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Abstract

The present work deals with enhanced regularization techniques in the context of imaging
problems. Besides image denoising, two inverse problems of this domain are the focus of this
work: the deconvolution and the reconstruction of computerized tomography measurements.
A direct inversion is not feasible due to the ill-posedness of the underlying forward operator.
The construction of an optimization problem, which balances between faithfulness to the
data and regularizing property, is the main venture of this work. A first step is to establish
the mathematical foundation for investigations of the underlying operators, developing a
suitable regularization property, and implement a solving algorithm. The basis for this is

the total variation regularization, which is widespread in the context of imaging.

Furthermore, this work focuses on a spatially-adapted weighting between data fidelity and
regularization term. As images typically consist of various objects at different scales, this
also motivates the locally-dependent weighting. I.e., a smooth surface needs less data
fidelity than a fine pixel-structure. In addition to the derivation of this approach, com-
parisons to another enhancement, i.e. the Bregman-based TV-regularization, is made. It
will turn out that the comparability of both is limited, since they improve objecting prob-
lems, respectively. A new combination of both ways is described to obtain the best possible
reconstruction. Finally, simulations of this novel and competing methods over the three

imaging problems, which are based both on real and simulated data, are presented.
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CHAPTER 1

Introduction

The reconstruction of an unknown cause from a known effect is often denoted inverse
problem. These problems play a fundamental role in various and interdisciplinary fields, in-
cluding geophysics, computer science, and medicine. Inverse problems are typically present
when a quantity cannot be measured directly but only indirectly. One prominent example
may be the calculation of a mass distribution from measured gravitational forces. Further
examples include the decrease of X-ray intensities in absorbing materials, which is known as
Beer’s law and takes an important role throughout this work. The inverse problem in this
regard constitutes the determination of density and further concentrations from tomography
data.

The main difficulty of inverse problems is their fundamental non-linear nature: Two distinct
causes can produce similar effects. In addition, the underlying measurements are in most
cases not perfect and include noise and inaccuracies, hence creating a highly non-trivial

problem. Therefore, an effect z is represented via an operator A : X — Z

z=Au+mn, (1.1)

where X, Z represent space of cause and effect respectively and 7 denotes the noise related
to the underlying forward problem. The described sensitivity of the cause u, which is based

on the measurement z, is formally described as an ill-posed problem.

The fundamental definition of such ill-posed problems reaches back to the French mathe-
matician Jacques Hadamard [I]. According to his definition, a problem is called ill-posed if

one of the conditions

1. existence of a solution u for every z € Z

2. uniqueness of those solutions

3. continuity of the inverse map A7!: Z = X
is not fulfilled.

Therefore, direct reconstruction of the cause via an inversion formula A~! is not advisable.
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In this work, an alternative solution of inverse problems is investigated. This alternative

reformulates the inverse problem by using an optimization scheme

argmin F(u) + G(Ku). (1.2)

ueX
Here, F' : X — RU{oo} is called fidelity term as it describes the proximity to the measure-
ment zEl The regularization G : Y — RU{oc} only depends on the solution sought and, in
addition, enforces certain wanted properties. The latter are expressed by a linear operator
K : X — Y and the associated space Y. For special problems, this regulator requires a
more versatile approach, e.g., spatially-dependent fidelity to regularization weights and this

work focuses heavily on such.

This thesis is structured as followed: In chapter 2] theoretical foundations are laid, followed
by the explicit formulation of the spatially-adaptive regularization for inverse problems in
chapter 3] The penultimate section [d]is devoted to the numerical implementation and their

results. Finally, we conclude in section

1.1. Computerized Tomography

In 1901, the physicist Wilhelm Conrad Rontgen was awarded the Nobel prize for the dis-
covery of a new type of radiation, the so-called X-rays. When fast electrons are decelerated
in an electromagnetic field, highly energetic photons are released [2]. The wavelength of
these photons reach from 1078 m to 10~!3 m, depending on the deceleration force, i.e., the
voltage between anode and cathode. This type of radiation can easily penetrate matter
and, depending on its type and certain physical quantities like density, they are weakened

differently as described by Beer’s law
§ L E(y) = Le i@ (1.3)

Here, Iy denotes the intensity of the incident X-ray beam, y the number of detected X-ray

photons, and u the function measured along the line integral defined by the ray I.

