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Preface

This text contains the somewhat extended material of a series of lectures given at the University
of Munster. The aim of the course is to give an introduction to “higher” computability theory and

to provide background material for the following courses in proof theory.

The prerequisites for the course are some basic facts about computable functions and mathe-
matical logic. Some emphasis has been put on the notion of generalized inductive definitions.
Whenever it seemed to be opportune we tried to obtain “classical” results by using generalized
inductive definitions.

| am indebted to Dipl. Math.NGo LEPPERfor the revising and supplementing the original text.
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1. Computable Functionals and Relations

1.1 Functionals and Relations

Let
"N:={a] :N — N}
be the space of all functions from the natural numbers into the natural numbers. In this lecture we
will deal with the spaces
N™m = N™ x (YN)",
The elements of this space will be denoted by lower case Gothic letters such, asa;, as . ..

1.1.1 Definition 1.) LetD C N™". An (m,n)-ary partial functionalis a mapF: D — N.
We denote this by

F:N™" —, N.

The setD is thedomainof F' — denoted bylom(F’).

If dom(F') = N"™" we call F' atotal functional.

2.) An (m,n)-aryrelationis a setR C N"™, We use the notations € R and R(a) synony-
mously to denote that belongs toR.

To distinguish notions from Ordinary Computation Theory (OCT) (or Classical Recursion Theory
as it used to be called) from Hyperarithmetical Computation Theory (HCT) we refet,t®)-ary
functionals asn-aryfunctionsand to(m, 0)-ary relations asr:-ary predicates

We use the common notations of OCT freely. E(g, ..., x,) denotes the primitive—recursive
coding function(x); its decoding andbeq the primitive—recursive set slequence codes

Fora = (z1,...,Zm,01,...,a,) € N™™ andk € N we put
ak) := (z1,.. ., zm,a1(k),...,an(k)),
where

I it k=0
a(k) = {(a(O),...,a(l)) it h—1+1

denotes the course of valueswbelowk. We refer toa(k) as thecourse of valuesf the tuplea
belowk. -
If ais as abovey = (y1,...,yx) ands = (41,...,0;) we put

-,

(a7gaﬂ) = (:1717"'7xm7y17"'7yk7a17"'7am7ﬂ17"'7ﬁl)'

1.1.2 Definition An (m, n)-ary relationR is semi—decidabléoften also calledemi—recursiver
recursively enumerab)df there is a semi—-recursive (which can be regarded as synonymous to
recursively enumerabley + n-ary predicatePr such that

a€ R < (3z)Pr(a(z)).
1.1.3 DiscussionThe definition of a semi-decidable relation meets the intuition of a “positively

decidable” relation. We show that there is an algorithm which confirrask. SincePg(a(x))
is semi—recursive in the sense of OCT there is a decidable predicat@, sagh that



1. Computable Functionals and Relations

a€R & (Jx)Pr(a(z))
& (32)(Fy)Qa(z),y).
Now we decidel(a((n)o, (n)1) forn = 0,1,.... This algorithm terminates if € R but will
give no information in case that¢ R.

1.1.4 Definition Let F, G:N™" —, N. Fora € N™" we put

F(a) ~G(a) & (a¢ dom(F) A a¢ dom(G))
V (a € dom(F) ndom(G) A F(a) = G(a)).

Sometimes it is helpful to consider partial functionals as maps éh* into NU {1}. If we put

= . JF(a) if acdom(F)
F(a): =~ {T otherwise

then we get
F(a) ~G(a) < F(a)=G(a). (1.1)

1.1.5 Definition Let F': N™" —, N. We call F' partial-computabléf its graph

Gr={(a,y)| F(a) ~y}

is semi-decidable.
We call F computablef F is partial-computable and total.

1.1.6 DiscussionThe definition of a partial-computable functional meets the intuition of a posi-
tively computable functional. We indicate that there is an algorithnEfevhich terminates and
yields F'(a) in case that € dom(F'). SinceGr is semi-decidable we get as in 1.1.3 a decidable
predicate?) such that

Fla) =~z < (32)3y)Q@@(2), y, 7).

Again we decide)(a((n)o), (n)1, (n)2) forn = 0,1, ... and pick the first such. ThenF'(a) =
(n)2. If F'is computable, then it is total, and so this algorithm will always terminate.

We are now ready to study the closure properties of semi-decidable relations. It will turn out
that most of the closure properties are just liftings of the closure properties of semi-decidable
predicates.

1.1.7 Theorem The semi-decidable relations are closed under

e the positive boolean operationsandV;

bounded quantification on natural numbers;

unbounded—quantification ovelN and"N;

substitution with computable functionals.

Proof: The only case which is new in comparison to OCT is the closure under second order
quantification, i.e. quantifiers ranging ovéX. However, we will also give two examples for the
more simple cases, e.g. closure undend bounded-quantification.

We have

R(a) A Q(a) (32) Pr(a(z)) A (By)Po(a(y))

=
& (Fu)[Pr(a(u)(u)o) A Po(a(u)(u)1)]
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which shows thak A @ is semi-decidable.
For bounded/-quantification we have

(Ve <y)R(a,z) < (Vz<y)(3z)Pr(a(z),z)

and the semi-computability ¥z < y) R(a, ) follows immediately from the closure properties
of semi-computable predicates.
For the new case we have
(F)R(a,) < (3)(3z)Pr(a(z), a(z))
< (3s)(3x)[Seq(s) A Ih(s) = A Pr(a(x), s)].

Hence(3a) R(a, ) is semi-decidable. O

We call the relation3z)R(a, «) the N— or first order projection of?(a, z) while (o) R(a, o)
is the"N- or second order projection @(a, o). The motivation for this terminology becomes
clear from Figure 1.1.1.

N resp."N

N(m.n)

Figure 1.1.1: ThéN- resp.NN—projection of a relation

1.1.8 Definition Thecharacteristic functionabf an(m, n)—ary relationR is given by

(a) = 0 ifaeR
XR\®)"=931  otherwise

Let us make some of the conventions explicit which we have been already using.

Quantifiers of the form{Qx), (Qy), ...whosebound variables are indicated by lower case Ro-
man letters are first order, i.e. quantifiers ranging dveifo emphasize the first order of those
quantifiers we sometimes (very rarely) will writg°z) or (vOz).

Quantifiers of the fornjQa), (QQ), . .. whosebound variables are indicated by lower case Greek
letters are second order, i.e. quantifiers ranging 8%&rTo emphasize the second order of those
quantifiers we sometimes will writgl' o) or (V'«).

Sometimes we want to quantify over subsetslipf.e. over'2, the set of characteristic functions.
This will be denoted byQa*), (QB*), (Qaj), ...
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1.1.9 Definition Let G be an(m + 1, n)-ary functional. Thgunbounded) search operatar
turnsG into a(m, n)—ary functional uG) which is defined by

(LG)(a) 2y = G(a,y) ~0A (Vu<y)(3z)[z #0 A G(a,u) ~ z]. (1.2)

More sloppily we writeuz. G(a,z) instead of(uG)(a) to emphasize the place at whigh
searches for a zero 6.
Thebounded search operat@s defined by

pr <u.G(a,z) ¥y & (Ve<y)(32)[G(a,z) 22z Az#0
A((Gla,y) =0Ay <u) Vy=u)

The bounded search operator searches for a zero hetowd outputs: if no such zero exists.
As usual we define the substitution operator by

Sub(G, Hy,...,H,)(a) ~ G(Hi(a),...,H,(a))

1.1.10 TheoremThe partial-computable functionals are closed under unbounded search - and
hence also under bounded search - and substitution.

Proof: Having in mind the closure properties of semi-decidable relations the first claim follows
by looking at (1.2). The second claim follows from

Sub(G,Hy,...,Hy)(a) ~y <
(Fz1) ... Can)[Hi(a) 2z1 A ... A Hp(a) 2z A Ga1,...,20) =y

The possibilities for substitution, however, are not exhausted by the substitution operBtads. If
an(m + 1,n)—-ary functional and~ an(m, n 4 1)—ary functional then we may try to define

F(a) ~ G(a, \x. H(a,z)). (1.3)
The problem is that (1.3) is only defined\f. H (a, x) is total. The following lemma shows how
this can be handled.

1.1.11 Lemma (Substitution Lemma)Let G be an(m,n + 1)—ary andH an (m + 1,n)-ary
partial-computable functional. Then there is a partial-computable functirsich that

F(a) ~G(a,\z. H(a,z))
for all a for whichAz. H(a, x) is total.

Proof: We have semi-decidable predicafés and Py such that

G(a,a) ~u & (F2)Pg(a(z),a(z),u) 0]
and

H(a,z) ~v < (Jy)Pe(a(y),z,v).

Using (i) we find a decidable predicatesuch that

G(a,a) ~u < (I2)(F2)Q(a(z),@(z),u, x).
We put

F(a) = (pw. Q(@((w)o), Az H(a, 2)((w)o), (w)1, (w)2) )1
Thena € dom(F) if Ax. H(a,x) is total and(a, Az. H(a,z)) € dom(G). Hence

dom(Aa. G(a, Az. H(a,z))) C dom(F)
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but observe that the inclusion may well be proper. However, we have
G(a,Az. H(a,z)) = F(a)

forall (a, A\z. H(a,z)) € dom(Aa. G(a, Az. H(a,z))). We still have to show thaf' is partial—
computable. Checking the graph Bfwe get
Fa)~a < (3s)(Fw)[Seq(s) A Seq(w) A Ih(w) =3
Alh(s) =w
A (Vi<w)H(a,3) ~ (s);
A Q@((w)o), sH(w)o, (w)1, (w)2) A (w)r =
A (V) <w)=Q(a((7)o); s1(7)os (7)1, (7)2)]

wheres|k stands for(s)o, . . -, ($)k=1)-
By the closure properties of semi-decidable and decidable predicates we get immediately that
F(a) ~ ais a semi—decidable relation inanda. O

1.1.12 Lemma The partial-computable functionals are closed under definition by cases:
LetGy,...,G, be partial-computable an&;, . .., R, pairwise disjoint semi—decidable rela-
tions and

Gi(a) if Ri(a)
Fa) = { ; 5
Gn(a) if Rp(a)
ThenF is partial-computable.
Proof: We have

Fla)~y & (Ri(a) AGi(a) =y)V ... V (Rn(a) A Gn(a) = y)
which shows that' possesses a semi—decidable graph. O
The simplest example of a functional is thpplication functionaivhich is defined by

App(a; n) := a(n).
1.1.13 Theorem The application functional is &1, 1)—ary computable functional.
Proof: Sincec is total App is total, too. For its graph we get

App(ayn) ~y < (F2)[n <z Ay = (a(z))n] -

To conclude this section we introduce thecidable relationsvhich are often also callagcursive
relations

1.1.14 Definition ArelationR C N™" is decidabldf its characteristic functional is computable.

All closure properties of decidable (i.e. recursive) predicates can be lifted to decidable relations.
Therefore we state the following theorem without proof.

1.1.15 Theorem The decidable relations are closed under:
e all boolean operations, i.ex, A, V;
e bounded quantification;

e substitution with computable functionals.
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However, as a consequence of Lemma 1.1.11, we get the following additional closure property.
1.1.16 TheoremLet P be an(m,n + 1)—ary decidable relation andf be an(m + 1,n)-ary
computable functional. Then the relation

R:={a| P(a,\z. H(z,a))}
is decidable.
Proof: We get

xr(a) ~ xp(a, \z. H(z,a))
and the right hand is a computable functional by Lemma 1.1.11 begaudé(z, a) is total. O
In OCT we classify the semi—decidable predicateN-agrojections of decidable predicates. This
too can be lifted to semi—decidable relations.
1.1.17 TheoremAn (m, n)-ary relation R is semi—decidable iff there is gm + 1, n)-ary de-
cidable relation@ such that

R(a) < (32)Q(a,2),
i.e. the semi—decidable relations are exactly freprojections of the decidable relations.
Proof: Let R be semi—decidable. Then

R(a) & (EIz)PR(EE,z))

& (32)Cu)Q(@(z),u)

for some decidable predicafg Define

Q = {(a,uw)| Q@((w)o), (W)}
Then

R(a) & (32)Q(a,2)

andq@ is obviously decidable. O

1.1.18 TheoremLet R be an(m + 1, n)—ary decidable relation and define
F(a) :~ pw. R(a,w).
ThenF is an(m, n)—ary partial-computable functional.
Proof: We have
Fla)~y < (Gw)[R(a,y) A (Vu<y)-R(a,u)].
ThusF has a semi—decidable graph by Theorems 1.1.15and 1.1.17. d

1.2 The Normal-form Theorem

One of the most important theorems of OCT is#eNE's Normal-form Theorem. The aim of
this section is to lift this theorem to HCT. Recall that in OCT we defifiédas the domain

of a partial-computable function with index These domains are exactly the semi—decidable
predicates. Thu§W.| e € Ind(P)} enumerates all semi—decidable predicates wheteP) is

10



1.2. The Normal-form Theorem

the set of indices of partial-computable functions. We use this enumeration to obtain an indexing
of semi—computable functionals. L&tbe an(m, n)—ary semi—decidable relation. Then there is
ane € Ind(P) such that

R(a) & (Iz)Wmtn(a(z)) (1.4)
& (F2)(Fu)T™ (e, a(z),u)

whereT™*" denotes the KEENE predicate.
For a semi—computablen, n)—ary functional we get from (1.4)

Fla)~y < (32)3u)T™" (e, q(2),y,u).
Therefore we define
T = {(e,a,w) | T e, T(w)o), ()1, (w)2) }-
ThenT™™ is an(m + 2, n)—ary decidable relation for which we get
Fa) ~ (pw.T™" (e, a,w))1.
Therefore we have the following theorem.
1.2.1 Theorem (Normal—form Theorem) There is an(m + 2, n)—ary decidable relatiorT"

and a computable (even primitive—recursive) functibsuch that for all semi—computakfe:, n)—
ary functionalsF' there is are € N with

Fa) =2 U(pw.T™"(e, a,w)).
We agree about the notation
{ey™"(a) == U(pw. T™" (e, a,w))
and calle anindexfor F'.

1.2.2 Theorem The functional®™™(a,e) :~ {e}™"(a) is a partial-computable functional
which is universal for the class ¢fn, n)—ary partial-computable functionals.

Proof: The Normal-form Theorem entails the universality of the functi@riai™. To show its
partial-computability we check its graph.

O™ (a,e) ¥y < {e}™"(a) >y
& (Fw)[T™"(e,a,w) A Vu<w)-T™"(e,a,u) Ay = U(w)].

SinceT™" is a decidable relation the last line is semi—decidable by Theorems 1.1.15 and 1.1.17.
O

We refer to Theorem 1.1.17 to obtain also a Normal—-form Theorem for semi—decidable relations.
In a first step we prove the following theorem.

1.2.3 Theorem A relation is semi—decidable iff it is the domain of a partial-computable func-
tional.

Proof: Using the Normal—form Theorem we get
aedom(F) < (Fw)T™"(e,a,w)

showing that the domains of partial-computable functionals are semi—decidable. For the opposite
direction letR be (m,n)—ary semi—decidable. By Theorem 1.1.17 we get a decidable ref@tion
such that

11



1. Computable Functionals and Relations

R(a) & (32)Q(a, 2).
Define
F(a) :~pz.Q(a, 2).
ThenF'is partial—computable by Theorem 1.1.18 and we have

dom(F) = {a| (32)Q(a,2)} = R.

Now we define
w7 = dom({e}™") = {a| Gw)T™"(e,a,w)}.

1.2.4 Theorem The collection ofm, n)—ary semi—decidable relations is enumerated/\jy-",
i.e.

{RCN™"| Rissemi—decidablg¢ = {W!""| e € N}.

If R =W_"" we calle anindexfor R.
The canonical next step is to lift tf&"—Theorem from OCT.

1.2.5 Theorem ( S;""—Theorem) There is & + 1-ary primitive—recursive functio8;"" such
that

{e}™ o (a,yr, . ) = {SE" (e, yn, -, k)Y ™" (a) (1.5)
and
(@, Y15+ -0y Yk) € WITRT o “Ewghwm,$u (1.6)

Proof: We get

{e}mthn(a, ) ~

-

(pw. T8 (e, 3,0, w) )

~ U(pw. T4 (e, g a((w)o), (w)1, (w)2))
~ U(pw. TS e, 7), a((w)o, (w1, (w)2)))
~ U (pw . T (S e, ), a,w))
~ {Sy e, 9)} ™ (a)

and we put

Si"(e,9) =S e, 9)
whereS?" "1 js the function of OCT.
SinceW™ % = dom({e}™**") we obtain (1.6) immediately from (1.5). O

The immediate consequence of 8 "—Theorem is — as usual — the Recursion Theorem.

1.2.6 Theorem (Recursion Theorem)Let G be an(m + 1,n)-ary partial-computable func-
tional. Then there is aa such that

{e}™"(a) ~ G(a,e€).
Proof: We mimick the usual proof. Define
H(a,z) :~ G(a,S7""(z,2)).
ThenH is partial-computable by Theorem 1.1.10. kgbe an index fotH and define

12
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e := ST""(eo, €0)-
Then
{e}™"(a) =~ {S7"" (€0, €0)} ™" (a)
~ {eg}™ " (a, eq)
~ H(a,eo) ~ G(a,ST""(eo, €0))

~ G(a,e).
]

As an application of the Recursion Theorem we show the closure of the partial-computable func-
tionals under the Recursion Operator. The Recursion Operator turfig,ar)—ary functional

G and an(m + 2, n)-ary functionalHd into the(m + 1, n)-ary functionaRec(G, H) which is
defined by

G(a) ifz=0

Rec(G, H)(a, z) =~ {H(a,y, z) ifz =y + 1landRec(G, H)(a,y) ~ z.

1.2.7 Theorem The partial-computable as well as the computable functionals are closed under
the Recursion Operator.

Proof: Let G and H be functionals of suitable arity. Define

_[G() ifx=0
F(a,z,e) ~ {H(a,y, {e}erlv”(a’ y)) fz=y+1

ThenF is partial-computable. Using the Recursion Theorem we obtain an ésleh that
{e}" 1" (a, ) ~ F(a,z,e).

Defining £ := {e}™*1'™ we obtain
E(a,z) = {g((c;)yE(a ) o bt

by induction onz. HenceE = Rec(G, H). If moreoverG andH are total, we get
(Va) (V) (3y) [E(a, ) ~ y]

by induction onz. O

1.3 Computability relativized

If Fisan(1,1)—ary partial-computable functional and= NN a given function then we may try
to compute the functionz. F(«, x). SinceF is partial-computable we have

Flo,z) =y & (Bw)Q@((w)o), (w)i,z,y)

for some decidable predicatg. DecidingQ(@((w)o), (w)1,z, (w)2) for w = 0,1,2,... and
picking the least suctw yields an algorithm foAz . F'(a, ) which asks for at most finitely many
values ofa. That means that a machine, e.g. @RING—machine, could computer. F(a, x)
asking an oracle for the functiam within finite time. In this situation we say that the function
Az. F(a,z) is computable relatively ta. Generalizing this to functionals leads to the following
definition.

1.3.1 Definition A functional F: N™" —, N is partial-computable ira given functionw if
there is an(m, n 4+ 1)—ary partial-computable function@&l such that

13



1. Computable Functionals and Relations

F(a) ~ G(a, ).

We call F' computable inx if F'is partial-computable in and total. The functiondl’ is (partial—
) computablein a set C N if F'is (partial-)computable in its characteristic functipg.

1.3.2 Definition A relationR C N™" is semi—decidable ia functiona: € "N if R is the domain
of a functional which is partial-computabledn

We call R decidable in« if its characteristic functionay r is computable inx.

A relation R is (semi—)decidable in a set C N if R is (semi—)decidable in its characteristic
functiony 4.

The computability of functionals and relations carries over to the relativized case. We put

Tomn . {(e’ a, w) | Tm,n+1(e, a, o, 'LU)}

TA,m,n .— TXxa,m,n

{e}*™" = Xa. U(pw. T¥™" (e,a,w))

{e}A,m,n — {e}XA,m,n

™ .= Nea. {e}?(a)

W = dom({e}*™™) andW2mm = WXA ™,
To complete this section we reformulate the Normal—form Theoren§ fh&-Theorem and the
Recursion Theorem for the relativized case.
1.3.3 Theorem (Relativized Normal—form Theorem)For any (m, n)—ary functional which is
partial-computable inx there is an index such that

F(a) ~{e}*™"(a).

The functionafd® (e, a) is universal for th&m, n)—ary functionals which are partial-computable
in a.
For any (m, n)—ary relation which is semi—decidablednthere is an index such that

_ a,m,n
R =W,

To emphasize the relativized meaning we often talk abetindices orA—indices, respectively.

1.3.4 Theorem (RelativizedS;"""~Theorem) There is ank + 1-ary primitive—recursive func-
tion S such that

{e}a,m+k,n(a7 Yi, ... ’yn) ~ {S?’n(e, Yiy- - ayn)}a(a)
and

a,m+k,n a,m,n
(@91, -, yn) € WE & aEWehiiy, yn):

1.3.5 Theorem (Relativized Recursion Theorem)et G:N"™" —, N be partial-computable
in a. Then there is an indexsuch that

{e}*™™(a) ~ G(a,e).

14



2. Degrees

This chapter will contain a brief introduction degree Theory In Degree Theory we aim at
classifying sets according to the difficulty of their decision problem. Two sets belong to the same
degree if the solution of the decision problem for one set entails the solution of the decision
problem for the other set and vice versa. There are different reducibility relations which are
regarded in Computability Theory. Here we will only regard two of them. A quite narrow one —
m—Reducibility — and the most general one -dRiNG—Reducibility.

2.1 m—Degrees

2.1.1 Definition Let A, B C N. We say thatd is many—one reducible t&, m—reducible toB
for short, if there is a computable function, sfysuch that

re€A & f(z)eB.

This will be denoted by <,,, B. In case that the reducing functigrs one—one, we talk about
one—one Reducibilitgr 1-Reducibilityand denote this byl <; B.

2.1.2 Discussionlf A <,,, B or A <; B we obviously can reduce the decision problemAao
that of B. To decidex € A we computef(z), which is possible because of the computability of
f and then decidg(z) € B.

There are some simple observations abagReducibility.

2.1.3 Lemma The relation<,,, is reflexive and transitive. 1A <,, B then also-A4 <,, —-B
where

-A:={zeN| z¢ A}
denotes the complement of the det

Proof: We haveA <,, A viathe identity. IfA <,, Bvia f andB <,, C viagthenA <,, C

viago f.
If A<,, Bvia f we get

r€A & f(x)eB
which implies also
xr¢A & f(z)¢B.

Therefore we also haveA <,,, =B via f. O

2.1.4 Definition We put
A=,B & A<,BAB<,A

and conclude from Lemma 2.1.3 that,, is an equivalence relation. Its equivalence classes are
calledm—degreesBy

deg,(A) := {BCN| A=,, B}
we denote then—degree ofA.
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2. Degrees

We will not study the theory ofn—degrees in this lecture. However, since we needlegrees
sometimes we decided to introduce them. Without proof we mentiorPtha(N) together with
<, is an upper semi—lattice. It is a known result of OCT that for all decidable4ets{), N}
we haveK £, AwhereK := {z| (3w)T(z,z,w)}.

Just two simple facts abomi—Reducibility.

2.1.5 Theorem1) If B is decidable imx and A <,,, B thenA is also decidable inv.
2) If A <,,, B and B is semi—decidable in then A is also semi—decidable in.

Proof: 1) If A <,,, B via f then

Xa =xpof.

2) A = {z| f(z) € B} is semi-decidable in since these sets are closed under substitution with
computable functions. O

2.2 TURING—Reducibility

The most general reduction of the decision problem is givenyiic—Reducibility.

2.2.1 Definition We say that a set is decidable inB if x 4 is computable inyg. This is denoted
by
A<r B

or briefly A < B if there is no danger of confusion. Synonymously we say th& TURING—
reducible toB. We put

A=rB & A<pr BAB<p A.

2.2.2 Discussionlf A <r B and we want to decide € A we computey4(x). This is com-
putable inB. If we assume that the decision problem #ris solved, we can use a decision
procedure forB in the computation of 4 (z). Therefore the decision problem fdris reduced
to that of B.

This is, however, a reduction in a much weaker senseihaReducibility. So we have obviously

ASmB = ASTB

while the opposite direction is not true in general. In this sefisas a coarser relation thag,,, .

2.2.3 Theorem The relation<r is reflexive and transitive. Therefore the relatiag is an equiv-
alence relation orPow(N).

Proof: Because o 4(x) = App(x4, z) we see thatl is decidable iMd. Hence<r is reflexive.
If A<y BandB <p C we have computable functionalsandG such that

xa(z) = F(xs,)
and
xs(z) = G(xc, z).
So we get
xa(y) = F(Az. G(xo, ), y)-

16



2.2. TURING—Reducibility

SinceG is totalA\z . G(a, z) is total for anyn and we get by the Substitution Lemma (Lemma 1.1.11)
that \ay. F(\zx. G(«, x),y) is a computable functional, sg@y. But then

xa(y) = H(xc,y)
which shows thatd <1 C. U

2.2.4 Theorem PosTs Theorem) A setA C N is decidable inB C N iff both A and—A are
semi—decidable .

Proof: If Ais decidable inB then bothA and—A are decidable if3. Hence also semi—decidable
in B. This gives the easy direction. For the opposite direction assume thatdbartid - A are
semi—decidable iB3. Then we get indices; ande, such that

A= {z| 32)TP" ey, 2,2)} (i)
and

A ={z| 3)T?" (e, 2,2)}. (ii)
Put

fl@) i pz. [TBE0(eq, 2, 2) vV TBLO (69, 2, 2)].

Then f is partial-computable irB and we get from (i) and (ii) thaf is also total. Saof is
computable inB and we have

A= {zeN| T8 ey, 2, f(z))}
which shows by Theorem 1.1.15 thétis decidable inB. O

2.2.5 Remark We formulated BsTs theorem for sets in order to have it fit into this section. The
proof, however, shows that it is true also for arbitrary relations.

2.2.6 Lemma Let A be semi—decidable iB and B < C. ThenA is semi—decidable i®.

Proof: We have an index such that
A= {zeN| (3)TP"e,z,2)}
= {x eN] (Ez)Tl’l(e,XB,x,z)}.
Because oB <t C there is an index, such that
X = {0}
=z U(pw. T (eg, z,w)) (M)
= Xz. U(pw. T (eo, xob 7, w) ).
Hence
A={zeN| ()T (e, \z. U(uw.T" (eo, xc, v, w))), x, 2}
= dom(pz. TH(e, \z. U(pw. T (eg, xo, 2, w)))).

