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Preface
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1. Computable Functionals and Relations

1.1 Functionals and Relations

Let

NN :=
{
α α:N −→ N

}
be the space of all functions from the natural numbers into the natural numbers. In this lecture we
will deal with the spaces

Nm,n := Nm × (NN)
n
.

The elements of this space will be denoted by lower case Gothic letters such asa, b, c, a1, a2 . . .

1.1.1 Definition 1.) LetD ⊆ Nm,n. An (m,n)-ary partial functionalis a mapF :D −→ N.
We denote this by

F :Nm,n −→p N.

The setD is thedomainof F – denoted bydom(F ).
If dom(F ) = Nm,n we callF a total functional.
2.) An (m,n)-ary relation is a setR ⊆ Nm,n. We use the notationsa ∈ R andR(a) synony-
mously to denote thata belongs toR.

To distinguish notions from Ordinary Computation Theory (OCT) (or Classical Recursion Theory
as it used to be called) from Hyperarithmetical Computation Theory (HCT) we refer to(m, 0)-ary
functionals asm-ary functionsand to(m, 0)-ary relations asm-arypredicates.
We use the common notations of OCT freely. E.g.,〈x1, . . . , xn〉 denotes the primitive–recursive
coding function,(x)i its decoding andSeq the primitive–recursive set ofsequence codes.
Fora = (x1, . . . , xm, α1, . . . , αn) ∈ Nm,n andk ∈ N we put

a(k) := (x1, . . . , xm, α1(k), . . . , αn(k)),

where

α(k) :=

{
〈 〉 if k = 0
〈α(0), . . . , α(l)〉 if k = l + 1

denotes the course of values ofα belowk. We refer toa(k) as thecourse of valuesof the tuplea
belowk.
If a is as above,~y = (y1, . . . , yk) and~β = (β1, . . . , βl) we put

(a, ~y, ~β) := (x1, . . . , xm, y1, . . . , yk, α1, . . . , αm, β1, . . . , βl).

1.1.2 Definition An (m,n)-ary relationR is semi–decidable(often also calledsemi–recursiveor
recursively enumerable) if there is a semi–recursive (which can be regarded as synonymous to
recursively enumerable)m+ n-ary predicatePR such that

a ∈ R ⇔ (∃x)PR(a(x)).

1.1.3 DiscussionThe definition of a semi-decidable relation meets the intuition of a “positively
decidable” relation. We show that there is an algorithm which confirmsa ∈ R. SincePR(a(x))
is semi–recursive in the sense of OCT there is a decidable predicate, sayQ, such that
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1. Computable Functionals and Relations

a ∈ R ⇔ (∃x)PR(a(x))

⇔ (∃x)(∃y)Q(a(x), y).

Now we decideQ(a((n)0, (n)1) for n = 0, 1, . . .. This algorithm terminates ifa ∈ R but will
give no information in case thata /∈ R.

1.1.4 Definition LetF,G:Nm,n −→p N. Fora ∈ Nm,n we put

F (a) ' G(a) :⇔ (a /∈ dom(F ) ∧ a /∈ dom(G))

∨ (a ∈ dom(F ) ∩ dom(G) ∧ F (a) = G(a)).

Sometimes it is helpful to consider partial functionals as maps fromNm,n intoN∪{↑}. If we put

F̃ (a):'
{
F (a) if a ∈ dom(F )
↑ otherwise

then we get

F (a) ' G(a) ⇔ F̃ (a) = G̃(a). (1.1)

1.1.5 Definition LetF :Nm,n −→p N. We callF partial–computableif its graph

GF :=
{

(a, y) F (a) ' y
}

is semi-decidable.
We callF computableif F is partial–computable and total.

1.1.6 DiscussionThe definition of a partial–computable functional meets the intuition of a posi-
tively computable functional. We indicate that there is an algorithm forF which terminates and
yieldsF (a) in case thata ∈ dom(F ). SinceGF is semi-decidable we get as in 1.1.3 a decidable
predicateQ such that

F (a) ' x ⇔ (∃z)(∃y)Q(a(z), y, x).

Again we decideQ(a((n)0), (n)1, (n)2) for n = 0, 1, . . . and pick the first suchn. ThenF (a) =
(n)2. If F is computable, then it is total, and so this algorithm will always terminate.

We are now ready to study the closure properties of semi-decidable relations. It will turn out
that most of the closure properties are just liftings of the closure properties of semi-decidable
predicates.

1.1.7 Theorem The semi-decidable relations are closed under

• the positive boolean operations∧ and∨;

• bounded quantification on natural numbers;

• unbounded∃–quantification overN andNN;

• substitution with computable functionals.

Proof: The only case which is new in comparison to OCT is the closure under second order
quantification, i.e. quantifiers ranging overNN. However, we will also give two examples for the
more simple cases, e.g. closure under∧ and bounded∀-quantification.
We have

R(a) ∧ Q(a) ⇔ (∃x)PR(a(x)) ∧ (∃y)PQ(a(y))

⇔ (∃u)[PR(a(u)�(u)0) ∧ PQ(a(u)�(u)1)]

6



1.1. Functionals and Relations

which shows thatR ∧ Q is semi-decidable.
For bounded∀-quantification we have

(∀x < y)R(a, x) ⇔ (∀x < y)(∃z)PR(a(z), x)

and the semi-computability of(∀x< y)R(a, x) follows immediately from the closure properties
of semi-computable predicates.
For the new case we have

(∃α)R(a, α) ⇔ (∃α)(∃x)PR(a(x), α(x))

⇔ (∃s)(∃x)[Seq(s) ∧ lh(s) = x ∧ PR(a(x), s)].

Hence(∃α)R(a, α) is semi-decidable. �

We call the relation(∃x)R(a, x) theN– or first order projection ofR(a, x) while (∃α)R(a, α)
is theNN– or second order projection ofR(a, α). The motivation for this terminology becomes
clear from Figure 1.1.1.

P

N resp.NN

Q N(m,n)

Figure 1.1.1: TheN– resp.NN–projection of a relation

1.1.8 Definition Thecharacteristic functionalof an(m,n)–ary relationR is given by

χR(a) :=

{
0 if a ∈ R
1 otherwise.

Let us make some of the conventions explicit which we have been already using.
Quantifiers of the form(Qx), (Qy), . . . whosebound variables are indicated by lower case Ro-
man letters are first order, i.e. quantifiers ranging overN. To emphasize the first order of those
quantifiers we sometimes (very rarely) will write(∃0x) or (∀0x).
Quantifiers of the form(Qα), (Qβ), . . . whosebound variables are indicated by lower case Greek
letters are second order, i.e. quantifiers ranging overNN. To emphasize the second order of those
quantifiers we sometimes will write(∃1α) or (∀1α).
Sometimes we want to quantify over subsets ofN, i.e. overN2, the set of characteristic functions.
This will be denoted by(Qα∗), (Qβ∗), (Qα∗1), . . .
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1. Computable Functionals and Relations

1.1.9 Definition Let G be an(m + 1, n)–ary functional. The(unbounded) search operatorµ
turnsG into a(m,n)–ary functional(µG) which is defined by

(µG)(a) ' y :⇔ G(a, y) ' 0 ∧ (∀u < y)(∃z)[z 6= 0 ∧ G(a, u) ' z]. (1.2)

More sloppily we writeµx. G(a, x) instead of(µG)(a) to emphasize the place at whichµ
searches for a zero ofG.
Thebounded search operatoris defined by

µx < u. G(a, x) ' y :⇔ (∀x< y)(∃z)[G(a, x) ' z ∧ z 6= 0

∧ ((G(a, y) = 0 ∧ y < u) ∨ y = u)].

The bounded search operator searches for a zero belowu and outputsu if no such zero exists.
As usual we define the substitution operator by

Sub(G,H1, . . . ,Hn)(a) ' G(H1(a), . . . ,Hn(a))

1.1.10 TheoremThe partial–computable functionals are closed under unbounded search - and
hence also under bounded search - and substitution.

Proof: Having in mind the closure properties of semi-decidable relations the first claim follows
by looking at (1.2). The second claim follows from

Sub(G,H1, . . . ,Hn)(a) ' y ⇔
(∃x1) . . . (∃xn)[H1(a) ' x1 ∧ . . . ∧ Hn(a) ' xn ∧ G(x1, . . . , xn) ' y].

�

The possibilities for substitution, however, are not exhausted by the substitution operator. IfH is
an(m+ 1, n)–ary functional andG an(m,n+ 1)–ary functional then we may try to define

F (a) ' G(a, λx. H(a, x)). (1.3)

The problem is that (1.3) is only defined ifλx. H(a, x) is total. The following lemma shows how
this can be handled.

1.1.11 Lemma (Substitution Lemma)LetG be an(m,n + 1)–ary andH an (m + 1, n)–ary
partial–computable functional. Then there is a partial–computable functionalF such that

F (a) ' G(a, λx. H(a, x))

for all a for whichλx. H(a, x) is total.

Proof: We have semi-decidable predicatesPG andPH such that

G(a, α) ' u ⇔ (∃z)PG(a(z), α(z), u) (i)

and

H(a, x) ' v ⇔ (∃y)PH(a(y), x, v).

Using (i) we find a decidable predicateQ such that

G(a, α) ' u ⇔ (∃z)(∃x)Q(a(z), α(z), u, x).

We put

F (a) :' (µw. Q(a((w)0), λx. H(a, x)((w)0), (w)1, (w)2))1.

Thena ∈ dom(F ) if λx. H(a, x) is total and(a, λx. H(a, x)) ∈ dom(G). Hence

dom(λa . G(a, λx. H(a, x))) ⊆ dom(F )
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1.1. Functionals and Relations

but observe that the inclusion may well be proper. However, we have

G(a, λx. H(a, x)) = F (a)

for all (a, λx. H(a, x)) ∈ dom(λa . G(a, λx. H(a, x))). We still have to show thatF is partial–
computable. Checking the graph ofF we get

F (a) ' a ⇔ (∃s)(∃w)[Seq(s) ∧ Seq(w) ∧ lh(w) = 3

∧ lh(s) = w

∧ (∀i < w)H(a, i) ' (s)i

∧ Q(a((w)0), s�(w)0, (w)1, (w)2) ∧ (w)1 = a

∧ (∀j <w)¬Q(a((j)0), s�(j)0, (j)1, (j)2)]

wheres�k stands for〈(s)0, . . . , (s)k−· 1〉.
By the closure properties of semi-decidable and decidable predicates we get immediately that
F (a) ' a is a semi–decidable relation ina anda. �

1.1.12 Lemma The partial–computable functionals are closed under definition by cases:
LetG1, . . . , Gn be partial–computable andR1, . . . , Rn pairwise disjoint semi–decidable rela-
tions and

F (a) :'


G1(a) if R1(a)
...

...
Gn(a) if Rn(a)

ThenF is partial–computable.

Proof: We have

F (a) ' y ⇔ (R1(a) ∧ G1(a) ' y) ∨ . . . ∨ (Rn(a) ∧ Gn(a) ' y)

which shows thatF possesses a semi–decidable graph. �
The simplest example of a functional is theapplication functionalwhich is defined by

App(α, n) :' α(n).

1.1.13 TheoremThe application functional is a(1, 1)–ary computable functional.

Proof: Sinceα is totalApp is total, too. For its graph we get

App(α, n) ' y ⇔ (∃z)[n < z ∧ y = (α(z))n].
�

To conclude this section we introduce thedecidable relationswhich are often also calledrecursive
relations.

1.1.14 Definition A relationR ⊆ Nm,n is decidableif its characteristic functional is computable.

All closure properties of decidable (i.e. recursive) predicates can be lifted to decidable relations.
Therefore we state the following theorem without proof.

1.1.15 TheoremThe decidable relations are closed under:

• all boolean operations, i.e.¬,∧,∨;

• bounded quantification;

• substitution with computable functionals.

9



1. Computable Functionals and Relations

However, as a consequence of Lemma 1.1.11, we get the following additional closure property.

1.1.16 TheoremLet P be an(m,n + 1)–ary decidable relation andH be an(m + 1, n)–ary
computable functional. Then the relation

R :=
{
a P (a, λx. H(x, a))

}
is decidable.

Proof: We get

χR(a) ' χP (a, λx. H(x, a))

and the right hand is a computable functional by Lemma 1.1.11 becauseλx. H(x, a) is total. �
In OCT we classify the semi–decidable predicates asN–projections of decidable predicates. This
too can be lifted to semi–decidable relations.

1.1.17 TheoremAn (m,n)–ary relationR is semi–decidable iff there is an(m + 1, n)–ary de-
cidable relationQ such that

R(a) ⇔ (∃z)Q(a, z),

i.e. the semi–decidable relations are exactly theN–projections of the decidable relations.

Proof: LetR be semi–decidable. Then

R(a) ⇔ (∃z)PR(a(z))

⇔ (∃z)(∃u)Q̃(a(z), u)

for some decidable predicatẽQ. Define

Q :=
{

(a, u) Q̃(a((u)0), (u)1)
}
.

Then

R(a) ⇔ (∃z)Q(a, z)

andQ is obviously decidable. �

1.1.18 TheoremLetR be an(m+ 1, n)–ary decidable relation and define

F (a) :' µw. R(a, w) .

ThenF is an(m,n)–ary partial–computable functional.

Proof: We have

F (a) ' y ⇔ (∃w)[R(a, y) ∧ (∀u < y)¬R(a, u)].

ThusF has a semi–decidable graph by Theorems 1.1.15 and 1.1.17. �

1.2 The Normal–form Theorem

One of the most important theorems of OCT is KLEENE’s Normal–form Theorem. The aim of
this section is to lift this theorem to HCT. Recall that in OCT we definedWe as the domain
of a partial–computable function with indexe. These domains are exactly the semi–decidable
predicates. Thus

{
We e ∈ Ind(P )

}
enumerates all semi–decidable predicates whereInd(P ) is

10



1.2. The Normal–form Theorem

the set of indices of partial–computable functions. We use this enumeration to obtain an indexing
of semi–computable functionals. LetR be an(m,n)–ary semi–decidable relation. Then there is
ane ∈ Ind(P ) such that

R(a) ⇔ (∃z)Wm+n
e (a(z))

⇔ (∃z)(∃u)Tm+n(e, a(z), u)

(1.4)

whereTm+n denotes the KLEENE predicate.
For a semi–computable(m,n)–ary functional we get from (1.4)

F (a) ' y ⇔ (∃z)(∃u)Tm+n+1(e, a(z), y, u).

Therefore we define

Tm,n :=
{

(e, a, w) Tm+n+1(e, a((w)0), (w)1, (w)2)
}
.

ThenTm,n is an(m+ 2, n)–ary decidable relation for which we get

F (a) ' (µw. Tm,n (e, a, w))1.

Therefore we have the following theorem.

1.2.1 Theorem (Normal–form Theorem)There is an(m + 2, n)–ary decidable relationTm,n

and a computable (even primitive–recursive) functionU such that for all semi–computable(m,n)–
ary functionalsF there is ane ∈ N with

F (a) ' U(µw. Tm,n(e, a, w)).

We agree about the notation

{e}m,n(a) :' U(µw. Tm,n(e, a, w))

and calle an indexfor F .

1.2.2 Theorem The functionalΦm,n(a, e) :' {e}m,n(a) is a partial–computable functional
which is universal for the class of(m,n)–ary partial–computable functionals.

Proof: The Normal–form Theorem entails the universality of the functionalΦm,n. To show its
partial–computability we check its graph.

Φm,n(a, e) ' y ⇔ {e}m,n(a) ' y
⇔ (∃w)[Tm,n(e, a, w) ∧ (∀u<w)¬Tm,n(e, a, u) ∧ y = U(w)].

SinceTm,n is a decidable relation the last line is semi–decidable by Theorems 1.1.15 and 1.1.17.
�

We refer to Theorem 1.1.17 to obtain also a Normal–form Theorem for semi–decidable relations.
In a first step we prove the following theorem.

1.2.3 Theorem A relation is semi–decidable iff it is the domain of a partial–computable func-
tional.

Proof: Using the Normal–form Theorem we get

a ∈ dom(F ) ⇔ (∃w)Tm,n(e, a, w)

showing that the domains of partial–computable functionals are semi–decidable. For the opposite
direction letR be(m,n)–ary semi–decidable. By Theorem 1.1.17 we get a decidable relationQ
such that

11



1. Computable Functionals and Relations

R(a) ⇔ (∃z)Q(a, z).

Define

F (a) :' µz . Q(a, z).

ThenF is partial–computable by Theorem 1.1.18 and we have

dom(F ) =
{
a (∃z)Q(a, z)

}
= R.

�

Now we define

Wm,n
e := dom({e}m,n) =

{
a (∃w)Tm,n(e, a, w)

}
.

1.2.4 Theorem The collection of(m,n)–ary semi–decidable relations is enumerated byWm,n
e ,

i.e. {
R⊆Nm,n R is semi–decidable

}
=
{

Wm,n
e e ∈ N

}
.

If R = Wm,n
e we calle an indexfor R.

The canonical next step is to lift theSmn –Theorem from OCT.

1.2.5 Theorem ( Sm,nk –Theorem) There is ak + 1–ary primitive–recursive functionSm,nk such
that

{e}m+k,n(a, y1, . . . , yk) ' {Sm,nk (e, y1, . . . , yk)}m,n(a) (1.5)

and

(a, y1, . . . , yk) ∈Wm+k,n
e ⇔ a ∈Wm,n

Sm,nk (e,y1,...,yk)
. (1.6)

Proof: We get

{e}m+k,n(a, ~y) ' U(µw. Tm+k,n(e, ~y, a, w))

' U(µw. Tm+k+n+1(e, ~y, a((w)0), (w)1, (w)2))

' U(µw. Tm+n+1(Sm+n+1
k (e, ~y), a((w)0, (w)1, (w)2)))

' U(µw. Tm,n(Sm+n+1
k (e, ~y), a, w))

' {Sm+n+1
k (e, ~y)}m,n(a)

and we put

Sm,nk (e, ~y) := Sm+n+1
k (e, ~y)

whereSm+n+1
k is the function of OCT.

SinceWm+k,n
e = dom({e}m+k,n) we obtain (1.6) immediately from (1.5). �

The immediate consequence of theSm,nk –Theorem is — as usual — the Recursion Theorem.

1.2.6 Theorem (Recursion Theorem)Let G be an(m + 1, n)–ary partial–computable func-
tional. Then there is ane such that

{e}m,n(a) ' G(a, e).

Proof: We mimick the usual proof. Define

H(a, x) :' G(a,Sm,n1 (x, x)).

ThenH is partial–computable by Theorem 1.1.10. Lete0 be an index forH and define

12



1.3. Computability relativized

e := Sm,n1 (e0, e0).

Then

{e}m,n(a) ' {Sm,n1 (e0, e0)}m,n(a)

' {e0}m+1,n(a, e0)

' H(a, e0) ' G(a,Sm,n1 (e0, e0))

' G(a, e).
�

As an application of the Recursion Theorem we show the closure of the partial–computable func-
tionals under the Recursion Operator. The Recursion Operator turns an(m,n)–ary functional
G and an(m + 2, n)–ary functionalH into the(m + 1, n)–ary functionalRec(G,H) which is
defined by

Rec(G,H)(a, x) '
{
G(a) if x = 0
H(a, y, z) if x = y + 1 andRec(G,H)(a, y) ' z.

1.2.7 Theorem The partial–computable as well as the computable functionals are closed under
the Recursion Operator.

Proof: LetG andH be functionals of suitable arity. Define

F (a, x, e) '
{
G(a) if x = 0
H(a, y, {e}m+1,n(a, y)) if x = y + 1.

ThenF is partial–computable. Using the Recursion Theorem we obtain an indexe such that

{e}m+1,n(a, x) ' F (a, x, e).

DefiningE := {e}m+1,n we obtain

E(a, x) '
{
G(a) if x = 0
H(a, y, E(a, y)) if x = y + 1

by induction onx. HenceE = Rec(G,H). If moreoverG andH are total, we get

(∀a)(∀x)(∃y)[E(a, x) ' y]

by induction onx. �

1.3 Computability relativized

If F is an(1, 1)–ary partial–computable functional andα ∈ NN a given function then we may try
to compute the functionλx. F (α, x) . SinceF is partial–computable we have

F (α, x) ' y ⇔ (∃w)Q(α((w)0), (w)1, x, y)

for some decidable predicateQ. DecidingQ(α((w)0), (w)1, x, (w)2) for w = 0, 1, 2, . . . and
picking the least suchw yields an algorithm forλx. F (α, x) which asks for at most finitely many
values ofα. That means that a machine, e.g. a TURING–machine, could computeλx. F (α, x)
asking an oracle for the functionα within finite time. In this situation we say that the function
λx. F (α, x) is computable relatively toα. Generalizing this to functionals leads to the following
definition.

1.3.1 Definition A functionalF :Nm,n −→p N is partial–computable ina given functionα if
there is an(m,n+ 1)–ary partial–computable functionalG such that

13



1. Computable Functionals and Relations

F (a) ' G(a, α).

We callF computable inα if F is partial–computable inα and total. The functionalF is (partial–
) computable in a setA ⊆ N if F is (partial–)computable in its characteristic functionχA.

1.3.2 Definition A relationR ⊆ Nm,n is semi–decidable ina functionα ∈ NN if R is the domain
of a functional which is partial–computable inα.
We callR decidable inα if its characteristic functionalχR is computable inα.
A relationR is (semi–)decidable in a setA ⊆ N if R is (semi–)decidable in its characteristic
functionχA.

The computability of functionals and relations carries over to the relativized case. We put

Tα,m,n :=
{

(e, a, w) Tm,n+1(e, a, α, w)
}

TA,m,n := TχA,m,n

{e}α,m,n := λa . U(µw. Tα,m,n (e, a, w))

{e}A,m,n := {e}χA,m,n

ΦA,m,n := λea . {e}A(a)

Wα,m,n
e := dom({e}α,m,n) andWA,m,n

e := WχA,m,n
e .

To complete this section we reformulate the Normal–form Theorem, theSm,nk –Theorem and the
Recursion Theorem for the relativized case.

1.3.3 Theorem (Relativized Normal–form Theorem)For any (m,n)–ary functional which is
partial–computable inα there is an indexe such that

F (a) ' {e}α,m,n(a).

The functionalΦα(e, a) is universal for the(m,n)–ary functionals which are partial–computable
in α.
For any(m,n)–ary relation which is semi–decidable inα there is an indexe such that

R = Wα,m,n
e .

To emphasize the relativized meaning we often talk aboutα–indices orA–indices, respectively.

1.3.4 Theorem (RelativizedSm,nk –Theorem) There is ank + 1–ary primitive–recursive func-
tion Sm,nk such that

{e}α,m+k,n(a, y1, . . . , yn) ' {Sm,nk (e, y1, . . . , yn)}α(a)

and

(a, y1, . . . , yn) ∈Wα,m+k,n
e ⇔ a ∈Wα,m,n

Sm,nk (e,y1,...,yn)
.

1.3.5 Theorem (Relativized Recursion Theorem)LetG:Nm,n −→p N be partial–computable
in α. Then there is an indexe such that

{e}α,m,n(a) ' G(a, e).

14



2. Degrees

This chapter will contain a brief introduction toDegree Theory. In Degree Theory we aim at
classifying sets according to the difficulty of their decision problem. Two sets belong to the same
degree if the solution of the decision problem for one set entails the solution of the decision
problem for the other set and vice versa. There are different reducibility relations which are
regarded in Computability Theory. Here we will only regard two of them. A quite narrow one —
m–Reducibility — and the most general one — TURING–Reducibility.

2.1 m–Degrees

2.1.1 Definition Let A,B ⊆ N. We say thatA is many–one reducible toB, m–reducible toB
for short, if there is a computable function, sayf , such that

x ∈ A ⇔ f(x) ∈ B.

This will be denoted byA ≤m B. In case that the reducing functionf is one–one, we talk about
one–one Reducibilityor 1–Reducibilityand denote this byA ≤1 B.

2.1.2 DiscussionIf A ≤m B orA ≤1 B we obviously can reduce the decision problem forA to
that ofB. To decidex ∈ A we computef(x), which is possible because of the computability of
f and then decidef(x) ∈ B.

There are some simple observations aboutm–Reducibility.

2.1.3 Lemma The relation≤m is reflexive and transitive. IfA ≤m B then also¬A ≤m ¬B
where

¬A :=
{
x∈N x /∈ A

}
denotes the complement of the setA.

Proof: We haveA ≤m A via the identity. IfA ≤m B via f andB ≤m C via g thenA ≤m C
via g ◦ f .
If A ≤m B via f we get

x ∈ A ⇔ f(x) ∈ B

which implies also

x /∈ A ⇔ f(x) /∈ B.

Therefore we also have¬A ≤m ¬B via f . �

2.1.4 Definition We put

A ≡m B :⇔ A ≤m B ∧ B ≤m A

and conclude from Lemma 2.1.3 that≡m is an equivalence relation. Its equivalence classes are
calledm–degrees. By

degm(A) :=
{
B⊆N A ≡m B

}
we denote them–degree ofA.
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2. Degrees

We will not study the theory ofm–degrees in this lecture. However, since we needm–degrees
sometimes we decided to introduce them. Without proof we mention thatPow(N) together with
≤m is an upper semi–lattice. It is a known result of OCT that for all decidable setsA /∈ {∅,N}
we haveK 6≤m A whereK :=

{
x (∃w)T(x, x, w)

}
.

Just two simple facts aboutm–Reducibility.

2.1.5 Theorem 1) If B is decidable inα andA ≤m B thenA is also decidable inα.
2) If A ≤m B andB is semi–decidable inα thenA is also semi–decidable inα.

Proof: 1) If A ≤m B via f then

χA = χB ◦ f.

2)A =
{
x f(x) ∈ B

}
is semi–decidable inα since these sets are closed under substitution with

computable functions. �

2.2 TURING–Reducibility

The most general reduction of the decision problem is given by TURING–Reducibility.

2.2.1 Definition We say that a setA is decidable inB if χA is computable inχB. This is denoted
by

A ≤T B

or brieflyA ≤ B if there is no danger of confusion. Synonymously we say thatA is TURING–
reducible toB. We put

A ≡T B :⇔ A ≤T B ∧ B ≤T A.

2.2.2 DiscussionIf A ≤T B and we want to decidex ∈ A we computeχA(x). This is com-
putable inB. If we assume that the decision problem forB is solved, we can use a decision
procedure forB in the computation ofχA(x). Therefore the decision problem forA is reduced
to that ofB.
This is, however, a reduction in a much weaker sense thanm–Reducibility. So we have obviously

A ≤m B ⇒ A ≤T B

while the opposite direction is not true in general. In this sense≤T is a coarser relation than≤m.

2.2.3 Theorem The relation≤T is reflexive and transitive. Therefore the relation≡T is an equiv-
alence relation onPow(N).

Proof: Because ofχA(x) = App(χA, x) we see thatA is decidable inA. Hence≤T is reflexive.
If A ≤T B andB ≤T C we have computable functionalsF andG such that

χA(x) = F (χB , x)

and

χB(x) = G(χC , x).

So we get

χA(y) ' F (λx. G(χC , x), y) .

16



2.2. TURING–Reducibility

SinceG is totalλx. G(α, x) is total for anyα and we get by the Substitution Lemma (Lemma 1.1.11)
thatλαy . F (λx. G(α, x), y) is a computable functional, sayH. But then

χA(y) = H(χC , y)

which shows thatA ≤T C. �

2.2.4 Theorem (POST’s Theorem) A setA ⊆ N is decidable inB ⊆ N iff bothA and¬A are
semi–decidable inB.

Proof: If A is decidable inB then bothA and¬A are decidable inB. Hence also semi–decidable
in B. This gives the easy direction. For the opposite direction assume that bothA and¬A are
semi–decidable inB. Then we get indicese1 ande2 such that

A =
{
x (∃z)TB,1,0(e1, x, z)

}
(i)

and

¬A =
{
x (∃z)TB,1,0(e2, x, z)

}
. (ii)

Put

f(x) :' µz . [TB,1,0(e1, x, z) ∨ TB,1,0(e2, x, z)].

Thenf is partial–computable inB and we get from (i) and (ii) thatf is also total. Sof is
computable inB and we have

A =
{
x∈N TB,1,0(e1, x, f(x))

}
which shows by Theorem 1.1.15 thatA is decidable inB. �

2.2.5 Remark We formulated POST’s theorem for sets in order to have it fit into this section. The
proof, however, shows that it is true also for arbitrary relations.

2.2.6 Lemma LetA be semi–decidable inB andB ≤T C. ThenA is semi–decidable inC.

Proof: We have an indexe such that

A =
{
x∈N (∃z)TB,1,0(e, x, z)

}
=
{
x∈N (∃z)T1,1(e, χB, x, z)

}
.

Because ofB ≤T C there is an indexe0 such that

χB = {e0}C,1,0
= λx. U(µw. TC,1,0(e0, x, w))

= λx. U(µw. T1,1(e0, χC , x, w)) .

(i)

Hence

A =
{
x∈N (∃z)T1,1(e, λx. U(µw. T1,1(e0, χC , x, w))), x, z

}
= dom(µz . T1,1(e, λx. U(µw. T1,1(e0, χC , x, w)))).

(ii)

SinceχB is total we get by (i) and the Substitution Lemma (Lemma 1.1.11) that the functional in
the last line of (ii) is partial–computable inC. HenceA is semi–decidable inC. �
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2. Degrees

2.3 TURING–Degrees

We say that two setsA,B ⊆ N are TURING–equivalentiff A ≡T B. The class

degT (A) =
{
B B ≡T A

}
forms the TURING–degree(or just degree) of A. We will denote degrees by lower case bold
Roman letters, e.g., a, b, c, a1, . . .. For degrees a,b we define

a≤ b ⇔ (∃A∈ a)(∃B ∈ b)[A ≤T B]. (2.1)

It follows from Theorem 2.2.3 that (2.1) is independent of the choice ofA andB. We put

a< b :⇔ a≤ b ∧ a 6= b.

There is a minimal degree

0 := degT (∅)

which contains exactly the decidable sets. To show that for any degree a there is a strictly bigger
degree a′ we introduce thejump operatorwhich is defined by

j(A) :=
{
x (∃w)TA,1,0(x, x, w)

}
=
{
x x ∈WA,1,0

x

}
for A ⊆ N. We callj(A) the jump ofA.
For a degree a we introduce

a′ := degT (j(A)) for someA ∈ a. (2.2)

We will show later (cf. Theorem 3.1.1) that

A ≤T B ⇒ j(A) ≤T j(B).

Therefore a′ in (2.2) is well–defined. We will moreover see thatA ≤m j(A). Hence alsoA ≤T
j(A) andj(A) is obviously semi–decidable inA. We have, however, the following fact.

2.3.1 Theorem The jumpj(A) is not decidable inA.

Proof: Towards a proof by reductio ad absurdum assumej(A) ≤T A. Then¬j(A) ≤T A which
entails that there is an indexe such that

¬j(A) = WA,1,0
e .

Hence

e /∈ j(A) ⇔ e ∈WA,1,0
e ⇔ e ∈ j(A).

A contradiction. �

As an immediate corollary of Theorem 2.3.1 we get

2.3.2 Theorem For any degreeawe havea< a′.

Now the canonical questions arise

• Are the degrees linearly ordered by≤?

• Are there degrees between a and a′?

These questions have already been asked by E. POST in 1944. It lasted until 1954 before they
could be answered independently by R. FRIEDBERGand A. MUCHNIK. They proved the follow-
ing theorem.
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2.3. TURING–Degrees

2.3.3 Theorem (FRIEDBERG,MUCHNIK) There are semi–decidable setsA,B which are incom-
parable with respect to≤T , i.e. we have neitherA ≤T B norB ≤T A.

Proof: Before we start proving the theorem let us discuss it briefly. The proof will show that
the theorem also holds in relativized form. It is just for simpler notations that we omitted the
relativization.
We have∅ ≤T C for any setC and – as we will see soon –A ≤T j(∅) for any semi–decidable set
A. Thus ifA andB are semi–decidable and incomparable we get the picture shown in Figure 2.3.1
where the arrows represent≤T . This shows that Theorem 2.3.3 in fact answers both questions.

0′

0

A B

Figure 2.3.1: Two incomparable semi–decidable sets

The degrees are not linearly ordered and there are degrees between a and a′.
To prepare the technical part of the proof we start with a few heuristic remarks. Since we have
D ≤T C for any decidable setD and any setC none of the setsA andB, which we are going
to construct, must be decidable. Since we aim atA �T B as well asB �T A we have to ensure
thatχA 6= {e}B for all e and alsoχB 6= {e}A for all e, i.e.

