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Introduction

While set theory started with Cantor’s question, whose positive assertion is called CH
nowadays, whether every subset of the reals can be mapped bijectively either to the
real line or to the natural numbers, it is Gödel who started modern set theory with two
results. First the incompleteness theorems in 1931, which made logicians and mathemati-
cians realize, that every mathematical statement wasn’t decidable. Suddenly questions
didn’t necessarily ask whether something was true, but if it was consistent relative to
another statement.

Definition. Let ϕ and ψ be statements in the language of set theory and T a theory
in the language of set theory. We say that T + ϕ has at least consistency strength of ψ
if one can construct a model of T + ψ from any model of T + ϕ.

We say that T +ψ is equiconsistent to T +ϕ if T +ϕ has at least consistency strength
of ψ and vice-versa.

We will often stop referring to the theory T in case T = ZFC.
The real kick-off though was his second breaking result in 1938, the relative consistency

proof that CH, Cantor’s old question, holds true in L. His proof introduced one of the
two main strategies of modern set theory when it comes to relative consistency: building
so called core models. That is, starting with a model V of ZF, Gödel constructed a
second model L ⊆ V , called the class of all constructible sets. He showed that in L
the generalized continuum hypothesis, GCH, holds as well as the axiom of choice. Thus
those two statement are consistent relative to ZF.

The second method was established in 1963 by Cohen for his proof of the independency
of CH: forcing. While the inner model methods constructed “thinner” models which are
contained in the previous one, the forcing method adds a new set, a so called generic
set, G, such that the initial model is contained in the constructed model. With this
method, he added ω2 many reals to a model of CH without changing any cardinalities,
thus constructing a model in which CH was false. While it was already known that
there were some statements that weren’t decidable in ZFC, this put an end to the hope
that every “interesting” statement was in fact decidable in ZFC. But that way opened
up many interesting possibilities. The question of the relative consistency of various
statements not decidable in ZFC became one of the central objects of set theory.

Going back to Cantor’s question, Easton later proved that the generalized continuum
hypothesis was vastly independent of anything else. But Cantor’s initial approach,
proving that sets of increasing complexity were either countable or of the cardinality of
the continuum, proved interesting on its own. The first interesting theorem in this line
of research is due to Cantor and Bendixson:
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Theorem (Cantor-Bendixson, 1883). Let C be a closed set, then C has the perfect
set property (i.e. is either countable, or contains a subset with no isolated points).

This was then strengthened in 1916 by Hausdorff and Aleksandrov to Borel sets and
finally by Suslin to analytical sets. This was the end of the hope of an internal proof of
CH as the first twist appeared at the coanalytical level:

Theorem (Luzin and Sierpiński, 1923). Every coanalytical set is the union of ω1

many Borel sets.

This result was sharp in the sense of:

Theorem (Kondô, 1939). If V = L then there exists an uncountable Π1
1- (i.e. a

coanalytical-)set without a perfect subset.

As the representation of sets of reals as the union of a perfect set and a “small” set
seemed to break down at this stage, by an “inner model argument” by the way, hence
one went to some smaller class of subset of R: Σ

̃
1
2 prewellorders, which seemed to bear

more structure.

Theorem (Martin, 1969/70). Every Σ
̃

1
2 well-founded relation has length less than ω2.

Setting δ
̃

1
2 as the sup of the lengths of those Σ

̃
1
2 well-founded relations one can restate

the theorem simply as δ
̃

1
2 ≤ ω2. The question about the possible values of δ

̃
1
2 haunted set

theory since then. Notice that δ
̃

1
2 is absolute between ZF-models having the same reals,

hence one could study it in L(R) as well. Under the axiom of determinacy, the length
of δ

̃
1
n was computed, and it turned out that δ

̃
1
2 = ω2. Obviously δ

̃
1
2 < ω2 under CH, and

the question whether the equality was possible was first answered in 1982:

Theorem (Steel-Van Wesep, 1982). Suppose ZF+AD+ACR. There is a forcing such
that, the forcing extension is a model of ZFC+ δ

̃
1
2 = ω2 + “ the non-stationary ideal on ω1

is ω2-saturated”.

Obtaining δ
̃

1
2 = ω2 is since then considered by most set theorists as a “natural negation”

of the continuum hypothesis, as it implies that a much more palpable set of reals is of
large cardinality. After Steel and Van Wesep’s result, Woodin showed that the equality
was implied by NSω1 is ω2-saturated and P(ω1)# exists. With Foreman, Magidor and
Shelah’s result that MM implies that NSω1 is ω2-saturated and every X has a sharp,
we have that MM implies δ

̃
1
2 = ω2. Woodin then reduced the hypothesis to BMM and a

measurable cardinal. It is in this light that we give our modest contribution to this vast
research effort of understanding the structure of the real line:

Theorem (Corollary 2.19). Suppose BMM and “there exist a precipitous ideal on ω1”
then δ

̃
1
2 = ω2.

In the last few theorems, we have seen a new type of axiom emerging, so called forcing
axioms. Basically forcing axioms are the assertion that, for some types of forcing and
for a given collection of dense sets of such a given forcing, there is a set that behaves
like a generic object for that collection.
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Definition. Let Γ be a class of partial orders. The Forcing Axiom for Γ, FA(Γ), is the
following principle: let P ∈ Γ and let ⟨Di; i ∈ ω1⟩ denote a collection of sets dense in P.
Then there is a filter F ⊆ P meeting every Di, i < ω1.

In this case, BMM is the a bounded version, that is, we limit ourselves to dense sets
of cardinality at most ω1 of the boolean algebra of regular open sets of P, where P is a
forcing in Γ. BMM can be formulated as BFA(Γ), the bounded forcing axiom for the class
Γ of all stationary set preserving forcings. The other forcing axiom we want to study is
BPFA = BFA(∆), where ∆ is the class of proper forcings. One particular thing that has
stroke our interest is that, while BPFA alone has relatively low consistency strength1,
and a precipitous ideal is equiconsistent to a measurable cardinal, the conjunction of
both explodes in strength:

Theorem (Theorem 3.1). Suppose BPFA holds and that there is a precipitous ideal
on ω1. Then there is an inner model with a Woodin cardinal.

Somehow this and the next result of that section, concerning a similar axiom, BPFAuB,
indicates that forcing absoluteness on Hω2 together with the existence of generic embed-
dings with critical point ω1 could lead to interesting results. This made us wonder if
one could define generic embeddings with stronger properties, while still staying below
ω2-saturation, which would directly lead to some inner model with a Woodin cardinal.
If one took the analogy of measurable cardinal and precipitous ideals seriously, the next
natural step would be to find embeddings who mimic strong cardinals. This is what
we did in the last chapter of this thesis. We have two suggestion for the definition of
such embeddings, one taking the combinatorial approach, ideally strong cardinals and
mimicking the behavior of extenders, the other approach going directly for the generic
embeddings, generically strong cardinals. Our first concern was to prove, much in the
spirit of relative consistency highlighted at the beginning of this introduction, that these
two definition are indeed in the realm of strong cardinals. In Theorem 4.10 and The-
orem 4.22 we constructed forcing extensions containing ideally strong cardinals and
generically strong cardinals respectively, starting with the same amount of strong car-
dinals. In Lemma 4.13 we show the other direction of equiconsistency, that is, starting
with a model of generically strong cardinal, we show that these are strong in a core
model.

Overview

In Chapter One we introduce the concepts of precipitous ideals, extender, generic em-
beddings and forcing axiom and review some main results about them. After that we
give a quick overview of the inner model theory we will be working with. There are
three situation we will be working in, one below a strong cardinal, where we will use
the theory as outlined in Jensen’s manuscripts [Jenc] or Zeman’s book [Zem02]. The
second context we will be working in is below one Woodin cardinal. We define premice

1it is consistent with V = L

iii



Contents

in that context and give a thorough definition of iteration tree and iteration strategies.
The exposition mainly follows [MS94] and [Ste96]. Our analysis of BPFA and of ideal
extender will be in that situation. Then we will develop what happens if one allows mice
to bear finitely many Woodin cardinals. We will use the notes of [Ste] and the recent
book [SS]. In this context we will have to work with mice relativized to a set. After
giving some specific results to that type of mice, we will explain how iteration strategies
can behave in that context, and give some results about mouse operators. As in the
previous subsection, we will close with the exposition of basic properties of K.

Chapter two deals with one particular forcing P(I, θ), where I is a precipitous ideal
on ω1. The forcing is a variant of Jensens L-forcing which was developed in [Jena] and
[Jend]. The forcing adds a generic iteration of length ω1 such that the last model is
⟨HV

θ , ∈, I⟩. In the first section, we will define the forcing and show why it is stationary
set preserving in case I = NSω1 . In the next section, we will show why a slight variant
of it increases δ

̃
1
2. We will use that fact to prove that BMM and precipitousness of NSω1

implies that δ
̃

1
2 = ω2. We will then state some other implications easily gained from that

fact.
Chapter three is solely devoted to the analysis of the consistency strength of BPFA+“

there is a precipitous ideal on ω1”. After reviewing some facts about the ◻κ sequence in
the first section, we show in section two that BPFA implies that the cardinal successor
in K of ω1 is computed badly. That is

ω+K1 < ω2,

We first prove that statement under the hypothesis that there are “no inner models with
a strong cardinal”. This “warm-up” shows the main ideas of the proof. We then show
that if one looks carefully at the complexity of the statement “M is iterable”, the same
result holds true if we assume that there are no inner models with a Woodin cardinal.
In the next section, we will show that the existence of a precipitous ideal implies the
contradictory inner model theoretic situation, namely:

ω+K1 = ω2

This will be done under the hypothesis that there is “no inner model with a strong
cardinal”. Finally in the last section, we will show that if one assumes BPFAuB instead
of BPFA, we can show the closure of the universe under the M#

n -operator for all n.
Specifically this implies that all projective sets of reals are determined.

Chapter four introduces a new concept: ideal extenders. These are a generalization
of precipitous ideals to extenders. In the first section we review some forcing techniques
in the cases of measurable cardinals and precipitous ideals. The second section defines
ideal extender and constructs some assuming the existence of a strong cardinal. Then
we show that if we assume that for every set A, there is an ideal extenders on κ that
conserves A in the ultrapower, κ must be a strong cardinal in the core model. In the
next section, we construct two ideally strong cardinals, from an A-strong cardinal and a
strong above it. We will then we show that if we don’t require generic embeddings to be
given by an ideal extender, we can construct almost arbitrarily many generically strong
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cardinals. In turn, we show that generically strong cardinals must be strong in the core
model. We apply the techniques we developed so far to supercompact cardinals in the
next section, where we show that from ω supercompact cardinals, we can build a model
where every ℵn is generically strong.
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1 Definitions

We will now introduce some of the main concept we will work with in this thesis.

1.1 Ideals and filters

Definition 1.1. Let X be a set, we call I ⊆ P(X) an ideal on X if

i. ∅ ∈ I,

ii. I is closed downward under inclusion, i.e. x ⊆ y ∧ y ∈ I ⇒ x ∈ I

iii. I is closed under finite union, i.e. x, y ∈ I ⇒ x ∪ y ∈ I.

We say that F ⊆ P(X) is a filter on X if

i. X ∈ F ,

ii. F is closed upward under inclusion, i.e. x ⊆ y ∧ x ∈ F ⇒ y ∈ F ,

iii. F is closed under finite intersection, i.e. x, y ∈ F ⇒ x ∩ y ∈ F .

In the following we will further assume that if I (respectively F ) is an ideal (respectively
a filter) on X, they are not equal to P(X).

The concept of filter has been first used in measure theory, which explains the second
definition:

Definition 1.2. Let I be an ideal on X. x ⊆ X is an I-measure one set if there is a
y ∈ I such that x =X ∖ y. We denote the set of all I-measure one sets by Ic.
x ⊆ X is an I-positive set if for all y ∈ I we have that x ∩ (X ∖ y) ≠ ∅. We denote the

set of all I-positive sets by I+.
In the same spirit, for a filter F on X, the set of the F positive set is

F + = {x ⊆X;∀y ∈ F x ∩ y ≠ ∅} .

The set of the F -nullset is denoted by

F − = {x ⊆X;∃y ∈ F x ∩ y = ∅} ,

if x ∈ F − we say that x has F -measure zero.

1



1 Definitions

Remark 1.3. Let I and F be as in the definition. Ic is a filter, the so called dual filter
to I and I+ = P(X) ∖ I. Dually F − is an ideal, called the dual ideal to F . Further
F + = P(X) ∖ F −, in words: the F -positive sets are the non-zero sets.

Definition 1.4. We call a filter F on X an ultrafilter if for all x ⊆ X, either x ∈ U or
X ∖ x ∈ U .

Remark that if F is an ultrafilter, F + = F .

Definition 1.5. Let κ be a regular cardinal. A filter U is < κ-complete if for all λ < κ
and for all sequence ⟨xi; i < λ⟩ of subsets of X, ⋂i<λ xi ∈ U .

An ultrafilter U is called non-trivial if it is not generated by a point, that is for all
a ∈X {x ⊆X;a ∈ x} ≠ U .

Remark that, by the axiom of choice, there are non-trivial ultrafilters. We generally
will not mention that an ultrafilter is non-trivial, but we will assume it throughout this
thesis.

By NSω1 we shall denote the nonstationary ideal on ω1, that is the ideal generated by
all non-stationary subsets of ω1

1.2 Large cardinals

Let us introduce three large cardinals that will give the consistency strength frame of
this work: measurable cardinals, strong cardinals and Woodin cardinals.

Definition 1.6. We call a cardinal κ a measurable cardinal if there is a fully elementary
embedding j ∶ V →M ⊆ V , where M is transitive and j has critical point κ.

One core observation about measurable cardinals is that there is a combinatorial
property that describes measurability:

Lemma 1.7. V ⊧ “U is a < κ-complete non-trivial ultrafilter” ⇐⇒ there is a non-
trivial embedding π ∶ V →M ⊆ V , where M is transitive and j has critical point κ.

By strengthening the requirements on the embedding, one gets stronger large cardinal
properties.

Definition 1.8. A cardinal µ is λ-strong if there is an fully elementary embedding
j ∶ V → M ⊆ V , where M is transitive and j has critical point κ such that Hλ ⊆ M . A
cardinal µ is strong if it is strong for all λ.

Definition 1.9. Let ϕ(u) be a first order statement in the language of set theory in
one free variable u. Let A be the class of all x such that ϕ(x). We say that an ordinal
is ϕ-strong or A-strong, if and only if for all α there is a j ∶ V → M ⊋ Vα, where M is
transitive such that j(A) ∩ Vα = A ∩ Vα.

Definition 1.10. A cardinal δ is a Woodin cardinal if for all A ⊆ Vδ there are arbitrarily
large κ < δ such that for all λ < δ there exists an elementary embedding j ∶ V → M
, where M is transitive and j has critical point κ, such that j(κ) > λ, Vλ ⊆ M and
j(A) ∩ Vλ = A ∩ Vλ.

2



1.3 Extenders

1.3 Extenders

Definition 1.11. Let M be a model of some large enough fragment of ZFC. Let κ be
a cardinal and let λ > κ be an ordinal.

i. A ⟨κ,λ⟩-system of filters over M is a set

F ⊆ {⟨a, x⟩; x ∈ P(aκ) ∩M ∧ a ∈ [λ]<ω} ,

such that for all a ∈ [λ]<ω, Fa = {x; ⟨a, x⟩ ∈ F} is a filter and there is an x ∈
P(aκ) ∩M with x ∉ Fa. We set supp(F ) = {a ∈ [λ]<ω;Fa ≠ ∅}. Notice that F is
not necessarily in M , we will drop M in the rest of the definition, as everything is
to be read as relativized to it.

ii. We say that F is a ⟨κ,λ⟩-system of ultrafilters if it is a ⟨κ,λ⟩-system of filter such
that each Fa is an ultrafilter for a ∈ supp(F ).

iii. let F be a ⟨κ,λ⟩-system of filters. Let a, b ∈ supp(F ), such that a ⊆ b. Let sa,b ∶ a→ b
be the identity. For a set x ∈ P(aκ), let

xa,b = {u ∈ bκ; u ○ sa,b ∈ x} ,

and for a function f ∶ aκ→M , we let fa,b ∶ bκ→M be such that

fa,b(u) = f(u ○ sa,b).

iv. A ⟨κ,λ⟩-system of filters F is called compatible if for all a ⊆ b ∈ supp(F )

x ∈ Fa↔ xa,b ∈ Fb.

v. A ⟨κ,λ⟩-system of filters F is called normal if for every a ∈X and for every function
f ∶ aκ→M such that there is a b ∈ a with

{u ∈ aκ ∶ f(u) ∈ u(b)} ∈ Fa

then there is a c ∈ b with a ∪ {c} ∈ supp(F ) such that

{u ∈ a∪{c}κ; fa,a∪{c}(u) = u(c)} ∈ Fa∪{c}.

vi. We call an ⟨κ,λ⟩-system of ultrafilters F a ⟨κ,λ⟩-extender if it is compatible and
normal and if supp(F ) = [λ]<ω.

Definition 1.12. Let E be a ⟨κ,λ⟩-extender. Let a, b ∈ λ and f ∶ aκ →M , g ∶ bκ →M .
We define the equivalence relation ∼E for f and g by:

f ∼E g ⇐⇒ {u ∈ a∪bκ; fa,a∪b(u) = gb,a∪b(u)} ∈ Ea∪b.

3



1 Definitions

Similarly define ∈E by:

f ∈E g ⇐⇒ {u ∈ a∪bκ; fa,a∪b(u) ∈ gb,a∪b(u)} ∈ Ea∪b.

For a ∈ [λ]<ω and f ∶ aκ →M , let α be minimal such that there is an h ∈ (Vα)M with
h ∼E f and let us fix

[f]E = {g; g ∈ (Vα)M ∧ g ∼E f}
If ⟨{[f]E; a ∈ [λ]<ω ∧ f ∶ aκ→M} ; ∈E⟩1 is well-founded, we write Ult(M,E) for the
transitive collaps:

Ult(M,E) ≅ ⟨{[f]E; a ∈ [λ]<ω ∧ f ∶ aκ→M} ; ∈E⟩.

We will encounter another type of extender in the last chapter of this thesis. It is
possible to take the whole Vλ instead of just λ as the underlying index set. One then has
to consider functions with domain Vκ instead of just κ. The fundamental gain is that,
if Vλ is closed under sequence of length κ, and E is a ⟨κ,Vλ⟩-extender, then is Ult(V,E)
is closed under κ-sequences. For more on that type of extender see [MS89].

1.4 Generic embeddings

We shall write X ≤I Y if and only if X ∖ Y ∈ I. Forcing with ⟨I+,≤I⟩ adds a V -measure
G and thereby a generic embedding π∶V → Ult(V ;G). The ideal I is precipitous if
and only if Ult(V ;G) is well-founded for any generic G. (Cf. [Jec03].) For optimality
reasons, we will work in some fragment of ZFC−, called ZFC∗, that is strong enough to
take generic ultrapower. For more on ZFC∗ and the exact definition, see [Woo99].

Definition 1.13. Let M be a transitive model of ZFC∗ + “ω1 exists” and let I ⊆ P(ωM1 )
be such that ⟨M ; ∈, I⟩ ⊧ “I is a uniform and normal ideal on ωM1 .” Let γ ≤ ω1. Then

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ γ⟩, ⟨Gi; i < γ⟩⟩

is called a putative generic iteration of ⟨M ; ∈, I⟩ (of length γ+1) if and only if the following
hold true.

i. M0 =M and I0 = I.

ii. For all i ≤ j ≤ γ, πi,j ∶ ⟨Mi; ∈, Ii⟩ → ⟨Mj; ∈, Ij⟩ is elementary,

iii. Ii = π0,i(I), and κi = π0,i(ωM1 ) = ωMi
1 .

iv. For all i < γ, Mi is transitive and Gi is ⟨Ii,≤Ii⟩-generic over Mi.

v. For all i + 1 ≤ γ, Mi+1 = Ult(Mi;Gi) and πi,i+1 is the associated ultrapower map.

vi. πi,j ○ πj,k = πi,k for i ⩽ j ⩽ k.

1we used scott’s trick in order to make each [f]∼E
a set.
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1.4 Generic embeddings

vii. If λ ≤ γ is a limit ordinal, then ⟨Mλ, πi,λ, i < λ⟩ is the direct limit of ⟨Mi, πi,j, i ⩽
j < λ⟩.

We call
⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ γ⟩, ⟨Gi; i < γ⟩⟩

a generic iteration of ⟨M ; ∈, I⟩ (of length γ + 1) if and only if it is a putative generic
iteration of ⟨M ; ∈, I⟩ and Mγ is transitive. ⟨M ; ∈, I⟩ is generically γ + 1 iterable iff every
putative generic iteration of ⟨M ; ∈, I⟩ of length γ + 1 is an iteration.

Notice that we want (putative) iterations of a given model ⟨M ; ∈, I⟩ to exist in V , which
amounts to requiring that the relevant generics Gi may be found in V . The following
lemma is therefore only interesting in situations in which M (or a large enough initial
segment thereof) is countable so that we may actually find generics in V .

Lemma 1.14 (Woodin). Let M be a transitive model of ZFC, and let I ⊆ P(ωM1 )
be such that ⟨M ; ∈, I⟩ ⊧ “I is a uniform and normal precipitous ideal on ωM1 .” Then
⟨M ; ∈, I⟩ is generically γ + 1 iterable whenever γ < min(M ∩OR, ωV1 + 1).

Proof. The proof is taken from [Woo99, Lemma 3.10, Remark 3.11]. By absoluteness,
if ⟨M ; ∈, I⟩ is not generically γ + 1 iterable, then ⟨M ; ∈, I⟩ is not generically γ + 1 iterable
inside MCol(ω,δ) for some δ. Let ⟨κ0, η0, γ0⟩ be the least triple in the lexicographical order
such that:

i. κ0 > ωM1 is regular in M ,

ii. η0 < κ0, and

iii. for some δ, inside MCol(ω,δ), there is a putative iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ γ0⟩, ⟨Gi; i < γ0⟩⟩

of ⟨HM
κ0

; ∈, I⟩ such that π0,γ0(η0) is ill-founded.

As I is precipitous in M , γ0 and η0 are limit ordinals. Choose some i∗ < γ0 and
η∗ < π0,i∗(η0) such that πi∗,γ0(η∗) is ill-founded. We may construe

⟨⟨Mi, πi,j, Ii, κi; i
∗ ⩽ i ⩽ j ⩽ γ0⟩, ⟨Gi; i

∗ ⩽ i < γ0⟩⟩

as a putative generic iteration of H
Mi∗

π0,i∗(κ0)
. By elementarity, the triple

⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩

is the least triple ⟨κ, η, γ⟩ such that

i. κ > ωMi∗

1 is regular in Mi∗ ,

ii. η < κ, and

5



1 Definitions

iii. for some δ, inside M
Col(ω,δ)
i∗ , there is a putative iteration

⟨⟨M ′
i , π

′
i,j, I

′
i , κ

′
i; i ⩽ j ⩽ γ⟩, ⟨G′

i; i < γ⟩⟩

of ⟨HMi∗

π0,i∗(κ)
; ∈, Ii∗⟩ such that π′0,γ(η) is ill-founded.

However, by the existence of

⟨⟨Mi, πi,j, Ii, κi; i
∗ ⩽ i ⩽ j ⩽ γ0⟩, ⟨Gi; i

∗ ⩽ i < γ0⟩⟩

and by absoluteness, the triple ⟨π0,i∗(κ0), η∗, γ0 − i∗⟩ contradicts the alleged characteri-
zation of the triple ⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩ inside Mi∗ . ⊣

Lemma 1.15. Let j ∶ V → M be an elementary embedding between two ZFC models.
Let G be P-generic over V and G′ be j(P)-generic over M such that j′′G ⊆ G′. Then j
can be lifted to j ⊆ j̃ ∶ V [G] →M[G′].

The proof is part of the folklore and not too difficult to prove.

Remark 1.16. We can weaken the hypothesis on the models of the previous lemma
to some fraction of ZFC as long as the fragment is strong enough to fulfill the forcing
theorem.

1.5 Forcing axioms

As we have said in the introduction, forcing axioms have a general definition:

Definition 1.17. Let Γ be a class of partial orders. The forcing axiom for Γ, FA(Γ), is
the following principle:

let P ∈ Γ and let ⟨Di; i ∈ ω1⟩ denote a collection of sets dense in P. Then
there is a filter F ⊆ P meeting every Di, i < ω1.

The bounded forcing axiom for Γ, BFA(Γ) is the following principle:

P ∈ Γ and Q = ro(P), the boolean algebra of regular open sets of P. let
⟨Di; i ∈ ω1⟩ denote a collection of sets dense of cardinality at most ω1 in Q.
Then there is a filter F ⊆ Q meeting every Di, i < ω1.

Definition 1.18. Let Γp be the collection of all proper forcing notions, Γsp the collection
of all semi-proper forcing notions and Γs the collection of all stationary set preserving
forcing notions. Then:

i. PFA = FA(Γp) and BPFA = BFA(Γp),

ii. SPFA = FA(Γsp) and BSPFA = BFA(Γsp),

iii. MM = FA(Γs) and BMM = BFA(Γs),

6



1.6 Inner model theory

Notice that, as SPFA implies that Γsp = Γs, we have that SPFA ⇐⇒ MM. It turn
out that these characterizations are often not as useful as an equivalent one who state
the axioms in terms of forcing absoluteness. This characterization is due to Bagaria and
is found in [Bag00].

Lemma 1.19. The axiom Bounded Martin’s Maximum, which we denote by BMM, is
equivalent to:

For any stationary set preserving partial order P, ⟨Hω2 , ∈⟩V ≺Σ
̃1 ⟨Hω2 , ∈⟩V

P
.

Lemma 1.20. The Bounded Proper Forcing Axiom, which we denote by BPFA, is
equivalent to:

For any proper partial order P, ⟨Hω2 , ∈⟩V ≺Σ
̃1 ⟨Hω2 , ∈⟩V

P
.

It is in this new sense that we want to introduce the last forcing axiom we will consider
in this thesis.

Definition 1.21. A set A ⊆ R universally Baire set if and only if for every notion of
forcing P there exist trees T and U on ω × λ, where λ = 2card(P), such that

A = p[T ],R ∖A = p[U]

and for every generic filter G on P,

V [G] ⊧ p[T ] ∪ p[S] = R and p[T ] ∩ p[S] = ∅.

we say that T and U are the trees representing the universally Baireness of A for P.

Definition 1.22. The Bounded Proper Forcing Axiom for universally Baire sets, which
we denote by BPFAuB, is the following statement:

For any proper partial order P and for any universally Baire set A ⊆ R, if T
and U are trees representing the universally Baireness of A for P,

⟨Hω2 , ∈, p[T ]⟩V ≺Σ
̃1 ⟨Hω2 , ∈, p[T ]⟩V P .

1.6 Inner model theory

We will use three types of inner model theory, depending on the anti large cardinal
context we will work in.
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1 Definitions

1.6.1 Below one strong cardinal

We expose the framework we will work in parts of section 3.2 and throughout section
3.3. This is the context in which we will be in most of section 4.2 as well. Below a
strong cardinals iteration are still linear, which simplify the theory by a great deal. One
of the main consequences for us is that every embedding from K into some model M is
already an iteration map. This won’t stay true when larger cardinals are present. We
will use the theory as developed in [Jenc], for an introduction on the theory of mice and
many basic concept we will refer to [Zem02]. Let us give a quick overview of some of
the main definitions and theorems.

While [Jenc] use the fine structure developed in [Jenb], we will use the notation in-
troduced in [SZ], the two being equivalent. The central definitions which we will state
again here for completeness are those of iteration and mouse.