Sincey g is total we get by (i) and the Substitution Lemma (Lemma 1.1.11) that the functional in
the last line of (i) is partial-computable . HenceA is semi—decidable it O

(ii)

17



2. Degrees

2.3 TURING-Degrees

We say that two setd, B C N are TURING—equivaleniff A = B. The class
degr(A) = {B| B=r A}

forms the TURING—degree(or just degre¢ of A. We will denote degrees by lower case bold
Roman letters, e.g., a, b, G,,a. .. For degrees,& we define

a<b & (JA€a)(3IBeb)A<r B]. (2.1)
It follows from Theorem 2.2.3 that (2.1) is independent of the choicé ahd B. We put

a<b = a<baAa#h
There is a minimal degree

0 := degr(0)

which contains exactly the decidable sets. To show that for any degree a there is a strictly bigger
degree awe introduce thgump operatowhich is defined by

j(A) = {J;| (Hw)TA’l’O(x,x,w)} = {:17| T € Wf’l’o}

for A C N. We callj(A) thejump of A.
For a degree a we introduce

d :=degr(j(A)) for someA € a (2.2)
We will show later (cf. Theorem 3.1.1) that

A<r B = j(A) <7 j(B).
Therefore ain (2.2) is well-defined. We will moreover see that<,, j(A4). Hence alsdd <r

j(A) andj(A) is obviously semi—decidable iA. We have, however, the following fact.

2.3.1 Theorem The jumpj(A) is not decidable imA.

Proof: Towards a proof by reductio ad absurdum assyitag < A. Then—j(A) < A which
entails that there is an indexsuch that

—j(4) = W,
Hence
e¢j(A) & ecWHO o ccj(A).
A contradiction. O

As an immediate corollary of Theorem 2.3.1 we get

2.3.2 Theorem For any degre@we havea < d.

Now the canonical questions arise
e Are the degrees linearly ordered by
e Are there degrees between a affel a

These questions have already been asked bydsTh 1944. It lasted until 1954 before they
could be answered independently by RIEDBERGand A. MUCHNIK. They proved the follow-
ing theorem.

18



2.3. TURING-Degrees

2.3.3 Theorem FRIEDBERGMUCHNIK) There are semi—decidable sets B which are incom-
parable with respect t& 7, i.e. we have neithed <1 B nor B <r A.

Proof: Before we start proving the theorem let us discuss it briefly. The proof will show that

the theorem also holds in relativized form. It is just for simpler notations that we omitted the
relativization.

We have) < C for any seiC' and — as we will see soonA <t j(()) for any semi—decidable set

A. Thusif A andB are semi—decidable and incomparable we get the picture shown in Figure 2.3.1
where the arrows represedtr. This shows that Theorem 2.3.3 in fact answers both questions.

o’

Figure 2.3.1: Two incomparable semi—decidable sets

The degrees are not linearly ordered and there are degrees betweer.a and a

To prepare the technical part of the proof we start with a few heuristic remarks. Since we have
D <p C for any decidable seb and any seC none of the setgl and B, which we are going

to construct, must be decidable. Since we airl gt B as well asB £, A we have to ensure
thaty 4 # {e}? forall e and alsoyp # {e}4 for all e, i.e.

(Ve)Fy)[xaly) # {e}? (y)] 0]
and

(Ve) Fy)[xn(y) # {e}* ())- (ii)
To obtain (i) and (ii) it suffices to construct a functiéhwhich satisfies

(Ve)[F(2e) € A < {e}P1O(F(2e)) ~ 1] (iii)
and

(Ve)[F(2e +1) € B < {e}PO(F(2e +1)) ~1]. (iv)

The functionF’, however, must not be computable. To see that assume-tlimicomputable
satisfying (iii) and (iv). We define

_J1 ifz¢ B
f(x’y){o if 2 € B.

Thenf is computable inB and we obtain an indexsuch that
f=A{e}”.
19



2. Degrees

Using the relativize®*—Theorem this yields
{Se.a)}’(y)~1 & ¢ B
for all 2 € N. Hence
r¢ B < {S(e,x)}P(F(2-S(e,x)) ~1 < F(2-S(e,x)) € A

by (iii). Since A is semi—decidable anB computable-B is semi—decidable. Hendg is decid-
able by PsTs Theorem. This, however, is impossible as we have seen above.

The problem is taconstructF' in such a way thaf’ does not become computable. This can-
not be simple because apgnstructionof a non—computable function is close to conflict with
CHURCH's Thesis. The basic idea is to approximate B and F' stepwise byA,,, B, and
Az. F(n,z) such thaty, , Xp, andAz. F(n,z) are computable. In step we compute ei-
ther

Yn == pw < n. [TH (e, F(n,2e),xp,,w) A U(w) =1] v)
or
Yn == pw < n. [T (e, F(n,2e + 1), xa,,w) A U(w) = 1] (vi)

according to the shape efwhich also determinesin an effective way. Whenevef, # n we

put in the first casé’(n, 2¢) into A,,.1 or — in the second case #(n,2e + 1) in B, 1. The
obvious problem now is that at a later potat > n, where a larger portiod,,, of A (or B,,

of B) is known, the computation may change. Therefore we §ie + 1, ) a value above,,

to ensure that the computations in (v) and (vi) will not be changed. The index(n, 2¢) is
therefore the priority with whiclF'(n, 2¢) has to be put intad (or F'(n,2e 4 1) into B). Once

we have reached the highest prionityve may putf'(x) := F'(n, z). Of course we need to prove

that such highest priorities exists. Though certainly still vague, we hope that these remarks will
be helpful in the following technical part of the proof.

We put

Ap:=0, Bo:=0 and F(0,z):= {3 fro (vii)
Assume that4,,, B,, andF'(n, z) are defined for alk. We distinguish the following cases:
1) (n)o =2eforsomee € N.
Then we compute
Yn 1= pw < n. [TQ’O(e,F(n,26),YBTL((U))0), (w)1) ANU((w)1) =1 A F(n,2e) ¢ An] . (viii)
If y, = n we put

Apt+1:=An, Bpi1:=B, and F(n+1,z) := F(n,z). (ix)

Otherwise we define

An+1 = An U {F(TL, 26)}, Bn+1 =B, (X)

and
_ [F(n,x) if z <2eorz=0mod2 .
Fln+1,2):= {F(n,a:) -3¥  if 2e < z andz = 1 mod2. (xi)

2)  (n)o =2e+1forsomee € N.

Again we compute
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2.3. TURING-Degrees

Yn = ..
pw <. [T29(e, F(n, 2¢ +1), %, (w)o), (w)1) A U((w)1) =1 A F(n,2e+1) ¢ B,]. O

If y, = n we put

Apt1:=A,, Bpi1:=B,, Fn+1,z):=F(n,x) (xiii)
and otherwise
Any1:=An, Bpi1:= B, U{F(n,2e+1)} (xiv)
and
__ [F(n,x) if £ <2e+1orz=1mod2
Fln+1,2):= {F(n,a:) -3% if 2e+1 < z andz = 0 mod2. (xv)

One should observe that in (vii) through (xv) we define the functions. x 4 (z), Anz. X, ()

and Anz. F(n,z) simultaneously by the Recursion Theorem. Hence all these functions are
partial-computable. It follows by induction anthat all these functions are also total. By con-
struction we have

F(n,z) < F(n+1,x)
which yields
m<n = F(m,z) <F(n,x)
by induction onn. Similarly we get
m<n = A, CA,ANB,, CB,.
The essential step is to show:
Ve :={n| F(n,z) # F(n+1,z)} is finite.

The proofis by induction or. Fory < x the setV,, is finite by induction hypothesis. This entails
the finiteness of the se{s(n, y)| n € N} fory < z. Hence
V= J {F(n,y)| n € N} isfinite.
y<x

We construct a one—one mapping fréfninto V. Letn € V,. If z is even then by (xi) and (xv)
there is ane,, < z such thatF'(n, z,,) ¢ B, butF(n,x,) € B,+1. Forz odd we obtain by (xi)
and (xv) anz,, < x such thatF'(n,z,) € An+1 \ A,. HenceF(n,z,) € V and form,n € V,
with m < n we get

F(m,xy,) € Bmny1 € Bp 3 F(n,zy)

for x even or
F(m,om) € Amy1 C Ay # F(n, z,)

for « odd, respectively. HencB(m, z,,) # F(n,x,) and
n— F(n,z,)

is a one—one map froi, into V. Thereforéel,, is finite.
We define

A::UAn;B::UBn

neN neN
and
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2. Degrees

F(z) := F(n,z) if (Ym)[m>n = F(m,z)=F(n,z)]. (xvi)
Now we prove

{e} (F(2e +1))~1 = F(2e+1)€B (xvii)

{e}B(F(2e)) ~1 = F(2) € A.
Both lines of (xvii) are proved analogously. We show the first. From

{e}A(F(2e +1)) ~ 1
we get for somev € N

T2(e, F(2e + 1), Xa((w)o), (w)1) A U((w)1) = 1. (xviii
There are infinitely many € N such that

(n)o =2e+1.
We chooser so big that

w<n, Xa,(w)=Xa(w) and F(2e+1) = F(n,2e+1). (xix)
Then (xix) and (xviii) yield

(3w <n) [T*(e, F(n, 2 + 1), X4, (w)o), (w)1) A U((w)1) = 1]

and we either hav€'(2e + 1) = F(n,2e+ 1) € B,, C B orobtainF'(2e+1) = F(n,2e+1) €
B,+1 C B by (xii) and (xiv). It remains to prove also the opposite directions in (xvii), i.e.

F2e+1)€B = {e}*(F(2e+1))~1

XX
F(2e) e A = {e}P(F(2e)) ~1. (9
First we obtain
xr=2e OF x=2e+1 = F(n,x)=2°-3Y (xxi)
by an easy induction on. As a consequence of (xxi) we get
F(n,2e1) = F(m,2e3) = e1 =e (xxii)

F(n,2e;1+1) = F(m,2e2+1) = e =ea.

We prove the second line of (xx). The proof of the first runs analogously.
Let F'(2¢) € A. Then there is an such that

F(2e) € Ans1\ 4p
which implies

F(2e) = F(n,2(n)o).
According to (xvi) and the first line in (xxii) this yields= (n)o. Hence by (viii)

T2%e, F(n,2€),Xp, ((yn)o), (yn)1) A Ul(yn)1) =1 (xxiii)
andy,, < n. As soon as we can show

X5((¥n)o) = Xg, ((¥n)o) (xxiv)
we get{e}B(F(2e)) ~ 1 from (xxiii). Towards a contradiction assume

X5 ((yn)o) # X, ((¥n)o)-
Then thereis a < (y»)o < y» Such that
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2.3. TURING-Degrees

xB(2) # xB,.(2)-
But thenz € B\ B,, which shows that there is an > n such that
z € Byy1 \ B,
Hencez = F(m,2f + 1) for somef € N. If 2e < 2f + 1 we get by (xi)
z=F(m,2f+1)>F(n+1,2f+1)=F(n,2f +1) -3
which contradicts < y,. For2e > 2f + 1, however, we get by (xv)
F(m+1,2e) = F(m,2e) - 3Y» > F(m,2e) = F(n,2e) = F(2e)

contradicting the definition of'(2¢) in (xvi). Hence (xxiv). O
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3. The Arithmetical Hierarchy

3.1 The Jump operator revisited

The jump operator
j(4) = {zeN| Gu)T*"(z,z,w)} = {z| z € WO} (3.1)

is introduced in Section 2.3. We are going to study its properties more profoundly in this section.
It follows from (3.1) and Theorem 2.3.1 thitA) is semi—decidable but not decidabledn The
following theorem strengthens that.

3.1.1 Theorem 1) A setA C N is semi-decidable iB iff A <,,, j(B).

2) We haved <p Biff j(A) <,, j(B).

Both claims hold uniformly ir4, i.e. an index of then—reducing computable functiofhcan be
computed from @-index for the sed.

Proof: 1) Define

B,1,
KE = {(x,y)| (Y € \N(y)loO

— {(J;,y)| (Hw)TB’l’O((y)o, (y)1,w)}

The predicaték P is semi—decidable il Letey be an index fork#*. Then we get

W1 €W & (z,y) € KP

(v)
& (z,y) e WE20 0]
B,1,0

&S rzeWwW .
Sf’o(emy)

If Ais semi—decidable i we have an index for 4, i.e. A = W5:1.0 and define a functioyf
by

f(z) = S?’O(eo, (e, x)).
Thenf is computable and an index fgrcan be computed from According to (i) we get

@) € j(B) & flx)eWEL

B.,1,0
& @) € Wetdtey e,y

& rewsho
& xe A
which shows thatd <,,, j(B) via f.
For the opposite direction we assumie<,,, j(B) via f. But then

rTcA & (Hw)TB’l’O(f(x),f(x),w)

which shows immediately that is semi—decidable ifs.

2) We start with the “if"—direction. Sincg(A) is semi—decidable idl we get fromA <p B by
Lemma 2.2.6 thaj(A) is also semi—decidable iB. Hencej(A) <,, j(B) by 1). To obtain also
the uniformity we need to know that—index of j(A) can be computed from B—index of 4,
i.e. we need a computable function, gaywith
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3. The Arithmetical Hierarchy

x4 = {e} P10 = () = WELO.

Though simple a rigid proof is quite tedious and depends heavily on our special definition of
indices. Therefore we restrict ourselves to a rough sketch. We have

rej(d) & (Guw)Thi(z,xa,r,w) 0
& (Gu) T (2, My {e}P(y), z,w).

The functiong := pw. T (z, \y. {e}Z(y), z,w) is obvious partial-computable i& and its
index depends only oa. This dependence is effective which means that there is a computable
(even primitive—recursive) function, séy such thak(e) is a B—index forg. Hence by (ii)

j(A) = dom({h(e)}?) = Wf(,el),o_

For the “only—if"—direction assumg(A) <,,, j(B). SinceA as well as-A are semi—decidable
in A we get

A < §(A) < §(B)
and also

by part 1). By the transitivity o&,,, and part 1) this implies thatt and —A are both semi—
decidable inB. Using RosTs Theorem (Theorem 2.2.6) we obtain<, B. O

3.1.2 Definition Then—th jump of a sed C N is defined by

A =4

AFD = A,
3.1.3 Lemma We have

n<k=AM <, A® (3.2)
and

A<, B=AM < BM, (3.3)

Claim (3.2) holds uniformly im and %, i.e. an index for the reducing function can be computed
fromn andk, while claim (3.3) holds uniformly in and the index of the function which reduces
Ato B.

Proof: We show (3.2) by induction ok. The claim is obvious fok = n. Fork =1+ 1 > nwe
have

A < AD

via { f(n,1)} by the induction hypothesis. By part 1) of Theorem 3.1.1 we h¥e<,, A(+D
via some functiory. HenceA™ <,, A(t+1D . To show also the uniformity we observe that
does not depend oA. Since

§(B) = {z| (z,xp) € Wy'}
we see that there is anc N such that
j(B) = WPto

holds for anyB C N. So, according to Theorem 3.14.depends only on the constanand the
index of the reducing functiogio { f(n, 1)} can be computed from ande.
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We prove (3.3) by induction on. Forn = 0 we haveA <,, B by hypothesis. In the successor
case we havel(™ <, B by the induction hypothesis and obtaiti®*? <,, B+l py
Theorem 3.1.1 2). The index of the reducing function is computed fraa-index of A(™)
which in turn depends on the reducing function #8f) <,,, B, This function, however, can
by induction hypothesis be computed from an index of the reducing functiof foy, B. [

3.2 The Arithmetical Hierarchy

The Arithmetical Hierarchy classifies the subset®Nofhich can be defined arithmetically. The
most obvious classification is according to the complexity of the defining formula. Therefore we
introduce first a classification of the arithmetical formulas.

3.2.1 Definition Let ¢ be a formula in the language of arithmetic, i.e. the only non—logical sym-
bols occurring inp are constants for natural numbers, for primitive—recursive functions and of
predicates which can be decided primitive—recursively. In an arithmetical formula all quantifiers
are supposed to range over individuals, i.e. we are in first order, however, we allow free function
variablest,n, &1, .. ..

We say thatp is aAJ—formula, if ¢ contains at most bounded quantifiers.

We say thatp is 229, if there is aA—formulay(x) such thaty = (3z)(x).

Dually ¢ is 1Y if —¢ is 9.

Aformulapisin XY, if there is a formulay(z) in II% such thatp = (3z)y(z).

Dually ¢ isI%_; if —pis 30 ;.

3.2.2 Remark In the above definition we assume that the language of arithmetic is given as a
TalIT-language (cf. [4]), i.e. a language containja@s basic symbol in whichy is defined by

(s=t):=s#t

(
(Rt1,...,tn) = (-R)t1,...,tn
~((~R)t1, ..., tn) := Rt1, ... tn
( )= Vo
( ) = A

(Vz)p(z) := (Fx)~p(z)
~(3z)p(z) = (Vo) ~p(z)

where—R is a relation constant whose interpretation is the complement of the interpretation of
R.
We obviously have

peXl & p=321)(Va2) ... (Qz,)Y ()
and
eIl & ¢=(r)(3xs)... (Q,)Y(Z)

where)(7) is a Aj—formula and3z1)(Vz2) . .. (Qz,) as well agVz;)(3x2) ... (Qz,) are al-
ternating strings oN—quantifiers.

3.2.3 Definition A relation R C N™™ is definable with parametefs, . . ., §; by a formula

@(517' .. 7£lax17' c ey Ty My - - ﬂ?m)
if o possesses only the indicated free variables and
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3. The Arithmetical Hierarchy

R={aeN™"| NE¢[p,...,0,d}.

3.2.4 Definition 1) A relation isX?[A] if it is definable with parametey 4 by a 2 —formula.
119 [A]-relations are defined analogously.

2) Arelation isA2[A] if it is both, =2 [A] andII? [A].

Instead o0 [(], 10 [0], and A% [(] we write 20, TI® and A°.

3) A relation is callecarithmetical (in A) if it is in A%[A] for somen € N. To unify notations
we put

AGA] == II§[A] := £4[A4] := {R| Ris arithmetical inA}.

3.2.5 Theorem 1) TheAJ—predicates are exactly the primitive—recursively decidable predicates.
2) Thex{-relations are exactly the semi—decidable relations.

3.2.6 Theorem PosT) 1) ArelationR is semi—decidable in a set C Niff R is Z9[A].
2) Arelation is decidable in a set C Niiffitis AY[A].

The proofs of Theorems 3.2.5 and 3.2.6 are obvious from our previous knowledge.

3.2.7 Definition Let F denote one of the complexity classes introduced in Definition 3.2.4. We
say that a partial functional is @fi-functional iff its graph belongs t&.

3.2.8 Lemma Any totalx9 [ A]—functional is already imA% [A].

Proof: The proof needs already the closuré®fundera and3°—quantification. Lef” be a total
¥ [A]-functional. Then

_‘GF(a7y) < F(a)iy
& (F2)[F(a) =z A z#y.

Which shows that both, the graph Bfand its complement, are B° [A]. HenceGr € AY[A].
O

We list the closure properties of these newly introduced relation—classes in the table shown in
Figure 3.2.1. The positive closure properties, i.e. those which carry a “yes”, are shown by induc-
tion onk. We already proved them for the calse= 1 with the exception of the closure &f
under3'—quantification. However, we want to postpone this property because it does not carry
over tok > 1. So assume that we have the positive closure propertigs foet R; and R, be
¥{,—relations. Then we have

Ri(a) & (F2)Q1(a,x)

and

Ro(a) & (Jy)Q2(a,y)
for Q; € I19. Hence
R (CL) O RQ(CL) =
&

and the expression in square—bracket$jsy the induction hypothesis.
The closure of2) | —relations undef’—quantification follows by contraction of quantifiers, i.e.

by
(Qz)(Qy)R(a,z,y) < (Qu)R(a, (w)o, (u)1). (3.4)
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3.2. The Arithmetical Hierarchy

Relation—class Y P =S IR A = RV = N W \?vlthEstltutlon
primitive—recursive| yes | yes | yes | yes | yes| no | no | no | no ]E)J:]fTC]tI}g/r‘]eZ;rsecurSNe
O_relati es| yes| yes| yes| yes| no | no | no | no | COmputable
Aj-relations y! y Y y y functionals
O—relati no | yes | yes| yes | yes| yes| no | yes| no | computable
>i-relations Y Y Y Y Y Y functionals
{—relati no | yes | yes| ves | yes| no | yes| no | yes| computable
Hhi-relations Y Y Y Y Y Y functionals
0
A) . —relations yes | yes | yes| yes| yes| no | no | no | no | tot@lXks-
functionals
0
¥4, —relations no | yes| yes| yes| yes| yes| no | no | no | total i i-
functionals
0
119, ,—relations no | yes| yes| yes|yes| no | yes| no | no | total i i-
functionals
; ; total arithmetical
es | yes | yes| yes | yes| yes| yes ¢
arithmetical y! y y! y y Y y no | no | Lo nals

Figure 3.2.1: Closure Properties of Relation—Classes

So we are left with bounded-quantification and substitution with totaf , , —functionals. As-
sume

P(a) & (VYxz<n)R(a,z)
& (V2 <n)(Ey)Q(a, z,y)
for Raxy, ,—andQ all)-relation. Then

Pa) < (Vo <n)(EFy)Q(a,z,y)
< (3s)[Seq(s) A Ih(s) =n A (Ve <n)Q(a,z,(s)s)]
and the expression in square—brackeldj}sy induction hypothesis. Hend@ is 22+1.

By duality we get the dual closure properties Hﬁfﬂ—relations.
If Fis atotalx) , ,—functional and

P(a) & R(a,F(a))
foraX),,— (I}, ,)relationR we get

P(a) & (32)[F(a) =2z A R(a,z2)]
& (V2)[F(a) ~ z = R(a,z2)].

Applying Lemma 3.2.8 —which is possible since we know m@l is closed undef’—quantification
andA, we getthatP isin X7, orIIj , ,, respectively.
The closure properties fak)—relations follow by combining those df)— and-9—relations (we
still regard only the positive closure properties) and the shown (positive) closure properties for
arithmetical relations follow from those df%—relations.
It remains to show that! is closed unded!—quantification. For &-relationR we get

Ba)R(a,e) & (3)(Fy)Q(aly), aly))
& (39)[Seq(s) Alh(s) =y A Q@(y), s)]

whereQ is a semi—decidable predicate. But then the expression in square—brackets is also semi—
decidable which implies thafa| (3)R(a,)} is a semi—decidable relation. By duality we
obtain thatll{ is closed undel—quantification. Observe that the closure under second order
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3. The Arithmetical Hierarchy

guantifiers cannot be lifted to the higher levels of the hierarchy. As soon as we have a quantifier
string of the form(3«a) (Vz)q (e, x) it is obvious that we cannot replaaeby a finite sequence. A

rigid proof will be in the Analytical Hierarchy Theorem in the next chapter.

Let (x1,...,Tm,&1,-..,&) be any first order formula in the language of arithmetic. Then

=

»(Z, €) is logically equivalent to a formula in prenex form and we may use the quantifier contrac-
tion (3.4) to see that

— — —

N (V2)(Y)lp(Z,§) — (&)
for a formulay which is either in=? or II? for somek € N. Then
R:={a| N ¢[d]}

is AJ_ ,, i.e. arithmetical. We put this into a lemma.

3.29Lemmaletp(z,...,2m, &, - .., &) be a first order formula in the language of arith-
metic. Then the relation

R:={aeN™"| N ¢la]}

is arithmetical.

We are now going to investigate the connection of the arithmetical hierarchy to the jump hierarchy
introduced in Definition 3.1.2.

3.2.10 TheoremA relation R is £ , , [A] iff it is semi—decidable im ).

Proof: We prove the theorem by induction én We begin with the “if"—direction. Fok = 0
this is Theorem 3.2.6 1). For the induction step assumelthats}, ,[A]. Then

aeR & (Fx)P(a,z)

for aIly_ , [A]-relationP. Then—P € ¥9_ | [A] and—P is semi-decidable inl*) by induction
hypothesis. By Theorem 3.1.1 1) this implie® <r A%+ and, sinceP < -P, P <r
A®+1) - SinceR is the N—projection of the relatior? which is decidable ind*+1) we get
by the relativization of Theorem 1.1.17 thA&tis semi—decidable ini(**1). For the “only if”
direction letR be semi—decidable id(**1). Since A*+1) is semi—decidable iM(*) we get
A+ e 0 | [A] by induction hypothesis. Letbe anA(*+1—index forR. Then we obtain

R(a) & aewA"mn
= (Hw)Tm’"+1 (6, A, X Ak+1), w)
& (Fu) T2 (e, a((w)o), Xaw+n (w)o), (w1, (w)2) ()
< (3s)(Fw)[Seq(s) A Ih(s) = (w)o
A (Vi < (w)o) (Xac+n (1) = (8)i) A T2 (e, a((w)o), 5, (w)1, (w)2)].

The predicatesSeq, T, = etc. are all inAS. So we only have to check the complexity of
Xak+1 (1) = y. Because of

Xarin (@) =y & (y=0Azec AFD)v (y=1Axz¢ A*D)
and the fact thatt**1) € ©9 | [A] we get

{(9)] xawe0(6) =y} € AL,[A]L (if)
But (i) together with (i) showR € %7, ,[A]. O
As a consequence of Theorem 3.2.10 we get the following generalizationsafdtheorem.
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3.2. The Arithmetical Hierarchy

3.2.11 TheoremA relation R is in A)_, [A] iff R is decidable inA®).
Proof: We haveR € A? ,[A] iff R and—R are semi—decidable iA(*) by Theorem 3.2.10. By
PosTs theorem this holds if and only R is decidable inA(%), O
The next theorem will help us in confirming also the negative closure properties listed in Fig-
ure 3.2.1.
3.2.12 Lemma We have
AWHD ¢ AD L [A]
forall k € N.