(∀e)(∃y)[χA(y) 6' {e}B(y)] (i)

and

(∀e)(∃y)[χB(y) 6' {e}A(y)]. (ii)

To obtain (i) and (ii) it suffices to construct a functionF which satisfies

(∀e)[F (2e) ∈ A ⇔ {e}B,1,0(F (2e)) ' 1] (iii)

and

(∀e)[F (2e+ 1) ∈ B ⇔ {e}A,1,0(F (2e+ 1)) ' 1]. (iv)

The functionF , however, must not be computable. To see that assume thatF is computable
satisfying (iii) and (iv). We define

f(x, y) '
{

1 if x /∈ B
0 if x ∈ B.

Thenf is computable inB and we obtain an indexe such that

f = {e}B.
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2. Degrees

Using the relativizedSm1 –Theorem this yields

{S(e, x)}B(y) ' 1 ⇔ x /∈ B

for all x ∈ N. Hence

x /∈ B ⇔ {S(e, x)}B(F (2 · S(e, x)) ' 1 ⇔ F (2 · S(e, x)) ∈ A

by (iii). SinceA is semi–decidable andF computable¬B is semi–decidable. HenceB is decid-
able by POST’s Theorem. This, however, is impossible as we have seen above.
The problem is toconstructF in such a way thatF does not become computable. This can-
not be simple because anyconstructionof a non–computable function is close to conflict with
CHURCH’s Thesis. The basic idea is to approximateA, B andF stepwise byAn, Bn and
λx. F (n, x) such thatχAn , χBn andλx. F (n, x) are computable. In stepn we compute ei-
ther

yn := µw < n.
[
T1,1(e, F (n, 2e), χBn , w) ∧ U(w) = 1

]
(v)

or

yn := µw < n.
[
T1,1(e, F (n, 2e+ 1), χAn , w) ∧ U(w) = 1

]
(vi)

according to the shape ofn which also determinese in an effective way. Wheneveryn 6= n we
put in the first caseF (n, 2e) intoAn+1 or — in the second case —F (n, 2e+ 1) in Bn+1. The
obvious problem now is that at a later pointm > n, where a larger portionAm of A (or Bm
of B) is known, the computation may change. Therefore we giveF (n + 1, x) a value aboveyn
to ensure that the computations in (v) and (vi) will not be changed. The indexn in F (n, 2e) is
therefore the priority with whichF (n, 2e) has to be put intoA (or F (n, 2e + 1) into B). Once
we have reached the highest priorityn we may putF (x) := F (n, x). Of course we need to prove
that such highest priorities exists. Though certainly still vague, we hope that these remarks will
be helpful in the following technical part of the proof.
We put

A0 := ∅, B0 := ∅ and F (0, x) :=

{
2e if x = 2e
2e if x = 2e+ 1.

(vii)

Assume thatAn,Bn andF (n, x) are defined for allx. We distinguish the following cases:

1) (n)0 = 2e for somee ∈ N.

Then we compute

yn := µw <n.
[
T2,0(e, F (n, 2e), χBn((w)0), (w)1) ∧ U((w)1) = 1 ∧ F (n, 2e) /∈ An

]
. (viii)

If yn = n we put

An+1 := An, Bn+1 := Bn and F (n+ 1, x) := F (n, x). (ix)

Otherwise we define

An+1 := An ∪ {F (n, 2e)}, Bn+1 := Bn (x)

and

F (n+ 1, x) :=

{
F (n, x) if x ≤ 2e or x ≡ 0 mod2
F (n, x) · 3yn if 2e < x andx ≡ 1 mod2.

(xi)

2) (n)0 = 2e+ 1 for somee ∈ N.

Again we compute
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2.3. TURING–Degrees

yn :=

µw < n.
[
T2,0(e, F (n, 2e+ 1), χAn((w)0), (w)1) ∧ U((w)1) = 1 ∧ F (n, 2e+ 1) /∈ Bn

]
.

(xii)

If yn = n we put

An+1 := An, Bn+1 := Bn, F (n+ 1, x) := F (n, x) (xiii)

and otherwise

An+1 := An, Bn+1 := Bn ∪ {F (n, 2e+ 1)} (xiv)

and

F (n+ 1, x) :=

{
F (n, x) if x ≤ 2e+ 1 or x ≡ 1 mod2
F (n, x) · 3yn if 2e+ 1 < x andx ≡ 0 mod2.

(xv)

One should observe that in (vii) through (xv) we define the functionsλnx. χAn(x) , λnx. χBn(x)
and λnx. F (n, x) simultaneously by the Recursion Theorem. Hence all these functions are
partial–computable. It follows by induction onn that all these functions are also total. By con-
struction we have

F (n, x) ≤ F (n+ 1, x)

which yields

m ≤ n ⇒ F (m,x) ≤ F (n, x)

by induction onn. Similarly we get

m ≤ n ⇒ Am ⊆ An ∧ Bm ⊆ Bn.

The essential step is to show:

Vx :=
{
n F (n, x) 6= F (n+ 1, x)

}
is finite.

The proof is by induction onx. Fory < x the setVy is finite by induction hypothesis. This entails
the finiteness of the sets

{
F (n, y) n ∈ N

}
for y < x. Hence

V :=
⋃
y<x

{
F (n, y) n ∈ N

}
is finite.

We construct a one–one mapping fromVx into V . Letn ∈ Vx. If x is even then by (xi) and (xv)
there is anxn < x such thatF (n, xn) /∈ Bn butF (n, xn) ∈ Bn+1. Forx odd we obtain by (xi)
and (xv) anxn < x such thatF (n, xn) ∈ An+1 \ An. HenceF (n, xn) ∈ V and form,n ∈ Vx
with m < n we get

F (m,xm) ∈ Bm+1 ⊆ Bn 63 F (n, xn)

for x even or

F (m,xm) ∈ Am+1 ⊆ An 63 F (n, xn)

for x odd, respectively. HenceF (m,xm) 6= F (n, xn) and

n 7→ F (n, xn)

is a one–one map fromVx into V . ThereforeVx is finite.
We define

A :=
⋃
n∈N

An; B :=
⋃
n∈N

Bn

and
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F (x) := F (n, x) if (∀m)[m ≥ n ⇒ F (m,x) = F (n, x)]. (xvi)

Now we prove

{e}A(F (2e+ 1)) ' 1 ⇒ F (2e+ 1) ∈ B (xvii)

{e}B(F (2e)) ' 1 ⇒ F (2e) ∈ A.

Both lines of (xvii) are proved analogously. We show the first. From

{e}A(F (2e+ 1)) ' 1

we get for somew ∈ N

T2,0(e, F (2e+ 1), χA((w)0), (w)1) ∧ U((w)1) = 1. (xviii)

There are infinitely manyn ∈ N such that

(n)0 = 2e+ 1.

We choosen so big that

w < n, χAn(w) = χA(w) and F (2e+ 1) = F (n, 2e+ 1). (xix)

Then (xix) and (xviii) yield

(∃w <n)
[
T2,0(e, F (n, 2e+ 1), χAn((w)0), (w)1) ∧ U((w)1) = 1

]
and we either haveF (2e+ 1) = F (n, 2e+ 1) ∈ Bn ⊆ B or obtainF (2e+ 1) = F (n, 2e+ 1) ∈
Bn+1 ⊆ B by (xii) and (xiv). It remains to prove also the opposite directions in (xvii), i.e.

F (2e+ 1) ∈ B ⇒ {e}A(F (2e+ 1)) ' 1

F (2e) ∈ A ⇒ {e}B(F (2e)) ' 1.
(xx)

First we obtain

x = 2e or x = 2e+ 1 ⇒ F (n, x) = 2e · 3y (xxi)

by an easy induction onn. As a consequence of (xxi) we get

F (n, 2e1) = F (m, 2e2) ⇒ e1 = e2

F (n, 2e1 + 1) = F (m, 2e2 + 1) ⇒ e1 = e2.
(xxii)

We prove the second line of (xx). The proof of the first runs analogously.
LetF (2e) ∈ A. Then there is ann such that

F (2e) ∈ An+1 \An
which implies

F (2e) = F (n, 2(n)0).

According to (xvi) and the first line in (xxii) this yieldse = (n)0. Hence by (viii)

T2,0(e, F (n, 2e), χBn((yn)0), (yn)1) ∧ U((yn)1) = 1 (xxiii)

andyn < n. As soon as we can show

χB((yn)0) = χBn((yn)0) (xxiv)

we get{e}B(F (2e)) ' 1 from (xxiii). Towards a contradiction assume

χB((yn)0) 6= χBn((yn)0).

Then there is az < (yn)0 < yn such that
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2.3. TURING–Degrees

χB(z) 6= χBn(z).

But thenz ∈ B \Bn which shows that there is anm > n such that

z ∈ Bm+1 \Bm.

Hencez = F (m, 2f + 1) for somef ∈ N. If 2e < 2f + 1 we get by (xi)

z = F (m, 2f + 1) ≥ F (n+ 1, 2f + 1) = F (n, 2f + 1) · 3yn

which contradictsz < yn. For2e > 2f + 1, however, we get by (xv)

F (m+ 1, 2e) = F (m, 2e) · 3yn > F (m, 2e) = F (n, 2e) = F (2e)

contradicting the definition ofF (2e) in (xvi). Hence (xxiv). �
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3. The Arithmetical Hierarchy

3.1 The Jump operator revisited

The jump operator

j(A) :=
{
x∈N (∃w)TA,1,0(x, x, w)

}
=
{
x x ∈WA,1,0

x

}
(3.1)

is introduced in Section 2.3. We are going to study its properties more profoundly in this section.
It follows from (3.1) and Theorem 2.3.1 thatj(A) is semi–decidable but not decidable inA. The
following theorem strengthens that.

3.1.1 Theorem 1) A setA ⊆ N is semi-decidable inB iff A ≤m j(B).
2) We haveA ≤T B iff j(A) ≤m j(B).
Both claims hold uniformly inA, i.e. an index of them–reducing computable functionf can be
computed from aB–index for the setA.

Proof: 1) Define

KB
0 :=

{
(x, y) (y)1 ∈WB,1,0

(y)0

}
=
{

(x, y) (∃w)TB,1,0((y)0, (y)1, w)
}
.

The predicateKB
0 is semi–decidable inB. Let e0 be an index forKB

0 . Then we get

(y)1 ∈WB,1,0
(y)0

⇔ (x, y) ∈ KB
0

⇔ (x, y) ∈WB,2,0
e0

⇔ x ∈WB,1,0

S2,0
1 (e0,y)

.

(i)

If A is semi–decidable inB we have an indexe for A, i.e.A = WB,1,0
e , and define a functionf

by

f(x) := S2,0
1 (e0, 〈e, x〉).

Thenf is computable and an index forf can be computed frome. According to (i) we get

f(x) ∈ j(B) ⇔ f(x) ∈WB,1,0
f(x)

⇔ f(x) ∈WB,1,0

S2,0
1 (e0,〈e,x〉)

⇔ x ∈WB,1,0
e

⇔ x ∈ A
which shows thatA ≤m j(B) via f .
For the opposite direction we assumeA ≤m j(B) via f . But then

x∈A ⇔ (∃w)TB,1,0(f(x), f(x), w)

which shows immediately thatA is semi–decidable inB.
2) We start with the “if”–direction. Sincej(A) is semi–decidable inA we get fromA ≤T B by
Lemma 2.2.6 thatj(A) is also semi–decidable inB. Hencej(A) ≤m j(B) by 1). To obtain also
the uniformity we need to know that aB–index ofj(A) can be computed from aB–index ofA,
i.e. we need a computable function, sayh, with
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3. The Arithmetical Hierarchy

χA = {e}B,1,0 ⇒ j(A) = WB,1,0
h(e) .

Though simple a rigid proof is quite tedious and depends heavily on our special definition of
indices. Therefore we restrict ourselves to a rough sketch. We have

x ∈ j(A) ⇔ (∃w)T1,1(x, χA, x, w)

⇔ (∃w)T1,1(x, λy . {e}B(y), x, w) .
(ii)

The functiong := µw. T1,1(x, λy . {e}B(y), x, w) is obvious partial–computable inB and its
index depends only one. This dependence is effective which means that there is a computable
(even primitive–recursive) function, sayh, such thath(e) is aB–index forg. Hence by (ii)

j(A) = dom({h(e)}B) = WB,1,0
h(e) .

For the “only–if”–direction assumej(A) ≤m j(B). SinceA as well as¬A are semi–decidable
in A we get

A ≤m j(A) ≤m j(B)

and also

¬A ≤m j(A) ≤m j(B)

by part 1). By the transitivity of≤m and part 1) this implies thatA and¬A are both semi–
decidable inB. Using POST’s Theorem (Theorem 2.2.6) we obtainA ≤T B. �

3.1.2 Definition Then–th jump of a setA ⊆ N is defined by

A(0) := A

A(n+1) := j(A(n)).

3.1.3 Lemma We have

n ≤ k ⇒ A(n) ≤m A(k) (3.2)

and

A ≤m B ⇒ A(n) ≤m B(n). (3.3)

Claim (3.2) holds uniformly inn andk, i.e. an index for the reducing function can be computed
fromn andk, while claim (3.3) holds uniformly inn and the index of the function which reduces
A toB.

Proof: We show (3.2) by induction onk. The claim is obvious fork = n. Fork = l + 1 > n we
have

A(n) ≤m A(l)

via {f(n, l)} by the induction hypothesis. By part 1) of Theorem 3.1.1 we haveA(l) ≤m A(l+1)

via some functiong. HenceA(n) ≤m A(l+1). To show also the uniformity we observe thatg
does not depend onA. Since

j(B) =
{
x (x, χB) ∈W1,1

x

}
we see that there is ane ∈ N such that

j(B) = WB,1,0
e

holds for anyB ⊆ N. So, according to Theorem 3.1.1,g depends only on the constante and the
index of the reducing functiong ◦ {f(n, l)} can be computed fromn ande.
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3.2. The Arithmetical Hierarchy

We prove (3.3) by induction onn. Forn = 0 we haveA ≤m B by hypothesis. In the successor
case we haveA(n) ≤m B(n) by the induction hypothesis and obtainA(n+1) ≤m B(n+1) by
Theorem 3.1.1 2). The index of the reducing function is computed from aB(n)–index ofA(n)

which in turn depends on the reducing function forA(n) ≤m B(n). This function, however, can
by induction hypothesis be computed from an index of the reducing function forA ≤m B. �

3.2 The Arithmetical Hierarchy

The Arithmetical Hierarchy classifies the subsets ofN which can be defined arithmetically. The
most obvious classification is according to the complexity of the defining formula. Therefore we
introduce first a classification of the arithmetical formulas.

3.2.1 Definition Letϕ be a formula in the language of arithmetic, i.e. the only non–logical sym-
bols occurring inϕ are constants for natural numbers, for primitive–recursive functions and of
predicates which can be decided primitive–recursively. In an arithmetical formula all quantifiers
are supposed to range over individuals, i.e. we are in first order, however, we allow free function
variablesξ,η, ξ1, . . . .
We say thatϕ is a∆0

0–formula, ifϕ contains at most bounded quantifiers.
We say thatϕ is Σ0

1, if there is a∆0
0–formulaψ(x) such thatϕ ≡ (∃x)ψ(x).

Duallyϕ is Π0
1 if ¬ϕ is Σ0

1.
A formulaϕ is in Σ0

n+1 if there is a formulaψ(x) in Π0
n such thatϕ ≡ (∃x)ψ(x).

Duallyϕ is Π0
n+1 if ¬ϕ is ∃0

n+1.

3.2.2 Remark In the above definition we assume that the language of arithmetic is given as a
TAIT–language (cf. [4]), i.e. a language containing6= as basic symbol in which¬ϕ is defined by

¬(s = t) :≡ s 6= t

¬(s 6= t) :≡ s = t

¬(Rt1, . . . , tn) :≡ (¬R)t1, . . . , tn

¬((¬R)t1, . . . , tn) :≡ Rt1, . . . , tn
¬(ϕ ∧ ψ) :≡ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ) :≡ ¬ϕ ∧ ¬ψ
¬(∀x)ϕ(x) :≡ (∃x)¬ϕ(x)

¬(∃x)ϕ(x) :≡ (∀x)¬ϕ(x)

where¬R is a relation constant whose interpretation is the complement of the interpretation of
R.
We obviously have

ϕ ∈ Σ0
n ⇔ ϕ ≡ (∃x1)(∀x2) . . . (Qxn)ψ(~x)

and

ϕ ∈ Π0
n ⇔ ϕ ≡ (∀x1)(∃x2) . . . (Qxn)ψ(~x)

whereψ(~x) is a∆0
0–formula and(∃x1)(∀x2) . . . (Qxn) as well as(∀x1)(∃x2) . . . (Qxn) are al-

ternating strings ofN–quantifiers.

3.2.3 Definition A relationR ⊆ Nm,n is definable with parametersβ1, . . . , βl by a formula

ϕ(ξ1, . . . , ξl, x1, . . . , xn, η1, . . . , ηm)

if ϕ possesses only the indicated free variables and
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3. The Arithmetical Hierarchy

R =
{
a∈Nm,n N |= ϕ[β1, . . . , βl, a]

}
.

3.2.4 Definition 1) A relation isΣ0
n[A] if it is definable with parameterχA by a Σ0

n–formula.
Π0
n[A]-relations are defined analogously.

2) A relation is∆0
n[A] if it is both, Σ0

n[A] andΠ0
n[A].

Instead ofΣ0
n[∅], Π0

n[∅], and∆0
n[∅] we writeΣ0

n, Π0
n and∆0

n.
3) A relation is calledarithmetical (inA) if it is in ∆0

n[A] for somen ∈ N. To unify notations
we put

∆1
0[A] := Π1

0[A] := Σ1
0[A] :=

{
R R is arithmetical inA

}
.

3.2.5 Theorem 1) The∆0
0–predicates are exactly the primitive–recursively decidable predicates.

2) TheΣ0
1–relations are exactly the semi–decidable relations.

3.2.6 Theorem (POST) 1) A relationR is semi–decidable in a setA ⊆ N iff R is Σ0
1[A].

2) A relation is decidable in a setA ⊆ N iff it is ∆0
1[A].

The proofs of Theorems 3.2.5 and 3.2.6 are obvious from our previous knowledge.

3.2.7 Definition Let F denote one of the complexity classes introduced in Definition 3.2.4. We
say that a partial functional is anF–functional iff its graph belongs toF .

3.2.8 Lemma Any totalΣ0
n[A]–functional is already in∆0

n[A].

Proof: The proof needs already the closure ofΣ0
n under∧ and∃0–quantification. LetF be a total

Σ0
n[A]–functional. Then

¬GF (a, y) ⇔ F (a) 6' y
⇔ (∃z)[F (a) ' z ∧ z 6= y].

Which shows that both, the graph ofF and its complement, are inΣ0
n[A]. HenceGF ∈ ∆0

n[A].
�

We list the closure properties of these newly introduced relation–classes in the table shown in
Figure 3.2.1. The positive closure properties, i.e. those which carry a “yes”, are shown by induc-
tion onk. We already proved them for the casek = 1 with the exception of the closure ofΣ0

1

under∃1–quantification. However, we want to postpone this property because it does not carry
over tok > 1. So assume that we have the positive closure properties fork. LetR1 andR2 be
Σ0
k+1–relations. Then we have

R1(a) ⇔ (∃x)Q1(a, x)

and

R2(a) ⇔ (∃y)Q2(a, y)

for Qi ∈ Π0
k. Hence

R1(a) ∧∨ R2(a) ⇔
⇔

and the expression in square–brackets isΠ0
k by the induction hypothesis.

The closure ofΣ0
k+1–relations under∃0–quantification follows by contraction of quantifiers, i.e.

by

(Qx)(Qy)R(a, x, y) ⇔ (Qu)R(a, (u)0, (u)1). (3.4)
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3.2. The Arithmetical Hierarchy

Relation–class ¬ ∨ ∧ ∃< ∀< ∃0 ∀0 ∃1 ∀1 Substitution
with

primitive–recursive yes yes yes yes yes no no no no primitive–recursive
functionals

∆0
1–relations yes yes yes yes yes no no no no computable

functionals

Σ0
1–relations no yes yes yes yes yes no yes no computable

functionals

Π0
1–relations no yes yes yes yes no yes no yes computable

functionals

∆0
k+1–relations yes yes yes yes yes no no no no totalΣ0

k+1-
functionals

Σ0
k+1–relations no yes yes yes yes yes no no no totalΣ0

k+1-
functionals

Π0
k+1–relations no yes yes yes yes no yes no no totalΣ0

k+1-
functionals

arithmetical yes yes yes yes yes yes yes no no total arithmetical
functionals

Figure 3.2.1: Closure Properties of Relation–Classes

So we are left with bounded∀–quantification and substitution with totalΣ0
k+1–functionals. As-

sume

P (a) ⇔ (∀x < n)R(a, x)

⇔ (∀x< n)(∃y)Q(a, x, y)

for R a Σ0
k+1– andQ aΠ0

k–relation. Then

P (a) ⇔ (∀x < n)(∃y)Q(a, x, y)

⇔ (∃s)[Seq(s) ∧ lh(s) = n ∧ (∀x < n)Q(a, x, (s)x)]

and the expression in square–brackets isΠ0
k by induction hypothesis. HenceP is Σ0

k+1.
By duality we get the dual closure properties forΠ0

k+1–relations.
If F is a totalΣ0

k+1–functional and

P (a) ⇔ R(a, F (a))

for aΣ0
k+1– (Π0

k+1–)relationR we get

P (a) ⇔ (∃z)[F (a) ' z ∧ R(a, z)]

⇔ (∀z)[F (a) ' z ⇒ R(a, z)].

Applying Lemma 3.2.8 – which is possible since we know thatΣ0
k+1 is closed under∃0–quantification

and∧, we get thatP is in Σ0
k+1 or Π0

k+1, respectively.
The closure properties for∆0

k–relations follow by combining those ofΠ0
k– andΣ0

k–relations (we
still regard only the positive closure properties) and the shown (positive) closure properties for
arithmetical relations follow from those of∆0

n–relations.
It remains to show thatΣ0

1 is closed under∃1–quantification. For aΣ0
1–relationR we get

(∃α)R(a, α) ⇔ (∃α)(∃y)Q(a(y), α(y))

⇔ (∃s)[Seq(s) ∧ lh(s) = y ∧ Q(a(y), s)]

whereQ is a semi–decidable predicate. But then the expression in square–brackets is also semi–
decidable which implies that

{
a (∃α)R(a, α)

}
is a semi–decidable relation. By duality we

obtain thatΠ0
1 is closed under∀1–quantification. Observe that the closure under second order
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3. The Arithmetical Hierarchy

quantifiers cannot be lifted to the higher levels of the hierarchy. As soon as we have a quantifier
string of the form(∃α)(∀x)q(α, x) it is obvious that we cannot replaceα by a finite sequence. A
rigid proof will be in the Analytical Hierarchy Theorem in the next chapter.
Let ϕ(x1, . . . , xm, ξ1, . . . , ξn) be any first order formula in the language of arithmetic. Then
ϕ(~x, ~ξ) is logically equivalent to a formula in prenex form and we may use the quantifier contrac-
tion (3.4) to see that

N |= (∀~x)(∀~ξ)[ϕ(~x, ~ξ) ⇐⇒ ψ(~x, ~ξ)]

for a formulaψ which is either inΣ0
k or Π0

k for somek ∈ N. Then

R :=
{
a N |= ϕ[a]

}
is ∆0

k+1, i.e. arithmetical. We put this into a lemma.

3.2.9 Lemma Let ϕ(x1, . . . , xm, ξ1, . . . , ξn) be a first order formula in the language of arith-
metic. Then the relation

R :=
{
a ∈Nm,n N |= ϕ[a]

}
is arithmetical.

We are now going to investigate the connection of the arithmetical hierarchy to the jump hierarchy
introduced in Definition 3.1.2.

3.2.10 TheoremA relationR is Σ0
k+1[A] iff it is semi–decidable inA(k).

Proof: We prove the theorem by induction onk. We begin with the “if”–direction. Fork = 0
this is Theorem 3.2.6 1). For the induction step assume thatR ∈ Σ0

k+2[A]. Then

a ∈ R ⇔ (∃x)P (a, x)

for aΠ0
k+1[A]–relationP . Then¬P ∈ Σ0

k+1[A] and¬P is semi–decidable inA(k) by induction
hypothesis. By Theorem 3.1.1 1) this implies¬P ≤T A(k+1) and, sinceP ≤T ¬P , P ≤T
A(k+1). SinceR is theN–projection of the relationP which is decidable inA(k+1) we get
by the relativization of Theorem 1.1.17 thatR is semi–decidable inA(k+1). For the “only if”
direction letR be semi–decidable inA(k+1). SinceA(k+1) is semi–decidable inA(k) we get
A(k+1) ∈ Σ0

k+1[A] by induction hypothesis. Lete be anA(k+1)–index forR. Then we obtain

R(a) ⇔ a ∈WA(k+1),m,n
e

⇔ (∃w)Tm,n+1(e, a, χA(k+1) , w)

⇔ (∃w)Tm+n+2(e, a((w)0), χA(k+1)((w)0), (w)1, (w)2)

⇔ (∃s)(∃w)[Seq(s) ∧ lh(s) = (w)0

∧ (∀i < (w)0)(χA(k+1)(i) = (s)i) ∧ Tm+n+2(e, a((w)0), s, (w)1, (w)2)].

(i)

The predicatesSeq, T , = etc. are all in∆0
0. So we only have to check the complexity of

χA(k+1)(i) = y. Because of

χA(k+1)(i) = y ⇔ (y = 0 ∧ x ∈ A(k+1)) ∨ (y = 1 ∧ x /∈ A(k+1))

and the fact thatA(k+1) ∈ Σ0
k+1[A] we get{

(i, y) χA(k+1)(i) = y
}
∈ ∆0

k+2[A]. (ii)

But (i) together with (ii) showR ∈ Σ0
k+2[A]. �

As a consequence of Theorem 3.2.10 we get the following generalization of POST’s theorem.
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3.2. The Arithmetical Hierarchy

3.2.11 TheoremA relationR is in ∆0
k+1[A] iff R is decidable inA(k).

Proof: We haveR ∈ ∆0
k+1[A] iff R and¬R are semi–decidable inA(k) by Theorem 3.2.10. By

POST’s theorem this holds if and only ifR is decidable inA(k). �

The next theorem will help us in confirming also the negative closure properties listed in Fig-
ure 3.2.1.

3.2.12 Lemma We have

A(k+1) /∈ ∆0
k+1[A]

for all k ∈ N.

Proof: We have shown in Theorem 2.3.1 thatj(M) 6≤T M for any setM . By Theorem 3.2.11,
however, this meansA(k+1) /∈ ∆0

k+1[A]. �

3.2.13 Theorem (Arithmetical Hierarchy Theorem) We have

1) ∆0
k+1[A] $ Σ0

k+1[A]

2) ∆0
k+1[A] $ Π0

k+1[A]

3) Σ0
k+1[A] ∪Π0

k+1[A] $ ∆0
k+2[A].

Proof: All inclusions are obvious by definition. It remains to show that these inclusions are
proper. According to Lemma 3.2.12 we have

A(k+1) /∈ ∆0
k+1[A] butA(k+1) ∈ Σ0

k+1[A]

by Theorem 3.2.10. This proves 1) and 2) is an immediate consequence of 1).
To prove 3) regard the “effective union” ofA(k+1) and¬A(k+1) which is given by

B :=
{

2x x ∈ A(k+1)
}
∪
{

2x+ 1 x /∈ A(k+1)
}
.

ThenB ∈ ∆0
k+2[A] andA(k+1) ≤m B via λx. 2x as well as¬A(k+1) ≤m B via λx. 2x+ 1 .

Hence neitherB ∈ Σ0
k+1[A] norB ∈ Π0

k+1[A] because any of both assumptions would lead to
A(k+1) ∈ ∆0

k+1[A] which contradicts Lemma 3.2.12. �
It follows from the Arithmetical Hierarchy Theorem thatΣ0

k[A] cannot be closed under negation
and∀0–quantification. DuallyΠ0

k[A] cannot be closed under negation and∃0–quantification.
Since any first order quantifier

(Qx)[. . . x . . .]

can be replaced by a second order quantifier

(Qα)[. . . α(0) . . .]

we see thatΣ0
k[A] cannot be closed under∀1–quantifiers and dually thatΠ0

k[A] cannot be closed
under∃1–quantifiers. So the only open items in Figure 3.2.1 are closure ofΣ0

k[A] and ∃1–
quantifiers andΠ0

k[A] and∀1–quantifier fork > 1. We have to postpone that until the next
chapter.
Up to now we get a picture of the Arithmetical Hierarchy as shown in Figure 3.2.2.
Let us recall the notion of an universal relation.

3.2.14 Definition LetR be a collection of(m,n)–ary relations. An(m+ 1, n)–ary relationU is
universal forR if for anyR ∈ R there is ane ∈ N such that
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Figure 3.2.2: The Arithmetical Hierarchy

R(a) ⇔ U(a, e).

A collectionK of relations is auniversal classif for any (m,n) there is an(m+1, n)–ary relation
Um,n ∈ K which is universal for the(m,n)–ary relations inK.
K is anacceptable universal classif K is a universal class and there arek + 1–ary computable
functionsSm,nk such that

Um+k,n(a, y1, . . . , yk, e) ⇔ Um,n(a,Sm,nk (e, y1, . . . , yk)).

If K is a universal class and

R(a) ⇔ Um,n(a, e)

we calle anK–indexfor R.

We have already seen that the class ofΣ0
1[A]–relations, i.e. the class of relations which are semi–

decidable inA, is an acceptable universal class. This can be lifted to all levels of the Arithmetical
Hierarchy.

3.2.15 TheoremThe classes ofΣ0
k[A] andΠ0

k[A] are acceptable universal.

Proof: By Theorem 3.2.10 we get for an(m,n)–aryΣ0
k+1[A]–relationR

R(a) ⇔ a ∈WA(k),m,n
e .

Putting

UΣ0
k+1[A],m,n :=

{
(a, e) a ∈WA(k),m,n

e

}
defines a universal relation for the(m,n)–ary relations inΣ0

k+1[A]. The acceptability, however,
is an immediate consequence of the relativizedSm,nk –Theorem.
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By dualization we get universal relationsUΠ0
k+1[A],m,n for the(m,n)–aryΠ0

k+1[A]–relations.
�

3.3 The Limits of the Arithmetical Hierarchy

The collection of all arithmetically definable sets forms a countable set. This shows that we are
far from having characterized all subsets ofN. We will indicate that we are even still far from
having characterized all definable subsets ofN.
Put

A(ω) :=
{
x (x)0 ∈ A((x)1)

}
.

We may regardA(ω) as “effective” union of allA(n). Effective because for anyx ∈ A(ω) we can
by computing(x)1 effectively determine to which member of

⋃
A(n) the element(x)0 belongs.

Clearly any effective union has to be pairwise disjunct.
Because of the effectiveness ofA(ω) we get

x ∈ A(n) ⇔ 〈x, n〉 ∈ A(ω)

which shows

A(n) ≤m A(ω) (3.5)

for anyn.

3.3.1 Theorem The setA(ω) is not arithmetical inA.

Proof: Towards an indirect proof assume thatA(ω) ∈ ∆0
k[A] for somek. HenceA(ω) ≤T

A(k) ≤T A(k+1) ≤T A(ω) which impliesA(k) ≡T A(k+1). But thenA(k+1) ∈ ∆0
k+1[A] by

Theorem 3.2.11 which contradicts Lemma 3.2.12. �
BuildingA(ω) means to iterate the jump operator arbitrarily finitely often. But when we haveA(ω)

we can go on buildingj(A(ω)), j(j(A(ω))) . . . Such an infinite iteration of jumps, however, needs
a theory of ordinals, which we postpone until Chapter 5. First we want to extend the hierarchy by
allowing second order formulas in the defining formulas of relations.
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4. The Analytical Hierarchy

4.1 Second order arithmetic

In order to extend the arithmetical hierarchy we extend the hierarchy of arithmetical formulas.
We are going to allow quantifiers on functions which are supposed to range overNN. We briefly
denote by

N |= ϕ

that the sentenceϕ is valid in the standard interpretation. Let us start with a classification of the
second order arithmetical formulas according to their second order quantifier–complexity.