Definition 1.23. We call a structure N = ⟨J E⃗α ,Eωα⟩ a premouse if and only if the
following holds:

i. ⟨J E⃗α ,Eωα⟩ is an acceptable J-structure (cf. [SZ, definition 1.20 p. 16]).

ii. E⃗ ⊆ (ωα + 1) ×N2 such that Eξ = ∅ if ξ is not a limit, where

Eξ = {⟨a,X⟩; ⟨ξ, a,X⟩ ∈ E} .

iii. For ν ≤ α set

N∥ν = ⟨J E⃗ν ,Eων⟩.
Either Eων = ∅ or N∥ν is an acceptable J-structure such that

a) Eων is a ⟨κ,ων⟩-extender on J E⃗ν for some κ,

b) Eων is weakly amenable on J E⃗ν ( i.e. if ⟨Xξ; ξ < κ⟩ ∈ N , then, for a ∈ [ωα]<ω,
{ξ; Xξ ∈ Eων,a} ∈ N).

iv. if ν < α, then ˆN∥ν exists and is sound (cf. [Jenc, Appendix to §1 p. 2]).

v. Let ν ≤ α and π ∶ J E⃗ν →Eων Q = ⟨J E⃗Qβ ,EQ
ωβ⟩ Eων , where Eων ≠ ∅ is a ⟨κ,ων⟩-extender.

a) J E⃗ν = J E⃗Qν (i.e. N∥ν is coherent),

b) ων ∈ wfcore(Q),
c) E⃗Q

ων = ∅

vi. Let Eων be an extender on κ. Let κ+N∥ν ≤ ν̄ < ν such that ⟨J E⃗ν̄ ,Eων ∩ J E⃗ν̄ ⟩ satisfies
the previous condition i to v. Then Eων̄ = ∅.

Fact 1.24. There is a Q-formula ϕ such that

J E⃗α ⊧ ϕ ⇐⇒ ⟨J E⃗α ,∅⟩ is a premouse.
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1.6 Inner model theory

Definition 1.25. A putative iteration T with indices ⟨⟨νi, αi⟩; i + 1 ≤ θ⟩ of a premouse
M is a sequence ⟨MT

i ; i < θ⟩ of premice with iteration maps ⟨πi,j; i ≤ j < θ⟩ such that

i. MT
0 =M,

ii. the πi,j commute,

iii. ωνi ≤ αi ≤ OR∩MT
i ,

iv. if E
MT

i
ωνi = ∅, then MT

i+1 =MT
i ∥αi and πi,i+1 = id ↾ MT

i ∥αi,

v. if E
MT

i
ωνi ≠ ∅, then E

MT
i

ωνi is an extender in MT
i ∥αi and

πi,i+1 ∶ MT
i ∥αi →∗

E
MT
i

ωνi

Mi+1,

vi. {i; ωαi ∈ Mi} is finite,

vii. if λ is a limit ordinal, thenMT
λ is the direct limit of the system ⟨MT

i , πi,j; i ≤ j < λ⟩,

viii. if θ = µ + 1, E
MT

µ
ωνµ is an extender in MT

µ ∥αµ and the ultrapower is eventually
ill-founded.

We call a putative iteration T an iteration if all models MT
i are well-founded. MT

i is
called the i-th iterate and θ is called the length of T .

Definition 1.26. We call a (putative) iteration T standard if

i. ωαi = OR∩MT
i if E

MT
i

ωνi = ∅,

ii. αi is the largest α ≤ OR∩MT
i such that E

MT
i

ωνi is a total extender on MT
i ∥α if

E
MT

i
ωνi ≠ ∅.

We call a (putative) iteration T

i. simple if αi = OR∩MT
i for all i,

ii. beyond λ, if λ is an ordinal such that νi ⩾ λ for all i and

iii. normal if the ⟨νi; i < lh(T )⟩ are a strictly increasing sequence.

Definition 1.27. A premouseM is called iterable if and only if every putative iteration
is an iteration. An iterable premouse is also called a mouse.

Similarly we call a premouse M iterable beyond λ, λ ∈ OR, if every putative iteration
beyond λ is an iteration.

As we will only deal with standard iterations, we will not mention that an iteration is
standard anymore. Jensen showed (cf. [Jenc, Lemma 3 §2.2 p. 4]) that in this context
the Dodd-Jensen lemma holds:
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Lemma 1.28 (Dodd-Jensen Lemma). Let M be an iterate of a mouse N with iter-
ation map π. Let σ ∶ N →Σ∗ M. Then the iteration is simple and π̂(ξ) ≤ σ̂(ξ) for all
ξ ∈ N̂ .

Hence iteration maps are unique and if M is an iterate of N we will denote the unique
iteration map by πM,N .

One of the main class of iteration we will be studying are the iterations arising from
the comparison between two mice.

Definition 1.29. LetM and N be two premice. We call a the tuple ⟨T ,Q⟩ the coiter-
ation of M and N if

i. T is an iteration of M and Q an iteration of N ,

ii. for all i, νi is the minimal index such that E
MT

i
νi ≠ EM

Q
i

νi ,

iii. if θ + 1 is the length of T it is also the length of Q and θ is minimal such that
either MT

θ ⊴MQ
θ or MQ

θ ⊴MT
θ .

If MT
θ ⊴MQ

θ , we say that N wins the coiteration between M and N .

Remark that, by definition, every coiteration is a normal iteration.
One very important result is that all mice are coiterable:

Lemma 1.30 (Jensen). Let M and N be two mice of cardinality at most θ. Then
⟨T ,Q⟩ the coiteration of M and N exists and is of length less than θ+. Moreover at
most one side is non simple and if the M side is non-simple, then MQ

lh(Q)
⊴MT

lh(T )
.

Let us now define p-mouse, a generalization of the mouse definition. We will need it
in order to define 0¶. The exact formulation of “below a strong cardinal” is actually
that such mice don’t exist.

Definition 1.31. We call a model N = ⟨J E⃗α ,Eωα⟩ a p-premouse if and only if the fol-
lowing holds:

i. ⟨J E⃗α ,∅⟩ is a premouse,

ii. N satisfies all condition of a premouse in Definition 1.23 but v.c) and vi.,

iii. J E⃗α has a largest cardinal τ ,

iv. Eωα is a ⟨τ, ωα⟩-extender,

v. J E⃗α ⊧ “o(κ) = α” for some κ < τ .

There is a straight forward generalization of iterations of premice to iteration of p-
premice. We call a p-premouseM iterable or a p-mouse if every putative iteration ofM
is an iteration. Most of the results on iterability cary over, especially the Dodd-Jensen
lemma.
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1.6 Inner model theory

Definition 1.32. We call the least ω-sound p-mouse 0¶, if it exists.

Definition 1.33. J E⃗α is strong if and only if ⟨J E⃗α ,∅⟩ is a premouse and whenever M is
a premouse such that J E⃗

M

α = J E⃗α and M is iterable beyond ωα, then M is a mouse and
J E⃗

M

α = J E⃗M̄α , where M̄ = C(M) (cf. [Jenc, §2.3 p.4]).

Now let us define the core model K as:

Definition 1.34. Let ⟨Kν , ν < OR⟩ be the sequence such that Kν = ⟨J E⃗ν ,Eων⟩, where
Eων is either

i. The unique extender F , such that ⟨J E⃗ν , F ⟩ is a strong mouse, if it exists or

ii. ∅, if ⟨J E⃗ν ,∅⟩ is a strong mouse and there are no F such that ⟨J E⃗ν , F ⟩ is strong.

if Kν exists for ν ∈ OR, we set K = J E⃗∞ = ⋃ν J E⃗ν . K is then called the core model.

Assuming 0¶ does not exists, one can show the existence of K as well as many of its
properties:

Theorem 1.35 (Jensen). Suppose 0¶ does not exist. Then the following holds:

i. K exists and is iterable.

ii. K is rigid, i.e. there are no non-trivial embedding j ∶K →K.

iii. Weak covering holds for K, i.e. if β ⩾ ωV2 is a cardinal in K, then

cf(β+K) ⩾ card(β).

iv. If G is generic over V then K =KV [G].

v. Every universal weasel W is a simple iterate of K.

vi. Suppose j ∶ K → W is a Σ1-elementary embedding, then W is a simple iterate of
K and j = πK,W .

1.6.2 Below one Woodin cardinal

We will mainly use this theory in the later stages of Chapter 3, especially in Lemma 3.13
as well as in section 4.3. The theory we expose below is mostly taken from [MS94] and
[Ste96]. While the results all suppose that there is no inner model with a Woodin
cardinal, the definition cary over to a setting where many Woodin cardinals are allowed.
One key feature is that this is the last moment where we have a fully iterable core model
K that is rigid, forcing absolute and who satisfy weak covering. Let us restate the central
definitions and theorems as well as some tools we will need later. We will omit all proofs
as we give references on where to find them.
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Definition 1.36. A sequence E⃗ = ⟨Eβ; β ∈ S⟩ is fine at α if J E⃗α is strongly acceptable
and if α ∈ S it satisfies the following clauses:

i. Eα is a ⟨κ,λ⟩-extender for some κ such that J E⃗ ↾αα ⊧ “κ+ exists”,

ii. (bounded generators) Eα is the trivial completion of Eα ↾ ν, where ν is the natural
length of Eα, and Eα is not of type Z.

iii. (coherence) Let i ∶ J E⃗ ↾αα → Ult(J E⃗ ↾αα ,Eα) be the canonical embedding,

i(E⃗ ↾ κ) ↾ α = E⃗ ↾ α

and i(E⃗ ↾ κ)α = ∅, and

iv. (closure under initial segment) let ν be the natural length of Eα. If η is an ordinal

such that (κ+)JE⃗α ≤ η ≤ ν and η is the natural length of Eα ↾ η and Eα ↾ η is not
of type Z , then one of the two condition below holds:

a) there is a γ such that Eγ is the trivial completion of Eα ↾ η or

b) η ∈ S, let i ∶ J E⃗ ↾ηη → Ult(J E⃗ ↾ηη ,Eη) be the ultrapower map, there is a γ < α
such that π(E⃗ ↾ η)γ is the trivial completion of Eα ↾ η.

Definition 1.37. We call a structure ⟨J E⃗α ,Eα⟩ a potential premouse if E⃗ is fine at all
ν ≤ α. We call a potential premouse N a premouse if N is a potential premouse of which
all proper initial segments are sound.

Definition 1.38. A premouse M is (n + 1)-small if for every ⟨κ, ν⟩-extender on the
M-sequence, M∣κ ⊧ “there are strictly less than n + 1 Woodin cardinals”.

Definition 1.39. LetM be a potential premouse. We call δ ∈ OR∩M a cutpoint ofM
if for every ν > δ, EMν ≠ ∅ implies that cp(EMν ) > δ.

We write N ⊲∗M if N ⊲M and N ∩OR is a cutpoint of M.

The result we will sate in this section restrict themselves to 1-small mice, but the
concepts can be used later on, that is why we prefer to state them in full generality.

One important feature of normal iteration and their related maps is that, whenever ν
is the length of the i-th extender, then for every i < α < β we have that the iteration map
πα,β restricted to ν is the identity. This was possible below a strong cardinal2, because,
if α < β both indexed extender, we had that j(cp(Eβ)) > α, where j is the canonical
ultrapower map by Eα. This no longer holds true in the presence of strong cardinals.
In order to maintain this property, we will look at iteration trees, where we apply an
extender to the largest model such that the previous consideration still holds true.

2we use that rather sloppy expression in the sense of the non-existence of 0¶
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1.6 Inner model theory

Definition 1.40. let M = ⟨J E⃗α , ∈ E⃗ ↾ α,Eα⟩ be a premouse. T is an iteration tree on
M of length θ if

T = ⟨T,deg,D, ⟨Eα,M∗
α+1; α + 1 < θ⟩⟩,

where T is a tree order, which satisfies the condition below. We write ρα for the natural
length of Eα. We will also define potential premiceMα and embeddings iα,β ∶ Mα →Mβ

for ordinals α and β less than θ such that αTβ and D∩]α,β]T ≠ ∅.

i. M0 =M, and each Mα is a potential premouse.

ii. Eα is the extender coded by ḞN , for some active potential premouse N which is
an initial segment of Mα, where Ḟ is the predicate for the top extender in the
language of mice.

iii. α < β Ô⇒ lh(Eα) < lh(β).

iv. If β is the T -predecessor of α, then κ = cp(Eα) < ρβ, andM∗
α+1 is an initial segment

of J
Mβ
γ of Mβ such that P(κ) ∩ JMβ

γ = P(κ) ∩N . Moreover

α + 1 ∈D ⇐⇒ J
Mβ
γ is a proper initial segment of Mβ.

If we take n = deg(α + 1), then n is maximal such that κ < ρn(M∗
α+1) and we set

Mα+1 = Ultn(M∗
α+1,Eα)

and if α + 1 ∉D, then

iβ,α+1 = canonical embedding of Mβ into Ultn(Mβ,Eα),

and iγ,α+1 = iβ,α+1 ○ iγ,β for all γTβ such that ]γ, β]T ∩D = ∅.

v. If λ < θ is a limit, then D ∩ [0, λ[T is finite, and letting γ be the largest element of
D ∩ [0, λ[T ,

Mλ is the direct limit of Mα, α ∈ [γ, λ[T , under the iα,β’s
ii,λ = canonical embedding of Mη into Mλ, for η ∈ [γ, λ[T .

vi. M∗
α+1 is deg(α + 1)-sound.

vii. If γ + 1Tα + 1 and D∩]γ + 1, α + 1]T = ∅, then deg(γ + 1) ⩾ deg(α + 1).

viii. For λ ⩾ θ a limit, deg(λ) = deg(α + 1), for all sufficiently large α + 1Tλ.

For technical reason we want to introduce padded iterations, who are like iteration, but
we allow successor steps to be trivial, that is, no extender were picked and we set

Mα+1 =Mα =M∗
α+1.

13



1 Definitions

The importance of padded iterations will become clear when we start talking about
the comparison process. All further definition carry on the very same way with padded
iteration, therefore we won’t mention them specifically.

Definition 1.41. let M be a premouse and T an iteration tree on M of limit length.
We write

δ(T ) = sup{lh(ETα ); α < lh(T )}
andM(T ), the common part model of T , the unique passive P such that OR∩P = δ(T )
and ∀α < δ(T ) MT

α ∣ lh(ETα ) ⊲ P.

Definition 1.42. let M be a premouse, T an iteration tree on M of limit length and
b a cofinal branch through the tree. Let γ be the least ordinal, if there is one, such that
either

i. ωγ < OR∩MT
b and JM

T
b

γ ⊧ “δ(T ) is not Woodin”,

ii. ωγ = OR∩MT
b and ρω(MT

b ) < δ(T ).

We set
Q(b,T ) = Jγ(MT

b ),
if such a γ exists. If Q(b,T ) exists and is iterable above δ(T ), we call it the Q-structure
of b.

There are two very different steps in the process of building an iteration tree. At
the successor step, we choose an extender on the branch of the last model and at limit
steps, one chooses a cofinal branch in the tree and build the direct limit. Everything
else is already given by these two choices. Similarly to the linear case, we want to be
able to consider taking every extender at the successor steps. As for the limit step, we
are mostly interested in an easily definable branch, as unique as possible. We will see
that in our context, one branch will be singularized as being the “right” one. In order to
modelize this dichotomy in levels of freedom, we will use the game concept and consider
the construction of an iteration tree to be a play in Gk(M, θ).

Definition 1.43. LetM be a premouse and θ an ordinal. The iteration game Gk(M, θ)
is a two player game of length θ played as follow:

Suppose we are at stage α < θ: we have an iteration tree

Tα = ⟨Tα,degα,Dα, ⟨Eν ,M∗
ν+1; ν + 1 < α⟩⟩

of length α. Player I chooses an extender Eα+1 and take an ultrapower with the appro-
priate model Mβ such that

Tα+1 = ⟨Tα+1,degα+1,Dα+1, ⟨Eν ,M∗
ν+1; ν + 1 < α + 1⟩⟩

is an iteration, where Tα is a tree such that:
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1.6 Inner model theory

i. Tα+1 ↾ α = Tα,

ii. βTα+1α + 1,

iii. degα+1(α + 1) ≤ k if it exists.

Suppose we are at stage λ, where λ is a limit ordinal, then player II chooses an ∈-cofinal
branch b through ⋃α<λ Tα such that the direct limit of the models

Mλ
λ = lim{MTα

α ;α ∈ b}

is well-founded. And we set the iteration

Tλ = ⟨Tλ,degλ,Dλ, ⟨Eν ,M∗
ν+1; ν + 1 < λ⟩⟩

such that αTλλ for all α ∈ b and for all α < λ Tλ ↾ α = Tα. Player II looses if one
ultrapower or a limit model is ill-founded. If II wins the game if it does not loose for θ
many steps.

As for every α < β, Tβ ↾ α = Tα, we will drop the indices and only speak of the game
T , where T the union of all Tα.

Definition 1.44. Let M be a premouse. We call Σ an iteration strategy for II in
Gk(M, θ) if Σ maps partial plays T of Gk(M, θ) of limit length to some ∈-cofinal branch
b through T .

We call an iteration game T played according to Σ if for every limit stage λ, the branch
player II chose was Σ(T ↾ λ).

We call Σ a winning strategy if II never looses a game played according to Σ.

Definition 1.45. Let θ be an ordinal and k ≤ ω. We call a premouse M ⟨θ, k⟩-iterable
if it has a winning strategy for Gk(M, θ).

One of the main tools, when working in inner model theory is the comparison process:

Definition 1.46. LetM and N be two premice of cardinality at most θ, ΣM a winning
strategy for Gω(M, θ+) and ΣN a winning strategy for Gω(N , θ+) . We call a pair of
padded iterations ⟨T ,U⟩ a comparison if the following conditions are met:

i. T is a play in Gω(M, θ+) played according to ΣM and U is a play in Gω(N , θ+)
played according to ΣN .

ii. T and U have the same length say λ.

iii. at successor stage α < λ, let ν be the minimal ordinal such that

E
MT

α
ν ≠ EN

U
α

ν ,

then ETα = EM
T
α

ν and EUα = EN
U
α

ν .
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1 Definitions

Notice that E
MT

α
ν or E

NUα
ν might very well be empty, that is why we produce padded

iterations. We call λ the length of ⟨T ,U⟩.

Notice that once is given two iteration strategies, a comparison is uniquely determined.

Definition 1.47. Let M and N be two premice. We call M and N coiterable if there
is a comparison ⟨T ,U⟩ such that if λ is the length of the comparison:

MT
λ ⊴MU

λ or MU
λ ⊴MT

λ

Definition 1.48. We call two extender E and F compatible if for some η, E is the
trivial completion of F ↾ η or F is the trivial completion of E ↾ η.

Lemma 1.49. Let M and N be two coiterable premouse and ⟨T ,U⟩ their coiteration.
If E is an extender used in T and F an extender used in U , then E and F are not
compatible.

Proof. Suppose E = ETα and F = EUβ , λ is such that E is the trivial completion of
F ↾ λ. Let further γ be the T predecessor of α + 1 and η be the U predecessor of β + 1.
Since lh(E) ≤ lh(F ), we have that α ≤ β. α ≠ β, else lh(E) = lh(F ) and thus E = F and
we would not use this extender in the coiteration. Hence α < β and lh(E) is a cardinal in
MU

η . On the other hand the initial condition implies that E is on the extender sequence
of MU

η , but E collapses lh(E) to the natural length of E, a contradiction! ⊣

Let us now briefly state the most important results below one Woodin cardinal from
[MS94, 6.1 p. 58]:

Theorem 1.50 (Uniqueness Theorem). Let T be an iteration tree of limit length θ,
and b and c be distinct cofinal well-founded branches of T . Let α = OR∩MT

b ∩MT
c , so

that α ≥ δ(T ), and suppose that α > δ(T ). Then

Jα(M(T )) ⊧ “δ(T ) is Woodin”.

Hence if we suppose that there are no iterable mice who are not 1-small, for every
iteration T of limit length there is at most one cofinal branch b such that

MT
b ⊧ “δ(T ) is not Woodin”.

Thus choosing exactly that branch gives an iteration strategy. We call a mice iterable
just in case the strategy we just defined is a winning strategy. Notice that if there is an
iteration strategy, it must be that one. Next we want to show that we can compare two
iterable mice, the result can be found in [MS94, 7.1 p. 69]:

Theorem 1.51 (The comparison lemma). Let M and N be n-sound, 1-small, n-
iterable premice, where n ≤ ω. Then there is a comparison ⟨T ,U⟩ of M and N such that
either
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1.6 Inner model theory

i. ⟨T ,U⟩ has successor length θ + 1 and either

a) MT
θ is a initial segment of N Uθ and DT ∩ [0, θ]T = ∅ and deg(α + 1) = n for

all α + 1 ∈ [0, θ]T , or

b) N Uθ is a initial segment of MT
θ and DU ∩ [0, θ]U = ∅ and deg(α + 1) = n for

all α + 1 ∈ [0, θ]U ,

or,

ii. ⟨T ,U⟩ has limit length, one of the two is not simple, and in some V col(ω,κ) there
are well-founded branches b of T and c of U such that either

a) MT
b is an initial segment of N Ub , DT ∩b = ∅ and deg(α+1) = n for all α+1 ∈ b,

or

b) N Uc is an initial segment ofMT
c , DU ∩c = ∅ and deg(α+1) = n for all α+1 ∈ c.

When building the core model around one or more Woodin cardinals, it becomes very
convenient to assume that there is a measurable Ω and to work in VΩ. Again following
Steel in [Ste96] one can define Kc and ultimately K:

Definition 1.52. Suppose Ω is S-thick in W . Then we put

x ∈ Def(W,S) ⇐⇒ ∀Γ (Γ is S-thick in W Ô⇒ x ∈ HullW (Γ))

Remark 1.53. Let Ω be S-thick in W , and let i ∶W → Q be the iteration map coming
from an iteration tree on W ; then i′′ Def(W,S) = Def(Q,S).

For the proof see [Ste96, Lemma 5.6].

Definition 1.54. Suppose Kc ⊧“There are no Woodin cardinals”. We set K as the
common transitive collaps of Def(W,S) for all Ω + 1-iterable weasel such that Ω is A0-
thick in W . We call K the Mitchell-Steel core model.

Notice that by results of Steel, if Kc has no Woodin cardinals, it is a Ω + 1-iterable
universal weasel such that Ω is A0-thick in Kc.

We get that K has the usual properties:

Theorem 1.55 (Steel). Suppose Kc ⊧“There are no Woodin cardinals”. Then the
following holds:

i. K exists and is Ω + 1-iterable.

ii. K is rigid, i.e. there are no non-trivial embedding j ∶K →K.

iii. Weak covering holds for K, i.e. if β ⩾ ωV2 is a cardinal in K, then

cf(β+K) ⩾ card(β).

iv. If G is generic over V then K =KV [G].

v. K is the unique universal weasel which elementarily embeds into all universal
weasels.

17
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1.6.3 Below PD

We can think of this theory as being a continuation of the work drafted above. We will
use the theory as presented in [Ste] and more recently in [SS]. The main use of this
subsection is to outline the theory we will use for the proof of the core model induction.

We shall consider mice relativized to some transitive set x, we will assume that those
sets are coded as subsets of the ordinals. We will restrict ourself to the study of self-
wellordered sets, short swo’s, that is to sets that code a wellorder of themselves. Recall
that the Jensen hierarchy relativized to a swo x starts with

J0(x) = TC(x).

Definition 1.56. A potential X-premice M is a structure of the form:

M= ⟨J E⃗
α (X), ∈,X, E⃗ ↾ α,Eα⟩,

where E⃗ is a fine extender sequence relativized to X. We callM an r-premouse in case
M is an X-premouse for some swo X.

Iteration are defined just as in the previous section, as are the concept of strategy,
iterable mice and so on.

Definition 1.57. Let M be a r-premouse. We say that x is small generic over M if x
is generic over JM0 .

Definition 1.58. We say that a r-premouseM has the strong condensation property if
every countable substructure of M is an initial segment of M.

Definition 1.59. A mouse operator on Z is a function N assigning to each swo x ∈
Z a countably iterable x-premouse N(x) such that N(x) is pointwise definable from
members of x ∪ {x}. We say that N is first order just in case there is a theory T in the
language of r-premice (so having a symbol x for x) such that for all x ∈ Z, N(x) is the
least countably iterable x-premouse satisfying T .

Lemma 1.60. Let N be a first order mouse operator on Z, and suppose π ∶ P → N(x)
is fully elementary in the language of relativised mice; then P = N(π−1(x)).

Hence if N is a first order mouse operator on Y and x ∈ Y is countable, N(x) has the
strong condensation property. Actually every countable substructure is already equal to
N(x).

Let us define two important classes of mouse operators we will discuss in the future.
We actually already met different instances of these in the previous subsection.

Definition 1.61. Let M be an r-premouse. A Q-structure for M is an r-premouse Q
such that

i. M⊲∗ Q,

18



1.6 Inner model theory

ii. either ρω(Q) < o(M) or there is some rΣQn definable counterexample to the wood-
iness of o(M),

iii. Q is countably iterable above o(M).

There is at most one Q-structure for any given r-premouse M, hence this defines a
first-order mouse operator on its domain. We are most interested on the existence of
Q(T ) = Q(M(T )), for T an iteration tree, in this case this definition and the definition
in the previous subsection agree. Using this operator and Q(b,T ) for a cofinal branch b
of T , we can define an iteration strategy:

Definition 1.62. Σt is the following iteration strategy:

Σt(T ) = the unique branch b such that Q(T ) = Q(b,T ).

We write Σt
M

for the strategy restricted to iteration trees on M. Let us give the main
result that connects Q-structures, Woodin cardinals and iteration strategies, taken from
[Ste, Theorem 6.10]:

Theorem 1.63 (Branch Uniqueness Theorem). Let T be an iteration tree such that
there are two distinct cofinal branches b and c. Let δ = δ(T ), and suppose that A ⊆ δ is
such that A ∈ wfp(MT

b ) ∩wfp(MT
c ); then

MT
b ⊧ ∃κ < δ(κ is A-reflecting in δ)

and with its corollary:

Corollary 1.64. Let T be a k-maximal iteration tree; then there is at most one cofinal,
wellfounded branch b of T such that

i. Q(b,T ) exists,

ii. δ(T ) is a cutpoint of Q(b,T ), and

iii. Q(b,T ) is δ(T ) + 1-iterable.

This makes sure the iteration strategy defined above is indeed well defined.
Let us state a few properties of this iteration strategy as found in [SS, p.5]:

Lemma 1.65. Let M be a tame r-premouse,

i. If T is an iteration tree on M, then there is at most one cofinal b such that Q(T )
and Q(b,T ) are defined, and Q(T ) = Q(b,T ), moreover

ii. if in additionM⊧“There are no Woodin cardinals”, or even justM projects below
its bottom Woodin (above the set over which it is built, in each case), then for any
cofinal b of T , Q(b,T ) exists, so that

iii. if in addition, M is ω1 + 1-iterable, then Σt is its unique ω1 + 1-iteration strategy.
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The second class of mouse operator we already met are minimal mice that witness the
existence of some large cardinal:

Definition 1.66. Let ϕ ≡ ϕ(ν0, ν1) be a Σ1-formula in the language of boldface premice,
and let z ∈ R. Let X be a set of ordinals which codes z. An X-premouse M is called
(ϕ, z)-small if and only if

M⊧ ¬ϕ(z,X).
The mouse operator given by ϕ, z is the unique partial map X → M(X) = Mϕ,z(X)
which assigns to any set X of ordinals the unique X-mouse M(X) such that M(X) is
sound above X, M(X) is not ϕ, z-small, but every proper initial segment of M(X) is
ϕ, z-small, if it exists.

Definition 1.67. Let X be a swo, n ∈ ω and let Ḟ be the predicate for the top extender
in the language of r-premice.

i. let ϕ ≡ “Ḟ ≠ ∅”, then we write Jϕ(X) =X# and call it the sharp of X.

ii. Let ϕ ≡ “Ḟ ≠ ∅ and there is a cardinal that is strong up to cp(Ḟ )”, then Jϕ(∅) = 0¶.

iii. Let ϕ ≡ “Ḟ ≠ ∅ and there are n Woodin cardinals below cp(Ḟ )”, then we write
M#

n (X) = Jϕ(X).

Remark 1.68. Let x ∈ Hω1 , then for every n < ω, M#
n (x) has the strong condensation

property, if it exists.

Definition 1.69. Let N be a mouse operator, and letM be a tame premouse. We say
that Σt

M
is N -guided on Y just in case whenever T ∈ Y is a tree of limit length played

by Σt
M

, then Σt
M

(T ) is defined, and letting b = Σt
M

, we have Q(b,T ) ⊲ N(M(T )).

It will be critical in order to show that complexity of iterability is “low”, to show that
the iterations of n+ 1-small mice are actuallyM#

n -guided. Hence the importance of the
existence of M#

n (X). Let us fix as convenient notation:

An ≡“for every set X, M#
n (X)” exists and is iterable.

When An holds, we say that V is closed under the M#
n -operator. Similarly the clo-

sure of many subsets of the universe under theM#
n -operator can have important conse-

quences. The most famous one being, when the reals are closed under M#
n :

Theorem 1.70 (Harrington, Martin, Steel, Woodin, Neeman). For n < ω the
following are equivalent:

i. Π1
n+1-determinacy,

ii. for every x ∈ R, M#
n (x) exists,

iii. for every x ∈ R, M#
n (x) exists and is unique.
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1.6 Inner model theory

as an immediate corollary, we get that

Corollary 1.71. Suppose the reals are closed under the M#
n -operator for all n, then

projective determinacy holds.