This process is, however, imperfect. Two main error sources can be identified. First, quan-
tum noise arises that can be, ignoring the energy variability of different photons, modeled
via a Poisson distribution. Secondly, the electronic noise is given by a Gaussian distribu-
tion. As offsets can be directly measured by a so-called dark scan and then substracted

from the original data, it is possible to assume zero-mean. As consequence, the measured

'In case of the presented form of an inverse problem, F' is usually expressed as |Au — z|| for a suitable
norm ||-||.
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Figure 1.1.: Sketch of Radon transform for # = 0.267. The dashed lines symbolize a portion of the
X-ray beams directed toward the detectors. The brighter the areas are, the fewer X-rays
are detected.

photon intensity can be written as
y ~ Poisson(y) + N (0,0?%).

Since the resulting function wu(z) is scalar, multiple X-ray measurements have to be con-
nected (typically this involves a circular arrangement of various detectors or circular moving
detectors) to finally deduct a two-dimensional X-ray image. Assuming u € L?(IR?) describes
the function to be measured, the Radon transform R (see Fig. describes the integration

over all directions 6 € [0, 7]

(Ru)(0, s) = / w(z)do (), (1.4)

z-0=s
where the integral is taken with respect to the measure do.

In the next chapter the Radon operator and its associated reconstruction are discussed
in detail. As it turns out, the Radon transform is, according to Hadamard, ill-posed and
therefore leads to an amplification of errors. In the following, we restrict ourselves to
additive noise, neglecting multiplicative contributions, hence accounting only for electronic

noise.
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1.2. Image Processing

In addition to computerized tomography, there are other image-based problems that can be
solved with Eq. . By having the same target structure, i.e. an image, many concepts
can be adopted between these problems. In general, an image wu is described as an element
in the space L?(R?). In the following chapter, we construct a decomposition of u into
one part that contains the basic structures and another containing high oscillations. This
procedure is necessary to explicitly formulate a mathematical framework. Furthermore, it

allows to separate the high noise oscillations more easily.

In reality, an image exists only in its discrete form: an image is merely the arrangement of

different pixel values. We consider a Cartesian grid of size N1 X Ny
{<Z7.7) i1 S,LSNlal S] SN?}v

where (7,7) denote the indices and pixel locations. A discrete space for images can then
be defined via the finite dimensional vector space X = RN1™2 together with the standard

scalar product.

In order to describe the oscillation properties, a gradient on X can be defined. In this

discrete setting the gradient is a vector in Z = X x X

V:X—>Z (Vu),= ( (V)i ) ,

(Vu)zz,j
Ui41,5—Ui,j . Ui, j+1—Uij ;
— 1 < Ny 9 s J< N
(Vu)j; = . o (Vu)i, = ) :
0 1= N1 0 ] = N2

The next step is to set up a minimization problem that seeks the optimal solution between

data fidelity and small gradient norm. The gradient norm is defined as

IVully =Y 1(Vwigl,  [(Va)iyl = \/((VU)%J)2 + (Vu)i;)%
1]
This constitutes the discrete version of the so-called isotropic total variation norm. The
main benefit of said norm when compared to, e.g. the 2-nornﬂ, lies in the preservation
of the image’s edges, since it penalizes large and small fluctuations of gradients equally.
Altogether, this defines the problem

argmin F(u) + ||Vul|; . (1.5)
ueX

2The terms 1-norm and 2-norm are used here for the discrete version of the norms in L'(Q) and L*(Q),

ie. HHl = Zi,]' | ' ‘7 ”Hl = \/ Zi,j(')Q'
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d) e) f)
PSNR | MAE PSNR | MAE
a) Salt-pepper noise || 15.27 | 0.047 d) Gaussian noise || 13.98 | 0.159
b) L!-fidelity 28.47 | 0.018 e) L'-fidelity 23.93 | 0.046
c) L2-fidelity 22.69 | 0.053 f) L2-fidelity 24.66 | 0.041

Figure 1.2.: Comparison between different fidelity terms on salt-pepper and Gaussian distributed
noise. Salt-pepper noise with a balanced amount of 0.1, see subfigures a)-c), and pixel
by pixel Gaussian noise N'(0, =), see subfigures d)-f), are shown. Image taken from
Ref. [3].