Proof: We have shown in Theorem 2.3.1 th@l\/) £ M for any setM. By Theorem 3.2.11,
however, this meand (+1) ¢ A9 | [A]. 0

3.2.13 Theorem (Arithmetical Hierarchy Theorem) We have
1) ARL[Al & 34
2) A2+1 [A] k+1 [A]
3) X0 [AJUIIY, [A] S A, ,[A]

Proof: All inclusions are obvious by definition. It remains to show that these inclusions are
proper. According to Lemma 3.2.12 we have

ARFD ¢ AD L [A]but ARHD € 39 [A]

by Theorem 3.2.10. This proves 1) and 2) is an immediate consequence of 1).
To prove 3) regard the “effective union” af*+1) and—-A*+1) which is given by

B:={2z]| z€ Ay {2z +1| x ¢ AFTD}

ThenB € A) ,[A] andAF+D) <, BviaAz. 2z as well as=A*+D <, Bviaz. 2z + 1.
Hence neltherB € X9 ,[A] nor B € IIY , , [A] because any of both assumptions would lead to
A1) e A9 [A] which contradicts Lemma 3.2.12. O

It follows from the Arithmetical Hierarchy Theorem thaf [ A] cannot be closed under negation
and V’—quantification. DuallyII?[A] cannot be closed under negation atft-quantification.
Since any first order quantifier

Qx)[...x...]
can be replaced by a second order quantifier
(Qa)[...a(0)..]

we see thakb?[A] cannot be closed undgt—quantifiers and dually that?[A] cannot be closed
under 3'—quantifiers. So the only open items in Figure 3.2.1 are closurB%¢fl] and 3'—
quantifiers andI?[A] andV'—quantifier fork > 1. We have to postpone that until the next
chapter.

Up to now we get a picture of the Arithmetical Hierarchy as shown in Figure 3.2.2.

Let us recall the notion of an universal relation.

3.2.14 Definition Let R be a collection ofm, n)—ary relations. Ar{im + 1, n)—ary relation is
universal forfR if for any R € R there is are € N such that
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3. The Arithmetical Hierarchy
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Figure 3.2.2: The Arithmetical Hierarchy

R(a) < U(a,e).

A collectionf of relations is ainiversal classf for any (m, n) there is arfm+1, n)—ary relation
U™™ € & which is universal for thém, n)—ary relations ing.

R is anacceptable universal clask £ is a universal class and there dre- 1—-ary computable
functionsS;" such that

U™ (@ gy, ye,e) & U™™(a, S0 (e, y1,- -5 Uk))-
If R is a universal class and

R(a) & U™"(a,e)
we calle an f—indexfor R.

We have already seen that the clas&fA]-relations, i.e. the class of relations which are semi—
decidable in4, is an acceptable universal class. This can be lifted to all levels of the Arithmetical
Hierarchy.

3.2.15 Theorem The classes dt{ [A] andII} [A] are acceptable universal.
Proof: By Theorem 3.2.10 we get for dm,n)-aryx) , , [A]-relationR
R(a) & ac me’m’”.
Putting
UZklAlmn . {(a,e)] a € Wf(k)’m’”}

defines a universal relation for tlig:, n)—ary relations irs{, , [A]. The acceptability, however,
is an immediate consequence of the relativiggt"—Theorem.

32



3.3. The Limits of the Arithmetical Hierarchy

By dualization we get universal relatiobT+1141m:m for the (m,n)-aryII},  , [A]-relations.
]

3.3 The Limits of the Arithmetical Hierarchy

The collection of all arithmetically definable sets forms a countable set. This shows that we are
far from having characterized all subsetshof We will indicate that we are even still far from
having characterized all definable subset®of

Put

AW = [z (z)g € A@DY,

We may regardi(“) as “effective” union of allA(™). Effective because for any ¢ A(“) we can
by computing(z); effectively determine to which member pf A™) the elementz), belongs.
Clearly any effective union has to be pairwise disjunct.

Because of the effectiveness4f~) we get

re AW o (z,n)ec AW
which shows
A < AW) (3.5)

for anyn.

3.3.1 Theorem The setd“) is not arithmetical inA.

Proof: Towards an indirect proof assume that) e A%[A] for somek. HenceA®) <
AR <p ARFD <5 A) which impliesA®) =7 AK+D | But thenA® 1) ¢ A? | [A] by
Theorem 3.2.11 which contradicts Lemma 3.2.12. O
Building A() means to iterate the jump operator arbitrarily finitely often. But when we H&ve
we can go on building(A“)), j(5(A“))) ... Such an infinite iteration of jumps, however, needs

a theory of ordinals, which we postpone until Chapter 5. First we want to extend the hierarchy by
allowing second order formulas in the defining formulas of relations.
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4. The Analytical Hierarchy

4.1 Second order arithmetic

In order to extend the arithmetical hierarchy we extend the hierarchy of arithmetical formulas.
We are going to allow quantifiers on functions which are supposed to rang€vae briefly
denote by

NEe

that the sentencg is valid in the standard interpretation. Let us start with a classification of the
second order arithmetical formulas according to their second order quantifier—complexity.

4.1.1 Definition A formulay is all}—formulaif o = (Vo) (o) andy(a) is 9.
Dually a formulay is ¥} iff - is I1}.
AformulayisIl; , , iff ¢ = (Va)y(a) andy(a) is ..
Dually g is X}, , iff ~pisII}, ;.
Again we get
pell & ¢=(Var)E02)...(Qar)(Qu)¥(d, )
and
pETE & ¢=(Em)(Yaz)... (Qax)(Qe)y(d, )

wherey(d, x) is quantifier free.
A formulaisanalyticif it is X! or IT}, for somen. We introduce the abbreviation

(@)z = Au. a((z,u)). 4.2)

4.1.2 Lemma For any formulayp in the language of second order arithmetic ad= {V, 3} we
have

(Qz)p(z) & (Qa)p(x(0)) (4.2)
Q) (QB)p(e, B) = (QV)e((V)o, (V1) (4.3)
(Vo) F)p(z,a) < (38)(Vy)e(y, (B)y) (4.4)
() (Va)p(z,a) < (V8)(Fy)e(y, (B)y) (4.5)

Proof: Claim (4.2) holds obviously and (4.3) becomes clear by putting

_ fol@)n) if (@)o=0
o) = {ﬁ«xm f (z)o - 1.

The direction from right to left in (4.4) holds for logical reasons. For the opposite direction
assume

(V2)(3a)g(x, )
and choose,, for everyz € N. Defining
B(y) = ag),(¥)1)
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4. The Analytical Hierarchy

we get
(Vy)e(y, (B)y)-
Hence
@B (y)e(y, (B)y)-
Equation (4.5) follows from (4.4) by taking negations. O

We observe that every formula in the language of Second Order Arithmetic is logically equivalent
to some formula in prenex form. Using Lemma 4.1.2 it becomes equivalent to some formula of
the form

(Var)(Bas) .. (Qan)(Q@)p(ar, - . ., an, @)
or
(3ay) (Vo) - .. (Qan) (Qz) (e, - . ., an, )

wherep(as, . .., a,, x) is quantifier free an@ denotes the quantifier which is dual@ Hence
every formula in the language of Second Order Arithmetic is equivalent to some analytical for-
mula.

4.2 Analytical relations

4.2.1 Definition 1) A relation isIT.[A](XL[A]) iff it is definable with parametey 4 by some
IIL— (XL -)formula. Again we writdI} andX} instead ofiI} (0] andX; [0].

2) Arelation isA}[A] iff itis both $1[A] andII} [A].

3) Arelation is analytical (ind) if it is in A}, (A [A]) for somek.

A picture of the analytical hierarchy is given in Figure 4.2.1.

4.2.2 Remark By the considerations in the end of the previous section we get that a relation is
definable in second order arithmetic iff it is analytical.

To obtain the closure properties of analytical relations we begin with the lowest level.

4.2.3 Lemma The relations inl1}[A] are closed under
e the positive boolean operations v

e all N—quantifications

¢ Yl—quantifications

¢ substitution with total functionals haviri@: [ A]-graphs

Proof: Let

Pi(a) & (Vo)(Ey)Qi(e,y;a)
and

Py(a) & (V9)(F2)Q2(B, 2, a)

belli-relations. Then
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Figure 4.2.1: The Analytical Hierarchy

Pi(a) § P2(a) & (Ya)(Fy)Qi(a,y,a) § (V) (F2)Q2(8, 2, a)
& (Ya)(VB)(Fy)(32) [Qi(ey, @) § Q2(8, 2, a)]
& (W) [Q1((v)o, (w)o, ) § Q2((7)1, (w)1, a)] -
This gives the closure under positive boolean operations. Closure éhegrantification follows
from the quantifier contractions (4.3); closure undérquantification is obtained by converting
it into a V!—quantifier according to (4.2) and then using quantifier contraction; closure under
FO—quantification follows from the choice—principle (4.5).
Let’s turn to closure under substitution. For a total functiafiale get

F)#y < (F2)[F(a) =z Az #y
< (Vo) [F(a) @z = x # y|

which shows tha€'r € Al[A] for II}[A]- and for¥1[A]-functionalsF (here we use that![A]
has the dual closure propertiesidf[A]). For alli[A]-relationP we obtain

P(a,F(a)) & (3y)[F(a) ~y A P(a,y)] (4.6)
& (W) [F(a) =y = Pla,y). |
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4. The Analytical Hierarchy

This shows thall}[A] (as well as:1[A]) is closed under substitution with tofd} | A]—functionals.
U

By dualization we obtain from Lemma 4.2.3.

4.2.4 Lemma TheX1[A]-relations are closed under
e the positive boolean operations v

e all N—quantifications

e Jl—quantifications

e substitution with totall} [A]-functionals
TheAl[A]-relations are closed under

e all boolean operations

e all N—quantifications

¢ substitution with totall} [A]—functionals.

Using induction ork in the same way as we did it in the case of the arithmetical hierarchy gives
the positive closure properties of the levels of the analytical hierarchy as displayed in Figure 4.2.2.
To answer the obvious question whetherEijg A] and; [A] form a proper hierarchy we check

ion— - < < 0 0 1 1 | acceptable| Substitution
Relation—class \Y A3 . 3 v 3 v | Uriversal | with
primitive— yes | yes| yes| yes| yes| no | no | no | no | no primitive—recursive
recursive functions
A9 yes| yes| yes| yes|yes| no [ no | no | no | no computable
functionals
=t no | yes| yes| yes| yes| yes| no | yes| no | yes computable
functionals
17 no | yes| yes| yes| yes| no | yes| no | yes| yes computable
functionals
0
Ay yes| yes| yes|yes| yes| no | no | no | no | no total X .1 -
functionals
0
S no | yes| yes| yes| yes|yes| no [ no | no | yes total Xy -
functionals
0
I} 4 no | yes|yes| yes|yes| no |yes| no | no | yes total %5, ;-
functionals
1 es| yes | yes | yes | yes | yes | yes total arithmetical—
Ap y y! y Y y! y! y no | no | no bt
1
., no | yes| yes | yes| yes| yes | yes| no | yes| yes total Ty 4~
functionals
1
Sha1 no | yes| yes| yes| yes| yes | yes | yes| no | yes totalITj, , ;-
functionals
1
Akt no | yes| yes|yes| yes| yes|yes| no | no | no total Ty, , -
functionals
analytical yes| yes | yes | yes | yes | yes | yes | yes | yes | no total analytical—
functionals

Figure 4.2.2: Closure Properties of Relation—Classes

the universality of these classes.
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4.2. Analytical relations

4.2.5 Theorem The classedl; , ,[A] andX; , [A] are acceptable universal.
Proof: For P € IIj [A] we have
P(a) & (Va)(3z)R(a, o, x)

such that{(a, a)| (3z)R(a,, z)} is I[A]. By the universality of29[A] we therefore get an
indexe such that

(Hx)R(Cl, oz,x) = (a’ a) c Wé,m,n+1.

We define
utlAbmn .~ (e q)| (Vo) [(a,a) € WA™H] ], 4.7)
ThenU™ [4l:m.n is by construction universal faE! [A]. We usually writex € UT 4™ instead
of (e,a) € UM lAlmn To see that it is also acceptable we do the following computation
(@01, i) € UBFImHRD (90 [(q, a0, ) € WAmHen+1]
& (va) [(a,0) € W, ]
& aeughlnn .

SinceR € ©1[A] < —R € II}[A] we may put
uilAlmn .— Lo q)| (3a) [(a,@) ¢ WA (4.8)
and obtain by duality that’™i[4] is acceptable universal fat! [A]. O

Using induction ork we can lift Theorem 4.2.5 to all levels of the analytical hierarchy. We just
put

Ukl hmn = {(e,0)| (Va) [(a,a) € URHAbmnt1]y (4.9)
and
Uk lmn i~ {(e,q)| (3a) |(a,a) € UTAbmnt1 ]y, (4.10)

Turning this into a theorem we get:

4.2.6 Theorem The classesl; ,, [A] as well as the classeS; , ,[A] are acceptable universal

for all k. The universal predicateg™+1[4] and UZ++1[4] are defined in (4.6) through (4.10).
Putting

UARaldlmn .— {(¢ a) Seq(e) A Ih(e) =2 A ((€)o,a) € UZrsa[Almn
A (Vb) {((e)o, b) € UZinalAhmn o (€)1, b) € UMensltlmon |y

we get also indices foA}  , [A]-relations. Note, however, thar k11417 s not aA; ,[A-
relation.

To show that the analytical hierarchy does not collapse we need the following lemma.

4.2.7 Lemma For all k > 0 there is a relationX;! such thatk/! € ITL[A] \ Si[A].
Proof: We use a diagonalization argument. Towards an indirect proof we assunig; ftC

2,1c [A].
Define
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4. The Analytical Hierarchy

K = {x ¢UE [Alo}
thenK{! € 11} [A] C X1[A]. Lete be aX}[A]-index for K. Then

Ti (41,1

ec K} o ecUZH o cg KA

which is absurd. O

4.2.8 Theorem For all £ we have

¢ AIIH»l[A] H,1€+1[A]

b Ak+1[A] 2k+1[A]

o IL[AJUSLA] G AL, [A]

Proof: By Lemma4.2.7we hav&, , €I}, | [A ]\Akﬂ[ Jor=K | € Sp  [A]\ A}, [A],
respectively. Fork > 0 we putB := {2e| e€ K{'} U{2e+1| e¢ K}'} and getB €

Allc+1[ ], but sinceK{* <,, B as well as=K{* <,, B neitherB < TIL[A] nor B € % [A]
is possible. It remains the caselot= 0. We have already seen that

AW .— {J; o€ Al@n )}

is not arithmetical. We givé\l[A]—definition of A(“). First we describe the jump—hierarchy. We
define

JHa(a) & (Vn)(Vz)[(a(z) #0 = Seq(z) A Ih(z) = 2)
Aa((n,z)) <1
A (a({(0,z)) =0 < x€ A)
Ala(in+1,2)) =0 < (Iz)(Fu)[Seq(s) A Ih(s) = (u)o
A (5 < (w)o)((s); = al(n, ) A T?0(z, 2, 5, (u)1))])]

Then we prove

JH(e) AJH(B) = (Vn)(Vz) [a((n, z)) = B((n, )]
by induction om. Hence
JH(a) AJH(B) = a=0
and we see that
{z| a((n+1,2)) =0} = {=| EIuT“mm{m ((n,z)) =0}, u)}
=7 {a: ({n,z)) = 0} .
Therefore we obtain
ncA® & (3a)[JHa(a) A a(n) = 0]
< (Va)[JHa(a) = a(n) =0].

SinceJH(a) is arithmetical inA we see thatA() is Al[A]. By Theorem 3.3.1, however,
AW ¢ TI[A] U Z[A]. O
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5. The Theory of Countable Ordinals

In Chapter 3 we succeeded in characterizing the Arithmetical Hierarchy by iteration of the jump
operator. We indicated that iterating the jump infinitely often leads outside the Arithmetical Hier-
archy. We even proved that alreadyutsfold iteration()(”) is outside the arithmetically definable

sets. We are going to study the effects of transfinite iterations of various operators. To prepare that
we need an introduction to the theory of transfinite numbers, i.e. ordinals. It has become common
to regard ordinals set—theoretical, i.e. as sets which are well-ordered by the membership relation
€. In presence of the axiom of foundation any hereditarily transitive set is already an ordinal.
This is probably the easiest way to introduce ordinals. However, since we can restrict ourselves
to countable ordinals and don’t want to require too much pre—knowledge in Set Theory, we are
going to develop the theory of countable ordinals in a more old fashioned way. This should be
profitable even for somebody who already knows set-theoretical ordinals.

5.1 Ordinals as order-types

5.1.1 Definition Let N be some set.
1) LetR C N x N be a binary predicate. For binary predicates we sometimes prefer the infix
notation, i.e. we writec R y instead of(x, y) € R or R(z,y). We define

field(R) = {z| By)[xr Ry Vy Rax]} (5.1)
and callfield(R) thefield of the predicate?. We put
rRry & s RyANz#y (5.2)

and callR. thestrict predicateassociated wittR. In case thaR is irreflexive i.e. if
e (Vx € field(R)) [-(x R z)],

R andR are the same predicates.
2) A predicatex C N x N is apartial orderingif < is reflexive, anti-symmetrical and transi-
tive, i.e. if

o (Vz € field(x)) [z =< z]

o (Vxcfield(=))(Vycfield( =) [z <yAy=z=2x=y

and

o (Vx € field(=))(Vy € field(R))(Vzefield X)) [r Sy Ay z=2x < z].

If field(<) C N we talk about a&ountable partial ordering
3) Apredicate< C N x N is anorderingif < is a partial ordering which is linear, i.e. if

o (V€ field(=))(Vy € field(X)) [z <y V y =< z].
For a partial-orderings we denote its associated strict predicate<yHence
r<y & rx3yANx#y.
We call< astrict partial ordering Vice versa we can associate a partial ordering
xRy = z=<yV(refield(<)ANz=y) (5.3)
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to every irreflexive and transitive predicateC N x N.
4) A predicateR C N x N is well-foundedf every nonempty subset dfeld(R) possesses a
R-least element, i.e. if

(VM) [M C field R)AM #0= (F3zeM)Vy)(yRz=y=zVy¢ M).

5) A well-orderingis an ordering which is well-founded.
6) Two orderings=; and <, are equivalentif there is a strictly order—preserving map from
field(<1) ontofield(=5), i.e. if we have

f:field(=1) 2% field(<s)
such that
(V€ field(=1))(Vy € field(<1)) [z <1y = f(z) <2 f(¥)]

where<; and<, are the corresponding strict orderings as defined in (5.3).
By <1==5 we denote the equivalence gff and=,.

For well-founded predicatd? we have therinciple of transfinite inductiomlong R which says
(Vo) [(Vy)(y Bz = = ¢(y)) = ¢(2)] = (Vo)p(z). (5.4)
To realize (5.4) observe that its premise entail field(R) = ¢(z). Thus assume
{z| —p(x)} N field(R) # 0.

SinceRis well-foundedwe finda € {z| —¢(z) }Nfield(R) suchthatVy) [y R z = ¢(y)].
This, however, implies(z) by the premise of (5.4). A contradiction. Another important prin-
ciple is that oftransfinite recursioralong a well-orderings. Let G be a total functional. Then
there is a functional’ satisfying the equation

F(a,z) = G(a, 2z <z.F(a,z)) (5.5)
where
B O ol

The principle of transfinite recursion is provable within a framework of Set Theory. We will,
however, regard (5.5) as an axiom. But for computaBland decidable< we can prove that
there is a computable functional satisfying (5.5). We use the Recursion Theorem to obtain an
indexe such that

{e}™ T (a,2) ~ G(a, Az < z. {e}"Th"(a, 2)).
Now we show by transfinite induction alongthat

(Va)(Fy)[{e}™ " (a,z) ~ 9.

Putting F' := {e}™*1™ we have a computable solution of (5.5).
The following lemma is an immediate consequence of the definition of the equivalence of order-
ings.

5.1.2 Lemma The equivalence of orderings is a reflexive, transitive and symmetric relation.

5.1.3 Definition A countable ordinals the equivalence class of a countable well-ordering.

We are going to denote ordinals by lower case Greek letters in the end of the alphabet, e.g.
o,7,&, 1, ... Theorder—typeof a well-ordering< is the ordinal which is represented by The
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order—type of is often denoted bwtyp(<). The class of countable ordinals is denoted®y.
We want to show that there is a strict well-ordericigon On. To define< we introduce some
notations.

A segmenbf an ordering< is a setM C field(=<) such that

(Ve e M)(Vz e field(X))[z Rz = z € M].

We talk about groper segmernit M is a segment but! # field(=).
For an element € field(<) we introduce the segment induced by

<z ={(z,y)| y<z Az =y}
The segmenk [z of < is obviously always proper. Moreover we have

field(<1z) = {z € field(<)| = < z}.

5.1.4 Definition Let o, 7 be ordinals. We say that is less tharr, written aso < 7, if there
are well-orderings, and= representing- andr, respectively, and a € field(<.) such that
2o =27z, 1€

o<T & (32,€0)(32,€7)(3Fz e field(=;)) [Re= =r17]. (5.6)

5.1.5 Theorem The relatiorns < 7 defined in (5.6) is an irreflexive well-ordering on the ordinals.

Proof: The proof is easy but a bit lengthy. Therefore we concentrate on the more tricky parts. If
=1==9, =3= <y and=>= <3|z for somez € field(=<3), we get=1= =<4[f(z) if fisan order—
isomorphism betweert; and=<,. Hence (5.6) is well-defined. Irreflexivity and transitivity are
equally easy to check.

The most difficult part is to check linearity. Let; and <, be two well-orderings such that
=1#=2. We have to show that there is either ac field(=<1) such that<,[z =<, 0raz €
field(z2) such that<;= <, [z. Putting

f(x) == min{z € field(=2)| (Vy <12) [f(y) <2 2]}
we get a partial function
[ field(=1) —p field(=<z)

which is order—preserving by definition. By constructieom(f) andrng(f) are segments of
=1 and=,, respectively. More precisely; [dom(f) and=<,[rng(f) are segments. But we will
often use the more sloppy way of talking as above. Sitg# <, eitherdom(f) orrng(f) has to
be proper. In the first case we get for= min_, {z € field(<1)| = ¢ dom(f)} that=; ]z ==,
and in the secongk,= =<,z for z := min_, {x € field(<2)| = ¢ rng(f)}.

To see thak is well-founded onOn take somel C On such thatdM # (. Assume that\/
does not possess<a-least element. Pick any € M and let< be a well-ordering representing
o. Then there is @ € M such thatr < o. Therefore we find &, € field(=<) such that<]z
represents. Assuming we already defined the sequence

Z20™ 21> ... 2Zn

such thatr; := otyp(={z;) € M fori = 0,...,n we find somer,,.1 < 7,, in M and therefore
also some,, 11 < z, such thatr,, 1 = otyp(=[z,+1). This gives an infinite strictly descending
sequenceg > ... > z, > ... In field(=) which is impossible becaus{eﬂ i€ N} C field (=)
would not have ax—least element. O

We just used the fact that in a well-ordering there are no infinite strictly descending sequences.
This is in fact equivalent to being a well-ordering.
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5.1.6 Theorem A binary predicateR is well-founded iff there are no infinitB.—descending
sequences.

Proof: We have just seen that a well-founded predicate does not allow infinite strictly descend-
ing sequences. For the opposite direction assume that &adgscending sequence is finite.
Towards an indirect proof led/ be a nonempty subset deld(R) without R—least element.
Then we may choose somg € M. Suppose that we already have chosgn. ., z, € M such

that

20 21 7 ... Zp.

SinceM has noR-least element there is an; R z, and we may thus construct an infinite
R_—descending sequence. O

If M C Onis bounded, i.e. if there is soneec On such thai(V¢ € M) [ < o] then we define
supM := min{n € On| (V¢ € M) [¢ < n]}. (5.7)

5.1.7 Theorem The classOn of countable ordinals is unbounded in the countable ordinals, i.e.
for every countable ordinat there is a countable ordinal such thatr < 7.

Proof: Leto € On and= a well-ordering representing Put

z <"y = Seq(z) A Seq(y) A lh(x) = lh(y) =2
Al@)o=0A (y)o=0A ()1 < (y)1)
V ((x)o=0A ()1 € field(<) A (y)o=1A (y)1 =1)],

i.e. we add a single poirt, 1) on top of the well-orderingk. Then we get

<= ="I(1,1).
Hence

o = otyp(=x) < otyp(=') =: 7. O
Using Theorem 5.1.7 we define theccessor

o+ 1:=min{¢€On| o <&} (5.8)
We put

0 :=minOn (5.9)
and get

0 = otyp().

5.1.8 Definition An ordinalo is asuccessor—ordinaf there is an ordinat such that = 7 + 1.
An ordinale is alimit—ordinal if & # 0 ando is not a successor ordinal. We denote the class of
limit ordinals byLim.

We obtain
Aelim & MAO0A(VE<N[E+1< ) (5.10)

becaus& < X impliesé +1 < A andé + 1 = X\ is excluded by the definition dfim. An
equivalent formulation of (5.10) is

Aelim & A£O0ANM<AN@En<N) € <n]. (5.11)
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Equation (5.11) follows immediately from (5.10) with+ 1 as witness for and the opposite
direction follows becausgé < n < Aimplies¢ + 1 < n < X and< is transitive on the countable
ordinals.

We use (5.11) to prove

w = otyp(<) € Lim (5.12)

where< stands for the standard ordering of the natural numbers. It is obvious tAdt and for
o < wwe obtain am € N such that = otyp(<[n) < otyp(<|n+ 1) < w. Hencew € Lim by
(5.11)

Ordinals< w arefinite. Finite ordinals are represented &iyn for n € N, i.e. by orderings of the
form0 < 1 < ... < n — 1. Therefore we often identify finite ordinals and natural numbers.
For a well-ordering< andx ¢ field(<) we define

otyp<(x) := otyp(=z). (5.13)
Then we obtain
otyp<(xz) = sup{otyp<(y) + 1| y < z}. (5.14)

To prove (5.13) we observe that:= sup{otyp<(y) + 1| y < z} < otyp<(z). If we assume
o < otyp<(x) = otyp(<[z) we get ayo < = such thatr = otyp<(yo) and this leads to

o = otyp=<(yo) < otyp<(yo) +1 <o

contradicting thak is irreflexive onOn.
In a similar way we show

otyp(=) = sup{otyp=<(y) + 1| y € field(<)}. (5.15)

Puttingo := sup{otyp<(y) + 1| y € field(<)} we obviously haver < otyp(=). The assump-
tion o < otyp(=) leads again to the contradiction that then thereys=afield < such that

o =otyp<(y) < otyp<(y) + 1 < 0. O
Generalizing (5.14) and (5.15) we define

otypr(z) := sup{otypr(y) + 1| y Rz z} (5.16)
and

otyp(R) := sup{otypr(y) + 1| y € field(R)} (5.17)

for arbitrary well-founded orderings by transfinite recursion along.