4.1.1 Definition A formulaϕ is aΠ1
1–formula ifϕ ≡ (∀α)ψ(α) andψ(α) is Σ0

1.
Dually a formulaϕ is Σ1

1 iff ¬ϕ is Π1
1.

A formulaϕ is Π1
k+1 iff ϕ ≡ (∀α)ψ(α) andψ(α) is Σ1

k.
Duallyϕ is Σ1

k+1 iff ¬ϕ is Π1
k+1.

Again we get

ϕ ∈ Π1
k ⇔ ϕ ≡ (∀α1)(∃α2) . . . (Qαk)(Q̆x)ψ(~α, x)

and

ϕ ∈ Σ1
k ⇔ ϕ ≡ (∃α1)(∀α2) . . . (Qαk)(Q̆x)ψ(~α, x)

whereψ(~α, x) is quantifier free.
A formula isanalyticif it is Σ1

n or Π1
n for somen. We introduce the abbreviation

(α)x := λu. α(〈x, u〉) . (4.1)

4.1.2 Lemma For any formulaϕ in the language of second order arithmetic andQ ∈ {∀,∃} we
have

(Qx)ϕ(x) ⇔ (Qα)ϕ(α(0)) (4.2)

(Qα)(Qβ)ϕ(α, β) ⇔ (Qγ)ϕ((γ)0, (γ)1) (4.3)

(∀x)(∃α)ϕ(x, α) ⇔ (∃β)(∀y)ϕ(y, (β)y) (4.4)

(∃x)(∀α)ϕ(x, α) ⇔ (∀β)(∃y)ϕ(y, (β)y) (4.5)

Proof: Claim (4.2) holds obviously and (4.3) becomes clear by putting

γ(x) :=

{
α((x)1) if (x)0 = 0
β((x)1) if (x)0 = 1.

The direction from right to left in (4.4) holds for logical reasons. For the opposite direction
assume

(∀x)(∃α)ϕ(x, α)

and chooseαx for everyx ∈ N. Defining

β(y) := α(y)0
((y)1)
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4. The Analytical Hierarchy

we get

(∀y)ϕ(y, (β)y).

Hence

(∃β)(∀y)ϕ(y, (β)y).

Equation (4.5) follows from (4.4) by taking negations. �

We observe that every formula in the language of Second Order Arithmetic is logically equivalent
to some formula in prenex form. Using Lemma 4.1.2 it becomes equivalent to some formula of
the form

(∀α1)(∃α2) . . . (Qαn)(Q̆x)ϕ(α1, . . . , αn, x)

or

(∃α1)(∀α2) . . . (Q̆αn)(Qx)ϕ(α1, . . . , αn, x)

whereϕ(α1, . . . , αn, x) is quantifier free and̆Q denotes the quantifier which is dual toQ. Hence
every formula in the language of Second Order Arithmetic is equivalent to some analytical for-
mula.

4.2 Analytical relations

4.2.1 Definition 1) A relation isΠ1
n[A](Σ1

n[A]) iff it is definable with parameterχA by some
Π1
n– (Σ1

n–)formula. Again we writeΠ1
k andΣ1

k instead ofΠ1
k[∅] andΣ1

k[∅].
2) A relation is∆1

k[A] iff it is both Σ1
k[A] andΠ1

k[A].
3) A relation is analytical (inA) if it is in ∆1

k (∆1
k[A]) for somek.

A picture of the analytical hierarchy is given in Figure 4.2.1.

4.2.2 Remark By the considerations in the end of the previous section we get that a relation is
definable in second order arithmetic iff it is analytical.

To obtain the closure properties of analytical relations we begin with the lowest level.

4.2.3 Lemma The relations inΠ1
1[A] are closed under

• the positive boolean operations∧, ∨

• all N–quantifications

• ∀1–quantifications

• substitution with total functionals havingΠ1
1[A]–graphs

Proof: Let

P1(a) ⇔ (∀α)(∃y)Q1(α, y, a)

and

P2(a) ⇔ (∀β)(∃z)Q2(β, z, a)

beΠ1
1–relations. Then
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2

Figure 4.2.1: The Analytical Hierarchy

P1(a) ∧∨ P2(a) ⇔ (∀α)(∃y)Q1(α, y, a) ∧∨ (∀β)(∃z)Q2(β, z, a)

⇔ (∀α)(∀β)(∃y)(∃z) [Q1(α, y, a) ∧∨Q2(β, z, a)]

⇔ (∀γ)(∃u) [Q1((γ)0, (u)0, a) ∧∨Q2((γ)1, (u)1, a)] .

This gives the closure under positive boolean operations. Closure under∀1–quantification follows
from the quantifier contractions (4.3); closure under∀0–quantification is obtained by converting
it into a ∀1–quantifier according to (4.2) and then using quantifier contraction; closure under
∃0–quantification follows from the choice–principle (4.5).
Let’s turn to closure under substitution. For a total functionalF we get

F (a) 6= y ⇔ (∃x) [F (a) ' x ∧ x 6= y]

⇔ (∀x) [F (a) ' x⇒ x 6= y]

which shows thatGF ∈ ∆1
1[A] for Π1

1[A]– and forΣ1
1[A]–functionalsF (here we use thatΣ1

1[A]
has the dual closure properties ofΠ1

1[A]). For aΠ1
1[A]–relationP we obtain

P (a, F (a)) ⇔ (∃y) [F (a) ' y ∧ P (a, y)]

⇔ (∀y) [F (a) ' y ⇒ P (a, y)] .
(4.6)
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4. The Analytical Hierarchy

This shows thatΠ1
1[A] (as well asΣ1

1[A]) is closed under substitution with totalΠ1
1[A]–functionals.

�

By dualization we obtain from Lemma 4.2.3.

4.2.4 Lemma TheΣ1
1[A]–relations are closed under

• the positive boolean operations∧, ∨

• all N–quantifications

• ∃1–quantifications

• substitution with totalΠ1
1[A]–functionals

The∆1
1[A]–relations are closed under

• all boolean operations

• all N–quantifications

• substitution with totalΠ1
1[A]–functionals.

Using induction onk in the same way as we did it in the case of the arithmetical hierarchy gives
the positive closure properties of the levels of the analytical hierarchy as displayed in Figure 4.2.2.
To answer the obvious question whether theΠ1

k[A] andΣ1
k[A] form a proper hierarchy we check

Relation–class ¬ ∨ ∧ ∃< ∀< ∃0 ∀0 ∃1 ∀1 acceptable
universal

Substitution
with

primitive–
recursive

yes yes yes yes yes no no no no no primitive–recursive
functions

∆0
1

yes yes yes yes yes no no no no no computable
functionals

Σ0
1 no yes yes yes yes yes no yes no yes computable

functionals

Π0
1 no yes yes yes yes no yes no yes yes computable

functionals

∆0
k+1

yes yes yes yes yes no no no no no totalΣ0
k+1-

functionals

Σ0
k+1 no yes yes yes yes yes no no no yes totalΣ0

k+1-
functionals

Π0
k+1 no yes yes yes yes no yes no no yes totalΣ0

k+1-
functionals

∆1
0

yes yes yes yes yes yes yes no no no total arithmetical–
functionals

Π1
k+1 no yes yes yes yes yes yes no yes yes totalΠ1

k+1–
functionals

Σ1
k+1 no yes yes yes yes yes yes yes no yes totalΠ1

k+1–
functionals

∆1
k+1 no yes yes yes yes yes yes no no no totalΠ1

k+1–
functionals

analytical yes yes yes yes yes yes yes yes yes no total analytical–
functionals

Figure 4.2.2: Closure Properties of Relation–Classes

the universality of these classes.
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4.2. Analytical relations

4.2.5 Theorem The classesΠ1
k+1[A] andΣ1

k+1[A] are acceptable universal.

Proof: ForP ∈ Π1
1[A] we have

P (a) ⇔ (∀α)(∃x)R(a, α, x)

such that
{

(a, α) (∃x)R(a, α, x)
}

is Σ0
1[A]. By the universality ofΣ0

1[A] we therefore get an
indexe such that

(∃x)R(a, α, x) ⇔ (a, α) ∈WA,m,n+1
e .

We define

UΠ1
1[A],m,n :=

{
(e, a) (∀α)

[
(a, α) ∈WA,m,n+1

e

]}
. (4.7)

ThenUΠ1
1[A],m,n is by construction universal forΠ1

1[A]. We usually writea ∈ UΠ1
1[A],m,n

e instead
of (e, a) ∈ UΠ1

1[A],m,n. To see that it is also acceptable we do the following computation

(a, y1, . . . , yk) ∈ UΠ1
1[A],m+k,n

e ⇔ (∀α)
[
(a, α, ~y) ∈WA,m+k,n+1

e

]
⇔ (∀α)

[
(a, α) ∈WA,m,n

Sm,n+1
k (e,~y)

]
⇔ a ∈ UΠ1

1[A],m,n

Sm,n+1
k (e,~y)

.

SinceR ∈ Σ1
1[A] ⇔ ¬R ∈ Π1

1[A] we may put

UΣ1
1[A],m,n :=

{
(e, a) (∃α)

[
(a, α) /∈WA,m,n+1

e

]}
(4.8)

and obtain by duality thatUΣ1
1[A] is acceptable universal forΣ1

1[A]. �
Using induction onk we can lift Theorem 4.2.5 to all levels of the analytical hierarchy. We just
put

UΠ1
k+1[A],m,n :=

{
(e, a) (∀α)

[
(a, α) ∈ UΣ1

k[A],m,n+1
]}

(4.9)

and

UΣ1
k+1[A],m,n :=

{
(e, a) (∃α)

[
(a, α) ∈ UΠ1

k[A],m,n+1
]}
. (4.10)

Turning this into a theorem we get:

4.2.6 Theorem The classesΠ1
k+1[A] as well as the classesΣ1

k+1[A] are acceptable universal

for all k. The universal predicatesUΠ1
k+1[A] and UΣ1

k+1[A] are defined in (4.6) through (4.10).
Putting

U∆1
k+1[A],m,n := {(e, a) Seq(e) ∧ lh(e) = 2 ∧ ((e)0, a) ∈ UΣ1

k+1[A],m,n

∧ (∀b)
[
((e)0, b) ∈ UΣ1

k+1[A],m,n ⇔ ((e)1, b) ∈ UΠ1
k+1[A],m,n

]
}

we get also indices for∆1
k+1[A]–relations. Note, however, thatU∆1

k+1[A],m,n is not a∆1
k+1[A]–

relation.

To show that the analytical hierarchy does not collapse we need the following lemma.

4.2.7 Lemma For all k > 0 there is a relationKA
k such thatKA

k ∈ Π1
k[A] \ Σ1

k[A].

Proof: We use a diagonalization argument. Towards an indirect proof we assume thatΠ1
k[A] ⊆

Σ1
k[A].

Define
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4. The Analytical Hierarchy

KA
k :=

{
x x /∈ UΣ1

k[A],1,0
x

}
thenKA

k ∈ Π1
k[A] ⊆ Σ1

k[A]. Let e be aΣ1
k[A]–index forKA

k . Then

e ∈ KA
k ⇔ e ∈ UΣ1

k[A],1,0
e ⇔ e /∈ KA

k ,

which is absurd. �

4.2.8 Theorem For all k we have

• ∆1
k+1[A] $ Π1

k+1[A]

• ∆1
k+1[A] $ Σ1

k+1[A]

• Π1
k[A] ∪Σ1

k[A] $ ∆1
k+1[A].

Proof: By Lemma 4.2.7 we haveKA
k+1 ∈ Π1

k+1[A]\∆1
k+1[A] or¬KA

k+1 ∈ Σ1
k+1[A]\∆1

k+1[A],
respectively. Fork > 0 we putB :=

{
2e e ∈ KA

k

}
∪
{

2e+ 1 e /∈ KA
k

}
and getB ∈

∆1
k+1[A], but sinceKA

k ≤m B as well as¬KA
k ≤m B neitherB ∈ Π1

k[A] norB ∈ Σ1
k[A]

is possible. It remains the case ofk = 0. We have already seen that

A(ω) :=
{
x (x)0 ∈ A((x)1)

}
is not arithmetical. We give∆1

1[A]–definition ofA(ω). First we describe the jump–hierarchy. We
define

JHA(α) :⇔ (∀n)(∀x)[(α(x) 6= 0 ⇒ Seq(x) ∧ lh(x) = 2)

∧ α(〈n, x〉) ≤ 1

∧ (α(〈0, x〉) = 0 ⇔ x ∈ A)

∧ (α(〈n+ 1, x〉) = 0 ⇔ (∃x)(∃u)[Seq(s) ∧ lh(s) = (u)0

∧ (∀j < (u)0)((s)j = α(〈n, j〉) ∧ T2,0(x, x, s, (u)1))])]

Then we prove

JH(α) ∧ JH(β) ⇒ (∀n)(∀x) [α(〈n, x〉) = β(〈n, x〉)]

by induction onn. Hence

JH(α) ∧ JH(β) ⇒ α = β

and we see that{
x α(〈n+ 1, x〉) = 0

}
=
{
x (∃u)T1,1(x, x,

{
x α(〈n, x〉) = 0

}
, u)
}

= j(
{
x α(〈n, x〉) = 0

}
).

Therefore we obtain

n ∈ A(ω) ⇔ (∃α) [JHA(α) ∧ α(n) = 0]

⇔ (∀α) [JHA(α)⇒ α(n) = 0] .

SinceJHA(α) is arithmetical inA we see thatA(ω) is ∆1
1[A]. By Theorem 3.3.1, however,

A(ω) /∈ Π1
0[A] ∪ Σ1

0[A]. �
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5. The Theory of Countable Ordinals

In Chapter 3 we succeeded in characterizing the Arithmetical Hierarchy by iteration of the jump
operator. We indicated that iterating the jump infinitely often leads outside the Arithmetical Hier-
archy. We even proved that already itsω–fold iteration∅(ω) is outside the arithmetically definable
sets. We are going to study the effects of transfinite iterations of various operators. To prepare that
we need an introduction to the theory of transfinite numbers, i.e. ordinals. It has become common
to regard ordinals set–theoretical, i.e. as sets which are well–ordered by the membership relation
∈. In presence of the axiom of foundation any hereditarily transitive set is already an ordinal.
This is probably the easiest way to introduce ordinals. However, since we can restrict ourselves
to countable ordinals and don’t want to require too much pre–knowledge in Set Theory, we are
going to develop the theory of countable ordinals in a more old fashioned way. This should be
profitable even for somebody who already knows set–theoretical ordinals.

5.1 Ordinals as order–types

5.1.1 Definition LetN be some set.
1) LetR ⊆ N ×N be a binary predicate. For binary predicates we sometimes prefer the infix
notation, i.e. we writex R y instead of(x, y) ∈ R orR(x, y). We define

field(R) =
{
x (∃y) [x R y ∨ y R x]

}
(5.1)

and callfield(R) thefield of the predicateR. We put

x R6= y :⇔ x R y ∧ x 6= y (5.2)

and callR6= thestrict predicateassociated withR. In case thatR is irreflexive, i.e. if

• (∀x ∈ field(R)) [¬(x R x)],

R andR6= are the same predicates.
2) A predicate� ⊆ N ×N is apartial ordering if � is reflexive, anti–symmetrical and transi-
tive, i.e. if

• (∀x ∈ field(�)) [x � x]

• (∀x ∈ field(�))(∀y ∈ field(�)) [x � y ∧ y � x⇒ x = y]

and

• (∀x ∈ field(�))(∀y ∈ field(�))(∀z ∈ field(�)) [x � y ∧ y � z ⇒ x � z].

If field(�) ⊆ N we talk about acountable partial ordering.
3) A predicate� ⊆ N ×N is anorderingif � is a partial ordering which is linear, i.e. if

• (∀x ∈ field(�))(∀y ∈ field(�)) [x � y ∨ y � x].

For a partial–ordering� we denote its associated strict predicate by≺. Hence

x ≺ y ⇔ x � y ∧ x 6= y.

We call≺ a strict partial ordering. Vice versa we can associate a partial ordering

x � y :⇔ x ≺ y ∨ (x ∈ field(≺) ∧ x = y) (5.3)
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5. The Theory of Countable Ordinals

to every irreflexive and transitive predicate≺ ⊆ N ×N .
4) A predicateR ⊆ N ×N is well–foundedif every nonempty subset offield(R) possesses a
R–least element, i.e. if

(∀M) [M ⊆ field(R) ∧ M 6= ∅ ⇒ (∃x∈M)(∀y)(y R x⇒ y = x ∨ y /∈M)] .

5) A well–orderingis an ordering which is well–founded.
6) Two orderings�1 and�2 are equivalentif there is a strictly order–preserving map from
field(�1) ontofield(�2), i.e. if we have

f : field(�1)
onto−→ field(�2)

such that

(∀x ∈ field(�1))(∀y ∈ field(�1)) [x ≺1 y ⇒ f(x) ≺2 f(y)]

where≺1 and≺2 are the corresponding strict orderings as defined in (5.3).
By �1≡�2 we denote the equivalence of�1 and�2.

For well–founded predicatesR we have theprinciple of transfinite inductionalongR which says

(∀x) [(∀y)(y R6= x⇒ ϕ(y))⇒ ϕ(x)]⇒ (∀x)ϕ(x). (5.4)

To realize (5.4) observe that its premise entailsx /∈ field(R)⇒ ϕ(x). Thus assume{
x ¬ϕ(x)

}
∩ field(R) 6= ∅.

SinceR is well–founded we find az ∈
{
x ¬ϕ(x)

}
∩field(R) such that(∀y) [y R6= z ⇒ ϕ(y)].

This, however, impliesϕ(z) by the premise of (5.4). A contradiction. Another important prin-
ciple is that oftransfinite recursionalong a well–ordering�. LetG be a total functional. Then
there is a functionalF satisfying the equation

F (a, x) = G(a, λz ≺ x. F (a, z)) (5.5)

where

(λz ≺ x. F (a, z))(n) :=

{
F (a, n) if n ≺ x
0 otherwise.

The principle of transfinite recursion is provable within a framework of Set Theory. We will,
however, regard (5.5) as an axiom. But for computableG and decidable� we can prove that
there is a computable functionalF satisfying (5.5). We use the Recursion Theorem to obtain an
indexe such that

{e}m+1,n(a, x) ' G(a, λz ≺ x. {e}m+1,n(a, z)).

Now we show by transfinite induction along� that

(∀a)(∃y)[{e}m+1,n(a, x) ' y].

PuttingF := {e}m+1,n we have a computable solution of (5.5).
The following lemma is an immediate consequence of the definition of the equivalence of order-
ings.

5.1.2 Lemma The equivalence of orderings is a reflexive, transitive and symmetric relation.

5.1.3 Definition A countable ordinalis the equivalence class of a countable well–ordering.

We are going to denote ordinals by lower case Greek letters in the end of the alphabet, e.g.
σ, τ, ξ, µ, . . . Theorder–typeof a well–ordering≺ is the ordinal which is represented by≺. The
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order–type of≺ is often denoted byotyp(≺). The class of countable ordinals is denoted byOn.
We want to show that there is a strict well-ordering< on On. To define< we introduce some
notations.
A segmentof an ordering� is a setM ⊆ field(�) such that

(∀x ∈M)(∀z ∈ field(�)) [z � x⇒ z ∈M ] .

We talk about aproper segmentif M is a segment butM 6= field(�).
For an elementz ∈ field(�) we introduce the segment induced byz

��z =
{

(x, y) y ≺ z ∧ x � y
}
.

The segment��z of � is obviously always proper. Moreover we have

field(��z) =
{
x∈ field(�) x ≺ z

}
.

5.1.4 Definition Let σ, τ be ordinals. We say thatσ is less thanτ , written asσ < τ , if there
are well–orderings�σ and�τ representingσ andτ , respectively, and az ∈ field(�τ ) such that
�σ ≡ �τ�z, i.e.

σ < τ :⇔ (∃�σ ∈ σ)(∃�τ ∈ τ)(∃z ∈ field(�τ )) [�σ≡ �τ�z] . (5.6)

5.1.5 Theorem The relationσ < τ defined in (5.6) is an irreflexive well–ordering on the ordinals.

Proof: The proof is easy but a bit lengthy. Therefore we concentrate on the more tricky parts. If
�1≡�2,�3≡ �4 and�2≡ �3�z for somez ∈ field(�3), we get�1≡ �4�f(z) if f is an order–
isomorphism between�3 and�4. Hence (5.6) is well–defined. Irreflexivity and transitivity are
equally easy to check.
The most difficult part is to check linearity. Let�1 and�2 be two well–orderings such that
�1 6≡�2. We have to show that there is either az ∈ field(�1) such that�1�z ≡�2 or a z ∈
field(z2) such that�1≡ �2�z. Putting

f(x) := min
{
z ∈ field(�2) (∀y ≺ 1x) [f(y) ≺2 z]

}
we get a partial function

f : field(�1) −→p field(�2)

which is order–preserving by definition. By constructiondom(f) and rng(f) are segments of
�1 and�2, respectively. More precisely�1�dom(f) and�2�rng(f) are segments. But we will
often use the more sloppy way of talking as above. Since�1 6≡�2 eitherdom(f) or rng(f) has to
be proper. In the first case we get forz := min≺1

{
x∈ field(�1) x /∈ dom(f)

}
that�1�z ≡�2

and in the second�1≡ �2�z for z := min≺2

{
x∈ field(�2) x /∈ rng(f)

}
.

To see that< is well–founded onOn take someM ⊆ On such thatM 6= ∅. Assume thatM
does not possess a<–least element. Pick anyσ ∈ M and let� be a well–ordering representing
σ. Then there is aτ ∈ M such thatτ < σ. Therefore we find az0 ∈ field(�) such that��z0

representsτ . Assuming we already defined the sequence

z0 � z1 � . . . � zn
such thatτi := otyp(��zi) ∈ M for i = 0, . . . , n we find someτn+1 < τn in M and therefore
also somezn+1 ≺ zn such thatτn+1 = otyp(��zn+1). This gives an infinite strictly descending
sequencez0 � . . . � zn � . . . in field(�) which is impossible because

{
zi i ∈ N

}
⊆ field(�)

would not have a�–least element. �

We just used the fact that in a well–ordering there are no infinite strictly descending sequences.
This is in fact equivalent to being a well–ordering.
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5.1.6 Theorem A binary predicateR is well–founded iff there are no infiniteR6=–descending
sequences.

Proof: We have just seen that a well–founded predicate does not allow infinite strictly descend-
ing sequences. For the opposite direction assume that everyR–descending sequence is finite.
Towards an indirect proof letM be a nonempty subset offield(R) without R–least element.
Then we may choose somez0 ∈ M . Suppose that we already have chosenz0, . . . , zn ∈ M such
that

z0 � z1 � . . . � zn.

SinceM has noR–least element there is anzn+1 R6= zn and we may thus construct an infinite
R6=–descending sequence. �

If M ⊆ On is bounded, i.e. if there is someα ∈ On such that(∀ξ ∈M) [ξ ≤ α] then we define

supM := min
{
η ∈On (∀ξ ∈M) [ξ ≤ η]

}
. (5.7)

5.1.7 Theorem The classOn of countable ordinals is unbounded in the countable ordinals, i.e.
for every countable ordinalσ there is a countable ordinalτ such thatσ < τ .

Proof: Let σ ∈ On and� a well–ordering representingσ. Put

x ≺′ y :⇔ Seq(x) ∧ Seq(y) ∧ lh(x) = lh(y) = 2

∧ [(x)0 = 0 ∧ (y)0 = 0 ∧ (x)1 ≺ (y)1)

∨ ((x)0 = 0 ∧ (x)1 ∈ field(≺) ∧ (y)0 = 1 ∧ (y)1 = 1)],

i.e. we add a single point〈1, 1〉 on top of the well–ordering≺. Then we get

�≡ �′�〈1, 1〉.

Hence

σ = otyp(�) < otyp(�′) =: τ. �

Using Theorem 5.1.7 we define thesuccessor

σ + 1 := min
{
ξ ∈On σ < ξ

}
. (5.8)

We put

0 := minOn (5.9)

and get

0 = otyp(∅).

5.1.8 Definition An ordinalσ is asuccessor–ordinalif there is an ordinalτ such thatσ = τ + 1.
An ordinalσ is a limit–ordinal if σ 6= 0 andσ is not a successor ordinal. We denote the class of
limit ordinals byLim.

We obtain

λ ∈ Lim ⇔ λ 6= 0 ∧ (∀ξ < λ) [ξ + 1 < λ] (5.10)

becauseξ < λ implies ξ + 1 ≤ λ andξ + 1 = λ is excluded by the definition ofLim. An
equivalent formulation of (5.10) is

λ ∈ Lim ⇔ λ 6= 0 ∧ (∀ξ < λ)(∃η < λ) [ξ < η] . (5.11)
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Equation (5.11) follows immediately from (5.10) withξ + 1 as witness forη and the opposite
direction follows becauseξ < η < λ impliesξ + 1 ≤ η < λ and< is transitive on the countable
ordinals.
We use (5.11) to prove

ω := otyp(<) ∈ Lim (5.12)

where< stands for the standard ordering of the natural numbers. It is obvious thatω 6= 0 and for
σ < ω we obtain ann ∈ N such thatσ = otyp(<�n) < otyp(<�n+ 1) < ω. Henceω ∈ Lim by
(5.11)
Ordinals< ω arefinite. Finite ordinals are represented by<�n for n ∈ N, i.e. by orderings of the
form 0 < 1 < . . . < n− 1. Therefore we often identify finite ordinals and natural numbers.
For a well–ordering� andx ∈ field(�) we define

otyp�(x) := otyp(��x). (5.13)

Then we obtain

otyp�(x) = sup
{

otyp�(y) + 1 y ≺ x
}
. (5.14)

To prove (5.13) we observe thatσ := sup
{

otyp�(y) + 1 y ≺ x
}
≤ otyp�(x). If we assume

σ < otyp�(x) = otyp(��x) we get ay0 ≺ x such thatσ = otyp�(y0) and this leads to

σ = otyp�(y0) < otyp�(y0) + 1 ≤ σ

contradicting that< is irreflexive onOn.
In a similar way we show

otyp(�) = sup
{

otyp�(y) + 1 y ∈ field(�)
}
. (5.15)

Puttingσ := sup
{

otyp�(y) + 1 y ∈ field(�)
}

we obviously haveσ ≤ otyp(�). The assump-
tion σ < otyp(�) leads again to the contradiction that then there is ay ∈ field � such that

σ = otyp�(y) < otyp�(y) + 1 ≤ σ. �

Generalizing (5.14) and (5.15) we define

otypR(x) := sup
{

otypR(y) + 1 y R6= x
}

(5.16)

and

otyp(R) := sup
{

otypR(y) + 1 y ∈ field(R)
}

(5.17)

for arbitrary well-founded orderings� by transfinite recursion alongR.
We close this section by examining the complexity of the notions of partial–ordering, ordering and
well–ordering in the Analytical Hierarchy. We express a binary predicateR by the characteristic
function of its contractions

〈R〉 :=
{
〈x, y〉 (x, y) ∈ R

}
.

We define

CF(α) :⇔ (∀x) [α(x) ≤ 1 ∧ (α(x) = 0⇒ Seq(x) ∧ lh(x) = 2)]

PO(α) :⇔ CF(α)

∧ (∀x)(∀y) [α(〈x, y〉) = 0⇒ α(〈x, x〉) = 0 ∧ α(〈y, y〉) = 0]

∧ (∀x)(∀y) [α(〈x, y〉) = 0 ∧ α(〈y, x〉) = 0⇒ x = y]

∧ (∀x)(∀y)(∀z) [α(〈x, y〉) = 0 ∧ α(〈y, z〉) = 0⇒ α(〈x, z〉) = 0] ,
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5. The Theory of Countable Ordinals

LO(α) :⇔ PO(α) ∧ (∀x)(∀y)[α(〈x, x〉) = 0 ∧ α(〈y, y〉) = 0

⇒ α(〈x, y〉) = 0 ∨ α(〈y, x〉) = 0]

WF(α) :⇔ (∀β∗)[(∀x)(β∗(x) = 0⇒ α(〈x, x〉) = 0) ∧ (∃x) [β∗(x) = 0]

⇒ (∃z)(β∗(z) = 0 ∧ (∀y)[α(〈y, z〉) = 0⇒ y = z ∨ β∗(y) = 1])]

and finally

WO(α) :⇔ LO(α) ∧WF(α).

ThenPO(α) expresses thatα is the characteristic function of the contraction of a partial–ordering,
LO(α) thatα is the characteristic function of the contraction of an ordering,WF(α) expresses
that α is the characteristic function of the contraction of a well-founded binary predicate and
WO(α) denotes thatα is the characteristic function of the contraction of a well–ordering. We
moreover have

5.1.9 Theorem The relationsPO(α), LO(α) are Π0
1 and the relationsWF(α) andWO(α) are

Π1
1.

5.2 Trees

An extremely important tool in the investigation of hyperarithmetical set are trees. We are going
to introduce trees as sets (of codes of) finite sequences which are closed under initial segments.

5.2.1 Definition Let s, t ∈ N. We put

s ⊆ t :⇔ Seq(s) ∧ Seq(t) ∧ lh(s) ≤ lh(t) ∧ (∀i < lh(s)) [(s)i = (t)i] (5.18)

and say thats is aninitial segmentof t.
A tree is a nonempty setB ⊆ Seq which is closed under initial segments, i.e. we put

T(B) :⇔ (∀s) [s ∈ B ⇒ Seq(s)] ∧ B 6= ∅ ∧ (∀s)(∀t) [t ∈ B ∧ s ⊆ t⇒ s ∈ B] .

For any treeB we have〈〉 ∈ B by (5.19). We call〈〉 the root of the treeB. Trees should be
visualized as shown in Figure 5.2.1.
Notice that writingT(B) as an analytical formula, i.e.

T(α) :⇔ (∀x) [α(x) ≤ 1 ∧ (α(x) = 0→ Seq(x))] ∧ α(〈〉) = 0

∧ (∀x)(∀y) [α(x) = 0 ∧ y ⊆ x→ α(y) = 0] ,
(5.19)

shows that it is a(0, 1)–aryΠ0
1–predicate.

If s_〈x〉 ∈ B then we also haves ∈ B. We calls_〈x〉 an immediateB–predecessorof s ands
the immediateB–successorof s_〈x〉.
A path ina treeB is a subsetP ⊆ B which is a linearly ordered by⊆ and closed under immediate
successors. Apath througha treeB is a path inB which also satisfies

s ∈ P ∧ (∃x) [s_〈x〉 ∈ B] ⇒ (∃x) [s_〈x〉 ∈ P ] .

A tree iswell–foundedif it does not contain infinite paths, i.e. if

T(B) ∧ (∀β)(∃z)
[
β(z) /∈ B

]
.

Expressing that by an analytical formula we put

WT(α) :⇔ T(α) ∧ (∀β)(∃z)
[
α(β(z)) = 1

]
. (5.20)

From (5.19) and (5.20) we have the following lemma.
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〈0, 0, 0, 1, 2〉

〈0, 0, 0, 0, 1, 3〉
〈0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1〉

〈0, 0, 0, 0, 0〉

〈0, 0, 0, 0〉

〈0, 0, 0〉

〈0〉

〈0, 0〉

〈0, 0, 0, 0, 1〉

〈 〉

〈0, 1〉 〈0, 2〉 〈0, 3〉 〈0, 4〉 〈0, 5〉

Figure 5.2.1: Visualization of a tree

5.2.2 Lemma The(0, 1)–ary relationsT andWT areΠ0
1 andΠ1

1, respectively.

5.2.3 Theorem (Bar induction) For well–founded trees we have theprinciple of bar induction,
i.e. ifB is a well-founded tree we have

(BI) (∀s) [(∀x)(s_〈x〉 ∈ B ⇒ ϕ(s_〈x〉))⇒ ϕ(s)] ⇒ ϕ(〈〉).