Let us state a few result one gets when assuming the closure of the universe under the
M#

n -operator.

Lemma 1.72. Suppose An. Let P be a forcing and G be P-generic over V . The follow-
ing holds:

i. Let X ⊆ OR, and V ⊧ P =M#
n (X). Then also V [G] ⊧ P =M#

n (X).

ii. For all sets of ordinals X ∈ V [G], V [G] ⊧M#
n (X) exists.

iii. Let V ⊧ “H is countable and elementarily embeddable into VΩ”, where Ω is a large
limit ordinal. Let further Q be a forcing in H and h ∈ V Q-generic over H. Then
H[h] is closed under M#

n (X).

For the proof see [BS09, Lemma 3.7]

Lemma 1.73. Suppose An holds. Let x ∈ R and suppose that M#
n+1(x) does not exist.

Let M be a (n + 1)-small x-premouse with no definably Woodin cardinal. M is iterable
if and only if for every countable substructure P ≺M, P is ω1-iterable.

The proof for the case below one Woodin is [Ste96, lemma 2.4].
The central theorem we will use in the proof of Theorem 3.17 is the so called K-

existence dichotomy, taken from [SS, Theorem 1.4.3]:

Theorem 1.74 (K-existence Dichotomy). Let Ω be measurable. Suppose that for
all x ∈ VΩ, M#

n (x) exists and is (ω,Ω + 1)-iterable. Then exactly one of the following
holds:

i. for all x ∈ VΩ, M#
n+1(x) exists and is (ω,Ω + 1)-iterable,

ii. for some x ∈ VΩ, Kc(x) is (n+1)-small, has no Woodin cardinals, and is (ω,Ω+1)-
iterable. (Hence K(x) exists, is (n + 1)-small, and has no Woodin cardinals.)
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2 Increasing u2

This chapter has orginaly been published together with Ralf Schindler in the Journal
of Symbolic Logic as [CS09]. In this chapter we modify Jensen’s L-forcing (cf. [Jena]
and [Jend]) and apply this to the theory of precipitous ideals and the question about
the size of u2. Forcings which increase the size of u2 were already presented in the
past. After Steel and van Wesep had shown that u2 = ω2 is consistent in the presence of
large cardinal hypotheses (cf. [SVW82]), Woodin proved that if the nonstationary ideal
on ω1 is ω2-saturated and P(ω1)# exists, then u2 = ω2 (cf. [Woo99, Theorem 3.17]; in
particular, u2 = ω2 follows from Martin’s Maximum by work of Foreman, Magidor and
Shelah, cf. [FMS88].) More recently, Ketchersid, Larson, and Zapletal also constructed
forcings which increase u2 (cf. [KLZ07]).

Recall that δ
̃

1
2 is the supremum of the lengths of all ∆

̃
1
2 well-orderings of the reals, and

that if the reals are closed under sharps, then u2, the second uniform indiscernible, is
defined to be the least ordinal above ω1 which is an x-indiscernible for every x ∈ R. By the
Kunen-Martin Theorem (cf. [Mos09, Theorem 2G.2]), if ≤ is a ∆1

2(x) prewellordering of

R, then the length of ≤ is less than ω
+L[x]
1 . Moreover, if x# exists, then there is a ∆1

2(x#)-
prewellordering of R of length ω

+L[x]
1 , which implies ω

+L[x]
1 < δ

̃
1
2. Also, ω

+L[x#]

1 < ux2 , the
least x-indiscernible above ω1. Therefore, if the reals are closed under sharps, then

u2 = sup{ω+L[x]1 ;x ∈ R} = δ
̃

1
2.

In this chapter we’ll consider generic iterations of structures of the form ⟨M ; ∈, I⟩,
where M is a transitive model of ZFC∗ + “ω1 exists” and inside M , I is a uniform and
normal ideal on ωM1 . Here, ZFC∗ is a reasonable weak fragment of ZFC such that ZFC∗

+ “ω1 exists” is suitable for taking generic ultrapowers by ideals on ω1 (cf. [Woo99]).

2.1 The forcing

We may now state and prove our main result.

Theorem 2.1. Let I be a precipitous ideal on ω1, and let θ > ω1 be a regular cardinal.
There is a poset P(I, θ), preserving the stationarity of all sets in I+, such that if G is
P(I, θ)-generic over V , then in V [G] there is a generic iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩

such that if i < ω1, then Mi is countable and Mω1 = ⟨Hθ; ∈, I⟩. If I = NSω1, then P(NSω1 , θ)
is stationary set preserving.
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It is easy to see that every set in I+ has to be stationary in V . The most difficult
part of the construction is to arrange that every set in I+ will remain stationary in the
forcing extension.

2.1.1 The definition of P(I, θ)
The proof of Theorem 2.1 stretches over several lemmas and builds upon Jensen’s [Jena]
and [Jend]. Fixing I and θ, let us pick a regular cardinal ρ such that 22<θ < ρ. Therefore,
Hθ ∈ Hρ, and in fact every subset of P(Hθ) is in Hρ as well. In particular, the forcing
P(I, θ) we are about to define will be an element of Hρ. It is easy to verify that if a
forcing Q ∈ V is ω1-distributive, then I is still precipitous in V Q. We may and shall
therefore assume that 2<θ = θ and 2<ρ = ρ, i.e., that card(Hθ) = θ and card(Hρ) = ρ,
because if this were not true in V , then we may first force with Q = col(ρ, ρ) × col(θ, θ)
and work with V Q rather than V as our ground model in what follows.

Our starting point is thus that in V , I is a precipitous ideal on ω1 and θ and ρ are
regular cardinals such that ω2 ≤ θ = 2<θ < 2θ < ρ = 2<ρ. Let us fix a well-order, denoted
by <, of Hρ of order type ρ such that <↾ Hθ is an initial segment of < of order type θ.
(In what follows, we shall also write < for <↾Hθ.) We shall write

H = ⟨Hρ; ∈,Hθ, I,<⟩,

and we shall also write
M= ⟨Hθ; ∈, I,<⟩.

In what follows, models will always be models of the language of set theory. We shall
tacitly assume that if A is a model, then the well-founded part wfp(A) of A is transitive.

Let us now define our forcing P(I, θ).

Definition 2.2. Conditions p in P(I, θ) are triples

p = ⟨⟨κpi ; i ∈ dom(p)⟩, ⟨πpi ; i ∈ dom(p)⟩, ⟨τ pi ; i ∈ dom−(p)⟩⟩

such that the following hold true.

i. Both dom(p) and dom−(p) are finite, and dom−(p) ⊆ dom(p) ⊆ ω1.

ii. ⟨κpi ; i ∈ dom(p)⟩ is a sequence of countable ordinals.

iii. ⟨πpi ; i ∈ dom(p)⟩ is a sequence of finite partial maps from ω1 to θ.

iv. ⟨τ pi ; i ∈ dom−(p)⟩ is a sequence of complete H-types over Hθ, i.e., for each i ∈
dom−(p) there is some x ∈Hρ such that, having ϕ range over H-formulae with free
variables u, v⃗,

τ pi = {⟨⌜ϕ⌝, z⃗⟩ ; z⃗ ∈Hθ ∧H ⊧ ϕ[x, z⃗]}.

v. If i, j ∈ dom−(p), where i < j, then there is some n < ω and some u⃗ ∈ ran(πpj ) such
that

τ pi = {(m, z⃗) ; (n, u⃗⌢m⌢z⃗) ∈ τ pj }.
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2.1 The forcing

vi. In V col(ω,2θ), there is a model which certifies p with respect toM, by which we mean
a model A such that θ + 1 ⊂ wfp(A), in fact Hθ+ ∈ A, A ⊧ ZFC− (= ZFC ∖ Power
Set), for all S ∈ I+, A ⊧ “S is stationary,” and inside A, there is a generic iteration

⟨⟨MA
i , π

A
i,j, I

A
i , κ

A
i ; i ⩽ j ⩽ ω1⟩, ⟨GA

i ; i < ω1⟩⟩

such that

a) if i < ω1, then MA
i is countable,

b) if i < ω1 and if ξ < θ is definable over M from parameters in ran(πA
i,ω1

), then

ξ ∈ ran(πA
i,ω1

),
c) MA

ω1
= ⟨Hθ; ∈, I⟩,

d) if i ∈ dom(p), then κpi = κA
i and πpi ⊆ πA

i,ω1
,

e) if i ∈ dom−(p), then for all n < ω and for all z⃗ ∈ ran(πA
i,ω1

),

∃y ∈Hθ (n, y⌢z⃗) ∈ τ pi Ô⇒ ∃y ∈ ran(πA
i,ω1

) (n, y⌢z⃗) ∈ τ pi .

If p, q ∈ P, then we write p ⩽ q iff dom(q) ⊆ dom(p), dom−(q) ⊆ dom−(p), for all
i ∈ dom(q), κpi = κ

q
i and πqi ⊆ π

p
i , and for all i ∈ dom−(q), τ qi = τ

p
i .

Conditions p should be seen as finite attempts to describe the iteration leading to
⟨Hθ; ∈, I⟩, the first component being finitely many critical points κpi of the iteration, and
the second component being finite attempts πpi to describe the iteration maps restricted
to the ordinals. The presence of < will guarantee that knowing the action of these
maps on the ordinals means knowing the maps themselves. The third components τ pi
will guarantee that the iteration maps extend to elementary maps into H with some
x ∈ Hρ of interest in their range (cf. Lemma 2.14 below), which will be relevant in the
verification that P(I, θ) preserves the stationarity of all sets in I+.

It should be stressed that ωV1 ∈ I+, so that if A certifies any condition p with respect
to M, then ωA

1 = ωV1 . It is also clear that

A ⊧ card(Hθ) = ℵ1.

2.1.2 Some basic considerations

Let us start the discussion of P(I, θ). Let us write P = P(I, θ) from now on.

Lemma 2.3. P /= ∅.

Proof. We need to verify that in V col(ω,2θ) there is a model which certifies the trivial
condition ⟨⟨⟩, ⟨⟩, ⟨⟩⟩ with respect to M.

Let g be col(ω,< ρ)-generic over V . Notice that inside V [g], ⟨V ; ∈, I⟩ is generically
ρ + 1 iterable by Lemma 1.14. Let us work inside V [g] until further notice.
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Let us choose a bijection ϕ ∶ [ρ]<ρ → ρ, and let ⟨Sν ;ν < ρ⟩ be a partition of ρ into
pairwise disjoint stationary subsets of ρ. Define f ∶ ρ→ [ρ]<ρ by

f(i) = s⇐⇒ i ∈ Sϕ(s).

In other words, f”Sϕ(s) = {s} for every s ∈ [ρ]<ρ.
Let us recursively construct a generic iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ρ⟩, ⟨Gi; i < ρ⟩⟩

of M0 = ⟨Hθ; ∈, I⟩. Suppose ⟨⟨Mk, πk,j, Ik, κk;k ⩽ j ⩽ i⟩, ⟨Gk;k < i⟩⟩ has already been
constructed, where i < ρ. If there is a (unique) j ≤ i such that f(i) ∈ I+j , i.e., πj,i(f(i)) ∈
I+i , then let us choose Gi such that πj,i(f(i)) ∈ Gi. If there is no such j ≤ i, then we
choose Gi arbitrarily. This defines the generic iteration.

Now let S ∈ I+ρ . Let j < ρ and s ∈Mj be such that πj,ρ(s) = S. Whenever j ≤ i < ρ and
f(i) = s, then πj,i(s) ∈ Gi, i.e., κi ∈ πi,i+1(πj,i(s)) = πj,i+1(s) ⊆ πj,ρ(s) = S. This shows
that

Sϕ(s) ∖ j ⊆ {i < ρ ; κi ∈ S},

so that S is in fact stationary.
The map π0,ρ∶Hθ →Mρ admits a canonical extension π∶V → N , where N is transitive

and π(Hθ) =Mρ. Let us now leave V [g] and pick some h which is col(ω,π(2θ))-generic
over V [g]. Of course, h is also col(ω,π(2θ))-generic over N . Let x ∈ R ∩ N[h] code
π((Hθ+)V ) in a natural way. The existence of a model which certifies ⟨⟨⟩, ⟨⟩, ⟨⟩⟩ with
respect to π(M) is then easily seen to be a Σ1

1(x) statement which holds true in V [g, h],
as being witnessed by V [g]. By absoluteness, this statement is then also true in N[h].
That is, inside N col(ω,π(2θ)) there is a model which certifies ⟨⟨⟩, ⟨⟩, ⟨⟩⟩ with respect to
π(M). By elementarity, in V col(ω,2θ) there is therefore a model which certifies ⟨⟨⟩, ⟨⟩, ⟨⟩⟩
with respect to M. ⊣

We will now prove some lemmata which will make sure that the generic filter indeed
produces a generic iteration leading to ⟨Hθ; ∈, I⟩. If p ∈ P, then from now on we shall
often just say that A certifies p to express that A is a model which certifies p with respect
to M.

Lemma 2.4. Let p ∈ P, let u be finite such that dom(p) ⊆ u ⊆ ω1. There is p′ ⩽ p such
that u ⊆ dom(p′).

Proof. Let A ∈ V col(ω,2θ) certify p. We may define p′ such that dom(p′) = u, dom−(p′) =
dom−(p), κp

′

i = κA
i for i ∈ u, πp

′

i = πpi for i ∈ dom(p), πp′i = ∅ for i ∈ dom(p′)∖dom(p), and

τ p
′

i = τ pi for i ∈ dom−(p′). Then A also certifies p′, and of course p′ ⩽ p. ⊣

Lemma 2.5. Let p ∈ P, i ∈ dom(p) and ξ < θ. There is a p′ ⩽ p and an α ∈ dom(πp′i )
such that ξ < πp′i (α).
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Proof. Let A ∈ V col(ω,2θ) certify p. Let α be such that πA
i,ω1

(α) > ξ. (Such an α exists,

as the iteration map πA
i,ω1

is cofinal.) We may define p′ such that dom(p′) = dom(p),
dom−(p′) = dom−(p), κp

′

j = κpj for j ∈ dom(p), πp′j = πpj for j ∈ dom(p) ∖ {i}, πp
′

i =
πpi ∪{⟨α,πA

i,ω1
(α)⟩}, and τ p

′

j = τ pj for j ∈ dom−(p′). Then A also certifies p′, and of course
p′ ⩽ p. ⊣

Lemma 2.6. Let p ∈ P, i ∈ dom(p), ξ < ζ and ζ ∈ dom(πpi ). There is a p′ ⩽ p such that

ξ ∈ dom(πp′i ).

Proof. Let A ∈ V col(ω,2θ) certify p. We may define p′ such that dom(p′) = dom(p),
dom−(p′) = dom−(p), κp

′

j = κpj for j ∈ dom(p), πp′j = πpj for j ∈ dom(p) ∖ {i}, πp
′

i =
πpi ∪ {⟨ξ, πA

i,ω1
(ξ)⟩}, and τ p

′

j = τ pj for j ∈ dom−(p′). Then A also certifies p′, and of course
p′ ⩽ p. ⊣

Lemma 2.7. Let p ∈ P and ξ ∈ Hθ. There is a p′ ⩽ p such that ξ ∈ ran(πp′i ) for some
i ∈ dom(p′).

Proof. Let A ∈ V col(ω,2θ) certify p. Let i < ω1, i ∉ dom(p), and ξ be such that πA
i,ω1

(ξ) =
ξ. We may define p′ such that dom(p′) = dom(p) ∪ {i}, dom−(p′) = dom−(p), κp

′

j = κA
j

for j ∈ dom(p′), κp′i = κA
i , πp

′

j = πpj for j ∈ dom(p) ∖ {i}, πp
′

i = {⟨ξ, ξ⟩}, and τ p
′

j = τ pj for
j ∈ dom−(p′). Then A also certifies p′, and of course p′ ⩽ p. ⊣

Lemma 2.8. Let p ∈ P, i ∈ dom(p), j ∈ dom(p), i < j, ξ ∈ ran(πpi ). There is a p′ ⩽ p
such that ξ ∈ ran(πp′j ).

Proof. Let A ∈ V col(ω,2θ) certify p. Let ξ̄ be such that πA
j,ω1

(ξ̄) = ξ. We may define p′

such that dom(p′) = dom(p), dom−(p′) = dom−(p), κp
′

k = κA
k for k ∈ dom(p), πp′k = πpk for

k ∈ dom(p) ∖ {j}, πp
′

j = πpj ∪ {⟨ξ̄, ξ⟩}, and τ p
′

k = τ pk for k ∈ dom−(p′). Then A also certifies
p′, and of course p′ ⩽ p. ⊣

Lemma 2.9. Let p ∈ P, i, i + 1 ∈ dom(p). Let ξ ∈ ran(πpi+1). There is some p′ ⩽ p such

that ξ is definable over M from parameters in ran(πp′i ) ∪ {κpi }.

Proof. Let A ∈ V col(ω,2θ) certify p. Since MA
i+1 = Ult(MA

i ,G
A
i ) there is an f ∶κpi = ω

MA
i

1 →
MA

i , f ∈ MA
i such that (πpi+1)−1(ξ) = πA

i,i+1(f)(κ
p
i ), i.e., ξ = πA

i,ω1
(f)(κpi ). Due to the

presence of < inM, the function πA
i,ω1

(f) is definable overM in some ordinal parameter

λ < θ. Let λ̄ be such that λ = πA
i,ω1

(λ̄). We may define p′ such that dom(p′) = dom(p),
dom−(p′) = dom−(p), κp

′

j = κA
j for j ∈ dom(p′), πp′j = πpj for j ∈ dom(p) ∖ {i},

πp
′

i = πpi ∪ {⟨λ̄, λ⟩} ,

and τ p
′

i = τ pi for i ∈ dom−(p′). Then A also certifies p′, and of course p′ ⩽ p. ⊣
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Lemma 2.10. Let p ∈ P, and let λ ∈ dom(p) be a limit ordinal. If ξ ∈ ran(πpλ), then

there is some p′ ≤ p and some i < λ with i ∈ dom(p′) such that ξ ∈ ran(πp′i ).

Proof. Let A ∈ V col(ω,2θ) certify p. Because ran(πA
λ,ω1

) = ⋃i<λ ran(πA
i,ω1

), there is some

i < λ such that ξ ∈ ran(πA
i,ω1

). Let us without loss of generality assume that i ∈ dom(p).
Let ξ̄ be such that πA

i,ω1
(ξ̄) = ξ. We may then define p′ such that dom(p′) = dom(p),

dom−(p′) = dom−(p), κp
′

j = κpj for j ∈ dom(p), πp′j = πpj for j ∈ dom(p) ∖ {i}, πp
′

i =
πpi ∪ {⟨(ξ̄, ξ⟩}, and τ p

′

i = τ pi for i ∈ dom−(p′). Then A also certifies p′, and of course
p′ ⩽ p. ⊣

Lemma 2.11. Let p ∈ P, i ∈ dom(p) and let ξ be definable over M from parameters in

ran(πpi ). There is a p′ ⩽ p such that ξ ∈ ran(πp′i ).

Proof. Let A ∈ V col(ω,2θ) certify p. We must have that ξ ∈ ran(πA
i,ω1

), as A certifies p

(cf. condition (b)). Let πA
i,ω1

(ξ̄) = ξ. We may define p′ such that dom(p′) = dom(p),
dom−(p′) = dom−(p), κp

′

j = κpj for j ∈ dom(p), πp′j = πpj for j ∈ dom(p) ∖ {i}, πp
′

i =
πpi ∪ {⟨ξ, ξ⟩}, and τ p

′

j = τ pj for j ∈ dom−(p′). Then A also certifies p′, and of course
p′ ⩽ p. ⊣

Lemma 2.12. Let p ∈ P, let i ∈ dom(p), and suppose that D ∈ Hθ is definable over M
from parameters in ran(πpi ). Suppose also that

M⊧ “D is dense in the partial order ⟨I+,≤I⟩.”

Then there is some p′ ≤ p and some X ∈ D which is definable over M from parameters
in ran(πp′i ) such that κpi ∈X.

Proof. Let A ∈ V col(ω,2θ) certify p. Let D̄ ∈ MA
i be such that πA

i,ω1
(D̄) = D. As

GA
i is ⟨(IA

i )+,≤IA
i
⟩-generic over MA

i , D̄ ∩ GA
i /= ∅. There is thus some X̄ ∈ D̄ such

that κpi = κA
i ∈ πA

i,i+1(X̄) ⊂ πA
i,ω1

(X̄). Let X = πA
i,ω1

(X̄). Then X ∈ D and κpi ∈ X.
Due to the presence of < in M, there is some λ < θ such that X is definable over
M from the parameter λ. Let λ̄ be such that λ = πA

i,ω1
(λ̄). We may define p′ such

that dom(p′) = dom(p), dom−(p′) = dom−(p), κp
′

j = κA
j for j ∈ dom(p′), πp′j = πpj for

j ∈ dom(p) ∖ {i},

πp
′

i = πpi ∪ {⟨λ̄, λ⟩} ,

and τ p
′

i = τ pi for i ∈ dom−(p′). Then A also certifies p′, and of course p′ ⩽ p. ⊣

Now let G be P-generic over V . Set

κi = κpi for some (all) p ∈ G with i ∈ dom(p),

πi = ⋃{πpi ;p ∈ G ∧ i ∈ dom(p)}, and

βi = dom(πi).
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2.1 The forcing

By Lemmas 2.4, 2.5, and 2.6, πi∶βi → θ is a well-defined cofinal order preserving map,
and by Lemma 2.7, θ = ⋃{ran(πi); i < ω1}. For i < ω1, let Xi be the smallest X ≺ M
such that ran(πi) ⊆ X. By Lemma 2.11, ran(πi) = Xi ∩ θ. Let π̃i∶Mi ≅ Xi ≺ M be the
uncollapsing map, so that π̃i ⊃ πi. For i ≤ j ≤ ω1, let π̃i,j = π̃−1

j ○ π̃i. We then have
that π̃i,j ∶Mi → Mj is then well-defined by Lemma 2.8. For i ≤ ω1, let Ii = π̃−1

i (I) and
κi = π̃−1

i (ω1), and for i < ω1, let

Gi = {X ∈ P(κi) ∩Mi ; κi ∈ π̃i,i+1(X)}.

Using Lemmas 2.9, 2.10, and 2.12, we then have the following.

Lemma 2.13. ⟨⟨Mi, π̃i,j, Ii, κi ; i ⩽ j ⩽ ωV1 ⟩, ⟨Gi ; i < ω1⟩⟩ is a generic iteration of M0

such that if i < ω1, then Mi is countable, and Mω1 = ⟨Hθ; ∈, I⟩.

Let us now discuss the third component of a condition p ∈ P.

Lemma 2.14. Suppose that A is a model. Let p ∈ P and i ∈ dom(p). Let x ∈Hρ be such
that τ pi is the complete H-type of x over Hθ, i.e., having ϕ range over H-formulae with
free variables u, v⃗,

τ pi = {⟨⌜ϕ⌝, z⃗⟩ ; z⃗ ∈Hθ ∧H ⊧ ϕ[x, z⃗]} .
Then the following are equivalent.

i. A certifies p with respect to M.

ii. θ + 1 ⊂ wfp(A), Hθ+ ∈ A, A ⊧ ZFC−, for all S ∈ I+, A ⊧ “S is stationary,” and
inside A, there is a generic iteration

⟨⟨MA
i , π

A
i,j, I

A
i , κ

A
i ; i ⩽ j ⩽ ω1⟩, ⟨GA

i ; i < ω1⟩⟩

such that if i < ω1, then MA
i is countable, MA

ω1
= ⟨Hθ; ∈, I⟩, if i ∈ dom(p), then

κpi = κA
i and πpi ⊆ πA

i,ω1
, and if i ∈ dom−(p), then one of the following equivalent

conditions holds.
a)

HullH(ran(πA
i,ω1

) ∪ {x}) ∩Hθ = ran(πA
i,ω1

).

b) The map πA
i,ω1

∶Mi →M
extends to some elementary map π̃∶H → H with π̃(Mi) = ⟨Hθ; ∈, I⟩, π̃ ↾Mi =
πA
i,ω1

, and x ∈ ran(π̃).

c) ran(πA
i,ω1

) ≺ ⟨Hθ; ∈, I,<, τ pi ⟩.

Proof. i. ⇒ ii.(a): Let y ∈ HullH(ran(πA
i,ω1

) ∪ {x}) ∩Hθ. Then y is definable over H
from parameters z⃗, x in ran(πA

i,ω1
) ∪ {x}. For some n < ω, we then have that y is unique

with (n, y⌢z⃗) ∈ τ pi . As A certifies p (cf. condition vi.(e) in Definition 2.2), we then get
that in fact y ∈ ran(πA

i,ω1
).
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ii.(a) ⇒ ii.(b): Let π̃∶H ≅ HullH(ran(πA
i,ω1

) ∪ {x}) ≺ H, where H is transitive. It is
obvious that this map works.

ii.(b) ⇒ ii.(a): As x ∈ ran(π̃) and π̃ ⊃ πA
i,ω1

, ran(πA
i,ω1

) ⊂ HullH(ran(πA
i,ω1

) ∪ {x}) ∩Hθ ⊂
HullH(ran(π̃)) ∩Hθ = ran(π̃) ∩Hθ = ran(πA

i,ω1
).

ii.(a) ⇒ ii.(c): We need to show that if z⃗ ∈ ran(πA
i,ω1

) and ϕ is a formula (of the
language associated with ⟨Hθ; ∈, I,<, τ pi ⟩) such that

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ ∃vϕ(v, z⃗), (2.1)

then there is some u ∈ ran(πA
i,ω1

) with

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ ϕ(u, z⃗).

There is some recursive ⌜ψ⌝ ↦ ⌜ψ∗⌝ (assigning to each formula of the language associated
with ⟨Hθ; ∈, I,<, τ pi ⟩ a formula of the language associated with ⟨Hρ; ∈,Hθ, I,<, x⟩) such
that for all w⃗ ∈Hθ,

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ ψ(w⃗)

iff

⟨Hρ; ∈,Hθ, I,<, x⟩ ⊧ ψ∗(w⃗).

Hence if (2.1) holds, then there is some u ∈Hθ such that

⟨Hρ; ∈,Hθ, I,<, x⟩ ⊧ ϕ∗(u, z⃗).

There is then also some such u ∈ Hθ which is in HullH(ran(πA
i,ω1

) ∪ {x}), so that u ∈
ran(πi,ω1)A by ii.(a). But then

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ ϕ(u, z⃗),

where u ∈ ran(πA
i,ω1

).
ii.(c) ⇒ i.: Let n < ω and z⃗ ∈ ran(πA

i,ω1
). Suppose there to be some y ∈ Hθ such that

(n, y⌢z⃗) ∈ τ pi . Then

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ ∃y(n, y⌢z⃗) ∈ τ
p
i ,

so that there is some y ∈ ran(πA
i,ω1

) with

⟨Hθ; ∈, I,<, τ pi ⟩ ⊧ (n, y⌢z⃗) ∈ τ pi ,

as needed for condition vi.(e) in Definition 2.2. ⊣

It is easy to see that if X ∈ I and X ∈ ran(π̃i,ω1), where i < ω1, then {κj; i ≤ j < ω1} ⊂
ω1 ∖X. This means that no set in I will be stationary in V P.
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2.1 The forcing

2.1.3 P(I, θ) is stationary set preserving

Lemma 2.15. If S ∈ I+, then S is stationary in V P.

Proof. Let S ∈ I+, and let p ∈ P and Ċ be such that p ⊩ Ċ is club in ω̌1. We need to
see that there is some p′ ⩽ p and some α < ω1 such that p′ ⊩ α̌ ∈ Ċ ∩ Š.

Let
R = {(r, δ); r ∈ P, δ < ω1, and r ⊩P δ̌ ∈ Ċ}.

Notice that p,R,≤P∈ Hρ. Let τ the the complete H-type of ⟨p,R,≤P⟩ over Hθ. Let
A ∈ V col(ω,2θ) certify p with respect to M. Recall that Hθ ∈ A and ωA

1 = ωV1 . We have
that ⟨ran(πA

i,ω1
); i < ω1⟩ is a continuous tower of countable substructures of Hθ with

⋃{ran(πA
i,ω1

); i < ω1} = Hθ. Since S is stationary in A, Hθ+ ∈ A and thus τ ∈ A, we may
therefore pick an α < ω1 such that

i. κA
α = α and dom(p) ⊆ α,

ii. ran(πA
α,ω1

) ≺ ⟨Hθ; ∈, I,<, τ⟩, and

iii. α ∈ S.