We close this section by examining the complexity of the notions of partial-ordering, ordering and
well-ordering in the Analytical Hierarchy. We express a binary prediBaig the characteristic
function of its contractions

(R) = {(@.9)| (z,9) € R},

We define
CF(a) & (Vz)[a(z) <1A (a(z) =0= Seq(x) A Ih(x) = 2)]
PO(a) &
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WF(a) & (V8")[(Va)(8*(2) = 0 = al(z,)) = 0) A (3z) [6*(z) = 0]
= (32)(8"(2) = 0 A (Vy)[e((y,2)) =0
and finally
WO(a) = LO(a) A WF(a).

ThenPO(«) expresses that is the characteristic function of the contraction of a partial—ordering,
LO(«) thata is the characteristic function of the contraction of an orderii¥d(«) expresses
that « is the characteristic function of the contraction of a well-founded binary predicate and
WO(«) denotes thatv is the characteristic function of the contraction of a well-ordering. We
moreover have

5.1.9 Theorem The relationsPO(«), LO(«) are I19 and the relation$VF (o)) and WO(«) are
I13.

5.2 Trees

An extremely important tool in the investigation of hyperarithmetical set are trees. We are going
to introduce trees as sets (of codes of) finite sequences which are closed under initial segments.

5.2.1 Definition Let s,t € N. We put

sCt &= Seq(s) A Seq(t) Alh(s) < Ih(t) A (Vi< Ih(s))[(s): = (t)s] (5.18)
and say that is aninitial segmenof .
A treeis a nonempty seB C Seq which is closed under initial segments, i.e. we put

T(B) & (Vs)[se B= Seq(s)] NAB#0A (Vs)(Vt)[te BAsCt=s¢€ B].

For any treeB we have() € B by (5.19). We calk) theroot of the treeB. Trees should be
visualized as shown in Figure 5.2.1.
Notice that writingT'(B) as an analytical formula, i.e.

T(a) = (Vz)[alz) <1A (alz) =0— Seq(z))] AN a({)) =0
A (Vo) (Vy) [lz) =0 Ay C o — aly) = 0],
shows that it is 40, 1)—aryIl9—predicate.
If s~ (z) € Bthen we also have € B. We calls™ () animmediateB—predecessoof s ands
theimmediateB—successoof s~ (x).

A pathinatreeB is a subseP C B which is a linearly ordered bg and closed under immediate
successors. Aath througha treeB is a path inB which also satisfies

s€PA(Fx)[s(xz) e B] = (3z)[s"(z) € P].

(5.19)

A tree iswell-foundedf it does not contain infinite paths, i.e. if

T(B) A (v8)(32) [B(2) ¢ B].
Expressing that by an analytical formula we put

WT(a) & T(a) A (VB)(32) [a(B(z) = 1]. (5.20)
From (5.19) and (5.20) we have the following lemma.

46



5.2. Trees

(0,0,0,0,0,1)
Q QO O O Q o ¢ 000013
(0,0,0,0,0) P (0,0,0,0,1) ¥ a o o (0001,2

5910, 0,0, 1)

(0,0,0,0) &

(0,0,0) P
0,0) (0,1) ) (0,2) & (0,3) &) (0,4) “ “ (0,5)
(0) &=

0

Figure 5.2.1: Visualization of a tree

5.2.2 Lemma The(0, 1)-ary relationsT andWT are I1? andI1}, respectively.

5.2.3 Theorem (Bar induction) For well-founded trees we have thanciple of bar induction
i.e. if B is a well-founded tree we have

(B)  (Vs)[(Vz)(s™(z) € B= p(s™(2))) = »(s)] = ¢(()-

Proof: We prove

(Vs) [(V)(s™(z) € B= @(s™ (x))) = ¢(s)] = (Vs B)p(s). (5.21)
Towards an indirect proof assume

(Vs) [(Va)(s™(z) € B = @(s™ (z))) = ©(s)] (i)
and

s € B A —p(s)

for somes. We are going to construct an infinite path s1, ... in B. Put
Sp =S8
and assume that, . . ., s,, are already defined such that
s; € B A —p(s;) A “s; immediately succeeds, "
holds fori = 0,...,nori =0,...,n — 1, respectively. But then there is arsuch that
sp (z) € B A —p(s, (z))
because otherwise we gets,,) by (i). Putting
Snt1 =8, ()
we obtain an infinite pathky, s1, . . . in B which contradicts the well-foundednessi®f O
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There should be a connection between bar induction and transfinite induction along well-founded
predicates. To make this explicit we introduce the predicate

s<pt & s€BAteBAtCs. (5.22)

We denote the strict version of; by <3. The predicate<}; is obviously the reflexive and
transitive hull of the immediat&—successor predicate. Therefore any infinite patB induces
an infinite <};—descending sequence. Conversely, evety-descending sequence is an infinite
path inB. Together with Theorem 5.1.6 we get

5.2.4 Theorem A tree B is well-founded iff the predicate}; is well-founded.

According to Theorem 5.2.4 we may regard bar induction as a special case of transfinite induction.
For a treeB and a node € B we may regard theubtreeof B aboves which is defined by

Bls:={t€ Seq| s"t € B}. (5.23)
Then we have
T(B) As€ B = T(B]s)
and obviously also
WT(B) Ase B = WT(B]s).
We call a treeB finitely branchingf every node inB has only finitely many predecessors, i.e. if
(Vs € B) [|[{z]| s™(z) € B}| < R¢|
where|M| denotes the cardinality of a s&f andX, the first infinite cardinal. An important
property of finitely branching trees isddiIG's lemma.
5.2.5 Lemma KONIG's Lemma) Any tree which is finitely branching but infinite possesses an
infinite path.

Proof: We assume tha® is finitely branching but infinite. We construct an infinite paghs, . . .
in B. Put

80 = ()
and assume that, ..., s, are defined such that
s; € BA |B[Sl| > Ny

holds fori = 0,...,n. Since

No < [Blsn| = {()}u |J {Bls; (2)| s, (x) € B}

zeN
and

{z| s, (z) € B} <R
there is ane such that
sy {x) € B A |BJs;, ()] > Ro.
Defining
Sn+1 1= S, (T)
we obtain an infinite path. O
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We call a tredboundedly branching there is ak € N such that
(Vse B)(Vz)[s " (z) € B=z < k|. (5.24)

We callk abranching boundlf B is boundedly branching with branching bounde obviously
have

(Vs € B)(Yi < Ih(s)) [(s): < k].

Every boundedly branching tree is finitely branching. The important fact about boundedly branch-
ing trees is that their finiteness can be expressed by an arithmetical formula. For a boundedly
branching treeB we get

B isfinite < (3In)(Vs) [Seq(s) A Ih(s) =n = s ¢ B]. (5.25)

Combining (5.25) with KONIG's Lemma we get

5.2.6 Theorem (Finiteness Theorem)_et B be a boundedly branching tree. Then
(VB)(3z) [B(z) ¢ B] < (3n)(Vs)[Seq(s) A Ih(s) =n = s ¢ B]. (5.26)

The importance of the Finiteness Theorem is that it shows that for boundedly branching trees the
I1{—property of being well-founded can be expressed arithmetically.

A binary tree is a boundedly branching tree with branching bdufdhe Finiteness Theorem for
binary trees is also known as WealoKIG's Lemma.

We also want to establish a connection between well-founded tress and ordinals. The key here is
Theorem 5.2.4 and the definitions in (5.16) and (5.17), respectively.

5.2.7 Definition Let B be a well-founded tree. Fere B we define
otyps(s) := otyp<; (s)
and
otyp(B) = otyps(())-
By (5.16) we have
otypp(s) = sup{otyps(t) + 1| t <p s}. (5.27)

Fort <% s, however, we find an: such thatt <%, s~ (z) <} s. Because obtypgp(t) <
otypg (s~ (x)) we obtain from (5.27)

otyps(s) = sup{otyps(s™(z)) + 1| s (z) € B}. (5.28)
Sinceotyp(B) = otypz(()) = sup{otyp<: (s) + 1| () <j s} we get
otyp(B) = otyp(<p[())- (5.29)

The tree predicatel}; is a partial ordering. However, sometimes it is desirable to have an
ordering on a tree. We are going to linearize the ordgr using an idea which goes back to
KLEENE and BROUWER To their honor this ordering is calledUs ENE-BROUWER-ordering.

5.2.8 Definition (KLEENE-BROUWER-ordering) For a sequence numbeandz < /h(s) put

stz = ((8)oy -+, (8)z=1)-
Let B be atree. Fos, ¢t in B we define

s<Bt = tCsV @x<ih(s)[slz =tz A (5)s < (t)s].
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The predicate<k® is irreflexive. The associated partial order is
s<KBt .o s<KPtv(seBAs=1).

A visualization of the KEENE-BROUWER-ordering is given in Figure 5.2.2.

Figure 5.2.2: Visualization of the KEENE-BROUWER-oOrdering
The nodes;,.. . s¢ are in increasing order

5.2.9 Lemma For any treeB the predicate<XE is an ordering onB, <X is a strict ordering on
B.

Proof: It suffices to show thatXP is irreflexive, transitive and linear. Irreflexivity follows by
definition. Transitivity is easy but a bit cumbersome because of the many cases one has to con-
sider. A proof is sketched in Figure 5.2.3. To check linearity notice that fosgay € B there

is a maximalr such thats|z = t[z. If t]z = s thens C ¢, hencet <KP s and if s|z = ¢ then

t C s, hences <KB t. Otherwise we either hay@), < (), and obtains <XB ¢t or (s), > (t).

and obtairt <kB s. O

5.2.10 TheoremA tree B is well-founded iff itsK LEENE-BROUWER-ordering §§B is well-
founded.

Proof: We start with the easy direction. Assume thzils not well-founded. Then there exists an
infinite pathsy, s, ... in B. According to Definition 5.2.8 this implies, >%B s; >XB .. and
we obtain an infinite<tB-descending sequence which, according to Theorem 5.1.6 contradicts
the well-foundedness ofkE.
For the opposite direction we usediiG's Lemma. Let

So >§B S1 >§B - >§B S; >§B Sit1 .-
be an infinite<;P-descending sequence and put= {s;| i € N}. Define
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VoYY
vV VY

Figure 5.2.3: How to prove <2 v <t w = u <8 w in the KLEENE-BROUWER-ordering

B’ := {t| Seq(t) A 3s€S)[t C s]}.

ThenB’ C B is obviously an infinite tree. We claim th&’ is finitely branching. Chose any
t € B’ and regard

M, = {z| t™(z) € B}.

For anyr € M, there is ans® € S such that ™ (z) C s* and forz, y in M, we gets® <kB sV if
z <y.These{r € S| s <} r}, however, is finite by construction f. Thereforel, is finite
for anyt € B’. It follows from KONIG’s Lemma thatB’ contains an infinite pat®. But P is
also a path ilB. HenceB is not well-founded. O

5.3 Recursive Ordinals

This lecture is only concerned with countable ordinals. However, we don't want to hide that there
are also bigger — uncountable — ordinals. Usually one puts

wi :=sup{c| o is acountable ordina}.

We have seen in Theorem 5.1.7 that the countable ordinals are unbounded in the countable ordi-
nals. Thereforevs; can’t be a countable ordinal itself. In this section we will introduce an even
smaller class of ordinals.

5.3.1 Definition An ordinal is called recursive (id) if it is represented by some (i) decidable
countable well-ordering. We define

w = sup{o € On| o is recursivé
and

wi[A] := sup{o € On| o is recursive ind}.
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It is obvious that we have$* < w; andw$X[A] < w, for any setd C N. Observe that the (i)
recursive ordinals form a segment of the ordinals. To see thatleta (in A) recursive ordinal
and= a (in A) decidable well-ordering representingForr < o there is az € field(=<) such
that<[z represents. Since=]z is again decidable (idl) the ordinalr is recursive (ind), too.
Notice that we dichot claim that the relationr < o is decidable.

5.3.2 Lemma The ordinalw$X is a limit ordinal which is not recursive.

Proof: Leto be arecursive ordinal and a decidable well-ordering representing\We construct
a well-ordering=<’ as in the proof of Theorem 5.1.7. Obviousty is again decidable. Therefore
w8k cannot be recursive and also not a successor ordinal. O

As a consequence of Lemma 5.3.2 and the fact that the (in A) recursive ordinals form a segment
of the countable ordinals we get

wS* = min{¢ € On| ¢ is not recursivég (5.30)
and

wS [A] = min{¢& € On| ¢is not recursive i } (5.31)
which entails

5.3.3 Lemma An ordinal o is recursive iffe < w$*. An ordinalo is recursive inA iff o <
wi[A].

The ordinak$K is therefore the least ordinal which cannot be represented by a decidable well—
ordering. In that sense{K is the “effective” counterpart of the ordinah which is the least
ordinal which cannot be represented by a countable well-ordering.

We are going to introduce tHight faceversions of the relation8F, PO, LO, WF, T andWT.

We put

CF(e) & “eisindex of a characteristic function”

PO(e) & “eisindex of a partial ordering”

PO4(e) :& “eis A-index of a partial ordering”

LO(e) & “eis index of an ordering”

LO%(e) :& *“eis A—index of an ordering”

WF(e) & “eis index of a well-founded binary predicate”
WF4(e) :& “eis A-index of a well-founded binary predicate”
WO(e) :& “eisindex of a well-ordering”

WO4(e) & “eis A-index of a well-ordering”

Tree(e) :& “eisindexof atree”

Treet(e) :& “eis A-index of a tree”
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WT(e) :& “eisindex of a well-founded tree”

WTA(e) :& “eis A-index of a well-founded tree”
All these predicates are arithmetical or analytical. To check their complexity recall that
{e}™°@) =y & () [T, &,u) AU(u) =y].
Hence{(e, Z,y)| {e}"°(&) ~y} € 2. Therefore we get
CF(e) < (VYx)(Vy)(3=z) [{e}Q’O(x,y) ~z Az <1]
and
PO(e) < CF(e
A (V) (Vy) [{e}*(,y) =0 — {e}*(z,2) =0 A {e}**(y,y) = 0]
A (F2)(7y) [{e}20(z,5) = 0 A {e}20(y,2) =0 = = =y
A (V) (¥y)(V2) [{e}* (2, y) = 0 A {e}*(y,2) =0 — {e}*%(x,2) =0].
as well as
LO(e) & PO(e)
A (V) (Vy)[({e}?O(z, 2) = 0 A {e}*(y, ) = 0)
= ({e}*(z,y) =0V {e}* (y,z) = 0)].
similarly we get
Tree(e) < (Vz)(3z) [{e}O(z) 22 Az < 1]
A e}t () =0
A (Va) [{e}°(z) = 0 — Seq(z)]
A (Va)(Vy) [{e} (@) =0 Ay o — {e}(y) = 0] .
These predicates are arithmetical. As examples for analyitcal predicates we take
WF(e) < CF(e)
A (Ya){(Fz)(a(z) = 0) A (Vz) [a(z) = 0 — {e}**(z,z) = 0]
= (32) [afz) =0 A (Vu)({e}*O(u,2) =0 » u =2z V a(u) = 1)]}.

Therefore we have
WO(e) < LO(e) A WF(e)
and
WT(e) < Tree(e) A (Vo) (3z) [{e}O(a(z)) = 1] .

Summing up we get the following theorem.

5.3.4 Theorem The predicateO(e), LO(e) and Tree(e) are all TI3. The predicatesVF(e),
WO(e) and WT(e) areTl}.

5.3.5 Definition If WO(e) we put
otyp"(e) == otyp({(z,y)| {e}*°(x,y) = 0}).
For WO (e )A let
otyp"" (e) == otyp({(z,9) | {e}***(w,y) = 0}).
53



5. The Theory of Countable Ordinals

For WT (e) we put
otyp™(e) = otyp({z| {e}**(x) = 0}).
And for WT4(e) we let

otyp™" (e) = otyp({x| {e}*"(x) =0}).

5.4 KLEENE's Ordinal Notations

Before we look closer at the connections between recursive ordinals and the ordinals which are
given by well-founded trees we introduce another form of ordinals via effective abstract notations.
This approachis due to S. CLKENE. The idea is to introduce simultaneously a®atf ordinal
notations together with an evaluation functieln: © — On and an order relatiort such

thata <p b = |a|(9 < |b|(9

5.4.1 Definition We define the seP of ordinal notations the O—evaluation |» and the order—
predicate<» on O simultaneously by the following clauses.
1) 1€0,|llo:=0andl <paforallac O.
2) IfaeOthen2® € O,|2%p = |alo + 1 ande <p 2% forall ¢ < a.
3) Lete be the index of a computable function such that
(V) [{e}"°(z) € O A {e}O(z) <o {e}"(z +1)]

then3 - 5¢ € O, [3-5¢|o = sup{|{e}"°(n)|o| n € N} andc <o 3 - 5¢ iff there is an
n € N'such that <o {e}10(n).

An ordinalo is KLEENE—recursiveff there is ana € O such that = |a|o.

As a first consequence of Definition 5.4.1 we obtain

5.4.2 Lemma The predicate< is transitive onO and we have
a<ob = l|alo < |blo-

Proof: We show
a<opbANb<pc = a<opc

by induction onjc|e.

If ¢ =1 we have nothing to show.

If ¢ = 2% thena <p b <p ¢p and|cp|o < |c|o. By the induction hypothesis we get<e ¢
which entailsa < c.

If c =3-5°we geta <o b <p {e}'°(n) for somen € N. Then|{e}'°(n)|o < |c|o. Hence
a <o {e}1°(n) by induction hypothesis which implies< ¢ c.

The second claim is an easy consequence of the definition which we leave as an exerciSe.

As a consequence of the second claim in Lemma 5.4.2 we get

5.4.3 Corollary The predicate<» on O is well-founded.

Proof: Any infinite <»—descending sequence induces by Lemma 5.4.2 an infinite descending
sequence in the ordinals. O
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5.4.4 Theorem TheKLEENE-recursive ordinals form a segment of the countable ordinals, i.e. if
a € O ando < |a|p thenthere is & € O such thatr = [b|e.

Proof: We induct onja|n. Fora = 1 we have nothing to show. Far= 2% ando < |a|o we
geto < |ag|o. Therefore we either have = |ag|o or obtain a € O such thatr = |b|p by the
induction hypothesis.

Fora = 3-5°ando < |alo we geto < |{e}19(n)| for somen € N. Then there is & € O such
thato = |b|e by induction hypothesis. O

5.4.5 Lemma There is a binary computable functier, such that for alla, b, ¢ € N the follow-
ing hold

1) (a€eOAbEO) & at+pbeO

2) (aeOANbeO) = la+oblo=|alo+ blo
3) (acOANbBEOAND#]L) = a<pa+tob
4) (a€eONc<pb) & atoc<pa+obd
5) (a€eOAb=ce0) & at+pb=a+pc

Proof: Leth be arecursive function such that for alla, d,n € N

{h(e,a,d)}(n) = {e}(a, {d}(n))

holds. By using different indices for the same function we are able to fake—one. Define

a ifo=1
oledaw)  ifp—ov£1

9(e;a,0) = {3 chieaw) ifp—3.5
7 otherwise

and use the Recursion Theorem to obtain an ird&xch that

{e}(a,b) ~ g(e,a,b). 0]
Putting

a+ob:={e}(a,b)

we get a partial-computable function for which one easily sees by inductiom-thab is defined

forall a,b € O. Surprisingly, the new function is total. Suppase ¢ b is not defined. Then, as

h is total, we havey = 2¥ £ 1 for somey < b. By induction onN we can convince ourselves
that+¢ is total.

The rest of the proof, being an interesting but lengthy exercise in induction, is left to the reader.
There is only one step of the proof whérés required to be one—one. O

We postpone the study of the complexities of the @eéind the predicatel until chapter 7

and devote the rest of this section to the study of the connections between the different notions
of recursive ordinals we just introduced. The easiest connection to establish is the one between
decidable well-founded trees and recursive ordinals.

5.4.6 Lemma There is a computable functighsuch that for allee € N
WT(e) < WO(f(e))
and
WT(e) = WO(f(e)) A otyp™™(e) < otyp™(f(e)).
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The ordertype of a decidable tree is therefore a recursive ordinal.

Proof: If B is any decidable tree then the associated&NE-BRoUWER-ordering<k® is also
decidable. Moreover, an index fatk? is effectively computable from an index @. Since
s <% t entailss <kP ¢ we get by induction omtypp (t)

otypp(t) = sup{otypp(s) + 1| s <j t} < sup{otyp<ks(s) + 1| s <[ t} = otypis(t).

Therefore we obtain together with Lemma 5.3.3 that the ordertypes of decidable trees are recur-
sive ordinals.

Unfortunately it is not sufficient to takg as the function that takes eaele N to an index of the
KLEENE-BROUWER-ordering induced bye}: If e is the characteristic function of a finite set of
sequences that is not closed under initial segments<tffmay still be a well-ordering (take for
exampleB := {(), (0,0)}). Fortunately we can overcome this obstacle. Baf N we put

s<MM¢ o s<KBtv ()¢ BV [te BA (3toCt)(to ¢ B)].

Obviously, if B is a tree, thercM=<k8 holds. Furthermore, it is not hard to see thkdf" is not
well-founded ifB is not a tree. So, we just have to [ebe the (computable) function that takes
eache € N to an index of the induced™M—ordering. Note thafe} is total iff { f(e)} is. O

The other connections are a bit more complicated. As an auxiliary lemma we need the following
Recursion Lemmavhich sometimes is also callézefinition by bar recursionObserve that, for
a relationR and a partial-computable functiorfd] the validity of R(b, H (a)) implies H (a).

5.4.7 Lemma (Recursion Lemma)Let R be an(m + 2, n)-ary relation and< be an irreflexive
well-founded predicate. For arfyn + 2, n)—ary in A partial-computable functionall such that
(Va)(Ve)(Vx € field(<)) [(Vy < z)R(a,y, {e}A’m+1’”(a,y)) = R(a,z,H(a,z, e))} (5.32)
there is an inA partial-computable functional’ such that
(Va)(Vz € field(<)) [R(a, z, F(a,x))] . (5.33)
If H is total, then so ig".

Proof: We use the Recursion Theorem to obtaindfindex f with

{f}*(a,2) ~ H(a,z, f). (i)
We show

(Va)(Vz € field(<))R(a,z,{f}*(a, z))
by transfinite induction along. We have

(Va)(vy < z)R(a,y, {f}*(a.9)) (ii)
by the induction hypothesis. Then by (i) and (5.32) we obtain from (ii)

R(a,z, H(a,z, f))

which is
R(a,z,{f}"(a,)).
Putting F' := { £} finishes this proof. O

The Recursion Lemma is the main tool in the proof of the following theorem which establishes the
connections between recursive ordinals, order—types of decidable trees.aadg<recursive
ordinals.
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5.4.8 Theorem There are computable functiorfsand g such that

a€ WT = f(a) € WO A otyp™(a) < otyp"°(f(a)) (5.34)
and

acO = g(a) € WT A |alo = otyp™g(a)). (5.35)

For a € WO let < be the induced well-ordering. There exists a partial-computable funation
with

(Vz € field(<)) [h(z) € O A otyp<(z) < |h(z)|o] . (5.36)
Additionally we get
a€ WO = (FbeO0) [otyp"(a) < |blo] (5.37)

Proof: Equation (5.34) is Lemma 5.4.6.
To show (5.35) we use the Recursion Lemma along the well-founded predigaté/e assume
a € O and the recursion hypothesis

(Vz<oa) [{e}"*(z) € WT A |z|o = otyp"*({e} " (x))]

and define a computable functiGhsuch that

G(e,a) € WT A |alo = otyp™(G(e, a)). 0]
We put
index of {() } ifa=1
Glea) o JINEXOHO LU L(0)7s] ({1} () = 0} fo=271
index of {()} U {(n) " s| {{e}""({y}"°(n))}"(s) =0} ifa=3.5

0 otherwise

The functionG satifies (i) by construction. We may therefore apply the Recursion Lemma to
obtain a computable functignsuch that (5.35) holds.

We want to use the Recursion Lemma to define a partial-computable fuhctioch that (5.36)
holds. We assume € field(<) and the recursion hypothesis

(Vz <) [{e}"°(2) € O A otyp<(2) < [{e}"°(2)|o] (i)
and have to define a partial-computable functbsuch that
H(e,z) € O A otyp<(x) < |H(e,x)|o- (iii)

Here, however, we encounter the difficulty that we cannot in general decide wibgtper(x) €
Lim. As a remedy we use a trick. We introduce a new well-ordefihgvhich is the reflexive
hull of the predicate defined by

a<'b = Seq(a) A Seq(b) A Ih(a) = Ih(b) =2
A [(@)o < (b)o V ((a)o = (b)o A (a)o = (a)o A (a)1 < (B)1)].

The Ordering=’ is again decidable and a well-ordering such thap(=<) < otyp(=’). (It
is otyp(=') = w - otyp(=) for those who know ordinal arithmetic.) The orderigg has the
advantage that we can decide whethet field(=<') is a limit point. We have

otyp</(x) eLim < (z)o#0A (z)1 =0

where we assume without loss of generality that the <—least element. Moreover we can also
compute a fundamental sequencedtyp=/({z,0)). We put

F(z,0) := (0,0) (iv)
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and
[ (n,0) if (F(z,n))o<n<z
Fz,n+1):= {((F(a:,n))o, (F(z,n))1 +1) otherwise
ThenF is a computable function. We have
(Vn) [F(z,n) <" F(z,n+1)] (v)
and prove

x#0 = (Vn)[F(z,n) <" (z,0)].

by induction onn. Forn = 0 this follows fromz # 0 and (iv). From the induction hypoth-
esisF(z,n) <’ (x,0) we get(F(z,n))o < = and obtainF(z,n + 1) = (n,0) <’ (z,0) if
(F(z,n))o <n<zorF(z,n+1) = ((F(z,n))o, (F(z,n))1 + 1) <’ (x,0) otherwise.
Hence

sup{otyp<:(F(z,n))| n € N} < otyp<:({(z,0)). (vi)

To obtain equalitity in (vi) we assumg, n) <’ (x,0) and show that there is/ac N such that
(y,n) <" F(z,k). From(y,n) <’ (z,0) we gety < z. If y < (F(x,y))o then

F(z,y+1) = ((F(z,9))o, (F(z,9))1 + 1)

and we find & < N such thaty, n) <" F(xz,k). If (F(z,y))o < y then
F(z,y+1) = (y,0)

and again we find & € N such thaty, n) <’ F(z, k). Hence
sup{otyp (F(z,n))| n € N} = otyp=((z,0)).