Proof: We prove

(∀s) [(∀x)(s_〈x〉 ∈ B ⇒ ϕ(s_〈x〉))⇒ ϕ(s)] ⇒ (∀s ∈B)ϕ(s). (5.21)

Towards an indirect proof assume

(∀s) [(∀x)(s_〈x〉 ∈ B ⇒ ϕ(s_〈x〉))⇒ ϕ(s)] (i)

and

s ∈ B ∧ ¬ϕ(s)

for somes. We are going to construct an infinite paths0, s1, . . . in B. Put

s0 := s

and assume thats0, . . . , sn are already defined such that

si ∈ B ∧ ¬ϕ(si) ∧ “si immediately succeedssi+1”

holds fori = 0, . . . , n or i = 0, . . . , n− 1, respectively. But then there is anx such that

s_n 〈x〉 ∈ B ∧ ¬ϕ(s_n 〈x〉)

because otherwise we getϕ(sn) by (i). Putting

sn+1 := s_n 〈x〉

we obtain an infinite paths0, s1, . . . in B which contradicts the well-foundedness ofB. �
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There should be a connection between bar induction and transfinite induction along well–founded
predicates. To make this explicit we introduce the predicate

s ≤∗B t :⇔ s ∈ B ∧ t ∈ B ∧ t ⊆ s. (5.22)

We denote the strict version of≤∗B by <∗B. The predicate≤∗B is obviously the reflexive and
transitive hull of the immediateB–successor predicate. Therefore any infinite path inB induces
an infinite<∗B–descending sequence. Conversely, every<∗B–descending sequence is an infinite
path inB. Together with Theorem 5.1.6 we get

5.2.4 Theorem A treeB is well–founded iff the predicate≤∗B is well–founded.

According to Theorem 5.2.4 we may regard bar induction as a special case of transfinite induction.
For a treeB and a nodes ∈ B we may regard thesubtreeof B aboves which is defined by

B�s :=
{
t ∈ Seq s_t ∈ B

}
. (5.23)

Then we have

T(B) ∧ s ∈ B ⇒ T(B�s)

and obviously also

WT(B) ∧ s ∈ B ⇒ WT(B�s).

We call a treeB finitely branchingif every node inB has only finitely many predecessors, i.e. if

(∀s ∈B)
[
|
{
x s_〈x〉 ∈ B

}
| < ℵ0

]
where|M | denotes the cardinality of a setM andℵ0 the first infinite cardinal. An important
property of finitely branching trees is K̈ONIG’s lemma.

5.2.5 Lemma (KÖNIG’s Lemma) Any tree which is finitely branching but infinite possesses an
infinite path.

Proof: We assume thatB is finitely branching but infinite. We construct an infinite paths0, s1, . . .
in B. Put

s0 = 〈〉

and assume thats0, . . . , sn are defined such that

si ∈ B ∧ |B�si| ≥ ℵ0

holds fori = 0, . . . , n. Since

ℵ0 ≤ |B�sn| =
∣∣{〈〉} ∪ ⋃

x∈N

{
B�s_n 〈x〉 s_n 〈x〉 ∈ B

}∣∣
and ∣∣{x s_n 〈x〉 ∈ B

}∣∣ < ℵ0

there is anx such that

s_n 〈x〉 ∈ B ∧ |B�s_n 〈x〉| ≥ ℵ0.

Defining

sn+1 := s_n 〈x〉

we obtain an infinite path. �
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We call a treeboundedly branchingif there is ak ∈ N such that

(∀s ∈B)(∀x) [s_〈x〉 ∈ B ⇒ x ≤ k] . (5.24)

We callk abranching bound. If B is boundedly branching with branching boundk we obviously
have

(∀s ∈B)(∀i < lh(s)) [(s)i ≤ k] .

Every boundedly branching tree is finitely branching. The important fact about boundedly branch-
ing trees is that their finiteness can be expressed by an arithmetical formula. For a boundedly
branching treeB we get

B is finite ⇔ (∃n)(∀s) [Seq(s) ∧ lh(s) = n⇒ s /∈ B] . (5.25)

Combining (5.25) with K̈ONIG’s Lemma we get

5.2.6 Theorem (Finiteness Theorem)LetB be a boundedly branching tree. Then

(∀β)(∃z)
[
β(z) /∈ B

]
⇔ (∃n)(∀s)[Seq(s) ∧ lh(s) = n⇒ s /∈ B]. (5.26)

The importance of the Finiteness Theorem is that it shows that for boundedly branching trees the
Π1

1–property of being well-founded can be expressed arithmetically.
A binary tree is a boundedly branching tree with branching bound1. The Finiteness Theorem for
binary trees is also known as Weak KÖNIG’s Lemma.
We also want to establish a connection between well–founded tress and ordinals. The key here is
Theorem 5.2.4 and the definitions in (5.16) and (5.17), respectively.

5.2.7 Definition LetB be a well-founded tree. Fors ∈ B we define

otypB(s) := otyp≤∗B (s)

and

otyp(B) = otypB(〈〉).

By (5.16) we have

otypB(s) = sup
{

otypB(t) + 1 t <∗B s
}
. (5.27)

For t <∗B s, however, we find anx such thatt ≤∗B s_〈x〉 <∗B s. Because ofotypB(t) ≤
otypB(s_〈x〉) we obtain from (5.27)

otypB(s) = sup
{

otypB(s_〈x〉) + 1 s_〈x〉 ∈ B
}
. (5.28)

Sinceotyp(B) = otypB(〈〉) = sup
{

otyp≤∗B (s) + 1 〈〉 <∗B s
}

we get

otyp(B) = otyp(≤∗B�〈〉). (5.29)

The tree predicate≤∗B is a partial ordering. However, sometimes it is desirable to have an
ordering on a tree. We are going to linearize the order≤∗B using an idea which goes back to
KLEENE and BROUWER. To their honor this ordering is called KLEENE–BROUWER–ordering.

5.2.8 Definition (KLEENE–BROUWER–ordering) For a sequence numbers andx < lh(s) put

s�x := 〈(s)0, . . . , (s)x−· 1〉.

LetB be a tree. Fors, t in B we define

s <KB
B t :⇔ t ( s ∨ (∃x < lh(s)) [s�x = t�x ∧ (s)x < (t)x] .
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5. The Theory of Countable Ordinals

The predicate<KB
B is irreflexive. The associated partial order is

s ≤KB
B t :⇔ s <KB

B t ∨ (s ∈ B ∧ s = t).

A visualization of the KLEENE–BROUWER–ordering is given in Figure 5.2.2.

s6

s1 s2

s5

s3

s4

Figure 5.2.2: Visualization of the KLEENE–BROUWER–ordering
The nodess1,. . . ,s6 are in increasing order

5.2.9 Lemma For any treeB the predicate≤KB
B is an ordering onB,<KB

B is a strict ordering on
B.

Proof: It suffices to show that≤KB
B is irreflexive, transitive and linear. Irreflexivity follows by

definition. Transitivity is easy but a bit cumbersome because of the many cases one has to con-
sider. A proof is sketched in Figure 5.2.3. To check linearity notice that for anys 6= t ∈ B there
is a maximalx such thats�x = t�x. If t�x = s thens ⊆ t, hencet ≤KB

B s and if s�x = t then
t ⊆ s, hences ≤KB

B t. Otherwise we either have(s)x < (t)x and obtains <KB
B t or (s)x > (t)x

and obtaint <KB
B s. �

5.2.10 TheoremA treeB is well–founded iff itsKLEENE–BROUWER–ordering≤KB
B is well–

founded.

Proof: We start with the easy direction. Assume thatB is not well-founded. Then there exists an
infinite paths0, s1, . . . in B. According to Definition 5.2.8 this impliess0 >

KB
B s1 >

KB
B . . . and

we obtain an infinite<KB
B –descending sequence which, according to Theorem 5.1.6 contradicts

the well–foundedness of≤KB
B .

For the opposite direction we use KÖNIG’s Lemma. Let

s0 >
KB
B s1 >

KB
B . . . >KB

B si >
KB
B si+1 . . .

be an infinite<KB
B –descending sequence and putS :=

{
si i ∈ N

}
. Define
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w

v

u
v

v

w

u

w

v

u

w

u

v

w uu
v

w

Figure 5.2.3: How to proveu <KB
B v <KB

B w ⇒ u <KB
B w in the KLEENE–BROUWER–ordering

B′ :=
{
t Seq(t) ∧ (∃s ∈ S) [t ⊆ s]

}
.

ThenB′ ⊆ B is obviously an infinite tree. We claim thatB′ is finitely branching. Chose any
t ∈ B′ and regard

Mt :=
{
x t_〈x〉 ∈ B′

}
.

For anyx ∈Mt there is ansx ∈ S such thatt_〈x〉 ⊆ sx and forx, y in Mt we getsx <KB
B sy if

x < y. The set
{
r ∈ S s <KB

B r
}

, however, is finite by construction ofS. ThereforeMt is finite
for any t ∈ B′. It follows from KÖNIG’s Lemma thatB′ contains an infinite pathP . But P is
also a path inB. HenceB is not well–founded. �

5.3 Recursive Ordinals

This lecture is only concerned with countable ordinals. However, we don’t want to hide that there
are also bigger – uncountable – ordinals. Usually one puts

ω1 := sup
{
σ σ is a countable ordinal

}
.

We have seen in Theorem 5.1.7 that the countable ordinals are unbounded in the countable ordi-
nals. Thereforeω1 can’t be a countable ordinal itself. In this section we will introduce an even
smaller class of ordinals.

5.3.1 Definition An ordinal is called recursive (inA) if it is represented by some (inA) decidable
countable well-ordering. We define

ωCK
1 := sup

{
σ ∈On σ is recursive

}
and

ωCK
1 [A] := sup

{
σ ∈On σ is recursive inA

}
.
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It is obvious that we haveωCK
1 ≤ ω1 andωCK

1 [A] ≤ ω1 for any setA ⊆ N. Observe that the (inA)
recursive ordinals form a segment of the ordinals. To see that letσ be a (in A) recursive ordinal
and� a (in A) decidable well–ordering representingσ. For τ < σ there is az ∈ field(�) such
that��z representsτ . Since��z is again decidable (inA) the ordinalτ is recursive (inA), too.
Notice that we didnot claim that the relationτ < σ is decidable.

5.3.2 Lemma The ordinalωCK
1 is a limit ordinal which is not recursive.

Proof: Letσ be a recursive ordinal and� a decidable well-ordering representingσ. We construct
a well–ordering�′ as in the proof of Theorem 5.1.7. Obviously�′ is again decidable. Therefore
ωCK

1 cannot be recursive and also not a successor ordinal. �

As a consequence of Lemma 5.3.2 and the fact that the (in A) recursive ordinals form a segment
of the countable ordinals we get

ωCK
1 = min

{
ξ ∈On ξ is not recursive

}
(5.30)

and

ωCK
1 [A] = min

{
ξ ∈On ξ is not recursive inA

}
(5.31)

which entails

5.3.3 Lemma An ordinal σ is recursive iffσ < ωCK
1 . An ordinalσ is recursive inA iff σ <

ωCK
1 [A].

The ordinalωCK
1 is therefore the least ordinal which cannot be represented by a decidable well–

ordering. In that senseωCK
1 is the “effective” counterpart of the ordinalω1 which is the least

ordinal which cannot be represented by a countable well–ordering.
We are going to introduce thelight faceversions of the relationsCF, PO, LO,WF, T andWT.
We put

CF (e) :⇔ “e is index of a characteristic function”

PO(e) :⇔ “e is index of a partial ordering”

POA(e) :⇔ “e isA–index of a partial ordering”

LO(e) :⇔ “e is index of an ordering”

LOA(e) :⇔ “e isA–index of an ordering”

WF (e) :⇔ “e is index of a well–founded binary predicate”

WFA(e) :⇔ “e isA–index of a well–founded binary predicate”

WO(e) :⇔ “e is index of a well–ordering”

WOA(e) :⇔ “e isA–index of a well–ordering”

Tree(e) :⇔ “e is index of a tree”

TreeA(e) :⇔ “e isA–index of a tree”
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WT (e) :⇔ “e is index of a well–founded tree”

WTA(e) :⇔ “e isA–index of a well–founded tree”

All these predicates are arithmetical or analytical. To check their complexity recall that

{e}n,0(~x) ' y ⇔ (∃u)
[
Tn,0(e, ~x, u) ∧ U(u) = y

]
.

Hence
{

(e, ~x, y) {e}n,0(~x) ' y
}
∈ Σ0

1. Therefore we get

CF (e) ⇔ (∀x)(∀y)(∃z)
[
{e}2,0(x, y) ' z ∧ z ≤ 1

]
and

PO(e) ⇔ CF (e)

∧ (∀x)(∀y)
[
{e}2,0(x, y) = 0 → {e}2,0(x, x) = 0 ∧ {e}2,0(y, y) = 0

]
∧ (∀x)(∀y)

[
{e}2,0(x, y) = 0 ∧ {e}2,0(y, x) = 0 → x = y

]
∧ (∀x)(∀y)(∀z)

[
{e}2,0(x, y) = 0 ∧ {e}2,0(y, z) = 0 → {e}2,0(x, z) = 0

]
.

as well as

LO(e) ⇔ PO(e)

∧ (∀x)(∀y)[({e}2,0(x, x) = 0 ∧ {e}2,0(y, y) = 0)

→ ({e}2,0(x, y) = 0 ∨ {e}2,0(y, x) = 0)].

similarly we get

Tree(e) ⇔ (∀x)(∃z)
[
{e}1,0(x) ' z ∧ z ≤ 1

]
∧ {e}1,0(〈〉) = 0

∧ (∀x)
[
{e}1,0(x) = 0→ Seq(x)

]
∧ (∀x)(∀y)

[
{e}1,0(x) = 0 ∧ y ⊆ x→ {e}1,0(y) = 0

]
.

These predicates are arithmetical. As examples for analyitcal predicates we take

WF (e) ⇔ CF (e)

∧ (∀α){(∃x)(α(x) = 0) ∧ (∀x)
[
α(x) = 0→ {e}2,0(x, x) = 0

]
→ (∃z)

[
α(z) = 0 ∧ (∀u)({e}2,0(u, z) = 0→ u = z ∨ α(u) = 1)

]
}.

Therefore we have

WO(e) ⇔ LO(e) ∧ WF (e)

and

WT (e) ⇔ Tree(e) ∧ (∀α)(∃z)
[
{e}1,0(α(z)) = 1

]
.

Summing up we get the following theorem.

5.3.4 Theorem The predicatesPO(e), LO(e) andTree(e) are all Π0
2. The predicatesWF(e),

WO(e) andWT(e) areΠ1
1.

5.3.5 Definition If WO(e) we put

otypWO(e) := otyp(
{

(x, y) {e}2,0(x, y) = 0
}

).

ForWO(e)A let

otypWOA(e) := otyp(
{

(x, y) {e}A,2,0(x, y) = 0
}

).
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ForWT (e) we put

otypTree(e) := otyp(
{
x {e}1,0(x) = 0

}
).

And for WTA(e) we let

otypTreeA(e) := otyp(
{
x {e}A,1,0(x) = 0

}
).

5.4 KLEENE’s Ordinal Notations

Before we look closer at the connections between recursive ordinals and the ordinals which are
given by well–founded trees we introduce another form of ordinals via effective abstract notations.
This approach is due to S. C. KLEENE. The idea is to introduce simultaneously a setO of ordinal
notations together with an evaluation function|·|O:O −→ On and an order relation<O such
thata <O b ⇒ |a|O < |b|O.

5.4.1 Definition We define the setO of ordinal notations, theO–evaluation| |O and the order–
predicate<O onO simultaneously by the following clauses.

1) 1 ∈ O, |1|O := 0 and1 ≤O a for all a ∈ O.

2) If a ∈ O then2a ∈ O, |2a|O := |a|O + 1 andc <O 2a for all c ≤O a.

3) Lete be the index of a computable function such that

(∀x)
[
{e}1,0(x) ∈ O ∧ {e}1,0(x) <O {e}1,0(x+ 1)

]
then3 · 5e ∈ O, |3 · 5e|O = sup

{
|{e}1,0(n)|O n ∈ N

}
andc <O 3 · 5e iff there is an

n ∈ N such thatc ≤O {e}1,0(n).

An ordinalσ is KLEENE–recursiveiff there is ana ∈ O such thatσ = |a|O.

As a first consequence of Definition 5.4.1 we obtain

5.4.2 Lemma The predicate<O is transitive onO and we have

a <O b ⇒ |a|O < |b|O.

Proof: We show

a <O b ∧ b <O c ⇒ a <O c

by induction on|c|O.
If c = 1 we have nothing to show.
If c = 2c0 thena <O b ≤O c0 and|c0|O < |c|O. By the induction hypothesis we geta ≤O c0
which entailsa <O c.
If c = 3 · 5e we geta <O b ≤O {e}1,0(n) for somen ∈ N. Then|{e}1,0(n)|O < |c|O. Hence
a ≤O {e}1,0(n) by induction hypothesis which impliesa <O c.
The second claim is an easy consequence of the definition which we leave as an exercise.�
As a consequence of the second claim in Lemma 5.4.2 we get

5.4.3 Corollary The predicate<O onO is well–founded.

Proof: Any infinite <O–descending sequence induces by Lemma 5.4.2 an infinite descending
sequence in the ordinals. �
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5.4.4 Theorem TheKLEENE–recursive ordinals form a segment of the countable ordinals, i.e. if
a ∈ O andσ < |a|O then there is ab ∈ O such thatσ = |b|O.

Proof: We induct on|a|O. Fora = 1 we have nothing to show. Fora = 2a0 andσ < |a|O we
getσ ≤ |a0|O. Therefore we either haveσ = |a0|O or obtain ab ∈ O such thatσ = |b|O by the
induction hypothesis.
Fora = 3 · 5e andσ < |a|O we getσ < |{e}1,0(n)| for somen ∈ N. Then there is ab ∈ O such
thatσ = |b|O by induction hypothesis. �

5.4.5 Lemma There is a binary computable function+O such that for alla, b, c ∈ N the follow-
ing hold

1) (a ∈ O ∧ b ∈ O) ⇔ a+O b ∈ O

2) (a ∈ O ∧ b ∈ O) ⇒ |a+O b|O = |a|O + |b|O
3) (a ∈ O ∧ b ∈ O ∧ b 6= 1) ⇒ a <O a+O b

4) (a ∈ O ∧ c <O b) ⇔ a+O c <O a+O b

5) (a ∈ O ∧ b = c ∈ O) ⇔ a+O b = a+O c

Proof: Let h be a recursive function such that for alle, a, d, n ∈ N

{h(e, a, d)}(n) ' {e}(a, {d}(n))

holds. By using different indices for the same function we are able to makeh one–one. Define

g(e, a, b) =


a if b = 1
2{e}(a,y) if b = 2y 6= 1
3 · 5h(e,a,y) if b = 3 · 5y
7 otherwise,

and use the Recursion Theorem to obtain an indexe such that

{e}(a, b) ' g(e, a, b). (i)

Putting

a+O b := {e}(a, b)

we get a partial–computable function for which one easily sees by induction thata+O b is defined
for all a, b ∈ O. Surprisingly, the new function is total. Supposea+O b is not defined. Then, as
h is total, we haveb = 2y 6= 1 for somey < b. By induction onN we can convince ourselves
that+O is total.
The rest of the proof, being an interesting but lengthy exercise in induction, is left to the reader.
There is only one step of the proof whereh is required to be one–one. �
We postpone the study of the complexities of the setO and the predicate<O until chapter 7
and devote the rest of this section to the study of the connections between the different notions
of recursive ordinals we just introduced. The easiest connection to establish is the one between
decidable well–founded trees and recursive ordinals.

5.4.6 Lemma There is a computable functionf such that for allee ∈ N

WT(e) ⇔ WO(f(e))

and

WT(e) ⇒ WO(f(e)) ∧ otypTree(e) ≤ otypWO(f(e)).
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The ordertype of a decidable tree is therefore a recursive ordinal.

Proof: If B is any decidable tree then the associated KLEENE–BROUWER–ordering≤KB
B is also

decidable. Moreover, an index for≤KB
B is effectively computable from an index ofB. Since

s <∗B t entailss <KB
B t we get by induction onotypB(t)

otypB(t) = sup
{

otypB(s) + 1 s <∗B t
}
≤ sup

{
otyp≤KB

B
(s) + 1 s <KB

B t
}

= otyp≤KB
B

(t).

Therefore we obtain together with Lemma 5.3.3 that the ordertypes of decidable trees are recur-
sive ordinals.
Unfortunately it is not sufficient to takef as the function that takes eache ∈ N to an index of the
KLEENE–BROUWER–ordering induced by{e}: If e is the characteristic function of a finite set of
sequences that is not closed under initial segments then<KB

B may still be a well-ordering (take for
exampleB := {〈〉, 〈0, 0〉}). Fortunately we can overcome this obstacle. ForB ⊆ N we put

s <MM
B t :⇔ s <KB

B t ∨ 〈〉 /∈ B ∨ [t ∈ B ∧ (∃t0⊆t)(t0 /∈ B)] .

Obviously, ifB is a tree, then<MM
B =<KB

B holds. Furthermore, it is not hard to see that<MM
B is not

well–founded ifB is not a tree. So, we just have to letf be the (computable) function that takes
eache ∈ N to an index of the induced<MM–ordering. Note that{e} is total iff {f(e)} is. �

The other connections are a bit more complicated. As an auxiliary lemma we need the following
Recursion Lemmawhich sometimes is also calledDefinition by bar recursion. Observe that, for
a relationR and a partial–computable functionalH, the validity ofR(b,H(a)) impliesH(a)↓.

5.4.7 Lemma (Recursion Lemma)LetR be an(m+ 2, n)-ary relation and≺ be an irreflexive
well–founded predicate. For any(m+ 2, n)–ary inA partial–computable functionalH such that

(∀a)(∀e)(∀x ∈ field(≺))
[
(∀y≺ x)R(a, y, {e}A,m+1,n(a, y)) ⇒ R(a, x,H(a, x, e))

]
(5.32)

there is an inA partial–computable functionalF such that

(∀a)(∀x ∈ field(≺)) [R(a, x, F (a, x))] . (5.33)

If H is total, then so isF .

Proof: We use the Recursion Theorem to obtain anA–indexf with

{f}A(a, x) ' H(a, x, f). (i)

We show

(∀a)(∀x ∈ field(≺))R(a, x, {f}A(a, x))

by transfinite induction along≺. We have

(∀a)(∀y ≺ x)R(a, y, {f}A(a, y)) (ii)

by the induction hypothesis. Then by (i) and (5.32) we obtain from (ii)

R(a, x,H(a, x, f))

which is

R(a, x, {f}A(a, x)).

PuttingF := {f}A finishes this proof. �

The Recursion Lemma is the main tool in the proof of the following theorem which establishes the
connections between recursive ordinals, order–types of decidable trees and KLEENE–recursive
ordinals.
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5.4.8 Theorem There are computable functionsf andg such that

a ∈WT ⇒ f(a) ∈WO ∧ otypTree(a) ≤ otypWO(f(a)) (5.34)

and

a ∈ O ⇒ g(a) ∈WT ∧ |a|O = otypTree(g(a)). (5.35)

For a ∈ WO let� be the induced well–ordering. There exists a partial–computable functionh
with

(∀x ∈ field(�)) [h(x) ∈ O ∧ otyp�(x) ≤ |h(x)|O] . (5.36)

Additionally we get

a ∈WO ⇒ (∃b ∈O)
[
otypWO(a) ≤ |b|O

]
. (5.37)

Proof: Equation (5.34) is Lemma 5.4.6.
To show (5.35) we use the Recursion Lemma along the well–founded predicate<O. We assume
a ∈ O and the recursion hypothesis

(∀x<O a)
[
{e}1,0(x) ∈WT ∧ |x|O = otypTree({e}1,0(x))

]
and define a computable functionG such that

G(e, a) ∈WT ∧ |a|O = otypTree(G(e, a)). (i)

We put

G(e, a) :=


index of{〈〉} if a = 1
index of{〈〉} ∪

{
〈0〉_s {{e}1,0(y)}1,0(s) = 0

}
if a = 2y 6= 1

index of{〈〉} ∪
{
〈n〉_s {{e}1,0({y}1,0(n))}1,0(s) = 0

}
if a = 3 · 5y

0 otherwise

The functionG satifies (i) by construction. We may therefore apply the Recursion Lemma to
obtain a computable functiong such that (5.35) holds.
We want to use the Recursion Lemma to define a partial–computable functionh such that (5.36)
holds. We assumex ∈ field(≺) and the recursion hypothesis

(∀z ≺ x)
[
{e}1,0(z) ∈ O ∧ otyp�(z) ≤ |{e}1,0(z)|O

]
(ii)

and have to define a partial–computable functionH such that

H(e, x) ∈ O ∧ otyp�(x) ≤ |H(e, x)|O. (iii)

Here, however, we encounter the difficulty that we cannot in general decide whetherotyp�(x) ∈
Lim. As a remedy we use a trick. We introduce a new well–ordering�′ which is the reflexive
hull of the predicate defined by

a ≺′ b :⇔ Seq(a) ∧ Seq(b) ∧ lh(a) = lh(b) = 2

∧ [(a)0 ≺ (b)0 ∨ ((a)0 = (b)0 ∧ (a)0 � (a)0 ∧ (a)1 < (b)1)] .

The Ordering�′ is again decidable and a well-ordering such thatotyp(�) ≤ otyp(�′). (It
is otyp(�′) = ω · otyp(�) for those who know ordinal arithmetic.) The ordering�′ has the
advantage that we can decide whetherx ∈ field(�′) is a limit point. We have

otyp�′(x) ∈ Lim ⇔ (x)0 6= 0 ∧ (x)1 = 0

where we assume without loss of generality that0 is the�–least element. Moreover we can also
compute a fundamental sequence forotyp�′(〈x, 0〉). We put

F (x, 0) := 〈0, 0〉 (iv)
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and

F (x, n+ 1) :=

{
〈n, 0〉 if (F (x, n))0 ≺ n ≺ x
〈(F (x, n))0, (F (x, n))1 + 1〉 otherwise.

ThenF is a computable function. We have

(∀n) [F (x, n) ≺′ F (x, n+ 1)] (v)

and prove

x 6= 0 ⇒ (∀n) [F (x, n) ≺′ 〈x, 0〉] .

by induction onn. For n = 0 this follows fromx 6= 0 and (iv). From the induction hypoth-
esisF (x, n) ≺′ 〈x, 0〉 we get(F (x, n))0 ≺ x and obtainF (x, n + 1) = 〈n, 0〉 ≺′ 〈x, 0〉 if
(F (x, n))0 ≺ n ≺ x orF (x, n+ 1) = 〈(F (x, n))0, (F (x, n))1 + 1〉 ≺′ 〈x, 0〉 otherwise.
Hence

sup
{

otyp�′(F (x, n)) n ∈ N
}
≤ otyp�′(〈x, 0〉). (vi)

To obtain equalitity in (vi) we assume〈y, n〉 ≺′ 〈x, 0〉 and show that there is ak ∈ N such that
〈y, n〉 ≺′ F (x, k). From〈y, n〉 ≺′ 〈x, 0〉 we gety ≺ x. If y � (F (x, y))0 then

F (x, y + 1) = 〈(F (x, y))0, (F (x, y))1 + 1〉

and we find ak ∈ N such that〈y, n〉 ≺′ F (x, k). If (F (x, y))0 ≺ y then

F (x, y + 1) = 〈y, 0〉

and again we find ak ∈ N such that〈y, n〉 ≺′ F (x, k). Hence

sup
{

otyp�′(F (x, n)) n ∈ N
}

= otyp�′(〈x, 0〉).

Together with (v) this shows that(otyp�′(F (x, n)))n∈N is a fundamental sequence forotyp�′(〈x, 0〉).
We use the Recursion Lemma to obtain (5.36) for�′ instead of� and assume the recursion
hypothesis (ii) for�′ instead of�. We define

H(e, x) :=


1 if x = 〈0, 0〉
2{e}

1,0(〈u,v〉) if x = 〈u, v + 1〉
3 · 5z if x = 〈u, 0〉 andu 6= 0

wherez is such that{z}1,0(0) = 1 and

{z}1,0(n+ 1) = {z}1,0(n) +O {e}1,0(F (u, n)) +O 21

hold. Then, according to Lemma 5.4.5,H(e, x) satisfies (iii) with� replaced by�′ and we have
(5.36).
If a ∈ WO we find a decidable well-ordering�′ and az ∈ field(�′) such thatotypWO(a) =
otyp�′(z). Without loss of generality we may assume that�′ is an ordering of the kind we just
have considered. Hence

otypWO(a) = otyp�′(z) ≤ |h(z)|O
by (5.36) which finishes the proof. �

It follows from Theorem 5.4.8 that the different approaches to obtain representations for “effec-
tive” ordinals all lead to the same class. This proves the following theorem.

5.4.9 Theorem We have
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ωCK
1 = sup

{
σ ∈On (∃a ∈WO)

[
σ = otypWO(a)

]}
= sup

{
σ ∈On (∃a ∈WT)

[
σ = otypTree(a)

]}
= sup

{
σ ∈On (∃a ∈O) [σ = |a|O]

}
.
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6. Generalized Inductive Definitions

In the previous chapter we left the question for the complexity of KLEENE’sO unanswered. This
chapter will show that the principles used in the definition ofO can be systematically studied.
This will lead to the fundamental notion of generalized inductive definitions.

6.1 Clauses and operators

Inductive definitions are ubiquitous in Mathematics and especially in Mathematical Logic. Usu-
ally we use clauses in inductive definitions. The simplest example of an inductive definition is
that of the set of natural numbers. We might say that the natural numbers are inductively defined
by the following clauses:

• 0 is a natural number

• If 0 is a natural number, its successorS(n) is also a natural number.

We develop an abstract notion for clauses. LetN be a nonempty set.

6.1.1 Definition A clause overN has the form

(C) R→ r

whereR ⊆ Nn andr ∈ Nn. We callR the set of premises andr the conclusion of the clause
(C).
A setS ⊆ Nn satisfies clause (C) iffR ⊆ S impliesr ∈ S.
A system of clausesis a setΦ =

{
Ri → ri i ∈ I

}
of clausesRi → ri.

A setS ⊆ Nn is closed underΦ if S satisfiesRi → ri for all i ∈ I.
The least subset ofNn which is closed under a systemΦ of clauses is the set which isinductively
definedby Φ.

Examples for systems of clauses are:

• ∅ → 0

• {n} → n+ 1

which defines the natural numbers inductively onN.

•
{
∅ → s s ∈ S

}
•
{
{x1, . . . , xn} →

n∑
i=1

αixi n ∈ N, α1, . . . , αn ∈ K
}

which defines the subspace of a vector spaceV overK spanned by someS ⊆ V . More examples
are easy to find.
The important feature of an inductively defined setS ⊆ Nn is that we have a“principle of
induction on the definition”of S, which is:
“If a set S ⊆ Nn is inductively defined by some systemΦ =

{
Ri → ri i ∈ I

}
of clauses andϕ

is some ‘property’ which is preserved by all clauses inΦ, i.e. if

(∀x ∈Ri)ϕ(x)⇒ ϕ(ri) for all i ∈ I,
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thenϕ(s) holds for alls ∈ S.”
This principle is obvious from the definition of the set inductively defined byΦ as the least set
which is closed underϕ. Properlyϕ being preserved by all clauses inΦ means that

{
x ϕ(x)

}
is closed underΦ. SinceS is the leastΦ–closed set, we have(∀s ∈ S)ϕ(s).
Observe that the principle of induction on the definition of the natural numbers is exactly the
familiar principle of Mathematical Induction. Most induction principles are instances of the prin-
ciple of induction on some inductive definitions. We are going to study this on the example of
transfinite induction along a well–founded predicate. Let≺ ⊆ N ×N be a binary predicate. We
introduce the system of clauses

(A)
{{
y y ≺ x

}
→ x x ∈ N

}
and call the setAcc(≺) ⊆ N which is inductively defined by (A) theaccessible part of≺. The
principle of induction on the inductive definition ofAcc(≺) takes the form

(∀x) [(∀y)(y ≺ x→ ϕ(y))→ ϕ(x)]⇒ (∀x∈Acc(≺))ϕ(x). (6.1)

If we assume that≺ is well–founded we get

Acc(≺) = N. (6.2)

Acc(≺) ⊆ N holds by definition. Letx ∈ N . If x /∈ field(≺) we have trivially(∀y)(y ≺
x → y ∈ Acc(≺)). This, however, impliesx ∈ Acc(≺) by (A). If we assume that there is
an x ∈ field(≺) which does not belong toAcc(≺) then we get a least suchx by the well–
foundedness of≺. But theny ∈ Acc(≺) for all y ≺ x which again entailsx ∈ Acc(≺) by (A).
Hencefield(≺) ⊆ Acc(≺). By (6.1) and (6.2) we obtain

(∀x) [(∀y)(y ≺ x→ ϕ(y))→ ϕ(x)]⇒ (∀x)ϕ(x)

and also

(∀x ∈ field(≺)) [(∀y)(y ≺ x→ ϕ(y))→ ϕ(x)]⇒ (∀x∈ field(≺))ϕ(x)

which is the principle of transfinite induction.
Towards a theory of inductively defined sets we generalize the notion of an inductive definition.
A system of clausesC =

{
Ri → ri i ∈ I

}
on an infinite setN induces an operator

ΓC: Pow(Nn) −→ Pow(Nn)

which is defined by

ΓC(S) =
{
r ∈Nn (∃R) [R ⊆ S ∧ R→ r ∈ C]

}
.

