind) be the theory of the induced structure on X. Assume that T ′ is almost ℵ1-

categorical.

 at U
PM

C
 on July 23, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Some Definability Results in Abstract Kummer Theory 3989

Then T ′ has the DMP. In particular, any group of finite Morley rank interpretable

in T (considered with the full induced structure) has the DMP. �

Proof. It is easy to see that if T ′B has the DMP for some parameter set B, then T ′ has

the DMP (see [15]). We may thus assume that every strongly minimal type p′ in T ′ is

nonorthogonal to some strongly minimal type q′ over ∅. Trivially, such a q′ is uniformly

of Morley degree 1, and so p′ is uniformly of Morley degree 1 by Proposition 4.9. This

shows that T ′ has the DMP, by Lemma 4.6. �

Corollary 4.11. Let T be almost ℵ1-categorical, for example, T =Th(G) for G a group of

finite Morley rank. Then T A exists if and only if T has the DMP. �

Proof. Using Fact 4.2, it is easy to see that T A exists if T has the DMP (see [9]). The

other direction is the previous corollary. �

5 Generic Automorphisms of Compact Complex Manifolds

In this section, we apply the results of Section 4 to compact complex manifolds,

deducing in particular that definable groups have the DMP. We use the result of

Radin [25] that topological irreducibility is definable in families. Unlike in algebraic

geometry, it is in general not true in compact complex manifolds that irreducibility

implies Morley degree 1, so DMP does not follow immediately. Rather, we note that

definability of irreducibility in the theory of a Noetherian topological structure (defined

below) suffices, by a straightforward generalization of the well-known existence of geo-

metric axioms for ACFA, to prove axiomatizability of generic automorphisms; the results

of Section 4 then apply.

We take the following definitions from [31].

Definition 5.1.

• A topological structure consists of a set S and a topology on each Sn such

that

(i) The co-ordinate projection maps pr : Sn→ Sm are continuous.

(ii) The inclusion maps

ι : Sm→ Sn; (x1, . . . , xm) �→ (x1, . . . , xm, cm+1, . . . , cn)

are continuous.
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(iii) The diagonal Δ⊆ S2 is closed.

(iv) Singletons {ā} ⊆ Sn are closed.

• A topological structure is Noetherian iff the closed sets satisfy the descend-

ing chain condition (DCC).

• A topological structure is ω1-compact iff whenever (Ci)i∈I is a countable set

of closed sets with the property that
⋂

i∈I0
Ci 	= ∅ for any finite I0 ⊆ I , then⋂

i∈I Ci 	= ∅.
• We consider a topological structure S as a first-order structure in the lan-

guage having a predicate for each closed set. Since singletons are closed,

models S′ of Th(S) are precisely elementary extensions of S. We consider such

S′ as topological structures, with closed sets the fibres with respect to co-

ordinate projections of the interpretations in S′ of the closed sets of S. It is

easy to see that if S is ω1-compact and Noetherian, then S′ is also Noetherian.

• A constructible set is a finite boolean combination of closed sets, so Th(S) has

quantifier elimination iff every definable set is constructible. A constructible

set is irreducible iff it is not the union of two relatively closed proper subsets.

• Suppose now that T is the theory of an ω1-compact Noetherian topological

structure S with quantifier elimination.

If X is an irreducible constructible set defined over a model S′ � S,

the generic type over S′ of X is the complete type

pS′
X (x)= {x∈ O | O a relatively open subset of X defined over S′}.

Conversely, if S′′ � S′ and a∈ S′′n, the locus of a over S′ (locus(a/S′)) is

the smallest closed set defined over S′ containing a.

We say that irreducibility is definable in T iff for any S′ |� T and any

constructible C (x; y)⊆ S′n+m, the set

{y |C (S′, y) is irreducible} ⊆ S′m

is definable over S′. �

A compact complex manifold X can be considered as an ω1-compact Noetherian

topological structure, where the closed sets are the complex analytic subsets.

It is a result of Zilber [31, Theorem 3.4.3] that the structure has quantifier elimi-

nation and finite Morley rank.
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Proposition 5.2. Let T be the theory of an ω1-compact Noetherian topological structure

with quantifier elimination, in which irreducibility is definable. Then T A exists. �

Proof. This is a straightforward generalization of the case of algebraically closed

fields.

T A is axiomatized by

(i) (S, σ ) |� Tσ .