Together with (v) this shows thébtyp</ (F(z,n)))nen is a fundamental sequence fatyp ((z, 0)).
We use the Recursion Lemma to obtain (5.36) fdrinstead of< and assume the recursion
hypothesis (ii) for<’ instead of<. We define

1 if = (0,0)
H(e’x) = 2{6}1,0(@“}» If xr = <’LL,’U + 1>
3-5% if = (u,0)andu # 0

wherez is such thaf 2 }1:°(0) = 1 and
{30 +1) = {2}"0(n) +o {e}"(F(u,n)) +o 2!

hold. Then, according to Lemma 5.45(e, x) satisfies (iii) with< replaced by<’ and we have
(5.36).

If « € WO we find a decidable well-ordering’ and az < field(<’) such thatotyp"(a) =
otyp=:(z). Without loss of generality we may assume thatis an ordering of the kind we just
have considered. Hence

otyp"(a) = otyp=(2) < |h(2)o
by (5.36) which finishes the proof. O

It follows from Theorem 5.4.8 that the different approaches to obtain representations for “effec-
tive” ordinals all lead to the same class. This proves the following theorem.

5.4.9 Theorem We have
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wEK = sup{o € On| (3a € WO) [0 = otyp"°(a)] }

= sup{c € On| (3a € WT) [0 = otyp"*(a)] }
=sup{ceOn| (3acO)o = lalo]}.
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6. Generalized Inductive Definitions

In the previous chapter we left the question for the complexity df BNE'S O unanswered. This
chapter will show that the principles used in the definitiorCotan be systematically studied.
This will lead to the fundamental notion of generalized inductive definitions.

6.1 Clauses and operators

Inductive definitions are ubiquitous in Mathematics and especially in Mathematical Logic. Usu-
ally we use clauses in inductive definitions. The simplest example of an inductive definition is
that of the set of natural numbers. We might say that the natural numbers are inductively defined
by the following clauses:

e (s anatural number
e If 0is a natural number, its successf{n) is also a natural number.

We develop an abstract notion for clauses. Nelbe a nonempty set.

6.1.1 Definition A clause ovellV has the form
C R—r

whereR C N™ andr € N™. We call R the set of premises andthe conclusion of the clause
(©).

A setS C N™ satisfies clause (C) iR C S impliesr € S.

A system of clausés a setb = {R; — r;| i € I} of clausesk; — r;.

AsetS C N™is closed unde® if S satisfiesR; — r; foralli € I.

The least subset df™ which is closed under a systenof clauses is the set whichiisductively
definedby ®.

Examples for systems of clauses are:

e 00

e {n}—on+l

which defines the natural numbers inductivelyNn
° {@ — s| s € S}

° {{ml,...,xn} — Zaixﬂ neN,ay,...,a, € K}

=1
which defines the subspace of a vector sgaaver K spanned by som& C V. More examples
are easy to find.
The important feature of an inductively defined $etC N™ is that we have dprinciple of
induction on the definitiondf .S, which is:
“If aset S C N™is inductively defined by some systém- { R; — r;| i € I} of clauses an¢
is some ‘property’ which is preserved by all clause®iri.e. if

(Vx € R;)p(x) = o(r;) forall i € I,
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theny(s) holds for alls € S

This principle is obvious from the definition of the set inductively definedbbas the least set
which is closed undep. Properlyy being preserved by all clausesdnmeans tha{z| o(z)}

is closed unde®. SinceS is the leasb—closed set, we hav@'s € S)p(s).

Observe that the principle of induction on the definition of the natural numbers is exactly the
familiar principle of Mathematical Induction. Most induction principles are instances of the prin-
ciple of induction on some inductive definitions. We are going to study this on the example of
transfinite induction along a well-founded predicate. ket N x N be a binary predicate. We
introduce the system of clauses

A {{yl y<z}—2z| zeN}

and call the seAcc(<) C N which is inductively defined by (A) thaccessible part o<. The
principle of induction on the inductive definition gfcc(<) takes the form

(V) [(Vy)(y < = = ¢(y)) = ¢(2)] = (Vo € Acc(<))p(x). (6.1)
If we assume thak is well-founded we get
Acc(<) = N. (6.2)

Acc(<) C N holds by definition. Letzr € N. If x ¢ field(<) we have trivially (Vy)(y <

x — y € Acc(=)). This, however, impliex € Acc(<) by (A). If we assume that there is
anz € field(<) which does not belong téicc(<) then we get a least such by the well—
foundedness ok. But theny € Acc(<) for all y < = which again entails € Acc(<) by (A).
Hencefield(<) C Acc(<). By (6.1) and (6.2) we obtain

(V2) [(Vy)(y <z = ¢(y)) = ¢(2)] = (V2)p(z)
and also
(Vz € field(<)) [(Vy)(y <z = »(y)) = p(2)] = (Vz € field(<))p(z)

which is the principle of transfinite induction.
Towards a theory of inductively defined sets we generalize the notion of an inductive definition.
A system of clause§ = {Ri —r| i€ I} on an infinite sefV induces an operator

Tc:Pow(N™) — Pow(N™)
which is defined by
Ie(S)={reN"| GR)[RCSAR—reC(]}.
If S C T we obviously hav&'¢(S) C I'c(T"). An operator
I:Pow(N™) — Pow(N™)
having the property
SCT—T(S)CT(T)
is called monotone.
Generalizing the situation of systems of clauses we introduce the following definition.
6.1.2 Definition Let N be an infinite set. A monotone operator
I:Pow(N™) — Pow(N™)

is ageneralized inductive definitiaom NV
AsetS C N™isT'—closedf I'(S) C S. AsetS C N" is afixed—poinof I if
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I(S) = S.

We denote the — with respect to set inclusion — least fixed—point of an op&rbtof-. We call
It thefixed—point ofT". .

A setS C N™isinductively definablé there is an inductive definitiol' and a tuplek € N™
such that

S ={#eN"| (z,k) € Ir}.
6.1.3 Lemma LetI" be a generalized inductive definition dh The fixed—point of is the least
I'—closed set, i.e.
Ir=({ScN"| T(s) C S}.
Proof: Put
D= {S CN"| T(S) C S}
and

D=D.

For anyS € D we haveD C S and therefore alsb(D) C I'(S) C S by the monotonicity of".
Hence

I'(D)C(\D=D. (i)
From (i) we get again by the monotonicity Bf
IT(D)) € I'(D) (ii)

which proved’(D) € D. Hence
D CT(D). (iii)

ThusD is a fixed—point by (ii) and (iii). Sincé C F for any fixed—pointF' holds by definition
of D, itis the least fixed—point. O

6.2 The stages of an inductive definition

Describing inductively defined sets by fixed—points of monotone operators means to define them
explicitly. This does not really meet the meaning we associate with the phrase “inductive”.
An inductive definition should come step by step. Given a generalized inductive definition
I': Pow(N™) — Pow(N™) we may try to construct the fixed—point stepwise by forming

(), (), I*(0),. ..
But in general we cannot expect to obtain the fixed—point after finitely many steps. Therefore we
will have to iteratd transfinitely often.

6.2.1 Definition Let N be a countable infinte set and [EtPow(N") — Pow(N™) be an
inductive definition. We define by transfinite recursion

=T Ir)

T<0O

and callIf theo—th stage of the fixed—poidt-.
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The countability ofV is needed since we have only introduced countable ordinals.
It follows easily from Definition 6.2.1 that for finite ordinals< w we have

IF =T (0).
To simplify notations we put

Ig7 = J It (6.3)

(<o
Theno < 7 = I5? C I5™ and by the monotonicity of the operafdme obtain
o<T=IZ=T(5%) CT(I57) = IF. (6.4)

We havelZ C N™ by definition. Hence all{ are countable. By (6.4) it follows by a cardinality
argument that there is a countable ordimat w, such thaf~” = IZ. We define

[T :==min{o| IF7 = I} (6.5)
and call||T'|| theclosure ordinalof the inductive definitioT".
6.2.2 Theorem The fixed—poinfr of an inductive definition is the union of its staggs We
have especially

Ir = 1",
Proof: First we show

IfC I 0)
by induction on¢. The induction hypothesis yieldl$<£ C Ir. By the monotonicity ofl" this

entailsIé = T'(I+¢) C T(Ir) = Ir. By definition of||T'|| we havel'(I5") = /"Il = r=IITl
which shows thaf~'""!! is T—closed. Hence

Ip c 15 (ii)
and the claim follows by (i) and (ii). O

Observe that by (6.4) and the definition|(f|| we havelZ = I'FIFH forallo > ||T||.

6.2.3 Definition LetT" be an inductive definition oiV. Forn € N we put

min{a| neI"} if neIp
|’n|1'* = r .
w1 otherwise

and calljn|r theT'-inductive norm ofu.

6.2.4 Theorem LetI" be an inductive definition. Then
[IT|| = sup{|x|p +1| z € Ip}.
Proof: We havelz|r < ||T'|| for all z € Ir by definition. Hencer := sup{|z|r + 1| z € Ir} <

|IT||. Assumingo < ||T|| we getIs® & IZ and find somer € Ir such thatr < |z[r <
|z|r + 1 < o. A contradiction. O

Determining the closure ordinal of an inductive definition is — as we will see — an interesting
problem. In the general case, however, all we can say is that it is some countable ordinal. Yet, in
special situations we may know more.
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6.2.5 Theorem Let ® be a finite system of finite clauses, i.e. a finitedssuch that for allR —
r € ® the setR is finite. Letl's be the induced operator. Théii's|| < w.

Proof: Let I3 be the fixed—point of . We show
re€ls = |rjr, <w

by induction on the inductive definition d&. Forr € Iy andR — r we get|s|r, < w for all
s € R. SinceR is finite and there are only finitely marfy — r € ® we obtain

o:=sup{|slr,| (GR)[s€e RAR— €]} <w.

Hence|r|r, <o+ 1 < w. By Theorem 6.2.4 we géfl's|| < w.

6.3 Arithmetically definable inductive definitions

We will now concentrate on inductive definitions on the sp&&e™. To introduce definable
operators we extend the language of arithmetiabgry predicate variables which we are going
to denote by capital Roman letters in the end of the alphabetXe.%”, Z, X;, ... We will
moreover enrich the language by variables for functionals for which we are going 18, Use
Fy, ... as syntactical variables. Observe that we then obtain additional t&rinshich may
contain occurences of functional variables and new atomic formulas of the Ghap#').

6.3.1 Definition An operatol™: Pow(N"™) — Pow(N") is definable if there is a formula( X, %)
in the language of arithmetic whose only free variables are those shown such that
I'(S)={ZeN"| NE¢[S,i]}.

We callT" arithmeticallyor elementary definabléits defining formulap(X, £) does not contain
second order quantifiers, i.e. quantifiers ranging over functions. If there are additional function
parameters ip(X, ¥, &) we say thal’ is definable with parameters

Observe that in the case that an operator is definable with parameters, say
I'={7| N ¢[z,d]},
we may denote the dependence on the parametdrédy i.e. we obtain a relation
Qr(Z,d) & ZFel(a).
In this sense we will also talk about relations which are definable by operators.
In order to obtain inductive definitions we need monotone operators. To ensure that definable
operators are monotone we have to restrict the class of defining formulas.
6.3.2 Definition We inductively define the class &f—positive formulas by the following clauses:
1) If X does not occur irp(X) theny(X) is X—positive
2) The formulat € X is X—positive
3) TheX-—positive formulas are closed under
e the positive boolean operatiorns A

e (uantification over numbers and functions.

6.3.3Lemmalety(X,z1,...,2Tm,01,...,q,) be anX—positive formula without further free
variables. The operator
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Lo (8) = {(z1,...,2m) EN"| NE[S,21,...,Tm, f1, .-, fn] },
wheref, ..., fn is a fixedn—tuple of functions frori¥ to N, is a monotone operator.

Proof: LetS C T' C N. We have to show

¢[Sax17"'7mmaf17"'7fn] :>@[T7m17"'7xm7f17"'7fn] (I)

and prove (i) by induction on the definition op{ X, Z) is an X—positive formula”. I1fX does
not occur inp(X, #, @) then both formulas in (i) are identical. §(X,#,d) = (f € X) then
(tN € 8) = (tN € T) holds by the hypothesi§ C T'. The remaining cases follow immediately
from the induction hypothesis. O

A monotone operator which is definable by r-positive formula is callegositively definable

It is of course unlikely that all definable monotone operators are positively definable. However,
it follows from the QRAIG—LYNDON interpolation theorem that at least those definable operators
whose monotonicity is logically provable are positively definable. This is because if

F(e)(z e X wzeY)— (V) [p(X,9) = (Y, 9)]

then there is an interpolation formula, safY, ), in whichY occurs at most positively such that

F(Va)(z e X »xeY) = (Vi) [p(X,9) = »(Y,9)] (i)
and

= (v9) (Y, 9) — (Y, 9)]. (ii)
ChoosingX =Y in (i) yields

= (Y9) [o(Y,5) = ¢ (Y, 9)] (iii)
and (ii) and (iii) show thatp(Y, ) is logically equivalent to & —positive formula. O

If " is an operator which is definable by some formulae write shortlyI,, for Ir_, |||| for
[T || and|nl, for [n]r, .

6.3.4 Definition LetT',, be the operator which is definable by the-positive formulap (X, Z, &)
with parameters. For any choice of a tuple of functianae obtain its fixed—poinf, ) which
we denote by, (&). This defines afin, m)—ary relation. Observe that we may write

Fel,(@ & o,7d)

sinced is not really an argument af,.
A relation P C N™™" is positively arithmetical inductiveverN if there is anX—positive arith-

—

metical formulap(X, Z, 7, @) with no other free variables and a tupiesuch that
P={(&a)] (&m) e L,(a)}.

6.3.5 Remark This is not the strongest way to obtain relations by fixed—points. Another way
would be to augment the language by, n)—ary relation variable&, ), ...and then define
operators from a formula(X, a) by

I,(6) := {a| N ¢[6,d]}.

Then one may regard fixed points of such operators. However, in this lecture we will only regard
relations whose “function part” comes from the parameters in the defining formula.

We usually omit the the phrase “positively arithmetical” and talk just about inductive relations or
relations which are inductive with parameters.
The rest of the section is devoted to the study of the closure properties of inductive relations.
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6.3.6 Lemma (Simultaneous inductive definitions)For any X, Y—positive formulag (X, Y, Z, &)
andw(X, Y, v, &) we define

I8(a6) == {FeN™| o(I55, 155, 7,a)}
and
I5(a) = {geN™| Y(I55, 1%, 4,0)}.

Then we find &—positive formulax(Z, z, Z, §, &) and tuplesm, 7i of the adequate length such
that

Fel (@) < (0,4,m)€ L(d)

wherel, (@) := Uecon I;g(a) ande(o?) = Uecon15(@).
Proof: Chooser andrn of the appropriate arity and put
x(Z,2,Z,5,8) = [2=0ne{d| (0,4,m) € Z},{7] (1,7,7) € Z},Z,a)]
vV [z=1ny{d| (0,4,m) e Z},{v| 1,7,0) € Z},7,d)].
Thenx(Z, z, Z, §, &) is Z—positive and we show by transfinite inductionn
Feli@ & (0,4,m) e I5(a)
as well as
JeIL@) & (1,7,9) € I5(a).
From the induction hypothesis we get
Telf(d) & o(I35155,1,d)

(p b) (p 9
< o({d| (0,@,m) e I8} {] (1,7,0) € Ig¢},7,d)
& x(Ig8,0,4, 1, d)

Completely analogously we get
JeIy (@) « x(gE1,1,§,d)
& (LA, el
O

In a next step we want to show that the inductive predicates are closed under “positively inductive

in”.

6.3.7 Lemma Letp(X, 7, a) be anX—positive arithmetical formula and Igt(X, Y, 7, @) be an
X, Y—positive arithmetical formula. Pum(X ¥, d) = (X, I,(a), y,a&). Then there is ak—
positive arithmetical formula (X, z, Z, ¢, &) without addltlonal functlon parameters and a tuple
m € N¥ such that

jely@ o (Lm,g) e L(@).

Proof: The difficulty is the fact, that) is not longer an arithmetical formula. The idea of the
proof is to construcf, and/; simultaneously instead of first finishing, and then start con-
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structingl -. To improve readability we suppress the parameieM/e choose tuples: andn of
adequate lengths and put

X(Z,2,3,9) = [z=0A ¢

We introduce the abbreviations
Js = {Z| (0,2,7) € IY}
and
Jf = {y| (1,m, ) € I’E}
We first prove
J§ = 1§ ()
by induction or¢. From the induction hypothesi%<£ = I;E we get
feJs o (0,77)
& x(I55,0,7,7)
& o
& p(Is8,7)
& Zelf.
Obviously||x|| > ||¢|| holds. Now we get
jeJi & (1,m,g) el
& x(IgE1,m,7) (i)
& YIS IS D).

It remains to show that this inductive definition which only uses the initial faftinstead off,
will eventually catch up with that ofd;. We first show

Js C I (iii)

by induction or¢. This, however, is immediate froniif5 C I, the induction hypothesiﬁl<£ C
IEE, (i) and theX, Y—positivity of (X, Y, 7). To obtain also the converse inclusion we show

je 13 = (1,m,7) € I, (iv)
by induction or¢. Using the induction hypothesis and (i) we see

g’e[i & (IS 1L, 7)

w ey
& ( £, Jo, 9)
= ({v (1,m,0) € I, },{4| (0,4,7) € I, },7)
<~ X( X’ IL,m )
s (1, )EIX.

From (iii) and (iv) we finally get

qu, = {gl (Lﬁiag) € IX}
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Lemma 6.3.7 generalizes of course to inductive relations. That means we have the following
theorem.

6.3.8 Theorem (Substitution Theorem)Assume thaby, ..., S, are positively inductive rela-
tions andy(X, Y1,...,Y,,Z &) is an X, Y1, ..., Y,—positive arithmetical formula. Then the
fixed—point of the operator defined by X, S1, ..., S,, &, &) is positively inductive.

As an easy observation we get

6.3.9 Theorem Every arithmetical definable relation is positively inductive.

Proof: LetP = {(Z,d) € N™"| o(Z,d)} for an arithmetical formule(Z, @). Thenyp(Z, @) is
X—positive. For its fixed point we get

Fel,(d) & NEg[Fa),
ie. I, = P. O
6.3.10 Definition A relation S C N™" is coinductivef its complemeniN™" \ S is inductive.
A relation ishyperelementarif it is both, inductive and coinductive.

From Theorem 6.3.9 and the Substitution Theorem (Theorem 6.3.8) we already get the basic
closure properties of inductive, coinductive and hyperelementary predicates.

6.3.11 Theorem The inductive and coinductive relations are closed under
e positive boolean operations

e quantification over numbers

e substitution with hyperelementary relations and functions.

The hyperelementary relations are closed under

e all boolean operations

e quantification over numbers

e substitution with hyperelementary relations and functions.

Proof: Assume that a relatio®y is obtained from inductive relations by positive boolean op-
erations and quantification over numbers from inductive relatins. ., S,. Then there is a
Yi,...,Y,—positive formulap(Ys, ..., Y,, a) such that

Q(a) & (S1,...,5n,a).
Regardingp(Y,...,Y,, a) asX—positive for a dummy variabl& we obtain
Q(a) & o(S1,...,5n,a)
& a€lys,,...,80)

andq@ is inductive by the Substitution Theorem 6.3.8.
There are different possibilities to substitute functions or relations into inductive relations. The
most simple one is to define a predicate

Q= {a| (f(a),a) € S} (i)

for an inductive sefS and a hyperelementary functigh A function is hyperelementary iff its
graph is hyperelementary. Recall that for total functions it suffices to have an inductive (or coin-
ductive) graph in order to be hyperelementary. We get from (i)
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aeQ & (F2)[f(a)=2A(z,a)€95].

By the already known closure properites of inductive sets and the facf thpt= z is inductive
we conclude that the predicaggis inductive. The other possibility to substitute hyperelelemen-
tary predicates into relations is to form a relation

Q= {(f,&)| (gj,éi,{x| H(ﬂ,éz’,x)}) € R}
for a hyperelementary relatiofi. Let
H={(y,d )| =z )€ Ly (d)} = {7 &) (§zm) ¢, (@)}
and
R= {(*, a,ao”)| (y,mo) € I (a, a*)}.
Then
Q(ZZ O_Z) < (:Ljv 7’710) € LP(&7{J;| H(ZJ) 627 J})})
<~ QD(LP,:J,O_Z,{J?| H(g7&ax)}7m0)
g @(Lpag7 &7 {SC| (gaxaﬁl+) € Id)+ (&)},Tﬁo)
< 9,7, 4, {x| (Y, m_) € Iy_ (o'Z)},ﬁ'LO).

Choosing the positive versialy_ or the negative versiofy,_ according to the occurence of the
predicate variabl&” in (X, (¥, &), Y, ) we obtain the claim from Lemma 6.3.7 O

By Lemma 6.1.3 we obtain an upper bound for the complexitiy of arithmetical positive inductive
definitions in the analytical hierarchy. We get
6.3.12 TheoremEvery inductive relation i$I}. The coinductive relations are therefarg and
the hyperelementary relations}.
Proof: Let
S ={(&d)| (#k) € I,(@} 0)

for some X—positive formulap(X, 7, ¢, @). By Lemma 6.1.3/,, is the leasf,s)—closed set
which implies

(Z,d) e S & (VX)|[(Va)(V0)(e(X,d,7,d) = (4,0) € X) = (&k)e X]

This is allj—definition ofS. The remaining claims follow immediately. O

6.4 The stage comparison theorem

Defining the inductive nornin|,, for objects inZ, opens the possibility to use elements: I,

as ordinal notations. Ordinal notations, however, are of little use as long as we don’t know how
to compare them. The aim of the present section is to show that the stage comparison predicate is
also an inductive predicate.

6.4.1 Definition Let (X, ¥) andy (X, i) be X—positive elementary formulas. We introduce the
stage comparison predicates

E<h, 0 o Tel, AN({ely = [T, < |jly) (6.6)
and
<, ¥ & TEl, N(YE Iy =T, <|yly) (6.7)

70



6.4. The stage comparison theorem

Recall that we definefli|, = w; for n ¢ I,. That means that we have
nel, & |, <wi.

The definitions in (6.6) therefore simplify to

T<euy & TEI, NT|p <|fly (6.8)
and

T<L,,¥ & TEI, NT|p <|yly (6.9)
respectively.

6.4.2 Theorem (Stage Comparison TheoremJhe stage comparison predicate§ ,, and<¢, ,
as defined in (6.6) and (6.7) are positively inductive.

Proof: To find the defining formula for the stage comparison predicate we just rewrite its defini-
tion in modified form. We have

<, 7 e Tellt
<|Fly =
A QO(LP ol 756) (I)
< o({d] ldl, <y}, 7)
& e{dl gy <y}, ).
But foru € I, we get
gy <ldl, & eI,
< ({7 |9y <ldle},9) (i
& v({7] (@ <%, 0}.9)
For the last equivalence observe that
(@<L, V) & g,V (TE Iy AUy <|uly).
Therefore assuming < I, we have
{0 19 < lile} = {7] (@ <o 0}
Foru ¢ I,, however, we have
{8] (@ <pp D)} =N".
Thus assuming
»(N", 7) (i)
we can dispense with the premigec I,. However, assuming (iii) means no loss of generality.
If =(N™, &) we modify the formula to

P(X,9) =X, ) v (V2)(7 € X)

and observe that

£ _ 1€
Iu? =1
holds for all¢ € On. Now, plugging (i) into (i) we get
Defining
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x(2,2,9) = o({#| ~({7] ~(4,7) € Z},9)},7)
we obtain aZ—positive formula. By (iv) we have
Hence

Lecstu
and it remains to show that?, , is indeed the least fixed—point. We prove

<,y y=(4,9) €Iy
by induction onlZ|,. Towards an indirect proof assume

F<L TN (@ 9) ¢ L.

Then we have

~p({al ({7 ~(@,v) € L, },9)},7)
and

p(I51"e, 7)

which implies

1317 ¢ {a) ~w({7] ~(@7) € I} 9)}- )
By (v) there is az, € I3 *' such that

Y({] ~(%0,7) € I}, 7). (vi)
By induction hypothesis, however, we have

{7] ~(@,7) € L} € {7] ~(To <y D)} (vii)

From (vi) and (vii) we obtain
V({T] (@0 <o 9)},9)

which is
Y ).

Hencey € If"‘“’ which means
9y < |Zole < |2l

in contradiction tar gj;w .
The proof of the fact that?, , is a fixed—pointis completely dual and left as an exercise.[]

If there is no danger of confusion we write<* ¢ andz <* y instead of? <o vy andxz <o .

We want to extend the norm definitian|, to elements of inductive sets.$f= {Z| (z,k) € I,,}

it makes no sense to defihds = |(Z, E)LP since this would leave gaps. However, if we define a
predicate

F<si & TeSATESN|E R, <|@ R,
& FeSNA(@ k) <L, 7.k
this defines a well-founded predicate and we may define
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s == sup{|gls + 1| § <s 7). (6.10)
Observe that we can do the same constuction for inductive relations. Assume that
S = {(62,33’)| (Z,k) € Iy,(éz)}.

Define

-,

(@) <s (B,9) & (G.k) € LB N @ F) < o 5 G.F) (6.11)

and ther|(&, Z)|s as in (6.10). We will, however, for the sake of simpler notations, mostly talk of
predicates or even rather sets. But you should always tacitly check how far the results relativize.
This will be the case nearly everywhere. We try to mention the cases where this becomes wrong.
To enter a more general framework we introduce the following notations.