If S ⊆ T we obviously haveΓC(S) ⊆ ΓC(T ). An operator

Γ: Pow(Nn) −→ Pow(Nn)

having the property

S ⊆ T → Γ(S) ⊆ Γ(T )

is called monotone.
Generalizing the situation of systems of clauses we introduce the following definition.

6.1.2 Definition LetN be an infinite set. A monotone operator

Γ: Pow(Nn) −→ Pow(Nn)

is ageneralized inductive definitiononN
A setS ⊆ Nn is Γ–closedif Γ(S) ⊆ S. A setS ⊆ Nn is afixed–pointof Γ if
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Γ(S) = S.

We denote the – with respect to set inclusion – least fixed–point of an operatorΓ by IΓ. We call
IΓ thefixed–point ofΓ.
A setS ⊆ Nn is inductively definableif there is an inductive definitionΓ and a tuple~k ∈ Nm

such that

S =
{
~x∈Nn (~x,~k) ∈ IΓ

}
.

6.1.3 Lemma Let Γ be a generalized inductive definition onN . The fixed–point ofΓ is the least
Γ–closed set, i.e.

IΓ =
⋂{

S ⊆ Nn Γ(S) ⊆ S
}
.

Proof: Put

D :=
{
S ⊆ Nn Γ(S) ⊆ S

}
and

D =
⋂
D.

For anyS ∈ D we haveD ⊆ S and therefore alsoΓ(D) ⊆ Γ(S) ⊆ S by the monotonicity ofΓ.
Hence

Γ(D) ⊆
⋂
D = D. (i)

From (i) we get again by the monotonicity ofΓ

Γ(Γ(D)) ⊆ Γ(D) (ii)

which provesΓ(D) ∈ D. Hence

D ⊆ Γ(D). (iii)

ThusD is a fixed–point by (ii) and (iii). SinceD ⊆ F for any fixed–pointF holds by definition
of D, it is the least fixed–point. �

6.2 The stages of an inductive definition

Describing inductively defined sets by fixed–points of monotone operators means to define them
explicitly. This does not really meet the meaning we associate with the phrase “inductive”.
An inductive definition should come step by step. Given a generalized inductive definition
Γ: Pow(Nn) −→ Pow(Nn) we may try to construct the fixed–point stepwise by forming

Γ(∅),Γ(Γ(∅)),Γ3(∅), . . .

But in general we cannot expect to obtain the fixed–point after finitely many steps. Therefore we
will have to iterateΓ transfinitely often.

6.2.1 Definition Let N be a countable infinte set and letΓ: Pow(Nn) −→ Pow(Nn) be an
inductive definition. We define by transfinite recursion

IσΓ := Γ(
⋃
τ<σ

IτΓ)

and callIσΓ theσ–th stage of the fixed–pointIΓ.
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The countability ofN is needed since we have only introduced countable ordinals.
It follows easily from Definition 6.2.1 that for finite ordinalsn < ω we have

InΓ = Γ1+n(∅).

To simplify notations we put

I<σΓ :=
⋃
ξ<σ

IξΓ. (6.3)

Thenσ < τ ⇒ I<σΓ ⊆ I<τΓ and by the monotonicity of the operatorΓ we obtain

σ < τ ⇒ IσΓ = Γ(I<σΓ ) ⊆ Γ(I<τΓ ) = IτΓ . (6.4)

We haveIσΓ ⊆ Nn by definition. Hence allIτΓ are countable. By (6.4) it follows by a cardinality
argument that there is a countable ordinalσ < ω1, such thatI<σΓ = IσΓ . We define

||Γ|| := min
{
σ I<σΓ = IσΓ

}
(6.5)

and call||Γ|| theclosure ordinalof the inductive definitionΓ.

6.2.2 Theorem The fixed–pointIΓ of an inductive definition is the union of its stagesIσΓ . We
have especially

IΓ = I
||Γ||
Γ .

Proof: First we show

IξΓ ⊆ IΓ (i)

by induction onξ. The induction hypothesis yieldsI<ξΓ ⊆ IΓ. By the monotonicity ofΓ this

entailsIξΓ = Γ(I<ξΓ ) ⊆ Γ(IΓ) = IΓ. By definition of||Γ|| we haveΓ(I
<||Γ||
Γ ) = I

||Γ||
Γ = I

<||Γ||
Γ

which shows thatI<||Γ||Γ is Γ–closed. Hence

IΓ ⊆ I<||Γ||Γ (ii)

and the claim follows by (i) and (ii). �

Observe that by (6.4) and the definition of||Γ|| we haveIσΓ = I
||Γ||
Γ for all σ ≥ ||Γ||.

6.2.3 Definition Let Γ be an inductive definition onN . Forn ∈ N we put

|n|Γ :=

{
min
{
σ n ∈ IσΓ

}
if n ∈ IΓ

ω1 otherwise

and call|n|Γ theΓ–inductive norm ofn.

6.2.4 Theorem LetΓ be an inductive definition. Then

||Γ|| = sup
{
|x|Γ + 1 x ∈ IΓ

}
.

Proof: We have|x|Γ < ||Γ|| for all x ∈ IΓ by definition. Henceσ := sup
{
|x|Γ + 1 x ∈ IΓ

}
≤

||Γ||. Assumingσ < ||Γ|| we getI<σΓ $ IσΓ and find somex ∈ IΓ such thatσ ≤ |x|Γ <
|x|Γ + 1 ≤ σ. A contradiction. �

Determining the closure ordinal of an inductive definition is — as we will see — an interesting
problem. In the general case, however, all we can say is that it is some countable ordinal. Yet, in
special situations we may know more.
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6.2.5 Theorem Let Φ be a finite system of finite clauses, i.e. a finite setΦ such that for allR →
r ∈ Φ the setR is finite. LetΓΦ be the induced operator. Then||ΓΦ|| ≤ ω.

Proof: Let IΦ be the fixed–point ofΓΦ. We show

r ∈ IΦ ⇒ |r|ΓΦ < ω

by induction on the inductive definition ofIΦ. For r ∈ IΦ andR → r we get|s|ΓΦ < ω for all
s ∈ R. SinceR is finite and there are only finitely manyR→ r ∈ Φ we obtain

σ := sup
{
|s|ΓΦ (∃R) [s ∈ R ∧ R→ r ∈ Φ]

}
< ω.

Hence|r|ΓΦ ≤ σ + 1 < ω. By Theorem 6.2.4 we get||ΓΦ|| ≤ ω.

6.3 Arithmetically definable inductive definitions

We will now concentrate on inductive definitions on the spaceNm,n. To introduce definable
operators we extend the language of arithmetic byn–ary predicate variables which we are going
to denote by capital Roman letters in the end of the alphabet, e.g.X, Y , Z, X1, . . . We will
moreover enrich the language by variables for functionals for which we are going to useF , G,
F1, . . . as syntactical variables. Observe that we then obtain additional termst(a) which may
contain occurences of functional variables and new atomic formulas of the shape(~x ∈ X).

6.3.1 Definition An operatorΓ: Pow(Nn) −→ Pow(Nn) is definable if there is a formulaϕ(X,~x)
in the language of arithmetic whose only free variables are those shown such that

Γ(S) =
{
~x∈Nn N |= ϕ [S, ~x]

}
.

We callΓ arithmeticallyor elementary definableif its defining formulaϕ(X,~x) does not contain
second order quantifiers, i.e. quantifiers ranging over functions. If there are additional function
parameters inϕ(X,~x, ~α) we say thatΓ is definable with parameters.

Observe that in the case that an operator is definable with parameters, say

Γ =
{
~x N |= ϕ[~x, ~α]

}
,

we may denote the dependence on the parameters byΓ(~α), i.e. we obtain a relation

QΓ(~x, ~α) :⇔ ~x ∈ Γ(~α).

In this sense we will also talk about relations which are definable by operators.
In order to obtain inductive definitions we need monotone operators. To ensure that definable
operators are monotone we have to restrict the class of defining formulas.

6.3.2 Definition We inductively define the class ofX–positive formulas by the following clauses:

1) If X does not occur inϕ(X) thenϕ(X) isX–positive

2) The formulat ∈ X isX–positive

3) TheX–positive formulas are closed under

• the positive boolean operations∨, ∧

• quantification over numbers and functions.

6.3.3 Lemma Letϕ(X,x1, . . . , xm, α1, . . . , αn) be anX–positive formula without further free
variables. The operator
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Γϕ(S) :=
{

(x1, . . . , xm)∈Nm N |= [S, x1, . . . , xm, f1, . . . , fn]
}
,

wheref1, . . . , fn is a fixedn–tuple of functions fromN toN, is a monotone operator.

Proof: LetS ⊆ T ⊆ N. We have to show

ϕ [S, x1, . . . , xm, f1, . . . , fn]⇒ ϕ [T, x1, . . . , xm, f1, . . . , fn] (i)

and prove (i) by induction on the definition of “ϕ(X,~x) is anX–positive formula”. IfX does
not occur inϕ(X,~x, ~α) then both formulas in (i) are identical. Ifϕ(X,~x, ~α) ≡ (~t ∈ X) then
(~t N ∈ S)⇒ (~t N ∈ T ) holds by the hypothesisS ⊆ T . The remaining cases follow immediately
from the induction hypothesis. �
A monotone operator which is definable by anX–positive formula is calledpositively definable.
It is of course unlikely that all definable monotone operators are positively definable. However,
it follows from the CRAIG–LYNDON interpolation theorem that at least those definable operators
whose monotonicity is logically provable are positively definable. This is because if

|= (∀x)(x ∈ X → x ∈ Y )→ (∀~y) [ϕ(X,~y)→ ϕ(Y, ~y)]

then there is an interpolation formula, sayψ(Y, ~y), in whichY occurs at most positively such that

|= (∀x)(x ∈ X → x ∈ Y )→ (∀~y) [ϕ(X,~y)→ ψ(Y, ~y)] (i)

and

|= (∀~y) [ψ(Y, ~y)→ ϕ(Y, ~y)] . (ii)

ChoosingX = Y in (i) yields

|= (∀~y) [ϕ(Y, ~y)→ ψ(Y, ~y)] (iii)

and (ii) and (iii) show thatϕ(Y, ~y) is logically equivalent to aY –positive formula. �
If Γ is an operator which is definable by some formulaϕ we write shortlyIϕ for IΓϕ , ||ϕ|| for
||Γϕ|| and|n|ϕ for |n|Γϕ .

6.3.4 Definition Let Γϕ be the operator which is definable by theX–positive formulaϕ(X,~x, ~α)
with parameters. For any choice of a tuple of functions~α we obtain its fixed–pointIϕ(~α) which
we denote byIϕ(~α). This defines an(n,m)–ary relation. Observe that we may write

~x ∈ Iϕ(~α) ⇔ ϕ(Iϕ, ~x, ~α)

since~α is not really an argument ofIϕ.
A relationP ⊆ Nm,n is positively arithmetical inductiveoverN if there is anX–positive arith-
metical formulaϕ(X,~x, ~y, ~α) with no other free variables and a tuple~m such that

P =
{

(~x, ~α) (~x, ~m) ∈ Iϕ(~α)
}
.

6.3.5 Remark This is not the strongest way to obtain relations by fixed–points. Another way
would be to augment the language by(m,n)–ary relation variablesX, Y, . . . and then define
operators from a formulaϕ(X, a) by

Γϕ(S) :=
{
a N |= ϕ[S, a]

}
.

Then one may regard fixed points of such operators. However, in this lecture we will only regard
relations whose “function part” comes from the parameters in the defining formula.

We usually omit the the phrase “positively arithmetical” and talk just about inductive relations or
relations which are inductive with parameters.
The rest of the section is devoted to the study of the closure properties of inductive relations.
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6.3.6 Lemma (Simultaneous inductive definitions)For anyX,Y –positive formulasϕ(X,Y, ~x, ~α)
andψ(X,Y, ~y, ~α) we define

Iξϕ(~α) :=
{
~x∈Nm ϕ(I<ξϕ , I<ξψ , ~x, ~α)

}
and

Iξψ(~α) :=
{
~y ∈Nm ψ(I<ξϕ , I<ξψ , ~y, ~α)

}
.

Then we find aZ–positive formulaχ(Z, z, ~x, ~y, ~α) and tuples~m,~n of the adequate length such
that

~x ∈ Iϕ(~α) ⇔ (0, ~x, ~m) ∈ Iχ(~α)

and

~y ∈ Iψ(~α) ⇔ (1, ~y, ~n) ∈ Iχ(~α)

whereIϕ(~α) :=
⋃
ξ∈On I

ξ
ϕ(~α) andIψ(~α) :=

⋃
ξ∈On I

ξ
ψ(~α).

Proof: Choose~m and~n of the appropriate arity and put

χ(Z, z, ~x, ~y, ~α) :≡
[
z = 0 ∧ ϕ(

{
~u (0, ~u, ~m) ∈ Z

}
,
{
~v (1, ~n,~v) ∈ Z

}
, ~x, ~α)

]
∨
[
z = 1 ∧ ψ(

{
~u (0, ~u, ~m) ∈ Z

}
,
{
~v (1, ~n,~v) ∈ Z

}
, ~y, ~α)

]
.

Thenχ(Z, z, ~x, ~y, ~α) isZ–positive and we show by transfinite induction onξ

~x ∈ Iξϕ(~α) ⇔ (0, ~x, ~m) ∈ Iξχ(~α)

as well as

~y ∈ Iξψ(~α) ⇔ (1, ~n, ~y) ∈ Iξχ(~α).

From the induction hypothesis we get

~x ∈ Iξϕ(~α) ⇔ ϕ(I<ξϕ , I<ξϕ , ~x, ~α)

⇔ ϕ(
{
~u (0, ~u, ~m) ∈ I<ξχ

}
,
{
~v (1, ~n,~v) ∈ I<ξχ

}
, ~x, ~α)

⇔ χ(I<ξχ , 0, ~x, ~m, ~α)

⇔ (0, ~x, ~m) ∈ Iξχ(~α).

Completely analogously we get

~y ∈ Iξψ(~α) ⇔ χ(I<ξχ , 1, ~n, ~y, ~α)

⇔ (1, ~n, ~y) ∈ Iξχ(~α).
�

In a next step we want to show that the inductive predicates are closed under “positively inductive
in”.

6.3.7 Lemma Letϕ(X,~x, ~α) be anX–positive arithmetical formula and letψ(X,Y, ~y, ~α) be an
X,Y –positive arithmetical formula. Put̃ψ(X,~y, ~α) :≡ ψ(X, Iϕ(~α), ~y, ~α). Then there is anX–
positive arithmetical formulaχ(X, z, ~x, ~y, ~α) without additional function parameters and a tuple
~m ∈ Nk such that

~y ∈ Iψ̃(~α) ⇔ (1, ~m, ~y) ∈ Iχ(~α).

Proof: The difficulty is the fact, that̃ψ is not longer an arithmetical formula. The idea of the
proof is to constructIϕ andIψ̃ simultaneously instead of first finishingIϕ and then start con-

67



6. Generalized Inductive Definitions

structingIψ̃. To improve readability we suppress the parameters~α. We choose tuples~m and~n of
adequate lengths and put

χ(Z, z, ~x, ~y) :≡
[
z = 0 ∧ ϕ(

{
~u (0, ~u, ~n) ∈ Z

}
, ~x)
]

∨
[
z = 1 ∧ ψ(

{
~v (1, ~m,~v) ∈ Z

}
,
{
~u (0, ~u, ~n) ∈ Z

}
, ~y)
]
.

We introduce the abbreviations

Jξ0 :=
{
~x (0, ~x, ~n) ∈ Iξχ

}
and

Jξ1 :=
{
~y (1, ~m, ~y) ∈ Iξχ

}
.

We first prove

Jξ0 = Iξϕ (i)

by induction onξ. From the induction hypothesisJ<ξ0 = I<ξϕ we get

~x ∈ Jξ0 ⇔ (0, ~x, ~n) ∈ Iξχ
⇔ χ(I<ξχ , 0, ~x, ~n)

⇔ ϕ(J<ξ0 , ~x)

⇔ ϕ(I<ξϕ , ~x)

⇔ ~x ∈ Iξϕ.

Obviously||χ|| ≥ ||ϕ|| holds. Now we get

~y ∈ Jξ1 ⇔ (1, ~m, ~y) ∈ Iξχ
⇔ χ(I<ξχ , 1, ~m, ~y)

⇔ ψ(J<ξ1 , I<ξϕ , ~y).

(ii)

It remains to show that this inductive definition which only uses the initial partI<ξϕ instead ofIϕ
will eventually catch up with that ofIψ̃. We first show

Jξ1 ⊆ I
ξ

ψ̃
(iii)

by induction onξ. This, however, is immediate fromI<ξϕ ⊆ Iϕ, the induction hypothesisJ<ξ1 ⊆
I<ξ
ψ̃

, (ii) and theX, Y –positivity ofψ(X,Y, ~y). To obtain also the converse inclusion we show

~y ∈ Iξ
ψ̃
⇒ (1, ~m, ~y) ∈ Iχ (iv)

by induction onξ. Using the induction hypothesis and (i) we see

~y ∈ Iξ
ψ̃
⇔ ψ(I<ξ

ψ̃
, Iϕ, ~y)

⇔ ψ(I<ξ
ψ̃
, J0, ~y)

⇒ ψ(
{
~v (1, ~m,~v) ∈ Iχ

}
,
{
~u (0, ~u, ~n) ∈ Iχ

}
, ~y)

⇔ χ(Iχ, 1, ~m, ~y)

⇔ (1, ~m, ~y) ∈ Iχ.
From (iii) and (iv) we finally get

Iψ̃ =
{
~y (1, ~m, ~y) ∈ Iχ

}
.

�
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Lemma 6.3.7 generalizes of course to inductive relations. That means we have the following
theorem.

6.3.8 Theorem (Substitution Theorem)Assume thatS1, . . . , Sn are positively inductive rela-
tions andϕ(X,Y1, . . . , Yn, ~x, ~α) is anX,Y1, . . . , Yn–positive arithmetical formula. Then the
fixed–point of the operator defined byϕ(X,S1, . . . , Sn, ~x, ~α) is positively inductive.

As an easy observation we get

6.3.9 Theorem Every arithmetical definable relation is positively inductive.

Proof: LetP =
{

(~x, ~α)∈Nm,n ϕ(~x, ~α)
}

for an arithmetical formulaϕ(~x, ~α). Thenϕ(~x, ~α) is
X–positive. For its fixed point we get

~x ∈ Iϕ(~α) ⇔ N |= ϕ [~x, ~α] ,

i.e.Iϕ = P . �

6.3.10 Definition A relationS ⊆ Nm,n is coinductiveif its complementNm,n \ S is inductive.
A relation ishyperelementaryif it is both, inductive and coinductive.

From Theorem 6.3.9 and the Substitution Theorem (Theorem 6.3.8) we already get the basic
closure properties of inductive, coinductive and hyperelementary predicates.

6.3.11 TheoremThe inductive and coinductive relations are closed under

• positive boolean operations

• quantification over numbers

• substitution with hyperelementary relations and functions.

The hyperelementary relations are closed under

• all boolean operations

• quantification over numbers

• substitution with hyperelementary relations and functions.

Proof: Assume that a relationQ is obtained from inductive relations by positive boolean op-
erations and quantification over numbers from inductive relationsS1, . . . , Sn. Then there is a
Y1, . . . , Yn–positive formulaϕ(Y1, . . . , Yn, a) such that

Q(a) ⇔ ϕ(S1, . . . , Sn, a).

Regardingϕ(Y1, . . . , Yn, a) asX–positive for a dummy variableX we obtain

Q(a) ⇔ ϕ(S1, . . . , Sn, a)

⇔ a ∈ Iϕ(S1,...,Sn)

andQ is inductive by the Substitution Theorem 6.3.8.
There are different possibilities to substitute functions or relations into inductive relations. The
most simple one is to define a predicate

Q :=
{
a (f(a), a) ∈ S

}
(i)

for an inductive setS and a hyperelementary functionf . A function is hyperelementary iff its
graph is hyperelementary. Recall that for total functions it suffices to have an inductive (or coin-
ductive) graph in order to be hyperelementary. We get from (i)
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a ∈ Q ⇔ (∃z) [f(a) = z ∧ (z, a) ∈ S] .

By the already known closure properites of inductive sets and the fact thatf(a) = z is inductive
we conclude that the predicateQ is inductive. The other possibility to substitute hyperelelemen-
tary predicates into relations is to form a relation

Q :=
{

(~x, ~α) (~y, ~α,
{
x H(~y, ~α, x)

}
) ∈ R

}
for a hyperelementary relationH. Let

H =
{

(~y, ~α, x) (~y, x, ~m+) ∈ Iψ+(~α)
}

=
{

(~y, ~α, x) (~y, x, ~m−) /∈ Iψ−(~α)
}

and

R =
{

(~y, ~α, α∗) (~y, ~m0) ∈ Iϕ(~α, α∗)
}
.

Then

Q(~y, ~α) ⇔ (~y, ~m0) ∈ Iϕ(~α,
{
x H(~y, ~α, x)

}
)

⇔ ϕ(Iϕ, ~y, ~α,
{
x H(~y, ~α, x)

}
, ~m0)

⇔ ϕ(Iϕ, ~y, ~α,
{
x (~y, x, ~m+) ∈ Iψ+(~α)

}
, ~m0)

⇔ ϕ(Iϕ, ~y, ~α,
{
x (~y, x, ~m−) ∈ Iψ−(~α)

}
, ~m0).

Choosing the positive versionIψ+ or the negative versionIψ− according to the occurence of the
predicate variableY in ϕ(X, (~y, ~α), Y, ~y) we obtain the claim from Lemma 6.3.7 �
By Lemma 6.1.3 we obtain an upper bound for the complexitiy of arithmetical positive inductive
definitions in the analytical hierarchy. We get

6.3.12 TheoremEvery inductive relation isΠ1
1. The coinductive relations are thereforeΣ1

1 and
the hyperelementary relations∆1

1.

Proof: Let

S =
{

(~x, ~α) (~x,~k) ∈ Iϕ(~α)
}

(i)

for someX–positive formulaϕ(X,~x, ~y, ~α). By Lemma 6.1.3Iϕ is the leastΓϕ(~α)–closed set
which implies

(~x, ~α) ∈ S ⇔ (∀X)[(∀~u)(∀~v)(ϕ(X,~u,~v, ~α)⇒ (~u,~v) ∈ X) ⇒ (~x,~k) ∈ X]

This is aΠ1
1–definition ofS. The remaining claims follow immediately. �

6.4 The stage comparison theorem

Defining the inductive norm|n|ϕ for objects inIϕ opens the possibility to use elementsn ∈ Iϕ
as ordinal notations. Ordinal notations, however, are of little use as long as we don’t know how
to compare them. The aim of the present section is to show that the stage comparison predicate is
also an inductive predicate.

6.4.1 Definition Letϕ(X,~x) andψ(X,~y) beX–positive elementary formulas. We introduce the
stage comparison predicates

~x ≤∗ϕ,ψ ~y :⇔ ~x∈ Iϕ ∧ (~y ∈ Iψ ⇒ |~x|ϕ ≤ |~y|ψ) (6.6)

and

~x <∗ϕ,ψ ~y :⇔ ~x ∈ Iϕ ∧ (~y ∈ Iψ ⇒ |~x|ϕ < |~y|ψ). (6.7)
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Recall that we defined|~n|ϕ = ω1 for n /∈ Iϕ. That means that we have

~n ∈ Iϕ ⇔ |~n|ϕ < ω1.

The definitions in (6.6) therefore simplify to

~x ≤∗ϕ,ψ ~y ⇔ ~x ∈ Iϕ ∧ |~x|ϕ ≤ |~y|ψ (6.8)

and

~x <∗ϕ,ψ ~y ⇔ ~x ∈ Iϕ ∧ |~x|ϕ < |~y|ψ (6.9)

respectively.

6.4.2 Theorem (Stage Comparison Theorem)The stage comparison predicates≤∗ϕ,ψ and<∗ϕ,ψ
as defined in (6.6) and (6.7) are positively inductive.

Proof: To find the defining formula for the stage comparison predicate we just rewrite its defini-
tion in modified form. We have

~x ≤∗ϕ,ψ ~y ⇔ ~x ∈ I |~y|ψϕ

⇔ ϕ(I
<|~y|ψ
ϕ , ~x)

⇔ ϕ(
{
~u |~u|ϕ < |~y|ψ

}
, ~x)

⇔ ϕ(
{
~u ¬|~y|ψ ≤ |~u|ϕ

}
, ~x).

(i)

But for ~u ∈ Iϕ we get

|~y|ψ ≤ |~u|ϕ ⇔ ~y ∈ I |~u|ϕψ

⇔ ψ(
{
~v |~v|ψ < |~u|ϕ

}
, ~y)

⇔ ψ(
{
~v ¬(~u ≤∗ϕ,ψ ~v)

}
, ~y).

(ii)

For the last equivalence observe that

¬(~u ≤∗ϕ,ψ ~v) ⇔ ~u /∈ Iϕ ∨ (~v ∈ Iψ ∧ |~v|ψ < |~u|ϕ).

Therefore assuming~u ∈ Iϕ we have{
~v |~v|ψ < |~u|ϕ

}
=
{
~v ¬(~u ≤ϕ,ψ ~v)

}
.

For~u /∈ Iϕ, however, we have{
~v ¬(~u ≤ϕ,ψ ~v)

}
= Nn.

Thus assuming

ψ(Nn, ~y) (iii)

we can dispense with the premise~u ∈ Iϕ. However, assuming (iii) means no loss of generality.
If ¬ψ(Nn, ~y) we modify the formula to

ψ̃(X,~y) :≡ ψ(X,~y) ∨ (∀~z)(~z ∈ X)

and observe that

Iξ
ψ̃

= Iξψ

holds for allξ ∈ On. Now, plugging (ii) into (i) we get

~x ≤∗ϕ,ψ ~y ⇔ ϕ(
{
~u ¬ψ(

{
~v ¬(~u ≤∗ϕ,ψ ~v)

}
, ~y)
}
, ~x). (iv)

Defining
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χ(Z, ~x, ~y) :≡ ϕ(
{
~u ¬ψ(

{
~v ¬(~u,~v) ∈ Z

}
, ~y)
}
, ~x)

we obtain aZ–positive formula. By (iv) we have

~x ≤∗ϕ,ψ ~y ⇔ χ(≤∗ϕ,ψ, ~x, ~y).

Hence

Iχ ⊆ ≤∗ϕ,ψ
and it remains to show that≤∗ϕ,ψ is indeed the least fixed–point. We prove

~x ≤∗ϕ,ψ ~y ⇒ (~x, ~y) ∈ Iχ
by induction on|~x|ϕ. Towards an indirect proof assume

~x ≤∗ϕ,ψ ~y ∧ (~x, ~y) /∈ Iχ.

Then we have

¬ϕ(
{
~u ¬ψ(

{
~v ¬(~u,~v) ∈ Iχ

}
, ~y)
}
, ~x)

and

ϕ(I<|x|ϕϕ , ~x)

which implies

I<|~x|ϕϕ *
{
~u ¬ψ(

{
~v ¬(~u,~v) ∈ Iχ

}
, ~y)
}
. (v)

By (v) there is a~x0 ∈ I<|~x|ϕϕ such that

ψ(
{
~v ¬(~x0, ~v) ∈ Iχ

}
, ~y). (vi)

By induction hypothesis, however, we have{
~v ¬(~x0, ~v) ∈ Iχ

}
⊆
{
~v ¬(~x0 ≤ϕ,ψ ~v)

}
. (vii)

From (vi) and (vii) we obtain

ψ(
{
~v ¬(~x0 ≤ϕ,ψ ~v)

}
, ~y)

which is

ψ(I
<|~x0|ϕ
ψ , ~y).

Hence~y ∈ I |~x0|ϕ
ψ which means

|~y|ψ ≤ |~x0|ϕ < |~x|ϕ
in contradiction to~x ≤∗ϕ,ψ ~y.
The proof of the fact that<∗ϕ,ψ is a fixed–point is completely dual and left as an exercise.�
If there is no danger of confusion we write~x ≤∗ ~y and~x <∗ ~y instead of~x ≤∗ϕ,ψ ~y and~x <∗ϕ,ψ ~y.

We want to extend the norm definition|x|ϕ to elements of inductive sets. IfS =
{
~x (~x,~k) ∈ Iϕ

}
it makes no sense to define|~x|S = |(~x,~k)|ϕ since this would leave gaps. However, if we define a
predicate

~x <S ~y ⇔ ~x ∈ S ∧ ~y ∈ S ∧ |(~x, k)|ϕ < |(~y,~k)|ϕ
⇔ ~y ∈ S ∧ (~x,~k) <∗ϕ,ϕ (~y,~k)

this defines a well–founded predicate and we may define
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|~x|S := sup
{
|~y|S + 1 ~y <S ~x

}
. (6.10)

Observe that we can do the same constuction for inductive relations. Assume that

S =
{

(~α, ~x) (~x,~k) ∈ Iϕ(~α)
}
.

Define

(~α, ~x) <S (~β, ~y) ⇔ (~y,~k) ∈ Iϕ(~β) ∧ (~x,~k) <∗
ϕ(~α),ϕ(~β)

(~y,~k) (6.11)

and then|(~α, ~x)|S as in (6.10). We will, however, for the sake of simpler notations, mostly talk of
predicates or even rather sets. But you should always tacitly check how far the results relativize.
This will be the case nearly everywhere. We try to mention the cases where this becomes wrong.
To enter a more general framework we introduce the following notations.

6.4.3 Definition LetS ⊆ Nm,n and

µ:S
onto−→ λ ∈ On

be a mapping. We callµ an inductive normif there are an inductive relationJ and a coinductive
relationJ̆ such that for allb ∈ S we have

a ∈ S ∧ µ(a) ≤ µ(b) ⇔ J(a, b)

⇔ J̆(a, b).
(6.12)

There is a uniform way of expressingJ andJ̆ . We prove

6.4.4 Lemma Letλ be an ordinal andµ:S
onto−→ λ be a mapping ontoλ. The norm given byµ is

inductive iff the relations

a �∗S b :⇔ a ∈ S ∧ [b ∈ S ⇒ µ(a) ≤ µ(b)] (6.13)

and

a ≺∗S b :⇔ a ∈ S ∧ [b ∈ S ⇒ µ(a) < µ(b)] (6.14)

are inductive.

Proof: If �∗S and≺∗S are both inductive we put

J(a, b) :⇔ a �∗S b

and

J̆(a, b) :⇔ ¬(b ≺∗S a)

and check easily thatJ andJ̆ satisfy (6.12).
Thus assume thatµ is an inductive norm whose accompanying predicates areJ andJ̆ . Then we
obtain

a �∗S b ⇔ a ∈ S ∧
[
J(a, b) ∨ ¬J̆(b, a)

]
and

a ≺∗S b ⇔ a ∈ S ∧ J̆(b, a). �

It will follow that the norm defined in (6.10) is inductive. We prove

6.4.5 Theorem Let S be an inductive relation. SayS =
{

(~α, ~x) (~x,~k) ∈ Iϕ(~α)
}

for some
X–positive arithmetical formulaϕ(X,~x, ~y, ~α). Then the norm defined in (6.10)
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| |S :S −→ ||S|| := sup
{
|a|S + 1 a ∈ S

}
a 7−→ |a|S := sup

{
|b|S + 1 b <S a

}
is an inductive norm. This shows that every inductive set possesses an inductive norm.

Proof: By definition| |S is a map fromS onto||S||. Because of

(~α, ~x) �∗S (~β, ~y) ⇔ (~x,~k) ≤∗
ϕ(~α),ϕ(~β)

(~y,~k)

and

(~α, ~x) ≺∗S (~β, ~y) ⇔ (~x,~k) <∗
ϕ(~α),ϕ(~β)

(~y,~k)

we obtain�∗S and≺∗S as inductive. Hence| |S is inductive by Lemma 6.4.4. �
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7. Inductive Definitions,Π1
1–sets and the

ordinalωCK
1

7.1 Π1
1–sets vs. inductive sets

In Theorem 6.3.12 we have shown that all elementary positive inductive sets areΠ1
1–definable.

