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Preface

This PHD thesis divides rather neatly into two parts. This short introduction will give a
brief summary of both of them and will also try to provide some mathematical context.

In the first part we will try to extract strength from PFA(ℵ2) - a strengthening of BPFA
introduced by Todorčević in [Tod02] - and the existence of a precipitous Ideal on ω1. It
was shown by Claverie and Schindler in [CS] that this implies projective determinancy.
When we first began working on this problem as a part of this thesis, the goal was to
derive ADL(R) from these same hypotheses. Regrettably we are so far only able to prove
this using additional assumptions.
The central method we use to extract consistency strength from these statements is

the core model induction. Originally introduced by Woodin it was later streamlined by
Steel. In this thesis we will use [SS] as our main reference.
Broadly speaking the core model induction is a method to propagate determinancy

along the levels of the Jensen-hierarchy of L(R). Though this is obviously a statement
about sets of reals, we will be almost exclusively dealing with objects of inner model
theory, so called mice. We can do this by using results by Martin,Neeman,Steel,Woodin
and others, e.g. [MS89] or [Nee95], establishing a deep connection between the existence
of certain mice and the determinancy of appropriate point classes.
The core model induction has been applied to both forcing axioms (cf. [Ste05]) and

certain strong ideal properties (cf. [Ket00]), but the study of the conjunction of such
properties is still relatively new. Closest comes perhaps [SZ] where the saturation of
the non-stationary Ideal is used in conjunction with a stationary set reflection property.
Unfortunately those hypotheses cannot be compared with ours, because while we only
use proper forcing axioms instead of stationary set preserving forcing axioms like they
do, their result is local while ours is global. It might be worthwile to try to localize the
argument in this thesis.
We shall now proceed with a short summary of part 1. In chapter 1 we will introduce all

the basic concepts used throughout this part of the thesis. We will discuss condensation
properties of iteration strategies and mouse operators and introduce core models closed
under certain operators. In chapter 2 we will prove reflection properties. Using PFA(ℵ2)
we will show that both mouse operators and iteration strategies extend from Hω2 over
the whole set theoretic universe. Chapter 3 by far is the most important. Here we
will give the argument that closure of the universe under one operator can be used to
prove closure under the next. This chapter also introduces us to the problem that at
certain points of the induction a precipitous ideal alone might not be enought to prove
closure of Hω2 under the appropriate operator. In chapter 3 we show how to get around
this by assuming significantly stronger properties of the ideal. In chapter 4 we will
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then introduce a combinatorial principle that implies the same reflection, and which we
then prove consistent with forcing axioms. In chapter 5 then we introduce an idea that
might do away with the need for such additional principle altogether. By working in
the universe after the collapse of ω1 we can sidestep all issues with reflection. This of
course introduces other problems, but we present an argument that at least a significant
amount of determinancy can be reached that way.
The obvious next step would be to extend this result to all of L(R). We are optimistic

that this can be done.

Our goal in the second part will be to construct a Namba-like forcing on the succesor
of a regular cardinal κ. The Namba forcing (cf. [Nam71]) is a partial order that will
change the cofinality of ω2 to ω without collapsing ω1. Given a regular cardinal ≥ ω2 our
task is then to construct a forcing that will change the cofinality of κ+ without collapsing
or changing the cofinality of any cardinal ≤ κ.
Core model theory tells us, that this can in fact not be done without involving mea-

surable cardinals (cf. [Cox09b]). So the natural starting point is κ and an appropriate
measurable cardinal µ > κ. The first step must be to collapse µ to be κ+, but the obvious
next step of using Prikry forcing (cf. [Pri]) must lead to catastrophe.
It was at a small set theory workshop in Amsterdam that the question came up in a

conversation between the author, Ralf Schindler and Peter Koepke. That is where the
idea intertwining the Levy collapse and Prikry forcing to solve this problem first came
up. Shortly after this conference the author received an e-mail from Peter Koepke, which
contained a way to construct the Namba-like forcing under certain assumptions and in
the case of countable cofinality.
From there we set out to construct the Namba-like forcing for uncountable cofinality

also. For this we had to exchange the Prikry forcing for some partial order that would
give certain cardinals uncountable cofinality. For this we used a forcing construction of
Gitiks from [Git86].
Let us now give a short summary of part 2. In chapter 6 we mostly introduce the

notation for part 2. In chapter 7 we have written up the construction in the case of
countable cofinality. We introduce the Koepke forcing and show that we can factorize
it in two ways. Basically a “collapse first” way and a “Prikry first” way. Using the
first type of factorization we show that the Namba-like forcing exists in any Levy-generic
extensions. And the second type of factorization is used to prove that the Koepke forcing
is very well behaved. In chapter 8 we introduce the concepts that underlie Gitik’s forcing
construction, because we will need to refer to them in chapter 9, where we introduce a
forcing construction that we then show factorizes in the same way the Koepke forcing
did, but this time it contains Gitik’s forcing instead of Prikry forcing, so the cofinality of
µ will become uncountable. In chapter 10 we deal with the problems arising in iterating
the Namba-like forcing. We also see that there can be no Namba-like forcing on two
subsequent cardinals in universes without strong inner models. Chapter 11 stands out a
bit, because we will actually work in those strong models there. We will see that in those
models there are in fact plenty of Namba-like forcings, and we will explore the connection
between the existence of strong Namba-like forcings and strong stationarity principles.
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Part I.

On the strenth of PFA(ℵ2) in
conjunction with a precipitous

Ideal on ω1
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1. Introduction

Theorem 1.1: Assume PFA(ℵ2). Let I be a precipitous ideal on ω1.

(a) Then Jω1(R) |= AD;

(b) assume furthermore that I is presaturated and that P(ω1)/I is homogeneous, then
L(R) |= AD.

This extends earlier work by Claverie and Schindler (see [CS]).
The rest of this chapter will be devoted to an exposition of the concepts that lie at

the heart of this part of the thesis. Chapter 2 will be devoted to reflection lemmata we
will have to rely on in the proof of our main theorem. Chapter 3 will then contain the
proof of our main theorem. In chapter 4 we shall discuss an alternate hypothesis from
which the same result can be obtained with a minimally different proof. In chapter 5 we
will sketch a more involved argument, which will give us inductive determinancy without
invoking any extra hypotheses, and which we believe can be extended to eventually reach
full determinancy.

Iteration trees

We shall exclusively use the Mitchell-Steel definition of premouse (see [MS94]). Premice
will usually be designatedM or N .
By rΣn we will refer to fine structural formulae, i.e. ϕ is rΣn+1, iff it is Σ1 in a

predicate coding the rΣn-theory of the premouse with parameters restricted to ordinals
below an appropriate n-th projectum ρn(·) and an n-th standard parameter pn(·).

Definition 1.2: LetM and N . Let π : N →M be a function.

(a) π is called an n-embedding, iff it is rΣn+1-elementary. We shall write π : N →n+1

M.

(b) π is called a weak n-embedding, iff it is rΣn-elementary everywhere and rΣn+1-
elementary for a cofinal set of points in N .

By HullMn (x) we will refer to the collapse of the rΣn-hull of x inside ofM.
All iteration trees appearing in this paper will be stacks of normal trees, i.e. we play

the iteration in rounds such that during each round I has to play extenders of increasing
length. We will allow truncations at the start of a new round, but will count any nontrivial
truncation as a drop.
Iteration trees will usually be designated T or U .

2



Iteration trees

For an iteration tree T we write DT for the set of drops (in model) andMTα for the
α-th model of T and ETα for the α-th extender used. If α ≤T β and DT ∩ (α, β]T = ∅,
then we will write iTα,β for the iteration embedding fromMTα intoMTβ .
If b ⊆ T is a maximal branch, such that DT is bounded in b, then we will writeMTb

for the direct limit along b and iTb : MT0 → MTb for the direct limit embedding, if it
exists, i.e b ∩DT = ∅.
An iteration strategy Σ on a premouseM is a partial function picking a cofinal well-

founded branch for each T ∈ dom(Σ). A tree T = 〈≤T , . . .〉 is according to Σ, iff
T � γ ∈ dom(Σ) and [0, γ)T = Σ(T � γ) for all limit γ < lh(T ).

Definition 1.3: Let n ≤ ω. An iteration tree T is n-maximal, iff for all α+1 < lh(T ) the
following holds: let κ := crit(ETα ), let β be the predecessor of α+1, letM∗ be the longest
initial segment of MTβ such that P(κ) ∩M∗ = P(κ) ∩MTα and let k ≤ ω be maximal
such that ρk(M∗) > κ, thenMTα+1 = Ultm(M∗;ETα ), where either DT ∩ [0, β]T = ∅ and
m = min{n, k} or DT ∩ [0, β]T 6= ∅ and m = k.

Definition 1.4: LetM be a premouse and Σ an iteration strategy onM.

(a) We say Σ is a (n, γ)-iteration strategy, iff Σ is total on all n-maximal trees of length
less than γ, which are according to Σ.

(b) We say Σ is a no-drop-(n, γ)-iteration strategy, iff Σ is total on all n-maximal trees
of length less than γ, which are according to Σ and do not drop, i.e. DT = ∅.

We will now introduce two condensation properties for iteration strategies.

Definition 1.5: Let N ,M be premice and let U , T be iteration trees on N and M
respectively. We say (N ,U) is a hull of (M, T ) iff there is some σ : lh(U) → lh(T ) and
〈πξ : ξ < lh(U)〉 such that

• ∀n ≤ ω (U is n-maximal ⇔ T is n-maximal),

• α ≤U β ⇔ σ(α) ≤T σ(β) and σ(0) = 0,

• DU ∩ (α, β]U = ∅ ⇔ DT ∩ (σ(α), σ(β)]T = ∅

• πξ :MUξ →MTσ(ξ) is a degU (ξ)-embedding,

• πα � lh(ETα ) + 1 = πβ � lh(ETα ) + 1 for all α < β in the same normal component,

• if α ≤U β and (α, β]U ∩DU = ∅, then πβ ◦ iUα,β = iTσ(α),σ(β) ◦ πα,

• if α = predU (β+1), then σ(α) = predT (σ(β+1)) and πβ+1([a, f ]EUβ
) = [πβ(a), πα(f)]ET

σ(β)
,

• if U ′ ⊆ U is a normal component, then σ” [U ′] is contained in a normal component
of T .

Examples 1.6:
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1. Introduction

(a) Let T be an iteration tree on the premouse M. Let θ be sufficiently big, and let
π : H → Hθ - H transitive - be fully elementary withM, T in the range of π, say
π(M̄) =M and π(T̄ ) = T . Then both (M̄, T̄ ) and (M, πT̄ ) are hulls of (M, T ).

(b) Let j : V → M be elementary. Let T be an iteration tree on the premouse
M. Assume that j � T ∈ M , then both (M, T ) and (j(M), jT ) are hulls of
(j(M), j(T )) inside of M .

When there is no confusion about the base model of iteration trees T ,U , we will often
just say “U is a hull of T ” instead of “(M,U) is a hull of (M, T )”.

Definition 1.7: An iteration strategy Σ on the premouseM has hull condensation, iff
the following holds: let U , T be iteration trees onM such that T is according to Σ and
(M,U) is a hull of (M, T ), then U is according to Σ.

Definition 1.8: An iteration strategy Σ on the premouseM has branch condensation,
iff the following holds: let T be an iteration tree onM according to Σ with last model
MTθ such that the tree embedding iT : M →MTθ exists, let U be an iteration tree on
M of limit length according to Σ, let b be a cofinal wellfounded branch through U such
that b ∩DU = ∅. If there is some Σ1-elementary embedding π : MUb → MTθ such that
the diagram

MTθ MUbσ
oo

M

iT
aa
a!
a!
a!
a!

iUb
==
=}
=}
=}
=}

commutes, then b = Σ(U).

It is easy to see, that branch condensation implies hull condensation for non-dropping
trees. The author is not aware of any strategies with branch condensation but not hull
condensation, the converse though seems possible. It appears reasonable to consider
branch condensation to be a strengthening of hull condensation.
We shall now prove two technical but easy lemmas.

Lemma 1.9: Let Σ be an (n, ω1)-iteration strategy with hull condensation on the count-
able premouse M. Then an iteration tree T is according to Σ, iff all its countable hulls
are according to Σ.

Proof: The “⇒” direction is trivial. For the “⇐” direction it suffices to prove the
following: Let T be according to Σ, let b be a cofinal wellfounded branch through T ,
such that all hulls of T aMTb are according to Σ, then b = Σ(T ).
Assume not: Fix a tree T and b as above such that b 6= Σ(T ). Let X ≺ Hθ be

countable, with b,Σ(T ), T all in X. Let π : X → H be the transitive collapse.
π(T aMTb ) is then a hull of T aMTb and thus by assumption is according to Σ, i.e.

π(b) = Σ(π(T )).
By a similar argument using hull condensation we have π(Σ(T )) = Σ(π(T )). But then

π(b) = π(Σ(T )), which implies b = Σ(T ). Contradiction! a

4



Mouse operators

Lemma 1.10: Let Σ be an (n, ω1)-iteration strategy with hull condensation on the count-
able premouse M. Assume that the restriction of Σ to countable trees has branch con-
densation, then Σ has branch condensation.

Proof: Assume not: Let U be a tree according to Σ and let b be some cofinal wellfounded
branch such that there isM∗ some iterate ofM by Σ - sayM∗ is the last model of the
iteration tree T - and some σ, which embeds MUb into M∗ such that σ ◦ iUb = iT , but
b 6= Σ(U).
Let X ≺ Hθ be countable, with T ,U , b, σ,Σ(U) all in X. Let π : X → H be the

transitive collapse. By hull condensation, we then have that π(M∗) is an Σ-iterate ofM
and that π(U) is according to Σ. Also π(Σ(U)) = Σ(π(U)).
By elementarity π(MUb ) = Mπ(U)

π(b) is embeddable back into π(M∗) by some σ̄ such

that σ̄ ◦ iπ(U)
π(b) = iπ(T ), but then by hypothesis π(b) = Σ(π(U)), which implies b = Σ(U).

Contradiction! a

Mouse operators

We will now give the definition of mouse we will use throughout this thesis.

Definition 1.11: LetM be a premouse.

(a) M is (n, γ)-iterable, iff there is some (n, γ)-iteration strategy onM.

(b) M is a mouse, iff N is (n, ω + 1)-iterable for all countable weak n-embeddings
π : N →M.

Remark: For the rest of the thesis we shall ignore the "n" and just refer to γ-iteration
strategys and γ-iterable premice, as this much attention to detail will frankly never
matter for what is to follow. If there is a drop (in model or degree) at the beginning
of an iteration tree, there isn’t even any functional difference between say 1-maximal or
2-maximal and the majority of iteration trees in this thesis will be of this kind.

The same definition also applies to premice build above a self-wellordered set A.
Let x be a set. Write:

Cx := {y|x ∈ L1(y) and y is self-wellordered }

We call Cx the cone above x.
We say a relativized premouse is above x, iff it is an A-premouse, where A ∈ Cx.

Definition 1.12: A mouse operator (defined on a cone) above x is a partial function
M : Cx → V such that for all A ∈ dom(M) M(A) is an A-mouse, that is sound above A,
i.e. Hull

M(A)
1 (A) = M(A).

The canonical example for a mouse operator would be M#
n for some natural number.

In fact all the mouse operators appearing in this thesis will be M#
n -like. We will now

make precise, what we mean by that.
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1. Introduction

Definition 1.13: Let M be a mouse operator above x.

(a) M condenses well, iff for all A ∈ dom(M) and all π : M →1 M(A) with x ∈ M
and π � tc({x}) = id π−1(A) ∈ dom(M) andM = M(π−1(A)).

(b) M relativizes well, iff there is a formula ϕ(a, b, c, d) such that for all A,B ∈ dom(M)
with B ∈ L1(A) and all ZFC−-models N with M(A) ∈ N M(B) ∈ N and M(B)
is the unique a with N |= ϕ(a, x,B,M(A)).

(c) M determines itself on generic extensions, iff for all ν such that M is total on
Cx ∩Hν and all partial orders P ∈ Hν , M extends to a mouse operator defined on
a cone above x, that is total on Cx ∩HV P

ν .

(d) M is called nice, iff it condenses well, relativizes well and determines itself on
generic extensions.

Let ϕ(a, b) be a Σ1-formula. We call an A-premouseM(A) (ϕ, x)-small, iff x ∈M(A)
andM(A) 2 ϕ(A, x).

Definition 1.14: A mouse operatorM defined on a cone above x is extraordinarily nice,
iff M is nice and there is some Σ1-formula ϕ(a, b) such that for all A M(A) is the least
sound A-mouse, which is not (ϕ, x)-small.

Let M be a premouse and T a normal iteration tree on M of limit length. Write
δ(T ) := sup

α<lh(T )
lh(ETα ) andM(T ) :=

⋃
α<lh(T )

MTα | lh(ETα ). Let b be a cofinal wellfounded

branch through T .
We say b has a Q-structure, iff ρω(MTb ) < δ(T ) or there is some initial segment P of
MTb with

P |= δ(T ) is not Woodin .

In this case we define QTb as the largest initial segment ofMTb extendingM(T ) in which
δ(T ) is Woodin. QTb is then called a Q-structure for b.
If there is no Q-structure for b, then QTb is not defined. Thus if we are refering to QTb

in any context, this is meant to imply that there is some Q-structure.
Note that there is at most one cofinal welfounded branch with a sufficiently iterable

Q-structure, as long as the iteration doesn’t reach a non-tame mouse. We can and will
silently assume that there are no non-tame mice throughout this thesis.

Definition 1.15: Let M be a mouse operator above x. LetM be a premouse above x
and Σ an iteration strategy onM. Σ is guided by M iff, for all iterates N ofM by Σ
and all normal trees T on N according to Σ such that Σ(T ) exists, M(T ) ∈ dom(M)
and QTΣ(T ) EM(M(T )).

Remark 1.16: Let Σ be an iteration strategy on a premouse above x. If Σ is guided by
the nice mouse operator above x M , then it has hull condensation.

6



F -mice

The basis for the core model induction lies in the fact, that M#
n+1’s unique iteration

strategy is guided by M#
n . The importance of having guided strategies will be demon-

strated in the next lemma. It or more precisely its proof will be our most useful tool in
proving iterability hypotheses.

Lemma 1.17: Let M be a nice mouse operator above some real x, which is total on
Cx ∩Hκ. Assume that the ω1-iteration strategy Σ on the countable premouseM above x
is guided by M . Then Σ extends to a κ-iteration strategy guided by M .

Proof: Let T be an iteration tree according to Σ onM of length <κ. W.l.o.g assume
that T is normal; note that M(M(T )) exists. Take some countable X ≺ Hθ with
M, T ,M(M(T )) ∈ X. Let π : X → H be the transitive collapse.
Because M condenses well π(M(M(T ))) = M(M(π(T ))). By assumption b :=

Σ(π(T )) exists and is the unique cofinal wellfounded branch through π(T ) such that
Qπ(T )
b EM(M(π(T ))). Consider now the formula

∃b Qπ(T )
b EM(M(π(T ))).

This is Σ1
1 in codes for π(T ) andM(M(π(T ))), so by absoluteness there is such a branch

in H [h], where h ⊂ Col(ω, δ(π(T ))) is generic over H.
But the branch is unique and thus b ∈ H [h]. Because this does not depend on the

choice of the generic, we in fact have b ∈ H. So then H believes, that there is a
cofinal wellfounded branch with a Q-structure below M(M(π(T ))) through π(T ). By
elementarity we are done. a

F -mice

Definition 1.18: Let A be a self-wellordered set. A model operator (defined on a cone
above) A is a partial function F : CA → V such that each M ∈ dom(F ) is a tran-
sitive amenable rudimentarily closed model of the form (M ;∈, A,E,B, S) and F (M)
is a transitive amenable rudimentarily closed model of the form (N ;∈, A,E,B′) with
F (M) = Hull

F (M)
1 (M ∪ {M}).

Note that the models appearing in this part of the thesis will admit a fine structure,
so the use of "Hull" makes sense in this context.

Definition 1.19: Let F be a model operator over A. A potential F -premouse over x -
where x is over A - is a transitive amenable rudimentarily closed structure

M = (M ;∈, A, ~E,B, 〈Mi : i < θ〉)

such that

(i) for all i < θMi is a transitive amenable rudimentarily closed structure of the form
(Mi;∈, A, ~Ei, Bi, 〈Mj : j < i〉); (From now on also writeMθ :=M andMθ := M .)