One prominent example in image processing is the denoising of images. This denoising can
also be formulated via the initial equation of inverse problems , where the forward
operator can be neglected

z=u-+n.

In contrast to the regularization, the norm of the fidelity term depends more strictly on the
underlying noise 7. Here, one makes use of the 1-norm F(u) = A |lu — w]|; or the 2-norm
Fu) = 3 |lu— w3 with some weight A > 0 as shown in Fig. The figure summarizes
the behavior of both norms on Gaussian and salt-pepper noise. The results show, that large
deviations in pixels values between u and z are, in case of salt-pepper noise, penalized more

heavily in the 2-norm than in the 1-norm. Gaussian noise is, on the other hand, penalized
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Figure 1.3.: Interaction between width and weighting of the optimization example The subfigure
on the left shows a cross section of the two-dimensional object with § = 5. Different

weights are applied to the noisy data with 7; ; ~ N(0, 1(1)—0). The underlying images are

illustrated in Fig. [C.J] In the middle subfigure the behavior of the mean absolute error
(MAE) in relation to three different widths is shown. The optimal X is marked by a
dot. The subfigure on the right shows the behavior of the contrast depending on width
and weighting. The upper half corresponds to hi,, whereas the lower half corresponds
to hout-

more in the 1-norm than in the 2-norm. As Gaussian noise will be the main focus of this

work, we focus on L?-data-fidelity in the following.

A main question of this work is to find the appropriate weighting A. Even though higher
noise leads to lower data fidelity, the following example shows basic problems of denoising
via total variation. We simplify the problem by considering a single and simple image

object.

Example 1.1. Let (N1, N2) = (64,64). Furthermore, z € R64*64 defines the image with
z=x0, Qs:=1{(32-0,324+0)x (32—6,32+8)} CR¥™H 32> 5N

We now consider the regularization with L?-fidelity of the unperturbed image. It can be
assumed that the solution u consists of two parts, hqyt outside of 5 and hi, inside of g,
with hout < hin. Thus, the equation ((1.5)) results irﬂ

A
arg min 7 |lu — zHg + [|[Vull,
u

& arg min% . (4(52 (11— hm)2 + (642 — 4(52) - h2 )+ 80+ (hin — hout)

out
0 =406 - (hin — 1) + 85 0 = \(64% — 46?) - hous — 80
8hin in 8hout out
2 2
hin =1— — hout = i

o N322 — o2

3To keep the model as simple as possible, the isotropic total variation term has been slightly simplified
here.
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The levels hout, hin are thus dependent on the width é and on the weighting A\ between
regularization and faithfulness. The smaller the width and the faithful term, the smaller
hin becomes. This effect leads to a general loss of contrast. It also hints that objects of
different scales should be weighted differently. Fig. illustrates this behavior.

PSNR | MAE

a) Degraded 22.87 | 0.039

b) Minimum-Norm || 18.84 | 0.091
c) TV 29.75 | 0.018

Figure 1.4.: Motion-blurred reconstruction. Subfigure a) contains Gaussian noise with n;; ~

N(0, ﬁ). While subfigure b) displays a minimum-norm solution, the image in subfig-

ure ¢) is regularized with the total variation term. Image taken from Ref. [4].