(ii) If U and V ⊆U × σ(U ) are closed irreducible sets in S such that V projects

generically onto U and σ(U ) (i.e., U is the closure of pr1(V) and σ(U ) is the

closure of pr2(V)), and if W � V is proper closed in V , then there exists a

point (a, σ (a)) ∈ V \W.

By definability of irreducibility, (ii) is indeed first-order expressible.

Just as in [8, (1.1)], we find that T A axiomatizes the class of existentially closed

models of Tσ ; indeed: by uniqueness of generic types of irreducible sets, any existentially

closed model satisfies (ii). For the converse, by quantifier elimination and closedness of

equality it suffices to see that if (S, σ ) |� T A and (S′, σ ) |� Tσ is an extension (so S′ � S),

and if V ′ is closed irreducible in S and W is a proper closed subset, then if there exists a∈
S′ such that (a, σ (a)) ∈ V ′(S′) \W′(S′), then already there exists such an a∈ S. But indeed,

this follows from (ii) on taking V := locus((a, σ (a))/S), taking U := locus(a/S), and taking

W :=W′ ∩ V . �

In particular, then:

Corollary 5.3. Let T be the theory of a compact complex manifold. Then T A exists. �

Combining with Corollary 4.10, we obtain:

Corollary 5.4. Let T be the theory of a compact complex manifold, and suppose T is

almost ℵ1-categorical. Then T has the DMP. �

For the case of unidimensional T , this was deduced by a more direct method

from definability of irreducibility by Radin [25].

Remark 4. For clarity, in this section we have worked one sort at a time; but it is entirely

straightforward to generalize to many-sorted topological structures, and in particular to

the structure CCM which has a sort for each compact complex manifold and predicates

for complex analytic subsets of powers of the sorts. �
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Question 5.5. Let (G; ·) be a Zariski group, that is, a Noetherian Zariski structure (in the

sense of [31]) with a group operation · whose graph is closed in G3. Does G necessar-

ily have definability of irreducibility (and hence, by Proposition 5.2 and Corollary 4.11,

Morley degree)? What if G is assumed to be presmooth? �

6 Kummer Genericity in Divisible Abelian Groups of Finite Morley Rank

In this section, let S be a definable divisible abelian group of finite Morley rank d

(in some stable theory T ). In particular, since S is divisible, it is connected, and so

DM(S)= 1.

By rank considerations, the n-torsion subgroup S[n] is finite for every n. We con-

tinue to denote by T = lim←−
n

S[n] the projective limit of the torsion subgroups.

Note that in general there might be a proper definable subgroup of S that con-

tains all torsion elements of S. By the DCC for definable subgroups in S, there is a small-

est such group, the definable hull of the torsion subgroup of S. We denote it by d(Stors).

We use the following version of Zilber’s indecomposability theorem for types in

commutative groups of finite Morley rank.

Lemma 6.1. Let p be a strong type over Aextending S. Let p(d) be the type of an indepen-

dent d-tuple of realizations of p, and let q :=Σ∗p(d) be its image under the summation

map Σ : Sd→ S. Then q is the generic type of an acleq
(A)-definable coset of a connected

definable subgroup H = H(p) of S. In particular, H(p) is equal to the stabilizer of q. �

Proof. It is easy to see that n �→RM(Σ∗p(n)) is an increasing function, and that

RM(Σ∗p(n))=RM(Σ∗p(n+1)) implies that RM(Σ∗p(n))=RM(Σ∗p(n+m)) for all m ∈N. Thus,

the Morley rank of q :=Σ∗p(d) is maximal among RM(Σ∗p(n)).

Now let a and b be independent realizations of q, and let c :=−a− b. Using addi-

tivity of Morley rank, we get that a,b, and c are pairwise independent. The result then

follows from [29, Theorem 1]. �

Definition 6.2. Let p be a strong type extending S, with H(p) as in Lemma 6.1.

• p is called free if and only if H(p)= S.

• p is called Kummer-generic if there is only one strong completion of the par-

tial long type {[m]xmn= xn |m,n∈N} ∪ p(x1), and p is called almost Kummer-

generic if this type has only finitely many strong completions.
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• For X some definable subset of S of Morley degree 1, we say X is free

(respectively, (almost) Kummer-generic), if the unique generic type of X is

free (respectively, (almost) Kummer-generic). �

It follows from Lemma 6.1 that p is free iff the sum of d independent realizations

of p is generic in S. But note that in contrast to the case where X is an irreducible sub-

variety of a semiabelian variety S, for X some definable subset of S of Morley degree 1,

RM(Σ(Xd))=d does not in general imply that X is free.