7



1. Introduction

(ii) ~E = (Eα : α ∈ dom( ~E)) codes a fine extender sequence (see [MS94]). Furthermore
for all i < θ ~Ei = (Eα : α ∈ dom( ~E ∩ (i+ 1));

(iii) M0 = (tc(x ∪ {x});∈, A, ∅, ∅, ∅);

(iv) if i+ 1 ≤ θ, then F (Mi) = (Mi+1;∈, A, ~Ei+1, Bi+1);

(v) if λ ≤ θ is a limit, thenMλ = (
⋃
i<λ

Mi, ~Eλ, ∅, 〈Mi : i < λ〉).

As it stands the hull of a potential F -premouse need not be a potential F -premouse,
which is why we will restrict ourselves to operators that condense well.

Definition 1.20: Amodel operator F over A condenses well, iff for allM∈ dom(F ) and
all π : N →1 F (M) such that π−1(M) is over A and π � A∪{A} = id N = F (π−1(M)).

Proposition 1.21: Let F be a model operator over A that condenses well. Let M be a
potential F -premouse and let π : N →1 M with N over A and π � A ∪ {A} = id. Then
N is a potential F -premouse.

With this result it is possible to set up a fine structure for potential F -premice and de-
fine solidity,soundness and so on. As usual a F -premouse will be a potential F -premouse
all of whose initial segments are sound.
We will also want to talk about F -mice, but there is an important change here.

Definition 1.22: A F -premouse M is κ-iterable, iff there is an iteration strategy Σ,
which is total on trees of length <κ, which are according to Σ, and whenever T is an
iteration tree onM, which is according to Σ and has a last model N , N is a F -premouse.

From here on everything we have defined for premice generalizes in a straightforward
fashion.
Now that we have given all the basic definitions our reader can feel confident in ignoring

them. All the F -mice appearing in this thesis will be sufficiently close to standard
mice so that our reader will miss nothing by just considering F -mice as normal mice
with additional closure properties, which go down under elementary embeddings and are
preserved by iterations.

Notation: Let F be a model operator over A, which condenses well. Let B be a set
over A.

(a) If F is total on CA, then LF (B) refers to the unique class-size F -mouse over B
without any extenders on its sequence; (if F is not total only an initial segment of
LF (B) might exist;)

(b) F#(B) refers to the smallest sound active F -mouse over B;

(c) MF
1 (B) refers to the smallest sound F -mouse over B such that MF

1 (B) |= ∃δ >
rank(B) : δ is Woodin .

8



F -mice

The model operators appearing in this thesis can be sorted into two types. The first
type are the model operators from the previous section (modulo perhaps some coding).
If M is some mouse operator and M is a M -mouse, then it can be reorganized as a
standard mouse, which happens to be closed under M . It is important though to make
a distinction between the extenders sitting on the M -mouse list and the standard mouse
list.
A M -mouse might be highly nontrivial as a standard mouse, but be an initial segment

of LM as a M -mouse. Also iterations using extenders not on the F -mouse list won’t
preserve closure under M . This is desirable though as it will reduce the complexities of
our proofs immensely.
The second type of model operator we will refer to as FΣ defined over N a (standard)

mouse, on which Σ is an iteration strategy. FΣ codes Σ in such a way, that the universe
of any sufficiently strong FΣ-mouse will be closed under Σ. If Σ has hull condensation,
then FΣ condenses well.
This class of F -mice are collectively known also as hybrid-mice. To save ink we will

refer to FΣ-mice just as Σ-mice.
The main use of F -mice is that they allow us to formulate the theory of a F -core model

analogous to [Ste96]. In the end we will have a KF -dichotomy, which will allow us to
extend the core model induction to the L(R)-hierarchy of pointclasses.

Definition 1.23: Let F be a model operator over the real x, which condenses well and is
total on Cx. Let y be a real over x. A Kc,F -construction over y is a sequence 〈Nξ : ξ ≤ θ〉
of F -premice such that

(a) N0 = (Vω ∪ {y};∈, x, ∅, ∅, ∅);

(b) if ξ < θ then Nξ is solid and we let Cω(Nξ) =:M = (M ;∈, x, ~E,B, ~M), then:

(i) either M is passive and Nξ+1 := (M ;∈, x, ~EaE,B, ~M), where E is some
extender cohering withM, which is certified in the sense of [Ste96],

(ii) or Nξ+1 := (M ′;∈, x, ~E,B′, ~MaM), where F (M) = (M ′,∈, , ~E,B′);

(c) if λ ≤ θ is a limit, then Nλ = (Nλ;x, (Eαλ : α ∈ dom( ~Eλ)), ∅, (Mβ
λ : β ∈ dom( ~Mλ)))

, where α ∈ dom( ~Eλ) iff α ∈ dom( ~Eη) for all but boundably many η < λ and
the sequence of the Eαη is eventually constant, Eαλ is then this eventual value,
analogously for ~Mλ.

Lemma 1.24: Let F be a model operator over the real x, which condenses well and is
total on Cx. Let y be a real over x. Let 〈Nξ : ξ ≤ θ〉 be a Kc,F -construction over y. Let
us assume, that MF

1 (y) does not exist. Nξ then is a F -mouse for all ξ ≤ θ.

Proof: The proof of [Ste96] works here as well. The only thing left to check is that
following the realizable branch strategy produces F -premice. But any iterate by this
strategy can be embedded into one of the Nξ, which are F -premice, so by condensation
the iterate is a F -premice as well. a

9



1. Introduction

By standard arguments ([MS94]) we can then show, that there is a unique maximal
Kc,F -construction over y. The last (class size) model of this construction we will refer to
as Kc,F (y).

Lemma 1.25 (KF -dichotomy): Let F be a model operator over the real x, which con-
denses well and is total on Cx. Let y be a real over x. Then exactly one of the following
holds true:

(a) MF
1 (y) exists;

(b) Kc,F exists and is fully iterable, thus the F -closed core model Kc,F exists.

The theory of the F -closed core model can be stated in greater generality, but this will
be enough for our purposes. See [SS] and [Ste96] for greater detail on core model theory
and how it relates to the core model induction.

Bounded proper forcing axioms

We shall make use of the axiom PFA(ℵ2) in our core model induction, which is a fragment
of the full PFA.

Definition 1.26: Let λ be a cardinal. Then PFA(λ) holds iff for all proper complete
boolean algebras P and all sequences 〈Aξ : ξ < ω1〉 of maximal antichains of P such that
Card(Aξ) ≤ λ for all ξ < ω1, there is some Filter G ⊂ P such that G ∩ Aξ 6= ∅ for all
ξ < ω1.

Remark: BPFA⇔ PFA(ℵ1).

Instead of this definition, we will use a different formulation, which is analogous to
BPFA. For that we shall need to quote two lemmas.

Lemma 1.27 (Moore): BPFA→ 2ℵ0 = ℵ2.

Lemma 1.28 (Todorčević): PFA(λ) holds, iff for every A ⊆ λ and every Σ0-formula
ϕ if some proper poset forces that ∃xϕ(x,A) holds in some transitive model, then there ex-
ist stationarily many N ≺ Hω3 of size ℵ1 such that A ∈ N and Hω2 satisifies ∃xϕ(x, πN (A)),
where πN is the transitive collapse of N .

See [Moo05] and [Tod02] respectively.

Lemma 1.29: Assume PFA(ℵ2). Let A ⊆ R. Let LA be the language of set theory with
an added unary predicate symbol Ȧ. Let ϕ(x, y) be ∆0 in LA such that A occurs positively
in ϕ. We then have, that for all proper posets P and all ~p ∈ Hω2:

〈(Hω2)V
P
;∈, A〉 |= ∃x : ϕ(x, ~p)⇒ 〈Hω2 ;∈, A〉 |= ∃x : ϕ(x, ~p)

10



Bounded proper forcing axioms

Proof: Assume that the left side holds. Because 2ℵ0 = ℵ2 we can turn both A and
tc({~p}) into some A∗ ⊆ ω2 using some easy coding.
Reformulating we then get 〈(Hω2)V

P
;∈, A∗〉 |= ∃x : ϕ∗(x,A∗). By the preceding

lemma we can then find some N ≺ Hω3 of size ℵ1 such that A∗ ∈ N and Hω2 satisifies
∃xϕ∗(x, πN (A∗)), where πN is the transitive collapse of N .
We then have πN (~p) = ~p and πN (A) = A ∩N . Thus 〈Hω2 ;∈, A ∩N〉 |= ∃x : ϕ(x, ~p).

Because A occured positively in ϕ we are done. a

At this point we have assembled all the tools we will need in the course of this part of
the thesis. At this point we would like to mention some simple results of Todorčević’s,
which should provide some context on the strength of PFA(ℵ2).
The main point here is, that the consistency strength of PFA(ℵ2) in itself is pretty

much trivial, justifying our use of additional hypotheses.

Definition 1.30: An uncountable regular cardinal κ is Hκ+-reflecting, iff for any a ∈
Hκ+ and all formula ϕ if Hθ |= ϕ(a) for some regular θ then there exist stationarily many
N ≺ Hθ of size <κ such that a ∈ N and there is some θ′ < κ with Hθ′ |= ϕ(πN (a)).

It is easy to see, that this is a strengthening of being reflecting. Furthermore Hκ+-
reflecting is to reflecting as PFA(ℵ2) is to BPFA.

Lemma 1.31 (Todorčević): The following theories are equiconsistent:

(a) ZFC +PFA(ℵ2),

(b) ZFC +∃κ κ is Hκ+-reflecting .

Lemma 1.32 (Todorčević): Assume 0# exists. Let κ be an indiscernible, then L |=
κ is Hκ+-reflecting .

Again see [Tod02] for details.
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2. Reflection

Lemma 2.1: Let F be a model operator over a real x. Let M be an uncountable F -
mouse. Assume that there is a club C on Pω2(M) such that for all X ∈ C, there is some
F -mouse N and natural number n withMX E N and ρn+1(N ) <MX ∩On, where we
let πX : MX → X refer to the reversal of the transitive collapse. For every X ∈ C let
NX and nX be minimal with the above properties.
Then there is a set S stationary in [M]ω1 such that UltnX (NX ;πX) is a F -mouse for

all X ∈ S.

Proof (Sketch): We will borrow some ideas from the proof of the covering lemma (see
[MS95]). Let C∗ be some club on Pω2(M). Let 〈Xξ : ξ ≤ ω1〉 be an increasing continuous
sequence of countable - except for Xω1 naturally - subsets of M in C∗ ∩ C such that
for all ξ < ω1 if UltnXξ (NXξ ;πXξ) is not a F -mouse, i.e. there is some hull - indexed as
〈[ai, fi] : i < ω〉- of it, that does not collapse to a F -mouse, then {ai|i < ω} ⊆ Xi.
Then Xω1 is as wanted. Assume not. Let [ai, fi] witness this. We can then find some

countable Z ≺ Hθ - θ big enough - containing the sequence 〈Xi : i ≤ ω1〉 such that
Z ∩M = Xξ for ξ = Z ∩ ω1 and fi ∈ Z for all i < ω. Let f̄i be the image of fi under
the transitive collapse of Z.
We then have, that 〈

[
ai, f̄i

]
: i < ω〉 witnesses that UltnXξ (NXξ ;πXξ) is not a F -mouse,

so there are 〈[bi, gi] : i < ω〉 witnessing this such that the bi are in Xω1 , but using the
map

[bi, gi] 7→ σ(gi)((πXω1 )−1(bi))

where σ : H → Z is the reverse of the transitive collapse we can embed the collapse of
that hull intoM. Contradiction! a

Lemma 2.2: Let M be an extraordinarily nice (hybrid)-mouse operator above the real
a, that is total on Hω2 ∩ Ca. Assume PFA(ℵ2) holds, then M is total on Ca.

Proof: Let X ⊆ κ be arbitrary above a, where κ ≥ ℵ2. Assume that M(X) does not
exist. Then

S(X) :=
⋃
{M|M is a sound above X (Σ-)mouse over X}

is (ϕ, a)-small. Write λ := S(X) ∩On.

Claim 1: cof(λ) ≥ ℵ2.
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Proof of Claim: Assume not. Let Y ≺ S(X) be of size at most ℵ1, then MY is a
(ϕ, a)-small (Σ)-mouse over some X̄ ∈ Hω2 . SoM(X̄) exists andMY EM(X̄) and thus
NY and nY exist.
By the above lemma we can then find some Y ≺ S(X) cofinal in S(X) such that
N := UltnY (NY ;πY ) is a (Σ)-mouse. But then S(X) E N and N is sound above X.
Contradiction! �

Define a tree TS(X): the members of TS(X) are (Σ)-mice Q E S(X) over X with biggest
cardinal λQ, Q|λ ≺ S(X) and there is some n < ω such that ρn+1(Q) ≤ κ - the smallest
such we shall call nQ.
For Q0,Q1 ∈ TS(X) Q0 ≤ Q1, iff nQ0 = nQ1 =: n and there is some weak n-embedding

σ : Q0 → Q1 with σ � κ = id and σ(λQ0) = λQ1 - the unique such embedding we shall
call σQ0,Q1 .
Fix now some G ⊂ Col(ω1, λ) generic over V . In V [G] take some club C ⊆ λ of

ordertype ω1.
T := TS(X) � C := {Q ∈ TS(X)|λQ ∈ C}

Note that T is a tree of height ω1.

Claim 2: There is no cofinal branch through T (or equivalently TS(X))) in V [G].

Proof of Claim: Assume not. So there is some cofinal branch say indexed as 〈Qi :
i < ω1〉. Let 〈Q∗, σi : i < ω1〉 := dirlim〈Qi, σQi,Qj : i ≤ j < ω1〉.
Note that for any countable σ : Q → Q∗, there is some i < ω1 such that ran(σ) ⊆

ran(σi) and thus σ−1
i ◦ σ : Q → Qi. So Q∗ is wellfounded and we shall identify it with a

transitive structure.
We will now show, that Q∗ only depends on the height of this structure and not

necessarily on the choice of the branch. If there were two such structures Q∗0,Q∗1 of equal
height, then take countable σ∗k : Qk → Q∗k for k < 2 such that the Qk are two distinct
strucutres over some countable X̄.
By the above there we can find elements Pk of TS(X) such that Qk is embeddable into
Pk. By countable closure both the Qk and the embeddings are in V . But then they are
in fact (Σ)-mice there, and thus Q0 E Q1 or vice versa. Contradiction!
By homogeneity we can thus assume Q∗ ∈ V . A similar argument as above shows that

Q∗ is a (Σ)-mouse in V . But then S(X) E Q∗ and Q∗ is sound above X contradicting
the choice of S(X). �

Now take ~M = 〈Mi, πi,j : i ≤ j < ω1〉 a directed system of countable models whose
direct limit is S(X) inside of V [G]. By countable closure the individual models are all
in V and are in fact (Σ)-mice. By A we will refer to the set of all countable (Σ)-mice in
V .
Let P be the specializing forcing for T . Let H ⊂ P be generic over V [G]. V [G] [H] is

an extensions by a proper poset. Then in HV [G][H]
ω2 the following holds true:

There is some set of Ordinals X, an ordinal λ of uncountable cofinality, a club C ⊂ λ
of ordertype ω1 and a (ϕ, a)-small premouse S over X such that there is ~M = 〈Mi, πi,j :
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2. Reflection

i ≤ j < ω1〉 a directed system of countable models whose direct limit is S and all of
whose individual models are in A and the tree TS � C of height λ is special.
This is a Σ1-statement using A as a predicate and it appears positively in that state-

ment. So by Lemma 1.29 the same statement is true in Hω2 . So let us take some
S̄, λ̄, X̄, C̄ as in the statement.
First note that S̄ is a (Σ)-mouse, for if π :M→ S̄ is countable, then by the argument

from the proof of claim 2, M is already embeddable in one of the Mi and thus a (Σ)-
mouse.
We then must have S̄ EM(X̄), so take Q∗ EM(X̄) and n minimal such that S̄ E Q∗

and ρn+1(Q∗) ≤ sup X̄. Using an argument used in the construction of �-sequences (cf
[SZ10]), we can show that there must exist a club of Q’s, which are weakly n-embeddable
into Q∗. But this induces a branch through TS̄ . Contradiction! a

Remark: In the proof of the lemma we have used the notation S(X). This was meant
to evoke the notion of the stack over some mouse. What we actually worked with may
have been closer to what is usually called the lower part closure, but it will be important
later that the argument works equally well with the stack as it is usually understood.

Lemma 2.3: Assume PFA(ℵ2). Let N be a countable premouse. Let Σ be an ω2-
iteration strategy with hull condensation. Then Σ extends to an On-iteration strategy Γ
with hull condensation.

Proof: We shall define Γ as the unique iteration strategy such that a tree is according
to Γ iff all its countable hulls are according to Σ. By Lemma 1.9 this extends Σ.

Claim 1: Γ has hull condensation.

Proof of Claim: Assume not. So there is some T according to Γ and some hull
Uac of T aΓ(T ), such that c 6= Γ(U). Let then X ≺ Hθ, where lh(T ) < θ, with
Uac,UaΓ(U) ∈ X. Let π : X → H be the transitive collapse. On the one hand π(Uac)
is a hull of Uac and thus of T aΓ(T ) and is therefore according to Σ, on the other hand
π(UaΓ(U)) is a hull of UaΓ(U) and thus by Σ, but π(c) 6= π(Γ(U)). Contradiction! �

It remains to show, that Γ is total. Let T be some arbitrary tree according to Γ. Let
λ := lh(T ). There are two cases:

1st case:
Let cof(λ) > ω. Assume for a contradiction, that T has no cofinal branch. Let
ϕ0(T , 〈Ti, σij , ~πij : i ≤ j < ω1〉) be the conjunction of the following statements:

• ∀i ≤ j < ω1 : Ti is a hull of Tj as witnessed by σij , ~πij ,

• ∀i ≤ j ≤ k < ω1 : σij ◦ σjk = σik,

• ∀i ≤ j ≤ k < ω∀l < lh(Ti) : π
σij(l)
jk ◦ πlij = πlik,
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• ∀i < ω1 : Ti is according to Σ,

• dirlim〈Ti, σij , ~πij : i ≤ j < ω1〉 = T .

Working in V Col(ω1,λ) fix some club C ⊆ λ of ordertype ω1. Let Ṗ refer to the specializing
forcing in V Col(ω1,λ) for T � C. Let ϕ1(T , C) refer to the conjunction of the following
statements:

• T is an iteration tree on N ,

• C ⊆ lh(T ) is a club of ordertype ω1,

• T � C is special

Then
(Hω2)Col(ω1,λ)∗Ṗ |= ∃T ∃~T ∃Cϕ0(T , ~T ) ∧ ϕ1(T , C)

This is Σ1 in the language with Σ as a predicate. So by PFA(ℵ2) this is true in HV
ω2
.

So let us fix some T ∗, C∗ and 〈T ∗i , σ∗ij , ~π∗ij : i ≤ j < ω1〉 that witness this. Let σiω1 and
~πiω1 refer to the direct limit embeddings.

Claim 2: T ∗ is by Γ.

Proof of Claim: It is enough to show, that all countable hulls of T ∗ are by Σ. So let T̄
be some countable hull as witnessed by σ̄, 〈π̄i : i < dom(σ̄)〉. There is then some j < ω1,
such that ran(σ̄) ⊆ ran(σ∗jω1

) and ran(π̄i) ⊆ ran((π∗jω1
)
(σ∗jω1

)−1(σ̄(i))
) for all i < dom(σ̄).

Then (σ∗jω1
)−1 ◦ σ̄, 〈(π∗jω1

)
(σ∗jω1

)−1(σ̄(i)) ◦ π̄i : i < dom(σ̄)〉 witnesses, that T̄ is a hull of
T ∗j . But T ∗j is by Σ and thus so is T̄ . �

T ∗ is in Hω2 so Γ(T ∗) exists and is a cofinal branch. Then Γ(T ∗) ∩ C∗ is cofinal in
T ∗ � C∗, but T ∗ � C∗ is special. Contradiction!

2nd case:
Let cof(λ) = ω. We will call a countable hull T̄ of T stable, iff for all countable hulls of
T U , of which T̄ is a hull as witnessed by σ, σ”

[
Σ(T̄ )

]
⊂ Σ(U).

Claim 3: There is a stable hull of T .

Proof of Claim: Assume not. Then there is a system of hulls 〈Ti, σij , ~πij : i ≤ j < ω1〉
such that

• ∀i ≤ j < ω1 : Ti is a hull of Tj as witnessed by σij , ~πij ,

• ∀i ≤ j ≤ k < ω1 : σij ◦ σjk = σik,

• ∀i ≤ j ≤ k < ω∀l < lh(Ti) : π
σij(l)
jk ◦ πlij = πlik,

• ∀i < ω1 : Ti is according to Σ,
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2. Reflection

• ∀i < ω1 : σii+1” [Σ(Ti)] 6⊂ Σ(Ti+1).