Our next aim is to show that conversely everyΠ1
1–set is inductively definable. The first step is to

define a normal–form forΠ1
1–relations. LetP be some(m,n)–aryΠ1

1–relation. Then

P (a) ⇔ (∀α)(∃y)R(α, y, a)

and the relation(∃y)R(α, y, a) is semi–decidable. But then there is some decidable predicateR′

such that

(∃y)R(α, y, a) ⇔ (∃y)R′(α(y), y, a(y))

and we define

RP (s, a) :⇔ R′(s, lh(s), a(lh(s))).

Then we get

7.1.1 Lemma (Π1
1–normal form) For everyΠ1

1–relationP there is a decidable relationRP such
that

P (a) ⇔ (∀α)(∃y)RP (α(y), a).

We use Lemma 7.1.1 in the following definition

7.1.2 Definition Let

P (a) ⇔ (∀α)(∃y)RP (α(y), a)

be aΠ1
1–relation in normal form. We define

TP (a) :=
{
s ∈Seq (∀s0)(s0 ( s⇒ ¬RP (s0, a))

}
(7.1)

and callTP thetree of unsecured sequencesfor P .

It is an immediate consequence of (7.1) thatTP (a) is a tree. We have

P (a) ⇔ (∀α)(∃y)RP (α(y), a)

⇔ (∀α)(∃y) [α(y) /∈ TP (a)]

⇔ TP (a) is well-founded.

Observe that the quantifier in (7.1) is bounded. HenceTP (a) is decidable ina which means that
its characteristic function has the formλx. FP (a, x) for some computable functionalFP and we
have shown

7.1.3 Theorem For everyΠ1
1–relationP there is a computable functionalFP such that

P (a) ⇔ λx. FP (a, x) ∈WT.
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If P is ann–ary predicate thenTP (~x) is decidable and an index forTP (~x) can be computed from
~x. Thus Theorem 7.1.3 modifies to

7.1.4 Theorem For everyΠ1
1–predicateP there is a computable functionTP such that

P (~x) ⇔ TP (~x) ∈WT.

By Theorem 7.1.4 we haveP ≤m WT for everyΠ1
1–predicateP . We say thatWT is Π1

1–
complete.
To establish the connection betweenΠ1

1–predicates and inductive sets we study well–founded
trees in terms of fixed–points. LetT be a tree and put

ϕT (X,x) :≡ (∀y) [x_〈y〉 ∈ T ⇒ x_〈y〉 ∈ X] . (7.2)

ThenϕT (X,x) is anX–positive formula. Denote its fixed–point byIT . We prove

T ∈WT ∧ s ∈ T ⇒ s ∈ IotypT (s)
T (7.3)

by induction onotypT (s). If

otypT (s) = sup
{

otypT (t) + 1 t <∗T s
}

= 0

then
{
t t <∗T s

}
= ∅ which implies thats_〈y〉 /∈ T for all y. But thenϕT (∅, s) which shows

s ∈ I0
T . If otypT (s) =: σ > 0 thenotypT (s_〈y〉) < σ for all y such thats_〈y〉 ∈ T . By the

induction hypothesis we get

(∀y)
[
s_〈y〉 ∈ T ⇒ s_〈y〉 ∈ I<σT

]
which isϕT (I<σT , s). Hences ∈ IσT .
From (7.3) we get

T ∈WT ∧ s ∈ T ⇒ |s|T ≤ otypT (s) (7.4)

where|s|T := |s|ϕT denotes theϕT–norm ofs. To obtain also the converse inequality we prove

s ∈ T ∧ s ∈ IT ⇒ T �s ∈WT ∧ otyp(T �s) ≤ |s|T (7.5)

by induction on|s|T . If |s|T = 0 we have(∀y) [s_〈y〉 /∈ T ] which showsT �s = 〈〉 and
otyp(T �s) = 0. So assume|s|T =: σ > 0. Sinces ∈ IσT we getϕT (I<σT , s) which is

(∀y)
[
s_〈y〉 ∈ T ⇒ s_〈y〉 ∈ I<σT

]
. (i)

By induction hypothesis we get

(∀y) [s_〈y〉 ∈ T ⇒ T �s_〈y〉 ∈WT ∧ otyp(T �s_〈y〉) < σ] . (ii)

An infinite path inT �s would induce an infinite path in one of the treesT �s_〈y〉 which is im-
possible by (ii). SoT �s is well–founded and by (5.28) we get

otyp(T �s) = otypT �s(〈〉) = sup
{

otyp(T �s_〈y〉) + 1 s_〈y〉 ∈ T
}
≤ σ. �

It follows from (7.5) that a treeT is well–founded if〈〉 ∈ IT . Conversely we have〈〉 ∈ IT for
well–founded treesT by (7.4). Therefore we have shown

7.1.5 Theorem A treeT is well–founded iff〈〉 ∈ IT . For well–founded trees we get

s ∈ T ⇒ otypT (s) = |s|T (7.6)

and

otyp(T ) + 1 = ||ϕT ||. (7.7)
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Proof: We proved everything but (7.7). But this is simple becauseotyp(T ) = otypT (〈〉) =
|〈〉|T > |s|T for all s ∈ T such thats 6= 〈〉. By Theorem 6.2.4, however, it then follows

||ϕT || = |〈〉|T + 1 = otyp(T ) + 1. �

The link betweenΠ1
1–relations and inductive relations is given by Theorems 7.1.3 and 7.1.5. We

get

7.1.6 Theorem TheΠ1
1–relations are exactly the positively inductive relations onN.

Proof: We have by Theorem 6.3.12 that positively inductive relations areΠ1
1. Conversely ifP is

a Π1
1–relation then we get by Theorem 7.1.3

P (a) ⇔ λx. FP (a, x) ∈WT.

PuttingϕP (X, s, a) :⇔ (∀y) [FP (a, s_〈y〉) = 0⇒ s_〈y〉 ∈ X] we get by Theorem 7.1.5

P (a) ⇔ (〈〉, a) ∈ IϕP .

HenceP is inductive. �

Dealing with predicates we can sharpen Theorem 7.1.6 as follows

7.1.7 Theorem There is anX–positive elementary formulaϕP (X, s, ~x) such that for anyΠ1
1–

predicateP we have

P (~x) ⇔ (〈〉, ~x) ∈ IϕP .

Proof: By Theorem 7.1.4 we have

P (~x) ⇔ TP (~x) ∈WT

for a computable functionTP . We define

ϕP (X, s, ~x) ⇔ (∀y)
[
{TP (~x)}1,0(s_〈y〉) = 0 ⇒ (s_〈y〉, ~x) ∈ X

]
. (7.8)

ThenϕP (X, s, ~x) isX–positive and elementary and by Theorem 7.1.5 we get

TP (~x) ∈WT ⇔ (〈〉, ~x) ∈ IϕP . �

7.1.8 Remark Although we proved in Theorem 6.3.12 that fixed–points of arithmetically defin-
able monotone operators areΠ1

1–definable we didnot prove the converse proposition in Theo-
rem 7.1.6 (or 7.1.7). All we showed is thatΠ1

1–relations are inductive but not necessarily fixed–
points. The additional parameter — which is〈〉 in our setting — is indispensable, even for certain
∆1

1–relations. A proof of this fact, however, is outside the scope of this lecture. It can be found
in [1].

As a consequence of Theorem 7.1.6 and 7.1.7 we get the following corollaries.

7.1.9 Corollary TheΠ1
1–relations are exactly the positively inductive relations onN. TheΣ1

1–
relations are exactly the positively coinductive relations onN. The∆1

1–relations are exactly the
hyperelementary relations onN.

7.1.10 Corollary TheΠ1
1–predicates are exactly the positively elementary inductive predicates

onN. TheΣ1
1–predicates are exactly the positively elementary coinductive predicates onN and

the∆1
1–predicates exactly the hyperelementary predicates.
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7.2 The inductive closure ordinal ofN
Let us return to the general situation. Developing the theory of inductive definitions in Chapter 6
we did not make use of special features of the structureN of natural numbers. The fact that we
restricted ourselves to unary predicate variables was sheer lazyness. Without the possibility of
contractingn–ary predicate variables to unary ones we could have developed the same theory
usingn–ary predicate variables. [But observe that we did make use of special features ofN in
Section 7.1.] LetA by any structure and call a first order formula in the language ofA LA–
elementary if it contains no function or set parameters. We define

κA := sup
{
||ϕ|| ϕ(X,~x) is anX–positiveLA–elementary formula

}
.

and callκA the(inductive) closure ordinalof the structureA. Our aim is to characterizeκN. But
before doing that we give some abstract consequences of the Stage Comparison Theorem.

7.2.1 Lemma Let ϕ(X,~x) be an elementaryX–positive formula. ThenIξϕ is hyperelementary
for anyξ < κN. Especially if||ϕ|| < κN thenIϕ is hyperelementary.

Proof: The proof depends heavily on the Stage Comparison Theorem. The Lemma is true for
arbitrary structuresA replacingN. But, since we want to concentrate onN, we only stated it as
above. Forξ < κN we find an elementary inductive definitionψ(Y, y) and ann ∈ Iψ such that
|n|ψ = ξ. Using stage comparison we get

~x ∈ Iξϕ ⇔ ~x ≤∗ϕ,ψ n
⇔ ¬(n <∗ψ,ϕ ~x).

HenceIξϕ is hyperelementary. �

7.2.2 Theorem (Closure Theorem)The fixed–point of an elementary inductive definitionϕ(X,~x)
is hyperelementary iff||ϕ|| < κN.

Proof: One direction is Lemma 7.2.1. For the other direction letIϕ be hyperelementary and
define

χ(Z, z, ~x) :≡
[
z = 0 ∧ ϕ(

{
~u (0, ~u) ∈ Z

}
, ~x)
]

∨ [z = 1 ∧ (∀~y)(~y ∈ Iϕ → (0, ~y) ∈ Z)] .

A close look at the proof of Lemma 6.3.7 shows that there is a positively elementary formulaθ
with κN ≥ ||θ|| ≥ ||χ||, furthermoreIχ is trivially contained in the elementary inductive setIθ,
thus it is elementary inductive, too. First we show

Iξϕ =
{
~x (0, ~x) ∈ Iξχ

}
(i)

by induction onξ. From the induction hypothesis we get

~x ∈ Iξϕ ⇔ ϕ(I<ξϕ , ~x)

⇔ ϕ(
{
~x (0, ~x) ∈ I<ξχ , ~x)

}
⇔ χ(I<ξχ , 0, ~x)

⇔ (0, ~x) ∈ Iξχ.

As a consequence of (i) we get

Iϕ =
{
~x (0, ~x) ∈ I<||ϕ||χ

}
. (ii)

For anyξ < ||ϕ|| there is a~y ∈ Iϕ such that~y /∈ Iξϕ, i.e. (0, ~y) /∈ Iξχ by (i). Therefore we have
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¬χ(Iξχ, 1, ~x) (iii)

for any~x andξ < ||ϕ||. By (ii), however, we have

χ(I<||ϕ||χ , 1, ~x) (iv)

for all ~x. Hence by (iii) and (iv)

(1, ~x) ∈ I ||ϕ||χ \ I<||ϕ||χ . (v)

From (v) we finally obtain||ϕ|| = |(1, ~x)|χ < κN. �

As a consequence of the Closure Theorem (Theorem 7.2.2) we obtain a characterization of the
closure ordinalκN.

7.2.3 Theorem The inductive closure ordinal of the structure of natural numbers isωCK
1 .

Proof: By Theorem 5.4.9 we have

ωCK
1 = sup

{
otypTree(e) e ∈WT

}
.

However, ifT is a decidable well–founded tree, we get by (7.7)

otyp(T ) + 1 = ||ϕT || ≤ κN

sinceϕT is an elementary formula. Hence

ωCK
1 ≤ κN.

AssumeωCK
1 < κN. Choose some predicateP ∈ Π1

1 \ ∆1
1. SuchP exists by the Analytical

Hierarchy Theorem. Now we apply Theorem 7.1.7 to obtain

P (~x) ⇔ TP (~x) ∈WT
⇔ (〈〉, ~x) ∈ IϕP .

By (7.7) we have

||ϕP || ≤ sup
{

otypTree(TP (~x)) + 1 ~x ∈ P
}

≤ sup
{

otypTree(e) + 1 e ∈WT
}

= ωCK
1 < κN.

It follows from the Closure Theorem (Theorem 7.2.3) thatIϕ is hyperelementary which by Corol-
lary 7.1.10 entails thatIϕ is ∆1

1. But this contradicts the choice ofP . �

To obtain further characterizations ofκN — and thus also ofωCK
1 — we introduce some notations.

7.2.4 Definition A binary well–founded predicate≺ is apre–well–orderingiff

x ≺ y ⇔ x ∈ field(≺) ∧ y ∈ field(≺) ∧ otyp≺(x) < otyp≺(y).

Pre–well–orderings are closely connected to norms.

7.2.5 Lemma Letµ:S
onto−→ λ be a norm. The predicate≺µ defined by

~x ≺µ ~y :⇔ ~x ∈ S ∧ ~y ∈ S ∧ µ(~x) < µ(~y)

is a pre–well–ordering such that

otyp≺µ(~x) = µ(~x)

holds for all~x ∈ S.
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Proof: The predicate≺µ is obviously well–founded. So we only have to prove

~x ∈ S ⇒ otyp≺µ(~x) = µ(~x). (i)

This is done by induction on≺µ. Using the induction hypothesis we compute

otyp≺µ(~x) = sup
{

otyp≺µ(~y) + 1 ~y ≺µ ~x
}

= sup
{

otyp≺µ(~y) + 1 µ(~y) < µ(~x)
}

= sup
{
µ(~y) + 1 µ(~y) < µ(~x)

}
= µ(~x).

�

7.2.6 Theorem We have

κN = sup
{

otyp(≺) ≺ is a hyperelementary pre–well–ordering
}

= sup
{

otyp(≺) ≺ is a hyperelementary well–founded binary predicate
}

= sup
{

otyp(≺) ≺ is a coinductive well–founded binary predicate
}
.

However, none of these suprema is attained.

Proof: Before we start proving the theorem we want to mention that it is true for arbitrary struc-
tures. Put

σhp := sup
{

otyp(≺) ≺ is a hyperelementary pre–well–ordering
}

σhf := sup
{

otyp(≺) ≺ is a hyperelementary well–founded binary predicate
}

and

σcf := sup
{

otyp(≺) ≺ is a coinductive well–founded binary predicate
}

.

Starting with an elementaryX–positive formulaϕ(X,~x) we construct for every~x0 ∈ Iϕ a hy-
perelementary pre–well–ordering≺~x0

such that

|~x0|ϕ + 1 ≤ otyp(≺~x0
). (i)

Then (i) provesκN ≤ σhp. Since

σhp ≤ σhf ≤ σcf

holds trivially it then remains to show

σcf ≤ κN (ii)

to finish the proof. Let’s prove (i). Choose~x0 ∈ Iϕ and define

~x ≺~x0
~y : ⇔ |~x|ϕ < |~y|ϕ ≤ |~x0|ϕ
⇔ x <∗ϕ,ϕ ~y ≤∗ϕ,ϕ ~x0

⇔ ¬(~y ≤∗ϕ,ϕ ~x) ∧ ¬(~x0 <
∗
ϕ,ϕ ~y).

(iii)

Then it is clear from (iii) that≺~x0
is hyperelementary and well–founded. By Lemma 7.2.5 it is

also a pre–well–ordering such that

otyp≺~x0
(~x) = |~x|ϕ.

Therefore we obtain
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otyp(≺~x0
) = sup

{
otyp≺~x0

(~x) + 1 |~x|ϕ ≤ |~x0|ϕ
}

= sup
{
|~x|ϕ + 1 |~x|ϕ ≤ |~x0|ϕ

}
= |~x0|ϕ + 1.

To prove (ii) let≺ be a coinductive well–founded binary predicate. Recall the definition of the
accessible partAcc(≺) of ≺ which is the fixed–point of the formula

ϕ≺(X,x) :≡ (∀y)(y ≺ x→ y ∈ X).

Denote byAccξ(≺) theξ–th stage of this fixed–point. We prove

x ∈ Accξ(≺)⇒ otyp≺(x) ≤ ξ (iv)

by transfinite induction onξ. Forx ∈ Accξ(≺) we get(∀y)
[
y ≺ x→ y ∈ Acc<ξ(≺)

]
which

by induction hypothesis gives

otyp≺(x) = sup
{

otyp≺(y) + 1 y ≺ x
}
≤ ξ.

Now we prove

x ∈ Accotyp≺(x)(≺) (v)

by induction on≺. From the induction hypothesis we get

(∀y)(y ≺ x⇒ y ∈ Acc<otyp≺(x)(≺))

which entails immediately

x ∈ Accotyp≺(x)(≺).

From (iv) and (v), however, we obtain

otyp≺(x) = |x|Acc(≺) (7.9)

which holds for arbitrary well–founded predicates. From (7.9) and (6.2) we get

otyp(≺) = sup
{

otyp≺(x) + 1 x ∈ field(≺)
}

≤ sup
{
|x|Acc(≺) + 1 x ∈ Acc(≺)

}
= ||ϕ≺||.

(vi)

Since≺ is coinductive we get by Lemma 6.3.7 thatAcc(≺) = Iϕ≺ is inductive. Hence

||ϕ≺|| ≤ κN (vii)

and we get from (vi) and (vii)

σcf ≤ κN.

It remains to show that none of the suprema is attained. For that it suffices to show thatσcf is not
attained. This, however, is obvious since for a given coinductive well–founded predicate≺ we
define

x ≺′ y :⇔ Seq(x) ∧ Seq(y) ∧ lh(x) = lh(y) = 2

∧ [((x)0 = (y)0 = 0 ∧ (x)1 ≺ (y)1) ∨ (y)0 = (y)1 = 1] .

Then≺′ is a coinductive well–founded predicate, too, andotyp(≺′) ≥ otyp(≺) + 1. �
Recalling Theorems 6.3.12, 7.2.6 and 7.2.3 we have shown

7.2.7 Theorem The ordinalωCK
1 is the supremum of the order–types ofΣ1

1–definable well–orderings.
This supremum is not attained, i.e. the order–type of any well–foundedΣ1

1–definable predicate is
less thanωCK

1 .
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There is an extension of Theorem 7.2.7 toΣ1
1–definable collections of well–orderings.

7.2.8 Theorem (Boundedness Principle)LetP be aΣ1
1–definable subset ofWO (or WT). Then

sup
{

otypWO(e) e ∈ P
}
< ωCK

1

(or sup
{

otypTree(e) e ∈ P
}
< ωCK

1 ).
If P is aΣ1

1–definable subset ofWO (orWT) then

sup
{

otyp(α) α ∈ P
}
< ωCK

1 .

Proof: Similarly to Theorem 7.2.3, the key to the proof will be the Analytical Hierarchy Theorem.
LetP ⊆WO beΣ1

1–definable and put

Q(a, b) :⇔ a ∈ LO ∧ P (b)

∧ (∃α)(∀x)(∀y)[{a}2,0(x, y) = 0⇒ {b}2,0(α(x), α(y)) = 0].

ThenQ(a, b) says thata is the index of an ordering which is order preserving embeddable into
an ordering inP . This implies thata is a well–ordering. Hence

(∃b)Q(a, b)⇒ a ∈WO. (i)

Now assume sup
{

otypWO(e) e ∈ P
}

= ωCK
1 . Then we get for anya ∈ WO a b ∈ P such that

otypWO(a) ≤ otypWO(b) and therefore also an order–preserving embedding fromfield({a}2,0)
into field({b}2,0), i.e. we get

a ∈WO ⇒ (∃b)Q(a, b). (ii)

From (i) and (ii) we obtain

a ∈WO ⇔ (∃b)Q(a, b).

For anyΠ1
1–predicateR, however, we haveR ≤m WT ≤m WO by Theorem 7.1.4 and Lemma 5.4.6.

Since(∃b)Q(a, b) is aΣ1
1–predicate everyΠ1

1–predicate would already beΣ1
1. This contradicts

the Analytical Hierarchy Theorem. The same proof works forWO replaced byWT .
If P ⊆WO then we define

Q(α, β) ⇔ α ∈ LO ∧ β ∈ P
∧ (∃η)(∀x)(∀y)[α(〈x, y〉) = 0⇒ β(〈η(x), η(y)〉) = 0]

which again isΣ1
1 and copy the above argument. �

In the Closure Theorem we have seen that the complexity of the obtained fixed–point depends on
the number of steps which are needed to construct the fixed–point, i.e. on||ϕ||. An interesting
question to ask is whether||ϕ|| depends on the complexity of the defining formulaϕ or not. Let
us regard the formula

ϕC(X,x, e) :≡ (∀y)
[
{e}1,0(x_〈y〉) ' 0⇒ (x_〈y〉, e) ∈ X

]
. (7.10)

ThenϕC is Π0
1. We know from Theorem 7.1.5

e ∈ Tree⇒ (e ∈WT ⇔ (〈〉, e) ∈ IϕC ).

and fore ∈WT

|(〈〉, e)|ϕC = otypTree(e).

SinceωCK
1 = sup

{
otypTree(e) + 1 e ∈WT

}
we obtain for everyξ < ωCK

1 ane such thatξ ≤
|(〈〉, e)|ϕC which shows

sup
{
||ϕ|| ϕ is anX–positiveΠ0

1–formula
}

= ωCK
1 . (7.11)
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It follows from (7.11) that restricting the inductive definition toΠ0
1–definable ones does not de-

crease the inductive closure ordinal. In the next section we are going to study the case ofΣ0
1–

definable operators.

7.3 Σ0
1–inductive definitions and semi–decidable sets

7.3.1 Lemma (Σ0
1–Reflection) Let ϕ(X,~x) be anX–positiveΣ0

1–formula andIψ any fixed–
point such thatϕ(I<ωψ , ~x). Then there is somen < ω such thatϕ(Inψ , ~x).

Proof: We induct on the definition of “ϕ(X,~x) is anX–positive formula”. The claim is obvious
if X does not occur inϕ(X,~x). If ϕ(X,~x) ≡ t(~x) ∈ X andt(~x) ∈ I<ωψ then there is some
n < ω such thatt(~x) ∈ Inψ . If ϕ(X,~x) ≡ ϕ1(X,~x) ∧∨ ϕ2(X,~x) we find n1, n2 < ω such
thatϕ1(In1

ψ , ~x) ∧∨ ϕ2(In2

ψ , ~x). Puttingn := max{n1, n2} we getϕ(Inψ , ~x) by theX–positivity of
ϕi(X,~x). The last possibility is thatϕ(X,~x) ≡ (∃y)ϕ0(X,~x, y). If ϕ(I<ωψ , ~x) then we find some
y < ω such thatϕ0(I<ωψ , ~x, y) and by induction hypothesis ann < ω such thatϕ0(Inψ , ~x, y). But
this impliesϕ(Inψ , ~x). �

Observe that the above proof depended heavily on the fact thatϕ(X,~x) was Σ0
1. The above

argument would break down forϕ(X,~x) ≡ (∀y)ϕ0(X,~x, y). Observe further that the opposite
direction in Lemma 7.3.1 holds by monotonicity. Hence

N |= ϕ(I<ωψ , ~x) ⇔ (∃n<ω)
[
N |= ϕ(Inψ , ~x)

]
. (7.12)

As a consequence of Lemma 7.3.1 we obtain

7.3.2 Theorem Letϕ(X,~x) be anX–positiveΣ0
1–formula. Then||ϕ|| ≤ ω.

Proof: By (7.12) we have

~x ∈ Iωϕ ⇔ N |= ϕ(I<ωϕ , ~x)

⇔ (∃n<ω)
[
~x ∈ In+1

ϕ

]
⇔ ~x ∈ I<ωϕ .

�

It follows from Theorem 7.3.2 and the Closure Theorem 7.2.2 that everyX–positiveΣ0
1–formula

has∆1
1 fixed–point. This estimate, however, is much too crude. It follows from Theorem 7.3.2

that

~x ∈ Iϕ ⇔ (∃n)(~x ∈ Inϕ).

Thus, if we succeed to show that
{

(~x, n) ~x ∈ Inϕ
}

is arithmetical or evenΣ0
1, we get a much

lower complexity of the fixed–point. The key here is a restatement of the Recursion Theorem.

7.3.3 Theorem (Recursion Theorem for semi–decidable predicates)Letϕ(X,~x) be anX–positive
Σ0

1–formula. There is an indexe such that

~x ∈Wn,0
e ⇔ ϕ(Wn,0

e , ~x)

Proof: Observe first that substituting a semi–decidable setR into anX–positiveΣ0
1–formula

ϕ(X,~x) yields a semi–decidable predicate{
(~x, ~y) ϕ(

{
~z (~z, ~y) ∈ R

}
, ~x)
}
.

The proof is by induction on the definition of “ϕ(X,~x) is anX–positiveΣ0
1–formula” and is

straight forward using the closure properties of semi–decidable predicates. Now we regard
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Q =
{

(~x, y) ϕ(Wn,0
S(y,y), ~x)

}
which is semi–decidable and therefore has an indexe0. Puttinge := S(e0, e0) we obtain

~x ∈Wn,0
e ⇔ (~x, e0) ∈Wn,0

e0

⇔ ϕ(Wn,0
S(e0,e0), ~x)

⇔ ϕ(Wn,0
e , ~x)

�
In consequence of the Recursion Theorem for semi–decidable predicates we get that the semi–
decidable predicates are closed under inductive definitions.

7.3.4 Theorem The fixed–point of anX–positiveΣ0
1–formulaϕ is aΣ0

1–predicate.

Proof: We use the Recursion Theorem to obtain an indexe such that

(~x,m) ∈We ⇔ [m = 0 ∧ ϕ(∅, ~x)] ∨
[
m = k + 1 ∧ ϕ(

{
~u (~u, k) ∈We

}
, ~x)
]
.

We prove

Imϕ =
{
~x (~x,m) ∈We

}
by induction onm and obtain the claim since

~x ∈ Iϕ ⇔ ~x ∈ I<ωϕ
⇔ (∃n)

[
~x ∈ Inϕ

]
⇔ (∃n) [(~x, n) ∈We] .

�

7.4 Some properties ofΠ1
1– and related predicates

We will apply the theory of inductive sets to pursue the study ofΠ1
1–predicates. Recalling (7.10)

we put

ϕTree(X,x, e) :≡ e ∈ Tree ∧ (∀y)({e}1,0(x_〈y〉) = 0 ⇒ (x_〈y〉, e) ∈ X).

Let ITree := IϕTree and put

WT σ :=
{
e (〈〉, e) ∈ IσTree

}
. (7.13)

Forσ < ωCK
1 the setWTσ is ∆1

1 by Theorem 7.2.2 and Corollary 7.1.9. We prove

WT σ =
{
e ∈WT otypTree(e) ≤ σ

}
. (7.14)

Assumee ∈WTσ and putTe :=
{
s {e}1,0(s) = 0

}
. By (7.5) we get

(〈〉, e) ∈ IσTree ⇒ Te�〈〉 ∈WT ∧ otyp(Te�〈〉) ≤ σ.

Hencee ∈WT andotypTree(e) ≤ σ.
For the converse inclusion assumee ∈WT andotypTree(e) ≤ σ. Then by (7.3)(〈〉, e) ∈ IσTree.
As a consequence of the Boundedness Principle (Theorem 7.2.8) we get

7.4.1 Lemma LetS ⊆WT be aΣ1
1–set. Then there is an ordinalσ < ωCK

1 such thatS ⊆WTσ.

Proof: By the Boundedness Principle there exists aσ < ωCK
1 such that sup

{
otypTree(e) e ∈ S

}
≤

σ. This impliesS ⊆WT σ. �
From Lemma 7.4.1 we get a characterization of the∆1

1–sets.
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7.4.2 Theorem LetH be a∆1
1–set. Then there is aσ < ωCK

1 such thatH ≤m WTσ.

Proof: SinceH ∈ Π1
1 andWT is Π1

1–complete we have

H ≤m WT (i)

say viaf . BecauseH is alsoΣ1
1 we get

M := f [H] =
{
f(x) x ∈ H

}
⊆WT (ii)

as aΣ1
1–subset ofWT . HenceM ⊆ WTσ for someσ < ωCK

1 by Lemma 7.4.1. By (i) and (ii),
however, we get

H ≤m WTσ

via f . �

7.4.3 Theorem (Reduction Theorem)Let P and Q be Π1
1–predicates. Then there areΠ1

1–
predicatesP1 ⊆ P andQ1 ⊆ Q such that

P1 ∩Q1 = ∅

and

P1 ∪Q1 = P ∪Q.

Cf. Figure 7.4.1.

P P1 Q1 Q

Figure 7.4.1: Reducing setsP1 andQ1 for P andQ

Proof: The theorem is a consequence of the Stage Comparison Theorem. Put

R(z, ~x) :⇔ [z = 0 ∧ P (~x)] ∨ [z = 1 ∧ Q(~x)] .

ThusR is Π1
1 and hence inductive. ThusR admits an inductive norm| |R by Theorem 6.4.5. Put

P1 :=
{
~x (0, ~x) �∗R (1, ~x)

}
and

Q1 :=
{
~x (1, ~x) ≺∗R (0, ~x)

}
where�∗R and≺∗R are the predicates defined in (6.13) and (6.14) on page 73. Then�∗R as well
as≺∗R are inductive, i.e.Π1

1–relations such that
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P1 ∩Q1 = ∅.

Moreover we have

P1 ∪Q1 ⊆
{
~x (∃z) [(z, ~x) ∈ R]

}
⊆ P ∪Q (i)

and for~x ∈ P ∪Q we either get(0, ~x) ∈ R or (1, ~x) ∈ R. Hence(0, ~x) �∗R (1, ~x) or (1, ~x) ≺∗R
(0, ~x) which implies~x ∈ P1 or ~x ∈ Q1. This gives also the converse inclusion of (i) and the
proof is finished. �

As a consequence of the Reduction Theorem we get

7.4.4 Theorem (Separation Theorem)LetP andQ be two disjointΣ1
1–predicates. Then there

is a∆1
1–predicateH which separatesP andQ, i.e. which satisfies

P ⊆ H

and

H ∩Q = ∅.

Cf. Figure 7.4.2.

P Q

H

Figure 7.4.2: SeparatingP andQ by a∆1
1– setH

Proof: We regard the complements¬P and¬Q and reduce them toP1 ⊆ ¬P andQ1 ⊆ ¬Q by
the Reduction Theorem. Because of

P1 ∪Q1 = ¬P ∪ ¬Q = ¬(P ∩Q) = Nn

and

P1 ∩Q1 = ∅

we get

P1 = ¬Q1.

PuttingH := ¬P1 we getH as a∆1
1–predicate such that
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P ⊆ H

and

Q ∩H = Q ∩Q1 = ∅

becauseQ1 ⊆ ¬Q. �

7.4.5 Theorem (WeakΠ1
1–uniformization) LetP be an(m+1, n)–aryΠ1

1–relation. Then there
is a partial functionalFP such that

dom(FP ) =
{
a (∃x)P (a, x)

}
(∀a ∈ dom(FP )) [P (a, FP (a)]

The graph ofFP is Π1
1–definable.

Cf. Figure 7.4.3.

P

F

Figure 7.4.3: UniformizingP byF

Proof: The naive try to put

FP (a) :' µx. P (a, x)

fails, because expressing thatx is the least element such thatP (a, x) requires to say(∀y < x)¬P (a, y)
which is not necessarily aΠ1

1–relation. However, using Stage Comparison we can first select anx
of minimal | |P norm and then select the least among those elements having the same| |P norm.
I.e. we put

FP (a) ' y :⇔ P (a, y)

∧ (∀z) [(a, y) �∗P (a, z)]

∧ (∀z < y) [(a, y) ≺∗P (a, z)] .