We may define p′ such that dom(p′) = dom(p)∪{α}, dom−(p′) = dom(p)−∪{α}, κp
′

i = κpi
for all i ∈ dom(p), κp′α = α, πp

′

i = πpi for all i ∈ dom(p), πp′α = ∅, τ p
′

i = τ pi for all i ∈ dom−(p),
and τ p

′

α = τ . Using Lemma 2.14, we see that A still certifies p′ by the above choice of
α. Also, notice that if i ∈ dom−(p), then τ pi is (trivially) definable over H from the
parameter p, so that because τ is the complete H-type of ⟨p,R,≤P⟩ over Hθ, we get that
there is an n < ω such that

τ pi = {(m, z⃗) ; (n,m⌢z⃗) ∈ τ}.

We thus have p′ ∈ P, and of course p′ ⩽ p.
We claim that p′ ⊩ α̌ ∈ Ċ ∩ Š. Suppose not. Then p′ does not force Ċ ∩ α̌ to be

unbounded in α̌. Pick q ⩽ p′ and ξ < α such that

q ⊩ sup(Ċ ∩ α̌) = ξ̌. (2.2)

Let the model B certify q with respect to M. By Lemma 2.14,

HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩}) ∩Hθ = ran(πB
α,ω1

). (2.3)

Let us now set

q′ = ⟨⟨κqi ; i ∈ dom(q) ↾ α⟩, ⟨πqi ; i ∈ dom(q) ↾ α⟩, ⟨τ qi ; i ∈ dom−(q) ↾ α⟩⟩.

Of course, q ⩽ q′ ⩽ p. If i ∈ dom−(q′) = dom−(q) ↾ α, then there is some n < ω and some
u⃗ ∈ ran(πqα) such that

τ q
′

i = {(m, z⃗) ; (n, u⃗⌢m⌢z⃗) ∈ τ qα = τ}.

31



2 Increasing u2

By the choice of τ , we must then have that

τ q
′

i ∈ HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩})

for every i ∈ dom−(q′), because if

τ = {⟨⌜ϕ⌝, z⃗⟩; z⃗ ∈Hθ ∧H ⊧ ϕ[⟨p,R,≤P⟩, z⃗]} ,

then
τ q

′

i = τ qi = {⟨m, z⃗⟩; z⃗ ∈Hθ ∧H ⊧ ϕ[⟨p,R,≤P⟩, u⃗⌢m⌢z⃗]} .
This implies that in fact

q′ ∈ HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩}). (2.4)

Because q′ ⊩P “Ċ is club in ω̌1,” there is some γ > ξ and some q′′ ≤P q′ such that
q′′ ⊩P γ̌ ∈ Ċ, i.e., (q′′, γ) ∈ R, and therefore by (2.4)

HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩}) ⊧ ∃γ > ξ ∃q′′ ≤P q′ (q′′, γ) ∈ R,

which means that there is some q′′ ⩽ q′ with

q′′ ∈ HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩}) (2.5)

such that
q′′ ⊩P sup(Ċ ∩ α̌) > ξ̌.

In particular, dom(q′′) ⊆ α. We must now have that

q′′ and q are incompatible.

We derive a contradiction by constructing some q∗ ⩽ q′′, q.
Let

π̃∶H ≅ HullH(ran(πB
α,ω1

) ∪ {⟨p,R,≤P⟩}) ≺ H,
where H is transitive. By (2.3), MB

α = π̃−1(⟨Hθ; ∈, I⟩) ∈ H and π̃ ↾ MB
α = πB

α,ω1
. In

V col(ω,2θ), there is a model C which certifies q′′. In Hcol(ω,2θ), there is hence some generic
iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩
such that Mω1 = ⟨Hθ; ∈, I⟩ and for all i ∈ dom(q′′), κq′′i = κi and πq

′′

i ⊆ πi,ω1 . By the
elementarity of π̃, there is hence in Hcol(ω,π̃−1(2θ)) ⊆ V col(ω,2θ) some generic iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ α⟩, ⟨Gi; i < α⟩⟩

such that Mα = π̃−1(⟨Hθ; ∈, I⟩) =MB
α and for all i ∈ dom(q′′), κq′′i = κi and π̃−1(πq′′i ) ⊆ πi,α,

i.e., πq
′′

i ⊆ π̃ ○ πi,α = πB
α,ω ○ πi,α. Because MB

α is countable in B, θ + 1 ⊂ wfp(B), and

B ∈ V col(ω,2θ), there is therefore by absoluteness some generic iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ α⟩, ⟨Gi; i < α⟩⟩ ∈ B
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2.2 Consequences

such that Mα =MB
α and for all i ∈ dom(q′′), κq′′i = κi and πq

′′

i ⊆ πB
α,ω1

○ πi,α. Let

⟨⟨M∗
i , π

∗
i,j, I

∗
i , κ

∗
i ; i ⩽ j ⩽ ω1⟩, ⟨G∗

i ; i < ω1⟩⟩ ∈ B (2.6)

be defined as follows. If i ≤ j ≤ α, then we set M∗
i = Mi, π∗i,j = πi,j, I∗i = Ii, κ∗i = κi,

and if i < α, then we set G∗
i = Gi. If α ≤ i ≤ j ≤ ω1, then we set M∗

i = MB
i (there is

no conflict for i = α, as MB
α = Mα), π∗i,j = πB

i,j, I
∗
i = IB

i , κ∗i = κi, and if α ≤ i < ω1, then

we set G∗
i = GB

i . Finally, if i ≤ α ≤ j, then we set π∗i,j = πB
α,j ○ πi,α. The existence of the

generic iteration (2.6) inside B clearly shows that B in fact certifies q′′. However, as
dom(q′′) ⊇ dom(q) ↾ α, the very same generic iteration (2.6) shows that B certifies q.

Let us now define q∗ ∈ P as follows. Let dom(q∗) = dom(q)∪dom(q′′) and dom−(q∗) =
dom(q)− ∪ dom−(q′′). (Neither dom(q) and dom(q′′) nor dom(q)− and dom−(q′′) need
to be disjoint, but dom(q)∩α ⊆ dom(q′′) and dom(q)−∩α ⊆ dom−(q′′).) For i ∈ dom(q∗)
set κq

∗

i = κ∗i . For i ∈ dom−(q′′) set τ q
∗

i = τ q′′i , and for i ∈ dom−(q), set τ q
∗

i = τ qi . Also, for

i ∈ dom(q′′) set πq
∗

i = πq′′i . Finally, for i ∈ dom(q) ∖α, we need some adjustment in order
to actually get a condition. By (2.5), there is some finite u⃗ ⊆ ran(πB

α,ω1
) such that

q′′ ∈ HullH({u⃗, ⟨p,R,≤P⟩}).

We then also have some n < ω such that for every i ∈ dom−(q′′),

τ q
′′

i = τ q∗i = {(m, z⃗) ; (n, u⃗⌢m⌢z⃗) ∈ τ q∗α = τ p′α = τ}.

We may assume without loss of generality that π∗i,ω1

′′ dom(πq∗i ) ⊆ u⃗ for i ∈ dom(q′′) ⊆ α.
For j ∈ dom(q∗), j ⩾ α, we then set

πq
∗

j = π∗j,ω1
↾ ((π∗j,ω1

)−1(u⃗) ∪ dom(πq′′j )).

It is now straightforward to see that q∗ ∈ P. Notice that if i ∈ dom−(q∗) ∩ α = dom−(q′′)
and j ∈ dom−(q∗) ∖ α = dom−(q) ∖ α, and if

τ q
∗

α = τ qα = {(m, z⃗); (k, v⃗⌢m⌢z⃗) ∈ τ q∗j = τ qj },

where v⃗ ∈ ran(πq∗j ) = ran(πqj ), then

τ q
∗

i = τ q′′i = {(m, z⃗); (n, u⃗⌢m⌢z⃗ ∈ τ q∗α } = {(m, z⃗); (k, v⃗⌢n⌢u⃗⌢m⌢z⃗ ∈ τ q∗j }

and v⃗, u⃗ ⊆ ran(πq∗j ). Of course, q∗ ⩽ q, q′′. We have reached a contradiction. ⊣

This finishes the proof of Theorem 2.1.

2.2 Consequences

A straightforward adaptation yields the following result.
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2 Increasing u2

Theorem 2.16. Let I be a precipitous ideal on ω1, and let θ > ω1 be a regular cardinal.
Suppose that H#

θ exists. There is a poset P, preserving the stationarity of all sets in I+,
such that if G is P-generic over V , then in V [G] there is a generic iteration

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩

such that if i < ω1, then Mi is countable and Mω1 = ⟨H#
θ ; ∈, I⟩. In particular, M0 is

generically ω1 + 1 iterable. If I = NSω1, then P is stationary set preserving.

Proof. Let ρ > 22θ , and let P = (col(ρ, ρ) × col(θ+, θ+)) ∗P(I, θ+), where P(I, θ+) is as
in Theorem 2.1. Let

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩

be a generic iteration which is added by forcing with P. Setting Ni = π−1
i,ω1

(Hθ), we will

have that π−1
i,ω1

(H#
θ ) = N#

i . The iterability of M0 follows from Lemma 1.14. Notice that

⟨N#
0 ; ∈, I0⟩ is generically ω1 + 1 iterable iff ⟨L[N0]; ∈, I0⟩ is generically ω1 + 1 iterable. ⊣

Lemma 2.17 (Woodin). Let M be a countable transitive model of ZFC∗ + “ω1 exists,”
and let I ⊆ P(ωM1 ) be such that ⟨M ; ∈, I⟩ ⊧ “I is a uniform and normal ideal on ωM1 .”
Let α < ω1, and suppose ⟨M ; ∈, I⟩ to be generically α + 1 iterable. Let z0 be a real which
codes ⟨M ; ∈, I⟩, let z1 be a real which codes α, and let z = z0 ⊕ z1. Let

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ α⟩, ⟨Gi; i < α⟩⟩

be a generic iteration of ⟨M ; ∈, I⟩ of length α + 1. Then Mα ∩OR < ωL[z]1 .

Proof. The proof is taken from [Woo99, p. 56f.]. Let A ⊂ R be defined by x ∈ A iff
x codes a countable ordinal ξ (which we write as ξ = ∣∣x∣∣) such that for some generic
iteration

⟨⟨M ′
i , π

′
i,j, Ii, κ

′
i; i ⩽ j ⩽ α⟩, ⟨G′

i; i < α⟩⟩
of ⟨M ; ∈, I⟩ of length α + 1, ξ ⊆ M ′

α. The set A is Σ1
1(z), so that by the Boundedness

Lemma (cf. [Jec03, Corollary 25.14]),

sup{ξ;∃x ∈ Aξ = ∣∣x∣∣} < ωL[z]1 .

In particular, Mα ∩OR < ωL[z]1 . ⊣

Lemma 2.18. Suppose I to be a precipitous ideal on ω1. Let θ ≥ ω2 be regular, and
suppose that H#

θ exists. Let P = P′(I, θ) be as in Theorem 2.16, and let G be P-generic
over V . In V [G], let

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩ ∈ V [G]

be a generic iteration such that if i < ω1, then Mi is countable and Mω1 = ⟨H#
θ ; ∈, I⟩. Let

z ∈ R ∩ V [G] code ⟨π−1
0,ω1

(Hθ); ∈, I0⟩. Then θ < ω+L[z]1 . In particular, V [G] ⊧ θ < δ
̃

1
2.
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2.2 Consequences

Proof. For a canonical choice of z, z# exists in V [G] and z# codes ⟨M0; ∈, I0⟩. It

therefore suffices to prove θ < ω+L[z]1 . Suppose that ω
+L[z]
1 ≤ θ. Let us work in V [G] to

derive a contradiction. Let X ≺HΩ be countable (where Ω is regular and large enough)
such that z# and

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩
are both elements of X, and let σ∶N ≅X ≺HΩ, where N is tranitive. Let α =X∩ω1 = ωN1 .
Since z# ∈X, we have that

P(α) ∩L[z] ⊆ P(α) ∩N,

so that σ−1(ωL[z]1 ) = α+L[z]. Also,

σ−1(⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ ω1⟩, ⟨Gi; i < ω1⟩⟩) =

⟨⟨Mi, πi,j, Ii, κi; i ⩽ j ⩽ α⟩, ⟨Gi; i < α⟩⟩,
so that σ−1(θ) =Mα ∩OR. Let g ∈ V [G] be col(ω,α)-generic over N . Then Mα ∩OR ≥
α+L[z] = ωL[z⊕g]1 . This contradicts Lemma 2.17. ⊣

Recall that Bounded Martin’s Maximum, BMM, may be formulated as follows. If
Q ∈ V is a stationary set preserving forcing, then

HV
ω2

≺Σ1 H
V Q

ω2
.

It was shown in [Sch04] that BMM implies that V is closed under sharps. Of course,
having a precipitous ideal on ω1 also yields that the reals are closed under sharps.

Corollary 2.19. Suppose that BMM holds and NSω1 is precipitous. Then u2 = ω2.

Proof. Let α < ω2. Let ϕ ≡ ∃z ∈ R(α < ω+L[z]1 ). The statement ϕ is Σ1 over Hω2 in the
parameters ω1, α, and ϕ holds in V P, where P = P′(NSω1 , ω2). Therefore, ϕ must hold
in V . As α was arbitrary, we have shown that uV2 = ω2. ⊣

Recall that the Bounded Semiproper Forcing Axiom, BSPFA, may be formulated as
follows. If Q ∈ V is a semiproper forcing, then

HV
ω2

≺Σ1 H
V Q

ω2
.

For a formulation of the Reflection Principle RP cf. [Jec03, p.688].

Corollary 2.20. Suppose BSPFA and RP both hold. Then u2 = ω2.

Proof. The Reflection Principle RP implies that all stationary set preserving forcings
are semiproper, and it implies that NSω1 is precipitous (cf. [Jec03, p.688]). The rest of
the proof is the same as that of the previous corollary. ⊣
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3 The strength of BPFA and a
precipitous ideal on ω1

The main goal of this chapter is to analyse how consistency strength arise from the
interplay between the existence of one precipitous ideal on ω1 and some forcing axioms,
namely BPFA and BPFAuB. In the last chapter we have seen that BMM together with
the precipitousness of NSω1 implies to u2 = ω2. Schindler in [Sch04] showed that BMM
implied that the universe is closed under the sharp operator, more recently he showed
in [Sch] that the existence of a precipitous ideal and δ

̃
1
2 = ω2 implies the existence of an

inner model with a Woodin cardinal. Hence with the result of last section, BMM and
NSω1 is precipitous implies the existence of an inner model with a Woodin cardinal. We
present similar inner model techniques and apply them to BPFA+ there is a precipitous
ideal on ω1.

The first goal of this chapter is to prove the following theorem:

Theorem 3.1. Suppose BPFA holds and that there is a precipitous ideal on ω1. Then
there is an inner model with a Woodin cardinal.

We will first prove the following theorem as an intermediary result.

Theorem 3.2. BPFA+“∃ a precipitous ideal on ω1” implies 0¶.

The two proofs are by contradiction, we will show that BPFA implies that the cardinal
successor of ω1 in K is strictly less then ω2 on one side and that the existence of a
precipitous ideals on ω1 on the other side implies that the cardinal successor of ω1 is
computed correctly in K on the other side. We will expose the analysis of BPFA in
section 3.2 and give the full result here. In section 3.3 we will turn to the the precipitous
ideal on ω1 below 0¶. Recent result by Schindler in [Sch], will show that those result
hold true assuming that there is no inner model with a Woodin cardinal.

We will finish this chapter by looking at a strengthening of BPFA allowing predi-
cates to be universally Baires sets and showing that this axiom leads to even stronger
consistency strength:

Theorem 3.3. Suppose BPFAuB holds and there is a precipitous ideal on ω1. Then
Projective Determinacy holds.

Throughout this chapter, we assume that we work in some ZFC model V and unless
the contrary is explicitly noted, we will drop the index V and write ω1 for ωV1 and ω2

for ωV2 .
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3 The strength of BPFA and a precipitous ideal on ω1

The main forcing tool we will be using in the next section is to “seal” the height of
certain premice. This will be done by making sure one can not extend a certain fine
structural component of these mice, namely their square sequence. The square sequence
was invented by Jensen in [Jen72], where he showed that L has a square sequence for
all κ. It has been a constant in inner model theory so far that every inner model has
a square sequence. Work on square sequences in recent fine structural extender models
have been mostly due to Schimmerling and Zeman (see [SZ01] and [SZ04]).

3.1 Definitions

Definition 3.4. We call a sequence ⟨Cα, α ∈ S⟩ a C-sequence in S if S is unbounded in
some regular cardinal κ and each Cα is club in α. We say that ⟨Cα, α ∈ S⟩ is a C-sequence
if it is a C-sequence in S and S is some stationary subset of the limit ordinals of κ.

A coherent sequence ⟨Cα, α ∈ S⟩ is a C-sequence with the property that if α is a limit
point of Cβ then α ∈ S and Cα = Cβ ∩ α.

Definition 3.5. Let κ be a cardinal. ◻κ is the combinatorial principle stating:

“There is a coherent sequence ⟨Cα;α < κ+, α limit ordinal⟩ such that for all
α, otp(Cα) ≤ κ.”

Such a sequence ⟨Cα;α < κ+, α limit ordinal⟩ is called a square sequence or in symbols
a ◻κ-sequence.

Definition 3.6. Let ⟨Cα, α ∈ S⟩ be a coherent sequence in some regular κ. We say that
C ⊆ κ is a thread if C is a club in κ such that for all limit points α of C, Cα = C ∩ α. If
such C exists, we say that the square sequence is threadable

Remark 3.7. If ⟨Cα, α ∈ S⟩ is a square sequence, then it is not threadable.

Proof. Let C be a thread, C is a club in some κ+ = sup(S), hence there is a κ + ωth
limit point of C, say β. Since C is a thread we have on one hand that Cβ = C ∩ β, thus
otp(Cβ) > κ. On the other hand, as ⟨Cα, α ∈ S⟩ is a square sequence, otp(Cβ) ≤ κ, a
contradiction! ⊣

Let ⟨Cα, α ∈ S⟩ be a ◻κ-sequence. Let us now define T the canonical tree derived from
the square sequence. The domain of T are the limits ordinal between κ and κ+ and the
order is:

α <T β ⇐⇒ α ∈ Lim(Cβ)
Remark that T is a κ + 1 tree and that all the maximal branches are of the form

b = {δ} ∪ {α < δ;α ∈ Lim(Cδ)} for some δ < κ+ with cf(δ) = κ. Obviously these branches
can not be extended anymore.

As announced, the main result we will be using is the following, taken from [SZ01,
Theorem 2]

Theorem 3.8 (Schimmerling and Zeman). If K is a Mitchell-Steel core model, then
K satisfy ◻κ for all κ.

Throughout the rest of this chapter we write ω1 for ωV1 .
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3.2 Using BPFA

3.2 Using BPFA

Lemma 3.9. Suppose that there is no inner model with a Woodin cardinal. BPFA
implies that ω+K1 < ω2.

Let us first prove a “warm up” case, where the inner model theory is slightly easier,
and then go on to the full result.

Lemma 3.10. Suppose ¬0¶. Let ω1 ⊆ M ∈ Hω2 be a premouse. There is a tree T of
height ω uniformly definable from M such that M is iterable if and only if there is no
branch through T . Moreover T is in every model H of ZFC− containing M and ω1 and
H ⊧ “M is iterable⇐⇒ [T ] = ∅”.

Proof. The tree T will be the so-called tree searching for a countable model witnessing
the non-iterability of M, as we will be using many searching trees in the following, we
will define it in great detail here and refer to that construction later.

Let LM be a language with three predicates ∈, E⃗ and E and infinitely many constants
⟨cn;n < ω⟩. Let further ⟨ψn;n < ω⟩ be an enumeration of all LM-formulae without free
variables such that if ci occurs in ψn then i < n. Let ⟨ϕ1

n;n < ω⟩ be an enumeration
of all ZFC− formulae and L be a language with one predicate ∈ and with constants
N ,I,N∞, ⟨an;n < ω⟩, ⟨cn;n < ω⟩ and let ⟨ϕ2

n;n < ω⟩ be an enumeration of all L formulae
without free variables such that

i. ϕ2
0 = “N is a premouse and I is a putative iteration of N with a last ill-founded

model N∞”,

ii. if ai or ci occurs in ϕ2
n then i < n.

The idea is to search for a countable model M of ZFC−, an elementary map σ ∶ N →M
and an ∈-preserving map π ∶M∩OR→ ω1 such that M = {ai; i < n}, moreover in M there
is a countable submodel ofM, N = {cn;n < ω} and an iteration of N that is ill-founded.

Nodes in our tree will be of the form

p = ⟨σp,ΘM,p, hM,p,Θp, hp, πp⟩ ∈ <ω(M× 2 × ω × 2 × ω × ω1)

with n = dom(p). Let us give a short explanation of all components: σp will be a
finite approximation to the fully elementary map σ ∶ N → M, ΘM,p will be a finite
approximation to the truth function of N , hM,p will be a function mapping existential
sentences ∃xϕ(x) to some witness in N , Θp will be a finite approximation to the truth
function of M , hp will be mapping existential sentences true in M as seen by Θp to their
witness in M and finally πp will be an ∈-preserving map mapping every ordinal of M to
some ordinal less than ω1.

We say that p is correct if for all i < dom(p), letting ψ̄k denote the formula ψk where all
ci have been replaced by σp(ci), we have that if ΘM,p(i) = 0,M⊧ ψ̄k and if ΘM,p(i) = 1,
M ⊧ ¬ψ̄k. Moreover if ψk is an existential formulae, that is there is a ψ̄ such that
ψk ≡ ∃xψ̄(x), then j = hM,p(k) < k and letting θk be the formula where we replaced
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3 The strength of BPFA and a precipitous ideal on ω1

every ci by σp(ci) in ψ̄, we have that M⊧ θk(σp(chM,p(k))). Else hM,p(k) = 0. Similarly
if ϕ2

k ≡ ∃xϕ̄2
k, we require that hp(k) < k. let Tp be the set containing all the following

sentences:

i. {“N ⊧ ψi”; i < n ∧ΘM,p(i) = 0}

ii. {“N ⊧ ¬ψi”; i < n ∧ΘM,p(i) = 1}

iii. {ϕ1
i ; i < n}

iv. {ϕ2
i ; i < n ∧Θp(i) = 0}

v. {¬ϕ2
i ; i < n ∧Θp(i) = 1}

vi. {“N ⊧ ψ̄i(chM,p(i))”; i < n ∧ΘM,p(i) = 0 ∧ ψi ≡ ∃xψ̄i(x)}

vii. {ϕ̄i(chp(i)); i < n ∧Θp = 0 ∧ ϕ2
i ≡ ∃xϕ̄i(x)}

We call p certified if for all i, j ∈ dom(p) with Tp ⊧ “ci, cj are ordinals”, we have that
if Tp ⊧ “ci ∈ cj” then πp(i) ∈ πp(j). This will make sure that the ordinals of M are well-
founded. We further require Θp(0) = 0, that is the model we produce thinks thatN is not
iterable and that whenever ϕ2

i ≡ “ak ∈ N”, Θp(k) = 0 if and only if there is a l ∈ dom(p)
such that T p ⊧ “ak = cl”. This last condition will make sure that N = {ci; i < ω}.

Finally let T be the tree of all conditions p that are correct and certified such that Tp
is consistent and Θp(0) = 0. The ordering is inclusion.

Since we are below 0¶, by Definition 1.27, non-iterability means have a putative itera-
tion whose last model is ill-founded. IfM is not iterable then there is such an iteration
I and taking a countable submodel M ≅X ≺Hω2 withM,I ∈X, M describes a branch
through T . On the other hand, if M is iterable, suppose there was a branch b through
T , Let M be the model in that branch. Since M is transitive, as witnessed by ⋃p∈b πp,
the putative iteration I of N with an ill-founded last model as witnessed by b is also
one in V . This is a contradiction to M being a mouse! ⊣

Lemma 3.11. Suppose ¬0¶ Let M ∈Hω2 be a premouse. The following are equivalent

i. M is a mouse,

ii. there is an M ∈ Hω2 with ω1 ∪ {M} ⊆ M and M ⊧ ZFC− such that M ⊧“M is a
mouse”,

iii. for all M ∈ Hω2 with ω1 ∪ {M} ⊆ M and M ⊧ ZFC− we have that M ⊧“M is a
mouse”.

Proof. It is clear that if M is a mouse, the two other condition holds as well. Or put
in the other way, every ill-founded iteration of M in such a model M is an ill-founded
iteration in V . Hence we have that i. Ô⇒ iii. Ô⇒ ii.

Let us now prove “ii. Ô⇒ i.”. Suppose we have a M ∈ Hω2 with M ⊧ ZFC− and
ω1 ∪ {M} ⊆M , M ⊧“M is a mouse” but M is actually not iterable in V . Since we are
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below 0¶ this means that there is a putative iteration I on M such that the last model
is ill-founded model. Let X ≺ Hω2 be countable with I,M ∈ X and let σ ∶ N → X be
the uncollapsing map. Therefore there is a countable M̄ = σ−1(M), a fully elementary
map σ ↾ M̄ ∶ M̄ → M and a countable putative iteration Ī = σ−1(I) on M̄ such that
the last model is ill-founded. ⟨N,σ ↾ M̄, σ ↾ OR, N̄ , Ī⟩ describe a branch through our
tree T . Hence T is ill-founded in V .

Now look at the tree T defined in the previous lemma. Since T is in every model of
ZFC− that contains ω1 and M, by absoluteness of foundedness, if it has a branch in V ,
it is ill-founded in every model containing ω1 and M.

Hence T is ill-founded in M , taking a branch through the tree in M , we have a
countable submodel ofM with an ill-founded iteration, a contradiction to the iterability
of M in M ! ⊣

This shows that for a premouse M ∈ Hω2 being iterable is a ∆
Hω2
1 (M, ω1) property

below 0¶. With that key observation, we are ready to prove the “warm up” case:

Lemma 3.12. Suppose ¬0¶. BPFA implies that ω+K1 < ω2.

Proof. We work towards a contradiction. As we assumed ¬0¶, the Jensen core model
K as described in Definition 1.34 exist. So let us suppose that ωK1 = ω2. Notice that by
the results of Schimmerling and Zeman, K has a square sequence at every κ.

Claim 1. There is a proper forcing P∗ such that, if G is P∗-generic over V , in H
V [G]
ω2

there is a mouse M such that M ⊵ K∥ωV1 , M has the strong condensation property,
cf(ω+M1 ) = ω1 and there is a function f ∶ ω+M1 → ω specializing the tree arising from the
restriction of the ◻Mω1

-sequence to some club in the height of M.

Proof. The forcing is constructed in two steps. The model M will be K∥ω2, we first
force in order to get make the model M of size ω1, then specialize the tree arising from
its square sequence. Let the first forcing Q be the ω-closed forcing that adds a club
of order type ω1 in ω2. Set M = K∥ωV2 , we will show that M is the model with the
desired properties. Notice that after forcing with Q, we already have that cf(ω+M1 ) =
cf(ωV2 ) = ω1. Let T be the tree arising from the ◻ω1-sequence ofM, that is T is the tree
on ]ω1, ω+M1 [∩Lim with order α <T β ⇐⇒ α ∈ Lim(Cβ), where ⟨Cα;α ∈]ω1, ω+M1 [∩Lim⟩
is the ◻Mω1

-sequence. Let us prove that in V Q, there is no ω1 branch in T ↾ Ġ, where Ġ
is the canonical name for the Q-generic filter.

Suppose that p ⊩ “τ is a cofinal branch through T ↾ Ġ” and let (p, p) ∈ G ×H be
Q ×Q-generic over V . We first show that b = τG is unique in V [G]. Suppose not, and
let b′ be a second branch through T ↾ Ġ. Remark that since ⋃ b and ⋃ b′ are both
club in supG = ω2, they are of ordertype ω1. Hence ⋃ b ∩ ⋃ b′ is a club in ω2 and by
coherency b = b′. Go back to V [G ×H], we claim that τG = τH . ⋃ τG and ⋃ τH are
both clubs in ω2 and again by coherency of the ◻ω1-sequence, they must be equal. Thus
b = τG = τH ∈ V [G] ∩ V [H] = V . But ⋃ b is a club of ordertype ω1 and cofinal in ω2, a
contradiction!