Let T ∗ := dirlim〈Ti, σij , ~πij : i < j < ω1〉 and let σiω1 and ~πiω1 refer to the direct limit
embeddings. T ∗ is an iteration tree of size ℵ1. An argument like above, shows that T ∗
is according to Γ.
Let b := Γ(T ∗). There is some i < ω1, such that for all i ≤ j < ω1 ran(σ∗jω1

) ∩ b is
cofinal in b. Let bj := (σ∗jω1

)−1” [b]. Then Tjabj is a hull of T ∗ab for all j ≥ i. Thus
bj = Σ(Tj) for all j > i. But then bj is moved correctly by the σij . Contradiction! �

Let us fix a stable Hull T̄ of T as witnessed by σ̄, ~̄π. Let b be the downward closure of
σ̄”
[
Σ(T̄ )

]
.

Claim 4: All countable hulls of T ab are according to Σ.

Proof of Claim: Let Uac be some countable hull of T witnessed by σ. We have to
show, that c = Σ(U). We can certainly find some countable hull T ∗ of T (witnessed
by σ∗), such that both T̄ and U are hulls of T ∗ , e.g. by taking the collapse of some
substructure of some transitive set containing T̄ ,U and T , which knows that the former
are hulls of the latter. Because T̄ was stable, σ∗ maps Σ(T ∗) into b. Thus Uac is a hull
of T ∗aΣ(T ∗) as witnessed by (σ∗)−1 ◦ σ. But then c = Σ(U) by hull condensation of
Σ. �

Thus we get that b = Γ(T ). a
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3. The induction

Now assume PFA(ℵ2) and let I be a precipitous ideal on ω1. At certain points we will
need I to be presaturated and P(ω1)/I to be homogeneous. We shall call out all these
points explicitely. Otherwise we will assume no more than precipitousness.
The proof is by core model induction. We will follow the general outline of [SS]. We will

writeMn,α for the (hybrid-)mouse operators witnessingW ∗α+1. (Note: Mn+1,α = M
Mn,α

1 ).
Write aα for some real, above which M0,α is defined.
All these operators are extraordinarily nice. It is shown in [SS] that the operators

condense and relativize well. We will later give a proof, that they determine themselves
on generic extensions.
At this point we should also mention, that in the core model induction we usually only

deal with ω1-iterability, while we have usually demanded ω1 + 1-iterability. This is not
really problematic though, because the way the core model induction works makes sure
that we can always transport iterations to inner models, where ωV1 is inaccessible. And
anyway the first thing we shall do once introducing new models is to show, that they are
in fact fully iterable.
Our “cycling” argument will have the following outline:

(0)α W ∗α,

(1)n,α Hω1 is closed under M#
n,α,

(2)n,α Hω2 is closed under M#
n,α,

(3)n,α V is closed under M#
n,α

As an additional hypotheses we will inductively verify the following property of the
(hybrid)-mouse operators, which we shall refer to as (3)′n,α:
“For all regular uncountable cardinals θ, there are trees T θn,α, Uθn,α such that for all

partial orders P ∈ Hθ

p
[
T θn,α

]V P

={(x, y) ∈ R2|y = M#
n,α(x)},

p
[
U θn,α

]V P

={(x, y) ∈ R2|y 6= M#
n,α(x)}.′′

We will prove the following:

• (0)α → (1)α,0,

• ∀n [(1)n,α → (2)n,α → (3)n,α → (1)n+1,α],
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3. The induction

• ∀n (1)n,α → (0)α+1.

Let us fix an I-generic G and let j : V → N be the ultrapower-embedding.
The steps of our larger overarching induction along the Jensen hierarchy of L(R) divide

into two cases. In the first case we will deal exclusively with fine-structural mice. The
second case features hybrid-mice.

Standard mice

Let M0,β be one of the following three operators:

(a)
⊕
n<ω

Mn,β′ defined above aβ′ , where β′ + 1 = β,

(b)
⊕
n<ω

M0,βn defined above
⊕
n<ω

aβn , where 〈βn : n < ω〉 is a sequence of critical

ordinals cofinal in β,

(c) the smallest initial segment M of lp(·), such that for all Col(ω, ·)-generics H and
all n < ω, there is some γn < M ∩On, such thatM ||γn [H] is a 〈ϕ∗n, σHA 〉-prewitness
defined above z. (See [SS] for the exact nature of ϕ∗n and z.)

By induction hypothesis, we can assume that M0,β is total on Hω1 above aβ .

Lemma 3.1: M0,β is total on V above aβ. This (partially) uses homogeneity and pre-
saturatedness.

Proof: Because of Lemma 2.2 it will be enough to show thatM0,β is total on Hω2 above
aβ . The cases (a) and (b) are extremely similar so we will deal with them at one fell swoop.

1st case:
So let A ∈ Hω2 be arbitrary. We then have A ∈ N and by elementarityM := j(M0,β)(A)
exists in N . We will show, that M is a mouse in V [G] and will remain a mouse in all
further forcing extensions. Standard arguments will then show that M is in fact in V
and is a mouse there, so in factM = M0,β(A).
M0,β is the amalgamation of countably many mouse operators, which we shall call
〈Nm : m < ω〉 for the moment. Using inductive hypothesis (3)′ we can assume that
these mouse operators have universally baire representations, say the trees 〈Tm : m < ω〉
project to codesets for these operators in all possible forcing extensions.
It is easy to see that j(Tm) will project to the same set as Tm (inside of V [G] and any

further extension), so N actually knows all of the 〈Nm : m < ω〉. Now assume that in
some forcing extensions of V [G] there is some (w.l.o.g. countable) bad iteration tree on
M. M will have to drop at the first stage of the game and the iteration must then be
guided by Nm for some m < ω.
We can then define a tree searching for such a bad iteration tree with Q-structures

below Nm using the tree j(Tm). This tree must then be illfounded in some forcing ex-
tension, but by the above the tree will be in N , where there are no bad iteration trees.
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Standard mice

Contradiction!

2nd Case:
Let A ∈ Hω2 be arbitrary. We then have A ∈ N and by elementarity j(M0,β)(A) exists
in N . It is furthermore definable in j(Jβ(R)) as the unique ω1-iterable mouse of a certain
height, which is sound above A. As j(Jβ(R)) = (Jj(β)(R))N = (Jj(β)(R))V [G], we get
that j(M0,β)(A) is OD in V [G] from A, and thus by homogeneity in V . By a similar
argument it is futhermore ω2-iterable in V . a

Remark 3.2: In the cases (a) and (b) we didn’t need homogeneity or presaturation.
And this is also the only time these properties will appear in this section. As all the
cases below ω1 are of this form this will give us the first part of Theorem 1.1.

Lemma 3.3: M0,β is nice.

Proof: As mentioned at the beginning of this chapter, we will only need to show that
M0,β extends itself on generic extensions. So let us fix some partial order P and some θ,
such that P ∈ Hθ. We want to show, that for all generics H ⊆ P, and all x ∈ (Hω1)V [H],
M0,β(x) exists and is ωV [H]

1 -iterable. This will suffice, because it is true for all forcing
relations.
We will use a reflection argument. So let us fix some big enough λ, and some countable

substructure X ≺ Hλ with P,M0,β(Hθ) ∈ X. Let π : X → H be it’s transitive collapse.
Write P̄ = π(P), H̄ = π(Hθ). We then have π(M0,β(Hθ)) = M0,β(H̄) ∈ H. Let us take
some h ⊆ P̄ generic over H.

Claim 1: Let x ∈ R ∩H [h]. Then M0,β(x) ∈ H [h].

Proof of Claim: As before the cases (a) and (b) are extremely similar:

1st case:
M0,β is the amalgamation of countably many mouse operators, which we shall call
〈Nm : m < ω〉 for the moment. Using induction assume that the background con-
struction inside of Nm(H̄) [h] over x reaches Nm(x). But Nm(H̄) [h] ∈ M0,β(H̄) [h] for
all m < ω and so the background construction over x in M0,β(H̄) [h] reaches all of them
and thus reaches M0,β(x).
We should mention here that M0,β(H̄) [h] is iterable in V and thus the background

construction will succeed.

2nd case:
Consider M0,β(H̄) [h]. First note that R ∩H [h] ⊆M0,β(H̄) [h].
Furthermore for any g ⊆ Col(ω, H̄) generic over M0,β(H̄) [h] we can find some g∗ ⊆

Col(ω, H̄) generic over M0,β(H̄), such that M0,β [h] [g] = M0,β [g∗].
So for all n < ω there is some γn, such that M0,β [h] [g] ||γn is a 〈ϕ∗n, σ

g∗

H̄
〉-prewitness.

Of courseM0,β(H̄) [h] is still iterable (in V), so we do indeed correctly computeM0,β(x)
inside of it. Thus it is an element of H [h]. �
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3. The induction

So let us fix some x ∈ R ∩H [h]. By the claim we haveM := M0,β(x) ∈ H [h], but a
priori H [h] might not believe it to be ω1-iterable. Let Σ refer to M’s unique iteration
strategy. Let T ∈ H [h] be some countable (in H [h]) tree according to Σ. We want to
show, that Σ(T ) ∈ H [h].
De facto T has a Q-structure, call it Q. It is easy to see, that Q ∈M0,β(M(T )). But

the latter is in H [h] by the claim, so Q E H [h].
Consider now the statement:

∃b cofinal branch through T : Q EMTb
This is Σ1

1 in codes for Q and T . In V there exists such a branch and it is also unique.
By absoluteness then, this b is in H [h] and it must be equal to Σ(T ). a

The proof shows more. Write T θβ and U θβ for trees searching for

• a countable transitve P,

• an elementary embedding σ : P →M0,β(Hθ),

• some h, which is generic for some P ∈ P over P with σ(P) ∈ Hθ,

such that y = M0,β(x) or respectively y 6= M0,β(x) as computed from P [h].

Corollary 3.4: Let θ be some regular uncountable cardinal. For all P ∈ Hθ and all
H ⊆ P generic over V

p
[
T θβ

]V [H]
={(x, y) ∈ R2|y = M0,β(x)},

p
[
U θβ

]V [H]
={(x, y) ∈ R2|y 6= M0,β(x)}.

We can now show (1)0,β . For that we need:

Lemma 3.5: M0,β � N = j(M0,β).

Proof: First let x ∈ RN and let y code j(M0,β)(x). By elementarity then (x, y) ∈
p
[
j(T θβ )

]
. A standard argument shows, that pV [G]

[
T θβ

]
⊂ pV [G]

[
j(T θβ )

]
and pV [G]

[
U θβ

]
⊂

pV [G]
[
j(U θβ)

]
.

But T θβ , U
θ
β project to complements and the projections of j(T θβ ), j(U θβ) are disjunct,

so pV [G]
[
T θβ

]
= pV [G]

[
j(T θβ )

]
and pV [G]

[
U θβ

]
= pV [G]

[
j(U θβ)

]
.

So (x, y) ∈ pV [G]
[
T θβ

]
and thus y codes M0,β(x).

So let x ∈ N be arbitrary, such that M0,β(x) 6= j(M0,β)(x). The internal definition
is certainly satisfied, so it must be a failure of iterability. So in V [G] there is some
countable hull of j(M0,β)(x), which is not iterable.
Formulated differently this means by the above argument, that the tree R, searching

for a countable hull of j(M0,β)(x), which is in p
[
j(U θβ)

]
is illfounded. But R ∈ N .

Contradiction! a
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Standard mice

Looking at some arbitrary real x ∈ V now, we see that j : LM0,β (x) → LM0,β (x) is a
non-trivial elementary embedding into itself by the lemma. So in V [G] there is a club
class of indiscernibles for LM0,β (x). Then there is also a club class of indiscernibles in V ,
and thus M#

0,β(x) exists.
This gives (1)0,β . (2)0,β follows immediately by the same argument plus elementarity.

We then get (3)0,β by Lemma 2.2.

So let us now assume (3)n,β for some n. Write T θn,β and U θn,β for trees searching for

• a countable transitve P,

• an elementary embedding σ : P →M#
n,β(Hθ),

• some h, which is generic for some P ∈ P over P with σ(P) ∈ Hθ,

such that y = M#
n,β(x) or respectively y 6= M#

n,β(x) as computed from P [h].
As before we get that for all regular uncountable cardinals θ, for all P ∈ Hθ and all

H ⊆ P generic over V

p
[
T θn,β

]V [H]
={(x, y) ∈ R2|y = M#

n,β(x)},

p
[
U θn,β

]V [H]
={(x, y) ∈ R2|y 6= M#

n,β(x)}.

By a previous argument we get:

Lemma 3.6: M#
n,β � N = j(M#

n,β).

Let us fix some real x ∈ V now. We want to show, that Kβ(x) := KM0,β (x) does not
exist. Because the universe is closed under M#

n,β , this would show that M#
n+1,β(x) exists.

Nothing will be lost if we ignore the real parameter x from now on, so we will do so.
For this we need to be able to compare Kβ with KN

β .

They are in the same hierarchy, so the only problem might be a failure of KN
β to be

iterable. So assume for a contradiction, that there is some countable hull K̄ of KN
β and

some countable iteration tree T on K̄, such that

• either the last model of T is illfounded,

• or T has limit length and there is no cofinal wellfounded branch through T with a
Q-structure below M#

n,β(M(T )).

We can reformulate this as saying, that the tree R searching for some countable hull
K̄ of KN

β and some countable tree T on K̄, such that

• either the last model of T is illfounded,
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3. The induction

• or T has limit length and there is some y, such that (M(T ), y) ∈ p
[
j(T θn,β)

]
and

there is some transitive structure containing y and T but not a cofinal wellfounded
branch through T with a Q-structure below y.

But R ∈ N . Contradiction!
The same argument can be repeated in all further forcing extensions of V [G], so we

get full iterability for KN
β .

Lemma 3.7: (ω+
1 )Kβ = ω2.

Proof: Assume not. Let λ := (ω+
1 )Kβ < ω2. By standard arguments we then have

j � P(ω1) ∩Kβ ∈ N . Let F be the j(ω1)-extender derived from that.
By [JS] the theory of the core model doesn’t need this, but it might be more comfortable

in the following argument to pretend, that there is some sufficiently large cardinal Ω up
to which the core model is defined. We will not need to make this explicit though.
We would like to show that F ∈ KN

β and would like to invoke Theorem 8.6. from
[Ste96] to that end. Strictly speaking we would then need to work with a fitting very
soundness witness. For presentations sake we shall ignore this though and work with Kβ

instead, which we will assume has the definability property at all ordinals. It should be
easy to see that the following argument can be made to fit an very soundness witness
instead.
Let T on Kβ and U on KN

β be the iteration trees arising in the coiteration of Kβ and
KN
β .
By the Dodd-Jensen lemma both must iterate to a common model, call it Q. The

Dodd-Jensen lemma is applicable here because Kβ has a strategy, which is guided by
M#
n,β .

Claim 1: crit(iT ), crit(iU ) ≥ ω1.

Proof of Claim: Let Γ = {γ ∈ On |iT (γ) = iU ◦ j(γ)}. Γ is thick. We will now show
iT = iU ◦ j.
Let us assume there was some minimal ordinal witness to the contrary say α. Using the

definabilty property of Kβ at α there must be some term τ such that α = τW (γ0, . . . , γk),
where γi ∈ Γ. But then

iT (α) = τQ(iT (γ0), . . . , iT (γk)) = τQ(iU (j(γ0)), . . . , iU (j(γk))) = iU (j(α))

Contradiction!
So if we now assume that one of iT , iU ’s critical points is less than ω1, then the critical

points are equal. Say the value is α < ω1. For any a ∈ [On]<ω and any X ⊂ α in Kβ we
then have

a ∈ iT (X)⇔ a ∈ iU (j(X))⇔ a ∈ iU (X)

implying that the first extenders used along the main branch of T and U were compatible.
Contradiction! �
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Standard mice

By the claim we then have λ = (ω+
1 )K

N
β and JKβλ = J

KN
β

λ . So Ult(KN
β ;F ) makes sense

but more is true.

Claim 2: The phalanx (KN
β ,Ult(KN

β ;F ); j(ω1)) is fully iterable in V [G] and N .

Proof of Claim: Because both Kβ and KN
β strategies are guided byM#

n,β we can copy
the tree T onto KN

β via j. Let jα :MTα →M
jT
α be the copy maps. Note that

jα � lh(ETα ) = jγ � lh(ETγ )

for α ≤ γ and that lh(ETα ) > ω1, where α is the minimal element of the main branch of
T . This implies that the jα(ω1) = j(ω1) extender derived from jα is in fact independent
of α for every α on the main branch and thus equal to F .
Now let us write Q∗ for the last model of jT and j∗ : Q → Q∗ for the copy map. By

the above we can apply F to Q and if k∗ : Ult(Q;F )→ Q∗ is the map

[a, f ]F 7−→ j∗(f)(a)

then crit(k∗) ≥ j∗(ω1) = j(ω1) and j∗ = k∗ ◦ iFQ, where iFQ of course refers to the
ultrapower embedding.
Now define the map k : Ult(KN

β ;F )→ Ult(Q;F ) by

[a, f ] 7−→
[
a, iU (f)

]
This is elementary because for any natural number m and formula ϕ

{b ∈ [ω1]m |KN
β |= ϕ(f(b))} = {b ∈ [ω1]m |Q |= ϕ(iU (f)(b))}

Remember crit(iU ) ≥ ω1. Additionally

k(a) = k(iF
KN
β

(id)(a)) = iFQ(iU (id))(a) = id(a) = a

for any a ∈ [j(ω1)]<ω.
So crit(k∗◦k) ≥ j(ω1) and so the phalanx can be embedded into Q∗ via iU , k∗◦k. Thus

she is iterable in V [G]. The proof for the iterability of KN
β in V [G] works in reverse as

well, and therefore the phalanx is also iterable in N . �

By a result from core model theory (see [Ste96] Theorem 8.6) then F ∈ KN
β . But F is

superstrong inside of KN
β . Contradiction!

Lemma 3.8: (ω+
1 )Kβ < ω2.

Proof: Assume not. Then Kβ||ℵ2 is equal to the stack of M0,β-mice above Kβ||ω1. By
applying the main argument from the proof of Lemma 2.2, we must have some M0,β-
mouse M of size and cofinality ℵ1 with largest cardinal ω1 end-extending Kβ||ω1 such
that the tree TM is special (restricted to some appropriate club, but let’s ignore that).
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3. The induction

Claim 1: M E Kβ.

Proof of Claim: Let ξ, η be ordinals such that ω1 < ξ, η < ω2 and ρω(Kβ||ξ) =
ρω(M||η) = ω1. It will be enough to show, that Kβ||ξ EM||η orM||η E Kβ||ξ.
Assume not. Then take countable π : M̄ →M||η and σ : K̄ → Kβ||ξ such that M̄, K̄

are incomparable.
But by the condensation lemma then M̄ EM||η and K̄ E Kβ||ξ and thus M̄ E Kβ||ω1

and K̄ E Kβ||ω1. Contradiction! �

So there is some mouse Q with M E Q E Kβ such that ρω(Q) = ω1. We can then
derive a contradiction using the same argument from the proof of Lemma 2.2. a

So we have shown (1)n+1,β . Let us fix some X ∈ Hω2 and a H ⊆ Col(ω, I) generic
over V [G].
N certainly contains some X-premouse M, which it believes to be M#

n+1,β(X) by
elementarity. Using the argument we applied to KN

β , we see that M is ω1-iterable in

V [G] [H] ( using p
[
T θn,β

]
= p

[
j(T θn,β)

]
). But V [G] [H] is equivalent to a homogeneous

forcing extension of the ground model. So M ∈ V and it is ω2-iterable there, so it is
M#
n+1,β(X).
By Lemma 2.2 we then get (3)n+1,β . So we can now conclude, that our core model

induction will reach β + 1.

Hybrid mice

Let β be such, that

• it either ends a weak gap beginning at α,

• or β − 1 exists and it ends a strong gap beginning at α.

In both cases we want Wα to hold. Let 〈Ai : i < ω〉 be a sjs “cofinal” in β, such that
each Ai is OD<β .
Let N be an 〈Ai : i < ω〉-iterable mouse and Σ it’s unique 〈Ai : i < ω〉-guided

ω1-iteration strategy, which has hull condensation (and branch condensation).

Lemma 3.9: Σ extends to a total iteration strategy Γ with hull condensation. This uses
homogeneity and presaturatedness.