Lemma 6.3.

1. Let X ⊆ S be definable such that RDM(X)= (k,1).

(a) X is free iff {a∈ S |RM(Σ−1(a) ∩ Xd)=dk− d} is a generic subset

of S.

(b) X is Kummer-generic iff DM([n]−1(X))= 1 for all n∈N.

2. Let p be a strong type extending S.

(a) If p′ is a translate of a nonforking extension of p, then p′ is free

(respectively, (almost) Kummer-generic) iff p is free (respectively,

(almost) Kummer-generic).

(b) There exists a translate p′ of a nonforking extension of p such

that p′ extends H(p) and Σ∗p′(d) is the generic type of H(p′)=
H(p). Moreover, the following are equivalent:

• p is (almost) Kummer-generic;

• p′ is (almost) Kummer-generic;

• H(p)≥ Stors and p′ is (almost) Kummer-generic in the

group H(p). �

Proof. 1(a) Let p be the generic type of X. Then p(d) is the unique generic type of Xd, and

X is free iffΣ∗p(d) is the generic type of S iff for generic a in S, RM(Σ−1(a) ∩ Xd)=dk− d.

(This uses the additivity of the Morley rank.) The result follows.

1(b) Note that since [n] is finite-to-one, an element a∈ [n]−1(X) is generic iff na is

generic in X iff na |� p. From this, one may conclude.

2(a) Left to the reader.
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2(b) Let (a1,a2) |� p(2) |M. It is routine to check that p′ := tp(a2 − a1/Ma1) is as

claimed. Since p′ is a translate of (a nonforking extension of) p, the first two items are

equivalent by 2(a).

Now, suppose that p′ is Kummer-generic in S. Then, clearly p′ is Kummer-generic

in H(p′)= H(p) as well. Moreover, if ζ ∈ Stors \ H(p), with nζ = 0, and a′ |� p′, there is

c′ ∈ H(p) such that [n]c′ = a′, since H(p) is connected and thus divisible. Then, tp(c′ +
ζ/M) 	= tp(c′/M), since c′ + ζ 	∈ H(p). This shows that H(p)≥ Stors.

Conversely, assume that H(p)≥ Stors and p′ is Kummer-generic in H(p). Then, for

every b∈ H(p) and every n≥ 1, [n]−1(b)⊆ H(p), as S[n]⊆ H(p). So Kummer-genericity of

p′ in S follows.

We now give the argument for almost Kummer-genericity. If N ≥ 1 and q is a

completion of π(x) := p([N]x), then H(q)= H(p). (Indeed, in a totally transcendental

divisible abelian group, if p= [N]∗q, it is easy to see that Stab(p)= NStab(q). More-

over, Stab(q)= NStab(q) since Stab(q) is connected. Thus, Stab(p)= Stab(q).) Now p(x)

is almost Kummer generic iff there is N ≥ 1 such that every completion q of the par-

tial type π(x) := p([N]x) is Kummer-generic. So we conclude by the result for Kummer-

genericity. �

Theorem 6.4. Let p be a strong type over A extending S.

Assume that p is free. Then p is almost Kummer-generic.

Moreover, p is almost Kummer-generic if and only if H(p)≥ Stors. �

Proof. Assume p is free. Replacing p by a nonforking extension if necessary, we may

assume that A=M |� T , and that S is defined over M.

Let b̄ |� p(d), and put a=Σ(b̄). Since p is free, a is generic in S over M. Let P be the

set of types over acleq
(Ma) extending tp(b̄/Ma). Let X be an M-definable set with unique

generic type p. By Fact 4.3, Morley rank is finite and additive. It follows that tp(b̄/Ma)

is the unique type in Xd ∩Σ−1(a) over Ma of maximal Morley rank, and so P is equal to

the set of generic types in Xd ∩Σ−1(a) over acleq
(Ma). In particular, P is a finite set, say

P = {q1, . . . ,qm}, where m is the Morley degree of Xd ∩Σ−1(a).

Let G̃ =Gal(Ma) be the (absolute) Galois group of Ma, that is, the set of

elementary permutations of acleq
(Ma) fixing Ma pointwise. The group G̃ acts transi-

tively on P . The proof of Claim 2 in the proof of Proposition 2.3 goes through in this

context (with StabG̃(V) replaced by StabG̃(q1)), and it yields the theorem exactly as in

the semiabelian case.

The “moreover” clause follows by Lemma 6.3(2)(b). �
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We obtain an analogous result in the type-definable case. We refer to [5,

Section 2.3] for the definition of relative Morley rank.