Let P be the forcing in V Q with conditions of the form p ∶ ω+M1 ↣ ω such that p is a
partial function, dom(p) ⊆ T ↾ Ġ is finite and for all ξ, ξ′ < ω+M1 if ξ′ is a limit point of
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3 The strength of BPFA and a precipitous ideal on ω1

Cξ, then p(ξ) ≠ p(ξ′). The conditions are ordered by inclusion. As the forcing has no ω1

branch, by [Sch95, page 198 ff], it is a c.c.c. forcing. Hence

V Q∗P ⊧ “ cf(ω+M1 ) = cf(ωV2 ) = ω′′1 .

Thus setting P∗ = Q ∗P, P∗ produces a model M with the desired properties. As it is
the ∗-product of an ω-closed forcing with a c.c.c. forcing, it is proper. ⊣

Now look at the following formulae:

i. ϕ0(M, f,C,ω1) ≡ f specialize the tree derived from the restriction of the ◻Mω1
-

sequence to C, where C is a club in M∩OR of order type ω1. ϕ0 is a Σ0-formula
over Hω2 with the parameters M, f , C and ω1.

ii. ϕ1(M,K∥ω1, ω1) ≡ M ⊳ K∥ω1. ϕ1 is a Σ0-formula over Hω2 with parameters M,
K∥ω1 and ω1.

iii. ϕ2(M) ≡M ⊧ ZFC−. ϕ2 is a ∆1-formula over Hω2 with parameter M.

iv. ϕ3(M, ω1) ≡ “M is an iterable premouse”. ϕ3 is a ∆1 statement over Hω2 with
parameters M and ω1 as shown in Lemma 3.11

v. ϕ4 ≡M ⊧ “ω1 is the largest cardinal”. ϕ4 is a ∆1-formula over Hω2 with parameters
M and ω1.

vi. ϕ5(M) ≡ “ for every α < ω1 if α is the critical point of the uncollapsing map
N → Hull(α ∪ {p(M)}), N ⊲M

We thus have that the formula:

Ψ ≡ ∃M∃f∃C ϕ1(M,K∥ω1, ω1) ∧ ϕ2(M) ∧ ϕ3(M) ∧ ϕ4(M, ω1) ∧ ϕ0(M, f,C,ω1)

is clearly Σ1 over Hω2 .

Since BPFA holds in V , we have that HV
ω2

≺Σ
̃1 H

V P
∗

ω2
. Ψ holds in HV P

∗

ω2
, hence there is

a M⊳K∥ω1 and a f such that ϕ0 to ϕ5 hold in V .
We have seen that Ψ(K∥ω1, ω1) is a Σ1-formula over Hω2 , moreover Ψ(K∥ω1, ω1) holds

in HωV2
, as witnessed by K∥ω2, C and f , where C is the club added by the first forcing

and f is the function added by the second forcing. By BPFA we have that there is some
M,C, f ∈ V witnessing the truth of Ψ(K∥ω1, ω1).

We claim that M and K∥ω2 are lined up. Suppose not and let X be a countable
submodel of Hω2 with M ∈ X, let σ ∶ M → X be the transitive collapse. KN is a
countable submodel of K as witnessed by σ ↾ KN hence KN ⊲ K. Let α = X ∩OR we
have that σ ↾ N ∶ N → HullM(α ∪ {p(M)}) is an elementary embedding with critical
point α, hence by ϕ5, N ⊲ M but N is countable and K∥ω1 ⊲ M hence N ⊲ K. This
shows that N and KN are lined up, a contradiction since M ⊧ “N and KN are not lined
up ”!

Now this implies again that M ⊲ K∥ω2, but then the ◻ω1-sequence of K extends the
◻ω1-sequence of M, a contradiction since it was specialized! ⊣
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3.2 Using BPFA

If one looks closely at the previous proof everything but one argument would hold
as well if we assumed that there are no inner model with a Woodin cardinal. The
missing argument being the complexity of iterability . The next lemma will take care of
iterability, we will then show how to fix the argument.

Lemma 3.13. Suppose there is no inner model with a Woodin cardinal. Let M ∈ Hω2

be a premouse such that M⊧ “there are no definably Woodin cardinals”. The following
are equivalent

i. M is a mouse,

ii. there is an M ∈ Hω2 with ω1 ∪ {M} ⊆ M and M ⊧ ZFC− such that M ⊧“M is a
mouse”,

iii. for all M ∈ Hω2 with ω1 ∪ {M} ⊆ M and M ⊧ ZFC− we have that M ⊧“M is a
mouse”.

Proof. We look at the very same tree T as in Lemma 3.10. The only difference is that
non-iterability doesn’t necessarily mean that the last model is ill-founded. Let ϕ be the
formula

“N is a premouse and I is a putative iteration of N with a last ill-founded
model N∞”

and ϕ′ the formula

“N is a premouse, and either

i. I is a putative iteration of N with a last ill-founded model N∞ or

ii. I is an iteration of N with no cofinal branch b such that N∞ ⊲ MI
b ,

where N∞ is the Q-structure of I, N∞ ⊧ ‘δ(I) is not definably Woodin’
and N∞ = Jα(M(I))”.

We modify the tree by switching the formula ϕ with the formula ϕ′ in the enumeration.

Claim 1. Suppose M is a model of ZFC− and ω1 ∪ {M} ⊆M , then

M ⊧ “M is iterable if and only if T is well-founded.′′

Proof. “⇐Ô” by contraposition. Suppose M is not iterable and let I be a putative
iteration tree witnessing it. Take a countable substructure X with M,I ∈ X. Let
σ ∶ N →X be the uncollapsing map. We can construct a branch through T by searching
for ⟨N,σ ↾ OR, σ ↾ σ−1(M), σ−1(M), σ−1(I)⟩.

“Ô⇒” Now suppose M is iterable and T has a branch bT . Let M̄ be the countable
ZFC− model described by bT and N ∈ M̄ be the elementary substructure of M with a
bad iteration I. If I has a last ill-founded model, we already have argued in the proof of
Lemma 3.11 that this would give a contradiction. So suppose that the second possibility
occurs, that is M̄ ⊧“I is an iteration of N with no cofinal branch b such that there is
a Q ⊲ MI

b with Q ⊧ “δ(I) is not Woodin” and Q = Jα(M(I))”. By the absoluteness
of the strategy Σ according to which we play the iteration game, I is an iteration tree
played according to Σ in M as well. For any reals, x and y, let ϕ(x, y) be the statement:
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3 The strength of BPFA and a precipitous ideal on ω1

if x is a code for a cofinal branch through I and y is a code for Jα(M(I)) then
y ⊧“δ(I) is Woodin”.

The statement ∃x∃y ϕ(x, y) is Σ1
1(I, α) and hence is absolute between ZFC−-models

containing I and α. Thus I has no branch in M as well. This shows that N is not
iterable in M . ButM is iterable in M and there is an elementary embedding σ ∶ N →M,
a contradiction! ⊣

T is a countable tree with finites nodes and is definable from M and ω1. Hence T is
in every ZFC− model M containing M and ω1. By absoluteness of well-foundedness for
finite trees, T is ill-founded in V if and only if it is in M . Hence by the previous claim,
M is iterable in V if and only if it is in M . ⊣

This lemma shows that iterability is ∆1 over Hω2 .

Lemma 3.14. Suppose there is no inner model with a Woodin cardinal. BPFA implies
that ω+K1 < ω2.

Proof. We can go through the proof of Lemma 3.12. Let us make a few minor modi-
fication. Let K be the Mitchell-Steel core model below one Woodin cardinal. Let P be
the forcing first shooting an ω1 club into ω2 and the specializing the square sequence of
K∥ω2 restricted to points in the club we just added. Now look at Ψ, the conjunction of
the formulae:

i. ϕ0(M, f,C,ω1) ≡ f specialize the restriction of the tree derived from the ◻Mω1
-

sequence restricted to C, where C is a club in M∩OR of order type ω1. ϕ0 is a
Σ1-formula over Hω2 with the parameters M, f , C and ω1.

ii. ϕ1(M,K∥ω1, ω1) ≡ M ⊳ K∥ω1. ϕ1 is a Σ0-formula over Hω2 with parameters M,
K∥ω1 and ω1.

iii. ϕ2(M) ≡M ⊧ ZFC−. ϕ2 is a ∆1-formula over Hω2 with parameter M.

iv. ϕ3(M, ω1) ≡ “M is an iterable premouse”. ϕ3 is a ∆1 statement over Hω2 with
parameters M and ω1 as shown in Lemma 3.11

v. ϕ4 ≡M ⊧ “ω1 is the largest cardinal”. ϕ4 is a ∆1-formula over Hω2 with parameters
M and ω1.

vi. ϕ5(M) ≡ “ for every α < ω1 if α is the critical point of the uncollapsing map
N → Hull(α ∪ {p(M)}), N ⊲M

We have seen that ∃f∃C∃MΨ(M, f,C,K∥ω1, ω1) is a Σ1-formula over Hω2 . Moreover
Ψ(K∥ω2, f,C,K∥ω1, ω1) holds in HωV2

, where C is the club in ω2 added by the first part
of the forcing and f is the function added by the second part of the forcing. By BPFA we
have that there is some M ∈ V witnessing the truth of ∃f∃C∃MΨ(M, f,C,K∥ω1, ω1).

As in the ¬0¶ case, M and K∥ω2 are lined up. As M is only of cardinality ω1, this
implies again thatM⊲K∥ω2, but then the ◻ω1-sequence of K extends the ◻ω1-sequence
of M, a contradiction since it was specialized! ⊣
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3.3 Consequences from precipitousness

Lemma 3.15. Suppose ¬0¶. The existence of a precipitous ideal on ω1 implies that
ω+K1 = ωV2

Proof. We go for a contradiction, as GCH holds in K it implies that P(ω1) ∩K has
size ω1 in V . Let f ∶ ω1 → ⋃n<ω P([ω1]n) ∩K be a bijection. Let I be precipitous on ω1

and let G be a P(ω1) ∖ I-generic over V . Let j ∶ V →M = Ult(V,G) be the associated
ultrapower map.

Since 0¶ does not exist, the restriction of the embedding

j ↾K ∶K →KM

is a normal iteration by Theorem 1.35, T say. Let E = ET0 be the first extender used
in the iteration and κ its critical point. Since the iteration is normal, and cp(j) = ω1,
κ = ω1. Let us first show by the ancient Kunen argument that E is in M . We have that
j(f) ∈M , therefore

f = {⟨α, j(f)(α) ∩ ⋃
n<ω

(ω1)n⟩;α ∈ ω1} ∈M.

Now we can define E by:

⟨a, x⟩ ∈ E ⇐⇒ ∃ξ < ω1 a ∈ j(f)(ξ) and x = f(ξ).

E can not be on the KM sequence, since it has been used in the first step of an iteration
to KM . If we show that Ult(KM ,E) is iterable, we will be finished, since E would have
appeared on the KM sequence during its construction. Let ρ0 ∶ K → Ult(K,E) be the
ultrapower map and U = ρ0(T ). We copy the iteration T via ρ0. Hence we get the
following diagram:

K
i
ET

0

//

ρ0

��

MT
1

ρ1

��

%%LLLLLLLLLL

Ult(MT
1 ,E)

h1yy
Ult(K,E) =MT

1 i
EU

0

//MU
1

Let us explain how ρ1 and h1 are defined:

ρ1 ∶MT
1 Ð→MU

1

iET0 (f)(a) z→ iEU0 (ρ0(f))(ρ0(a))
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3 The strength of BPFA and a precipitous ideal on ω1

Let us show that this map is an embedding. Let ϕ be a formula.

MT
1 ⊧ ϕ(iET0 (f)(a)) ⇐⇒ {u;K ⊧ ϕ(f(u))} ∈ (ET0 )a

⇐⇒ {u; Ult(K,E) ⊧ ϕ(ρ0(f)(u))} ∈ ρ0(ET0 )ρ0(a) = (EU0 )ρ0(a)

⇐⇒ MU
1 ⊧ ϕ(iEU0 (ρ0(f))(ρ0(a)))

We claim that E is the (κ, lh(E))-extender derived from ρ1. Let ξ ∈ ρ1(X) with
ξ < lh(E) and X ⊆ cp(E). If we prove that:

ξ ∈ ρ1(X) ⇐⇒ ξ ∈ ρ0(X),

we are finished. For X ⊆ OR, let us call fX the function that maps a γ < κ to X ∩ γ.
Since P(κ) ∩MT

1 = P(κ) ∩K and X = iET0 (fX)(κ).

ρ1(X) = ρ1(iET0 (fX)(κ)) = iEU0 (fρ0(X))(ρ0(κ))
= fi

EU
0
○ρ0(X)(ρ0(κ))

= iEU0 ○ ρ0(X) ∩ ρ0(κ)
= ρ0(X) ∩ ρ0(κ)

The last equality holds, since ρ0(κ) = cp(iU0 ). Now since ξ < lh(E) < ρ0(κ) we have
that, for ξ < lh(E):

ξ ∈ ρ1(X) ⇐⇒ ξ ∈ ρ0(X) ∩ ρ0(κ) ⇐⇒ ξ ∈ ρ0(X)

As E is the extender derived from ρ1, there is a unique map h1 such that the diagram
commutes.

Inductively we can extend the diagram to:

K
i
ET

0

//

ρ0

��

MT
1

ρ1

��

%%LLLLLLLLLL
//MT

∞

ρ∞

��

&&LLLLLLLLLLL

Ult(MT
1 ,E)

h1yy

Ult(MT
∞,E)

xx
Ult(K,E)

i
EU

0

//MU
1

//MU
∞

E is the extender derived from each ρα. But MT
∞ = KM , hence we can embed

Ult(KM ,E) intoMU
∞. AsMU

∞ is an iterate of K, it is iterable, and thus Ult(KM ,E) is
iterable itself. ⊣

A strengthening of this result has been found by Ralf Schindler in [Sch, Theorem 5.2]:

Theorem 3.16. Suppose that there is no inner model with a Woodin cardinal, and let
K denote the Stell-Mitchell core model. Assume κ to be such that there is a precipitous
ideal on κ. Then κ+K = κ+V .
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3.4 Core model induction

In this section we want to show that, assuming a stronger hypothesis BPFAuB, we can
do a core model induction and prove the closure of the universe under theM#

n operator
for every n.

Theorem 3.17. Suppose BPFAuB holds and that there there is a precipitous ideal on
ω1. Then Projective determinacy holds.

The proof will go through the next subsections. We first prove the closure under the
sharp operator.

3.4.1 Below a Woodin

Lemma 3.18. Suppose there is a precipitous ideal on ω1. Then R is closed under #’s.

Proof. Let I be a precipitous ideal on ω1 and let G be a P(ω1)∖I-generic over V . Let
j ∶ V → Ult(V,G) be the associated ultrapower map. For any x ∈ R the restriction of j
to L[x] gives an elementary embedding from L[x] into itself. Hence x# exists in V [G].
But sharps can’t be added by forcing, hence x# ∈ V . ⊣

Lemma 3.19. Suppose there is a precipitous ideal on ω1. Then Hω2 is closed under
#’s.

Proof. Let I be a precipitous ideal on ω1 and let G be a P(ω1)∖I-generic over V . Let
j ∶ V → Ult(V,G) =M be the associated ultrapower map. Let A ⊆ ω1. By elementarity
R is closed under sharps in M , on the other side A = j(A) ∩ ωV1 ∈ RM . Hence A# exists
in V [G] and again in V since forcing can’t add sharps. ⊣

Lemma 3.20. Suppose BPFA holds and that there is a precipitous ideal on ω1, then V
is closed under #’s.

Proof. This follows from Lemma 3.19 and [Sch, Theorem 0.1]. ⊣

3.4.2 Some toolboxes

In order for the proof to go smoothly in the higher case, let us make some observation
on the absoluteness of iterability and some mouse operators between class sized models.
Especially between M and V [G] where G is P(ω1)∖I-generic over V and M = Ult(V,G),
where I is a precipitous ideal on ω1.

Let us fix the following statements:

i. An ≡ “V is closed under M#
n ”

ii. (i)n ≡ “R is closed under M#
n ”

iii. (ii)n ≡ “Hω2 is closed under M#
n ”
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3 The strength of BPFA and a precipitous ideal on ω1

The good thing about ω1-iterability is that it is absolute in a strong sense:

Lemma 3.21. Suppose An holds. Let x ∈ R and suppose that M#
n+1(x) does not exist.

Let P be a (n + 1)-small countable x-premouse with no definably Woodin cardinal. P is
ω1-iterable if and only if one of the following condition holds:

i. n is even and M#
n (P) ⊧ “P is ω1-iterable”,

ii. n is odd and M#
n (P)[G] ⊧ “P is ω1-iterable”, where G is col(ω, δ0)-generic over

M#
n (P), δ0 being the smallest Woodin cardinal of M#

n (P).

If one of the two above condition holds, we say that M#
n (x) witness the iterability of x

let us give a sketch of the proof:

Proof. We consider first the case n is even.
Suppose An and thatM#

n+1(x) does not exist. By [Ste95, Corollary 4.9] and [KMS83]:

M#
n ≺Σ

̃
1
n+2

V.

Moreover as M#
n+1(P) does not exist, “P is not ω1-iterable” is a Σ

̃
1
n+2 statement by

[Ste95, Lemma 1.5]. Hence we have the equivalence we wanted to show.
Now let us look at the odd case. Assume An+1, where n is even. Suppose V ⊧ “P is not

ω1-iterable”. We have already discussed that “P is not ω1-iterable” is a Σ
̃

1
n+3 statement,

say ∃zϕ(z). Let y be a real such that V ⊧ ϕ(y). By Woodin’s genericity iteration (cf.
[Ste, Theorem 7.14]), y is col(ω, δ0)-generic over M#

n+1(P), where δ0 is the last Woodin
ofM#

n+1(P). But we can rewriteM#
n+1(P)[y] as someM#

n (X) which, by hypothesis, is
Σ
̃

1
n+2 absolute, hence M#

n+1(P)[y] ⊧ ϕ(y). In turn, this implies that M#
n+1(P)[y] ⊧ “P

is not ω1-iterable”.
Now suppose that V ⊧ “P is ω1-iterable”. For every iteration T of limit length, doing

a L[E,M(T )] construction insideM#
n+1(P) give rise to a Q-structure for T of P inside

M#
n+1(P). But if the Q-structure exists, we already have argued that the existence of

a branch is only a Σ
̃

1
1-fact, hence it is also true in M#

n+1(P). This shows that P is

ω1-iterable in M#
n+1(P) as well. ⊣

Lemma 3.22. Suppose An holds and that I is a precipitous ideal on ω1. Let G be
P(ω1) ∖ I-generic over V and M = Ult(V,G) the generic ultrapower. Let X ⊆ ω1 and
M ⊧ P =M#

n (X), then V [G] ⊧ P =M#
n (X) and P is iterable in V [G].

Proof. We proceed by induction. Let Φn be the statement:

“There is tree T ∈M such that

V [G] ⊧ p[T ] = {(x, y); y is a code for M#
n (x)}”

and let Ψn be the statement:

“for X ⊆ ω1, if M ⊧ P =M#
n (X) then V [G] ⊧ P =M#

n (X) and P is iterable
in V [G]”.
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3.4 Core model induction

We will show that:
An +Ψn⇒ Φn and An+1 +Φn⇒ Ψn+1.

Ψ0 is trivial, let us prove Φ0. Assume that the universe is closed under sharps. Let
T0 be the tree searching for

i. a fully elementary map π ∶ H̄ → j((HV
θ )#)

ii. some x, small generic over H̄ and

iii. some y ∈ R that codes an x-sound x-premouse derivable from H̄.

Suppose V [G] ⊧ “y codes x#”. Let τ be a name for x and θ large enough such that
P(ω1) ∖ I ∈HV

θ . Notice that by Ψ0,

j((HV
θ )#) = j(HV

θ )#.

Since x is countable in V [G], we can find a countable substructure X of j(HV
θ )#[G]

with x,G,P(ω1) ∖ I ∈ X. Notice that x is small generic over j(HV
θ )# by construction.

Let N be the transitive collaps of X and π the uncollapsing map. N is of the form H̄[g],
where g = π−1(G). As x is countable, π−1(x) = x and we have x ∈ H̄[g]. By elementarity,
x is small generic over H̄. On the other side, since π ↾ H̄ ∶ H̄ → j(HV

θ )# is an elementary
embedding, we can embed H̄ into a sharp. Hence H̄ is a sharp. But then we can derive
y from H̄ and thus (x, y) ∈ p[T0].

Now let (x, y) ∈ p[T0], since H̄ is embeddable in j((HV
θ )#) via π, it is truly a sharp,

and thus V [G] ⊧ “y is a code for x#”.
Let us prove “An+1 + Φn ⇒ Ψn+1” now. Suppose Tn is the tree given by Φn. Let

M ⊧ M = M#
n+1(X), for some X ⊆ OR. We already know that M is X-sound and

projects to X. Moreover, every initial segment of M is (n + 1)-small, hence if we can
prove thatM is iterable in V [G], we will automatically get that V [G] ⊧ P =M#

n+1(X).
Let us define the tree UMn+1 searching for a countable submodel ofM witnessing its non-
iterability. For the rest of the argument we will drop the index M, that is Un+1 = UMn+1.
Un+1 is the tree searching for:

i. a countable model M̄ of ZFC−

ii. a countable mouse P ∈ M̄ ,

iii. an elementary map σ ∶ P →M,

iv. an iteration tree T ∈ M̄ on P played according to the iteration strategy Σt
P

such
that either:

a) the last model is ill-founded,

b) in M̄ there is no cofinal branch b such that Q(b,T ) exists and

Q(b,T ) ⊲M#
n (M(T )).
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3 The strength of BPFA and a precipitous ideal on ω1

Remark first that by absoluteness of the strategy Σt and by the uniqueness of the
branches, if T is an iteration tree played according to Σt in some M̄ as above, it is an
iteration tree played according to Σt in V . Hence by Π

̃
1
1 absoluteness, the existence

of a branch for T in M̄ is equivalent to the existence of a branch in V , as long as
the Q-structure for the tree exists in M̄ (and in V ). As the Q-structure is given by an
initial segment ofM#

n (M(T )), searching forM#
n (M(T )) will solve that matter. Notice

that M(T ) does not depend on b, hence we can simultaneously search for M(T ) and
some y such that if (M(T ), y) ∈ Tn, that is every part of the finite attempt to describe
(M(T ), y) is a point in Tn extending the previous one in Tn. The rest of the construction
of Un+1 is just as usual.

Let us now prove that Un+1 gives the desired result. Suppose X ⊆ OR and that
M ⊧ P = M#

n+1(X). If P is not iterable in V [G], let T be a tree on P such that
either, its last model is ill-founded, or there are no branch b through the tree with
Q(b,T ) ⊲ M#

n (M(T )). Let θ be large enough such that T ∈ Hθ and let Y ≺ Hθ be a
submodel with P,T ∈ Y . In the transitive collapse of Y there is a countable substructure
P̄ ≺ P and a tree T such that, either the last model of T is ill-founded or T is of limit
length and has no cofinal branch b with a Q-structure that is iterable above δ(T ) .
Suppose the later holds, we claim that having a Q-structure is equivalent to condition
iv. b). If Q(b,T ) ⊲ M#

n (M(T )) then Q(b,T ) is iterable above δ(T ) and hence a Q-
structure. Suppose Q(b,T ) is a Q-structure, hence it is iterable and δ(T )-sound. We
can compare Q(b,T ) and M#

n (M(T )). As δ(T ) is a cut point for both models and
they agree below δ(T ), the coiteration is above δ(T ) and thus they are lined up. Since
P is a substructure of M#

n+1 every initial segment of an iterate of P is (n + 1)-small,
hence Q(b,T ) is (n + 1)-small and Q(b,T ) ⊲ M#

n (M(T )). This shows that the tree
Un+1 is ill-founded in V [G] and thus ill-founded in M as well. Let P be the countable
substructure of M described by a branch of Un+1 in M . On one hand P should be
iterable, on the other Un+1 describes an iteration tree T witnessing the non-iterability
of P a contradiction!

Now we can prove that “An + Ψn ⇒ Φn”: Let Un be the tree constructed above
witnessing the iterability of some mouse M. We construct Tn as the tree searching for:

i. a fully elementary map π ∶H → j(M#
n (HV

θ ))

ii. some x, small generic over H and

iii. some y ∈ R that codes an x-sound x-premouse derivable from H[x].

Tn is clearly in M as well as in V [G]. Suppose that (x, y) ∈ [Tn]. Then by construction y
is a x-sound x-premouse, moreover every initial segment of y is n-small. j(M#

n (HV
θ )) is

iterable in M , by Ψn it is iterable in V [G] as well. Since H is an elementary substructure
of M#

n (HV
θ ), there is a H̄ such that H = M#

n (H̄). As y is derived from M#
n (H̄), it is

iterable in V [G]. This shows that y is indeed M#
n (x).

Now suppose that x ∈ P(ω1)∩V [G] and y codesM#
n (x). We have to show that (x, y) ∈

p[Tn]. x is generic over some HM
η , let θ be large enough such that x is generic over j(HV

θ )
as well and P(ω1)∖I ∈HV

θ . Let X be a countable substructure of j(M#
n (HV

θ ))[G] such

50



3.4 Core model induction

that x,G,P(ω1) ∖ I ∈ X. Let N be the transitive collapse of X and π the uncollapsing
map. By construction, there is some g such that N =H[g], moreover x is small generic
over H. We have that H ≺ j(M#

n (HV
θ )), H ∈ V [G]. But then there is again a H̄ such

that M#
n (H̄) = H. As x is small generic over M#

n (H̄) and as y codes M#
n (x), y codes

an x-sound x-premouse derivable from M#
n (H̄)[x]. Hence π ↾ H,x, y give a branch of

T and (x, y) ∈ p[Tn]. ⊣

The previous lemma actually showed that:

Lemma 3.23. Suppose An holds and that I is a precipitous ideal on ω1. Let G be
P(ω1) ∖ I-generic over V and M = Ult(V,G) the generic ultrapower. Let X ⊆ ω1 and
M an X-premouse such that either M is (n + 1)-small and M ⊧ “M is iterable” or
M ⊧ “M=M#

n+1(X)”. Then V [G] ⊧ “M is iterable”.

If we look carefully at the Φn ⇒ Ψn+1 argument in the proof of Lemma 3.22, we didn’t
need An+1 for the construction of the tree. Hence in case P = M#

n+1(X) it is sufficient
to have An. Hence ifM is (n+ 1)-small or equal toM#

n+1 we can go through the rest of
the proof with the weakened hypothesis.

The proof of Lemma 3.22 also shows that:

Lemma 3.24. Suppose An holds. The set Un = {(x, y); y is a code for M#
n (x)} ⊆ R2

is a universally Baire set.

3.4.3 The induction

We prove the main theorem by induction. The proof of our main theorem will follow
the following “strategy”: Assuming BPFAuB and the existence of a precipitous ideal, we
will show that:

An⇒ An + (i)n+1 ⇒ An + (ii)n+1 ⇒ An+1

Lemma 3.25. Suppose BPFAuB and An holds and that there is a precipitous ideal on
ω1, then (i)n+1.

Proof. Will will prove the lemma by contradiction, let us suppose that there is an x ∈ R
such that K(x) exist, is (n+1)-small and has no Woodin cardinals. We first want to use
[Sch, Theorem 5.2], saying that if we have a precipitous ideal on κ, then κ+K(x) = κ+V .
There is one key fact we have to check, in order for that proof to go through in our case:
the iterability of KM(x). If it wasn’t, there would be an initial segment, say KM(x)∥θ
that is not iterable. This would be a contradiction to Lemma 3.23. Hence we can follow
the same argument as in [Sch, Theorem 5.2] and we can suppose that:

ω
+K(x)
1 = ω+V1 .

Now we follow the same proof as in Lemma 3.12. By the previous argument, we know
that ω

+K(x)
1 = ω2. Let M=K(x)∥ω2, let P be the forcing adding a club C of order-type

ω1 and let Q be the forcing in V P specializing the tree arising from the square-sequence
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3 The strength of BPFA and a precipitous ideal on ω1

ofM restricted to ordinals in C. P∗Q is a proper forcing. Let G be P∗Q-generic over
V . In V [G] there is a mouseM with a height of cofinality ω1, which is an end extension
of K(x)∥ω1 such that the restriction of the square-sequence of M to some club C is
specialized. Let us take a closer look at the complexity of this statement.