Proof: By Lemma 2.3 it is enough to show, that Σ extends to a ω2-iteration strategy.
Let T be some iteration tree on N of size at most ℵ1. Then T ∈ N , and in N it is a
countable iteration tree on N . In M there is then b := j(Σ)(T ) a cofinal wellfounded
branch through T . b is

either the unique wellfounded branch through T with a Q-structure in j(Jβ(R)),
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Hybrid mice

or the unique wellfounded branch moving the terms for 〈j(Ai) : i < ω〉 correctly,
which is OD in j(Jβ+1(R)).

As j(Jβ(R)) = Jj(β)(RN ) = Jj(β)(RV [G]) by presaturation, we then have that b is ODV [G]
V

and thus in V by homogeneity. In fact j(Σ) � Hω2 ∈ V .

Claim 1: j(Σ) � Hω2 ∈ V has hull condensation and extends Σ.

Proof of Claim: Let T̄ be a countable hull of T witnessed by σ, ~π. All of these are in
N , so N knows that T̄ is a hull of T . As j(Σ) satisfies hull condensation in N , we have
that T̄ is by j(Σ).
Furthermore if T is a countable tree on N by Σ, then T = j(T ) is by j(Σ) by

elementarity. �

Note here that by Lemma 1.10 Γ has branch condensation.
We will now show, that in every forcing extension V [H] there is an ω1-no-drop-iteration

strategy on N , which we shall call ΣH , that condenses well and agrees with Γ on the
intersection of their domains.
For that let us assume without loss of generality, that there are class-many regular

countably closed cardinals κ, such that κ<κ = κ. Let P be some partial order and fix
some regular θ, such that P ∈ Hθ.

Lemma 3.10: There is some non-dropping iteration N → N ∗ according to Γ, such that
for all total extender E on the sequence of N ∗ the following holds:

• crit(E) ≥ θ,

• E is certified, i.e. it is derived from some elementary embedding π : H → Hκ+,
where κ<κ = κ and H is transitive and countably closed.

Proof: The idea is simple: first hit the smallest measurable of N θ-many times, then
begin removing non-certified extenders. We will have to show, that this terminates.
Fix a regular countably closed κ > θ, such that κ<κ = κ. Assume the iteration

reaches an iteration tree T of length κ. Let X ≺ Hκ+ be countably closed, such that
T ,Γ(T ) ∈ X, and γ := X ∩ κ ∈ κ. Let π : H → Hκ+ be the inverse of the transitive
collapse.
By the proof of the comparison lemma, we have that iTγ,κ = π � MTγ . But then the

first extender used along this branch above γ is certified by π. Contradiction! a

Lemma 3.11: Let T be a countable non-dropping iteration tree on N in V [H], such
that for all limit α < lh(T ) the branch [0, α)T is realizable into N ∗ as above. Then there
is exactly one maximal branch through T , which is realizable into N ∗.

Proof: By the choice of N ∗ all of it’s total extenders are certified. Thus there is indeed
at least one such branch, by the proof of iterability for Kc. We will show, that there is
at most one such branch by a reflection argument.
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3. The induction

Let us assume for a contradiction that there is some tree with two realizable branches.
Let λ be big enough and let X ≺ Hλ be countable, with N ,N ∗, p,P ∈ X, where p is
some conditon forcing the existence of a tree with two realizable branches. Let H be the
transitive collapse of X, and write N̄ ∗, p̄, P̄ for the images of N ∗, p and P respectively.
Let h be some P̄-generic over H, such that p̄ ∈ h.
Thus in H [h] there is some T picking realizing branches, such that there are two

distinct realizing branches b, c. First note that, because Γ condenses well N̄ ∗ is a Σ-
iterate of N . But then by branch condensation b = Σ(T ) = c. Contradiction! a

We then define ΣH as the strategy picking the unique branch realizing back into N ∗.
Using the homogeneity of the Col(ω, λ) line of forcings, it is then very simple to show,
that ΣH extends to a full iteration strategy (for non-dropping trees) ΓH on V [H], that
condenses well.
The proof shows more. Write T θβ and U θβ for trees searching for

• a countable transitve P,

• an elementary embedding σ : P → (H(2θ)+ ; Γ),

• some h, which is generic for some P ∈ P over P with σ(P) ∈ Hθ,

such that (x, y) ∈ Σh or respectively (x, y) /∈ Σh as computed from P [h].

Corollary 3.12: Let θ be some uncountable regular cardinal. For all P ∈ Hθ and all
H ⊆ P generic over V

p
[
T θβ

]V [H]
=ΣH ,

p
[
U θβ

]V [H]
=RV [H]\ΣH .

This implies Lj(Σ) = LΣ, which then implies the existence of Σ#’s for all reals. From
there the induction proceeds in exactly the same way it did on p.21 just relativized to
Σ-mice.
This finishes the analysis of all the cases of the core model induction and thus the

proof of Theorem 1.1.
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4. Alternate hypothesis

In the preceding chapter we showed, that ADL(R) followed from the existence of a home-
ogeneous presaturated ideal on ω1 under PFA(ℵ2). Unfortunately the following result
from [MF88] puts in doubt the consistency of this hypothesis.

Lemma 4.1 (Foreman-Magidor-Shelah): AssumeMA. Let I be a presaturated ideal
on I. Then forcing with I doesn’t add a cohen real.

Fortunately we have used the homogenity and presaturation properties of the ideal in
only minor ways, and thus it is an easy task to replace it with another property, that we
will subsequently show to be consistent relative to forcing axioms.
Going back we see that we used these properties exactly twice, namely in Lemma 3.1

and Lemma 3.9. Both of these results have to do with reflection, and in both cases
this is achieved by showing that the image of an operator under the generic ultrapower
embedding is indepedent of the generic.
So what we need is an ideal property, that implies independence of the generic for

certian functions on countable sets inside of L(R).

Definition 4.2: Let I be a normal ideal on ω1. By (+)I we refer to the following
property:

For all A ⊆ ω1, for all F : Hω1 → Hω1 in L(R), for all ξ < ω1 either

(1) {η < ω1|ξ ∈ F (A ∩ η)} ∈ I∗, or

(2) {η < ω1|ξ /∈ F (A ∩ η)} ∈ I∗.

If the ideal in question is NSω1 we shall omit the subscript and just write (+).

It is easy to see, that if I is precipitous and (+)I holds, then j(F )(A) ∩ ω1 (where j is
the generic embedding) does not depend on the choice of the generic.
On the other hand if there were some countable ordinal ξ and I-positive sets S, T , such

that S  ξ̌ ∈ j(F̌ )(Ǎ) and T  ξ̌ /∈ j(F̌ )(Ǎ), then by normality

• S ∩R ⊆ {η < ω1|ξ ∈ F (A ∩ η)}, and

• T ∩R ⊆ {η < ω1|ξ /∈ F (A ∩ η)},

where R ∈ I∗. This clearly contradicts (+)I . It is in fact not necessary to invoke the
precipitousness of I to plug the gaps in our core model induction.

Lemma 4.3: Let I be some normal Ideal on ω1. Assume (+)I holds.
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4. Alternate hypothesis

(a) Let M ∈ L(R) be a mouse operator, that condenses well. Then mouse reflection
holds for M at (ℵ1,ℵ2), i.e. if M was total on Hω1 (above some real) then it is
total on Hω2 (above the same real).

(b) Let Σ ∈ L(R) an iteration strategy on some countable N that has hull condensation.
Assume that Σ is total on Hω1, then Σ extends to an iteration strategy on Hω2 that
has hull condensation.

Proof: (a): Fix some A ⊆ ω1. Let F : Hω1 → Hω1 code M in some nice fashion, say

F (a) := {dϕ, n, ξ1, . . . , ξne|ξi ∈ a, ϕ Σ1,M(a) |= ϕ(τn(ξ1, . . . , ξn))} a

for some countable a ⊂ ω1. F ∈ L(R), and thus for all ξ < ω1, there is some I-measure
one set Cξ, such that either ξ ∈ F (A ∩ η) for all η ∈ Cξ or ξ /∈ F (A ∩ η) for all η ∈ Cξ.
Let C be the diagonal intersection of the Cξ.
For η0 < η1 both in C there exists then a Σ1 elementary embedding from M(A ∩

η0) into M(A ∩ η1). Let M(A) be the direct limit of the 〈M(A ∩ η) : η ∈ C〉 under
these embeddings. By standard arguments this limit is both wellfounded and sufficiently
iterable.

(b): Fix some tree T on N of size ℵ1, which we shall assume to be according to some
strategy extending Σ, such that all countable hulls are according to Σ. Let A ⊆ ω1 code
T in some simple fashion. Let F ∈ L(R) code Σ. Fix I-measure one sets Cξ, such that
either ξ ∈ F (A∩ η) for all η ∈ Cξ or ξ /∈ F (A∩ η) for all η ∈ Cξ. Let D be the (club-)set
of η < ω1, such that A∩η codes a tree on N according to Σ and let C be the intersection
of D with the diagonal intersection of the Cξ.
We can then define a branch through T by putting the node corresponding to some

ξ < ω1 into the branch iff ξ ∈ F (A ∩ η) I-measure one often. We will show, that this
branch is cofinal.
Assume not, then there is some γ, such that for all ξ < ω1 lying on a level above γ,

there are measure one many η, such that that ξ /∈ F (A∩ η). Take some η ∈ C, such that
γ < η. F (A ∩ η) codes a cofinal branch, thus for some ξ < η lying on a level above γ
ξ ∈ F (A ∩ η), but η ∈ Cξ. Contradiction!
A similar argument shows, that the branch is wellfounded.

We thus can use (+)I as a substitute for homogeneity, and thus arrive at the following
result.

Theorem 4.4: Assume PFA(ℵ2). Let I be a normal precipitous Ideal on ω1, such that
(+)I holds. Then ADL(R) holds.

We will finally show, that (+) is consistent with forcing axioms.

Lemma 4.5: Assume, that all A ∈ P(R) ∩ L(R) are <ω2-universally baire. Then (+)
holds.
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Proof: Fix F ∈ L(R),A ⊆ ω1 and ξ < ω1. Let B ∈ P(R) ∩ L(R) code F . Fix trees
T,U witnessing the universal baireness of B.
Let θ be some sufficiently big cardinal. Let X ≺ Hθ be countable, s.t. ξ, T, U,A ∈ X.

Let H be the transitive collapse of X, T̄ , Ū the images of T,U under the collapse and
η := ω1 ∩X = ωH1 .

Claim 1: F (A ∩ η) ∈ H. Furthermore it is uniformly definable in η, T̄ , Ū , A.

Proof of Claim: Let h ⊂ Col(ω, η) be generic over H. Because T,U witness the
universal baireness of B, we have by elementarity, that

(p
[
T̄
]
)H[h] ∪ (p

[
Ū
]
)H[h] = RH[h].

On the other hand we have

p
[
T̄
]
⊆ p [T ] , p

[
Ū
]
⊆ p [U ] .

Thus (p
[
T̄
]
)H[h] = B∩H [h]. This doesn’t depend on the choice of the generic so F (A∩η)

can be defined as the unique element such that (x, y) ∈ p
[
T̄
]
for all real codes y of it

and all real codes x of A ∩ η in any Col(ω, η)-generic extension. �

By the claim if we have X0 ≺ X1 ≺ Hθ and π : H0 → H1 is the concatenation of the
uncollapse of H0 and the collapse of X1, π(F (A∩η0)) = F (A∩η1) and thus ξ ∈ F (A∩η0)
iff ξ ∈ F (A ∩ η1). So because

{X ∩ ω1|X ≺ Hθ,Card(X) = ℵ0, (ξ, T, U,A) ∈ X}

is club, we are done. a
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5. Determinancy in V Col(ω,ω1)

Theorem 5.1: Assume PFA(ℵ2) and that there is a precipitous Ideal I on ω1, then
inductive determinancy holds in V Col(ω,ω1), i.e. Jα(RCol(ω,ω1)) |= AD for α the least
admissible ordinal of V Col(ω,ω1).

The proof is by core model induction inside of V Col(ω,ω1), though we will have to go
back to V for some of the arguments. Let us assume PFA(ℵ2) and let I be a precipitous
ideal on ω1.
Fix a Col(ω, ω1)-generic filter g and a P(ω1)/I-generic Filter G over V [g]. Let us write

N for the ultrapower of V by G and j : V → N for the ultrapower embedding.
In the course of the induction we will show that the universe is closed under operators

Mn,β . For that we need to know the following about the operators:

• Mn,β is extraordinarily nice,

• for all partial orders P, all P-names σ and all h ⊆ P generic over Mn,β(P, σ) can
Mn,β(σG) be computed from the background construction of Mn,β(P, σ) [h].

we have already seen in chapter 3 that all the operators appearing in the course of the
core model induction have these properties, so we will not need to examine the exact
nature of β in the following.
So let us fix some β less than α the least admissible, and assume that M0,β is total on

the reals of V [g] above some real aβ . We will show that V [g] is closed under Mn,β for
all n < ω.
It is shown in [SS] that M0,β gives rise to an operator MV

n,β in V , which is total on
Hω2 above some name τβ for aβ , with the property that MV

0,β(σ) [g] = M0,β(σg) for any
name σ for a real above aβ .
When h is some Filter generic over V [g] for some forcing in V and Mn,β is suffi-

ciently total on V [g] [h] = V [h] [g], we can use the same “reverse of generic extension”
construction to get an operator MV [h]

n,β in V [h] extending MV
n,β .

Our reflection lemma Lemma 2.2 can be applied to the operator MV
n,β and from there

can be extended to all forcing extensions of V [g] in the usual way. But because τβ might
be uncountable we cannot apply our core model arguments from chapter 3.
We will now define a model operator MN

0,β inside of N . Let T θβ be the tree searching
for reals x, y and

• a countable model P with τβ ∈ P,

• an elementary embedding σ : P → j(MV
0,β(Hθ)) such that σ � (τβ ∪ {τβ}) = j �

(τβ ∪ {τβ}),
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• a filter h := h0 × h1 generic over Col(ω, ωV1 )× P, where σ(P) ∈ j(Hθ)

such that y codes M
P[h1]
0,β (x) as computed from P [h].

We also define U θβ a tree searching for the same things, but such that y codes a structure

different from M
P[h1]
0,β (x). It is easy to see that T θβ , U

θ
β ∈ N .

Lemma 5.2: Let W := V [g] [G] [H] be a generic extension of V [g] [G] by P, where
P ∈ Hθ, then

p
[
T θβ

]W
⊇{(x, y) ∈ (R2)V [G][H]|y = M

V [G][H]
0,β (x)},

p
[
U θβ

]W
⊇{(x, y) ∈ (R2)V [G][H]|y 6= M

V [G][H]
0,β (x)}.

Proof: Let y codeMV [G][H]
0,β (x). Let P [h] be the collapse of a countable hull ofHθ [g ×G×H]

with y and τβ in P [h]. Let σ be the inverse of the collapse. Then P, j ◦ σ � P, h witness
that (x, y) ∈ p

[
T θβ

]
. The proof for U θβ works the same way. a

Lemma 5.3: p
[
T θβ

]
∩ p
[
U θβ

]
= ∅.

Proof: Because of absoluteness it suffices to show this inside of N . Assume not. This
means we must have two models P0,P1, embeddings σi : Pi → j(MV

0,β(Hθ)) and generic

filters hi := h0
i ×h1

i , such thatM
P0[h10]
0,β (x) as computed by P0 [h0] differs fromM

P1[h11]
0,β (x)

as computed by P1 [h1].
Let us call these models M0 and M1 respectively. Because of the extraordinary

niceness of M0,β both models believe they are the minimal model satisfying ϕ(x, τβ),
where ϕ is Σ1. But both models inherit the iterability of j(MV

0,β(Hθ)), thus by comparison
they are equal. Contradiction! a

We can now define MN
0,β(A) as the unique set B such that (x, y) ∈ p

[
T θ0,β

]
whenever

y codes B and x codes A inside of a generic extension by Col(ω,A).

Lemma 5.4: MN
0,β is welldefined and in fact MN

0,β = M
V [G][H]
0,β ∩N for all forcing exten-

sions V [g] [G] [H] of V [g] [G]

Proof: Let A ∈ N be arbitrary and let V [g] [G] [H] be a forcing extension of V [g] [G].
W.l.o.g. H is generic for some Col(ω, λ) such that λ ≥ ℵ2 is at least the N -cardinality
of A.
We then have that H is generic over N and of course N [H] ⊆ V [G] [H]. Let x be a

real code for A in N [H] and let y be a real code for MV [G][H]
0,β (A) in V [G] [H].

31



5. Determinancy in V Col(ω,ω1)

By Lemma 5.2 then (x, y) ∈ p
[
T θβ

]
for θ > λ, so by absoluteness there is some y′

in N [H] such that (x, y′) ∈ p
[
T θβ

]
. If y′ were not a code for MV [G][H]

0,β (A), then by

Lemma 5.2 (x, y′) ∈ p
[
U θβ

]
, but this contradicts Lemma 5.3!

All this didn’t depend on the choice of codes or generics (except of course the fixed
choice of G and g) and thusMV [G][H]

0,β (A) ∈ N and it is the unique structure there, which
fits the definition of MN

0,β . a

Using the fact thatMN
0,β has a nice uniform definition we can find a sequence of mouse

operators 〈Mξ : ξ < ω1〉 such that [Mξ ∩Hκ : ξ < ω1]G is equal to MN
0,β ∩ HN

j(κ) for all
regular uncountable cardinals κ.
By Łoś’s theorem each Mξ is a mouse operator in V defined above some real with an

universally baire representation.
Thus the arguments from chapter 3 can be applied to each of the Mξ. Thus we have

that (M
Mξ
n )# exists for all n < ω. Applying Łoś’s theorem again we then have (MN

n,β)#

for all n < ω inside of N .

We can now finish the argument. First step is to show, that the M#
0,β are total. Let

A ∈ Hω2 be a name for a real in V [g] above τβ . Then A ∈ N , so M := (MN
0,β)#(A)

exists. By the proof of Lemma 5.2 M [g] is closed under M0,β and of course the top
extender survives into small forcing extensions.
SoM [g] = M#

0,β(Ag). By standard arguments it can then be pulled back to V , which
will show that (MV

0,β)# is total on Hω2 and thus by Lemma 2.2 total.
Now assume that (MV

n,β)# is total for some n. We can then build trees T θn,β and U θn,β
in N , which will define an operator (MN

n,β)# that can be decoded to M#
n,β using g. For

any name A ∈ Hω2 for a real in V [g] over τβ we will then have M := (MN
n+1,β)#(A)

inside of N , which we can then show to be iterable using the trees T θn,β close to how we
showed iterability for KN

β on p.21.
ThenM [g] = M#

n+1,β(Ag) and reversing the generic will give (MV
n+1,β)# total on Hω2 .

Using Lemma 2.2 then closes the argument.
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Part II.

On the strength of Namba-like
forcings on successors of regular

cardinals
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6. Introduction

Let ∗κ,ν be the statement:

There is a p.o. P such that 1P  cof(κ̌+) = ν, but P doesn’t change
cofinalities and cardinalities ≤ κ.

Our main result will be a generalization of the following result due to Peter Koepke:

Theorem 6.1 (Koepke): Assume there is no inner model with a Woodin cardinal. Let
κ be a regular infinite cardinal, where κ ≥ ℵ2. Let µ > κ be measurable. Then there
exists a generic extension of the universe V [G], such that V [G] |= ∗κ,ω.

Our own result is the following:

Theorem 6.2: Let ν < κ be regular infinite cardinals, where κ ≥ ℵ2. Let η be such that
ω · η = ν.

(a) Assume GCH. Let µ > κ be a measurable cardinal with o(µ) ≥ η. Then there
exists a generic extension of the universe V [G], such that V [G] |= ∗κ,ν .

(b) Assume ∗κ,ν . Then there exists an inner model M , such that M |= o(µ) ≥ η for
µ = κ+.

The “⇒” direction follows by a standard argument from the following cover theorem
(see [Cox09b]):

Theorem 6.3 (Cox): Suppose 0¶ does not exist. Then the “core model for non-overlapping
extenders” K exists and for all ordinals α > ℵ2, which are regular cardinals in K, if
ν = cof(α) < Card(α) and η is such that η · ω = ν, then K |= o(α) ≥ η.

Assume ∗κ,ν . If 0¶ exists, we are done as this gives us for any cardinal µ an inner
model, in which µ is strong ( just iterate 0¶ by the smallest measure on the strong and
its images µ-many times). So assume, that 0¶ does not exist. Let P witness ∗κ,ν , and let
G ⊂ P be a generic filter.
Note that forcing can not add 0¶, so the core model for non-overlapping extenders

exists in both V and V [G] and the two versions are equal. Let us call this model K. As
K ⊆ V we have K |= µ is regular , where µ = (κ+)V . But then by the theorem we have
K |= o(µ) ≥ η.