6.4.3 Definition Let S C N™™ and
onto

wS — AeOn

be a mapping. We call aninductive normif there are an inductive relatiohand a coinductive
relation.J such that for alb € S we have

aeSApu@a) <pub) o Ja,b)

& J(a,b). (6.12)

There is a uniform way of expressidgand./. We prove
6.4.4 Lemma Let A be an ordinal ang.: S % Abea mapping ontd. The norm given by is
inductive iff the relations

a=5b & aeSAbeS= pua)<u)) (6.13)
and

a<tb & acSAbeS= pua)<pub)) (6.14)
are inductive.
Proof: If <% and<% are both inductive we put

J(a,b) & a=%b
and

J(a,b) & —(b<%a)

and check easily thaf and.J satisfy (6.12). y
Thus assume that is an inductive norm whose accompanying predicateganrd.J. Then we
obtain

a=<tb & aeSA |J(ab)V-J(b,a)
and
a<tb < aeSAJDb,a). O

It will follow that the norm defined in (6.10) is inductive. We prove

6.4.5 TheoremLet S be an inductive relation. Sa§ = {(&@,&)| (z,k) € I,(d)} for some
X—positive arithmetical formula(X, Z, ¥, &). Then the norm defined in (6.10)
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|1s:8 — [|S|| == sup{|a|s + 1| a € S}
a —> lals :=sup{|b|ls +1] b<gsa}
is an inductive norm. This shows that every inductive set possesses an inductive norm.
Proof: By definition| |s is a map fromS onto||S||. Because of
(@,7) =5 (B,9) & (&k) <_ o 5 @GF)
and
(Oé,{l?) =3 (ﬂay) A (x7k) <<P(07)#P(E) (y7k)

we obtain<¥ and<% as inductive. Hencg|g is inductive by Lemma 6.4.4. O
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7. Inductive Definitions][I}—sets and the
ordinalwtX

7.1 TI}-sets vs. inductive sets

In Theorem 6.3.12 we have shown that all elementary positive inductive sell adefinable.
Our next aim is to show that conversely evélset is inductively definable. The first step is to
define a normal—form foll{—relations. Let” be somem, n)—aryIl{-relation. Then

Pa) < (Vo)(Fy)R(a,y,a)

and the relatiori3y) R(«, y, a) is semi—decidable. But then there is some decidable predi€ate
such that

(Fy)R(e,y,0) < (Fy)R (@ly),y,ay))
and we define
Rp(s,a) = R/(s,Ih(s),a(lh(s))).
Then we get
7.1.1 Lemma {I}-—normal form) For everylli—relation P there is a decidable relatioR p such
that
P(a) < (Va)(3y)Rp(a(y),a).

We use Lemma 7.1.1 in the following definition

7.1.2 Definition Let
P(a) & (Va)@3y)Rp(@y),a)
be alli-relation in normal form. We define
Tp(a) = {S S SEC” (VSO)(SO C 5= —LRP(S(), Cl))} (71)

and callTp thetree of unsecured sequendes P.

It is an immediate consequence of (7.1) tha(a) is a tree. We have
Pla) & (Ya)(Jy)Rp(a(y),q)

& (Vo)(3Fy) [aly) ¢ Tr(a)]
< Tp(a)is well-founded

Observe that the quantifier in (7.1) is bounded. Hefgén) is decidable irn which means that
its characteristic function has the fotka. F'p(a, z) for some computable functional and we
have shown

7.1.3 Theorem For everyIli—relation P there is a computable function&lr such that

P(a) & Az.Fp(a,z) € WT.
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If Pisann—ary predicate thefip (%) is decidable and an index fa- (Z) can be computed from
Z. Thus Theorem 7.1.3 modifies to
7.1.4 Theorem For everyIli—predicateP there is a computable functidf such that

P(ZX) & Tp(Z) € WT.

By Theorem 7.1.4 we hav® <,, WT for everyIli—predicateP. We say thatWT is I1i—
complete

To establish the connection betweHig—predicates and inductive sets we study well-founded
trees in terms of fixed—points. L&tbe a tree and put

or(X,z) = (Vy)[z"(y) €T = 7 (y) € X]. (7.2)
Thenyr (X, z) is anX—positive formula. Denote its fixed—point By. We prove

TeEWTAseT = se I (7.3)
by induction onotypT(s). If

otypr(s) = sup{otypr(t) + 1| t < s} =0

theni)t| t <t s} = (ZJ which implies thats™(y) ¢ T for all y. But thenyr (0, s) which shows
If otypr(s) =: o > 0thenotypr(s™(y)) < o for all y such thats™ (y) € T. By the
inductlon hypothe3|s we get

(Vy) [s™ () € T = s~ (y) € I77]

which iser (157, s). Hences € I5.
From (7.3) we get

TeWTAseT = |s|r <otypr(s) (7.4)
where|s|r := |s|,, denotes ther—norm ofs. To obtain also the converse inequality we prove
seT ANselr=TlseWT A otyp(T|s) < |s|r (7.5)

by induction on|s|r. If |s|r = 0 we have(Yy)[s™(y) ¢ T] which showsT'|s = () and
otyp(T'|s) = 0. So assumeés|r =: o > 0. Sinces € I we getpr (157, s) which is

(Vy) [s7(y) €T = s (y) € I77]. (i)
By induction hypothesis we get
(Vy)[s™(y) € T=TIs"(y) € WT A otyp(T'Is™ (y)) < o]. (ii)

An infinite path inT'[s would induce an infinite path in one of the tréEss™ (y) which is im-
possible by (ii). Sd’[s is well-founded and by (5.28) we get

otyp(T'|s) = otyprs({)) = sup{otyp(Ts " (y)) + 1| s (y) € T} <o. O

It follows from (7.5) that a tred” is well-founded if() € Ir. Conversely we havé < Ir for
well-founded tree¥ by (7.4). Therefore we have shown

7.1.5 Theorem A treeT is well-founded iff) € Ir. For well-founded trees we get

seT = otypr(s) = |s|r (7.6)

and
otyp(T) + 1 = [|er]]. (7.7)
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Proof: We proved everything but (7.7). But this is simple becaos®(T) = otypr(()) =
[()| > |s|r forall s € T such thats # (). By Theorem 6.2.4, however, it then follows

ezl = [0fr +1 = otyp(T) + 1. O
The link betweerIi-relations and inductive relations is given by Theorems 7.1.3 and 7.1.5. We
get

7.1.6 Theorem Thelli—relations are exactly the positively inductive relationshan

Proof: We have by Theorem 6.3.12 that positively inductive relationdgreConversely ifP is
alli-relation then we get by Theorem 7.1.3

P(a) & Mz.Fp(a,z) € WT.
Puttingpp(X,s,a) & (Vy)[Fp(a,s™(y)) =0= s"(y) € X]we getby Theorem7.1.5

P(a) & ({),a) € I,y
HenceP is inductive. O
Dealing with predicates we can sharpen Theorem 7.1.6 as follows
7.1.7 Theorem There is anX—positive elementary formulap(X, s, ) such that for any1}—
predicateP we have

P(f) g (<>7f) € LPP'
Proof: By Theorem 7.1.4 we have

P(#) < Tp(¥) e WT
for a computable functioft’s. We define

ep(X,5,%) & (V) {Tr(@)} 6" (W) =0 = (s (y),7) € X]. (7.8)
Thenpp(X, s, Z) is X—positive and elementary and by Theorem 7.1.5 we get

Tp(Z) e WT < ((),%) € I,p. O
7.1.8 Remark Although we proved in Theorem 6.3.12 that fixed—points of arithmetically defin-
able monotone operators aig —definable we didhot prove the converse proposition in Theo-
rem 7.1.6 (or 7.1.7). All we showed is thE{-relations are inductive but not necessarily fixed—
points. The additional parameter — which}sn our setting — is indispensable, even for certain

Al-relations. A proof of this fact, however, is outside the scope of this lecture. It can be found
in [1].

As a consequence of Theorem 7.1.6 and 7.1.7 we get the following corollaries.

7.1.9 Corollary Thelli-relations are exactly the positively inductive relationsténThe X1
relations are exactly the positively coinductive relationsanThe Al-relations are exactly the
hyperelementary relations Gx.

7.1.10 Corollary TheIli-predicates are exactly the positively elementary inductive predicates
onN. TheXl-predicates are exactly the positively elementary coinductive predicati¥samial
the A —predicates exactly the hyperelementary predicates.
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7.2 The inductive closure ordinal ofN

Let us return to the general situation. Developing the theory of inductive definitions in Chapter 6
we did not make use of special features of the strudiof natural numbers. The fact that we
restricted ourselves to unary predicate variables was sheer lazyness. Without the possibility of
contractingn—ary predicate variables to unary ones we could have developed the same theory
usingn—ary predicate variables. [But observe that we did make use of special featd¥aa of
Section 7.1.] Let4 by any structure and call a first order formula in the languagd af 4—
elementary if it contains no function or set parameters. We define

k4 = sup{||¢||| ¢(X,Z) is anX—positiveL 4—elementary formulga

and callx* the (inductive) closure ordinabf the structure4. Our aim is to characterize'. But
before doing that we give some abstract consequences of the Stage Comparison Theorem.

7.2.1 Lemma Let (X, Z) be an elementarX—positive formula. Theriifp is hyperelementary
for any¢ < «N. Especially iff||| < " thenI, is hyperelementary.

Proof: The proof depends heavily on the Stage Comparison Theorem. The Lemma is true for
arbitrary structurest replacingN. But, since we want to concentrate Bnwe only stated it as
above. Fog < " we find an elementary inductive definitian(Y,y) and am € I, such that
In|y = €. Using stage comparison we get
ze If, & T N
& (n <, D).

Hencelf, is hyperelementary. O

7.2.2 Theorem (Closure Theorem)The fixed—point of an elementary inductive definiti¢iX, )
is hyperelementary iffp|| < x.

Proof: One direction is Lemma 7.2.1. For the other direction/lgtbe hyperelementary and
define
x(Z,z,8):=  [z=0A¢e{d| (0,7) € Z},7)]
Vig=1A ()G el, = (0,9) € 2)].

A close look at the proof of Lemma 6.3.7 shows that there is a positively elementary fatmula
with &N > [|0]| > ||x||, furthermorel,, is trivially contained in the elementary inductive dgt
thus it is elementary inductive, too. First we show

15 = {&| (0,2) € I} ()
by induction or¢. From the induction hypothesis we get
feIf, = ¢(I§5,f)
& o({Z| (0,7) € IT5, D)}
& X(I55,0,7)
& (0,2) el
As a consequence of (i) we get
I, = {&| (0,%) € IZIell} (ii)

Forany¢ < ||g|| thereis aj € I, such thatj ¢ IS, i.e.(0,%) ¢ I{ by (i). Therefore we have
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ﬁX(If(,l,f) (iii)
for anyZ and¢ < ||¢||. By (ii), however, we have

X(I;H"’H,l,f) (iv)
for all Z. Hence by (iii) and (iv)

(1,%) € ])\(MH \];WPH_ (v)
From (v) we finally obtairj|p|| = |(1, Z)|, < &". O

As a consequence of the Closure Theorem (Theorem 7.2.2) we obtain a characterization of the
closure ordinak!.

7.2.3 Theorem The inductive closure ordinal of the structure of natural numbetss

Proof: By Theorem 5.4.9 we have
w = sup{otyp™(e)| e € WT}.

However, ifT" is a decidable well-founded tree, we get by (7.7)
otyp(T) + 1 = [|pr]| < &

sinceyr is an elementary formula. Hence
wa < kY,

Assumew$® < kN. Choose some predicafe € 11} \ Al. SuchP exists by the Analytical
Hierarchy Theorem. Now we apply Theorem 7.1.7 to obtain

P(#) < Tp(¥) e WT
& (1) € Lpp.
By (7.7) we have

lop|| < sup{otyp™(Tr(Z)) + 1| 7 € P}
< sup{otyp™(e) + 1| e € WT}
= wk < kN,

It follows from the Closure Theorem (Theorem 7.2.3) thais hyperelementary which by Corol-
lary 7.1.10 entails thak, is A}. But this contradicts the choice &f. O

To obtain further characterizationsigf — and thus also ab$* — we introduce some notations.

7.2.4 Definition A binary well-founded predicate is apre—well-orderingff
x<y & zx € field(<) Ay e field(<) A otyp<(z) < otyp<(y).
Pre—well-orderings are closely connected to norms.

onto

7.2.5Lemmaletyu: S — A be anorm. The predicate,, defined by
<,y & £eSAyeSAuE) < uly)

is a pre—well-ordering such that
otyp~, (%) = p(7)

holds for allZ € S.
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Proof: The predicate<,, is obviously well-founded. So we only have to prove
TeS=otyps, (%) = u@). (i)
This is done by induction or,,. Using the induction hypothesis we compute
otyp~, (£) = sup{otyp<, (i) + 1| § <, %}
= sup{otyp<,, (§) + 1| pu(¥) < u(@)}

= sup{u(@) + 1| u(@) < p@)}
— u(@).

7.2.6 Theorem We have

&N = sup{otyp(<)| = is a hyperelementary pre—well-orderihg
= sup{ otyp(<)| = is ahyperelementary well-founded binary predi(}ate
= sup{otyp(<)| = is a coinductive well-founded binary predichte

However, none of these suprema is attained.

Proof: Before we start proving the theorem we want to mention that it is true for arbitrary struc-
tures. Put

Ohp := sup{ otyp(<)| =< isa hyperelementary pre—well—order}ng

Ohf = sup{ otyp(<)| = is a hyperelementary well-founded binary predi¢ate
and

o := sup{otyp(<)| = is a coinductive well-founded binary predicpte

Starting with an elementar{ —positive formulap(X, ) we construct for everg, € I, a hy-
perelementary pre—well-orderirg;, such that

%ol + 1 < otyp(=<z,)- 0
Then (i) proves:" < opp. Since

Ohp < Oht < Oct
holds trivially it then remains to show

oct < KN (ii)
to finish the proof. Let's prove (i). Choosg € I, and define

T<zy: & |f|go < |g|<p < |fo|w

& 1< ,Y<s,% (iii)

& (G <56 %) N A(To <Gy §)-

Then it is clear from (iii) that<z, is hyperelementary and well-founded. By Lemma 7.2.5 it is
also a pre—well-ordering such that

otyp~., (&) = |Zl,.
Therefore we obtain
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otyp(<z,) = sup{otyp~ (%) +1| |Z|, < [ol,}
= sup{|Z, + 1| |7, < |Zole}
= |y + 1.

To prove (i) let< be a coinductive well-founded binary predicate. Recall the definition of the
accessible paricc(<) of < which is the fixed—point of the formula

p<(X,z) = (WY)(y <z >y e X).
Denote byAcct (<) theé—th stage of this fixed—point. We prove
z € Acct (<) = otyp<(z) <& (iv)

by transfinite induction og. Forz € Acct(<) we get(Vy) [y < = — y € Acc=<(<)] which
by induction hypothesis gives

otyp~(z) = sup{otyp~(y) +1| y <z} <&
Now we prove
x € AccoP=()(<) (V)
by induction on<. From the induction hypothesis we get
(Vy)(y < z = y € Acc<oP=(@)(<))
which entails immediately
x € AccoP=<(®)(<).
From (iv) and (v), however, we obtain
otyp<(z) = |z]acc(<) (7.9)
which holds for arbitrary well-founded predicates. From (7.9) and (6.2) we get
otyp(<) = sup{otyp~(z) + 1| z € field(<)}
< sup{|z|ace(<) + 1| = € Acc(<)} (vi)
= [lo<ll-
Since< is coinductive we get by Lemma 6.3.7 thétc(<) = I, is inductive. Hence
llo=ll < &Y (vii)
and we get from (vi) and (Vvii)
oct < &N,

It remains to show that none of the suprema is attained. For that it suffices to shaw isatot
attained. This, however, is obvious since for a given coinductive well-founded predicae
define

x <"y = Seq(x) N Seq(y) A lh(x) = Ih(y) =2
A ((@)o = (y)o =0 A (2)1 < (¥)1) V (Yo = (y)r =1].
Then<' s a coinductive well-founded predicate, too, ango(<’) > otyp(=<) + 1. O

Recalling Theorems 6.3.12, 7.2.6 and 7.2.3 we have shown

7.2.7 Theorem The ordinaksK is the supremum of the order-typesif-definable well-orderings.
This supremum is not attained, i.e. the order-type of any well-fouRdiedefinable predicate is
less thano$K.
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There is an extension of Theorem 7.2.%tp-definable collections of well-orderings.

7.2.8 Theorem (Boundedness Principle).et P be aX{—definable subset ##0O (or WT). Then
sup{otyp"(e)| e € P} < wf

(or sup{otyp™(e)| e € P} < wSK).
If Pis aXl-definable subset &0 (or WT) then
sup{otyp(a)| a € P} < wf*.
Proof: Similarly to Theorem 7.2.3, the key to the proof will be the Analytical Hierarchy Theorem.
Let P C WO beX1-definable and put
Q(a,b) & a€ LOA P(b)
A (30)(vVz)(Vy)[{a}*O(z,y) = 0 = {b}**(a(z), a(y)) = 0].

ThenQ(a,b) says that is the index of an ordering which is order preserving embeddable into
an ordering inP. This implies that: is a well-ordering. Hence

(3b)Q(a, b) = a € WO. 0

Now assume sufotyp(e)| e € P} = wfX. Then we get for any € WO ab € P such that
otypO(a) < otyp"O(b) and therefore also an order—preserving embedding fielai({a}>°)
into field ({b}*°), i.e. we get

a € WO = (3b)Q(a,b). (i)
From (i) and (ii) we obtain
ae WO < (3b)Q(a,b).

For anyIl}—predicateR, however, we hav®& <,, WT <,,, WO by Theorem7.1.4and Lemma5.4.6.
Since(3b)Q(a, b) is aXi—predicate everyli—predicate would already B&}. This contradicts

the Analytical Hierarchy Theorem. The same proof worksildd replaced byWT.

If P C WO then we define

Qla,f) & acLOABEeEP

A 3n)(Va) (Vy)a((z, y)) = 0 = B((n(z),n(y))) = 0]
which again is£1 and copy the above argument. O

In the Closure Theorem we have seen that the complexity of the obtained fixed—point depends on
the number of steps which are needed to construct the fixed—point, i|go|@nAn interesting
question to ask is whethédip|| depends on the complexity of the defining formular not. Let

us regard the formula

po(X,z,e) = (Vy) [{e} (a7 (y) 0= (¢ (y),e) € X]. (7.10)
Thenypc isTIY. We know from Theorem 7.1.5

ec Tree= (ec WT & ((),e) € I,,).
and fore € WT

(), )l = otyp™e).

SincewPX = sup{otyp™(e) + 1| e € WT} we obtain for every < wf ane such that <
(), €)| e Which shows

sup{|l¢||| ¢ is anX—positivell)—formula} = wf*. (7.11)
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It follows from (7.11) that restricting the inductive definition ly—definable ones does not de-
crease the inductive closure ordinal. In the next section we are going to study the &se of
definable operators.

7.3 X{-inductive definitions and semi—decidable sets

7.3.1 Lemma E9-Reflection) Let (X, &) be an X—positiveX{—formula andI,, any fixed—
point such thatp(1;*, #). Then there is some < w such thatp(I};, 7).

Proof: We induct on the definition of$(X, Z) is anX—positive formula”. The claim is obvious
if X does not occur inp(X, 7). If p(X,) = (&) € X andt(z) € I;* then there is some
n < w such thatt(z) € Ij;. If p(X,7) = p1(X,7) § p2(X, %) we findni,ny < w such

—

thatp: (1", %) § (1%, &). Puttingn := max{n1, no} we getp(I}, 7) by the X—positivity of
¢i(X, ). The last possibility is thab(X, 7) = (Jy)po (X, Z,y). If p(1;*,Z) then we find some

—

y < w such that,ao(IJW, Z,y) and by induction hypothesis an< w such that,po(I;Z, Z,y). But
this impliesp(17;, 7). O

Observe that the above proof depended heavily on the factAh¥tz) wasX{. The above
argument would break down far(X, ¥) = (Vy)eo(X, Z,y). Observe further that the opposite
direction in Lemma 7.3.1 holds by monotonicity. Hence

NEo(I;*,7) & (In<w) N E oI}, D)] . (7.12)

As a consequence of Lemma 7.3.1 we obtain

7.3.2 Theorem Let p(X, ¥) be anX—positiveX{—formula. Then|y|| < w.

Proof: By (7.12) we have
Tel) & NEp(;“, )
& (Gn<w) [Z eIt
& Telsv.
O

It follows from Theorem 7.3.2 and the Closure Theorem 7.2.2 that e¥esositiveX!—formula
hasA!} fixed—point. This estimate, however, is much too crude. It follows from Theorem 7.3.2
that

tel, & (In)(7ely).
Thus, if we succeed to show thétz, n)| & € I];} is arithmetical or everx, we get a much
lower complexity of the fixed—point. The key here is a restatement of the Recursion Theorem.
7.3.3 Theorem (Recursion Theorem for semi—decidable predicatefetp(X, ¥) be anX—positive
¥9—formula. There is an indexsuch that

FeW & oW, )

Proof: Observe first that substituting a semi—decidable/sénto an X—positive ©—formula
»(X, ¥) yields a semi—decidable predicate

{@ P e({Z] (z.9) € R}, 2)}.

The proof is by induction on the definition ofp{ X, Z) is an X—positive X¢—formula” and is
straight forward using the closure properties of semi—decidable predicates. Now we regard
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Q={@ )| p(Wg. ). %)}
which is semi—decidable and therefore has an irge®uttinge := S(eg, eg) we obtain
FeWr' & (& e) e WO

,0 —
= w(Wg(emeo)’ J;)

& (W20, 7) .

In consequence of the Recursion Theorem for semi—decidable predicates we get that the semi—
decidable predicates are closed under inductive definitions.

7.3.4 Theorem The fixed—point of aX’ —positiveE?—formulacp is aE?—predicate.
Proof: We use the Recursion Theorem to obtain an ingdswch that
(Zm)eW, & m=0A¢0,2)] V [m=k+1Ae{d| (4,k) eW,},Z).
We prove
I ={Z| (&,m)eW,}
by induction o and obtain the claim since
fel, & relzv
& (3n) [ZFell]
< (In)[(Z,n) e W,].

7.4 Some properties ofI}— and related predicates

We will apply the theory of inductive sets to pursue the studiipfpredicates. Recalling (7.10)
we put

oee(X,z,e) :=ec Tree A (Vy)({e} Pz (y) =0 = (27 (y),e) € X).

Let I'ree := I, and put

WT, := {e] ((),€) € I%ee}- (7.13)
Foro < w$X the setWT, is Al by Theorem 7.2.2 and Corollary 7.1.9. We prove

WT, = {e € WT| otyp™(e) < o}. (7.14)

Assumee € WT,, and putl.. := {s| {e}"°(s) = 0}. By (7.5) we get
(), €) € Ifee = Te[{) € WT A otyp(Te[()) < o

Hencee € WT andotyp™(e) < o.
For the converse inclusion assume WT andotyp™®(e) < o. Then by (7.3)(),€) € I5,,.
As a consequence of the Boundedness Principle (Theorem 7.2.8) we get

7.4.1 Lemma LetS C WT be aXi-set. Then there is an ordinal < w¢ such thatS € WT,.

Proof: By the Boundedness Principle there existsa wf such that supotyp™(e)| e € S} <
o. ThisimpliesS C WT,. O

From Lemma 7.4.1 we get a characterization ofAt{e-sets.
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7.4.2 Theorem Let H be aAi-set. Then there isa < w$" such thatd <,,, WT,.
Proof: SinceH € I} and WT is II{—complete we have

H <, WT 0}
say viaf. Becaused is alsoX! we get

M= f[H) = {f(z)| x € H} CWT (i)

as aXi-subset o/T. HenceM C WT, for somes < w$ by Lemma 7.4.1. By (i) and (ii),
however, we get

H <, WT,
via f. O
7.4.3 Theorem (Reduction Theorem)Let P and Q be II}—predicates. Then there addi—
predicates”; C P and@; C @ such that

PiNQy=0
and

PLUQ, = PUQ.
Cf. Figure 7.4.1.

Figure 7.4.1: Reducing sef3 and@; for P and@

Proof: The theorem is a consequence of the Stage Comparison Theorem. Put
R(z,%) = [z=0AP@] V [z=1AQ(F)].

ThusR is I1} and hence inductive. Thug admits an inductive norm|z by Theorem 6.4.5. Put
Py = {z| (0,7) =% (1,2)}

and
Q= {Z| (1,7) <% (0,2)}

where=7%, and <7}, are the predicates defined in (6.13) and (6.14) on page 73. Fheas well
as<7}, are inductive, i.ell;—relations such that
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PNQi=0.
Moreover we have
Plqug{ﬂ (Hz)[(z,f)eR]}gPuQ ()

and forZ € P U Q we either get0,%) € Ror(1,%) € R. Hence(0, %) <%, (1,%) or (1, %) <%
(0, ) which impliesz € P, or Z € Q. This gives also the converse inclusion of (i) and the
proof is finished. O

As a consequence of the Reduction Theorem we get
7.4.4 Theorem (Separation Theorem)Let P andQ be two disjoint_i—predicates. Then there
is a Al-predicateH which separate$” and@, i.e. which satisfies
PCH
and
HNQ=0.
Cf. Figure 7.4.2.

Figure 7.4.2: Separating andQ by aAl-setH

Proof: We regard the complements® and—@ and reduce them t&, C -P and@; C —Q by
the Reduction Theorem. Because of

PlUQi=-PU-Q=~(PNQ)=N"

and

PANQ@i=0
we get

P =-Q;.

Putting H := —~P; we getH as aAl-predicate such that
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PCH
and
QNH=QNQ,=10
becaus&); C —Q. O

7.4.5 Theorem (WeaKIi—uniformization) LetP be an(m+1,n)-aryIli-relation. Then there
is a partial functionalF'p such that

dom(Fp) = {a| (3z)P(a,z)}

(Va € dom(Fp)) [P(a, Fp(a)]

The graph ofFp is TI{—definable
Cf. Figure 7.4.3.