Since�∗P as well as≺∗P areΠ1
1 we easily check thatFP satisfies the claim. �

There is, however, an even stronger version of the Uniformization Theorem — due to KONDO

and ADDISON — which says that there is even a function–valued selection functional forΠ1
1–

relations. This is obviously much harder to prove because it is by far not clear how to pick a
function out of those having the sameΠ1

1–norm.
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7.4.6 Theorem (StrongΠ1
1–Uniformization) Let P be an(m,n + 1)–ary Π1

1–relation. Then
there is an(m,n+ 1)–aryΠ1

1–relationQ such that

(∀a)(∀α) [Q(a, α)⇒ P (a, α)] (i)

(∀a)(∀α)(∀β) [Q(a, α) ∧ Q(a, β) ⇒ α = β] (ii)

(∀a) [(∃α)P (a, α)⇒ (∃α)Q(a, α)] . (iii)

Proof: Fix a. If ¬(∃α)P (a, α) we trivially putQ := ∅. Thus assume(∃α)P (a, α). By Theo-
rem 7.1.3 we have a computable functionalF such that

P (a, α) ⇔ λx. F (a, α, x) ∈WT. (iv)

Let

Tα :=
{
s∈Seq F (a, α, s) = 0

}
be the associated tree. Put

σ := min
{

otyp(Tα) P (a, α)
}

and let

Q0 :=
{
α P (a, α) ∧ otyp(Tα) = σ

}
. (v)

We are going to define relationsQn by induction onn and assume thatQn is already defined. We
put

sn := min
{
α(n) P (a, α)

}
,

σn := min
{

otyp(Tα�n) P (a, α) ∧ α(n) = sn
}

and define

Qn+1 :=
{
α∈Qn α(n) = sn ∧ otyp(Tα�n) = σn

}
. (vi)

Let

Q :=
⋂
n∈ω

Qn.

From (v) and (vi) we get

(∀n< ω)[α ∈ Qn ⇒ P (a, α)]

by induction onn. ByQ ⊆ Q0 and (v) we have

α ∈ Q ⇒ P (a, α). (vii)

Another immediate consequence is

Q(α) ∧ Q(β) ⇒ (∀n ∈ ω)[α(n) = sn = β(n)]

⇒ α = β.
(viii)

By (vii) and (viii) we obtain claims (i) and (ii) of the theorem. The real work is to prove (iii) and
the fact thatQ is Π1

1–definable. Since we assumed(∃α)P (a, α) it suffices to prove

(∃α)Q(α)

to show (iii). SinceQn+1 ⊆ Qn we havesn ⊆ sn+1. Hence

m ≤ n ⇒ sm ⊆ sn.

Therefore there is a unique function, sayγ, such that
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(∀n ∈ ω)[γ(n) = sn]. (ix)

We claim

Q(γ). (x)

In a first step we prove

m <∗Tγ n ⇒ σm < σn. (xi)

Since the functionalF in (iv) is computable its valueF (a, γ) depends only on an initial segment
of γ. Therefore there is ak ∈ N such that

(∀α)[α(k) = γ(k) ⇒ ({n,m} ⊆ Tγ ⇔ {n,m} ⊆ Tα)]. (xii)

We may choosek bigger thanm andn. Pickα ∈ Qk+1. Thenα(n) = sn = γ(n) as well as
α(m) = sm = γ(m) and by (xii) we getm,n ∈ Tα. But thenm <∗Tγ n impliesm <∗Tα n and
we obtainotyp(Tα�m) < otyp(Tα�n). But sinceα ∈ Qk+1 ⊇ Qi+1 for i = m,n we finally
obtainσm = otyp(Tα�m) < otyp(Tα�n) = σn. This terminates the proof of (xi).
By a similar argument we also obtain

m ∈ Tγ ⇒ σm < σ. (xiii)

We choosek > m such that (xii) and pickα ∈ Qk+1. But thenσm = otyp(Tα�m) <
otyp(Tα) = σ sinceα ∈ Qk+1 ⊆ Qm+1 ⊆ Q0.
It follows from (xi) thatTγ is well–founded. Hence

P (a, γ). (xiv)

Next we prove

n ∈ Tγ ⇒ otyp(Tγ�n) ≤ σn (xv)

by induction on<∗Tγ . We have

otyp(Tγ�n) = sup
{

otypTγ�n(m) + 1 m ∈ Tγ�n
}

= sup
{

otypTγ (n_m) + 1 n_m ∈ Tγ
}

= sup
{

otypTγ (m) + 1 m <∗Tγ n
}

= sup
{

otyp(Tγ�m) + 1 m <∗Tγ n
}

≤ sup
{
σm + 1 m <∗Tγ n

}
≤ σn

where we used the induction hypothesis to come from the last but one line to the last line and (xi)
for the inequality in the last line.
Now we show

(∀n)[γ ∈ Qn] (xvi)

by induction onn. From (xiii) we getotyp(Tγ) ≤ σ which together with (xiv) showsγ ∈ Q0.
If γ ∈ Qn then we obtain from (ix) and (xv)γ ∈ Qn+1.
Now (x) follows from (xvi) and it remains to show thatQ is Π1

1–definable. First observe that for
T ∈WT the relation

otyp(S) ≤ otyp(T ) (xvii)

as well as

otyp(S) < otyp(T )

are bothΣ1
1–definable. To see this recall the formulaϕT in (7.2) and assumeT ∈WT. Then
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otyp(S) ≤ otyp(T ) ⇔ |〈〉|ϕS ≤ |〈〉|ϕT
⇔ 〈〉 /∈ IϕT ∨ (〈〉 ∈ ϕS ∧ ¬|〈〉|ϕT < |〈〉|ϕS )

⇔ ¬(〈〉 <∗ϕS,ϕT 〈〉)

and the last line isΣ1
1 by Stage Comparison. Analogously we also obtain

T ∈WT ⇒ (otyp(S) < otyp(T ) ⇔ ¬(〈〉 ≤∗ϕT ,ϕS 〈〉)).

Regard that according to the definition (vi) ofQn we have

β ∈ Qn ⇔ otyp(Tβ) ≤ σ ∧ (∀m<n)[β(m) ≤ sm ∧ otyp(Tβ�m) ≤ σm].

Thus, if we assumeα ∈ Qn,

β ∈ Qn ⇔ otyp(Tβ) ≤ otyp(Tα)

∧ (∀m<n)
[
β(m) ≤ α(m) ∧ otyp(Tβ�m) ≤ otyp(Tα�m)

]
.

(xviii)

According to (xvii) the right hand side in (xviii) is aΣ1
1–relation, sayR0(α, β, n) (where we

suppress the parametersa which are hidden inQn). Still assumingα ∈ Qn we thus get

α /∈ Qn+1 ⇔ (∃β){β ∈ Qn ∧ [β(n) < α(n) ∨ (β(n) = α(n)

∧ otyp(Tβ�n) < otyp(Tα�n))]}
⇔ (∃β){R0(α, β, n) ∧ [β(n) < α(n) ∨ (β(n) = α(n)

∧ otyp(Tβ�n) < otyp(Tα�n))]}
⇔: R1(α, n).

(xix)

By (xix) we see thatR1(α, n) is aΣ1
1–relation. Using (xix) we finally get

α ∈ Q ⇔ α ∈ Q0 ∧ (∀n)¬R1(α, n)

⇔ P (a, α) ∧ (∀β)[(a, α) �∗P (a, β)] ∧ (∀n)¬R1(α, n)

where�∗P is the relation defined in (6.13). SinceP is Π1
1 and thus inductive we get by Theo-

rem 6.4.5 that�∗P is inductive and thusΠ1
1–definable. �

7.5 Basis Theorems

Let P be an(0, 1)–ary relation, i.e.P is a collection of functions. Even ifP can be classified
in the arithmetical or analytical hierarchy we cannot hope to get some information about the
members ofP . Regard for example the collection ofall functions which is decidable but contains
functions of arbitrary complexity. All we can say is that there are computable functions among
all functions. We are going to prove that in many cases we have a similar situation. IfP is a
collection having a simple classification then some functions inP can be classified in a simple
way. This is made precise in the following definition.

7.5.1 Definition Let C be a collection of(0, 1)–ary relations. A classB of functions is called a
basis forC if for everyP in C we have

(∃α)P (α)⇒ (∃α∈B)P (α).

As an example we regard the collectionC of all Σ0
1–classes of functions. LetP ∈ C andP 6= ∅.

Thenα ∈ P ⇔ (∃x)R(α(x)) for some decidable predicateR. SinceP 6= ∅ there is some
s ∈ Seq such thatR(s). Defining

β(x) :=

{
(s)x if x < lh(s)
0 otherwise
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we getβ ∈ P and see that the class of functions which have value0 almost everywhere form a
basis for the collection ofΣ0

1–classes of functions.

7.5.2 Lemma LetB be a basis for the collection ofΠ0
1–classes of functions. Then

{
(γ)0 γ ∈ B

}
is a basis for the collection ofΣ1

1–classes of functions.

Proof: LetP be inΣ1
1. Then

P (α) ⇔ (∃β)Q(α, β) (i)

for someΠ0
1–relationQ(α, β). From(∃α)P (α) it follows (∃γ)Q((γ)0, (γ)1) and, sinceB is a

basis for the collection ofΠ0
1–classes of functions, we obtain aγ ∈ B such thatQ((γ)0, (γ)1).

But thenP ((γ)0). �

By literally the same proof we obtain also

7.5.3 Lemma LetB be a basis for the collection ofΠ1
n–classes of functions. Then

{
(γ)0 γ ∈ B

}
is a basis for the collection ofΣ1

n+1–classes of functions.

LetP be a class of functions. We define

In(P ) =
{
s∈Seq (∃α) [P (α) ∧ α(lh(s)) = s]

}
, (7.15)

i.e. In(P ) is the set of initial segments of functions inP . Generalizing our above example we
obtain

7.5.4 Lemma If P is a nonemptyΠ0
1–class of functions thenP (β) for someβ ≤T In(P ).

Proof: We define

F (n) :' µx. (F (n)_〈x〉 ∈ In(P )) .

ThenF is computable fromIn(P ). We show

(∀n)
[
F (n) ∈ In(P )

]
by induction onn. F (0) = 〈〉 ∈ In(P ) follows from the hypothesis(∃α)P (α). Now assume
F (n) ∈ In(P ). But then

F (n) = min
{
α(n) P (α) ∧ α(n) = F (n)

}
is defined andF (n+ 1) = F (n)_〈F (n)〉 ∈ In(P ). SinceP is Π0

1 we get

P (α) ⇔ (∀x)R(α(x))

for some decidable predicateR. Hence

In(P ) ⊆ R

and we get(∀x)R(F (n)). This provesP (F ). �

As a consequence we obtain the first half of KLEENE’s Basis Theorem.

7.5.5 Theorem The functions which are computable in the class ofΣ1
1–predicates are a basis

for the collection ofΠ0
1–classes of functions and hence also for the collection ofΣ1

1–classes of
functions.

Proof: For aΠ0
1–classP of functions we see from (7.15) thatIn(P ) is Σ1

1. By Lemma 7.5.4
it follows that the class of functions computable in the class ofΣ1

1–predicates is a basis for the

91



7. Inductive Definitions,Π1
1–sets and the ordinalωCK

1

collection ofΠ0
1–classes of functions and by Lemma 7.5.2 also for the collection ofΣ1

1–classes
of functions. �

As already remarked Theorem 7.5.5 is only one half of KLEENE’s Basis Theorem which will be
our Theorem 8.2.3. The second half says that the class of∆1

1–definable functions is not a basis
for the collection ofΠ0

1–classes of functions. We have to postpone this part until we have a better
characterization of the∆1

1–definable functions.
Recall that we identify sets with their characteristic functions. Therefore we may talk about bases
for collections of classes of sets. A remarkable result is

7.5.6 Theorem (KREISEL’s Basis Theorem) The class of∆0
2–functions is a basis for the collec-

tion ofΠ0
1–classes of sets.

To prepare the proof we formulate a lemma which on its turn is an easy consequence of the
Finiteness Theorem (Theorem 5.2.6).

7.5.7 Lemma LetP be aΠ0
1–relation and define

Q(a) :⇔ (∃α∗)P (a, α∗).

ThenQ is alsoΠ0
1.

Proof: SinceP ∈ Π0
1 we have

P (a, α) ⇔ (∀x)R(a(x), α(x))

for some decidable relationR. The tree{
s (∀i < lh(s)) [(s)i ≤ 1] ∧ (∀s0⊆s) [R(a(lh(s)0), s0)]

}
is boundedly branching. Hence

(∃α∗)P (a, α∗) ⇔ (∃α∗)(∀x)R(a(x), α∗(x))

⇔ (∀n)(∃s)[Seq(s) ∧ lh(s) = n

∧ (∀i < n)((s)i ≤ 1) ∧ (∀s0⊆s)R(a(lh(s0)), s0)]

by (5.26) in Theorem 5.2.6. Both quantifiers(∃s) and(∀s0⊆s) can obviously be bounded. Hence
(∃α∗)P (a, α∗) ∈ Π0

1. �

For the proof of Theorem 7.5.6 observe that for everyΠ0
1–class of setsP

x ∈ In(P ) ⇔ Seq(x) ∧ (∃α∗) [P (α∗) ∧ α∗(lh(x)) = x]

holds. ThusIn(P ) is Π0
1 by Lemma 7.5.7. The functions which are computable in theΠ0

1–classes
of functions are therefore by Lemma 7.5.4 a basis for the collection ofΠ0

1–classes of sets. By
POST’s Theorem (Theorem 3.2.6) these are the functions which are∆0

1[Π0
1], i.e.∆0

2. �

To obtain even further reaching basis theorems we introduce some notations.

7.5.8 Definition A (0, 1)–ary relationP defines a functionγ implicitly if

(∀α)(∀β) [P (α) ∧ P (β)⇒ α = β]

and

P (γ).

The functionγ is called asingleton.
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7.5.9 Lemma LetP define a functionγ implicitly. Then

P ∈ ∆1
n ⇔ γ ∈ ∆1

n

for all n.

Proof: Assume firstP ∈ ∆1
n. Then

γ(x) ' y ⇔ (∃α) [P (α) ∧ α(x) = y]

⇔ (∀α) [P (α)⇒ α(x) = y] .

If γ ∈ ∆1
n we get

P =
{
α (∀x)(∀y) [α(x) = y ⇔ γ(x) = y]

}
. �

As an immediate consequence we get

7.5.10 Corollary Let C be a collection of classes of functions such that every nonempty class in
C has a∆1

n–subclass which contains exactly one function. Then the class of∆1
n–functions is a

basis for the collectionC.

From the strongΠ1
1–uniformization and Corollary 7.5.10 we get the following theorem.

7.5.11 TheoremThe class of∆1
2–functions is a basis for the collection ofΠ1

1–classes of func-
tions.

By Lemma 7.5.3 we get

7.5.12 TheoremThe class of∆1
2–functions is a basis for the collection ofΣ1

2–classes of func-
tions.

7.6 The complexity ofKLEENE’s O
We will now settle the still open question for the complexity of KLEENE’s O within the analyt-
ical hierarchy. We definedO in Definition 5.4.1 by a rather complicated simultaneous inductive
definition. Now we are going to unravel this definition into single steps.

7.6.1 Definition We define inductively the binary predicate<′O by the following clauses.

1) If a ∈
{

2b b 6= 0
}
∪
{

3 · 5e e ∈ N
}

then1 <′O a.

2) If a ≤′O b thena <′O 2b.

3) If a ≤′O {e}1,0(n) for somen ∈ N thena <′O 3 · 5e.

Herea ≤′O b stands fora <′O b ∨ a = b. Observe that the operator associated to the inductive
definition in Definition 7.6.1 is defined by the formula

ϕ(X,x, y) :⇔ (x = 1 ∧ (∃z) [(y = 2z ∧ z 6= 0) ∨ y = 3 · 5z])
∨ (∃z) [((x, z) ∈ X ∨ x = z) ∧ y = 2z]

∨ (∃e)(∃n)(∃u)(∃z) [T(e, n, u) ∧ U(u) = z ∧ [(x, z) ∈ X ∨ x = z] ∧ y = 3 · 5e] .

This shows that<′O is defined by aΣ0
1–formula.

By Theorem 7.3.4 we therefore obtain

7.6.2 Lemma The predicate<′O is Σ0
1–definable.
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In the next step we show

7.6.3 Lemma

1) <′O is a transitive predicate

2) a <′O b ∧ b ∈ O ⇒ a ∈ O ∧ a <O b

3) a ∈ O ∧ b ∈ O ∧ a <O b⇒ a <′O b

Proof: We provea <′O b <′O c ⇒ a <′O c by induction on the definition ofb <′O c. The case
b = 1 is excluded sincea <′O b.
If b <′O c because ofc = 2y 6= 1 andb ≤′O y thena ≤′O y by the induction hypothesis. Hence
a ≤′O b by clause 2) in Definition 7.6.1.
If c = 3 · 5e andb ≤′O {e}1,0(n) we geta ≤′O {e}1,0(n) by the induction hypothesis anda <′O c
by clause 3) in Definition 7.6.1.
We show 2) by induction on|b|O. Forb = 1, i.e. |b|O = 0, there is nothing to show.
Assume thatb = 2y 6= 1. Theny ∈ O, |y|O < |b|O anda ≤′O y and we have eithera = y ∈ O
or a <′O y and hencea ∈ O by the induction hypothesis. By the induction hypothesis for the
second claim we also geta ≤O y which impliesa <O b.
If b = 3 · 5e anda <′O b we have ann ∈ N such thata ≤′O {e}1,0(n). But {e}1,0(n) ∈ O
and|{e}1,0(n)|O < |b|O. From the induction hypothesis we immediately geta ∈ O anda <O
{e}(n). Hencea <O 3 · 5e.
Finally we prove 3) by induction on|b|O. The claim is clear forb = 1. For b = 2y 6= 1 we get
a ≤O y which impliesa ≤′O y by the induction hypothesis. Hencea <′O b.
For b = 3 · 5e we geta ≤O {e}1,0(n) for somen ∈ N anda ≤′O {e}1,0(n) by the induction
hypothesis. Hencea <′O b. �

The idea is now to getO as the accessible part of<′O.

7.6.4 Definition We define inductively the setO′ by the following clauses.

1) 1 ∈ O′

2) a ∈ O′ ⇒ 2a ∈ O′

3) (∀n)
[
{e}1,0(n) ∈ O′

]
∧ (∀n)

[
{e}1,0(n) <′O {e}1,0(n+ 1)

]
⇒ 3 · 5e ∈ O′.

ThenO′ is positively arithmetically inductive, hence aΠ1
1–predicate. We show thatO andO′

coincide.

7.6.5 Lemma We haveO = O′ and<O= <′O�O ×O.

Proof: We show

x ∈ O ⇔ x ∈ O′ (i)

simultaneously by induction on the definition ofx ∈ O andx ∈ O′, respectively. Claim (i) is
obvious forx = 1 and immediate from the induction hypothesis in case thatx = 2y 6= 1. Thus
let x = 3 · 5y. If x ∈ O we get{y}1,0(n) ∈ O for all n ∈ N and therefore{y}1,0(n) ∈ O′ for all
n ∈ N. We moreover have(∀n)

[
{y}1,0(n) <O {y}1,0(n+ 1)

]
. By clause 3) of Lemma 7.6.3

this implies

(∀n)
[
{y}1,0(n) <′O {y}1,0(n+ 1)

]
and we obtain3 · 5y ∈ O′ by clause 3) of Definition 7.6.4.
If 3 · 5y ∈ O′ we get
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(∀n)
[
{y}1,0(n) ∈ O

]
∧ (∀n)

[
{y}1,0(n) <′O {y}1,0(n+ 1)

]
by the induction hypothesis and Definition 7.6.4. Hence

(∀n)
[
{y}1,0(n) ∈ O

]
∧ (∀n)

[
{y}1,0(n) <O {y}1,0(n+ 1)

]
by Lemma 7.6.3. The second claim follows from (i) and Lemma 7.6.3. �

It follows from Lemma 7.6.5 thatO is aΠ1
1–set. We show even a bit more.

7.6.6 Theorem The setO is Π1
1–complete.

Proof: By Theorem 7.1.7 there is a formulaϕP (the formula in (7.8)) such that

P ≤m IϕP .

Thus it suffices to show

IϕP ≤m O.

We want to get a computable functionG such that

(s, x) ∈ IϕP ⇔ G(s, x) ∈ O. (i)

First we define a function

G0(e, s, x) =

{
1 if {TP (x)}1,0(s) ' 1
3 · 5z if {TP (x)}1,0(s) ' 0

wherez is an index of the functionF defined by

F (0) = 1

F (n+ 1) = F (n) +O {e}2,0(s_〈n〉, x) +O 2.

Note that the case distinction in the defintion ofG0 is decidable becauseTP (x) ∈ Tree. Using
the Recursion Theorem we get an indexe0 such that

{e0}2,0(s, x) ' G0(e0, s, x)

and we putG := {e0}2,0. By definitionG is computable. We show thatG satisfies (i) and start
to prove

(s, x) ∈ IϕP ⇒ G(s, x) ∈ O

by induction on|(s, x)|ϕP . With Bx we denote the tree given byTP (x),

Bx :=
{
s {TP (x)}1,0(s) ' 0

}
.

If s /∈ Bx thenG(s, x) = 1 ∈ O. Now let s ∈ Bx andn ∈ N. If we haves_〈n〉 ∈ Bx then
|(s_〈n〉, x)|ϕP < |(s, x)|ϕP and we obtainG(s_〈n〉, x) ∈ O by the induction hypothesis. If on
the other hands_〈n〉 /∈ Bx thenG(s_〈n〉, x) = 1 ∈ O. Hence

(∀n) [G(s_〈n〉, x) ∈ O] . (ii)

SinceF (n+ 1) = F (n) +O G(s_〈n〉, x) +O 2 andF (0) = 1 we get from Lemma 5.4.5 and (ii)

(∀n) [F (n) ∈ O]

as well as

(∀n) [F (n) <O F (n+ 1)] .

Becausez is an index ofF we obtain
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1

G(s, x) = 3 · 5z ∈ O.

For the opposite direction we have to prove

G(s, x) ∈ O ⇒ (s, x) ∈ IϕP
by induction on|G(s, x)|O. Fors /∈ Bx we haveϕP (∅, s, x), thus(s, x) ∈ I0

ϕP
⊆ IϕP . If s ∈ Bx

thenG(s, x) = 3 · 5z and

(∀n)
[
{z}1,0(n+ 1) = {z}1,0(n) +O G(s_〈n〉, x) +O 2

]
.

From Lemma 5.4.5 we can infer(∀n) [G(s_〈n〉, x) ∈ O], hence|G(s_〈n〉, x)|O < |G(s, x)|O
for all s_〈n〉 ∈ Bx. By induction hypothesis this implies

(∀n) [s_〈n〉 ∈ Bx ⇒ (s_〈n〉, x) ∈ IϕP ]

which is

ϕP (IϕP , s, x).

Hence(s, x) ∈ IϕP . �
As a consequence of Theorem 7.6.6 and the Analytical Hierarchy Theorem we get the following
corollary.

7.6.7 Corollary There is noΣ1
1–definition ofO.

We can even strengthen the statement of Corollary 7.6.7 to get the Boundedness Principle forO.

7.6.8 Lemma LetP be aΣ1
1–definable subset ofO. Then

sup
{
|a|O a ∈ P

}
< ωCK

1 .

Proof: By Theorem 5.4.8 there is a computable functiong such that

a ∈ O ⇒ g(a) ∈WT ∧ |a|O = otypTree(g(a)). (i)

Thusg[P ] is aΣ1
1–definable subset ofWT . Hence the Boundedness Principle (Theorem 7.2.8)

and (i) yield

sup
{
|a|O a ∈ P

}
= sup

{
otypTree(g(a)) a ∈ P

}
< ωCK

1 . �

The tree–like structure ofO leads to the following definition.

7.6.9 Definition A setP ⊆ O which is linearly ordered by<O is called apath inO. If P is a
path inO and sup

{
|a|O a ∈ P

}
= ωCK

1 thenP is called apath throughO.

As a consequence of Theorem 5.4.9 and Lemma 7.6.8 we get

7.6.10 Corollary There are noΣ1
1–definable paths throughO.

However, as we will see in section 9.1, there areΠ1
1–definable paths throughO.
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8.1 Hyperarithmetical sets

We are now prepared for the study of infinite iterations of the jump operator.

8.1.1 Definition Fora ∈ O we put

Ha :=

∅ if a = 1, i.e. |a|O = 0
j(Hb) if a = 2b 6= 1, i.e. |a|O = |b|O + 1{
〈x, y〉 y <O a ∧ x ∈ Hy

}
if a = 3 · 5e, i.e. |a|O ∈ Lim.

We say that a setS ⊆ N is hyperarithmeticalif there is ana ∈ O such thatS ≤T Ha.
The class

Hyp :=
{
Ha a ∈ O

}
is thehyperarithmetical hierarchy.

The definition of the setHa depends heavily on the ordinal notationa ∈ O. It will take some
effort to obtain the independence of the hyperarithmetical hierarchy from the ordinal notation.
This will be achieved as soon as we are able to prove

8.1.2 Theorem For a, b ∈ O such that|a|O = |b|O we haveHa ≡ Hb.

The proof needs some effort and is done in several steps. We first prove

8.1.3 Lemma Let a ≤O b. ThenHa ≤m Hb. This holds uniformly ina andb, i.e. an index for
the reducing function can be computed froma andb.

Proof: Eachb consists of anm-fold (m ≥ 0) iteration of exponentiations by2 starting at ab′ ∈ N
which is not of the form2z. We descend this tower of exponentiations until we reacha or until
we cannot descend any further. Letc be the element ofO we reached and letn be the number
of steps we took. ByHb = H

(n)
c and (3.2) of Lemma 3.1.3 there exists a computable functionf

with

Hc ≤m Hb via {f(0, n)}1,0. (i)

If a = c we are done. Otherwise we havea <O c and|c|O ∈ Lim. By (i)

x ∈ Ha ⇔ 〈x, a〉 ∈ Hc

⇔ {f(0, n)}1,0(〈x, a〉) ∈ Hb

holds.
Observe that the algorithm described above terminates even ifa /∈ O. �

8.1.4 Lemma For a ∈ O we put

Oa :=
{
x∈O |x|O < |a|O

}
.

ThenOa is computable inH2a uniformly ina, i.e. aH2a–index forχOa is computable froma.
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Proof: We use the Recursion Lemma along<O to define a computable function, sayg, such that
for a ∈ O its valueg(a) is aH2a–index forχOa . The recursion hypothesis gives

(∀b<O a)
[
χOb = {{e}(b)}H2b

]
and we look for a computable functionG such that

χOa = {G(a, e)}H2a .

We distinguish the following cases.
a = 1. ThenOa = ∅ and we chooseG(a, e) to be anH2a–index of the empty set.
a = 2. ThenOa = {1} and we chooseG(a, e) to be anH2a–index of{1}.
a = 2b andb = 2c 6= 1. Then

Oa = Ob ∪
{

2x x ∈ Ob
}
,

soOa is decidable inOb and{e}1,0(b) is anH2b–index forOb. By Lemma 8.1.3 andb <O a we
can compute anH2a–index ofOb from e andb, which in turn easily gives anH2a–index ofOa.
We letG(a, e) be such an index.
a = 2b andb = 3 · 5z. Then

Oa = Ob ∪ {3 · 5u | {u}1,0 is total ∧ (∀n)
[
{u}1,0(n) ∈ Ob

]
∧ (∀n)

[
{u}1,0(n) <′O {u}1,0(n+ 1)

]
}.

The statements “{u}1,0 is total” and “(∀n)
[
{u}1,0(n) <′O {u}1,0(n+ 1)

]
” areΠ0

2, hence decid-
able inH22 . For total{u}1,0 the set

{
n {u}1,0(n) ∈ Ob

}
is decidable inOb and{e}1,0(b) is

anH2b–index forOb. Sinceb > 2 we obtainOa asΠ0
1 in H2b , hence decidable inH2a and an

H2a–index forOa is computable frome anda.
a = 3 · 5b. Then

Oa =
{
x (∃n)[x ∈ O{b}(n)]

}
.

By recursion hypothesis we obtain{e}({b}(n)) as anH2({b}(n))–index forO{b}(n). Using Lemma 8.1.3
we obtainOa as semi–decidable inHa and hence decidable inH2a . An H2a–index forOa de-
pends computably one anda.
If a is of any other shape then we putG(a, e) := 0.
A close look at our construction shows thatG(a, e) is defined even ifa /∈ O. Thus the functiong
given by the Recursion Lemma is computable. �

As an easy consequence of Lemma 8.1.4 we obtain the next lemma.

8.1.5 Lemma For a ∈ O{
x∈O |x|O = |a|O

}
is decidable inH22a uniformly ina, i.e. anH22a–index for

{
x∈O |x|O = |a|O

}
is computable

froma.

Proof: We get

x ∈ O ∧ |x|O = |a|O ⇔ (x ∈ O ∧ |x|O < |2a|O) ∧ ¬(x ∈ O ∧ |x|O < |a|O).

By Lemma 8.1.4 the first conjunct is decidable inH22a and the second inH2a . Both statements
hold uniformly ina. Thus their conjunction is decidable inH22a uniformly in a. �

8.1.6 Lemma If a ∈ O andb ∈ O such that|a|O = |b|O thenHa ≤T Hb.
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Proof: We define a well–founded predicate<P by

〈c, d〉 <P 〈a, b〉 :⇔ {a, b, c, d} ⊆ O ∧ |c|O ≤ |d|O ∧ |a|O ≤ |b|O
∧ [|c|O < |a|O ∨ (|c|O = |a|O ∧ |d|O < |b|O)]

and use the Recursion Lemma along<P to define a computable functiong such that for〈a, b〉 ∈
field(<P ) (i.e. fora, b ∈ O with |a|O ≤ |b|O)

χHa = {g(a, b)}Hb (i)

holds. Let〈a, b〉 ∈ field(<P ). The recursion hypothesis gives

〈c, d〉 <P 〈a, b〉 ⇒ χHc = {{e}(c, d)}Hd

and we search for a computable functionG such that

χHa = {G(e, a, b)}Hb.

We distinguish the following cases:
a = 1. LetG(e, a, b) be ane0 with {e0}X = χ∅ for all X ⊆ N.
a = 2c 6= 1 andb = 2d. Then〈c, d〉 <P 〈a, b〉, and so the recursion hypothesis givesχHc =
{{e}(c, d)}Hd . By clause 2) of Theorem 3.1.1 we can compute ane0 with χHa = {e0}Hb from
{e}(c, d) and putG(e, a, b) := e0.
a = 2c 6= 1 andb = 3 · 5u. Then|a|O < |b|O, and so there existn with

|a|O < |{u}(n)|O. (ii)

By Lemma 8.1.4 “|a|O < |{u}(n)|O” is uniformly decidable inH2{u}(n) , which in turn is uni-
formly decidable inHb by Lemma 8.1.3. Thus ann satisfying (ii) is uniformly computable in
Hb. Because of〈a, {u}(n)〉 <P 〈a, b〉 the recursion hypothesis gives

χHa = {{e}(a, {u}(n))}H{u}(n).

By Lemma 8.1.3H{u}(n) is uniformly decidable inHb, and so, with some considerable effort,
G(e, a, b) cen be defined appropriately.
a = 3 · 5u. As 〈c, b〉 <P 〈a, b〉 for c <O a the recursion hypothesis implies

y ∈ Ha ⇔ y = 〈x, c〉 ∧ c <O a ∧ x ∈ Hc

⇔ y = 〈x, c〉 ∧ c <′O a ∧ {{e}(c, b)}Hb(x) = 0.

Because of|a|O ≤ |b|O theΣ0
1–predicate<′O is uniformly decidable inHb.

In the usual way we see that it is possible to turnG into a total function. So theg satisfying (i)
given by the Recursion Lemma is computable. �
Theorem 8.1.2 is an easy consequence of the last lemma.
In the next step we want to show that the hyperarithmetical hierarchy exhausts the∆1

1–sets. Recall
the concept of∆1

1–indices for sets as introduced in Theorem 4.2.6. We will prove that every
hyperarithmetical set is∆1

1 in a pretty strong sense.

8.1.7 Lemma There is a computable functionh such that for everya ∈ O the valueh(a) is a
∆1

1–index for the setHa.

Proof: We use the Recursion Lemma (Lemma 5.4.7) along<O to show the existence ofh. For
a ∈ O the recursion hypothesis says

(∀b<O a)
[
Hb =

{
x U∆1

1

{e}(b)(x)
}]

whereU∆1
1 is the universal predicate for∆1

1–sets as defined in Theorem 4.2.6. By this theorem
we obtain
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Hb =
{
x UΣ1

1

({e}1,0(b))0
(x)
}

=
{
x UΠ1

1

({e}1,0(b))1
(x)
}
.

The recursion step consists in defining a partial computable functionG such that

Ha =
{
x U∆1

1

G(a,e)(x)
}
.