Thus we will concentrate on the “⇐” direction. So let us fix regular cardinals ν < κ < µ
and η such that η · ω = ν and κ ≥ ℵ2, and let o(µ) ≥ η.
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Miscellaneous

One might be inclined to just collapse µ to be κ+ and then apply the Prikry forcing in
the resulting model to witness ∗κ,ω, but there are combinatorial reason, why this cannot
possibly work. The problem lies with the following result by Shelah:

Lemma 6.4 (Shelah): If µ is a regular cardinal and if a notion of forcing P makes
cof(µ) 6= Card(µ), then P collapses µ+.

See [Jec06] p. 451.
If now in our situation the Prikry forcing would witness ∗κ,ω, then we would have

cof(µ) = ω 6= κ = Card(µ)

and thus µ+ must be collapsed by the lemma, but Prikry forcing has the µ+ c.c. giving
a contradiction.
The actual solution will still involve Prikry forcing, but it won’t be quite as simple as

that.
The rest of this chapter will be dedicated to introducing most of the concepts, which

will appear throughout this part of the thesis. In the second chapter we will present
a slightly more general proof of the original Koepke result. This will also serve as a
framework for the general theorem. In chapter 3 we will introduce a forcing of Gitik’s,
which will serve as the basis for the forcing in our main proof. Chapter 4 will contain
the main proof. In chapter 5 we will discuss applications of iteration to our main result.
Chapter 6 finally will feature a departure from the methods of the rest of the thesis, but
will only maintain a thematic connection to the rest of this part of the thesis.

Miscellaneous

We will start by introducing notational shortcuts, we shall use heavily throughout the
following chapters. All of these will deal with trees, and by that we mean sets of finite
sequences of ordinals closed under initial segments. As a general rule our sequences will
be increasing, and so we will confuse them with finite sets of ordinals whereever it may
be convenient.
We shall use E for end extension, lh(·) for the length of sequences, and a for concate-

nation.

Notation: Let γ be some ordinal and T ⊂ [γ]<ω a tree (, i.e. it is closed under initial
segments).

(a) We call t ∈ T the stem of T , iff t is E-maximal with the property that for all s ∈ T
s E t or t E s.

(b) Let s ∈ T . We write Ts for {t ∈ T |t E s ∨ s E t}.

(c) Let s ∈ T . We write T/s for {t ∈ [γ]<ω|sat ∈ T}.

(d) Let s ∈ [γ]<ω be such, that for all non-empty t ∈ T sup(s) < min(t). We then
write saT for {sat|t ∈ T}.
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6. Introduction

(e) Let s ∈ T . We write sucT (s) for {ξ < γ|sa〈ξ〉 ∈ T}.

In the following we will make heavy use of Gitik’s “Prikry-type forcing” notation. For
the sake of readers, who might not be familiar with it, we will give the definitions here:

Definition 6.5: A triple 〈P,≤,≤∗〉 is called a Prikry-type forcing, iff:

• 〈P,≤〉 and 〈P,≤∗〉 are partial orders.

• ≤∗ ⊆ ≤

• Let ϕ(τ) be any statement in the forcing language of 〈P,≤〉 and p ∈ P. Then there
is q ≤∗ p, such that q ‖〈P,≤〉 ϕ(τ).

In talking of Prikry type forcings we will often use the phrase “p is a direct extension
of q”. By this we simply mean p≤∗ q.

Definition 6.6: Let γ be a regular uncountable cardinal. A Prikry-type forcing
〈P,≤,≤∗〉 is called weakly <γ-closed, iff 〈P,≤∗〉 is <γ-closed.

For a non-principal normal measure U on some cardinal µ the Prikry forcing for U
would be an example of an <µ-closed Prikry type forcing. The basic forcings appearing
in the proof of the main theorem will be based on a variant of Prikry forcing, that might
best be described as tree Prikry forcing.
The conditions of tree Prikry forcing are pairs (t, T ), where t is a finite set of ordinals

less than µ and T ⊆ [µ]<ω is tree with stem t, with the property that whenever s ∈ T
with t E s, then sucT (s) ∈ U .

(s, S) extends (t, T ), iff S ⊆ T , and (s, S) is a direct extension of (t, T ), if additionally
s equals t.

Remark: A weakly <γ-closed Prikry type forcing does not add new bounded subsets of
γ. (The proof of this is the same, that is already known from Prikry forcing.)

Later we will use iterations of Prikry type forcings. These iterations differ from the
usual concept of an iteration in one important point.

Definition 6.7: 〈〈〈Pα,≤α,≤∗α〉 : α ≤ γ〉, 〈〈Q̇β, ≤̇β, ≤̇
∗
β〉 : β < γ〉〉 is a Gitik-iteration iff

(i) for all α ≤ γ Pα consists of sequences p of length α such that p(β) is an Pβ-name
and p � β  p(β) ∈ Q̇β for all β < α,

(ii) 〈Q̇β, ≤̇β, ≤̇
∗
β〉 is a Pβ-name for a Prikry type forcing notion for all β < γ,

(iii) if α ≤ γ is inaccessible then a p as in (i) is in Pα iff p � β  p(β) = 1 for all but
boundedly many β < α,

(iv) if α ≤ γ is not inaccessible then p ∈ Pα if it is as in (i),

(v) for all α ≤ γ for all p, q ∈ Pα p≤∗α q iff p � β  p(β) ≤̇∗β q(β) for all β < α,
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Miscellaneous

(vi) for all α ≤ γ for all p, q ∈ Pα p ≤α q iff p � β  p(β) ≤̇β q(β) for all β < α and
p � β  p(β) ≤̇∗β q(β) for all but finitely many β < α.

Lemma 6.8 (Gitik): Let 〈〈〈Pα,≤α,≤∗α〉 : α ≤ γ〉, 〈〈Q̇β, ≤̇β, ≤̇
∗
β〉 : β < γ〉〉 be a Gitik-

iteration, then 〈Pα,≤α,≤∗α〉 is a Prikry type forcing notion for all α ≤ γ.

See [Git86] or alternatively [Git10] for a proof.
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7. The countable case

We will first consider the case of ν = ω. In solving this we will introduce the basic
method, which will also be applied in the uncountable case.
Fix a non-principal measure U on µ. The following forcing, which consists of trees right

out of Prikry forcing, with collapses attached to each node, will be the key to forcing
∗κ,ω.
The forcing P for the measure U consists of triples (t, T, F ), where t ∈ [µ]<ω, a

tree T ⊂ [µ]<ω (to be understood as a tree on increasing sequences), and a function
F : T → Col(κ,<µ). A triple (t, T, F ) is a condition in P iff

− F (∅) = ∅,

− t is the stem of T ,

− if s ∈ T and t E s, then sucT (s) ∈ U ,

− ∀t, t′ ∈ T : t 6= ∅ ⇒ (F (t) ∈ Col(κ,<max t) ∧ t E t′ ⇒ F (t) = F (t′) � (κ×max t)).

Partially order P by

(t′, T ′, F ′) ≤ (t, T, F ) iff T ′ ⊂ T and ∀t ∈ T ′ : F ′(t) ⊇ F (t).

We say that (t′, T ′, F ′) is a direct extension of (t, T, F ), (t′, T ′, F ′)≤∗(t, T, F ), iff moreover
t = t′.

Lemma 7.1: 〈P,≤,≤∗〉 is a weakly <κ-closed Prikry type forcing.

Proof: The weak closure is easy, so let us concentrate on showing that it is of Prikry
type.
Let ϕ(τ) be some statement and (t, T, F ) ∈ P. We want to show that there is some

direct extension, which decides ϕ(τ). We will show, that if there exists some A ⊆ sucT (t)
in U , such that there exist direct extensions of (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉), which decide
ϕ(τ), for all ξ ∈ A , then there exists a direct extension of (t, T, F ) which decides ϕ(τ).
Fix such an A and conditions (ta〈ξ〉, Tξ, Fξ)≤∗ (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉), which decide

ϕ(τ). Because U is an ultrafilter, we can assume all of them to decide in the same way,
say positively. By further shrinking A we will furthermore assume all the Fξ to agree on
the value of Fξ(t). (Note that there are <µ many possible values.)
Now set T ∗ :=

⋃
ξ∈A

Tξ. Then define F ∗ by F ∗(s) = Fξ(s) iff s E ta〈ξ〉∨ ta〈ξ〉 E s. This

is welldefined by the choice of A, and gives us a condition (t, T ∗, F ∗)≤∗ (t, T, F ), which
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forces ϕ(τ) as the set {p ∈ P|∃ξ ∈ A : p ≤ (ta〈ξ〉, Tξ, Fξ)} is dense below (t, T ∗, F ∗) and
each of it’s elements forces ϕ(τ).

Let us now assume that that there is no direct extension of (t, T, F ) deciding ϕ(τ).
We will then construct a sequence of trees 〈Tm : m < ω〉 with stem t such that

• ∀n ≤ m < ω : Tn ⊆ Tm,

• for all n ≤ m < ω for all s ∈ Tn, if lh(s) ≤ lh(t) + n, then s ∈ Tn ⇔ s ∈ Tm,

• for all m < ω for all s ∈ Tm, if lh(s) ≤ lh(t) +m, then there is no direct extensions
of (s, Tms , F � T

m
s ), which decides ϕ(τ). a

We start with T 0 := T . Let us assume that we had already constructed Tm. Let
s ∈ Tm be arbitrary with lh(s) = lh(t) + m. By induction hypothesis there is no direct
extension of (s, Tms , F � T

m
s ), which decides ϕ(τ).

So by applying the argument from above to (s, Tms , F � T
m
s ) we find that there is a

measure one set of ξ < µ such that there is no direct extension of (sa〈ξ〉, Tm
sa〈ξ〉, F �

Tm
sa〈ξ〉), which decides ϕ(τ). Let us call this set As.
We can then define Tm+1 as the set of s ∈ Tm such that, if lh(s) ≥ lh(t) + n+ 1, then

s(lh(t) + n) ∈ As�(lh(t)+n).
This finishes the construction of the 〈Tm : m < ω〉. Set T ∗ :=

⋃
m<ω

Tm. This tree has

the property, that for all s ∈ T ∗, there is no direct extension of (s, T ∗s , F � T
∗
s ), which

decides ϕ(τ).
But surely there is some extension of (t, T ∗, F � T ∗), which decides ϕ(τ), (s, S,G) say.

But then s ∈ T ∗ and (s, S,G) is a direct extension of (s, T ∗s , F � T
∗
s ). Contradiction!

We will now show, that P can be written in a form reminiscent of a product, whose
first component is Col(κ,<µ). Write 〈Q,≤,≤∗〉 for the following forcing:

• Q = {〈p, (t, T, F )〉|p ∈ Col(κ,<µ), (t, T, F ) ∈ P, ∀ζ ∈ sucT (t)F (ta〈ζ〉) = p}

• 〈p, (t, T, F )〉 ≤ 〈q, (s, S,G)〉 ⇔ p ≤ q ∧ (t, T, F ) ≤ (s, S,G)

• 〈p, (t, T, F )〉 ≤∗ 〈q, (s, S,G)〉 ⇔ p ≤ q ∧ (t, T, F )≤∗ (s, S,G)

Lemma 7.2: σ : Q→ P, where σ(〈p, (t, T, F )〉) = (t, T, F ), is a dense embedding.

Proof: Let (t, T, F ) ∈ P. The function

sucT (t) → Col(κ,<µ)

ξ 7→ F (ta〈ξ〉)

is basically regressive on a set in U . So on some A ⊆ sucT (t) in U the function is con-
stant. Call its constant value p. Set T ∗ := {s ∈ T |s E t ∨ ∃ξ ∈ A : ta〈ξ〉 E s}, then
(t, T ∗, F � T ∗) ≤∗ (t, T, F ) and 〈p, (t, T ∗, F � T ∗)〉 ∈ Q. So ran(σ) is dense in 〈P,≤〉 (in
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7. The countable case

〈P,≤∗〉 even).

Let 〈p0, (t0, T0, F0)〉, 〈p1, (t1, T1, F1)〉 ∈ Q with (t0, T0, F0) ‖ (t1, T1, F1), so there is
some (s, S,G) ≤ (t0, T0, F0), (t1, T1, F1). W.l.o.g. assume that (s, S,G) ∈ ran(σ), say
σ(〈q, (s, S,G)〉) = (s, S,G) for some q.
It now suffices to show, that q ≤ p0, p1. By symmetry it suffices to show q ≤ p0, so

for sake of brevity we will omit the subscripts for the rest of the proof. We know t E s.
Consider two cases:

(a) Assume that t 6= s, say ta〈ξ〉 E s for some ξ ∈ sucT (t). Then by the definition of
the partial orders

p = F (ta〈ξ〉) ⊆ G(ta〈ξ〉) ⊆ G(s) ⊆ G(sa〈ξ′〉) = q

where ξ′ ∈ sucS(s) is arbitrary.

(b) Assume that t = s. Then sucS(s) ⊆ sucT (t), so by the definition of the partial
orders

p = F (ta〈ξ〉) ⊆ G(ta〈ξ〉) = q

where ξ ∈ sucS(s) is arbitrary. a

Remark: Because ran(σ) was dense in 〈P,≤∗〉, 〈Q,≤,≤∗〉 inherits the Prikry type. (Say
p ∈ Q. Let q∗ ≤∗ σ(p) decide some statement ϕ(τ). Take some q with σ(q) ≤∗ q∗, then
q ≤∗ p and it decides ϕ(τ).) So there is no harm in confusing P with Q from now on.

We want to prove something very much like a product lemma for Q, but we will need
a technical lemma first.

Lemma 7.3: Let 〈p, (t, T, F )〉 ∈ Q and q ≤ p, then there exist (t, T ∗, F ∗) ≤∗ (t, T, F ),
such that 〈q, (t, T ∗, F ∗)〉 ∈ Q.

Proof: Take ξ < µ, ξ > max t so that q ∈ Col(κ,<ξ).
Define T ∗ := {s ∈ T |s E t ∨ ∃ζ ∈ sucT (t) ∩ (ξ, µ) : ta〈ζ〉 E s} and

F ∗(s) = (F (s) ∪ q) � (κ×max s)

for s ∈ T ∗. Then (t, T ∗, F ∗)≤∗ (t, T, F ) and for ζ ∈ sucT ∗(t)

F ∗(ta〈ζ〉) = F (ta〈ζ〉) ∪ q = p ∪ q = q

so 〈q, (t, T ∗, F ∗)〉 ∈ Q. a

For any G ⊂ Col(κ,<µ) a generic filter over V , we will write PG := {(t, T, F )|∃p ∈ G :
〈p, (t, T, F )〉 ∈ Q}.
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Lemma 7.4: (a) Let I ⊂ Q be generic over V . Then

G := {p|∃(t, T, F ) : 〈p, (t, T, F )〉 ∈ I}

is generic over V for Col(κ,<µ) and

H := {(t, T, F )|∃p : 〈p, (t, T, F )〉 ∈ I}

is generic over V [G] for PG.

(b) Let G ⊂ Col(κ,<µ) be a generic filter over V and H ⊆ PG be generic over V [G].
Then I := {〈p, (t, T, F )〉 ∈ Q|p ∈ G, (t, T, F ) ∈ H} is generic over V .

Proof: (a) With Lemma 7.3 it is trivial to show the genericity of G. So let us fix a
name Ḋ and some p∗ ∈ G, such that

p∗  Ḋ ⊆ PĠ is open dense.

It is then enough to show that D := {(p, 〈t, T, F 〉) ∈ Q|p  (ť, Ť , F̌ ) ∈ Ḋ} is dense
below 〈p∗, (t∗, T ∗, F ∗)〉 for some (t∗, T ∗, F ∗) with 〈p∗, (t∗, T ∗, F ∗)〉 ∈ I.
So let 〈p, (t, T, F )〉 ≤ 〈p∗, (t∗, T ∗, F ∗)〉 be arbitrary. There is some name τ , such
that

p  τ ≤ (ť, Ť , F̌ ) ∧ τ ∈ Ḋ

For some q ≤ p we then get an (s, S, J) ≤ (t, T, F ), such that q  (š, Š, J̌) = τ .
Because “q  Ḋ is open” we can assume by Lemma 7.3, that 〈q, (s, S, J)〉 ∈ Q.
Thus 〈q, (s, S, J)〉 ∈ D.

(b) Let D ⊆ Q be dense. It suffices to show, that {(t, T, F ) ∈ PG|∃p ∈ G〈p, (t, T, F )〉 ∈
D} is dense. So let (t, T, F ) ∈ PG be arbitrary. Let p ∈ G be such that 〈p, (t, T, F )〉 ∈
Q. Let p∗ ≤ p be arbitrary, then there is some (t∗, T ∗, F ∗) ≤∗ (t, T, F ), such
that 〈p∗, (t∗, T ∗, F ∗)〉 ∈ Q. There is now some 〈q, (s, S, J)〉 ≤ 〈p∗, (t∗, T ∗, F ∗)〉 in
D. So we have shown, that below p there are densely many q, for which some
(s, S, J) ≤ (t, T, F ) exists with (q, (s, S, J)) ∈ D. So there is some q ∈ G and some
(s, S, J) ≤ (t, T, F ) with (q, (s, S, J)) ∈ D. a

Corollary 7.5: Let G ⊆ Col(κ,<µ) be generic over V . Then PG is a <κ weakly closed
Prikry type forcing in V [G].

Proof: Let ϕ(τ) be a statement of the forcing language in V [G] and let p ∈ G force
this. Let (t, T, F ) ∈ PG be arbitrary. We can assume by Lemma 7.3, that there is
some q ≤ p, such that 〈q, (t, T, F )〉 ∈ Q. As Q is of Prikry type, we can find some
(t∗, T ∗, F ∗)≤∗ (t, T, F ) and some p∗ ≤ q, such that

〈p∗, (t∗, T ∗, F ∗)〉 ‖ ϕ(τ),
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7. The countable case

let us assume that 〈p∗, (t∗, T ∗, F ∗)〉  ϕ(τ), by the lemma we can write this as

p∗  (ť∗, Ť ∗, F̌ ∗)  ϕ(τ).

This proves, that the set of conditions p∗, which force, that there is some direct extension
of (t, T, F ) deciding ϕ(τ), is dense below p. (Please excuse our abuse of notation in this
proof.) a

We have seen how P can be seen as the combination of a collapse first and a singu-
larizing forcing second. Now we will switch our viewpoint and show that it is equally
valid to think of it as the conbination of a singularizing forcing first and a collapse second.

Let QP refer to the tree Prikry forcing. For any condition (t, T, F ) ∈ P we will de-
fine a QP -name:

τF := {((s, S), dα, β, γe|(s, S) ≤ (t, T ) ∧ (α, β, γ) ∈ F (s)}

The important thing to note here is that

(s, Ts)  τF ∩ (κ̌×max š) = ˇF (s) (7.1)

for any s ∈ T with t E s. The exact definition of τF doesn’t matter as long as this is
true. Write Ċ for (Col(κ,<µ))QP , i.e. a QP -name for the collapse of everything below µ
to κ in the Prikry generic extension.

Lemma 7.6: σ : P→ QP ∗ Ċ where σ((t, T, F )) = ((t, T ), τF ) is a dense embedding.

Proof: Let ((t, T ), τ) ∈ QP ∗ Ċ be arbitrary. We will now begin pruning the tree T . In
the first step we will take some subtree T 0 of T with stem t that fixes the value of τ up
to max t using the Prikry property. Now for any ξ ∈ sucT (t) let T 1

ξ be a subtree of T 0
ta〈ξ〉

with stem ta〈ξ〉 that fixes the value of τ up to ξ. Then let T 1 be the amalgamation of
the T 1

ξ . Continuing this for all levels of T we will have defined trees Tn with stem t for
all n < ω.
Let T ∗ :=

⋂
n<ω

Tn. This tree has the important property that for all s ∈ T ∗ with t E s

T ∗s fixes the value of τ upto max s. Call this value F (s).