Theorem 6.5. Theorem 6.4 also holds in the case that S is a type-definable divisible

abelian group of finite relative Morley rank. �

Proof. Say S is of finite relative Morley rank d, and let p be a strong type over A=M

extending S. Assume p is free (i.e., Σ∗p(d) is the generic type of S).

Let X ⊆ S be a relatively definable subset of S such that p is the unique generic

type of X. Then, for a generic in S over M, Y= Xd ∩Σ−1(a) is a relatively Ma-definable

subset of Sd, so, in particular, the set P of generic types in Y over acleq
(Ma) is finite

(equal to the relative Morley degree of Y). We finish as in the proof of Theorem 6.4. �

We now state a uniform version of Theorem 6.4.

Theorem 6.6. Suppose T is almost ℵ1-categorical and (St)t∈T is a uniformly definable

family of divisible abelian groups in T . Let (Xt)t∈T be a definable family of Morley

degree 1 sets, with Xt a free subset of St for every t∈ T . Let pt be the generic global

type of Xt.

Then there is N ∈N such that for every t∈ T , the partial long type {[m]xmn= xn |
m,n∈N} ∪ pt(x1) has at most N completions to global types. �

Proof. Since Morley rank is definable in T (Fact 4.2), we may assume that RM(St)=
d for all t∈ T . Let Σt : Sd

t → St be the summation map. We infer from Lemma 4.8 that

DM(Xd
t ∩Σ−1

t (a)) is bounded. The statement follows by the proof of Theorem 6.4. �

Theorem 6.7. Suppose T is ω-stable with the DMP and (St)t∈T is a uniformly definable

family of divisible abelian groups of finite Morley rank in T . Let (Xt)t∈T be a definable

family of Morley degree 1 sets, with Xt a subset of St for every t∈ T . Let pt be the generic

global type of Xt. Then

(i) { t∈ T | pt is free and Kummer-generic in St} is definable.

(ii) The set of t such that some translate of pt is free and Kummer-generic

in H(pt) is definable.

(iii) Suppose that the family (St)t∈T is constant (equal to S). Then the set

{ t∈ T | pt is Kummer-generic in S} is definable.
�
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Proof. Adding parameters to the language if necessary, we may assume the two

families are defined over ∅.

(i) Using the DMP, we may assume that RM(St) is constant, say equal to d.

We infer from Lemma 6.3 that freeness of Xt (in St) is a definable condition

in t, and so we may in addition assume that all Xt are free in St. By the

DMP, DM(Xd
t ∩Σ−1

t (a)) is bounded. As in the proof of Theorem 6.6, we find

N ∈N such that for every t∈ T , the partial long type {[m]xmn= xn |m,n∈
N} ∪ pt(x1) has at most N completions to global types. It follows that Xt is

Kummer generic in St iff DM([l]−1(Xt))= 1 for all primes l ≤ N. The latter is

a definable condition by the DMP.

(ii) By Lemma 6.1, H(pt) is equal to the stabilizer of Σ∗(p
(d)
t ), so (H(pt))t∈T is a

definable family of (divisible) subgroups of the St. It is clear that one trans-

late of pt in H(pt) is Kummer-generic in H(pt) if and only if all translates of

pt in H(pt) are Kummer-generic in H(pt). We are done by part (i), since we

may consider the family {Ys,t= (s+t Xt) ∩ H(pt) |RM(Xt)=RM(Ys,t}.
(iii) By Lemma 6.3(2)(b), pt is Kummer generic (in S) iff a translate of pt is Kum-

mer generic in H(pt) and H(pt)≥ Stors. The latter condition is equivalent to

H(pt)≥d(Stors), and so we conclude by (ii). �

7 Interesting Examples

Finally, using the results of previous sections, we provide examples of groups to which

the results of Section 6 apply:

Examples 7.1.

(i) Commutative divisible algebraic groups: As mentioned in Section 1,

Theorems 6.4 and 6.7 slightly generalize Theorems 1.1 and 1.2, giving

results for arbitrary commutative divisible algebraic groups rather than

just semiabelian varieties.

(ii) Divisible abelian groups of finite Morley rank in DCF0: groups definable

in DCF0 have the DMP—this follows from Corollary 4.10 and the result of

Hrushovski that DCF0 A exists (see [19]). Therefore, both Theorems 6.4 and

6.7 apply.