Another field of application for total-variation-based regularization is the deconvolution of
images [5]. Images can be degraded by, for example, blur or motion. These effects can be
represented by problem with a convolution operator A and associated kernel k4, i.e.
Au = k4 *u. For an efficient image reconstruction one needs to determine the convolution
kernel k4. It is conceivable to obtain this information from, e.g., internal sensors like the

embedded gyroscope of a smartphone [6], or directly on image-based estimations via sharp
edges [7].
Even if the kernel is known, the reconstruction of the original image is not guaranteed. To

illustrate this, consider the convolution theorem
.F(kA * u) =27 - .7-"(u) . .F(kA)

A further description and proof can be found in theorem 2.15 Here, F denotes the Fourier

transform. A straightforward reconstruction reads

- (Fis):
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At first glance, the reconstruction becomes unsafe for F(k4) — 0. In subsection we
prove the ill-posedness of the underlying convolution operator. This is the reason why we

will use a regularization approach to solve
A 2
argmin 5 [[Au — 2| + | Vull, |
ueX 2

where A is the convolution operator. Fig. shows a total-variation-based reconstruction

of a deblurred image compared to a minimum-norm solution.

As we will show in this work, the here posed regularization scheme builds the foundation

for spatially-adapted regularization, which we will then generalize for the Radon operator.



CHAPTER 2

Mathematical Foundations

In this chapter the mathematical basics are introduced. First, we focus on the optimization
equation . In this context, the necessary theory of convex analysis is discussed. Sec-
ondly, the underlying operators are examined, with a focus on the ill-posedness according
to Hadamard. As a third point, a suitable space for images and a resulting regularization
functional is introduced. Lastly, an extended regularization technique with the iterative

Bregman divergence is presented.

2.1. Convex Analysis

Solving the optimization equation depends significantly on the properties of F' and G.
Differentiability is a far too restricting requirement with respect to the 1-norm. Therefore,
we cannot make use of basic constructs like the gradient. As it turns out however, convexity
is always given in our formulation. Hence, we need to investigate the theory of optimization
over convex functions. The goal is to obtain an algorithm that converges to the optimum

of the sum of two convex functions.

All basic terms are formulated for a general function f : H — R U {oco} over a Hilbert
space H. At the end of this section, the switch back to the functions F' and G is then
straightforwardly possible.

Definition 2.1.

1. f is called convex, if
fQz+ (1= Ny) <Af(x)+ 1 -Nf(y)

for x,y € H and X € [0, 1].
2. f is called proper, if the domain of f dom(f) = {x € H | f(x) < oo} is not empty.

3. f is called lower semi-continuous at x € H, if liminf, o f(zn) > f(z) for every

sequence (), with x,, — .
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To obtain a condition of optimality, we define the subdifferential on the basis of reference
[3].

Definition 2.2 (Subdifferential). Let f : H — R U {oo} be a proper function. The subdif-

ferential is the set-valued operator
of : H — 2™ x—={ueH| fly) > flx)+(y—x,u)y VyeH}
Elements of 0f(xg) are called subgradients of f at xg.

In case of convexity df(z) is non-empty for all x € dom(f). In general, the subdifferential
determines all possible slopes of an affine lower bound that is touching the respective point.
The connection to a derivation in the differentiable case becomes clear. If f is proper,

convex, and Gateaux-differentiabld]] in 2 then
9f(xo) = {V f(xo)}.

Via the subdifferential, we receive an adjustment of the first order optimality condition for

convex non-smooth functions. This is known as Fermat’s rule

x € argrﬁinf(u) < fly) > f(x)+ (y —x,0) for all y € H
ue

< 0edf(x).

Furthermore, this lead to a characterization for the following operator.

Definition 2.3 (Proximal operator). Let f : H — R U {oo} be convex, lower semi-

continuous, and proper. The proximal operator Proxy : H — H is given by
e 2
x— argmin | = |z —ul|” 4+ f(u) ).
uceH 2

Intuitively, the proximal operator takes a step towards the optimum, while large distances
to x are penalized. This principle is similar to the well-known gradient descent. However,
Prox; is also defined for non-smooth functions. At first glance, this seems to be of little
help to the problem, since we exchange one optimizing problem with another. On the other
hand, by taking a closer look at the following subdifferential characterization, it is possible

to calculate the proximal operator.