Claim 1: σ((t, T ∗, F )) ≤ ((t, T ∗), τ)

Proof of Claim: It is enough to show, that (t, T ∗)  τ = τF . Assume not. Then
there is some (s, S) ≤ (t, T ∗) that forces that τ and τF disagree somewhere before α < µ.
W.l.o.g. max s > α. But then we have

(s, S)  τF ∩ (κ̌×max š) = ˇF (s)

by (7.1) and
(s, S)  τ ∩ (κ̌×max š) = ˇF (s)

by the definition of F . Contradiction! �
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So this shows, that ran(σ) is dense. Now let (t0, T0, F0), (t1, T1, F1) ∈ P with σ((t0, T0, F0))||σ((t1, T1, F1)).
There must then be some (s, S) ≤ (t0, T0), (t1, T1) such that (s, S) forces τF0 and τF1 to
be compatible.
Now assume that F0(r) and F1(r) are incompatible for some r ∈ S. But then

(r, Sr)  τF0 ∩ (κ̌×max ř = ˇF0(r))

and
(r, Sr)  τF1 ∩ (κ̌×max ř = ˇF1(r))

by (7.1). Contradiction! a

We now have everything we need to handle the proof of Theorem 6.2 in the countable
case:

Let I be a P-generic Filter. By Lemma 7.1 V [I] ∩ P(λ) = V ∩ P(λ) for every λ < κ.
So forcing with P doesn’t change cofinalities or cardinalities strictly below κ and neither
does it collapse κ.
We furthermore want κ to remain regular. To see this we only have to switch our

viewpoint to the one of Lemma 7.6. We can consider our forcing to consist of two
components, the first of which will not add bounded subsets to µ, the second of which
will not add <κ-sequences. So κ must remain regular. On the other hand µ will have
countable cofinality, as our forcing contains the tree Prikry forcing.
Take now a Col(κ,<µ)-generic Filter G. Because µ is inaccessible, then µ = (κ+)V [G].

By Lemma 7.4 taking a PG generic filter over V [G] then lands us in a P generic extension.
By Lemma 7.6 in there cof(µ) = ω and by the preceding argument neither cofinalities
nor cardinalities less than or equal to κ have been changed.
So in fact PG witnesses (∗)κ,ω in V [G].
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8. Changing to uncountable cofinalities

For the uncountable case we will need to replace Prikry forcing by some other forcing
construction. We will use the forcing from section 3 of Gitik’s paper [Git86]. In many
ways this forcing is similar to the tree-Prikry-forcing, so we can apply the same basic
idea as in section 2. (The forcing actually is a iteration of tree forcings, but we can easily
break it down to the last step.)
For the sake of brevity we will only discuss the things, which we will need for the next

section, and blackbox the rest. Gitik’s forcing is rather complicated, and we recommend
studying [Git86] before continuing.
For this and the next section let ω < η = ν < κ < µ. Let ~U := 〈U(α, β) : α ≤ µ, β <

oŨ(α)〉 be a coherent sequence of normal measures such that oŨ(µ) = ν, i.e. U(α, β) is
a non principal normal measure on α and

jαβ (~U) � (α+ 1)×On = ~U � (α×On∪{α} × β

for all (α, β) ∈ dom(~U), where jαβ : V → Ult(V ;U(α, β)) is the ultrapower embedding.
Let us assume w.l.o.g. that oŨ(α) = 0 for all α ≤ κ. Furthermore assume GCH to hold.
(Assuming o(µ) ≥ ν this can be realized in some model of the form L [E]. See [Mit74])
We write Nµ

β for the ultrapower by U(µ, β) and jµβ for the canonical embedding.
We recursively construct a Gitik-iteration of Prikry-type forcings
〈Pα : α ≤ µ〉 using Lemma 6.8.
At each step α of the iteration we will define a sequence of names for forcings 〈Ṗ(α, β) :

β ≤ oŨ(α)〉, of which Ṗ(α, oŨ(α)) will be the next step of the iteration. The interpretation
of these names in an extension by Pα will add a club subset of order type ωβ (if β > 0)
to α.

Let us assume, that Pµ was already constructed. Fix a Pµ-generic filter G′. Let bα
denote the closure of the clubset, which was added by P(α, oŨ(α)) ( so just throw in α
too). For α with oŨ(α) = 0 let bα be {α}. For some finite subset t of µ write bt for⋃
α∈t

bα. We will now introduce a notion of coherence for finite subsets of µ ( which in the

following we will often identify with their increasing enumeration).

Definition 8.1: Let β ≤ oŨ(µ). We call t ∈ [µ]<ω having the incr. enum. 〈δ0, . . . , δn−1〉
β-coherent iff:

(i) β = 0 implies t = ∅

(ii) ∀i < n : oŨ(δi) < β
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(iii) ∀i < n : b〈δi∗ ,...,δi−1〉 E bδi , where

i∗ =

{
min{k < i|∀k ≤ j < i : oŨ(δj) < oŨ(δi)} if the minimum exists
i else

(iv) ∀i < n : max(b〈δk:k<i∗〉) < min(b〈δk:i∗≤i〉), note, that the maximum always exists.

The set of β-coherent Sequences in [µ]<ω is denoted by Koh(µ, β).

Remark: (a) Let s, t ∈ Koh(µ, β), then s E t⇒ bs E bt.

(b) Let ta〈δ0, . . . , δn−1〉a〈δ〉 ∈ Koh(µ, β), where ∀i < n : oŨ(δi) < oŨ(δ). Then
bta〈δ0,...,δn−1〉a〈δ〉 = bta〈δ〉 (by (iii)).

Definition 8.2: Let β < oŨ(µ) and t ∈ Koh(µ, β).Note that there are µ+ many Pµ-
nice-names for subsets of µ. Let 〈Ȧξ : ξ < µ+〉 be an enumeration of those nice names.
So for every Pµ-generic Filter G:

〈ȦGξ : ξ < µ+〉 = PV [G](µ)

Write P
Nµ
β

γ for the γ-th stage of Nµ
β ’s iteration, i.e.

P
Nµ
β

γ = jµβ (〈Pα : α ≤ µ〉)(γ)

Working in Nµ
β we then find a sequence of P

Nµ
β

µ+1-names 〈ṗβξ : ξ < µ+〉 for conditions in

P
Nµ
β

jµβ (µ)
/P

Nµ
β

µ+1, such that for all ξ < µ+

1Pµ+1  (ṗβξ ‖ µ̌ ∈ j
µ
β (Ȧξ)) ∧ ṗγξ+1 ≤

∗ ṗγξ

1Pµ+1  (∀σ < ξ̌ : ṗβξ ≤
∗ ṗβσ) for a limit ξ

Then we define a filter on µ in the generic ext. V [G′], by A ∈ U(µ, β, t), A ⊆ µ, iff

∃r ∈ G′∃ξ < µ+Nµ
β |= ∃Ṫ ∈ V

Pµ : ra(ť, Ṫ )aṗβξ  µ̌ ∈ j
µ
β (Ȧ)

where Ȧ be some name for A.

Notation: Let β∗ < β and t ∈ Koh(µ, β). By t � β∗ we refer to the longest endsegment
of t, which is in Koh(µ, β∗).

Definition 8.3: Let T ⊆ Koh(µ, β) be a tree and β ≤ oŨ(µ). We call T a β-tree with
stem t, iff:

• t is the stem of T , i.e. t is E-maximal with ∀s ∈ T : s E t ∨ t E s.
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8. Changing to uncountable cofinalities

• For all s ∈ T
sucT (s) =

⋃
ξ<β

sucT,ξ(s)

where sucT,ξ(s) ∈ U(µ, ξ, t � ξ) for all ξ < β .

The set of all β-Trees with Stem t on µ will be denoted by Tr(µ, β, t).

Remark: We can and will from now on always assume that α ∈ sucT,ξ(t) implies
oŨ(α) = ξ.

From these terms we will define a Prikry-type notion of forcing, which will add a cofinal
sequence to µ.

Definition 8.4: Let β ≤ oŨ(µ). Define a partial order P(µ, β):

• The domain of P(µ, β) consists of pairs (t, T ) where t ∈ Koh(µ, β) and T ∈
Tr(µ, β, t).

• For (t1, T1), (t2, T2) ∈ P(µ, β) (t1, T1) ≤ (t2, T2) holds, iff:

– ∃s ∈ T2 : t2 E s ∧ bs = bt1

– sa(T1/t1) ⊆ T2

• For (t1, T1), (t2, T2) ∈ P(µ, β) (t1, T1) ≤∗ (t2, T2) holds, iff (t1, T1) ≤ (t2, T2) and
t1 = t2.

Theorem 8.5: Let γ < oŨ(µ).

(a) ∀β ≤ γ : (Koh(µ, β))N
µ
γ [G′] = Koh(µ, β)

(b) ∀β < γ∀t ∈ Koh(µ, β) : (U(µ, β, t))N
µ
γ [G′] = U(µ, β, t)

(c) ∀β ≤ γ : (P(µ, β))N
µ
γ [G′] = P(µ, β)

(d) Let β < oŨ(µ) and Q̇ be a Pµ-name for the µ-th component of jµβ (Pµ). Then
Q̇G

′
= P(µ, β).

(e) Let β < oŨ(µ) and t ∈ Koh(µ, β). Then U(µ, β) ⊆ U(µ, β, t) and U(µ, β, t) is a
<µ-closed Ultrafilter in V [G′].

(f) Let β∗ < β ≤ oŨ(µ) and t ∈ Koh(µ, β), then {δ < µ|ta〈δ〉 ∈ Koh(µ, β)} ∈
U(µ, β∗, t � β∗).

(g) Let β ≤ oŨ(µ) and t1, t2 ∈ Koh(µ, β) be such that bt1 = bt2. Then U(µ, β, t1) =
U(µ, β, t2). This implies, that for any T1 ∈ Tr(µ, β, t1) the tree T2 := t2

a(T1/t1) is
in Tr(µ, β, t2) and obviously (t1, T1) ≤ (t2, T2) ≤ (t1, T1).

(h) P(µ, γ) is a <µ-weakly closed prikry type forcing notion.
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(i) Let H be a P(µ, γ)-generic filter. Then⋃
{t|∃T ∈ Tr(µ, γ, t) : (t, T ) ∈ H}

is a clubset of ordertype ωγ.

See [Git86] Lemmata 3.7 - 3.11 for proofs.

Remark: (a) In Nµ
β j

µ
β (Pµ) is the iteration of the 〈Ṗ(α, oj

µ
β (~U)(α) : α < jµβ (µ)〉. Look-

ing at it’s µ-th component we get:

PN
µ
β [G′](µ, oj

µ
β (~U)(µ)) = PN

µ
β [G′](µ, β) = P(µ, β)

(b) Working in Nµ
β let ra〈t, Ṫ 〉apµα be a condition as appearing in the definition of

“A ∈ U(µ, β, t)′′. It follows from (a), that ṪG′ ∈ Tr(µ, β, t).

Note that the U(µ, β, t) can’t be assumed to be all normal ( for positive β they definitely
won’t be).But we can prove this:

Lemma 8.6: Let β < oŨ(µ) and t ∈ Koh(µ, β). Take some A ∈ U(µ, β, t) and some
regressive f : A→ µ. Then there exists some s ∈ Koh(µ, β) end-extending t and B ⊆ A,
such that f � B is constant and B ∈ U(µ, β, s).

Proof: Fix T ∈ Nµ
β some β-tree with stem t, such that for some ξ < µ+:

Nµ
β

[
G′
]
|= (t, T )aṗβξ  µ̌ ∈ j

µ
β (Ȧ)

Now fix first a name ḟ for f and nice names for the set A and the sets {δ ∈ A|f(δ) = η}.
Then there is a ξ < µ+ by which all of these nice names have been enumerated in our
fixed enumeration. Fix one of those too.
Work in Nµ

β [G′]. Take some (s, S)aṗ ≤ (t, T )aṗβξ that decides the value of jµβ (ḟ)(µ̌),
say it forces it to be some η < µ. Then we get, that

Nµ
β

[
G′
]
|= (s, S)aṗ  µ̌ ∈ {δ ∈ jµβ (Ȧ)|jµβ (ḟ)(δ) = η̌}

but by the choice of ṗβξ we can find some S∗ ⊆ S such that

Nµ
β

[
G′
]
|= (s, S∗)aṗβξ  µ̌ ∈ {δ ∈ j

µ
β (Ȧ)|jµβ (ḟ)(δ) = η̌}

so {δ ∈ A|f(δ) = η} ∈ U(µ, β, s). W.l.o.g. t E s, so we’re done. a

Corollary 8.7: U(µ, 0,∅) is normal.
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9. The uncountable case

Let µ, κ, ν, 〈U(α, β) : α ≤ µ, β < oŨ(α)〉, G′ be as in section 3. Working in W := V [G′],
we define a partial order P:
The forcing P consists of triples (t, T, F ), where t ∈ [µ]<ω, a tree T ⊂ [µ]<ω (to be

understood as a tree on increasing sequences), and a function F : T → Col(κ,<µ). A
triple (t, T, F ) is a condition in P iff

− F (∅) = ∅,

− T ∈ Tr(µ, ν, t),

− ∀t, t′ ∈ T : t 6= ∅ ⇒ (F (t) ∈ Col(κ,<max t) ∧ t E t′ ⇒ F (t) = F (t′) � (κ×max t)),

− bt = bt′ ⇒ F (t) = F (t′) (observe max t = max t′).

Partially order P by (t′, T ′, F ′) ≤ (t, T, F ) iff

∃s ∈ T
[
bs = bt′ ∧ t E s ∧ sa(T ′/t′) ⊂ T

]
and ∀r ∈ sa(T ′/t′) : F ′′(r) ⊇ F (r),

where F ′′ is defined on sa(T ′/t′) from F ′ in the obvious way (with F ′′(s) = F ′(t′)). We
say that (t′, T ′, F ′) is a direct extension of (t, T, F ), (t′, T ′, F ′) ≤∗ (t, T, F ), iff moreover
t = t′.

Lemma 9.1: 〈P,≤,≤∗〉 is a weakly <κ-closed Prikry type forcing.

Proof: The weak closure is easy, so let us concentrate on the Prikry type.
Let ϕ(τ) be some statement and (t, T, F ) ∈ P. We want to show that there is some

direct extension, which decides ϕ(τ). For this it suffices to show, that if there exists
some β < oŨ(µ) and some A ⊆ sucT,β(t) in U(µ, β, t � β), such that for all ξ ∈ A there
exist direct extensions of (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉), which decide ϕ(τ), then there exists
a direct extension of (t, T, F ) which decides ϕ(τ).
If this were to hold, and we had no direct extension of (t, T, F ), which decides ϕ(τ),

then by pruning the tree level-by-level, we would arrive at some condition (t, T ∗, F � T ∗),
such that for all s ∈ T ∗ there would be no direct extension of (s, T ∗s , F � T

∗
s ) which

decides ϕ(τ), but that’s nonsense. We used pretty much the same argument in the proof
of Lemma 7.1.
So let us fix some β∗ < oŨ(µ) and Aβ∗ ⊆ sucT,β∗(t) in U(µ, β∗, t � β∗) and direct

extensions of (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉) (ta〈ξ〉, Tξ, Fξ) for ξ ∈ Aβ∗ which decide ϕ(τ). By
shrinking Aβ∗ we can assume the (ta〈ξ〉, Tξ, Fξ) to decide ϕ(τ) the same way (let’s just
assume positively). By further shrinking we can assume the Fξ to agree upto max(t).
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As a first step we want to construct for β∗ < β < oŨ(µ) Aβ ⊆ sucT,β(t) in U(µ, β, t � β)
and direct extensions of (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉) (ta〈ξ〉, Tξ, Fξ) for ξ ∈ Aβ which force
ϕ(τ).

Claim 1: sucT,β(t) ∩
⋃

ξ∈Aβ∗
sucTξ,β(ta〈ξ〉) ∈ U(µ, β, t � β)

Proof of Claim: Assume not. A := sucT,β(t)\
⋃

ξ∈Aβ∗
sucTξ,β(ta〈ξ〉) ∈ U(µ, β, t � β),

so we can fix some S ∈ Tr(µ, β, t � β), such that for some α < µ+:

Nµ
β

[
G′
]
|= (t � β, S)apβα  µ̌ ∈ j

µ
β (Ȧ)

Then sucS,β∗ ∈ U(µ, β∗, (t � β) � β∗). (t � β) � β∗ = t � β∗ and thus Aβ∗ ∩ sucS,β∗ is
nonempty, so fix some ξ in it. Then (t � βa〈ξ〉, St�βa〈ξ〉) ≤ (t � β, S), so

Nµ
β

[
G′
]
|= (t � βa〈ξ〉, St�βa〈ξ〉)

apβα  µ̌ ∈ j
µ
β (Ȧ)

which implies, that both A and sucTξ,β(ta〈ξ〉) are in U(µ, β, ta〈ξ〉 � β) (note that (ta〈ξ〉) �
β = t � βa〈ξ〉) ,and thus have nonempty intersection. But this contradicts the choice of
A! �

So set Aβ := sucT,β(t) ∩
⋃

ξ∈Aβ∗
sucTξ,β(ta〈ξ〉). By Theorem 8.5 (f) the (ta〈ξ〉, Tξ, Fξ)

then induce direct extensions of (ta〈ξ〉, Tta〈ξ〉, F � Tta〈ξ〉) for ξ ∈ Aβ which force ϕ(τ).
To see this first note that, if ξ′ ∈ Aβ then there is a unique ξ ∈ Aβ∗ , such that

ξ′ ∈ sucTξ,β(ta〈ξ〉) (ξ is the smallest ordinal > max(t) of order β∗ in bξ′). For some
ta〈ξ′〉as ∈ T we can then set ta〈ξ′〉as ∈ Tξ′ iff ta〈ξ, ξ′〉as ∈ Tξ for the unique ξ such
that ta〈ξ, ξ′〉 ∈ Tξ, and similarly Fξ′(ta〈ξ′〉as) := Fξ(t

a〈ξ, ξ′〉as).
Note that bta〈ξ′〉as = bta〈ξ,ξ′〉as, so indeed (ta〈ξ′〉, Tξ′ , Fξ′)≤∗(ta〈ξ′〉, Tta〈ξ′〉, F � Tta〈ξ′〉).

Here we use, that

F (ta〈ξ′〉as) = F (ta〈ξ, ξ′〉as) ⊆ Fξ(ta〈ξ, ξ′〉as) = Fξ′(t
a〈ξ′〉as).

On the other hand

(ta〈ξ′〉, Tξ′ , Fξ′) ≤ (ta〈ξ, ξ′〉, (Tξ)ta〈ξ,ξ′〉, Fξ � (Tξ)ta〈ξ,ξ′〉) ≤ (ta〈ξ〉, Tξ, Fξ),

so (ta〈ξ′〉, Tξ′ , Fξ′)  ϕ(τ).

We now have all the material we need to construct T ∗. We will call s := ta〈δi : i <

n〉 ∈ T short, iff oŨ(δi) < β∗ for all i < n. If r ∈ T and t E r, we will write r<β∗ for the
longest initial segment of r, which is short.
Define S as the set of initial segments of (t � β∗)a〈δi : i < n〉, where ta〈δi : i < n〉 ∈ T

is short. It is easy to see, that S is a β∗-tree with stem t � β∗. If s ∈ S write sβ for
s ∪ (t � β). Note that for β∗ ≤ β < β′ sβ

′
� β = sβ .

We will now construct in an induction by level (note that we start counting from the
end of the stem on, also remember ν = oŨ(µ)):
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9. The uncountable case

• An β∗-tree S∗ ⊆ S with stem t � β∗,

• for every s ∈ S∗ sets 〈Asνβ : β∗ ≤ β < oŨ(µ)〉 with Aβ ⊇ As
ν

β ∈ U(µ, β, sβ),

• for every ξ in some Asνβ a ν-tree T sνξ with stem r := sνa〈ξ〉 and F sξ : T s
ν

ξ →
Col(κ,<µ), such that (r, T s

ν

ξ , F sξ ) ≤ (r, Tr, F � Tr) and (r, T s
ν

ξ , F sξ )  ϕ(τ) and
F s

ν

ξ (r) only depends on oŨ(ξ),

• for every s ∈ S∗ and β∗ ≤ β < oŨ(µ) an Ssνβ ∈ Tr(µ, β, sβ), which witnesses that
As

ν

β ∈ U(µ, β, sβ), i.e.

Nµ
β

[
G′
]
|= (sβ, Ss

ν

β )apβα  µ̌ ∈ j
µ
β (Ȧs

ν

β )

for some α < µ+.

Begin by setting Atβ := Aβ ,T tξ := Tξ,F tξ := Fξ. Note that the F tξ all agree up to max(t)
because they all directly derive from the original set of functions.
So let s ∈ S and assume that everything is already constructed for all strict initial

segments of it. We then require sβ to be in Srνβ for all strict initial segments r of s and
all β∗ ≤ β < ν.