Let Ψ be the following formula:

there is a M a club C ⊆ M ∩ OR and a f ∶ ω1 → ω with the following
properties:

i. M is a (n + 1)-small premouse,

ii. K(x)∥ω1 ⊲M,

iii. M has a largest cardinal ω1,

iv. the height of M has cofinality ω1,

v. f specialize the square-sequence of M restrcted to C,

vi. M has the strong condensation property,

vii. for every y ≺M countable, M#
n (y) witness the ω1-iterability of y.

We claim that Ψ is a Σ1 formula over H
V [G]
ω2 with the parameter Un. Obviously we

have to check item vi and vii. Let ⟨λi, i < ω1⟩ be a sequence of ordinals cofinal inM∩OR
such that eachMi =M∥λi projects to ω1. Every countable submodel ofMi has to be the
transitive collaps of HullMi(α∪{p(Mi)}), for some α. This shows that all the collapses
of countable substructures of M are initial segments of some HullMi(α ∪ {p(Mi)}), for
some α, i < ω1. We can rewrite item vi. and vii. by the formula Ψ′:

there is a sequence ⟨λi; i < ω1⟩ such that

i. ⟨λi; i < ω1⟩ is cofinal in M∩OR,

ii. each M∥λi projects to ω1,

iii. for every α < ω1 ifN is the transitive collapse of HullM∥λi(α∪{p(M∥λi)})
then N ⊲M,

iv. for every α < ω1 if z ∈ R is a code for N , where N is the transitive
collapse of HullM∥λi(α∪{p(M∥λi)}) then for all y such that (z, y) ∈ Un,
y witness the ω1-iterability of z.

Ψ′ is a Σ
Hω2
1 formula with parameters M, ω1, K∥ω1 and Un. Let us prove that Ψ′

equivalent to item vi. and vii. provided the other item of Ψ holds true.
It is clear that item vi. and vii. implies Ψ′. Let us now suppose that Ψ′ holds. Let
P be a countable premice and σ ∶ P → M be an embedding. Since the cofinality of M
is uncountable, Setting λ = supσ′′P ∩OR, σ ∶ P →M∥λ is also an embedding. Remark
that since x ∈ R, P is an x-mouse. Let λi > λ and let α = ωP1 be the critical point of σ.

We have that P ⊲ N , where N ≅ HullM∣ λi(α ∪ {p(M∣ λi)}). By Ψ′ N is ω1-iterable, as
witnessed byM#

n (N) thus P is ω1-iterable as well, hence it is also witnessed byM#
n (P).

By Ψ′ we also have that N ⊲M hence, P ⊲M.
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This shows that Ψ is a Σ1 formula in parameters ω1, Un in Hω2 . Ψ is true in V [G]
as witnessed by K(x)∥ω2, C and f , where C is the club added by P and f the function
added by Q. As P ∗Q is proper, by BPFAuB, Ψ holds in V as well. Let M and f be
such that Ψ(M, f) holds in V .

We claim that M and K(x) are lined up. Suppose not and let M be a countable
substructure of Hω3 containing M and K(x)∥ω2. Let M,K ∈M be such that

σ(M,K) = (M,K∥ω2),

where σ ∶ M → M is the uncollapsing map. By Ψ, M is an initial segment of M but
since M is countable and K(x)∥ω1 ⊲M, we have that M⊲K(x), on the other side by
condensation K ⊲K. Hence M and K are lined up, but M believes that there are not,
a contradiction.

Since M has cardinality ω1, we must have that M⊲ K(x)∥ω2. This implies that the
◻ω1-sequence of K(x)∥ω2 is extending the ◻ω1-sequence of M, a contradiction as the
◻ω1-sequence of M has a specializing function. Hence K(x) does not exist and thus by
K-existence dichotomy M#

n+1(x) exists. ⊣

Lemma 3.26. Suppose BPFAuB, An and (i)n+1 holds and that there is a precipitous
ideal on ω1. Then (ii)n+1 hold.

Proof. Let X ∈ Hω2 be the set such that K(X) exists, is n-small and has no Woodin
cardinals. Let I be a precipitous ideal on ω1 and G P(ω1) ∖ I-generic over V . Let
j ∶ V → Ult(V,G) be the associated ultrapower map. By elementarity (i)n+1 holds in M .
As X is a real in M ,M#

n+1(X) exists in M and is iterable in M . As An holds we have by
Lemma 3.23 that M#

n+1(X) is iterable in V [G]. Since KV (X) = KV [G](X) by generic
absoluteness, it is also iterable in V [G]. Let ⟨T ,U⟩ be the coiteration ofM#

n+1(X) with
K(X). As K(X) is universal, the M#

n+1(X) side of the coiteration has no drop. Since
K(X) is (n + 1)-small, at least the critical point κ of the top extender ofM#

n+1(X) has
to be iterated out of the universe, a contradiction to the universality of K(X). ⊣

Lemma 3.27. Suppose BPFAuB, An and (ii)n+1 hold and that there is a precipitous
ideal on ω1. Then An+1 hold.

Proof. Let X ⊆ OR be such that M#
n+1(X) does not exist. Without loss of generality

we suppose that κ = sup(X) is a cardinal. Let P∗ be the ω1-closed forcing adding a
surjection g ∶ ω2 → κ. Let us first work in V [g]. Remark that g is generic over each
X-mouse M, hence we can work with M[g] which we can reorganize as an X ′-mouse,
where X ′ ⊆ ω2. Since we can also form K(X)[g], we have that K(X ′) exist and thus, by
K-existence dichotomy,M#

n+1(X ′) does not exist. Let S(X ′) be the stack of all X ′-mice
which are ω2-sound and projects to or below ω2 (for more on stacks see [JSSS09]). That
is P ⊲ S(X ′) if there is a Q ⊳ P such that Q is an X ′-mouse which is sound above ω2

and projects to ω2. S(X ′) is an X ′-mouse, S(X ′) ⊧ ZFC− and its largest cardinal is ω2.
Fix λ = OR∩S(X ′).

Claim 1. cf(λ) ⩾ ω2
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3 The strength of BPFA and a precipitous ideal on ω1

Proof. Suppose not and let Y be a substructure of S(X ′) of size ω1 such that the
height of Y is cofinal in λ. Let π ∶ N → Y be the uncollapsing map. Then N is some
X̄-mouse where X̄ = π−1(X ′). X̄ can be coded as a subset of ω1, since the forcing
was ω1-closed X̄ ∈ V and thus by (ii)n+1, M#

n+1(X̄) exists in V . But we have already
seen that M#

n+1(X̄) is absolute between forcing extensions, hence M#
n+1(X̄) is iterable

in V [g] as well. This implies that N ⊲ M#
n+1(X̄) as N is (n + 1)-small. Let Q be the

minimal X̄-mouse such that N ⊲ Q ⊲ M#
n+1(X̄), Q is X̄-sound and projects to X̄. Let

n < ω be such that ρQ(n + 1) ≤ sup(X̄) < ρQ(n). Let E be the extender derived by π.
By [MS95], if we let

Q∗ = Ultn(Q,E)
be the ultrapower by the long extender E, Q∗ is an X ′-mouse and is iterable. Since we
chose Y such that sup(Y ∩OR) = λ, we have that ran(π)∩OR is cofinal in λ = S(X ′)∩OR.
This implies that Q∗ ⊳ S(X ′). But Q∗ is an X ′-sound X ′-mouse that projects to X ′, a
contradiction to the definition of the stack S(X ′). ⊣

Again we can look at the forcing P adding a club of order-type ω1 in λ and Q the
forcing specializing the tree arising from the square-sequence of S(X ′) restricted to
elements in the club added by P. Let G be P ∗Q-generic over V [g].

Let Ψ be the formula:

there is a X ⊆ ω1, a M, a club C in M∩OR and a f such that X ⊆ ω1, M
is an iterable X-premouse, cf(OR∩M) = ω1, f specializes the restriction of
the tree arising from the square-sequence of M to C.

The core of our argument will be to show that this sentence can be formulated in a Σ1

way with parameters from Hω2 and one universally Baire set.

Claim 2. There is a Σ1-formula with parameters in Hω2 and two free variables Φ, such
that:

V [g,G] ⊧ “S(X ′) is iterable” if and only if V [g,G] ⊧ Φ(S(X ′), Un)

Proof. Let λ̄ < λ be such that S(X ′)∥λ̄ projects to ω1. Let σ ∶ P → S(X ′)∥λ̄ be an
elementary embedding where P is countable. Let α be the critical point of σ. P is a
X ′ ∩α-mouse. Since S(X ′) is (n+ 1)-small and iterable, we have that P is (n+ 1)-small
and ω1-iterable, witnessed by M#

n (P). Since S(X ′)∥λ̄ projects to X ′, we have that P
projects to X ′ ∩ α. Since both mouse are sound, this implies that P ≅ HullS(X

′)∥λ̄(α ∪
{p(S(X ′)∥λ̄)}).

Let Φ(S,Un) be the following formula:

For all λ̄ < λ, where λ = OR∩S such that ρω(S∥λ̄) = ω1, for all α < ω1

such that α = ω1 ∩HullS∥λ̄(α ∪ {p(S∥λ̄)}) and for all transitive N such that

N = HullS∥λ̄(α ∪ {p(S∥λ̄)}), N is ω1-iterable as witnessed by y, where y is
such that (N , y) ∈ Un.

Φ is the formula we were looking for, as proved by the previous argumentation. ⊣
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3.4 Core model induction

Hence rephrase Ψ by:

There is a Y ⊆ ω1, a Y -premouse M, a club C in M∩OR and a f ∶ ω1 → ω
with the following properties:

i. M is a (n + 1)-small Y -premouse,

ii. the largest cardinal of M is ω1,

iii. the height of M has cofinality ω1,

iv. f specialize the square-sequence of M restricted to C,

v. cofinally many initial segments of M projects to Y ,

vi. Φ(M, Un).

Since P∗ ∗ P is ω-closed and Q is c.c.c. the ∗-product is proper. Thus by BPFAuB, Ψ
holds in V .

Let Y , M and f be witnesses of Ψ in V . Since (ii)n holds, M#
n+1(Y ) exists. There

are cofinally many initial segment of M that are sound and which projects to Y . Let
N ⊲ M be such an initial segment, M#

n+1(Y ) wins the coiteration with N , hence N is
not moved in the coiteration. Moreover since there are both sound and projects to Y ,
there are actually lined up. This implies that M ⊲M#

n+1(Y ). Hence there is a thread
to the square-sequence ofM inM#

n+1(Y ), as given by the square-sequence ofM#
n+1(Y ).

But there is a specializing function for the square-sequence of M, a contradiction! ⊣
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4 Ideal Extenders

This chapter is devoted to the analysis of the consistency strength of various generic
embeddings and their construction. In the first section, we recapitulate some analysis
of the relationship between precipitous ideals and < κ-complete ultrafilters and present
a forcing construction that allows to change the power-set of a measurable cardinal
without killing the measurability. In the second section, we will define ideal extender,
which we think, are the natural counterpart to precipitous ideals in the strong context.
That is, ideal extenders are to strong cardinals, what precipitous ideals are to measurable
cardinals. That the techniques to produce such ideal extenders, by a levy-collapse, are
just the same as in the measurable case strengthen that hypothesis. We will finish that
section by showing that the existence of these ideal extender have at least the consistency
strength of a strong cardinal. In the third section, we will discuss how to produce finitely
many of such ideals. Sadly it seems that it becomes more difficult, consistency wise, to
get a combinatorial witness to the “generical strongness” of a cardinal. By switching to
a more general concept of generically strong, we show that they are equiconsistent to the
“same amount” of strong cardinals. Finally in the last section, we use the techniques
developed in the previous sections to show that given ω supercompact, we can construct
a model in which every ℵn is generically strong.

4.1 In the case of a measurable

Let κ be a cardinal. The levy collapse of κ to ω1, col(ω,< κ), is the set of all finite
function p such that dom(p) ⊆ κ × ω and for all ⟨α,n⟩ ∈ dom(p) p(⟨α,n⟩) < α. We say
that p is stronger than q, p ⩽col(ω,<κ) q, if q ⊆ p.

Fact 4.1. If G is col(ω,< κ)-generic over V , V [G] ⊧ κ = ω1.

Let P = col(ω,< κ) and for ν < κ, we set

Pν = {p ∈ P;∀⟨α,n⟩ ∈ dom(p) α ⩾ ν} ,

similarly

Pν = col(ω,< ν) = {p ∈ P;∀⟨α,n⟩ ∈ dom(p) α < ν} .

It is easy to see that P is isomorphic to the product Pν ×Pν , for all ν.
Let κ be a measurable cardinal and U a normal < κ-complete ultrafilter on κ. Let

π ∶ V →M = Ult(V,U)
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be the ultrapower generated by U . We can split π(P) in P and π(P)κ. Let G be P-
generic over V and H be π(P)κ-generic over V [G]. Every condition in q ∈ π(P)κ can be
represented by a family ⟨qα;α < κ⟩ , that is [⟨qα;α < κ⟩]U = q, where all the qα are in P.
Moreover for U -almost all α qα ∈ Pα, since [q] ∈ π(P)κ ⇐⇒ {α; qα ∈ Pα} ∈ U .

In V [G ×H] we can define a new V [G]-ultrafilter W by:

τG ∈W ⇐⇒ κ ∈ (π(τ))G×H .

Let Ẇ be the canonical name for W . For every p ∈ P and q ∈ π(P)κ,

⟨p, q⟩ ⊩ Ẋ ∈ Ẇ ⇐⇒ for U -measure one many α, p ∪ qα ⊩ α̌ ∈ Ẋ.

We will use this last remark to show that W is generic over V [G] for the following
forcing: Q = {X ∈ V [G];∀Y ∈ U Y ∩X ≠ ∅}, where X ⩽Q Y if and only if X ⊆ Y . We
already know that W is a V [G] ultrafilter, so we only have to prove that it is generic.
Suppose X = {Xi; i < θ} is a maximal antichain in V [G] and for all i < θ, Xi ∉ W . Let
Ẋ, Ẋi be names for X and Xi. Let p ∈ G and q ∈H be such that:

⟨p, q⟩ ⊩ ∀i < θ Ẋi ∉ Ẇ

By the last remark q = [⟨qα;α < κ⟩]U and for each i there is a set Ai ∈ U such that for
all α ∈ Ai p ∪ qα ⊩ α ∉ Ẋi . Now let T = {α, qα ∈ G}. We first prove that T ∩Xi ∉ Q. For
each i < θ, if α ∈ T ∩Ai we have that qα ∈ G and α ∉ Xi. Therefore T ∩Xi ∩Ai = ∅ but
Ai ∈ U hence T ∩Xi ∉ Q. Thus T is incompatible with all Xi. If we can prove that T ∈ Q
we would have that {Xi; i < θ} wasn’t a maximal antichain, a contradiction. Let Z ∈ U ,
we have to prove that T ∩Z ≠ ∅. We want to show that qα ∈ G for some α ∈ Z. Let

E = {r ∈ P; r ⩽ qα for some α ∈ Z}

Let us show that E is dense. Take some p ∈ P and let β be the minimal such that p ∈ Pβ.
Now since Z is unbounded in κ there is a α ∈ Z ∖ β. But then, p and qα have disjoint
domains in a way that p ∪ qα ∈ P and thus r = p ∪ qα is the strengthening of p that we
were looking for. Thus E ∩G ≠ ∅ and T ∩Z ≠ ∅.

What we basically did is, starting with some embedding:

π ∶ V →M = Ult(V,G)

to lift up π to some
π̃ ∶ V [G] →M[G,H],

moreover if W is the ultrafilter derived from π̃, W is generic over V [G] for the forcing
Q. This case was easy, because the forcing adding G was basically below κ, the critical
point of π. But there are ways to lift up embeddings even when forcing above of a large
cardinal. Let us first show a way to deal with it in the case of a measurable.

Lemma 4.2. Assume GCH. Let κ be measurable, Xκ the set of all cardinals less or equal
to κ and P the easton support iteration of col(ξ, ξ), the forcing adding a cohen subset of
ξ, for all ξ ∈Xκ. Let G be P-generic over V , then in V [G], κ is still measurable.
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Proof. Let U be an normal ultrafilter witnessing the measurability of κ. Let

j ∶ V →M = Ult(V,U)

be the associated ultrapower map. j(P) is the easton support iteration of col(ξ, ξ)
for all ξ ∈ j(Xκ) = Xj(κ), let j(P)κ for the part of the forcing starting after κ, that is
j(P) = P∗Pκ. Let G be P-generic over V , since (Hκ)V = (Hκ)M and P(κ)∩V = P(κ)∩M
we have that G is P-generic over M . If we can show that there is an G̃ ∈ V [G] such that
G∗G̃ is j(P)-generic over M and j”G = G̃∩ran(j), we will be able to lift the embedding
j to an embedding

̃ ∶ V [G] →M[G × G̃]
By the Factor Lemma [Jec03, Lemma 21.8 pp. 396] it suffices to define G̃ such that it
is j(P)κ-generic over M[G].

By [Kan03, Proposition 5.7 (b)], 2κ ≤ (2κ)M < j(κ). Notice that for the same reasons,
we also have j(κ+) < (2κ)+ = κ++. Hence

cardV ({D ∈M,D is dense in j(P)κ}) = κ+ = 2κ

Every dense set of j(P)κ in M[G] is of the form j(f)(κ)G, where f is a function
from κ to V P. Let ⟨fi; i < κ+⟩ be an enumeration in V of functions representing all open
dense sets of j(P)κ in M[G]. There is an enumeration with size κ+ since in V [G] there
are at most κ+ many such dense sets and P has the κ+-c.c. Since M is κ-closed each
initial segment ⟨j(fi)(κ)G; i < α⟩ is in M , for α < κ+. But j(P)κ is also κ-closed, hence

⋂i<α j(fi)(κ)G is a dense set of j(P)κ in M . Now one can construct in V [G] a sequence
⟨pα;α < κ+⟩ with the following properties:

i. p0 = ⋃ j”(G ∩ col(κ,κ))

ii. pα < pβ for α < β

iii. pα ∈ ⋂i<α j(fi)(κ)G

Each element of the sequence is in M , and the sequence itself is in V [G]. Moreover
j”G ⊆ G ∗ G̃. Now we can lift j by using the classical definition:

j(τG) = j(τ)G∗G̃ ⊣

for τ a P-name in V .

4.2 One ideally strong cardinal

4.2.1 The definition of ideal extenders

Definition 4.3. Let κ be a cardinal, λ > κ an ordinal and let X be a set. For every
finite subset a of X let us fix one bijection between a and its cardinality. We identify
finite sets of ordinals with their increasing enumeration, finite subsets of X with their
previously fixed bijection.
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i. A ⟨κ,X⟩-system of filters is a set

F ⊆ {⟨a, x⟩ ∈ [X]<ω × P([κ]<ω);x ⊆ [κ]a} ,

such that for all a ∈ [X]<ω, Fa = {x; ⟨a, x⟩ ∈ F} is a non trivial filter that is Fa ≠
P([κ]a). We set supp(F ) = {a ∈ [X]<ω;Fa ≠ {X}}.

ii. Let F be a ⟨κ,X⟩-system of filters. Let a, b ∈ supp(F ), such that a ⊆ b. Let s ∶ a→ b
be such that a(n) = b(s(n)). For a set x ∈ P([κ]a), we define

xa,b = {⟨ui; i < b⟩ ∈ [κ]b; ⟨us(j); j < a⟩ ∈ x} .

For a function f ∶ [κ]a → V , we define fa,b ∶ [κ]b → V by

fa,b(⟨ui; i < b⟩) = f(⟨us(j); j < a⟩).

iii. A ⟨κ,X⟩-system of filters F is called compatible if for all a ⊆ b ∈ supp(F )

x ∈ Fa ⇐⇒ xa,b ∈ Fb.

iv. Let a ∈ [X]<ω and x ∈ [κ]a, we say that F ′ = span{F, ⟨a,X⟩} is the span of F
and ⟨a, x⟩ if it is the smallest compatible system of filters such that F ⊆ F ′ and
⟨a, x⟩ ∈ F ′.

v. Let F be a ⟨κ,λ⟩-system of filters. The associated forcing PF consists of all
conditions p = F p, where F p is a compatible ⟨κ,λ⟩-system of filters, supp(p) =
supp(F p) ⊆ supp(F ) is finite and F p is generated by one point x ∈ (Fa)+ for
some a ∈ supp(p), i.e. F p is the span of F and ⟨a, x⟩. p ⩽P q if and only if
supp(q) ⊆ supp(p) and for all a ∈ supp(q), F q

a ⊆ F p
a , that is if F q ⊆ F p.

Let F be a compatible (κ,λ)-systems of filters and G be PF -generic over V . Set
ĖF = ⋃ Ġ, where Ġ is the canonical name for the generic filter. Clearly ĖG

F is a system
of filters again. For any a ∈ [λ]<ω and X ∈ F +

a we have that

A = {span{F, ⟨a,X⟩} , span{F, ⟨a, [κ]a ∖X⟩}}

is an antichain in PF . This shows that each ĖG
F,a = (⋃ Ġ)a is an ultrafilter. Moreover

ĖF has the compatibility property. Let us now look how we can translate the normal
and ω-closed concept to this situation.

Definition 4.4. Let κ, λ be as in the previous definition.
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i. We call a ⟨κ,λ⟩-system of filters potentially normal if for every p ∈ PF , for every
a ∈ supp(p) and for every f ∶ [κ]a → V if there is a j < a such that

{u, f(u) ∈ uj} ∈ F p
a ,

it follows that there is a dense set D below p such that for every p′ ∈ D there is a
ξ ∈ supp(p′) with

{v, fa,a∪{ξ}(v) = vi} ∈ F p′

a∪{ξ}
,

where i is such that s(i) = ξ, s being the enumeration of a ∪ {ξ}.

ii. We call a ⟨κ,λ⟩-system of filter precipitous if for all p ∈ PF and for all systems
⟨⟨ps,Xs, as⟩; s ∈ <ωθ⟩ such that:

a) p∅ = p,
b) as ⊆ as⌢i for all i < θ,
c) ps⌢i contains the span of ps and ⟨as⌢i,Xs⌢i⟩ for all i,

d) {ps⌢i; i < θ} is a maximal antichain below ps,

there is an x ∈ ωθ and a τ ∶ ⋃s⊆x as → κ such that τ”as ∈Xs for all s ⊆ x.

Definition 4.5. Let κ < λ be ordinals. F is a ⟨κ,λ⟩-ideal extender if it is a compatible
and potentially normal ⟨κ,λ⟩-system of filters such that for each a ∈ supp(F ), Fa is
< κ-closed.

Let F be a compatible ⟨κ,λ⟩-systems of filters and G be PF -generic over V . By
compatibility and potential normality, we can see that ĖG

F is a ⟨κ,λ⟩-extender over V .
Hence we can construct the formal ultrapower, regardless of it being well-founded or
not.

Lemma 4.6. Let F be a ⟨κ,λ⟩-ideal extender and G be PF -generic over V . Let ϕ(u)
be a formula in the language of set theory in one free variable u.  Loś’s theorem holds
for generic ultrapowers, that is Ult(V, ĖG

F ) ⊧ ϕ([a, f]) if and only if

{α⃗ ∈ [κ]a;V ⊧ ϕ(f(α⃗))} ∈ ĖG
F,a.

Proof. We proceed by induction on the rank of the formula. For atomic formulae
this holds by definition. We only prove the lemma for the negation and the existencial
quantifier as the other cases are easy.

Let ϕ ≡ ¬ψ. It follows from the fact that each ĖG
F is a system of ultrafilters, that is if

⟨a, x⟩ ∉ ĖG
F then ⟨a, [κ]a ∖ x⟩ ∈ ĖG

F .
Let ϕ([c, g]) ≡ ∃vψ(v, [c, g]). We first show that:

Ult(V, ĖG
F ) ⊧ ϕ([c, g]) Ô⇒ {α⃗ ∈ [κ]c;V ⊧ ϕ(g(α⃗))} ∈ ĖG

F,c
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Let [b, f] be such that ψ([b, f], [c, g]) holds. By induction hypothesis, there is a ⟨b∪c, x⟩ ∈
G witnessing that ψ([b, f], [c, g]) is true, that is

x = {α⃗ ∈ [κ]b∪c;V ⊧ ψ(fb,b∪c(α⃗), gc,b∪c(α⃗))} ∈ ĖG
F,b∪c.

Since ĖG
F,b∪c is a filter, by a compatibility argument we can show that:

xb∪cc ⊆ {β⃗ ∈ [κ]c;V ⊧ ∃xψ(x, g(β⃗))} ∈ ĖG
F,c.

Let us now prove the other direction, that is:

{α⃗ ∈ [κ]c;V ⊧ ϕ(g(α⃗))} ∈ ĖG
F,c Ô⇒ Ult(V, ĖG

F ) ⊧ ϕ([c, g]).

Let
y = {β⃗ ∈ [κ]c;V ⊧ ∃xψ(x, g(β⃗))} ∈ ĖG

F,c,

and f the function that assigns to some β⃗ some set x such that

V ⊧ ψ(x, g(β⃗)),

if one exists and the empty set else. f gives a witness for the fact that ∃vψ(v, g(β⃗)) on
a ĖG

F,c measure one set. Thus by induction hypothesis

Ult(V, ĖG
F ) ⊧ ψ([c, f], [c, g]). ⊣

Lemma 4.7. A ⟨κ,λ⟩-ideal extender is precipitous if and only if the generic ultrapower
given by any generic over the associated forcing is well-founded.

Proof. Suppose first that F is precipitous and that there is a condition p ∈ PF such
that p ⊩“ the ultrapower by ĖF is ill-founded”. That is there is a system ⟨[ȧn, ḟn], n < ω⟩
such that

p ⊩ [ȧn, ḟn] > [ȧn+1, ḟn+1].
Without loss of generality we can fix a system ⟨⟨ps,Xs, as⟩, s ∈ <ωθ⟩ with p∅ = p such that
{ps⌢i; i < θ} is a maximal antichain below ps and

ps ⊩ dom(ḟn) = X̌s ∈ Ėǎs ∧ ḟn = f̌s ∧ ǎs = ȧn.

By precipitousness we then have a x ∈ ωθ and a τ ∶ ⋃s⊆x as → κ such that τ”as ∈ Xs for
all s ⊆ x. Since all conditions are below p,

px ↾n+1 ⊩ “[ȧn, ḟn] > [ȧn+1, ḟn+1]”.

Moreover
px ↾n+1 ⊩ “ dom(ḟn) = X̌x ↾n ∈ Ėǎx ↾n ∧ ǎx ↾n = ȧn”
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4.2 One ideally strong cardinal

and
px ↾n+1 ⊩ “ dom(ḟn+1) = X̌x ↾n+1 ∈ Ėǎx ↾n+1

∧ ǎx ↾n+1 = ȧn+1”.

Thus τ”ax ↾n ∈ dom(f̌x ↾n) and fx ↾n(τ”ax ↾n) > fx ↾n+1(τ”ax ↾n+1), but this is a descending
sequence of ordinals in V , contradiction!

Suppose now that for every generic, the ultrapower is well-founded. Consider the
system T = ⟨⟨ps,Xs, as⟩; s ∈ <ωθ⟩ such that:

i. p∅ = p,

ii. as ⊆ as⌢i for all i < θ,

iii. ps⌢i contains the span of ps and ⟨as⌢i,Xs⌢i⟩ for all i,

iv. {ps⌢i; i < θ} is a maximal antichain below ps.

Let us show that x, τ exists such that τ ′′as ∈Xs for s ⊆ x. Let G be a generic filter such
that p∅ ∈ G. Since for all n < ω the set {ps, lh(s) = n} is a maximal antichain below p∅,
there is one s such that ps ∈ G, let x be the union of all such s, notice that x ∈ ωθ is well
defined. Let π ∶ V → Ult(V,G) be the ultrapower map. We write a

π(T )
s for the second

components of the condition at the s-node of π(T ), similarly for X
π(T )
s and p

π(T )
s . Let

τ ∶ ⋃
s⊆x
π(as) → π(κ)

be defined as follows:

if ξ ∈ ⋃s⊆x π(as) then there is a s such that ξ ∈ π(as), since as is finite there
is a ξ ∈ as such that ξ = π(ξ), let τ(ξ) = ξ.

Hence we have that:
Ult(V,G) ⊧ “τ ∶ ⋃

s⊆x
π(as) → π(κ)”

and
τ”π(as) ∈ π(Xs) for all s ⊆ x.

By elementarity π(as) = aπ(T )

π(s)
and π(Xs) =Xπ(T )

π(s)
.