We distinguish the following cases:
a = 1. ThenHa = ∅ and we defineG(a, e) to be a∆1

1–index of the empty set.
a = 2c 6= 1. Thenc <O a andHa = j(Hc). Hence

x ∈ Ha ⇔ (∃z)R(x, z, χHc(z))

for a well–known semi–decidable predicateR. So we obtain

x ∈ Ha ⇔ (∃z)(∃s)[Seq(s) ∧ lh(s) = z ∧ (∀i < z)((s)i ≤ 1)

∧ (∀i < z)((s)i = 0 ⇔ i ∈ Hc)

∧ R(x, z, s)]

⇔ (∃z)(∃s)[Seq(s) ∧ lh(s) = z ∧ (∀i < z)((s)i ≤ 1)

∧ (∀i < z)((s)i = 0⇒ UΣ1
1

({e}(c))0
(i))

∧ (∀i < z)((s)i = 1⇒ ¬UΠ1
1

({e}(c))1
(i))

∧ R(x, z, s)]

(i)

and, completely analogous,

x ∈ Ha ⇔ (∃z)(∃s)[Seq(s) ∧ lh(s) = z ∧ (∀i < z)((s)i ≤ 1)

∧ (∀i < z)((s)i = 0⇒ UΠ1
1

({e}(c))1
(i))

∧ (∀i < z)((s)i = 1⇒ ¬UΣ1
1

({e}(c))0
(i))

∧ R(x, z, s)].

(ii)

From (i) we see thatHa is Σ1
1 and aΣ1

1–indexe1 for Ha can be computed frome andc which in
turn is computable froma. Analogously we see from (ii) thatHa is Π1

1 and aΠ1
1–indexe2 forHa

can be computed frome anda. HenceHa is ∆1
1 and we putG(a, e) = 〈e1, e2〉.

a = 3 · 5c. Then

x ∈ Ha ⇔ Seq(x) ∧ lh(x) = 2 ∧ (x)1 <O a ∧ (x)0 ∈ H(x)1
. (iii)

Using Lemma 7.6.3 we infer from (iii)

x ∈ Ha ⇔ Seq(x) ∧ lh(x) = 2 ∧ (x)1 <
′
O a ∧ (x)0 ∈ H(x)1

⇔ Seq(x) ∧ lh(x) = 2 ∧ (x)1 <
′
O a ∧ UΣ1

1

({e}((x)1))0
((x)0)

⇔ Seq(x) ∧ lh(x) = 2 ∧ (x)1 <
′
O a ∧ UΠ1

1

({e}((x)1))1
((x)0).

This shows thatHa is ∆1
1 and aΣ1

1–indexe1 as well as aΠ1
1–indexe2 for Ha can be computed

from e anda. We putG(a, e) := 〈e1, e2〉.
Yet again, note thatG is total, and so theg given by the Recursion Lemma is total, too. �

To obtain also the opposite direction we are going to use Theorem 7.4.2 according to which
every∆1

1–set is many–one reducible to someWTσ. It will therefore suffice to show thatWTσ is
hyperarithmetical for anyσ < ωCK

1 . We prove

8.1.8 Lemma There is a computable functiond such that

WT|a|O = {d(a)}H22a ,1,0
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for all a ∈ O.

Proof: By (7.13) we have

x ∈WT σ ⇔ (〈〉, x) ∈ IσTree,

hence it suffices to show that there is a computable functiong such that for alla ∈ O we have

χ
I
|a|O
Tree

= {g(a)}H22a ,2,0 . (i)

We are going to prove (i) by the recursion lemma along|a|O. Therefore we have the recursion
hypothesis

(∀b<O a)
[
χ
I
|b|O
Tree

= {{e}(b)}H22b ,2,0

]
.

We have to define a partial computable functionG such that

χ
I
|a|O
Tree

= {G(e, a)}H22a ,2,0.

We distinguish the following cases:
a = 1. We have

I0
Tree =

{
(s, x) x ∈ Tree ∧ {x}1,0(s) = 0 ∧ (∀y)

[
{x}1,0(s_〈y〉) = 1

]}
.

This shows thatI0
Tree is Π0

2 and hence decidable inH22a . We defineG(e, a) to be anH22a–index
of I0

Tree.

a = 2c 6= 1. Then, usingI |a|OTree = I
|c|O+1
Tree , we obtain

(s, x) ∈ I |a|OTree ⇔ x ∈ Tree ∧ (∀y)
[
{x}1,0(s_〈y〉) = 0⇒ (s_〈y〉, x) ∈ I |c|OTree

]
⇔ x ∈ Tree ∧ (∀y)

[
{x}1,0(s_〈y〉) = 0⇒ {{e}(c)}H22c ,2,0(s_〈y〉, x) = 0

]
.

(ii)

The formula “x ∈ Tree” is Π0
2, the second conjunct in (ii) isΠ0

1 in H22c . Thus¬I |a|OTree is Σ0
1 in

H22c and by Theorem 3.1.1 it follows that¬I |a|OTree is m–reducible toj(H22c ). HenceI |a|OTree ≤T
j(H22c ) ≤T H22a and anH22a–index forI |a|OTree is computable from theH22c–index{e}(c). Since
c is computable froma we get a computable functionG such that

{G(e, 2c)}H22a ,2,0 = I
|2c|O
Tree .

a = 3 · 5c. Then|a|O ∈ Lim and we get

(s, x) ∈ I |a|OTree ⇔ x ∈ Tree ∧ (∀y)
[
{x}1,0(s_〈y〉) = 0⇒ (s_〈y〉, x) ∈ I<|a|OTree

]
⇔ x ∈ Tree ∧ (∀y)(∃v)

[
v <′O a ∧ ({x}1,0(s_〈y〉) = 0⇒ (s_〈y〉, x) ∈ I |v|OTree )

]
⇔ x ∈ Tree ∧ (∀y)(∃v)

[
v <′O a ∧ ({x}1,0(s_〈y〉) = 0

⇒ {{e}(v)}H22v ,2,0(s_〈y〉, x) = 0)
]
.

(iii)

But observe that forv <′O a we haveH22v ≤m Ha sincex ∈ H22v ⇔ 〈x, 22v 〉 ∈ Ha. Therefore

we get from (iii) thatI |a|OTree is Π0
2 in Ha. HenceI |a|OTree ≤T H22a by Theorem 3.1.1 and anH22a–

index forI |a|OTree is effectively computable frome anda. LettingG(e, a) be this index we get

χ
I
|a|O
Tree

= {G(e, a)}H22a ,2,0.

By the Recursion Lemma we get a partial–computable functiong such that, for alla ∈ O, g(a)
is anH22a–index forχ

I
|a|O
Tree

and we defined(a) as an index for the set
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{
x {g(a)}H22a ,2,0(〈〉, x) = 0

}
.

Observe thatd is computable. �

8.1.9 Theorem (Characterization Theorem for∆1
1–sets) The hyperarithmetical sets are the∆1

1–
sets.

Proof: It is an easy exercise to show that the∆1
1–sets are closed under≤T . From this and

Lemma 8.1.7 it follows that every hyperarithmetical set is∆1
1. Conversely, if a setS is ∆1

1 then,
according to Theorem 7.4.2,S ≤m WT σ for someσ < ωCK

1 . By Lemma 8.1.8 there is some
a ∈ O such thatS ≤m WT |a|O ≤T H22a . HenceS is hyperarithmetical. �

8.2 Hyperarithmetical functions

8.2.1 Definition A function α:N −→ N is hyperarithmeticalif its graphGα is a hyperarith-
metical predicate.

Since we are talking about total functions we have

α(x) 6= y ⇔ (∃z) [α(x) = z ∧ z 6= y]

which implies

Gα ∈ ∆1
1 ⇔ Gα ∈ Π1

1 ⇔ Gα ∈ Σ1
1.

Therefore a function is hyperarithmetical if it possesses aΠ1
1–graph. This opens the possibility to

define indices for hyperarithmetical functions via the weakΠ1
1–uniformization Theorem (Theo-

rem 7.4.5). Though we did not emphasize it in the proof of Theorem 7.4.5 it should be clear that
aΠ1

1–index of the uniformizing function is computable from aΠ1
1–index of the original predicate

via a computable function, sayk. Then we define

{e}I(x) ' y ⇔ UΠ1
1

k(e)(x, y) (8.1)

and call{e}I a hyperarithmetical index. Note that{e}I is not necessarily total.
We denote byH the class of hyperarithmetical functions. Then we obtain

{e}I ∈ H ⇔ (∀x)(∃y)UΠ1
1

k(e)(x, y) (8.2)

which is aΠ1
1–statement.

We are going to prove thatH is a genuineΠ1
1–relation.

8.2.2 Lemma The relationH is Π1
1 but notΣ1

1.

Proof: Because of

α ∈ H ⇔ (∃e)[{e}I ∈ H ∧ (∀x)(α(x) = {e}I(x))]

and (8.2) we obtainH as aΠ1
1–relation.

Now assumeH ∈ Σ1
1. Define

P (α, a) :⇔ (α ∈ H ∧ a ∈ O ∧ α ≤m WT |a|O) ∨ (a = 1 ∧ α /∈ H). (i)

By Lemma 8.1.8 and Lemma 8.1.7 the predicateQ defined by

Q(x, a) :⇔ a ∈ O ∧ x ∈WT |a|O

is Π1
1. Since
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8.2. Hyperarithmetical functions

α ≤m WT |a|O ⇔ (∃e)(∀x)(∀y)
[
α(x) = y ⇔ (∃z)[T1,0(e, 〈x, y〉, z) ∧ U(z) ∈WT |a|O ]

]
for a ∈ O the relationP (α, a) is Π1

1. Using weakΠ1
1 uniformization we obtain a functionalFP

whose graph isΠ1
1–definable. By Theorem 7.4.2 we get

(∀α)(∃a)P (α, a)

which shows thatFP is a total functional, hence the graph ofFP is ∆1
1–definable.

On the other hand, for everya ∈ O there is anα ∈ H such thatα �m WT |a|O : Forσ < ωCK
1 we

haveWT σ ∈ ∆1
1, henceY := j(WTσ) ∈ ∆1

1 with Y �m WT σ. Puttingα := χY we getα ∈ H
andα �m WT σ.
Thereforerng(FP ) isΣ1

1–definable and unbounded inO. This, however, contradicts Lemma 7.6.8.
�

8.2.3 Theorem (KLEENE’s Basis Theorem) The functions which are computable in the class of
Σ1

1–predicates are a basis for the collection ofΣ1
1–classes of functions.

The class of∆1
1–definable functions is not a basis for this collection and hence not even a basis

for the collection ofΠ0
1–classes of functions.

Proof: The first part is Theorem 7.5.5. For the second part we define a relationP by

P (α) :⇔ α /∈ H.

ThusP is a nonemptyΣ1
1–relation for which

P (α) ⇔ α /∈ ∆1
1

holds. Obviously there is noβ ∈ ∆1
1 with P (β). Thus the class of∆1

1–definable functions is not
a basis for the collection ofΣ1

1–classes of functions. The rest follows from Lemma 7.5.2. �

This theorem has a surprising consequence.

8.2.4 Theorem There is a non well–founded decidable tree without infinite hyperarithmetical
path (i.e.H thinks that the tree is well–founded).

Proof: By the second part of the last theorem there is a nonempty(0, 1)-aryΠ0
1-relationP with

(∀α ∈H)¬P (α).

AsP is Π0
1 there is a decidable predicateR such that

P (α) ⇔ (∀x)R(α(x))

holds. The tree

T :=
{
s ∈Seq (∀s0)(s0 ( s⇒ R(s0))

}
is the one we are looking for. �

A somehow more constructive proof of the last theorem is given on page 107.
One further goal of the present section is to show that the classH is a model of the scheme

(Π1
1 −AC01) (∀x)(∃α)P (x, α) ⇒ (∃β)(∀x)P (x, (β)x)

whereP is a(1, 1)–aryΠ1
1–relation. We call(Π1

1−AC01) theΠ1
1–axiom of choice of type(0, 1).

By the weakΠ1
1–uniformization theorem (Theorem 7.4.5) we get for aΠ1

1–predicateP

(∀x)(∃y)P (x, y)⇒ (∃β ∈H)(∀x)P (x, β(x)). (8.3)

This shows thatH is a model of theΠ1
1–axiom of choice of type(0, 0)
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(Π1
1 −AC00) (∀x)(∃y)P (x, y)⇒ (∃β)(∀x)P (x, β(x)).

8.2.5 Theorem The classH of hyperarithmetical functions is a model of(Π1
1 −AC01), i.e. for a

(1, 1)–aryΠ1
1–relationP we have

(∀x)(∃α ∈H)P (x, α)⇒ (∃β ∈H)(∀x)P (x, (β)x).

Proof: Using indices for hyperarithmetical functions we get

(∀x)(∃α ∈H)P (x, α) ⇔ (∀x)(∃e)
[
{e}I ∈ H ∧ P (x, {e}I)

]
. (i)

It follows from (8.1) that{e}I ∈ H is aΠ1
1–statement. But we also have for total{e}I

P (x, {e}I) ⇔ (∀α)
[
((∀z)(∀y)({e}I(z) = y ⇒ α(z) = y))⇒ P (x, α)

]
which shows that the expression in square brackets in (i) isΠ1

1. Thus starting with

(∀x)(∃α ∈H)P (x, α)

we get by (i) and (8.3) a hyperarithmetical functionγ such that

(∀x)
[
{γ(x)}I ∈ H ∧ P (x, {γ(x)}I)

]
.

We define a total functionβ by

β(u) :=

{
{γ((u)0)}I((u)1) if Seq(u) ∧ lh(u) = 2
0 otherwise

and easily see

(β)x = {γ(x)}I .

Furthermore we obtain

β(〈a, b〉) ' y ⇔ {γ(a)}I(b) ' y
⇔ UΠ1

1

k(γ(a))(b, y)

which shows thatβ has aΠ1
1–graph. Henceβ ∈ H and

(∀x)P (x, (β)x). �

The next goal is to show the class of hyperarithmetical functions is characterized by(Π1
1−AC01).

This needs some preparation.
Our first observation is that the stagesHa can be defined implicitly. Leta ∈ O. Then

x ∈ Ha ⇔ (a = 1 ∧ x 6= x)

∨ (∃z) [a = 2z 6= 1 ∧ x ∈ j(Hz)]

∨ (∃z)
[
a = 3 · 5z ∧ (x)1 <

′
O a ∧ (x)0 ∈ H(x)1

∧ Seq(x) ∧ lh(x) = 2
]

⇔ (a = 1 ∧ x 6= x)

∨ (∃z)
[
a = 2z 6= 1 ∧ (∃u)R(χHz (u), x)

]
∨ (∃z)

[
a = 3 · 5z ∧ (x)1 <

′
O a ∧ (x)0 ∈ H(x)1

∧ Seq(x) ∧ lh(x) = 2
]

⇔ (a = 1 ∧ x 6= x)

∨ (∃z)[a = 2z 6= 1 ∧ (∃u)(∃s)(Seq(s) ∧ lh(s) = u

∧ (∀i < u)((s)i = χHz(i) ∧ R(s, x)]

∨ (∃z)
[
a = 3 · 5z ∧ (x)1 <

′
O a ∧ (x)0 ∈ H(x)1

∧ Seq(x) ∧ lh(x) = 2
]

(8.4)

for some decidable predicateR. PuttingHyp(b, α) as
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8.2. Hyperarithmetical functions

(∀x)(α(x) ≤ 1 ∧ (α(x) = 0⇒ Seq(x) ∧ lh(x) = 2))

∧ (∀a)(¬a ≤′O b⇒ (∀x)(α(〈x, a〉) = 1))

∧ (∀a)(∀z)(a ≤′O b⇒
[a = 1⇒ (∀x)(α(〈x, a〉) = 1)

∧ (a = 2z 6= 1⇒ (∀x)(α(〈x, a〉) = 0

⇔ (∃u)(∃s)(Seq(s) ∧ lh(s) = u

∧ (∀i < u)((s)i = α(〈i, z〉) ∧ R(s, x)))))

∧ (a = 3 · 5z ⇒ (∀x)((Seq(x) ∧ lh(x) = 2)⇒ α(〈x, a〉) = α(〈(x)0, (x)1〉)))])

(8.5)

we recognizeHypas an(1, 1)–ary arithmetical relation. Let

H≤b := χ{〈x, a〉 a ≤O b ∧ x ∈ Ha

}.
It follows from (8.4) that forb ∈ O we have

Hyp(b,H≤b). (8.6)

On the other hand ifb ∈ O then we have

Hyp(b, α)⇒ α = H≤b. (8.7)

To prove (8.7) we show

α(〈x, a〉) = 0 ⇔ a ≤O b ∧ x ∈ Ha (8.8)

by induction on|a|O. But (8.8) is more or less obvious from the induction hypothesis, the defini-
tion (8.5) and (8.4). Summarizing we get

8.2.6 Lemma There is an(1, 1)–ary arithmetical relation Hyp such that forb ∈ O we have

Hyp(b, α) ⇔ α = H≤b.

8.2.7 Lemma LetM be a nonempty collection of functions which is closed under≤T and satis-
fies(∆1

0 −AC01). Thenb ∈ O impliesH≤b ∈ M.

Proof: We prove

b ∈ O ⇒ H≤b ∈ M

by induction on|b|O.
For b = 1 we haveH≤b = χ∅. HenceH≤b is computable. But sinceM is nonempty and closed
under≤T it contains all computable functions.
Let b = 2c 6= 1. Then

H≤b(〈x, a〉) = 0 ⇔ (a = 2c ∧ x ∈ j(Hc)) ∨ (H≤c(〈x, a〉) = 0). (i)

It follows from (i) thatH≤b is semi–decidable inH≤c. Therefore there is a decidable relationR
such that

H≤b(x) = 0 ⇔ (∃z)R(H≤c, x, z).

Define

Q(α, x, y) :⇔ Hyp(c, α) ∧ y ≤ 1 ∧ [y = 0 ⇔ (∃z)R(α, x, z)] .

By Lemma 8.2.6 andb ∈ O we obtain

(∀x)(∀y) [(∃α)Q(α, x, y)⇒ H≤b(x) = y] . (ii)
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Since|c|O < |b|O we get by the induction hypothesis and Lemma 8.2.6

(∃α ∈M) [Hyp(c, α)]

which implies

(∀x)(∃y)(∃α ∈M)Q(α, x, y).

SinceM is closed under≤T we get by contraction of quantifiers

(∀x)(∃β ∈M)Q((β)0, x, (β)1(0)). (iii)

AsM |= (∆1
0 −AC01) andQ is arithmetical we obtain from (iii)

(∃γ ∈M)(∀x)Q((γ)x0, x, (γ)x1(0)) (iv)

and by (ii) and (iv)

(∀x) [H≤b(x) = (γ)x1(0)] .

HenceH≤b = λx. (γ)x1 (0) andH≤b ∈ M sinceM is closed under≤T .
Let b = 3 · 5e. Then

H≤b(〈z, a〉) = 0 ⇔ [a = b ∧ z ∈ Hb] ∨ [a <O b ∧ z ∈ Ha]

⇔
[
a = b ∧ Seq(z) ∧ lh(z) = 2 ∧ (∃n)(H≤{e}(n)(z) = 0)

]
∨
[
a <′O b ∧ (∃n)(H≤{e}(n)(〈z, a〉) = 0)

]
.

Now we put

R(α, x) :⇔ (∃z)(∃a)(x = 〈z, a〉
∧ ([a = b ∧ Seq(z) ∧ lh(z) = 2 ∧ (∃n)((α)n(z) = 0)]

∨ [a <′O b ∧ (∃n)((α)n(x) = 0)]))

(v)

and define

Q(α, x, y) :⇔ (∀n) [Hyp({e}(n), (α)n)] ∧ y ≤ 1 ∧ (y = 0⇔ R(α, x)).

By Lemma 8.2.6 and (v) we get

(∀x)(∀y) [(∃α)Q(α, x, y)⇒ H≤b(x) = y] . (vi)

The induction hypothesis yields

(∀n)(∃α ∈H) [Hyp({e}(n), α)] (vii)

which entails byM |= (∆1
0 −AC01)

(∃α ∈H)(∀n) [Hyp({e}(n), (α)n)] . (viii)

From (viii), however, we get

(∀x)(∃α ∈M)(∃y)Q(α, x, y)

which, analogous to the previous case, yields

(∀x)(∃β ∈M)Q((β)0, x, (β)1(0)).

UsingM |= (∆1
0 −AC01) we obtain

(∃γ ∈M)(∀x)Q((γ)x0, x, (γ)x1(0))

and finally we get from (vi)

(∀x)[H≤b(x) = γx1(0)],
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8.3. The hyperarithmetical quantifier theorem

i.e.

H≤b = λx. (γ)x1 (0).

HenceH≤b ∈ M. �

Summing up we have shown

8.2.8 Theorem The collectionH of hyperarithmetical functions is the with respect to set inclusion
smallest nonempty class of functions which is closed under “computable in” and satisfies(∆1

0 −
AC01). We even haveH |= (Π1

1 −AC01).

8.3 The hyperarithmetical quantifier theorem

If we regard all ordinals belowωCK
1 as given, i.e. we allow bounded search overωCK

1 , then all
arithmetical predicates are decidable and so are all the setsHa. In that sense we may regard the
collectionH of hyperarithmetical functions as computable and∆1

1–sets as decidable. The aim of
the present section is to show that in that interpretation theΠ1

1–sets play the role of semi–decidable
sets.
We introduce some notations. Ifϕ is an analytical formula we denote byϕH the formula which
is obtained fromϕ by restricting all function quantifiers to functions inH. Then

Σ1,H
n =

{
ϕH ϕ ∈ Σ1

n

}
and dually

Π1,H
n =

{
ϕH ϕ ∈ Π1

n

}
.

It is quite easy to see that

Σ1,H
1 ⊆ Π1

1. (8.9)

This follows by induction from

(∃α ∈H)(∀x)P (a, α, x) ⇔ (∃e)(∀x)
[
{e}I ∈ H ∧ P (a, λy . {e}I (y), x)

]
⇔ (∃e)(∀α)(∀x)

[
{e}I ∈ H ∧ ((∀y)(∀z)({e}I(y) = z ⇒ α(y) = z)

⇒ P (a, α, x))] .

We can now give an alternative proof of Theorem 8.2.4 where we showed that there is a non
well–founded decidable tree without infinite hyperarithmetical path.
Proof: We show that there is a decidable predicateR such that

(∃α)(∀x)R(α(x)) ∧ ¬(∃α ∈H)(∀x)R(α(x)).

Putting

T :=
{
s (∀s0) [s0 ( s⇒ R(s0)]

}
we have a tree as desired. To constructR we define

KΣ1
1

:=
{
x x ∈ UΣ1

1,1,0
x

}
=
{
x (∃α)

[
(α, x) /∈W1,1

x

]}
.

Now let

M :=
{
x (∃α∈H)

[
(α, x) /∈W1,1

x

]}
.

ThenM ⊆ KΣ1
1

andM ∈ Σ1,H
1 ⊆ Π1

1 by (8.9). Lete be aΠ1
1–index forM . Then we obtain
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e ∈ UΠ1
1

e ⇔ e ∈M
⇒ e ∈ KΣ1

1

⇔ e ∈ UΣ1
1,1,0

e

⇔ e /∈ UΠ1
1,1,0

e

since we definedUΠ1
1

e as the complement ofUΣ1
1

e . Hencee /∈ UΠ1
1

e which entailse ∈ UΣ1
1

e .
Therefore

e /∈M ∧ e ∈ KΣ1
1
.

LetP be a decidable predicate such that

(α, e) ∈W1,1
e ⇔ (∃z)P (α(z)).

Frome /∈M it follows

¬(∃α ∈H)(∀z)¬P (α(z))

and frome ∈ KΣ1
1

(∃α)(∀z)¬P (α(z)).

ChoosingR := ¬P the proof is terminated. �
In order to obtain also the opposite inclusion in (8.9) we need some preparations.
It is obvious that Lemma 8.2.2 relativizes. I.e. we introduce the class

HA :=
{
α Gα ∈ ∆1

1[A]
}

and obtain

H
A ∈ Π1

1[A] \ Σ1
1[A]. (8.10)

Another obvious observation is thatHA is closed under relativizations, i.e.

α ∈ HA ⇒ HA,α = HA. (8.11)

This holds since we haveHA ⊆ HA,α and forβ ∈ HA,α the graphGβ is a∆1
1[A,α]–predicate.

But α has a∆1
1[A] graph and the∆1

1[A]–predicates are closed under substitution with functions
having∆1

1[A] graphs. Henceβ ∈ HA.
Let

Σ1,HA

1 [A] :=
{
ϕH

A

ϕ ∈ Σ1
1[A]

}
and

Π1,HA

1 [A] :=
{
ϕH

A

ϕ ∈ Π1
1[A]

}
.

There are universal predicates

UΣ1,HA

1 [A]
e :=

{
x (∃α∈HA)[(x, α) /∈WA,1,1

e ]
}

UΠ1,HA

1 [A]
e :=

{
x (∀α∈HA)[(x, α) ∈WA,1,1

e ]
}

and we introduce∆1,HA

1 [A]–indices as pairs ofΣ1,HA

1 [A]– andΠ1,HA

1 [A]–indices which describe
the same sets. We show the following lemma.

8.3.1 Lemma For a ∈WTA

WTB
otypTreeA (a)

:=
{
x∈WTB otypTreeB (x) ≤ otypTreeA(a)

}
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is a∆1,HA,B

1 [A,B] set. This holds uniformly, i.e. there is a computable functiong such thatg(a)

is a ∆1,HA,B

1 [A,B]–index forWTB
otypTreeA (a)

. Moreover,g is independent ofA andB.

Proof: We use the Recursion Lemma alongωCK
1 [A]. Let restA(a, n) be anA–index of the restric-

tion of the tree{a}A to the node〈n〉, i.e.

{restA(a, n)}A = χ{
s {a}A(〈n〉_s) = 0

}.
We obtain

x ∈WTB
otypTreeA (a)

⇔ x ∈ TreeB

∧ (∀z)[{x}B(〈z〉) = 0

⇒ (∃m)({a}A(〈m〉) = 0 ∧ restB(x, z) ∈WTB
otypTreeA (restA(a,m))

)].

(i)

Because ofotypTreeA(restA(a,m)) < otypTreeA(a) we get by the recursion hypothesis

u ∈WTB
otypTreeA (restA(a,m))

⇔ u ∈ UΣ1,HA,B

1 [A,B]

({e}(restA(a,m)))0

⇔ u ∈ UΠ1,HA,B

1 [A,B]

({e}(restA(a,m)))1

⇔ (∃α ∈HA,B)
[
(u, α) /∈WA,B,1,1

({e}(restA(a,m)))0

]
⇔ (∀α ∈HA,B)

[
(u, α) ∈WA,B,1,1

({e}(restA(a,m)))1

]
.

(ii)

Inserting (ii) into (i) and remembering thatHA,B is a model of(Π1
1−AC01) shows thatWTB

otypTreeA (a)

is a ∆1,HA,B

1 [A,B] set whose index can be computed frome anda. Note that the computable
functiong given by the Recursion Lemma is independent ofA andB. �
As a consequence of Lemma 8.3.1 we obtain

8.3.2 Theorem

∆1,HA

1 [A] = ∆1
1[A]

Proof: The inclusion∆1,HA

1 [A] ⊆ ∆1
1[A] follows from (8.9). The converse inclusion is a conse-

quence of Lemma 8.3.1 and the relativization of Theorem 7.4.2 which says that every∆1
1[A]–set is

m–reducible toWTA
σ for someσ < ωCK

1 [A]. The result now follows from the fact that∆1,HA

1 [A]
is closed underm–reducibility. �
Now we have all the ingredients for one of the main results of this lecture.

8.3.3 Theorem (Hyperarithmetical Quantifier Theorem)

Π1
1[A] = Σ1,HA

1 [A].

Proof: The easy direction from right to left is (8.9).
BecauseWTA is Π1

1[A]–complete it suffices to show

WTA ∈ Σ1,HA

1 [A] (i)

to obtain also the converse inclusion, asΣ1,HA

1 [A] is obviously closed underm-reducibility. Since
HA ∈ Π1

1[A] there is a computable functionf and ane ∈ N such that

α ∈ HA ⇔ λx. f(α, x) ∈WTA

⇔ e ∈WTA,α,
(ii)
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wheree is a uniformA,α–index forλx. f(α, x) . Note thatotypTreeA,α(e) varies withα ∈ HA.
We show

(∀σ <ωCK
1 [A])(∃α ∈HA)[σ ≤ otypTreeA,α(e)] (iii)

indirectly and assume

(∃σ <ωCK
1 [A])(∀α ∈HA)[otypTreeA,α(e) < σ].

But this entails

HA =
{
α λx. f(α, x) ∈WTAσ

}
which contradicts (8.10) sinceWTAσ is a∆1

1[A]–relation.
Note that forα ∈ HA we haveotypTreeA,α(e) < ωCK

1 [A]. Thus we obtain by (iii) and Lemma 8.3.1

a ∈WTA ⇔ (∃σ <ωCK
1 [A])

[
a ∈WTA

σ

]
⇔ (∃α ∈HA)[a ∈WTA

otypTreeA,α (e)
]

⇔ (∃α ∈HA)(∃β ∈HA,α[(β, a) /∈WA,α
(g(e))0

]).

(iv)

But sinceα ∈ HA we haveHA,α = HA and (iv) yields aΣ1,HA

1 [A] definition forWTA. �
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9. Appendix

9.1 A Π1
1–path through O

From the Boundedness Principle we inferred in Corollary 7.6.10 that there are noΣ1
1–paths

throughO. We want to show that there are indeedΠ1
1–paths throughO and present a construction

which is – as far as we know – due to SPECTORand FEFERMAN.

9.1.1 Theorem There is aΠ1
1–path throughO.

Proof: We introduce the set

Pd<′O(a) :=
{
b b <′O a

}
(9.1)

of <′O–predecessors ofa. Furthermore we put

ϕ(a) :⇔ <′O� (Pd<′O(a)× Pd<′O(a)) ∈WO

and

ψ(a) :⇔ (∀x∈Pd<′O(a))[x = 1 ∨ (∃c)(x = 2c)

∨ (∃e)(x = 3 · 5e ∧ {e}1,0 is total

∧ (∀n)[{e}1,0(n) <′O {e}1,0(n+ 1)])].

We claim

a ∈ O ⇔ ϕ(a) ∧ ψ(a). (9.2)

The direction from left to right is Lemma 7.6.5. For the opposite direction we assume the right
hand side of (9.2) and prove first

b ∈ Pd<′O(a) ⇒ b ∈ O (i)

by induction on the definition of<′O. This is obvious forb = 1 and follows forb = 2c 6=
1 immediately from the induction hypothesis. Ifb = 3 · 5e then{e}1,0 is total and we have
{e}1,0(n) ∈ O for all n by induction hypothesis. We moreover get{e}1,0(n) <′O {e}1,0(n+ 1)
which by the induction hypothesis and Lemma 7.6.3 entails{e}1,0(n) <O {e}1,0(n + 1). But
thenb = 3 · 5e ∈ O. From (i) and the right hand side of (9.2) we first geta ∈ O′ which by
Lemma 7.6.5 entailsa ∈ O.
By weakening the right hand side of (9.2) we define

a ∈ O† :⇔ (ϕ(a) ∧ ψ(a))H

⇔ ϕ(a)H ∧ ψ(a).
(9.3)

Observe thatH thinks thatO† is O (note the analogy to Theorem 8.2.4). Because ofϕ(a) ⇒
ϕ(a)H we haveO ⊆ O†. By (the contraposition of) the Hyperarithmetical Quantifier Theorem
O† ∈ Σ1

1 holds. Hence

O ( O†. (ii)

We may therefore pick ana ∈ O† \ O and show that

P := Pd<′O(a) ∩ O

is a path throughO. Towards an indirect proof we assume
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9. Appendix

P ⊆ O|b|O :=
{
c∈O |c|O ≤ |b|O

}
(iii)

for someb ∈ O. But thenP = Pd<′O(a) ∩ O|b|O which shows thatP is a∆1
1 set. This implies

that

P ′ := Pd<′O(a) \ O = Pd<′O(a) \ P

is a nonempty∆1
1 set. ThusP ′ has a<′O–least element, sayo. Because ofo /∈ O we haveo 6= 1.

If o = 2c 6= 1 we getc ∈ O by the minimality ofo. But this entailso ∈ O. Finally if o = 3 · 5e
then we obtain{e}1,0(n) ∈ O for all n ∈ N as well as(∀n)

[
{e}1,0(n) <′O {e}1,0(n+ 1)

]
.

Henceo ∈ O which shows the absurdity of our assumption. SoP is a path throughO andP is
obviouslyΠ1

1–definable (using the parametera). �
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