Claim 2: Aβ ∈ U(µ, β, sβ)

Proof of Claim: By choice sβ ∈ Stβ , so (sβ, (Stβ)sβ ) ≤ ((t � β), Stβ), but then by choice
of Stβ :

Nµ
β

[
G′
]
|= (sβ, (Stβ)sβ )apβα  µ̌ ∈ j

µ
β (Ȧβ)

But this means that Aβ ∈ U(µ, β, sβ). �

So we can set Asνβ := Aβ ∩ sucT,β(sν).
Then we can for ξ ∈ Asνβ set T sνξ := ((sνa〈ξ〉)a(Tξ/t

a〈ξ〉)) ∩ T . F sνξ is then defined
from Fξ by setting

F s
ν

ξ (r) =

{
Fξ(t

a〈ξ〉) ∩ (κ×max r) r E sν ,

Fξ(t
ar′) r = sνar′.

We can assume that F sνξ and F sνη agree up to max(s) for ξ, η of the same order, simply
by shrinking the corresponding Asνβ further. Finally note that (sνa〈ξ〉, T sνξ , F s

ν

ξ )  ϕ(τ),
because it is a stronger condition than (ta〈ξ〉, Tξ, Fξ). (Note that bsνa〈ξ〉 = bta〈ξ〉.)
We can now pick some Ssνβ which witness Asνβ ∈ U(µ, β, sβ). Thus ends the construc-

tion.

From all this we can now derive a conditon (t, T ∗, F ∗). Let r ∈ T ∗, iff

r ∈ T
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and r<β∗ � β∗ ∈ S∗

and ξ := min r\r<β∗ ∈ A
r<β∗

oŨ(ξ)
(if r is short, this condition is empty)

and r ∈ T r<β∗ξ (if r is short, this condition is empty)

For r ∈ T ∗ we set F ∗(r) = F
r<β∗

min r\r<β∗
(r) if r is not short. Otherwise we set F ∗(r) =

F rξ (r), where ξ ∈ Arβ∗ is arbitrary.
Note that if r ∈ T ∗ is not short, then by breaking down the definitions ta(r\r<β∗) ∈ Tξ

and
F
r<β∗
ξ (r) = Fξ(t

a(r\r<β∗)), (9.1)

where ξ := min(r\r<β∗).

Claim 3: (t, T ∗, F ∗) ∈ P.

Proof of Claim: It is easy to see, that T ∗ is a ν-tree, so it remains to be seen, that
for any r, r′ ∈ T ∗:

(a) if br = br′ , then F ∗(r) = F ∗(r′),

(b) if r E r′, then F ∗(r′) ∩ (κ×max r) = F ∗(r).

Let us start with (a). There are two cases:

1st case:
Assume that both r, r′ are short. ThenArβ∗ ∈ U(µ, β∗, r � β∗) andAr′β∗ ∈ U(µ, β∗, r′ � β∗).
By assumption and Theorem 8.5 (g) we have U(µ, β∗, r � β∗) = U(µ, β∗, r′ � β∗), and
thus there is some ξ ∈ Arβ∗ ∩Ar

′
β∗ . We then have

F ∗(r) = F rξ (r) = F rξ (ra〈ξ〉) ∩ (κ×max(r))
(9.1)
= Fξ(t

a〈ξ〉) ∩ (κ×max(r))

and

F ∗(r′) = F r
′

ξ (r′) = F r
′

ξ (r′a〈ξ〉) ∩ (κ×max(r′))
(9.1)
= Fξ(t

a〈ξ〉) ∩ (κ×max(r′))

as max r = max r′ we are done.

2nd case:
Assume that neither r nor r′ are short. Let ξ = min r\r<β∗ and ξ′ = min r′\r′<β∗ . If
ξ = ξ′ we are done, as then ta(r\r<β∗), ta(r′\r′<β∗) ∈ Tξ and thus

F ∗(r)
(9.1)
= Fξ(t

a(r\r<β∗)) = Fξ(t
a(r′\r′<β∗))

(9.1)
= F ∗(r′).

So let us assume ξ 6= ξ′. It follows that oŨ(ξ) 6= oŨ(ξ′). Otherwise

ξ = min{ζ ∈ br\(max t+1)| oŨ(ζ) = oŨ(ξ)} = min{ζ ∈ br′\(max t+1)| oŨ(ζ) = oŨ(ξ′)} = ξ′.
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9. The uncountable case

Let us first assume that β∗ = oŨ(ξ) < oŨ(ξ′) := β. Then

ξ = min{ζ ∈ br\(max t+ 1)| oŨ(ζ) = β∗} = min{ζ ∈ br′\(max t+ 1)| oŨ(ζ) = β∗}

and thus ta〈ξ〉a(r′\r′<β∗) ∈ Tξ by construction of Tξ′ . We then get

F ∗(r)
(9.1)
= Fξ(t

a(r\r<β∗)) = Fξ(t
a〈ξ〉a(r′\r′<β∗))

and
F ∗(r′)

(9.1)
= Fξ′(t

a(r′\r′<β∗)) = Fξ(t
a〈ξ〉a(r′\r′<β∗)).

So finally assume β∗ < oŨ(ξ), oŨ(ξ′), then set

ξ′′ := min{ζ ∈ br\(max t+ 1)| oŨ(ζ) = β∗} = min{ζ ∈ br′\(max t+ 1)| oŨ(ζ) = β∗}.

and we will have ta〈ξ′′〉a(r\r<β∗), ta〈ξ′′〉a(r′\r′<β∗) ∈ Tξ′′ . By definition

F ∗(r)
(9.1)
= Fξ(t

a(r\r<β)) = Fξ′′(t
a〈ξ′′〉a(r\r<β∗))

and
F ∗(r′)

(9.1)
= Fξ(t

a(r′\r′<β)) = Fξ′′(t
a〈ξ′′〉a(r′\r′<β∗))

, so we can finish the proof of (a), by noticing that bta〈ξ′′〉a(r\r<β∗ ) = bta〈ξ′′〉a(r′\r′
<β∗ ) and

thus
Fξ′′(t

a〈ξ′′〉a(r\r<β∗)) = Fξ′′(t
a〈ξ′′〉a(r′\r′<β∗)).

We will now continue with the proof of (b) (w.l.o.g. assume r 6= r′). There are three
cases:

1st case:
Assume that both r, r′ are short. By definition r′ � β∗ ∈ Srβ∗ . Srβ∗ was chosen such that

Nµ
β∗
[
G′
]
|= (r � β∗, Srβ∗)

apβ
∗
α  µ̌ ∈ j

µ
β∗(Ȧ

r
β∗)

for some α < µ+. (This means that Arβ∗ ∈ U(µ, β∗, r � β∗).) We then have

Nµ
β

[
G′
]
|= (r′ � β∗, (Srβ∗)r′�β∗)

apβα  µ̌ ∈ j
µ
β∗(Ȧ

r
β∗)

thus Arβ∗ ∈ U(µ, β∗, r′ � β∗). So there is some ξ ∈ Arβ∗ ∩Ar
′
β∗ . For this ξ we have

F ∗(r)
(9.1)
= F rξ (ra〈ξ〉) ∩ (κ×max r) = Fξ(t

a〈ξ〉) ∩ (κ×max r)

and
F ∗(r′)

(9.1)
= F r

′
ξ (r′a〈ξ〉) ∩ (κ×max r′) = Fξ(t

a〈ξ〉) ∩ (κ×max r′).
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2nd case:
Assume that neither r nor r′ are short. Let

ξ := min{ζ ∈ r\(max t+ 1)| oŨ(ζ) ≥ β∗} = min{ζ ∈ r′\(max t+ 1)| oŨ(ζ) ≥ β∗}.

Then ta(r\r<β∗), ta(r′\r′<β∗) ∈ Tξ and ta(r\r<β∗) E ta(r′\r′<β∗). So

F ∗(r)
(9.1)
= Fξ(t

a(r\r<β∗)) = Fξ(t
a(r′\r′<β∗)) ∩ (κ×max r)

and

F ∗(r′)
(9.1)
= Fξ(t

a(r′\r′<β∗))

3rd case:
Assume that r is short, but r′ isn’t. Utilizing the 1st case, we can assume that r = r′<β∗ .
Let ξ := min{ζ ∈ r′\(max t+ 1)| oŨ(ζ) ≥ β∗}, set β := oŨ(ξ). Utilizing the second case
it is enough to show F ∗(r) = F ∗(ra〈ξ〉) ∩ (κ ×max r). First assume β = β∗. Then by
definition:

F ∗(r) = F rξ (ra〈ξ〉) ∩ (κ×max r) = F ∗(ra〈ξ〉) ∩ (κ×max r)

So assume β > β∗. Notice then that sucT ∗,β∗(r) ∩ sucSrβ ,β∗(r � β) ∈ U(µ, β∗, r � β∗).
So there is some ξ′ in the intersection. By the argument from above we have that
Arβ ∈ U(µ, β, (r � β)a〈ξ′〉). So there is some ξ′′ ∈ Arβ ∩ sucT ∗,β(ra〈ξ′〉). We then get

F ∗(ra〈ξ′, ξ′′〉) = F ∗(ra〈ξ′′〉)

using (a). By the choice of F ∗ we furthermore have

F ∗(ra〈ξ′′〉)∩(κ×max r) = F rξ′′(r
a〈ξ′′〉)∩(κ×max r) = F rξ (ra〈ξ〉)∩(κ×max r) = F ∗(ra〈ξ〉)∩(κ×max r).

To tie all this together we have

F ∗(r) = F rξ′(r
a〈ξ′〉) ∩ (κ×max r) = F ∗(ra〈ξ′〉) ∩ (κ×max r)

and
F ∗(ra〈ξ′, ξ′′〉) ∩ (κ× ξ′) = F ∗(ra〈ξ′〉). �

Claim 4: (t, T ∗, F ∗)≤∗ (t, T, F )
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9. The uncountable case

Proof of Claim: It is obvious, that T ∗ ⊆ T . So it remains to show, that

∀s ∈ T ∗ : F (s) ⊆ F ∗(s)

We can assume t E s, because it suffices to show this for a cofinal subset. There are two
cases:

1st case:
Let s be short. Let ξ ∈ Asβ∗ be arbitrary. Then bsa〈ξ〉 = bta〈ξ〉 and thus F (sa〈ξ〉) =

F (ta〈ξ〉). So

F ∗(s) =F sξ (sa〈ξ〉) ∩ (κ×max s)

(9.1)
= Fξ(t

a〈ξ〉) ∩ (κ×max s)

⊇F (ta〈ξ〉) ∩ (κ×max s)

=F (sa〈ξ〉) ∩ (κ×max s) = F (s).

2nd case:
Assume s is not short. Let ξ := min(s\s<β∗). Then ta(s\s<β∗) ∈ Tξ and bs = bta(s\s<β∗ ),
thus F (s) = F (ta(s\s<β∗)), and we get:

F ∗(s)
(9.1)
= Fξ(t

a(s\s<β∗) ⊇ F (ta(s\s<β∗)) = F (s) �

So it remains to see, that (t, T ∗, F ∗)  ϕ(τ). For that look at an arbitrary (s, T ∗∗, F ∗∗) ≤
(t, T ∗, F ∗). Note that we can assume s ∈ T ∗.

1st case:
Let us first assume that s is short. Then take any ξ ∈ Asβ∗ such that sa〈ξ〉 ∈ T ∗∗. Then
(sa〈ξ〉, T ∗∗

sa〈ξ〉, F
∗∗ � T ∗∗

sa〈ξ〉) ≤ (s, T ∗∗, F ∗∗), (sa〈ξ〉, T sξ , F sξ ). Remember that (sa〈ξ〉, T sξ , F sξ ) 

ϕ(τ) and we are done.

2nd case:
Assume that s is not short. Let ξ := min(s\s<β∗). Then

(s, T ∗∗, F ∗∗) ≤ (s, (T ∗)s, F
∗ � (T ∗)s) ≤ (s<β∗

a〈ξ〉, T s<β∗ξ , F
s<β∗
ξ )

Remember that (s<β∗
a〈ξ〉, T sξ , F sξ )  ϕ(τ) and we are done. a

We will now show, that P can be written in a form reminiscent of a product, whose
first component is Col(κ,<µ). Write 〈Q,≤,≤∗〉 for the following forcing:

• Q = {〈p, (t, T, F )〉|p ∈ Col(κ,<µ), (t, T, F ) ∈ P,∀ζ ∈ sucT,0(t)F (ta〈ζ〉) = p ∧ ∀0 <
β < ν sucT,β(t) ⊆

⋃
ζ∈sucT,0(t)

sucT,β(ta〈ζ〉)}
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• 〈p, (t, T, F )〉 ≤ 〈q, (s, S,G)〉 ⇔ p ≤ q ∧ (t, T, F ) ≤ (s, S,G)

• 〈p, (t, T, F )〉 ≤∗ 〈q, (s, S,G)〉 ⇔ p ≤ q ∧ (t, T, F )≤∗ (s, S,G)

Lemma 9.2: σ : Q→ P, where σ(〈p, (t, T, F )〉) = (t, T, F ), is a dense embedding.

Proof: Let (t, T, F ) ∈ P. The function

sucT,0(t) → Col(κ,<µ)

ξ 7→ F (ta〈ξ〉)

is basically regressive on a set in U(µ, 0, ∅). So on some A0 ⊆ sucT,0(t) in U the function
is constant. Call it’s constant value p. Define Aβ := sucT,β(t)∩

⋃
ζ∈A0

sucT,β(ta〈ζ〉). Note

that by the proof of Lemma 9.1 Aβ ∈ U(µ, β, t � β). Set T ∗ := {s ∈ T |s E t ∨ ∃β <
ν∃ξ ∈ Aβ : ta〈ξ〉 E s} then (t, T ∗, F � T ∗) ≤ (t, T, F ) and 〈p, (t, T ∗, F � T ∗)〉 ∈ Q. So
ran(σ) is dense in 〈P,≤〉 (in 〈P,≤∗〉 even).

Let 〈p0, (t0, T0, F0)〉, 〈p1, (t1, T1, F1)〉 ∈ Q with (t0, T0, F0) ‖ (t1, T1, F1), so there is
some (s, S,G) ≤ (t0, T0, F0), (t1, T1, F1). W.l.o.g. assume that (s, S,G) ∈ ran(σ) say
σ(〈q, (s, S,G)〉) = (s, S,G) for some q.
It now suffices to show, that q ≤ p0, p1. By symmetry it suffices to show q ≤ p0, so

for sake of brevity we will omit the subscripts for the rest of the proof. We can assume
t E s. Consider three cases:

(a) Assume that t 6= s, say ta〈ξ〉 E s for some ξ ∈ sucT (t). Let us furthermore assume
oŨ(ξ) = 0. Then by the definition of the partial orders

p = F (ta〈ξ〉) ⊆ G(ta〈ξ〉) ⊆ G(s) ⊆ G(sa〈ξ′〉) = q

where ξ′ ∈ sucS,0(s) is arbitrary.

(b) Assume that t 6= s, say ta〈ξ〉 E s for some ξ ∈ sucT (t). Let us furthermore assume
oŨ(ξ) > 0. Then there is some ζ ∈ sucT,0(t), such that ta〈ζ, ξ〉 ∈ T . Note that
bta〈ξ〉 = bta〈ζ,ξ〉 and thus

p = F (ta〈ζ〉) ⊆ F (ta〈ζ, ξ〉) = F (ta〈ξ〉) ⊆ G(ta〈ξ〉) ⊆ G(s) ⊆ G(sa〈ξ′〉) = q

where ξ′ ∈ sucS,0(s) is arbitrary.

(c) Assume that t = s. Then sucS,0(s) ⊆ sucT,0(t), so by the definition of the partial
orders

p = F (ta〈ξ〉) ⊆ G(ta〈ξ〉) = q

where ξ ∈ sucS,0(s) is arbitrary. a
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9. The uncountable case

Remark: Because ran(σ) was dense in 〈P,≤∗〉, 〈Q,≤,≤∗〉 inherits the Prikry type. (Say
p ∈ Q. Let q∗ ≤∗ σ(p) decide some statement ϕ(τ). Take some q with σ(q) ≤∗ q∗, then
q ≤∗ p and it decides ϕ(τ).) So there is no harm in confusing P with Q from now on.

We want to prove something very much like a product lemma for Q, but we will need
a technical lemma first.

Lemma 9.3: Let 〈p, (t, T, F )〉 ∈ Q and q ≤ p, then there exist (t, T ∗, F ∗) ≤∗ (t, T, F ),
such that 〈q, (t, T ∗, F ∗)〉 ∈ Q.

Proof: Take ξ < µ, ξ > max t so that q ∈ Col(κ,<ξ). Set A0 := sucT,0(t) ∩ (ξ, µ) and
Aβ := sucT,β ∩

⋃
ζ∈A0

sucT,β(ta〈ζ〉). Define T ∗ := {s ∈ T |s E t ∨ ∃β < ν∃ζ ∈ Aβ : ta〈ζ〉 E

s} and
F ∗(s) = (F (s) ∪ q) � (κ×max s)

for s ∈ T ∗. Then (t, T ∗, F ∗)≤∗ (t, T, F ) and for ζ ∈ sucT ∗,0(t)

F ∗(ta〈ζ〉) = F (ta〈ζ〉) ∪ q = p ∪ q = q

so 〈q, (t, T ∗, F ∗)〉 ∈ Q. a

Let G ⊂ Col(κ,<µξ) be a generic filter over W . Write PG := {(t, T, F )|∃p ∈ G :
〈p, (t, T, F )〉 ∈ Q}.

Lemma 9.4: (a) Let I ⊂ Q be generic over V . Then G := {p|∃(t, T, F ) : 〈p, (t, T, F )〉 ∈
I} is generic over W for Col(κ,<µ) and H := {(t, T, F )|∃p : 〈p, (t, T, F )〉 ∈ I} is
generic over W [G] for PG.

(b) Let G ⊂ Col(κ,<µ) be a generic filter over W and H ⊆ PG be generic over W [G].
Then I := {< p, (t, T, F )〉 ∈ Q|p ∈ G, (t, T, F ) ∈ H} is generic over W .

Corollary 9.5: Let G ⊆ Col(κ,<µ) be generic over V . Then P∗ is a <κξ weakly closed
forcing in V [G].

The proofs are exactly the same as in section 2 (see p.41f).

We have seen how P can be seen as the combination of a collapse first and a singu-
larizing forcing second. Now we will switch our viewpoint and show that it is equally
valid to think of it as the conbination of a singularizing forcing first and a collapse second.

Remember P(µ, ν) as the forcing from the preceding chapter that adds a club set of
order type ων to µ using trees. For any condition (t, T, F ) ∈ P we will define a P(µ, ν)-
name:

τF := {((s, S), dα, β, γe|s ∈ T ∧ (s, S) ≤ (t, T ) ∧ (α, β, γ) ∈ F (s)}
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The important thing to note here is that

(s, Ts)  τF ∩ (κ̌×max š) = ˇF (s) (9.2)

for any s ∈ T with t E s. The exact definition of τF doesn’t matter as long as this is
true. Write Ċ for (Col(κ,<µ))P(µ,ν), i.e. a P(µ, ν)-name for the collapse of everything
below µ to κ in the Prikry generic extension.

Lemma 9.6: σ : P→ P(µ, ν) ∗ Ċ where σ((t, T, F )) = ((t, T ), τF ) is a dense embedding.

The proof is basically the same as Lemma 7.6. From here on the proof of Theorem 6.2
can be finished using the exact same argument from the end of chapter 7 on p.43. Just
substitute W for V , Lemma 9.4 for Lemma 7.4 and Lemma 9.6 for Lemma 7.6.
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10. Singularizing multiple cardinals

In this section we will discuss a method to get (∗)κ,ν for several cardinals at once. First
we want to establish some limits of what we can hope to achieve in the context of this
chapter1.

Lemma 10.1: Let κ and ν0, ν1 < κ be regular cardinals, where κ ≥ ℵ2. Assume both
(∗)κ,ν0 and (∗)κ+,ν1. Then there exists an inner model with a Woodin cardinal.

Proof: We will once again make use of the Steel core model and weak covering. Assume
that there is no inner model with a Woodin cardinal. Then the core model K exists.
Let P0 witness (∗)κ,ν0 and P1 witness (∗)κ+,ν1 . Fix 〈Gi : i < 2〉 V -generic filters for Pi.
Remember K = KV [Gi]. Let λ = ((κ+)+)K .

Claim 1: λ < κ++

Proof of Claim: Assume that λ = κ++. Using weak covering in V [G1] we get:

cofV [G1](λ) ≥ CardV [G1](κ+) = κ+

But cofV [G1](λ) = ν1 < κ+. Contradiction! �

Using this claim and weak covering in V we immediatly get the following.

Claim 2: cofV (λ) = κ+

So by this claim cofV [G0](λ) = ν0, but applying weak covering in V [G0] yields

cofV [G0](λ) ≥ CardV [G0](κ+) = κ. a

Contradiction!

In light of this, the following theorem is nearly optimal.