(iii) Divisible abelian groups interpretable in compact complex manifolds: any

such group is of finite MR, and by Corollary 5.4 it has the DMP. So again,

Theorems 6.4 and 6.7 apply.
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(iv) Type-definable groups in the theory SCFp,e of separably closed fields of a

fixed characteristic p and inseparability degree e: by [6], the commutative

divisible type-definable groups in SCFp,e are (up to definable isomorphism)

precisely those of the form S# :=⋂
n pnS for S a semiabelian variety. Benoist,

Bouscaren, and Pillay [5, Proposition 3.23] show that for certain semia-

belian varieties S, in particular those which are split (i.e., a product of a

torus and an abelian variety), S# has finite relative MR. Hence Theorem 6.5

applies. �

It is known that SCFp,e A exists [7], so it is tempting in the context of the last

example to try to deduce DMP for S# by appeal to Corollary 4.10, for those S# having

relative QE; however, it is not clear that existence of SCFp,e A implies axiomatizability of

the generic automorphism for the induced structure on S#. In an earlier version of the

paper, we put a general version of this as a question, asking:

Question. If T is a stable theory for which T A exists, and if X is a type-definable set

with relative QE, does Th(Xind)A necessarily exist? �

The general answer to this question is no, as is shown by the following example

due to Nick Ramsey.

Example 7.2. Let L be the language consisting of a binary relation E and constant

symbols ci,n for 1≤ i ≤n<ω. Let T be the L-theory axiomatized by:

• E is an equivalence relation with infinitely many classes, and every class is

infinite;

• the ci,n are pairwise distinct, and E(ci,n, cj,m) holds iff n=m.

T is complete with QE, has finite additive Morley rank and the DMP. So T Aexists (see [9]).

For n≥ 1, consider ϕn(x) := E(x, cn,n)→
∨

i≤n x= ci,n, and let X be the type-

definable set given by {ϕn |n≥ 1}. The induced structure on X is that of an equiva-

lence relation with exactly one equivalence class for every n≥ 1 whose elements are

named by constants. In particular, X has relative QE and Xind is stable with the finite

cover property. By an observation of Kudaibergenov (see [16, Fact 3.5]), it follows that

Th(Xind)A does not exist.
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In a similar fashion, Ramsey obtains an example where X has relative QE, Xind

does not have the finite cover property but Th(Xind)A does not exist. �

Finally, let us mention (see the following remark) that there is another way of

viewing the notion of Kummer-genericity for subvarieties of a semiabelian variety in

a more abstract manner. This reformulation shows that the main ideas of the present

paper are not bound to the presence of an underlying (commutative) group. It is then rea-

sonable to ask whether our results extend to more general expansions of ω-stable (finite

rank) theories, for example, in the context of Shimura varieties. In the model-theoretic

study of the j-function, the relationship between affine n-space (with its structure as an

algebraic variety) and its reduct given by the Hecke correspondences plays an important

role, and there are strong similarities to the semiabelian context. Forthcoming work of

Adam Harris is expected to be relevant to this case.

Remark 5. Suppose S is a semiabelian variety defined over K = Kalg. Let T1 be the theory

of the structure S1 with underlying set S(K), and with a predicate for every algebraic

subvariety (defined over K) of some cartesian power of S. Let T0 be the reduct of T1, with

predicates only for algebraic subgroups of cartesian powers of S. Let Ti be Li-theories,

for i = 0,1, and put S0 = S1 �L0 . (Note that S0 is an abelian structure, so in particular T0

is one-based.)

Let X ⊆ S be an irreducible variety defined over L = Lalg ⊇ K, and let p1 be the

generic L1-type of X over S(L). Then X is free iff p1 �L0 is the (unique) generic L0-type

over S(L), and X is Kummer-generic iff it is free and for b realizing p1, the natural map

of absolute Galois groups GalT1(Lb)→GalT0(Lb) is a surjection. �
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tions, and Zoé Chatzidakis, Philipp Habegger, Rahim Moosa, and Giuseppina Terzo for helpful

remarks, and the referees for their careful reading of the manuscript.

Funding

This work was supported by Agence Nationale de Recherche [MODIG, Projet ANR-09-BLAN-0047]

(fully to M.B. and partially to M.H.) and was supported by the FWF (Austrian Science Fund) [project

AM1202] (to M.G.).

 at U
PM

C
 on July 23, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Some Definability Results in Abstract Kummer Theory 3999

References
[1] Baudisch, A., M. Hils, A. M. Pizarro, and F. O. Wagner. “Die böse Farbe.” Journal of the
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