Figure 7.4.3: Uniformizing® by F’

Proof: The naive try to put
Fp(a) i~ pzx. P(a,z)

fails, because expressing thas the least element such thafa, x) requires to sayvy < x)—P(a, y)
which is not necessarilydi-relation. However, using Stage Comparison we can first select an
of minimal| | p norm and then select the least among those elements having the gsamam.

l.e. we put

Fp(a)~y & P(a,y)
A (Vz) [(a,y) =p (a,2)]
A (Vz <y)[(a,y) <p (a,2)].
Since=<7} as well as<p arell} we easily check thaFp satisfies the claim. O

There is, however, an even stronger version of the Uniformization Theorem — dueNo &

and AbpISoN — which says that there is even a function-valued selection functionalifer
relations. This is obviously much harder to prove because it is by far not clear how to pick a
function out of those having the sarfig—norm.
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7.4.6 Theorem (Strongll}—Uniformization) Let P be an(m,n + 1)-ary IIi-relation. Then
there is an(m, n + 1)—ary IIi-relationQ such that

(Va)(ve) [Q(a, ) = P(a, )] @
(Vo) (V) (V0) [Q(a, @) A Q(a, B) = a =[] (ii)
(Va) [Ba) P(a, @) = (3a)Q(a, )] (iii)

Proof: Fix a. If =(3a)P(a, ) we trivially put@ := 0. Thus assumé3a)P(a,«). By Theo-
rem 7.1.3 we have a computable functiohasuch that

P(a,a) & Mz.F(a,a,z) € WT. (iv)
Let

T, := {se€ Seq| F(a,a,s) =0}
be the associated tree. Put

o :=min{otyp(T,)| P(a,)}
and let

Qo :={a| P(a,a) A otyp(T,) =c}. (v)

We are going to define relatiods, by induction onm and assume th&},, is already defined. We
put

sn := min{a(n)| P(a,a)},

on == min{otyp(T,[n)| P(a,a) Aa(n) = s,}
and define
Qu+1 = {a€Qu| a(n) = s, A otyp(T, =0on}. (vi)
Let
Q= () @n
new

From (v) and (vi) we get
(Vn<w)la € Qn, = P(a,a)]

by induction om. By @Q C @, and (v) we have

a€® = P(a,a). (vii)
Another immediate consequence is
Q(Oé) A Q(ﬂ) = (Vn € w)[a(n) =S8n = B(n)] (viii)
= a=0.

By (vii) and (viii) we obtain claims (i) and (ii) of the theorem. The real work is to prove (iii) and
the fact thaty is II}—definable. Since we assumgth) P(a, «) it suffices to prove

(Ja)Q(e)
to show (iii). SinceR,, 11 C @, we haves,, C s,41. Hence

m<n = Sy, C sy,

Therefore there is a unique function, sgysuch that
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(Vn € w)[¥(n) = sp]. (ix)
We claim
Q). (x)

In a first step we prove
. .
m<p n = om<O0n. (xi)

Since the functionaF' in (iv) is computable its valué'(a, v) depends only on an initial segment
of v. Therefore there is & € N such that

(Vo)@k) =5(k) = {nm}CT, & {nm}C L) (xii)

We may choosé bigger thanm andn. Picka € Q1. Thena(n) = s, = 7(n) as well as
a(m) = s, = 7(m) and by (xii) we getn,n € T,,. But thenm <t, nimpliesm <7 nand
we obtainotyp(T,[m) < otyp(Ts[n). But sincea € Qr+1 2 Q11 fori = m,n we finally
obtainc,,, = otyp(T,[m) < otyp(Tx|n) = o,. This terminates the proof of (xi).

By a similar argument we also obtain

meT, = opn<o. (xii)

We choosek > m such that (xii) and pickx € Qr4+1. But theno,, = otyp(T,Im) <

otyp(Tw) = o sincea € Qrr1 € Qm11 S Qo.
It follows from (xi) thatT’, is well-founded. Hence

P(a,). (xiv)
Next we prove
nel, = otyp(TyIn) <o, (xv)
by induction on<7, . We have
otyp(Tyn) = sup{otypr, 1n(m) + 1| m € TyIn}
= sup{otypr, (n"m) + 1| n"m e T,}
= sup{otypr, (m) + 1| m <3 n}
= sup{otyp(T,Im) + 1| m <7, n}
<sup{om +1| m <%, n} <on

where we used the induction hypothesis to come from the last but one line to the last line and (xi)
for the inequality in the last line.
Now we show

(Vn)ly € Qn] (xvi)

by induction om. From (xiii) we getotyp(T’,) < o which together with (xiv) shows € Q.

If v € Q.,, then we obtain from (ix) and (xv) € Q1.

Now (x) follows from (xvi) and it remains to show thék is IT1i—definable. First observe that for
T € WT the relation

otyp(S) < otyp(T) (xvii)
as well as

otyp(8S) < otyp(T)
are bothx1-definable. To see this recall the formyla in (7.2) and assum& € WT. Then
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otyp(S) < otyp(T) < |(les < |0ler
& (& lor V(0 €95 Af0lor <[0les)
& (0 <Gsor O)

and the last line i€} by Stage Comparison. Analogously we also obtain

TEeWT = (otyp(S) < oyp(T) < —~(() by s O))-

—PT,$s

Regard that according to the definition (vi)@f, we have

BeQn o otyp(Ip) <o A (Ym<n)[B(m) <sm A otyp(Tgim) < o).
Thus, if we assume € @,

BeQn & otyp(Tps) < otyp(Ta)
A (¥m <n) [B(m) < @(m) A otyp(TsIm) < otyp(Ta[m)] .

According to (xvii) the right hand side in (xviii) is &i-relation, sayR(«, 3,n) (where we
suppress the parametersvhich are hidden ir@,,). Still assumingx € Q,, we thus get

(xviii)

a ¢ Quir & (3B{B € Qn A [B(n) <a(n) Vv (B(n) =a(n)
A otyp(TgIn) < otyp(Tan))}
& (30){Ro(a, B,n) A [B(n) <@(n) V (B(n) =a(n) (xix)
A otyp(TgIn) < otyp(Taln))]}
< Ri(aym).

By (xix) we see thafk; (o, n) is aXi-relation. Using (xix) we finally get

ac€®Q & ac@oA (Vn)-Ri(a,n)
< P(a,a) A (VB)[(a, @) <% (a,8)] A (Yn)—R1(a,n)

where=<% is the relation defined in (6.13). Sindis II} and thus inductive we get by Theo-
rem 6.4.5 that, is inductive and thusl}—definable. O

7.5 Basis Theorems

Let P be an(0, 1)—ary relation, i.eP is a collection of functions. Even iP can be classified

in the arithmetical or analytical hierarchy we cannot hope to get some information about the
members ofP. Regard for example the collectionalf functions which is decidable but contains
functions of arbitrary complexity. All we can say is that there are computable functions among
all functions. We are going to prove that in many cases we have a similar situati¢hisla
collection having a simple classification then some functionB ican be classified in a simple
way. This is made precise in the following definition.

7.5.1 Definition Let C be a collection of0, 1)—ary relations. A clas® of functions is called a
basis forC if for every P in C we have

(3a)P(a) = (3a € B)P(a).
As an example we regard the collecti@rof all X{—classes of functions. L&t € C and P # 0.

Thena € P & (3z)R(a(z)) for some decidable predicafe. SinceP # () there is some
s € Seq such thatR(s). Defining

Bz) = {(s)z if x < Ih(s)

0 otherwise
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we gets € P and see that the class of functions which have valaemost everywhere form a
basis for the collection af—classes of functions.

7.5.2 Lemma Let B be a basis for the collection &f{—classes of functions. Théfy)o| v € B}
is a basis for the collection df1—classes of functions.

Proof: Let P be inXi. Then

Pla) & (38)Q(a,0) @)

for somell{-relationQ(a, 3). From(Ja)P(«) it follows (37)Q((7)o, (7)1) and, sinceB is a
basis for the collection dfl{—classes of functions, we obtainyac B such thaiQ((+)o, (7)1)-
But thenP((y)o)-

By literally the same proof we obtain also

7.5.3 Lemma Let B be a basis for the collection &f, —classes of functions. Théry)| v € B}
is a basis for the collection A}, |, —classes of functions.

Let P be a class of functions. We define

In(P) = {s € Seq| (o) [P(a) Aa(lh(s)) = s}, (7.15)
i.e. In(P) is the set of initial segments of functions i Generalizing our above example we
obtain

7.5.4 Lemma If P is a nonemptyIY—class of functions theR(3) for somes3 <7 In(P).

Proof: We define
F(n) i~ px. (F(n)"(x) € In(P)).
ThenF is computable fronin(P). We show
(Vn) [F(n) € In(P)]

by induction onn. F(0) = () € In(P) follows from the hypothesiéda) P(r). Now assume
F(n) € In(P). Butthen

F(n) =min{a(n)| P(a) Ad(n) =F(n)}
is defined and”(n + 1) = F(n)™(F(n)) € In(P). SinceP is 119 we get
Pla) < (Vz)R(@(z))
for some decidable predicaie Hence
In(P) CR
and we getvz)R(F(n)). This provesP(F). O
As a consequence we obtain the first half af#€NE's Basis Theorem.
7.5.5 Theorem The functions which are computable in the clas¢fpredicates are a basis

for the collection oflI{—classes of functions and hence also for the collectionjefclasses of
functions.

Proof: For all{—classP of functions we see from (7.15) th&t(P) is 1. By Lemma 7.5.4
it follows that the class of functions computable in the clasEpfpredicates is a basis for the
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collection ofII%—classes of functions and by Lemma 7.5.2 also for the collection etlasses
of functions. 0O

As already remarked Theorem 7.5.5 is only one half bEENE's Basis Theorem which will be

our Theorem 8.2.3. The second half says that the clags}eflefinable functions is not a basis

for the collection oflI—classes of functions. We have to postpone this part until we have a better
characterization of th& }—definable functions.

Recall that we identify sets with their characteristic functions. Therefore we may talk about bases
for collections of classes of sets. A remarkable result is

7.5.6 Theorem KREISEL's Basis Theorem) The class ofAY—functions is a basis for the collec-
tion of I19—classes of sets.

To prepare the proof we formulate a lemma which on its turn is an easy consequence of the
Finiteness Theorem (Theorem 5.2.6).
7.5.7 Lemma Let P be all{-relation and define
Qa) & (Fa*)P(a,a™).
ThenQ is alsoIl9.
Proof: SinceP € IIY we have
P(a,a) & (Vz)R(a(z),a(z))
for some decidable relatioR. The tree
{s| (Vi<Ih(s))[(s)s <1] A (Vs0Cs)[R(@(Ih(s)o), s0)]}
is boundedly branching. Hence

(Ja™)P(a,a") < (Ja*)(Vz)R(a(z), @ (z))
< (Vn)(3s)[Seq(s) A Ih(s) =
A (Vi<n)((s); < ) (VsoCs)R(a(lh(so)), so)]

(
by (5.26) in Theorem 5.2.6. Both quantifi¢es) and(VsyCs) can obviously be bounded. Hence
(3a*)P(a,a*) € I19. O

For the proof of Theorem 7.5.6 observe that for evé{y-class of set®
z€In(P) & Seq(zx) N (™) [P(a®) ANa*(lh(x)) = z]

holds. Thudn(P) isTI? by Lemma 7.5.7. The functions which are computable intheclasses
of functions are therefore by Lemma 7.5.4 a basis for the collectidifetlasses of sets. By
PosTs Theorem (Theorem 3.2.6) these are the functions whicthA8fHY], i.e. AS. O

To obtain even further reaching basis theorems we introduce some notations.

7.5.8 Definition A (0, 1)—ary relationP defines a functiory implicitly if
(Va)(vB) [P(e) A P(B) = a =[]

and

P(y).
The functiorry is called asingleton
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7.5.9 Lemma Let P define a functiory implicitly. Then
PeAl & ~yeAl

for all n.

Proof: Assume first? € AL. Then

Y(z) ~y & (Fa)[Pla) A alz) =y
< (Vo) [P(a) = a(z) =y].

If v € A} we get
P ={a| (Vz)(¥y) [a(z) =y © ~(z) =y} O
As an immediate consequence we get

7.5.10 Corollary LetC be a collection of classes of functions such that every nonempty class in
C has aA!—subclass which contains exactly one function. Then the cladg efunctions is a
basis for the collectiod.

From the strondIi—uniformization and Corollary 7.5.10 we get the following theorem.

7.5.11 TheoremThe class ofAl—functions is a basis for the collection Bf—classes of func-
tions.

By Lemma 7.5.3 we get

7.5.12 TheoremThe class ofA}—functions is a basis for the collection Bf—classes of func-
tions.

7.6 The complexity ofKLEENE'S O

We will now settle the still open question for the complexity afENE's O within the analyt-
ical hierarchy. We define@ in Definition 5.4.1 by a rather complicated simultaneous inductive
definition. Now we are going to unravel this definition into single steps.

7.6.1 Definition We define inductively the binary predicaté, by the following clauses.

1) lfaec{2°| b#0}U{3-5°] ec N} thenl <, a.

2) If a <[, bthena <}, 2°.

3) Ifa <, {e}'0(n) for somen € N thena <, 3 - 5°.

Herea <{, b stands for <{, bV a = b. Observe that the operator associated to the inductive
definition in Definition 7.6.1 is defined by the formula

e(X,z,y) = (@=1AF2)[(y=2"N2#0)Vy=3-5])
V (32) [((z,2) e X Vo =2) Ay =27
V (3e)(Fn)(Fu)(32) [T(e,n,u) AU(u) =2z A [(x,2) e X Vae=2] ANy=3-5°.

This shows thak, is defined by &{—formula.

By Theorem 7.3.4 we therefore obtain

7.6.2 Lemma The predicate</, is ©9-definable.
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In the next step we show

7.6.3 Lemma
1) <}, isatransitive predicate
2) a<pbANbeO=acONa<pb

3) acONbeONa<pb=a<y,b

Proof: We provea <, b </, ¢ = a <}, ¢ by induction on the definition of <{, ¢. The case
b = 1is excluded since <j, b.

If b <}, c because of = 2¥ # 1 andb <[, y thena <{, y by the induction hypothesis. Hence
a </, b by clause 2) in Definition 7.6.1.

If ¢ =3-5¢andb <}, {e}*°(n) we geta <}, {e}"°(n) by the induction hypothesis amad</, c
by clause 3) in Definition 7.6.1.

We show 2) by induction ofb|». Forb = 1, i.e.|b|o = 0, there is nothing to show.

Assume thab = 2¥ # 1. Theny € O, |ylo < |blo anda <{, y and we have either =y € O
ora <p y and hencer € O by the induction hypothesis. By the induction hypothesis for the
second claim we also get<s y which impliesa <o b.

If b = 3-5°anda <}, b we have am € N such thata <}, {e}!%(n). But{e}'°(n) € O
and|{e}*°(n)|o < |blo. From the induction hypothesis we immediately get O anda <o
{e}(n). Hencea < 3 - 5°.

Finally we prove 3) by induction ofb|o. The claim is clear fob = 1. Forb = 2¥ # 1 we get

a <o y which impliesa </, y by the induction hypothesis. Henae<, b.

Forb = 3 - 5° we geta <o {e}%(n) for somen € N anda <}, {e}'°(n) by the induction
hypothesis. Hence <{, b. O

The idea is now to geP as the accessible part af,.

7.6.4 Definition We define inductively the s&?’ by the following clauses.

1) 10

2) a0 =200

3) (vn) [{e}*°(n) € O'] A (Vn) [{e}*2(n) <p, {e}O(n+1)] =3-5°€ O,

Then ' is positively arithmetically inductive, hencel& —predicate. We show th& and O’

coincide.

7.6.5 Lemma We haved = O’ and<p= <,[O x O.

Proof: We show
€0 & e 0]

simultaneously by induction on the definition ofc O andz € O’, respectively. Claim (i) is
obvious forz = 1 and immediate from the induction hypothesis in case that2¥ # 1. Thus
letz =3-5%. If z € O we get{y}'°(n) € O forall n € N and therefordy}'°(n) € O’ for all

n € N. We moreover havévn) [{y}'°(n) <o {y}"°(n+ 1)]. By clause 3) of Lemma 7.6.3
this implies

(vn) [{s}""(n) <o {y}"°(n +1)]

and we obtair3 - 5¥ € O’ by clause 3) of Definition 7.6.4.
If 3-5Y ¢ O we get
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(vn) [{y}"°(n) € O] A (vn) [{y}"*(n) <o {y}"*(n+1)]
by the induction hypothesis and Definition 7.6.4. Hence
(V) [{y}"(n) € O] A (Yn) [{y}"*(n) <o {y}"*(n+1)]
by Lemma 7.6.3. The second claim follows from (i) and Lemma 7.6.3. O

It follows from Lemma 7.6.5 thaD is alli—set. We show even a bit more.

7.6.6 Theorem The se) is I1i—complete.

Proof: By Theorem 7.1.7 there is a formufa (the formulain (7.8)) such that
P <y,
Thus it suffices to show
Iy <m O.
We want to get a computable functiéhsuch that
(s,z) €l,, & G(s,z)e0. 0]
First we define a function

1 if {Tp(x)}0(s) =1
Go(e,s,x) = {3 .57 if {Tp(x)}l’o(s) ~0

wherez is an index of the functiod’ defined by
F0)=1
F(n+1)=F(n)+o {e}*°(s™(n),z) +0 2.

Note that the case distinction in the defintionaf is decidable becausg»(z) € Tree. Using
the Recursion Theorem we get an indgxsuch that

{60}2’0(8, x) ~ Goleo, s, )

and we puiG := {eg}*°. By definitionG is computable. We show thét satisfies (i) and start
to prove

(s,z) € I,, = G(s,x) € O
by induction on(s, )|, . With B, we denote the tree given tiyp(z),
By, = {s| {Tp(z)}"°(s) ~ 0}.

If s ¢ By thenG(s,z) =1 € O. Now lets € B, andn € N. If we haves™(n) € B, then
[(s™(n),2)|ppr < |(s,2)|,p and we obtairG(s™ (n), z) € O by the induction hypothesis. If on
the other hand™(n) ¢ B, thenG(s™(n),z) =1 € O. Hence

(Vn) [G(s™ (n), z) € O]. (ii)
SinceF(n+1) = F(n) +0 G(s™(n),z) +0 2 andF(0) = 1 we get from Lemma 5.4.5 and (ii)
(Vn) [F(n) € O]
as well as
(Vn) [F(n) <o F(n+1)].
Because is an index ofF’ we obtain
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G(s,x) =3-5* € O.
For the opposite direction we have to prove
G(s,x) € O = (s,z) € I,

by induction onG(s, z)|o. Fors ¢ B, we havepp (0, s, z), thus(s,z) € I, C I,,.. If s € B,
thenG(s,z) = 3- 5% and

(vn) [{z}"0(n +1) = {z}"°(n) +o0 G(s™(n), ) +0 2] .

From Lemma 5.4.5 we can infévn) [G(s™ (n), z) € O], hencdG(s™(n),z)|o < |G(s,z)|o
for all s™(n) € B,. By induction hypothesis this implies

(Vn)[s™(n) € By = (s (n),z) € I,,.]
which is
@P(I¢p>3>$)-
Hence(s,z) € I,,. O

As a consequence of Theorem 7.6.6 and the Analytical Hierarchy Theorem we get the following
corollary.

7.6.7 Corollary There is na:}—definition ofO.

We can even strengthen the statement of Corollary 7.6.7 to get the Boundedness Prin€iple for

7.6.8 Lemma Let P be aX:}—definable subset @?. Then
sup{|alo| a € P} < WK,
Proof: By Theorem 5.4.8 there is a computable functsuch that
ae0 = g(a) € WT A lalo = otyp"™(g(a)). 0)

Thusg[P] is aXi-definable subset d/T. Hence the Boundedness Principle (Theorem 7.2.8)
and (i) yield

sup{jalo| a € P} = sup{otyp™%(g(a))| a € P} < wf . O

The tree—like structure @ leads to the following definition.

7.6.9 Definition A set P C O which is linearly ordered by ¢ is called apath inO. If P is a
path inO and sug|alo| a € P} = wK thenP is called apath throughO.

As a consequence of Theorem 5.4.9 and Lemma 7.6.8 we get

7.6.10 Corollary There are na>1—definable paths throug®.

However, as we will see in section 9.1, there He-definable paths through.
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8.1 Hyperarithmetical sets

We are now prepared for the study of infinite iterations of the jump operator.

8.1.1 Definition Fora € O we put
) ifa=1,ie.|alo=0
H, =< j(Hy) ifa=2#1,i.e.|alo = |blo +1
{{z,y)| y<oa ANz e H,} ifa=3-5ie.|alo € Lim.

We say that a séi C N is hyperarithmeticalf there is ana € O such thatS <r H,.
The class

Hyp:= {H.| a € O}
is thehyperarithmetical hierarchy

The definition of the seH, depends heavily on the ordinal notatiene O. It will take some
effort to obtain the independence of the hyperarithmetical hierarchy from the ordinal notation.
This will be achieved as soon as we are able to prove

8.1.2 TheoremFor a, b € O such thata|o = |b|o we haveH, = H,.

The proof needs some effort and is done in several steps. We first prove

8.1.3Lemmaleta <y b. ThenH, <,, Hy. This holds uniformly ime andb, i.e. an index for
the reducing function can be computed frarandb.

Proof: Eachb consists of amn-fold (m > 0) iteration of exponentiations ®ystarting at &’ € N
which is not of the forn2?. We descend this tower of exponentiations until we reaoh until
we cannot descend any further. lebe the element o® we reached and let be the number

of steps we took. By, = H™ and (3.2) of Lemma 3.1.3 there exists a computable fungtion
with

Hc <m Hb via {f(07n)}170' (I)
If « = c we are done. Otherwise we have<o ¢ and|c|p € Lim. By (i)

x€H, & (x,a)€ H,
& {f(0,n)}"°((z,a)) € Hy

holds.
Observe that the algorithm described above terminates euep . O

8.1.4 Lemma For a € O we put
Oy :={z€0| |z|o < |alo}.
ThenQ, is computable in{2. uniformly ina, i.e. aHs.—index forye, is computable froma.
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Proof: We use the Recursion Lemma alotig to define a computable function, sgysuch that
fora € O its valueg(a) is a Hz.—index fory e, . The recursion hypothesis gives

(Vb<oa) [xo, = {{e}(b)} =]
and we look for a computable functi@nsuch that

xo, = {G(a, e)}Hz"' )

We distinguish the following cases.

a = 1. ThenQ, = () and we choosé!(a, €) to be anHs.—index of the empty set.
a = 2. ThenO, = {1} and we choosé/(a, ) to be anHs.—index of{1}.

a = 2%andb = 2¢ # 1. Then

0n =0, U{2"| €0},

s0Q, is decidable ir0, and{e}*°(b) is an Hy—index forOy,. By Lemma 8.1.3 anél < a we
can compute ati/y.—index of O, from e andb, which in turn easily gives afl,.—index of O,.
We letG(a, e) be such an index.
a=2%andb=3-5%. Then

0, =0, U{3-5%| {u}Vistotal A (¥n) [{u}l’o(n) € Ob]

A (Vn) [{u}t0(n) <p {u}"(n +1)]}

The statements{u} - is total” and (Vn) [{u}*%(n) <, {u}°(n + 1)]” areIIJ, hence decid-
able in H,2. For total{u}"? the set{n| {u}"°(n) € O,} is decidable in0, and{e}!°(b) is
an Hy,—index forO,. Sinceb > 2 we obtain®, asIl! in H,, hence decidable iff,. and an

Hs.—index forQ, is computable frone anda.
a=3-5° Then

Ou = {z| (3n)[z € Opym)}-

By recursion hypothesis we obtdia} ({0} (n)) as anf sy () —index forO gy ,,). Using Lemma 8.1.3
we obtainQ, as semi—decidable i/, and hence decidable iHHy.. An Hy.—index forO, de-
pends computably onanda.

If a is of any other shape then we pi{a, e) := 0.

A close look at our construction shows tif&ta, e) is defined even i& ¢ O. Thus the functiory

given by the Recursion Lemma is computable. d

As an easy consequence of Lemma 8.1.4 we obtain the next lemma.

8.1.5LemmaFora € O
{LE S O| |$C|(9 = |a|@}

is decidable inH 5« uniformly ina, i.e. anHy.«—index for{z € O| |z|o = |a|o } is computable
froma.

Proof: We get
€O N|zlo =lalo & (x€OA|z|lo <|2%0) A -(x €O A lz|lo < |ao).

By Lemma 8.1.4 the first conjunct is decidablef3.. and the second if/z.. Both statements
hold uniformly ina. Thus their conjunction is decidable k2« uniformly in a. O

8.1.6 Lemmalf a € O andb € O such thata|o = |b|o thenH, < Hj.
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Proof: We define a well-founded predicate> by

(¢,d) <p {(a,b) = {a,b,c,d} CO A |clo <|dlo A lalo < |blo

A lldo <lalo Vv (lcfo = lalo A ldlo < [blo)]

and use the Recursion Lemma along to define a computable functignsuch that fora, b) €
field(<p) (i.e. fora,b € O with |a|o < |bo)

xu, = {g(a,b)}™ (i)
holds. Let(a, b) € field(<p). The recursion hypothesis gives

(e,d) <p {a,b) = xm. = {{e}(c,d)}"
and we search for a computable functi@rsuch that

xu, = {G(e,a,b)} .

We distinguish the following cases:

a = 1. LetG(e, a,b) be aney with {ey}* = xp forall X C N.

a =2°+# 1andb = 2¢. Then{c,d) <p (a,b), and so the recursion hypothesis gives. =
{{e}(c,d)}H4. By clause 2) of Theorem 3.1.1 we can compute@with xr, = {eo}** from
{e}(c,d) and putG(e, a, b) := eo.

a=2°%#1andb=3-5% Thenlalo < |blo, and so there exist with

lalo < {u}(n)lo- (ii)

By Lemma 8.1.4 fa|p < [{u}(n)|o” is uniformly decidable inHy.)x), which in turn is uni-
formly decidable inH, by Lemma 8.1.3. Thus an satisfying (i) is uniformly computable in
H,. Because ofa, {u}(n)) <p (a,b) the recursion hypothesis gives

x, = {{e}(a, {u}(n))}eae.
By Lemma 8.1.3H () is uniformly decidable inff;, and so, with some considerable effort,
G(e, a,b) cen be defined appropriately.
a=3-5" As{c,b) <p (a,b) for ¢ <o athe recursion hypothesis implies
yeH, & y={(x,c) N\c<paAhz€H,
& y=(z,c¢) Ac<paA{{e}(c,b)}(z) =0.
Because ofa|o < |b|o the Z9—predicate</, is uniformly decidable ir,.

In the usual way we see that it is possible to tGfinto a total function. So the satisfying (i)
given by the Recursion Lemma is computable. O

Theorem 8.1.2 is an easy consequence of the last lemma.