Theorem 10.2: Assume GCH. Let 〈κξ, νξ : ξ < γ〉 be a sequence of regular cardinals,
such that the κξ are strictly increasing, νξ < κξ, and κ0 ≥ ℵ2. Assume that there are
measurable cardinals 〈µξ : ξ < γ〉 such that:

• ∀ξ < γ : κξ < µξ,

• ∀ξ + 1 < γ : κξ+1 > µξ,
1We would like to thank Peter Koepke for the argument
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• for all limit ξ < γ is κξ > sup
ζ<ξ

µζ ,

• ∀ξ < γ : o(µξ) ≥ ηξ, where ηξ is unique with νξ = ω · ηξ,

• ∀ξ < γ∀ζ < ξ : νξ /∈ (κζ , (µζ)
+]

Then there exists a generic extension, in which (∗)κξ,νξ holds for all ξ < γ.

For each 〈κξ, νξ, µξ〉 we will need to have a <κξ weakly closed Prikry type forcing Pξ,
which will change the cofinality of µξ to νξ and incorporates a collapse. Fortunately we
have just constructed such a forcing. The problem is that this forcing might not exist in
the ground model.
So let us first assume that there is a coherent sequence of measures ~U := 〈U(α, β〉 :

α < δ, β < oŨ(α)〉, such that for all ξ oŨ(µξ) ≥ ηξ and w.l.o.g. oŨ(β) = 0 for all
sup
ζ<ξ

µζ < β ≤ κξ. Then we can define like in Gitik’s paper an iteration Q of length δ,

such that for every ξ < γ Q � ξ is the iteration, that will add Pξ and Q/Q � ξ is a
sufficiently weakly closed prikry type forcing notion in V Q�ξ. (To achieve this we will
have to leave the µξ-th spot in the iteration blank.)

So if W is a Q-generic extension of V , Corollary 7.5 and Corollary 9.5 tell us, that if
Gβ were to be Col(κβ, <µβ)-generic over W , then in W [Gβ] there would be some <κβ
weakly closed Prikry type forcing PGββ changing µβ ’s cofinality to ηβ .

Proof (of Theorem 10.2): Let G ⊆
∏
ξ<γ

Col(κξ, <µξ) be generic over W . We write

Gβ := {f(β)|f ∈ G} and similarly G<β := {f � β|f ∈ G}, G>β := {f � (β, γ)|f ∈ G}.
We notice that Pβ is still well behaved in V [G>β] as no subsets of µβ were added. Let PGβ
be the rest forcing, that exists in the extension by Gβ given by Lemma 7.4 or Lemma 9.4.
(By the notation of the preceding chapters we would have to name it PGββ , but there is
no danger of confusion and this way makes it more readable.) We want to show, that
PGβ doesn’t add any new bounded subsets to κβ over W [G] for any β < γ. We do this
by a product analysis.
By Corollary 7.5 or Corollary 9.5 we know that PGβ is a <κβ weakly closed Prikry type

forcing in W [G>β] [Gβ].
Now let us assume for a contradiction that for some H ⊂ PGβ generic over W [G],

there is some bounded subset A ∈ W [G] [H], which is not in W [G]. We can rearrange
W [G] [H] as W [G>β] [Gβ] [H] [G<β].
Let σ be a

∏
ξ<β

Col(κβ, <µβ)-name and p ∈ G<β , such that A = σG<β and p  σ ⊆ α̌

for some α < κβ .Set
τ := {(ξ̌, q)|q ≤ p ∧ q  ξ̌ ∈ σ}.

Then σG<β = τG<β and τ can be coded by a bounded subset of κβ . So by weak closure
of PGβ we have τ ∈W [G>β] [Gβ] and thus A = τG<β ∈W [G]. Contradiction!
Lastly to see that κβ will remain regular, again writeW [G] [H] asW [G>β] [Gβ] [H] [G<β],

then the leftmost filter belongs to a sufficiently closed forcing, the middle two “combine”
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10. Singularizing multiple cardinals

into a Pβ generic and we have seen that this forcing will not singularize κβ , and the
rightmost filter belongs of course to a small forcing, so none of these filters will add a
singularizing sequence.
This shows that PGβ witnesses (∗)κβ ,νβ in W [G]. As β was arbitrary we are done! a

We can in fact show more. We can construct a forcing, which will singularize all the
µξ at the same time without adding any unwanted sets. The situation is the same as
before. We will work in the model W [G]. As before we then have the forcings PGξ inside
of W [G]. We will then consider the Gitik-iteration of these forcing notions. Obviously
this will add cofinal sequences to all the µξ at once. What remains to be seen, is that
this iteration is well-behaved.
For every β ≤ γ let Qβ be the iteration with PGξ for ξ < β as its component forcings.

Lemma 10.3: Qβ is a Prikry type forcing for all β ≤ γ.

Proof: Assume not. For this proof let us work in some universe, where everything
relevant is countable. In there construct a sequence of ordinals 〈ηn : n < ω〉 and a
sequence 〈Ḡn : n < ω〉 such that

(a) ∀n < ω : ηn+1 < ηn,

(b) Ḡn ⊂ PGηn is generic over W
[
Ḡ0

]
. . .
[
Ḡn−1

]
,

(c) Qηn is not of Prikry type in W
[
Ḡ0

]
. . .
[
Ḡn
]
.

This obviously gives a contradiction. So set η0 = γ and Ḡ0 = {∅} (we abuse notation a
little bit here, by setting PGγ = {∅}).
Let us now assume, that ηn and Ḡn are already constructed. By induction hypothesis

(c) and Lemma 6.8 there must be some η < ηn, such that

Qβ 1 P̌Gη is of Prikry type.

Let ηn+1 be the minimal such η.

Claim 1: 1PGηn+1
1 Q̌ηn+1 is of Prikry type.

Proof of Claim: Assume not. Let ϕ(τ) be any statement in the forcing language of
Qηn+1 and let p ∈ PGηn+1

and q ∈ Qηn+1 any condition. As

p  Qηn+1 is of Prikry type,

there is some PGηn+1
-name σ for a condition in Qηn+1 directly extending q, which decides

ϕ(τ) (slight abuse of notation here). Such conditions are basically subsets of sup〈µξ :
ξ < ηn+1〉, thus there exists some p′≤∗ηn+1

p and some q∗ ∈ Qηn+1 , such that p′  q̌∗ = σ.
Here we used both that PGηn+1

is sufficiently weakly-closed Prikry type forcing in
W [G>β] [Gβ] and that W [G] is a sufficiently closed extension of that model.
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We will abuse notion further and regard

ψ(τ) ≡ q̌∗  ϕ(τ)

as a statement in the forcing language of PGηn+1
. So take some p∗≤∗ηn+1

p′, which decides
ψ(τ).
Then q∗a〈p̌∗〉 decides ϕ(τ).

First case: Assume p∗  ψ(τ). This immediately implies q∗a〈p̌∗〉  ϕ(τ).
Second case: Assume p∗  ¬ψ(τ). But p∗  q̌∗ ‖ ϕ(τ) so we have

p∗  q̌∗  ¬ϕ(τ),

which implies q∗a〈p̌∗〉  ¬ϕ(τ).
But this gives, that q∗  p̌∗≤̌∗ηn+1

p̌ ∧ p̌∗ ‖ ϕ(τ). As ϕ(τ) and q were arbitrary, this is a
contradiction! �

So there exists some condition p ∈ PGηn+1
, such that

p  Qηn+1 is not of Prikry type.

Let Ḡn+1 then be some generic filter containing p, and we are done! a

61



11. Simultaneous singularizing of
subsequent successors

At the end of last chapter we discussed the simaltaneous singularizing of several succes-
sors of regular cardinals. We learned, that it is not fundamentally more difficult than
singularizing a single successor as long as there are cardinals between all the successors
involved.
We will now shortly talk about singularizing subsequent cardinals. We know by the

covering lemma that this brings us up to the level of a Woodin cardinal. Our main tool
at this level is the stationary tower.

Definition 11.1: Let κ be an inaccessible cardinal. Let Pκ be the poset of S ∈ Vκ that
are stationary in P(

⋃
S) ordered by

S ≤ T :⇔
⋃
S ⊇

⋃
T ∧ S ⊆ {Y ⊆

⋃
S|Y ∩

⋃
T ∈ T}.

Lemma 11.2 (Woodin): Let δ be a Woodin cardinal. Let G ⊆ Pδ be generic over V .
Then in V [G] there exists an inner model M and an elementary embedding j : V → M
such that

• ∀S ∈ Vδ : S ∈ G⇔ j” [
⋃
S] ∈ j(S),

• M is wellfounded and in fact <δM ∩ V [G] ⊆M .

See [Lar04] for details.
With this it is now easy to simultaneously singularize a regular cardinal κ and its

successor. Say we want to change κ’s cofinality to η and κ+’s cofinality to ξ, where
η, ξ < κ are regular cardinals.
We will need the following technical but immensely useful lemma:

Lemma 11.3: Let λ be a regular cardinal. Let H ⊇ λ and let a be a sufficiently strong
skolemized structure on H. Let X ≺ a with Card(X) < λ and let A ⊂ λ be bounded inside
of X, i.e. there is some δ < λ in X with A ⊆ δ. Then sup(X∩λ) = sup(Ska(X∪A)∩λ).

Here 〈H+
λ ;∈,E〉, where E is a wellorder would be a good example of sufficiently strong.

The proof will show, what is needed.

Proof: Assume not. Then there is some γ ∈ Ska(X ∪A) with sup(X ∩λ) < γ < λ. Say
γ = τ(x0, . . . , xn−1, γ0, . . . , γm−1), where τ is a term, xi ∈ X for all i < n and γj ∈ A for
all j < m.
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Let δ ∈ X be some ordinal <λ that bounds A. We assume then

α := sup{τ(x0, . . . , xn−1, β0, . . . , βm−1) < λ|∀j < m βj < δ}

is definable over a from τ ,δ and the x0, . . . , xn−1 and is thus in X. But surely γ < α.
Contradiction! a

Now we can prove:

Lemma 11.4:

S := {X ⊆ Hκ++ |X ∩ κ ∈ κ ∩ cof(η) ∧ cof(sup(X ∩ κ+)) = ξ}

is stationary.

Proof: Let a be any sufficiently strong skolemized structure on Hκ++ . Start with some
Y ≺ a such that cof(sup(Y ∩ κ+)) = ξ and Card(Y ) < κ. Construct recursively an
elementary chain 〈Xα : α < η〉:

• set X0 := Y ,

• if Xβ is already defined, let X∗β := Ska(Xβ ∪{sup(Xβ ∩κ)}) and then put Xβ+1 :=
Ska(X∗β ∪ sup(X∗β ∩ κ)),

• if λ < η is a limit, set Xλ :=
⋃
β<λ

Xβ .

Set X :=
⋃
α<η

Xα. We then have X ∩ κ ∈ κ ∩ cof(η), furthermore sup(X ∩ κ+) =

sup(Y ∩ κ+) by Lemma 11.3 so X ∈ S. a

With the set S we can now singularize κ and κ+ simultaneously using the stationary
tower under some Woodin cardinal δ.
For that take some G ⊂ Pδ generic over V such that S ∈ G. By Lemma 11.2 we then

have some elementary embedding j : V → M such that j” [Hκ++ ] ∈ j(S). This has two
consequences of note

• j” [κ] ∈ j(κ) ∩ cof(j(η)); this implies, that j” [κ] is an ordinal and thus j � κ = id;
in fact crit(j) = κ; furthermore κ ∈ cof(η) as wanted.

• cof(sup(j” [κ+])) = j(ξ) = ξ; furthermore κ+ can be embedded into sup(j” [κ+]),
so cof(κ+) = ξ.

We showed this inside of M of course, but Lemma 11.2 guarantees enough agreement
between M and V [G] that these statements are absolute between these two models.
It is easy to see, that this approach generalizes to arbitrarily finite sequences of sub-

sequent regular cardinals. So we will now discuss the case of infinitely many cardinals.
To simplify our notation we will restrict ourselves to the cardinals 〈ℵn : n < ω〉 and
cofinalities ℵ0 and ℵ1.
Let Γ be a class of forcings and f : ω → 2 a function. By (∗)Γ

f we refer to the statement:
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11. Simultaneous singularizing of subsequent successors

There is a p.o. P ∈ Γ such that 1P  cof(ℵ̌m+3) = ℵ ˇf(m) for all m < ω, but
P doesn’t change cofinalities and cardinalities ≤ ℵ2.

Now if we wanted to try proving (∗)Γ
f for some reasonable class of Γ, say stationary

set preserving forcings, by the above method, then we would need the set

{X ⊂ ℵω|ℵ2 ⊂ X ∧ ∀m < ω sup(X ∩ ℵm+3) ∈ Sf(m)
m+3 }

to be stationary. Here Skn refers to the set {ξ < ℵn| cof(ξ) = ℵk}.
This can be considered a property of the sequence 〈Sf(m)

m+3 : m < ω〉. This property was
first discussed by Foreman and Magidor in [FM01] and was dubbed mutual stationarity.

Definition 11.5: Let 〈κn : n < ω〉 be a strictly increasing sequence of uncountable
regular cardinals. Write λ := sup

n<ω
κn. The sequence 〈Sn : n < ω〉, where Sn ⊆ κn, is

called mutually stationary, iff the set

{X ⊆ λ|∀n < ω sup(X ∩ κn) ∈ Sn}

is stationary.

Note here that mutual stationarity implies the stationarity of all the members of the
sequence, so we don’t have to explicitely mention it in the definition. From now on write
MS(Sn : n < ω) for “the sequence 〈Sn : n < ω〉 is mutually stationary”.
The mutual stationarity properties we would need to have (∗)Γ

f can not be proven in
ZFC unless f is trivial.

Theorem 11.6: Let M be a mouse, such that M |= (∗)Γ
f for some f : ω → 2. Then f

is eventually constant.

Here we will need the following technical lemma:

Lemma 11.7: LetM be a mouse. Let κ be a cardinal ofM, such thatM is sound above
κ. Suppose that ρn+1(M) ≤ κ < ρn(M). Then cofV (ρn+1(M)+M) = cofV (κ+M) =
cofV (ρn(M)).

See [JSSS09] p.4f for proof.

Proof (of Theorem 11.6): Fix an ordinal α, such that

JMα |= (∗)Γ
f ⇔M |= (∗)Γ

f .

Let P be countable and transitive and fully elementary embeddable in JMα with f ∈ P.
Let P be a partial order, which witnesses (∗)Γ

f in P and let G ⊆ P be a generic filter over
P.
Working in P [G] let gm be a witness to cof(ℵPm+3) = ℵf(m). DefineN := Hull

P|ℵPω
ω (

⋃
m<ω

gm)

and let j : N → P |ℵPω be the uncollapsing map. Obviously

cofP[G](ℵNm+3) = ℵf(m)
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as gm is cofinal, and thus j maps ℵNm+3 contiously into ℵPm+3. Further note that N 6=
P|ℵPω , because the former has cardinality <ℵP2 in P [G], while the latter has cardinality
ℵP2 in P [G].

Claim 1: N / P

Proof of Claim: We will proof the claim by coiterating N with P|ℵPω (in V ). Let
(T ,U) be the result of this coiteration. Let us denote by MT∞ the last model of T and
by MU∞ the last model of U . First note that neither N nor P have inaccessible cardinals,
and thus no total extenders either.
Assume MT∞ E MU∞ (the argument for the other case is symmetric). The branch

through T to MT∞ cannot drop, and thus no extender was applied along it. In other
words MT∞ = N . Let i : P|ℵPω →MU∞ be the iteration embedding. Let us assume that i
has a critical point κ. κ will then be inaccessible in MU∞ and futhermore κ < OnN as it
must be below the least disagreement. But N E MU∞ and therefore κ is inaccessible in
N . Contradiction!
So we showed, that lh(T ) = lh(U) = 1, which proves the claim by a cardinality

argument. �

Let us now go back to P.

Claim 2: ∀m < ω : cofP(ℵNm+3) = ℵf(m)

Proof of Claim: Fix some m < ω. Assume that cofP(ℵNm+3) 6= ℵf(m), and thus

cofP(ℵNm+3) 6= cofP[G](ℵNm+3)

This implies that cofP(ℵNm+3) will get collapsed by P. But as it is certainly less than ℵP2 ,
we get a contradiction! �

By our first claim N = JPβ for some β < ℵP2 . Thus there must be some initial
segment of P projecting below it. Let N ∗ be the minimal initial segment of P projecting
below OnN . Let n be minimal, such that ρn+1(N ∗) < OnN . It then follows, that
cofP(ℵPm+3) = cofP(OnN

∗
) for m big enough. Together with the second claim this

finishes the proof. a

A somewhat simplified proof can be used to prove the following.

Theorem 11.8: Fix some function f : ω → 2. Let M be a mouse, such that the sets
〈Sf(m)
m+3 : m < ω〉 are mutually stationary inM. Then f is eventually constant.

So this means, that (∗)Γ
f is not in general provable from any large cardinal property,

that can be captured by current inner model theory. And neither is MS(S
f(m)
m+2 : m < ω).

That doesn’t mean much in terms of consistency strength though.
In [CFM06] it is shown that a model of MS(S

f(m)
m+3 : m < ω), where f is such that

f(n) = 0 implies f(n + 1) 6= 0 can be constructed starting from a model with infinitely
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11. Simultaneous singularizing of subsequent successors

many measurable cardinals. That paper also includes a much more general result, show-
ing the existence of a model, where MS(S

f(m)
m+2 : m < ω) holds for all f simultaneously.

The consistency strength is significant though, weighing in at infintely many supercom-
pact cardinals.
For our purposes, this means that the consistency strength of (∗)Γ

f for certain f is ex-
actly one Woodin cardinal. In general it might be above a supercompact even (,though
we don’t believe this to be true).

So far we have seen that mutual stationarity allows us to construct forcings that witness
(∗)Γ

f . We want to finish with a result in the opposite direction, which has an interesting
corollary.

Lemma 11.9: Assume MAℵ1(Γ) and (∗)Γ
f for some f : ω → 2. Then MS(S

f(m)
m+3 : m <

ω) holds.

Proof: Let P be a witness to (∗)Γ
f . By MAℵ1(Γ) we get some θ >> ℵω, such that

the set M of substructures X of Hθ of size ℵ1, containing ℵ1 with a X-generic filter is
stationary. We show:

Claim: Let X ∈M , then cof(sup(X ∩ ℵm+3)) = ℵf(m) for all m < ω.

Proof of Claim: Let H be a X-generic filter for P. Because

X |= 1P  cof(ℵ̌m+3) = ℵf(m)

for all m < ω and ℵ1 ⊂ X we have

∀m < ω : cof(sup(X [H] ∩ ℵm+3)) = ℵf(m)

The next step is to show that On∩X = On∩X [H]. So let α ∈ X [H] ∩On. So there is
some name σ ∈ X, s.t σH = α and w.l.o.g.  σ ∈ On. So the set D := {p ∈ P|∃ξ : p 
σ = ξ̌} is dense and it is certainly in X.
By the choice of H we have G∩D ∩X 6= ∅. For some p ∈ H ∩D ∩X p  σ = α̌ must

then hold true. This gives α ∈ X.
So then cof(sup(X ∩ ℵm+3) = cof(sup(X [H] ∩ ℵm+3)) = ℵf(m) for all m < ω. �

The claim shows that

{X ∩Hℵω |X ∈M} ⊆ {X ≺ Hℵω |∀m < ω : cof(sup(X ∩ ℵm+3)) = ℵf(m)}.

But the lefthand side is stationary. a

Note that it was not necessary for the proof to know that P doesn’t collapse ℵ2. This
is interesting because such a forcing would not violate covering and could thus exist in
ZFC. In fact Jensen has constructed under the assumption of GCH for any f : ω → 2
just such a forcing Pf that will change the cofinality of ℵm+2 to ℵf(m) while preserving
stationary sets (see [Jena]).
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Theorem 11.10 (Jensen): AssumeMM and 2κ = κ+ for any κ ≥ ℵ1. ThenMS(S
f(m)
m+2 :

m < ω) holds for all f .

Proof: Start by forcing with Col(ω1, ω2). CH will hold in the forcing extension and thus
Pf∗ exists there, where f∗ := [m 7→ f(m+ 1)]. The iteration of these two forcings will
then be stationary set preserving and will give any of the ℵn the appropriate cofinality
for n ≥ 3. By the preceding lemma we have MS(S

f(m+1)
m+3 : m < ω). We can then insert

the missing set using the technical lemma from the beginning of this chapter. a

Jensen’s original proof can be found in [Jenb] chapter 3. Jensen does use the “subcom-
plete forcing axiom” instead of MM, the principle is the same though.
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