Let us argue why x and τ exists in Ult(V,G): let T be the tree of height ω, with finite
conditions searching1 for a x′ and a τ ′ such that

τ ′ ∶ ⋃s⊆x′ aπ(T )
s → π(κ) and τ ′”a

π(T )
s ∈Xπ(T )

s for all s ⊆ x′.
This tree is in V [G] as well as in Ult(V,G), setting x′ = π′′x we can see that it is ill-
founded in V [G], hence it is ill-founded in Ult(V,G). A branch through the tree gives
some x and τ with the above properties, hence

Ult(V,G) ⊧ “∃x∃τ such that τ ∶ ⋃s⊆x aπ(T )
s → π(κ) and τ”a

π(T )
s ∈ Xπ(T )

s for
all s ⊆ x”.

By elementarity

V ⊧ “∃x∃τ such that τ ∶ ⋃s⊆x as → κ and τ”as ∈Xs for all s ⊆ x”. ⊣

1we already constructed such a type of tree in 3.10
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4 Ideal Extenders

4.2.2 Forcing ideal extenders and ideally strong cardinals

Lemma 4.8. Let κ be α-strong in V , µ < κ some cardinal and let E be the ⟨κ,λ⟩-
extender derived by the ultrapower map witnessing the α-strongness. Let W = V [G]
where G is col(µ,< κ)-generic over V . Set

F = {⟨a, x⟩;x ⊆ [κ]a and ∃y such that ⟨a, y⟩ ∈ E y ⊆ x}

then F is precipitous.

Proof. Let us first start with a simple general consideration that is useful in many
cases when considering ultrapowers and the Levy collapse:

Claim 1. Suppose V ⊧ “E is a (κ,λ)-extender”. Let π ∶ V → M = Ult(V,E) be the
associated ultrapower map. Then for each G col(µ,< κ)-generic over V and each con-
dition q ∈ col(µ,< π(κ))M such that q ↾ µ × κ ∈ G, there is a M-generic G∗ such that
{q} ∪G ⊆ G∗, moreover there is a canonical map π̃ ∶ V [G] →M[G∗] such that π ⊆ π̃.

Proof. Since (Hκ+)V = (Hκ+)M , G is also generic over M . In M[G] we can look for
a col(µ, ]κ,π(κ)[)-generic filter G̃ such that q ↾ µ×]κ,π(κ)[∈ G̃. Let G∗ be the filter
generated by G ∪ G̃, now we can define an embedding π̃ ∶ V [G] →M[G∗] as follow: for
every name τ ∈ V col(µ,<κ), let π̃(τG) = (π(τ))G∗

. It is easy to check that π̃ is well defined
and an embedding. ⊣

Let us now turn to F , we first want to prove that for each col(µ,< π(κ))-generic over
M filter G∗, we can construct an extender EG∗

that extends F such that the following
diagram commutes:

V [G] π̃ //

j ''OOOOOOOOOOO
M[G∗]

Ult(V [G],EG∗)
k

77nnnnnnnnnnnn

where j is the associated ultrapower map and k still needs to be defined and G =
G∗ ∩ col(µ,< κ). We define EG∗

by:

⟨a, x⟩ ∈ EG∗ ⇐⇒ a ∈ π̃(x),

for a ∈ [λ]<ω and x ⊆ P([κ]a) and k by:

k([f, a]) = π̃(f)(a),

where a is as before and f ∶ κa → V [G]. It is easy to check that k is well defined. Hence
Ult(V,EG∗) is transitive.

Let us do a few remark similar to the case of a measurable before turning to the
genericity of EG∗

. Each condition in col(µ,< π(κ)) can be split in p ∈ col(µ,< κ) and a
q ∈ col(µ, [κ,π(κ)[), moreover q can be represented in the ultrapower by aq ∈ [λ]<ω and
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4.2 One ideally strong cardinal

a function f q ∶ κaq → col(µ,< κ). Let s be an enumeration of aq ∪ {κ} and i such that
s(i) = κ, we have:

{ξ⃗; f q
aq ,aq∪{κ}

(ξ⃗) ∈ col(µ, [ξi, κ[)} ∈ Eaq∪{κ}.

Let Ė be the canonical name for EG∗

, a ∈ [κ]<λ and Ẋ ∈ V col(µ,<κ) some set such that
there are ⟨p, q⟩ ∈ P ∗ j(P)κ with

p ∪ q ⊩j(P) ⟨ǎ, Ẋ⟩ ∈ Ė.
By definition of π we then have:

p ∪ q ⊩j(P) ǎ ∈ π(Ẋ)2.

Setting ida ∶ [κ]a → [κ]a, this leeds to:

{ξ⃗;p ∪ f qaq ,a∪aq(ξ⃗) ⊩P idaa,a∪aq(ξ⃗) ∈ Ẋ} ∈ Ea∪aq .

Let GF = {p ∈ PF ;F p ⊆ EG∗}. We want to prove that GF is PF -generic over V [G]. Let
p ∈ G and q ∈ G∗ ↾ col(µ[κ,π(κ)[) such that

p ⊩ “Ȧ = {Ḟ i; i < θ} ⊆ PF is an antichain”

moreover for each i < θ, p ∪ q ⊩ “F i ⊈ EG∗

”. Let each Ḟ i be generated by ⟨ǎi, Ẋi⟩, we
have

p ∪ q ⊩ “Ẋi ∉ Ėǎi”.

By the previous observation, we have sets Ai ∈ Eai∪aq such that for all ξ⃗ ∈ Ai:

p ∪ f qaq ,ai∪aq(ξ⃗) ⊩ idaiai,ai∪aq(ξ⃗) ∉ Ẋi.

Let T = {ξ⃗; f q(ξ⃗) ∈ G} and let F ′ be the span of F and ⟨aq, T ⟩. We first show that
F ′ is a condition: for a Z ∈ Eaq , we have to show that Z ∩ T ≠ ∅. Let

D = {r; r ⩽col(µ,<κ) qξ⃗ for some ξ⃗ ∈ Z} .
D is dense, since each condition has size less then µ, Z is unbounded and µ is regular,
therefore we can choose some qξ⃗ such that

sup(dom(r)) < min(dom(qξ⃗)).

Let r ∈D∩G, there is a ξ⃗ ∈ Z such that r ⩽col(µ,<κ) qξ⃗, thus ξ⃗ ∈ T , and we have T ∩Z ≠ ∅.
Let us now show that T ∩Xi ∉ F +, it suffices to prove that there is a set X ∈ Eai∪aq such
that

Taq ,ai∪aq ∩Xiai,ai∪aq ∩X = ∅.
Let ξ⃗ ∈ Ai. If ξ ∈ Taq ,ai∪aq , qξ ∈ G. Since

p ∪ f qaq ,ai∪aq(ξ⃗) ⊩ idaiai,ai∪aq(ξ⃗) ∉ Ẋi.

We have that ξ ∉Xiai,ai∪aq , hence the Ai where the set we sought, and ⟨Xi; i < θ⟩ isn’t a
maximal antichain, a contradiction!

2notice that π(Ẋ) is a col(µ,π(κ)) name
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Claim 2. Let G be col(µ,< κ)-generic over V . For each condition p ∈ PF , there is a G∗

col(µ,< π(κ))-generic that extends G, such that F p ⊆ EG∗

.

Proof. Let ṗ ∈ V be a name for a condition in PF . Fix τ ∈ V and q ∈ col(µ,< κ)
such that q ⊩ “F ṗ is the span of F̌ and ⟨ǎ, τ⟩”, for some finite set of ordinals a ∈ [λ]<ω.
Without loss of generality we can assume that τ = {⟨p, ˇ⃗α⟩;p ⊩ ˇ⃗α ∈ τ}. We want to show
that we can find a q′ < q ∈ col(µ,< π(κ)) such that a ∈ π̃(τ), for every col(µ,< π(κ))-
generic G∗ with q′ ∈ G∗. Let

y = {α⃗;∃r < q⟨r, α⃗⟩ ∈ τ} .

Clearly, ⟨a, y⟩ has to be in E, else τ would be a null set in V [G]. Hence

a ∈ π(y) = π({α⃗;∃r < q⟨r, α⃗⟩ ∈ τ}) = {α⃗;∃r⟨r, α⃗⟩ ∈ π(τ)} .

This shows that there is a q′ ∈ col(µ,< π(κ)), q′ < q such that ⟨q′, a⟩ ∈ π(τ). Let G∗ be
col(µ,< π(κ))-generic with q′ ∈ G∗, G∗ has the desired properties. ⊣

Let us prove now that F is potentially normal and precipitous. Suppose first that F
is not precipitous, then there is a generic over PF such that the associated ultrapower
is ill-founded. This is then forced by a condition p ∈ PF . By the previous result we
can find G∗ col(µ,< π(κ))-generic such that F p ⊆ EG∗

. Thus Ult(V [G],EG∗) should be
ill-founded, a contradiction since you can embed it in M[G∗]. Similarly suppose that F
is not potentially normal. Let p ∈ PF such that there is f ∶ [κ]a → V with

{u, f(u) ∈ uj} ∈ F p
a

for some a ∈ supp(p), such that for no q ⩽PF p there is a ξ with a ∪ {ξ} ⊆ supp(q) and

{v, fa,a∪{ξ}(v) = vi} ∈ F q
a∪{ξ}

.

Let G∗ be col(µ,< π(κ))-generic such that F p ⊆ EG∗

. EG∗

is a normal extender, since it
is an extender derived from an embedding. Hence there is a ξ such that

V [G∗] ⊧ A = {v, fa,a∪{ξ}(v) = vi} ∈ EG∗

a∪{ξ}.

Let F p be generated by ⟨b, x⟩, and define

y = xb,b∪a∪{ξ} ∩Aa∪{ξ},b∪a∪{ξ}.

Let q ∈ PF be such that F q is the filter generated by ⟨b ∪ a ∪ {ξ} , y⟩. Then q ⩽PF p and

{v, fa,a∪{ξ}(v) = vi} ∈ F q
a∪{ξ}

,

a contradiction! ⊣

Definition 4.9. Let κ be a regular cardinal. We call a regular cardinal κ ideally strong
if and only if for all A ⊆ OR, A ∈ V , there is some ⟨κ, ν⟩-ideal extender E such that,
whenever G is E-generic over V , A ∈ Ult(V,G)
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4.2 One ideally strong cardinal

Theorem 4.10. Let κ be a strong cardinal in V and λ be a cardinal. Let G be col(λ,<
κ)-generic over V . In V [G], κ is ideally strong.

Proof. Let A ⊆ V [G]. There is a name τ ∈ V for A. Let Ẽ be the extender witnessing
the strongness of κ with respect to τ . That is ̃ ∶ V → Ult(V, Ẽ) is such that τ ∈ Ult(V, Ẽ).

Now let E be the ideal extender derived by Ẽ in V [G], as we have seen previously if
H is E-generic over V and j ∶ V [G] → Ult(V [G],H) is the associated ultrapower, then
j ↾ V = ̃. Moreover G ∈ Ult(V [G],H) thus we have that A = τG ∈ Ult(V [G],H), which
finishes the proof.

4.2.3 Iteration of ideal extenders

Let us now discuss the iteration of generic ultrapower by ideal extender.

Definition 4.11. A sequence:

⟨⟨Mi,Ei, πi,j; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

is a putative generic iteration of M (of length θ + 1) if and only if the following holds:

i. M0 =M ,

ii. for all i < θ Mi ⊧ “Ei is an ideal extender”,

iii. for all i < θ Gi is Ei-generic over Mi,

iv. for all i + 1 ⩽ θ Mi+1 = Ult(Mi,Gi) and πi,i+q is the associated generic ultrapower,

v. for all i ⩽ j ⩽ k ⩽ θ πj,k ○ πi,j = πi,k,

vi. if λ < θ is a limit ordinal, then ⟨Mλ, πi,λ; i < λ⟩ is the direct limit of the system
⟨Mi, πi,j; i ⩽ j < λ⟩.

We call
⟨⟨Mi,Ei, πi,j; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

a generic iteration of M (of length θ + 1) if Mθ is well-founded. We call

⟨⟨Mi,Ei, πi,j; i ⩽ j ⩽ θ⟩, ⟨Gi; i < θ⟩⟩

a putative generic iteration of ⟨M,E⟩ if the following additional clause holds true:

vii. for all i + 1 < θ Ei+1 = πi,i+1(Ei).

Let E be an ideal extender. We say that G is E-generic if G is a PE-generic filter.

Lemma 4.12. Let M be a countable transitive ZFC model and F be a precipitous ⟨κ,λ⟩-
ideal extender over M . Let θ < sup{M ∩OR, ωV1 }. Then M is < θ-iterable by F . That
is every putative iteration of ⟨M,F ⟩ of length less or equal to θ is an iteration.
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Proof. This proof is an adaptation of Woodin’s proof to the current context. By
absoluteness if ⟨M,E⟩ is not generically θ + 1 iterable, it is not generically θ + 1 iterable
in M col(ω,<δ) for some δ. Let ⟨κ0, η0, γ0⟩ be the least tripe in the lexicographical order
such that:

i. κ < ωM1 is regular in M ,

ii. η0 < κ0

iii. there is a δ and a putative iteration

⟨⟨Mi,Ei, πi,j; i ⩽ j ⩽ γ0⟩, ⟨Gi; i < γ0⟩⟩

of ⟨HM
κ0

; ∈,E⟩ inside M col(ω,<δ) such that π0,γ0(η0) is ill-founded.

Since I is precipitous, γ0 has to be a limit ordinal, η0 has to be a limit ordinal in any
case. Let i∗ < γ0 and η∗ < πi∗,γ0(η0) be such that πi∗,γ0(η∗) is ill-founded. Since κ0 is
regular we can consider

⟨⟨Mi,Ei, πi,j; i
∗ ⩽ i ⩽ j ⩽ γ0⟩, ⟨Gi; i

∗ ⩽ i < γ0⟩⟩

as a putative iteration of H
Mi∗

π0,i∗(κ0)

By elementarity, ⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩ is the least triple ⟨κ, η, γ⟩ such that
condition i. to iii. holds with respect to Mi∗ .

However as showed before the triple ⟨π0,i∗(κ0), η∗, γ0 − i∗⟩ also fullfils i. to iii. and is
lexicographically smaller than ⟨π0,i∗(κ0), π0,i∗(η0), π0,i∗(γ0)⟩, a contradiction! ⊣

4.2.4 The consistency strength of one ideally strong cardinal

Lemma 4.13. Suppose ¬(0¶). Let κ be ideally strong in V , then κ is strong in the core
model.

Proof. Let K = KV be the core model below (0¶) as in [Jenc]. Let λ ∈ OR. We have
to show that there is an embedding j ∶K →M such that K ∣λ ∈M .

Let λ ∈ OR, by the ideal strongness of κ, there is an ideal extender E such that if G
is E-generic over V :

K ∣λ ∈ Ult(V,G) =M.

Claim 1. In V [G], K iterates to KUlt(V,G) =KM =K∗.

j exists in V [G] and K =KV [G], hence by [Jenc, §5.3 Lemma 5 p. 7] K∗ is an iterate of
K and j ↾K is the iteration map.

Claim 2. K ∣λ =K∗∣λ.
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By the previous claim, we already know that K ∣ν =K∗∣ν, where ν is the length of the
first extender, F , of the iteration j. Since F was used in the iteration, F ∉K∗. Suppose
K ∣λ ≠ K∗∣λ, then lh(F ) < λ. Since lh(F ) < λ, F ∈ K ∣λ ⊆ M . By [Jenc, §5.2 Lemma 2
p. 3] we have that ⟨K ∣ lh(F ), F ⟩ is a generalized beaver for K∗ and hence Ult(K∗, F ) is
well-founded. Let us coiterate K∗ and Ult(K∗, F ):

K∗
iF

// Ult(K∗, F )
k

((RRRRRRRRRRRRRR

W

K∗

i

55lllllllllllllllll

Since F ∈M , we can apply [Jenc, §5.3 Lemma 5 p. 7] to k○iF in M . We get that k○iF = i
and thus k = id, i = iF . This shows that F is on the K∗-sequence, a contradiction!

Thus we can assume that lh(F ) ⩾ λ and so we have:

K ∣λ ⊲K∗.

Hence j ↾K ∶K →K∗ and K ∣λ ∈K∗, which finishes the proof. ⊣
Corollary 4.14. The existence of an ideally strong cardinal is equiconsistent to the
existence of a strong cardinal.

4.3 More ideally strong cardinals

As we have seen in the last section, lifting existing embeddings after forcing has been a
very fruitful method to construct ideally strong cardinals. In this section, the lifting of
various embeddings will be our main concern, especially when forcing “above” a large
cardinal. In the last part we prove that such generic embeddings implies the existence
of strong cardinals in the core model, giving a lower bound to our construction. Let us
first put some light on the problems that arise, when constructing more than one ideally
strong cardinal. The key problem is that, while forcing with so called “small forcings”
preserves large cardinal properties, forcing above a strong cardinal κ will, in general,
destroy its strongness, even if we don’t add a new subset of κ.

Remark 4.15. Let κ be a strong cardinals and β > 2(2κ)+ , then in V col(β,β+) κ is not
necessarily β++V -strong anymore.

Proof. Let K = V be the minimal core model for one strong cardinal. Let κ be strong
in V and β as in the remark. Let E be an extender witnessing the β++V -strongness of
κ, and G a col(β, β+)-generic filter. Since G does not add any ω-sequence, E is still
an ω-closed extender in the forcing extension. Let M be the ultrapower of V [G] by E
and j the ultrapower map. Suppose E is witnessing β++V -strongness in V [G]. Then G
would be in HM

β++V
and thus M believes that there is a col(γ, γ+K)-generic filter over K

for some cardinal γ ≤ j(κ), hence K believes that there is a col(γ, γ+K)-generic filter
over K for some cardinal γ ≤ κ, a contradiction! ⊣
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4.3.1 Lifting of generic embeddings

With some more detailed analysis of the ultrapower by an extender we may lift the
original issue.

Lemma 4.16. Suppose GCH. Let κ be a strong cardinal and λ > κ a regular cardinal
such that 2<λ = λ. Let j ∶ V →M be an ultrapower by a ⟨κ,Vλ⟩-extender witnessing the
λ-strongness of κ. Then for every M-sequence of ordinals λ < µi < νi < µi+1 < j(κ) for
i < j(κ) such that M ⊧ “µi, νi are regular cardinals”, there is a G ∈ V that is P-generic
over M , where P is the easton iteration of all col(µi,< νi)M .

Proof. Remark that since each col(µi,< νi)M is λ-closed in M , so is P. Since j is an
ultrapower by a ⟨κ,Vλ⟩-extender3, we have that:

i. M is closed under sequence of length κ: κM ∩ V ⊆M ,

ii. Hλ ⊆M ,

iii. λ < j(κ) < λ+V .

Hence every dense set of P in M is of the form j(f)(a), for an f ∶ [Vκ]a → Vκ and some
a ∈ [V V

λ ]<ω ⊆M . By GCH we can count in V all such f in a sequence of order type κ+.
Let

⟨fξ; ξ < κ+⟩
be such a sequence. Moreover V V

λ has cardinality λ in M as well as in V . Using the fact
that for any given ξ, j(fξ) ∈M , in M we can look at the set

Xξ = {j(fξ)(a); a ∈ Vλ ∧ j(fξ)(a) is a dense set in P} .

Since M believes that the forcing iteration is an iteration of levy collapses of strong
cardinals above λ, P is λ-closed in M . Now define the sequence pξ for ξ < κ+ as follows

i. p0 be the empty condition,

ii. pξ+1 is a condition below pξ and below each element of Xξ,

iii. if ν < κ+ is a limit ordinal, let pν be some condition below each pξ for ξ < ν.

The successor steps works in M because Xξ and pξ are both in M and P is λ-closed.
For the limit steps: we can define the sequence ⟨pξ; ξ < ν⟩ in V . Since ν < κ+ and M is
κ-closed, the sequence is in M as well. Hence by the λ-closedness of P in M , there is a
pν less than all the pξ in M .

Now the sequence ⟨pξ; ξ < κ+⟩ ⊆M is definable in V , let G ∈ V be the filter generated
by all this points. G is P-generic over M . ⊣

3that is E ⊆ {⟨a, x⟩;a ∈ [Vλ]<ω and x ⊆ P([κ]a)} for more on this type of extender see [MS89, p. 83
ff.]
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4.3 More ideally strong cardinals

Lemma 4.17. Let E be a ⟨κ,Vλ⟩-extender, where λ is such that κVλ ⊆ Vλ and P a
κ-distributive forcing. Let

j ∶ V →M = Ult(V,E)

be the ultrapower map. Let G be P-generic over V , then j can be lifted to an embedding

̃ ∶ V [G] →M[G′],

where G′ is the completion of j′′G in j(P).

Proof. Let E be as in the theorem and j ∶ V → M = Ult(V,E). We have that M is
closed under κ-sequences, that is κM ∩ V ⊆M . Let P be a κ-distributive forcing and G
be P-generic over V . Let

G′ = {q ∈ j(P); ∃p ∈ G, j(p) ≤ q} .

We claim that G′ is already generic over M ! Let D = j(f)(a) be some dense open set
in M . This implies

{u ∈ [Vκ]a; f(u) is a dense open set of P} ∈ Ea

but then the set

A = {f(u); u ∈ [Vκ]a ∧ f(u) is a dense open set of P}

has only size κ. By κ-distributivity of P, ⋂A is still dense. Let p ∈ A ∩G, we have that
j(p) ∈D ∩G′. ⊣

Notice that this lemma alone does not give the the desired result since G itself might
not be in M[G′]. We want to combine this and the techniques developed in the mea-
surable case to get the desired result. Sadly for the forcing we have in mind, using
only strongness will not suffice. We will use the concept of A-strongness to bypass this
problem.

4.3.2 Forcing two ideally strong cardinals

Lemma 4.18. Let A be the class of all strong cardinal. Suppose V ⊧ “GCH, κ is an
A-strong cardinal, δ > κ is the only strong cardinal above κ”. Let n ∶ OR→ OR such that
n(γ) = γ+ and let γµ denote the smallest strong cardinal above µ. For γ strong, let Pγ be
col(n(γ),< µγ), the levy collaps of µγ to n(γ) and let P be the easton support iteration
of all Pγ for γ strong such that µγ exists. Let G be P-generic over V . In V [G], κ is
strong.

Proof. We first follow the same strategy as in the measurable case. For some set of
ordinals I, let P ↾ I be the easton forcing iteration of Pγ for all γ ∈ I. Let G be P-generic
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4 Ideal Extenders

over V , let λ > δ be a large enough regular cardinal with κVλ ⊆ Vλ, we have to show that
there is an embedding

̃ ∶ V [G] → M̃

with the property that H
V [G]

λ ⊆ M . Let E be an ⟨κ,Vλ⟩-extender witnessing that κ is
A-λ-strong in V. We want to lift up the embedding j ∶ V →M associated to E.

Let us recall the cardinal arithmetic setting. We have that

λ < cardV (j(κ)) < cardV (j(δ)) < cardV ((2j(δ))M) < λ+V .

Moreover since we use Vλ to index the extender, the ultrapower is closed under κ-
sequences. Notice that since E is a witness that κ is A-λ-strong, we have that P ⊆ j(P).
Since G is P-generic over V and (Hλ)V = (Hλ)M , we thus have that G is PM ↾ κ = P-
generic over M .

If we can show that there is an G̃ ∈ V [G] such that G∗ G̃ is j(P)-generic over M and
j”G = G̃ ∩ ran(j), we will be able to lift the embedding j to an embedding

̃ ∶ V [G] →M[G × G̃]

Let σP∗ be an MP-name for j(P) ↾ [δ, j(κ)[ and P∗ = σGP∗ . Let further σP∗∗ be a
MP∗P∗-name for Pj(κ).

We want to find G∗, a P∗-generic filter over M[G] and G∗∗, a Pj(κ)-generic filter over
M[G × G∗]. That way using the factor lemma [Jec03, Lemma 21.8 pp. 396], we will
have that G×G∗ ×G∗∗ is a j(P)-generic filter over M . In order to produce a P∗-generic
filter, we’d like to use Lemma 4.16, sadly we need a filter generic over M[G] rather than
just M . Let us argue why the proof still holds true.

Claim 1. There is a filter G∗ ∈ V [G] that is P∗-generic over M[G].

Proof. We want to run the very same argument as in Lemma 4.16. Let us first show
that M[G] is still closed under κ-sequences. Let τ be the name for a κ-sequence in
V [G]. Without loss of generality, we can assume that τ is a nice name, that is, it is of
the form

τ = {⟨⟨η, ξ⟩, q⟩; η < κ ∧ q ∈ Aη ∧ q ⊩ τ(η) = ξ} ,
where Aη is a maximal antichain. Since Aη ∈ Vλ, each Aη is in M . Since M is closed
under κ-sequences. the sequence of all Aη is in M as well and thus τ is in M . Therefore
M[G] is closed under κ-sequences from V [G]. Every dense set of P∗ in M is of the
form j(f)(a)G, for an f ∶ [Vκ]a → V Pκ and some a ∈ V V

λ = V M
λ , as j is the ultrapowermap

generated by E. By GCH we can count in V all such f in a sequence of order type κ+,
⟨fξ; ξ < κ+⟩. Also remark that Vλ has cardinality λ in M[G] as well as in V [G]. Using
the fact that for any given ξ, j(fξ) ∈M , in M[G] we can look at the set

Xξ = {j(fξ)(a)G; a ∈ Vλ ∧ j(fξ)(a) is a P-name for a dense set in P∗} .

Since M[G] believes that the forcing iteration P∗ is an iteration of levy collapses of
strong cardinals above λ, P∗ is λ-closed in M . Now define the sequence pξ for ξ < κ+ as
follows
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4.3 More ideally strong cardinals

i. p0 be the empty condition,

ii. pξ+1 is a condition below pξ and below each element of Xξ,

iii. if ν < κ+ is a limit ordinal, let pν be some condition below each pξ for ξ < ν.

The successor steps works in M[G] because Xξ and pξ are both in M[G] and P is
λ-closed, the limit steps works because they are definable sequences in V [G] of length
at most κ, hence by the κ-closedness of M[G] the sequences are also in M[G], hence by
the λ-closedness of P in M[G], pν is definable in M[G].

Now the sequence ⟨pξ; ξ < κ+⟩ ⊆ M is definable in V [G], let G∗ ∈ V [G] be the filter
generated by all this points. G∗ is P∗-generic over M[G]. ⊣

Let P∗∗ = σG×G∗

P∗∗ . Setting G′ and G′′ sucht that G′ = G ∩Hκ and G′ ×G′′ = G, we can
see that we are already able to lift j to some j1 ∶ V [G′] →M[G′∗G∗]. As in the last step,
we won’t be able to directly use the appropriate lemma, in this case Lemma 4.17. But
with some small modification, the main idea of the lemma carries on in our situation.

Notice that P is an iteration of successor length. Let τ ∈ M be a name for an open
dense set of P∗∗. Hence there is a a ∈ [Vλ]<ω and a f ∶ [Vκ]a → V such that τ = j(f)(a)
and

X = {u ∈ [Vκ]a; f(u) is a P ↾ κ-name for an open dense set in Pκ} ∈ Ea

We have that {(f(u))G′

; u ∈X} is of cardinality κ hence the intersection of all such sets

ḊG′ = ⋂{(f(u))G′

; u ∈X}

is still a dense set in V [G′], where Ḋ is a name such that there is a q ∈ G′ with

q ⊩ “Ḋ = ⋂{(f(u)); u ∈X} and Ḋ is a dense set”.

Let σG
′ ∈ ḊG′ ∩G′′ and let p ∈ G′, p < q, with p ⊩ “σ ∈ Ḋ”.

We have that p = j(p) ⊩ “j(σ) ∈ τ”. Since p ∈ G′ ⊆ G ∗G∗ it follows that j(σ)G∗G∗ ∈
τG∗G

∗

. As the iteration has an easton support, it is is bounded below κ at stage larger
or equal to κ. This shows that:

j(σ)G∗G∗ = j′′σG ∈ j′′G′′.

Thus G∗∗, the closure of j′′G′′ in M[G∗G∗], is a P∗∗-generic filter over M[G∗G∗]. By
the factor lemma G∗G∗ ∗G∗∗ is j(P)-generic over M . Setting G̃ = G∗ ∗G∗∗, we get the
desired result by lifting j using the classical definition:

j(τG) = j(τ)G∗G̃

for τ a P-name in V . ⊣
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4 Ideal Extenders

Corollary 4.19. Let A be the class of all strong cardinal. Suppose V ⊧ “GCH, κ is an
A-strong cardinal, δ > κ is the only strong cardinal above κ”. Then for every successor
cardinal µ below the least strong cardinal, there is a forcing Q such that, whenever G is
Q-generic over V , κ and δ are ideally strong in V [G], µ+V [G] = κ and n(κ)+V [G] = λ.