In the next step we want to show that the hyperarithmetical hierarchy exhausts-tkets. Recall

the concept ofAl-indices for sets as introduced in Theorem 4.2.6. We will prove that every
hyperarithmetical set iAl in a pretty strong sense.

8.1.7 Lemma There is a computable functidnsuch that for every. € O the valueh(a) is a
Al-index for the setl,,.

Proof: We use the Recursion Lemma (Lemma 5.4.7) alargto show the existence @f. For
a € O the recursion hypothesis says

(Wb<oa) [Hy = {a] Ut ()}

whereUA1 is the universal predicate faxl-sets as defined in Theorem 4.2.6. By this theorem
we obtain
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Hy = {2] Ulpnony, @)} = {21 Uleprog, ()}

The recursion step consists in defining a partial computable funGtisunch that

H, = {:17| Ué(la’e)(m)}.
We distinguish the following cases:
a = 1. ThenH, = () and we defin&(a, e) to be aAi-index of the empty set.
a=2°#1. Thenc<p aandH, = j(H.). Hence
x€H, & (32)R(z,z,Xm.(2))
for a well-known semi—decidable predicdte So we obtain
x€ H, & (32)(3s)[Seq(s) A Ih(s) =2z N (Vi<z)((s): <1)
AN(Vi<z)((s)i=0 < i€ H,)
A R(z, z, )]
< (F2)(3s)[Seq(s) A Ih(s) =z A (Vi<z)((s); <1)
A (i< 2)((8)i = 0= Uiy ey, (1) 0
A (i< 2)((8)i = 1= =UL, 0, (1)
A R(z, z, s)]
and, completely analogous,
x€ H, & (32)(3s)[Seq(s) A Ih(s) =2z N (Vi<z)((s): <1)
A (i< 2)((8)i = 0= Uy o), () "
A (i< 2)((8)i = 1= =ULy (o, (1)
A R(z,z, ).

From (i) we see thatl, is 1 and a>1-indexe; for H, can be computed fromandc which in
turn is computable from. Analogously we see from (ii) thdf,, is IT} and all}—indexe- for H,
can be computed fromanda. HenceH, is A} and we putG(a,e) = (e1, e2).

a=3-5° Then

r€H, & Seq(z)NIh(z)=2A (2)1 <o aA () € Hyy,- (iii)
Using Lemma 7.6.3 we infer from (iii)
rcH, & Seq(zx)NIh(z) =2 ()1 <paA ()€ Hyy,
& Seq(z) Alh(z) =2 A (€)1 <b a AUy (o), (@)0)
& Seq(z) Alh(z) =2 A (1)1 < a AUy ), (@)0).

This shows thafd, is Al and axl-indexe; as well as d1}—indexe, for H, can be computed
from e anda. We putG(a, e) := (e1, e2).
Yet again, note thatr is total, and so the given by the Recursion Lemma is total, too. [

To obtain also the opposite direction we are going to use Theorem 7.4.2 according to which
everyAi-set is many—one reducible to somé .. It will therefore suffice to show that/T, is
hyperarithmetical for any < w$X. We prove

8.1.8 Lemma There is a computable functiahsuch that
WTjq1o = {d(a)} 2210
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foralla € O.

Proof: By (7.13) we have
e WT, & ((),z) € Ife,

hence it suffices to show that there is a computable fungtsurch that for alk € O we have
Xy = {g(a)} =" 2. ()

We are going to prove (i) by the recursion lemma al¢wigp. Therefore we have the recursion
hypothesis

H
(<o) [0 = (e} (6)) " 20]
We have to define a partial computable functi@such that
}sza 72,0-

Xigo = {Cte.a)

We distinguish the following cases:
a = 1. We have

Iee = {(s,2)| @ € Tree A {z}"2(s) =0 A (V) [{z}"*(s™ () = 1]}.

This shows thaf?,, is II3 and hence decidable iy« . We defineG(e, a) to be anH,:«—index
Of I?’ree'

_ 9c i rlalo _ plelo+1 .
a=2°#1. Then, using .. = I ,We obtain

Tree Tree

& z € Tree A (Vy) [{z} (s (y) = 0= {{e}(e)} "> 20(s™ (y), z) = 0] .

(s,z) € T o z e Tree A (Vy) [{x}l’o(s’“<y>) =0= (s~ (y),2) € I'C'O} "

The formula % € Tree” is 119, the second conjunct in (i) HY in Hye-. ThusﬁI‘T‘,",:‘,'f:,9 is 2% in
H,2c and by Theorem 3.1.1 it follows that[‘T‘j;eo is m~reducible tgj (Hyze ). HenceI‘T‘;a‘eO <r

J(Hg2e) <7 Hyee and anH22a—indexforI|ng§ is computable from thé&l,.- —index{e}(c). Since

c is computable frona we get a computable functiai such that

[Gle,29)} 20 — [Z]e.

Tree

a = 3-5° Then|a|p € Lim and we get

Tree Tree

W) =0= (s~ (), o) € g
& ze Tree A (Vy)(Fv) [v <pa A {@}0(s™(y) =0
= {{e} ()} 20(s ™ (y), 2) = 0)] .
But observe that for <{, a we haveH,:» <,,, H, sincex € Hy»» & (z, 22“) € H,. Therefore
we get from (iii) that['%f isTI9 in H,. HenceI‘T‘;a‘eO <1 Hye by Theorem 3.1.1 and afyze—

index forI‘T‘,",:‘,'f:,9 is effectively computable frora anda. Letting G(e, a) be this index we get

(s,2) € IS = 2 Tree A (V) [{x}lvo(s’“<y>) — 0= (s~ (y)7) € I<|a|o}

& e Tree A (Vy)(3v) [u <t a A ({a}hO(s™

Xpplo = {Gle,a)} 20,
By the Recursion Lemma we get a partial—-computable fungtisach that, for alb € O, g(a)
is an Hyz« —index forx ., and we defing(a) as an index for the set

Tree
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8. The Hyperarithmetical Hierarchy

{z] {g(a)}>*20((),2) = 0}.
Observe thatl is computable. O

8.1.9 Theorem (Characterization Theorem forAi—sets) The hyperarithmetical sets are tie —
sets.

Proof: It is an easy exercise to show that theé—sets are closed undefr. From this and
Lemma 8.1.7 it follows that every hyperarithmetical sefis Conversely, if a se§ is A} then,
according to Theorem 7.4.3, <,,, WT, for someo < wa. By Lemma 8.1.8 there is some
a € Osuchthats <,, WT |, <r H:=. HenceS is hyperarithmetical. O

8.2 Hyperarithmetical functions

8.2.1 Definition A function a: N — N is hyperarithmeticalif its graphG,, is a hyperarith-
metical predicate.

Since we are talking about total functions we have
alz) £y & (F2)]a(x) =2 Az # Yy

which implies
GoeAl & Gyelll & G,exl.

Therefore a function is hyperarithmetical if it possessBg-agraph. This opens the possibility to
define indices for hyperarithmetical functions via the wé&Hk-uniformization Theorem (Theo-
rem 7.4.5). Though we did not emphasize it in the proof of Theorem 7.4.5 it should be clear that
alli—index of the uniformizing function is computable fronila—index of the original predicate
via a computable function, sa&y Then we define

{6}1(33) Yy = Ug(le) (13 y) (8.1)

and call{e}! ahyperarithmetical indexNote that{e}? is not necessarily total.
We denote by the class of hyperarithmetical functions. Then we obtain

Y €5 & (va)EULL (2,v) (8.2)

which is all}-statement.
We are going to prove thaj is a genuindlI}—relation.

8.2.2 Lemma The relation$) is IT} but not¥;.
Proof: Because of
aeh & (Folfe} €9 A (V2)(a(z) = {e}(z))]

and (8.2) we obtaith as alli-relation.
Now assume) € ¥1. Define

Pla,a) & (@eHNacONa<l, WTg,)Vie=1Aa¢hH). ()
By Lemma 8.1.8 and Lemma 8.1.7 the predicatdefined by

Q(z,a) = acOANzcWT),
is I}, Since
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8.2. Hyperarithmetical functions

a<m Wil & (3)(Va)(Vy) [a(z) =y & (32)[TH0(e, (2, 9), 2) A U(2) € WTq0]]

for a € O the relationP(a, a) is I1}. Using weaK; uniformization we obtain a functiondlp
whose graph i$Ii—definable. By Theorem 7.4.2 we get

(Va)(Fa)P(a, a)

which shows thaf» is a total functional, hence the graphig# is Al—definable.

On the other hand, for everye O there is anx € § such thaty £, WT ), Foro < w$K we

haveWT, € A}, henceY := j(WT,) € Al withY £, WT,. Puttinga := xy We geta € §

anda £,,, WT,.

Thereforeng(Fp) is X1—definable and unboundeddh This, however, contradicts Lemma 7.6.8.
O

8.2.3 Theorem KLEENE's Basis Theorem) The functions which are computable in the class of
Y1-predicates are a basis for the collection®f—classes of functions.

The class ofA{—definable functions is not a basis for this collection and hence not even a basis
for the collection ofI{—classes of functions.

Proof: The first part is Theorem 7.5.5. For the second part we define a reRatiyn
Pla) & a¢H.

ThusP is a nonempty_}—relation for which
Pla) & ad¢A]

holds. Obviously there is né € A} with P(3). Thus the class oAl —definable functions is not
a basis for the collection dti—classes of functions. The rest follows from Lemma 7.5.2. [J

This theorem has a surprising consequence.

8.2.4 Theorem There is a non well-founded decidable tree without infinite hyperarithmetical
path (i.e.$ thinks that the tree is well-founded).

Proof: By the second part of the last theorem there is a nonefopty-ary I19-relation P with
(Va € H)—-P(a).

As P isTI{ there is a decidable predicaesuch that
P(a) & (Vz)R(a(z))

holds. The tree
T := {sc Seq| (Vso)(so s = R(s0))}

is the one we are looking for. O

A somehow more constructive proof of the last theorem is given on page 107.
One further goal of the present section is to show that the glass model of the scheme

(I} = AC®Y)  (v2)(3a)P(x,a) = (38)(Vz)P(z, (B)a)

whereP is a(1, 1)-aryIli-relation. We cal(Il} — AC°!) theIli—axiom of choice of typ€0, 1).
By the weaklIi—uniformization theorem (Theorem 7.4.5) we get fafa-predicateP

(V) (Fy) P(z,y) = (36 € 9)(Va) P(z, B(x)). (8.3)
This shows thaf) is a model of thdI{—axiom of choice of typ€0, 0)
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8. The Hyperarithmetical Hierarchy

(II} = AC®)  (vz)(3y)P(z,y) = (30)(Vz) P(z, B(x)).
8.2.5 Theorem The class) of hyperarithmetical functions is a model @} — AC°!), i.e. for a
(1,1)—ary I}-relation P we have
(Vz)(Ja € 9)P(x,a) = (36 € H) (V) P(x, (B)z)-
Proof: Using indices for hyperarithmetical functions we get
(Vz)Ba € H)P(z,a) < (Vz)(3e) [{e} € 9 A P(z,{e}")]. ()
It follows from (8.1) that{e}! € $ is alli—statement. But we also have for tofal}/
Pz {e}!) & (Vo) [(v2)(¥y)({e} (z) =y = a(z) = y)) = P(z,0)]
which shows that the expression in square brackets in{i} isThus starting with
(Vz)(Fa € 9)P(z, o)
we get by (i) and (8.3) a hyperarithmetical functipsuch that
(V) [{v(2)}" € $ A Plz, {7(2)}1)] .
We define a total functiop¥ by

Blu) = {gv«u)o)}f«um if Seq(u) A Ih(u) =2

otherwise

and easily see

(B)s = {7(2)}.
Furthermore we obtain

B(a,b) =y < {v(a)} (b) =y

& Ut u(b:9)

which shows thaB has alli—graph. Hence € $ and

(V2) P(z, (B))- 0

The next goal is to show the class of hyperarithmetical functions is characteriz8d byAC°!).
This needs some preparation.
Our first observation is that the stagds can be defined implicitly. Lei € O. Then

r€H, & (a=1ANz#1)
V(32)[a=2*#1Az € j(H,)
V (32) [a=3-5" A (2)1 <p a A (z)o € Hiy), A Seq(z) A lh(z) = 2]
< (a=1Az#x)
V (32) [a =27 #1 A (Fu)R(xy, (u), z)]
V (32) [a=3-5" A (2)1 < a A (z)o € H(z), A Seq(z) A lh(z) = 2]
& (a=1Az#2x) (8.4)
V (F2)a=2*#1A (3u)(3s)(Seq(s) A lh(s) =u
A (¥ <u)(()s = xa.(8) A R(s, )
V (32) [a=3-5" A (2)1 <p a A (z)o € H(y), A Seq(z) A Ih(z) = 2]
for some decidable predicaie PuttingHyp(b, «) as
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8.2. Hyperarithmetical functions

(Vz)(a(z) <1 A (a(z) =0= Seq(z) A Ih(z) = 2)) (8.5)
A (Va)(ma <p b = (Va)(a((z,a)) = 1))
A (Va)(Vz)(a <o b=
[a=1= (Vz)(a((z,0)) = 1)
Afa=27#1= (Vo)(a((z,a)) =0
& (Ju)(3s)(Seq(s) A Ih(s) = u
A (Vi <u)((s)i = a((i, 2)) A R(s,z)))))
A (a=3-5"= (Vz)((Seq(z) A Ih(z) =2) = a((z,a)) =
we recognizeédyp as an(1, 1)—ary arithmetical relation. Let

Hep :X{<m,a>| agob/\mGHa}'

It follows from (8.4) that forb € O we have

Hyp(b, H<p). (8.6)
On the other hand i € O then we have
Hyp(b,a) = a = Hgb. (87)

To prove (8.7) we show
al{z,a)) =0 & a<pbAz€H, (8.8)
by induction onja|». But (8.8) is more or less obvious from the induction hypothesis, the defini-
tion (8.5) and (8.4). Summarizing we get
8.2.6 Lemma There is an(1, 1)—ary arithmetical relation Hyp such that fére O we have
Hyp(b,a) < «a = H<p.
8.2.7 Lemma Let M be a nonempty collection of functions which is closed urtderand satis-
fies(Ay — AC). Thenb € O impliesH<;, € M.
Proof: We prove
beO=HpeM

by induction onjb|.

Forb = 1 we haveH<;, = xp. HenceH<,; is computable. But sinc# is nonempty and closed
under<p it contains all computable functions.

Letb =2°+# 1. Then

Hoy((w,a) =0 & (a=2° A€ j(Ho) V (Heol(z,0)) = 0). ()

It follows from (i) that H<; is semi—decidable if/<.. Therefore there is a decidable relatiBn
such that

Hopy(z) =0 & (32)R(H<c,x,2).
Define
Qa,z,y) = Hyplc,a) N\y<1A[y=0 < (32)R(a,z,2)].
By Lemma 8.2.6 and € O we obtain
(V) (vy) [(Ba)Q(a, 2, y) = Hep(z) = y]. (ii)
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Sincelc|o < |b]o we get by the induction hypothesis and Lemma 8.2.6
(3 € M) [Hyp(c, a)]

which implies
(V) (Fy) B € M)Q(ev, 2, y).-

SinceM is closed undex we get by contraction of quantifiers

(V) (38 € M)Q((B)o, =, (8)1(0))- (iii)
As M = (A} — AC®Y) andQ is arithmetical we obtain from (i)
(Fy € M)(VZ)Q((7)z0, T, (7)21(0)) (iv)

and by (ii) and (iv)

(Vz) [Hep(z) = (7)21(0)].
HenceH<;, = Az. (7)1 (0) andH<p, € M sinceM is closed undex .
Letb =3-5° Then
Hop({z,0)) =0 & [a=bAze€H) V [a<obA z€ H,]
& Ja=bASeq(z) Alh(z) =2 A (3n)(Heieyn)(2) = 0)]
V [a <p b A (3n)(H<ieyn)((2,a)) = 0)].
Now we put
R(a,z) & (3z)(Fa)(z = (z,a)
A([a=bA Seq(z) NIh(z) =2 A (3n)((a)n(z) = 0)] (v)
V [a < b A (Fn)((a)n(z) = 0)])
and define

Qe z,y) = (Vn) [Hyp({e}(n), ()n)] Ay <1 A (y =0 R, z)).
By Lemma 8.2.6 and (v) we get

(vVz)(Vy) [()Q(a, z,y) = Hep(x) = y]. (vi)
The induction hypothesis yields

(Vn)(3a € ) [Hyp({e}(n), a)] (vii)
which entails byM = (A} — AC®)

(B € H)(vn) [Hyp({e}(n), (a)n)] - (viii)

From (viii), however, we get

(Vz) (P € M)(Fy)Q(a, z,y)
which, analogous to the previous case, yields

(V)38 € M)Q((B)o, =, (8)1(0)).
UsingM = (A} — AC®') we obtain

(Fy € M)(V2)Q((7)z0, ;5 (7)1(0))
and finally we get from (vi)

(Vz)[H<p(z) = 721(0)],
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8.3. The hyperarithmetical quantifier theorem

Hep = Az (7)21(0)-
HenceH<;, € M. O

Summing up we have shown

8.2.8 Theorem The collectiors of hyperarithmetical functions is the with respect to set inclusion
smallest nonempty class of functions which is closed under “computable in” and satisfjes
ACPY). We even havg = (I3 — ACY).

8.3 The hyperarithmetical quantifier theorem

If we regard all ordinals below$K as given, i.e. we allow bounded search ow&K, then all
arithmetical predicates are decidable and so are all thefgetén that sense we may regard the
collection$ of hyperarithmetical functions as computable axjd-sets as decidable. The aim of
the present section is to show that in that interpretatiofilthesets play the role of semi—decidable
sets.

We introduce some notations. ¢fis an analytical formula we denote ky? the formula which

is obtained fromp by restricting all function quantifiers to functions$n Then

= ={¢"l vex,}
and dually

L7 = {p°] pell,}.
It is quite easy to see that

oy C I (8.9)
This follows by induction from

(Faen)(Vx)P(a,a,z) < (Je)(Va) [{e}I €9 A P(a, \y. {e}! (y),a:)}
& (Fe)(Ya)(Vz) [{e} € 9 A ((Vy)(V2)({e} (y) = 2 = a(y) = 2)
= P(a,a,2))].

We can now give an alternative proof of Theorem 8.2.4 where we showed that there is a non
well-founded decidable tree without infinite hyperarithmetical path.
Proof: We show that there is a decidable predic&tsuch that

(Fa)(Vz)R(@(z)) A ~(Ba € 9)(Vr)R(a(z)).
Putting
T :={s| (Vs0)[s0 s = R(s0)]}
we have a tree as desired. To constave define
Ky = {z] @ € UFTM°) = {2] (3a) [(av) ¢ WH'] ).
Now let
M = {z]| Caen) [(a,2) ¢ W]}
ThenM C Ky, andM € %1° C I} by (8.9). Lete be all}—index for). Then we obtain
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I
eclUst & eeM
= GGKEI

2110
& ee Ut
m,1,0

& edg Ut

1 1 1
since we definedIJe1 as the complement df'. Hencee ¢ UL which entailse € U
Therefore

e¢ M Ne€ K.
Let P be a decidable predicate such that
(aye) € W = (32)P(a(2)).
Frome ¢ M it follows
~(3a € H)(Vz)~P(a(2))
and frome € Ky
(Fa)(V2)-P(a(2)).
ChoosingR := —P the proof is terminated. O

In order to obtain also the opposite inclusion in (8.9) we need some preparations.
Itis obvious that Lemma 8.2.2 relativizes. |.e. we introduce the class

4= {a| G, € A}[4]}
and obtain
§4 € T [4]\ SH4]. (8.10)
Another obvious observation is thét! is closed under relativizations, i.e.
achHt = phe =g (8.11)

This holds since we haw” C $4* and forg € H4 the graphG is aAl[A, a]-predicate.
But o has aAl[A] graph and the\1[A]—predicates are closed under substitution with functions
havingAl[A] graphs. Hencg <€ ©H4.

Let

A
212714) = {6 | ¢ € 2i[4]}
and
A A
7 [A] = {¢°" | ¢ € IG[A]}.
There are universal predicates
= {z| Gaenh)[(x,a) ¢ W1}
—{J; (Va € H4 [(m,a)ve’l’l]}

and we introduce&}’f3 [A]-indices as pairs &" [A]- andII®" [A]-indices which describe
the same sets. We show the following lemma.

8.3.1 LemmaFora € WTA

wrEB

D et () = {2 € WTP | otyp™ (z) < otyp™ (a)}
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8.3. The hyperarithmetical quantifier theorem

is aA}’y’A’B [A, B] set. This holds uniformly, i.e. there is a computable funcjisnch thatg(a)

. 1,948 . ..
isaA; [A, B]-index forWTf[ypTreeA (o) Moreover,g is independent ofl and B.

Proof: We use the Recursion Lemma alang¢[A]. Letrest!(a, n) be anA-index of the restric-
tion of the tree{a} to the nodgn), i.e.

{resti(a, M} =x4) faya((m)~s) = 0}

We obtain
T € WTJOB’[ypﬁe b & TE TreeP
A (V2)[{z}P((2)) = 0 (i)
= @m)({a}A((m) = 0 AresE(a,2) € WTE o ).

Because obtypTreeA (rest'(a,m)) < otypTreeA (a) we get by the recursion hypothesis

B SERER VW]
ue WTotypreeA(restA(a,m)) & ue U({le}(TGStA(avm)))o
& ue UH}J)A’B[A’B]
WS Y ({e}(restt (a,m))n (ii)

A,B,1,1

& (Jace f,)A’B) [(%0‘) ¢ W({e}(restf‘(a,m)))o}
A,B,1,1

< (Va Ef"JA’B) [(u,a) € W({e}(restA(a,m)))J )

Inserting (ii) into (i) and remembering that'-? is a model of 11 — AC°!) shows thatV/T B

otypreet (a)
is aA}’Y’A’B[A,B] set whose index can be computed freranda. Note that the computable
functiong given by the Recursion Lemma is independenfiaind B. O

As a consequence of Lemma 8.3.1 we obtain

8.3.2 Theorem
APPA] = A4

Proof: The incIusionA}’ﬁA[A] C Al[A] follows from (8.9). The converse inclusion is a conse-
quence of Lemma 8.3.1 and the relativization of Theorem 7.4.2 which says that\eyeiiy-set is

m~reducible toW T2 for somes < wfX[A]. The result now follows from the fact thaﬁ’ﬁA [A]
is closed undem—reducibility. O

Now we have all the ingredients for one of the main results of this lecture.
8.3.3 Theorem (Hyperarithmetical Quantifier Theorem)
4] = =177 4.

Proof: The easy direction from right to left is (8.9).
Because/V/T# is [T} [A]-complete it suffices to show

WT4 e 2197 4] 0)

to obtain also the converse incIusionZév}s’ﬁDA [A] is obviously closed unden-reducibility. Since
H4 € I3 [A] there is a computable functighand are € N such that

aecHt & . fla,z) e WT (i)
& ec WTHe,
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wheree is a uniformA, a—index forAz. f(«a, z). Note thatotypTreeA'“(e) varies witha € $H4.
We show

(Vo < wFKA])(Fa € 54)[o < otyp™™ " (e)] (i)
indirectly and assume

(30 < wPK[A])(Va € 51 [otyp™ " () < o.
But this entails

94 ={a| Az f(a,z) € WTS }

which contradicts (8.10) sinG& T is aA}[A]relation.
Note that fora € $4 we haveotyp™e" " (¢) < wSK[A]. Thus we obtain by (iii) and Lemma 8.3.1
a€WT* & (3o <wf¥[4]) [a € WTZ]
© (Faenae WT] o) (iv)
& (Baent)(3BeHt((B,a) ¢ WiE) )

But sincea € 4 we haven®* = §4 and (iv) yields a5 [A] definition for WTA. O
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9. Appendix

9.1 ATlj—path through O

From the Boundedness Principle we inferred in Corollary 7.6.10 that there a¥g-Amaths
through®. We want to show that there are inddép-paths througkd and present a construction
which is — as far as we know — due te ScTorRand FEFERMAN.

9.1.1 Theorem There is all}—path throughO.

Proof: We introduce the set

Pd., (a) == {b] b <p a} (9.1)
of <,—predecessors af Furthermore we put

pla) & <ol (Pdey (a) x Pde, (a) € WO
and

Y(a) & (VzePd, (a))z =1V (Jc)(z =2°)

V (3e)(z = 3-5° A {e}'0 is total
A (V) [{e}0(n) <o {e}(n+ 1))

We claim

acO & pla) Ay(a). (9.2)

The direction from left to right is Lemma 7.6.5. For the opposite direction we assume the right
hand side of (9.2) and prove first

bePd. (a) = beO (i)

by induction on the definition ok(,. This is obvious forb = 1 and follows forb = 2°¢ #
1 immediately from the induction hypothesis. tf= 3 - 5¢ then {e}-? is total and we have
{e}*°(n) € O for all n by induction hypothesis. We moreover de*°(n) <4, {e}'%(n + 1)
which by the induction hypothesis and Lemma 7.6.3 enfas°(n) <o {e}*°(n + 1). But
thenb = 3-5° € O. From (i) and the right hand side of (9.2) we first geE O’ which by
Lemma 7.6.5 entails € O.

By weakening the right hand side of (9.2) we define

a€ O & (p(a) Ay(a)®
& o(a)® Ay(a).

Observe thaf thinks thatOT is O (note the analogy to Theorem 8.2.4). Because(@f) =
©(a)® we haveO® C Of. By (the contraposition of) the Hyperarithmetical Quantifier Theorem
Of € ©1 holds. Hence

ocot. (il
We may therefore pick am € Of \ © and show that
P = Pd<b(a) no

(9.3)

is a path througl®. Towards an indirect proof we assume
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P C Oy :={ce0] |co < |blo} (iii)
for someb € O. But thenP = Pd, (a) N Oy, which shows thaP is aAj set. This implies
that

P':=Pd., (a)\ O =Pd, (a)\ P

is a nonemptyA{ set. ThusP’ has a<},—least element, say Because 0b ¢ O we haveo # 1.
If o =2¢# 1 we getc € O by the minimality ofo. But this entail) € O. Finally if o = 3 - 5¢
then we obtain{e}'%(n) € O for all n € N as well as(vVn) [{e}'°(n) <{, {e}"°(n+1)].
Henceo € O which shows the absurdity of our assumption. /5@ a path througl® and P is
obviouslyITi—definable (using the parametgr O
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