Proof. First apply P ↾ κ, where P is the forcing defined in the previous lemma. From
the point of view of λ this is a small forcing, hence if G′ is P ↾ κ-generic over V , λ is
strong in V [G′]. Now we can just do the levy collaps col(n(κ), λ). By results of the last
section, λ is ideally strong in V [G′,G′′], where G′′ is col(n(κ), λ)-generic over V [G′].
By the factor lemma, this is the same as forcing in one time with P as defined in the
last lemma. Let G1 = G′ × G′′. In V [G1], κ is still strong, hence we can force with
col(µ,< κ) for some regular cardinal µ. Let G2 be col(µ,< κ)-generic over V [G1] and
set G = G1 ×G2. In V [G] κ is ideally strong. Let us show that λ remains ideally strong
in V [G].

Remark that col(µ,< κ) ∩V [G1] and col(µ,< κ) ∩V are forcing equivalent. Hence we
can first force with col(µ,< κ) ∩ V and then force with P. In the first extension V [G2],
λ remains strong hence by the previous theorem λ is ideally strong in V [G2,G1]. ⊣

4.3.3 Forcing many generically strong cardinals

Definition 4.20. We say that a cardinal κ ∈ V is generically strong if for all A ∈ V
there is a forcing P such that, if G is P-generic over V , in V [G] there is a definable
embedding j ∶ V →M ⊆ V [G] with critical point κ and A ∈M .

Obviously if κ is ideally strong it is generically strong.

Lemma 4.21. Let κ,λ be two strong cardinals and µ, ν two successor cardinals such
that µ < κ < ν < λ . Let P = col(µ,< κ) × col(ν,< λ) and let G be P-generic over V . In
V [G] κ and λ are generically strong.

Proof. Let µ, ν, κ, λ and G be as in the theorem. After forcing with col(µ,< κ), λ
remains strong, hence by Theorem 4.10, λ is an ideally strong cardinal in V [G]. Let
X ∈ V [G] be some set. We only have to show that there is a forcing P, such that if H
is P-generic over V [G], there is a definable embedding in V [G,H],

̃ ∶ V [G] → M̃

such that G,X ∈ M̃ and cp(̃) = κ. Split G into Gκ col(µ,< κ)-generic over V and Gν
λ,

col(ν,< λ) ∩ V -generic over V [Gκ].
Let τ be a P-name for X and let θ be a large enough regular cardinal such that

{τ} ∪ (2λ)+ ⊆Hθ and κVθ ⊆ Vθ. Since κ is strong in V there is a ⟨κ,Vθ⟩-extender, say E,
such that Hθ ⊆ Ult(V,E). Let

j ∶ V →M = Ult(V,E)
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4.3 More ideally strong cardinals

be the associated ultrapowermap. We have that θ < j(κ) < θ+V . By Lemma 4.17, we
know that we can lift j to ̄′ ∶ V [Gν

λ] →M[Gj
λ], where

Gj
λ = {q ∈ col(j(ν), j(λ)) ∩M ; ∃p ∈ Gν

λ q < j(p)}

is col(j(ν), j(λ))-generic over M .
Let Gθ+ be col(µ,< θ+)-generic over V , such that:

i. G ∈ V [Gθ+ ∩ col(µ,< λ+V )],

ii. Gκ = Gθ+ ∩ col(µ,< κ).
We can construct such an Gθ+ , because by [Fuc08, lemma 2.2] col(µ,< λ) × col(µ,λ) is
forcing equivalent to col(µ,{λ}). Let Gθ+1 = Gθ+ ∩col(µ,< θ+1). We first want to create
a col(µ, ]θ, j(κ)[)M[Gθ+1]-generic filter over M , G1.

Claim 1. There is a Gj(κ) ∈ V [Gθ+1] such that:

i. Gj(κ) is col(µ, j(κ)) generic over M ,

ii. Gj(κ) ∩ (col(µ,< θ))V = Gθ+1 ∩ (col(µ,< θ))V ,

iii. we can lift j to some:
j ⊆ ̄ ∶ V [Gκ] →M[Gj(κ)].

Proof. Remark that since HV
θ =HM

θ , we have that

col(µ,< θ + 1) ∩M = col(µ,< θ + 1) ∩ V

As M ⊆ V , we have that Gθ+1 is col(µ,< θ + 1)-generic over M as well. Now look at
col(µ, ]θ, j(κ)[)∩M in V ; AsM is κ-closed it is a < µ-closed forcing in V . col(µ, ]θ, j(κ)[)∩
M adds a surjective function from µ to θ. By [Fuc08, lemma 2.2] it is forcing equivalent
to col(µ,{θ}), hence we can define a col(µ, ]θ, j(κ)[) ∩M -generic filter G1 over V from
Gθ+ ∩ col(µ,{θ + 1}). But since M ⊆ V , being a dense set is upward absolute between
the two models, hence G1 is also generic over M . Set

Gj(κ) = Gθ+1 ×G1.

By the product lemma, Gj(κ) is col(µ,< j(κ)) ∩M -generic over M . Remark that, as
j′′Gκ ⊆ Gj(κ), we can lift j to an embedding

̄ ∶ V [Gκ] →M[Gj(κ)]. ⊣

Remark that since col(j(ν), j(λ)) is < j(ν) closed, Gj(κ) is col(µ,< j(κ)∩M -generic over

V [Gj
λ] as well. Hence by the product forcing theorem Gj(κ) ×Gj

λ is col(µ,< j(κ)) ∩M ×
col(j(ν),< j(λ)) ∩M -generic over M .

Let ̃ ∶ V [G] →M[Gj(κ) ×Gj
λ] be such that

j̃(τG) = j(τ)Gj(κ)×Gjλ ,

where τ is a V P-name.
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4 Ideal Extenders

Claim 2. ̃ is a fully elementary embedding that lifts j.

Proof. Let ϕ be some formula such that V [G] ⊧ ϕ(τG) for some P-name τ . There is
a p ∈ G such that

p ⊩ ϕ(τ)
Hence by the elementarity of j:

j(p) ⊩ ϕ(j(τ))

But by construction j(p) ∈ Gj(κ) ×Gj
λ and j(τ)Gj(κ)×Gjλ = ̃(τG), hence

M[Gj(κ) ×Gj
λ] ⊧ ϕ(̃(τG)).

Let x ∈ V then x = x̌G and thus ̃(x) = j(x̌)Gj(κ)×Gjλ = j(x), as j(x̌) = ˇj(x). Hence j ⊆ ̃.⊣

Hence we can lift j to
̃ ∶ V [G] →M[Gj(κ) ×Gj

λ]
on the other hand τ,G ∈M[Gj(κ) ×Gj

λ]. As ̃ is definable from j, G and Gj(κ) ×Gj
λ, it

is definable in V [Gθ+]. Hence κ is generically strong in V [G]. ⊣

Notice that the proof actually showed:

Theorem 4.22. Let κ be strong in V and µ < κ some cardinal. Let G be col(µ,< κ)-
generic over V and P some < κ+-closed forcing in V . Let H be P -generic over V [G].
Then κ is generically strong in V [G,H].

Proof. Let P, G and H be as in the lemma. Let θ be some large cardinal, such that
P ∈Hθ and κVθ ⊆ Vθ. It suffices to prove that there is some embedding

π ∶ V [G,H] →M,

such that HV
θ ⊆ M . Let E be a ⟨κ,Vθ⟩-extender and j the associated ultrapower. By

Lemma 4.17, we can lift j to some

̄ ∶ V [H] →M[Hj],

where Hj is the M -closure of j′′H in M . The last proof showed that we can then lift j
to some

̃ ∶ V [G,H] → V [Gj(κ),H
j],

where Gj(κ) is some col(µ, j(κ))-generic filter over M such that G = Gj(κ)∩col(µ,κ) and
H ∈M[Gj(κ)]. ⊣

It is not hard to see that applying this theorem to the easton support forcing product
of the levy collapse of strong cardinals, we get the following corollary:

Corollary 4.23. A is a set of strong cardinals such that otp(A) < min(A), and let
f ∶ A → OR a function such that for all µ ∈ A, f(µ) is a successor cardinal and for all
µ < ν ∈ A µ < f(ν). Then there is a forcing P such that if G is P-generic over V :
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i. every f(µ) is a successor cardinal, moreover f(µ)+V [G] = µ

ii. every µ in A is generically strong in V [G].

Proof. Let A, f be as in the theorem and P the easton support forcing product of
all Qκ for κ ∈ A, where Qκ = col(f(κ),< κ). That is p ∈ P if p ∈ Πκ∈AQκ and for all
limit point λ of A, the set of i < λ such that (p)i ≠ 1Qi is bounded in λ. For every
κ ∈ A we can split the forcing P in three pieces Pκ the easton support product of all Qi
for i ∈ A ∩ κ, Qκ and Pκ the easton support product of all Qi such that i ∈ A ∖ κ + 1.
Notice that Pκ is κ-closed. For every filter G, P-generic over V , let Gκ = G ∩ Pκ and
Gκ = G∩ (Qκ ×Pκ). Pκ is a small forcing, hence κ is strong in V [Gκ], by Theorem 4.22
κ is generically strong in V [Gκ,Gκ] = V [G]. ⊣

Giving one concrete example of such a function f :

Corollary 4.24. Suppose ZFC+ “there are ω strong cardinals” is consistent, then so is
ZFC+ “every ℵ2n+1 is generically strong for n ∈ ω”

4.3.4 The consistency strength of many generically strong cardinals

We have seen how to get many generically strong cardinals, starting with the same
amount of strong cardinals. Let us now answer the reverse question, whether one gets
the strong cardinals “back”. Let Ω be some large measurable cardinal and µ0 a < Ω-
complete ultrafilter on Ω. From now on we will work in VΩ.

Theorem 4.25. Suppose there is no inner model with a Woodin cardinal. Let κ be
generically strong in V , then κ is strong in the core model.

Proof. Let K =KV be the core model as defined in [Ste96]. We work towards contra-
diction.

Claim 1. Suppose κ is not strong in K, there is a θ such that for every ν > θ either
cp(EK

ν ) > θ or cp(EK
ν ) < κ.

Proof. Let θ be smallest cardinal strictly larger than the Mitchell order of κ. We claim
that θ has already the desired properties. Suppose not and let F be an extender on the
K-sequence with critical point λ < θ and index ν > θ. Let M = Ult(K∥ν,F ) and j be
the associated ultrapower map. We know that K ∣ν ⊧ “κ is λ-strong”, hence M ⊧ “κ is
j(λ)-strong”. Let E be some extender of theM sequence with critical point κ and index
larger than θ. Since θ is a cardinal, there must be cofinally many E-generators below
θ. Let µ be such a generator. Then E ↾ µ + 1 has natural length µ + 1, hence by the
initial segment condition either the completion of E is on the M sequence or it is one
ultrapower away. Since µ+ 1 is a successor ordinal, the second case can not occur.Thus,
we have that there is some µ + 1 < γ < ν such that EMγ is the trivial completion of
E ↾ µ + 1. Since γ < ν we have that EMγ = EK

γ by coherency. Hence for every ν < θ
we can find a γ > ν such that Eγ has critical point κ and is on the K sequence, a
contradiction to the definition of θ! ⊣
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Let θ be as in the claim. Since κ is generically strong, there is a forcing P such that for
every P-generic G over V , there is an embedding in V [G]

j ∶ V →M

with HV
θ+ ∈M . Let KM be the core model as computed in M . Notice that KV =KV [G],

we will drop the superscript and call it K in what follows.

Claim 2. KM is a universal weasel in V [G].

Proof. The same proof as Lemma 3.22 shows that KM is iterable in V [G]. The set
of fixed point of j is a club set in {α; cf(α) ≠ κ}, but since P has the (2card(P))+V -c.c.
for stationary many successor of some fixed point α of j, we have that α+V = α+K ≤
j(α)+KM ≤ α+M ≤ α+V [G]. For all α larger than (2card(P))+V , α+V = α+V [G]. Hence weak
covering is true for some thick class in KM , hence it is a universal weasel in V [G]. ⊣

We would like to coiterate K with KM , but then the following diagram might not be
commutative.

K
πTΛ

))SSSSSSSSSSSSSSSSSSS

j

��

Q

KM

πQΛ

55kkkkkkkkkkkkkkkkkk

By slightly modifying the iterations, we can get a common iterate in a way that makes
the triangle commutative. We will use a variation of the technique from the proof of
Lemma 7.13 of [Ste96]. By [Ste96, Lemma 8.3] there is a universal weasel W such that
K ∣θ ⊲ W (in fact W witness that K ∣θ is A0-sound), W has the hull property at all α
and the definability property at all α < θ. By [Ste96, Lemma 8.2], W is a simple iterate
of K, actually the iteration T0 from K to W is linear and only uses measures, that is
extenders with only one generator. Finally if πT0

0,∞ is the iteration map, by applying j
we get an iteration tree j(T ) on KM such that the whole commutes as in the following
diagram:

K
π
T0
0,∞

//

j

��

W

j
��

KM

π
T
j
0

0,∞

// j(W )

We have that
Def(W ) = πT0

0,∞
′′K

and the iteration is above θ. We can lift that iteration via j to get an linear iteration of
KM . Since the class of fixed points of j is thick in W , Ω is thick in j(W ) and

Def(j(W )) = j′′ Def(W ).
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Let us coiterate W and j(W ) in V [G] and let T1 and U be the respective trees of the
coiteration. Since both W and j(W ) are universal weasel in V [G] there is no drop on
both side of the iteration. The coiteration might not commute on the whole range, but
it does commute on ran(πT0

0,∞) = Def(W ) since all the elements of Def(W ) are definable
with skolem terms and parameters in a thick class of fix points, see Remark 1.53. Hence
if we set T = T0

⌢T1 and Q = j(T0)⌢U

K
πT //

j

��

W

πT1
''OOOOOOOOOOOOOO

j

��

Q

KM
πj(T )

// j(W )

πU

77ppppppppppppp

This shows that K and KM iterate via ⟨T ,U⟩ to a common model Q such that the
iterations commute with j. Let πTΛ ∶ K → Q be the iteration map on the K side and
πQΛ ∶KM → Q the iteration map on the KM side, where Λ is the length of the iteration.

Claim 3. There is no µ ≤ κ such that the coiteration uses extenders with critical point
µ on both side of the coiteration.

Proof. Suppose not an let E be the first extender with critical point µ ≤ κ used on the
W side and F the first extender with critical point µ used on the j(W ) side. Notice that
µ has the same subsets in every model. Let Γ be a thick class of fixed points of πTΛ and
πQΛ ○ j. Suppose lh(E) < lh(F ), and let X ∈ Ea. Since W has the hull and definability
property at all α < θ, there are η⃗ ∈ Γ and a skolem term τ such that X = τW (η⃗). Hence

X = τ j(W )(η⃗) ∩ κa

Notice that we need to cut with κ just for the case µ = κ. As πTΛ (X) = τQ(η⃗) and

πQΛ (X) = τQ(η⃗) ∩ πQΛ ○ j(κa).

Since cp(F ) ≤ κ and a ∈ [lh(F )]<ω, a ∈ [πQΛ ○ j(κ)]<ω. Thus we have the following
equivalence:

X ∈ Ea ⇐⇒ a ∈ πTΛ (X)
⇐⇒ a ∈ τQ(η⃗)
⇐⇒ a ∈ τQ(η⃗) ∩ πQΛ ○ j(κa)
⇐⇒ a ∈ πQΛ (X)
⇐⇒ X ∈ Fa

Hence E and F are compatible, a contradiction to Lemma 1.49! If lh(E) > lh(F ), we
can argue the very same way. ⊣
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Claim 4. cp(πTΛ ) = κ and cp(πQΛ ) > κ.

Proof. By construction the iteration T0 is above κ, we claim that T1 does not have
critical points less than κ on the main branch. Suppose not, and let µ be the smallest
ordinal such that there is an extender with critical point µ used in the coiteration. By
commutativity, µ is the smallest on the j(W ) side as well. Hence both side would have
use an extender with identical critical point less than κ a contradiction to the previous
claim! Thus the critical point of πTΛ is at least κ. Since the diagram commutes and j
has critical point κ, πTΛ must have critical point κ as well. By the previous claim, this
implies that cp(πQΛ ) > κ. ⊣

The last claim shows that P(κ)∩K = P(κ)∩KM , hence κ+K = κ+KM
. Since K ∣θ ∈M ,

we can coiterate K ∣θ with KM in M . The coiteration coincide with the coiteration of
K and KM in V . Let ∆ be the length of the coiteration of K∥θ with KM .

Claim 5.

πT0,Λ ↾K∥θ = πT0,∆ ↾K∥θ,

that is the main branch of the coiteration of K∥θ with KM is an initial segment of the
main branch of the coiteration of K with KM .

Proof. Suppose not, then there is an extender E used on the main branch of the K side
of the coiteration with index higher than θ such that cp(E) < θ. But by the properties
of θ, this implies that cp(E) < κ. As E is on the main branch, we would have cp(πTΛ ) < κ
a contradiction to the previous claim! ⊣

This shows that πTΛ ↾ K ∣θ ∈ M . Hence the last model of the iteration Q∣πQΛ (j(θ)) is
in M as well and we can coiterate Q∣πQΛ (j(θ)) with KM in M . Since Q∣πQΛ (j(θ)) is an
iterate of KM , it does not move in the coiteration and the KM side is simply the normal
iteration to Q∣πQΛ (j(θ)). Hence we have that j ↾ (KM ∣j(θ)) ∈ M . Since the diagram
commute, we can deduce j ↾ P(κ) ∩K by

j(x) = y ⇐⇒ (πTΛ ↾K ∣θ)(x) = (πQΛ ↾KM ∣j(θ))(y).

Let α < θ and F be the extender of length α derived from j ↾ P(κ)∩K. F coheres with
KM . We want to study the iterability of the phalanx ⟨KM ,Ult(KM , F ), lh(F )⟩.

Claim 6. The phalanx ⟨KM ,Ult(KM , F ), lh(F )⟩ is iterable.

Proof. The aim of the proof is to show that there is an embedding from Ult(KM , F ) to
some Q∗, where Q∗ is an iterate of KM beyond j(lh(F )). Let us first construct Q∗ and
then show that we can embed Ult(KM , F ) in it. Let T j be the iteration on KM copied
from T via j. We claim that at each step we can factorize by taking an ultrapower with
F :

80



4.3 More ideally strong cardinals

K

j

��

πT0,ξ //

iKF

&&LLLLLLLLLLL
πTη,Λ // Q

jΛ

��

iQF

$$JJJJJJJJJJ

Ult(KM , F )
k0

xxrrrrrrrrrr
Ult(Q,F )

kΛ

zztttttttttt

KM
πT

j

0,ξ //
πT

j

η,Λ // Q∗

Figure 1: Copying T

The jξ ∶ MT
ξ →MT j

ξ ’s are the usual copy maps, hence we have that whenever η ≤ ξ <
lh(T ),

jξ ↾ lh(ETη ) = jη ↾ lh(ETη ).
By the previous claim we know that T is above κ. Moreover there are no truncations in
T and thus in T j. Hence for every X ∈ P(κ) ∩K,

πT0,ξ(X) ∩ κ =X.

Since j(κ) ⩾ lh(F ), the iteration T j is above lh(F ), hence if a ∈ [lh(F )]<ω πT jξ,η(a) = a.
Using the commutativity of the diagram:

K
πT0,ξ

//

j

��

MT
ξ

jξ
��

KM

πT
j

0,ξ

//MT j

ξ

we have that:
jξ(πT0,ξ(X)) = πT j0,ξ(j(X)).

Thus for a ∈ [lh(F )]<ω and X ∈ P([κ]a) ∩K:

a ∈ jξ(X) ⇐⇒ a ∈ jξ(πT0,ξ(X)) ⇐⇒ πT
j

0,ξ(a) ∈ πT
j

0,ξ(j(X)) ⇐⇒ a ∈ j(X)

Hence the ⟨κ, lh(F )⟩-extender derived by jξ is nothing else than F and thus we can

factorize jξ by i
MT

ξ

F with some map kξ such that the diagram below commutes:

MT
ξ

jξ

��

i
M
T
ξ

F

%%LLLLLLLLLLL

Ult(MT
ξ , F )

kξ

yyssssssssss

MT j

ξ
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4 Ideal Extenders

Let iK
M

F ∶ KM → Ult(KM , F ) and iQF ∶ Q → Ult(Q,F ) be the ultrapower maps. Then
defining k ∶ Ult(KM , F ) → Ult(Q,F ) such that

iK
M

F (f)(a) ↦ iQF (πUΛ(f) ↾ κ)(a),

where a ∈ [lh(F )]<ω and f ∶ κa → KM , f ∈ KM . Let us show that this map is an
embedding. Let ϕ be a formula.

Ult(Q,F ) ⊧ ϕ(k(iKM

F (f)(a))) ⇐⇒ Ult(Q,F ) ⊧ ϕ(iQF (πQΛ (f) ↾ κ)(a))
⇐⇒ {u;Q ⊧ ϕ(πUΛ(f)(u))} ∩ κ ∈ Fa
⇐⇒ πQΛ ({u;KM ⊧ ϕ(f(u))}) ∩ κ ∈ Fa)
⇐⇒ {u;KM ⊧ ϕ(f(u))} ∈ Fa
⇐⇒ Ult(KM , F ) ⊧ ϕ(iKM

F (f)(a))

The first equivalence holds by definition of k, the third because cp(πQΛ ) ⩾ κ, the
second and fourth is  Loś theorem for ultrapower. Putting everything together we get
the following diagram:

K
j //

πTΛ

��?
??

??
??

??
??

??
??

??
??

iKF
��

j

yysssssssssss KM

πQΛ

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

iK
M

F��

KM

πT
j

Λ

��9
99

99
99

99
99

99
99

99
9 Ult(K,F )k0oo Ult(KM , F )

k

~~~~
~~

~~
~~

~~
~~

~~
~~

~~
~

Q
jΛ

wwooooooooooooooo

iQF
��

Q∗ Ult(Q,F )
kΛ

oo

Figure 2: The complete diagram

Hence we can embed Ult(KM , F ) into Q∗ by kΛ ○ k. Since kΛ ○ k has critical point
strictly larger than lh(F ), the map

⟨id, kΛ ○ k⟩ ∶ ⟨KM ,Ult(KM , F ), lh(F )⟩ → ⟨KM ,Q∗, lh(F )⟩,

is an embedding as well. Moreover since T was above κ, we have that T j the iteration
from KM to Q∗ is above j(κ) > lh(F ). Thus we can embed ⟨KM ,Q∗, lh(F )⟩the following
way:

(πT j , id) ∶ ⟨KM ,Q∗, lh(F )⟩ → ⟨Q∗,Q∗, lh(F )⟩.
⟨Q∗,Q∗, lh(F )⟩ is clearly iterable since Q∗ is an iterate of an universal weasel. This
finishes the proof of the claim. ⊣

By [Ste96, Lemma 8.6 p. 77] this is, in fact equivalent to F being on the KM sequence.
Hence every initial segment of j ↾ P(κ) ∩K is on the KM sequence. But this implies
that κ is Shelah in KM , a contradiction! ⊣
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4.4 Supercompactness

Using Theorem 4.25 this gives us an immediate consistency strength result:

Theorem 4.26. For i ≤ ω the following two theories are equiconsistent:

i. ZFC+“there are α generically strong cardinals, where α is less than the least gener-
ically strong cardinal”

ii. ZFC+ “there are α strong cardinals, where α is less than the least strong cardinal”

4.4 Supercompactness

In this section we want to show that we can apply some of the forcing techniques devel-
oped to force generically strong cardinals from strong cardinals to supercompact cardi-
nals.

Definition 4.27. Let κ be a cardinal and γ some ordinal. κ is called γ-supercompact
if and only if there is an embedding j ∶ V → M such that γM ∩ V ⊆ M . κ is called
supercompact if it is γ-supercompact for all γ.

Remark 4.28. Let κ be γ-supercompact and j ∶ V →M an embedding witnessing the
γ-supercompactness. For any cardinal ν < γ, j′′ν ∈M .

Theorem 4.29. Suppose ZFC+“there exist ω many supercompact cardinals” is consis-
tent, then so is ZFC+“each ℵn+1 is generically strong”.

Proof. Let κ0 = ω and ⟨κn+1; n ∈ ω⟩ be a monotone enumeration of all supercompact
cardinals. Let P be the easton support forcing iteration of col(κn,< κn+1) for n ∈ ω. We
want to show that if G is P-generic over V then in V [G] every ℵn+1 is generically strong.
Let κ = κn+1 be supercompact in V and A ∈ V [G] be some subset of the ordinals. Let

θ regular be bigger than sup(A)P and 2µ, where µ = (2sup{κi; i<ω})+. Let j ∶ V → M be
the embedding witnessing the θ-supercompactness of κ. Let Gθ be col(ω,< θ++)-generic
over V such that G ∈ V [Gθ].

It suffices to construct a G̃ with the properties that: j′′G ⊆ G̃ and G̃ is j(P)-generic
over M . We split the forcing j(P) in three parts:4

Pn =∏
i<n

col(κi, < κi+1), Qjn = col(κn,< j(κn+1)),

and finally
Pj,n = ∏

n<i<ω

col(j(κi),< j(κi+1)).

We will choose generics over V for P0 and col(κn,< µ), this is equivalent to choosing
generics over M since HV

θ ⊆ M . We will construct the generic for Pj,n defining some
master condition. Similarly we can split P in three forcings P = Pn ∗Qn ∗Pn:

Pn =∏
i<n

col(κi,< κi+1),Qn = col(κn,< κ)

4in a slight abuse of notation, we use the symbol ∏ to denote the easton support product
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4 Ideal Extenders

and
Pn = ∏

n<i<ω

col(κi,< κi+1).

Set Gn = G ∩ Pn. Looking at Q∗ = col(κn, sup{κn; n < ω}), by [Fuc08, lemma 2.2]
we have that (Qn ∗ Pn) ×Q∗ and Q∗ are forcing equivalent, hence there is a filter G∗,
Q∗-generic over M , such that G ∈ M[Gn × G∗]. Notice that G∗ is Q∗-generic over V
as well. Using the general theory about Levy collapse, as found in [Kan03, p.127 ff],
there is a col(κn,< µ)-generic filter over M , say G1, that is also generic over V with
G∗ ∈M[Gn ×G1].

Hence there is a filter Gn × G1, Pn ∗ col(κn,< µ)-generic over V and M , such that
G ∈ M[Gn,G1]. Let H∗ be col(κn, [µ, j(κ)[) ∩M[Gn]-generic over M[Gn,G1] and set
Hn = G1 ×H∗, by the product lemma Hn is col(κn, j(κ)) ∩M[Gn]-generic over M[Gn].
Notice that we can choose Hn ∈ V [Gθ], as all forcings we saw so far are in Hθ+ and hence
are in a countable model in V [Gθ].

We now want to construct a generic filter Gn, Pj,n-generic over M[Gn,Hn], such that
j′′(G ↾ Pn) ⊆ Gn. Remember that

Pj,n = ∏
n<i<ω

col(j(κi),< j(κi+1)).

and Pj,n = j(Pn).
Let us now work in M[Gn,Hn]. Since j was witnessing the θ compactness of κ

we have that j′′κi ∈ M for all i, moreover G is in M[Gn,Hn]. Hence can compute
qi = j′′(G ↾ col(κi, κi+1)) in M[Gn,Hn]. As qi has size κi in M[Gn,Hn], it is a condition
of col(j(κi),< j(κi+1)) for i > n. Hence q̇ = ⟨q̌i; i < ω⟩ is a condition of the forcing Pj,n.
Let Gn be Pj,n-generic over M[Gn,Hn] with q̇ ∈ G2. As we have seen, we can lift j to
̃ ∶ V [G] →M[Gn,Hn,Gn].
A was in V [G] hence, by choice of θ, there is a nice name τ with τ ∈ Hθ, thus τ ∈M

and A ∈M[Gn,Hn,Gn]. Remark again that P(Pj,n)∩M[Gn,Hn] is countable in V [Gθ]
hence we can choose Gn ∈ V [Gθ], thus we can define the embedding ̃ inside V [Gθ] and
κ is generically strong. ⊣
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