Proposition 2.4. Let f : H — R U {oo} be convex, lower semi-continuous, and proper
with argmin f # (). Then,

LA function f is called Gateaux-differentiable in zo € dom([f), if there exists a unique Vf(z) € H such
that for any y € H the directional derivative is given by lima~,0 = (f(z + ay) — f(2)) = (y, V.f(x)).
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1. for x € H holds
p = Prox¢(z) & = —pedf(p).
2. x € argmin f < x = Proxy(z)

3. ¢ gargmin f = f(Proxy(z)) < f(x)
4. the sequence (z(F)),,

) = Proxvf(x(k))

is a minimizing sequence of f and converges weakly to some point in arg min f, where
v >0 and 20 € H.

Proof.
1. See reference [9).

Fermat’s rule
<

2. x =Proxy(z) ©xcax+0f(r) 0 df(x) x € argmin f

3. By assumption x ¢ argmin f. Let p = Proxy(x). With 2. p # x
1 2 1 2
fl@) = f@) + 5 o — ol > 5 lle = ol + £(0),

which implies f(z) — f(p) > % ||= —p|* > 0.
4. See references [9, [10].

O]

The iteration rule from Prop. [2:4.4] leads to the so-called prozimal point algorithm. With
respect to Eq. (L.2), a calculation of Prox p(y)+¢ (k) is difficult to perform directly. Further,

terms of F' and G with respect to K have to be considered separately.

Definition 2.5 (Fenchel-Legendre conjugate). Let f : H — [—o00,00]. The Fenchel-

Legendre conjugate of f is

ffiH — [—o0,00], u v+ sup(z,u) — f(x).
TEH

The bi-conjugate of f is (f*)* = f**.

It can be shown that f** < f. In addition, f** is the pointwise supremum over all continuous
affine lower bounds on f. Figure shows a sketch of the introduced basic definitions.

Proposition 2.6 (Fenchel-Young inequality). Let f: H — R U {oco} be proper. Then for
all z,u € H:

f@) + 7 (u) = (z, u).
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— flx) — f*(x) slopes for Jf(xo)

Figure 2.1.: Basic definitions in convex analysis. Since f is a non-convex function, there are regions
where the subdifferential is empty. At z; a lower semi-continuous point is present. The
red area marks all possible elements in df(zg). The bi-conjugate f** generates the
convex lower bound.

Proof. Let x,u € H. Since f is proper, f* > —oo. If f(x) = oo, the inequality holds
obviously. If, on the other hand, f(z) < oo, then

fH(w) = sup(u,y) = f(y) = (u, ) — f(x).

yeEH

The following theorem states a connection between df and Jf*.

Proposition 2.7. Let f : H — R U {oco} be proper, lower semi-continuous, and convex.
Let x,u € H. Then

uedf(x) < fl@)+f(u)—(z,u)=0 <& xe€df(u).

Having introduced these concepts of convex analysis, equation ([1.2) can be solved. For this
purpose, we switch back from the general function f to the (explicit) functions F,G and

redefine the problem.

Definition 2.8 (Primal-Dual problem). Let X, Y be Hilbert spaces. For convex functions
F:X -5 RU{x},G:Y — RU{c0}, and a linear operator K : X — Y we define

P(z) =F(z)+ G(Kz) and D(y):=—-F"(—K"y)—G*(y).

The problem inf,cx P(z) is called primal problem, whereas sup,cy D(y) is called dual
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problem. With the Fenchel-Young inequality one can conclude

P(z) > inf P(z") > sup D(y') > D(y).

r'eX y'ey

Furthermore, A(z,y) = P(z) — D(y) is called duality gap. If A(z,y) = 0, then x and y

must be optimizers of the primal and dual problem, respectively.

Proposition 2.9. The pair (z,y) € X X Y is a solution to the primal and dual problem if
and only if Kz € 0G*(y) and —K*y € 0F (z).

Proof.

(z,y) is a solution < P(x) = D(y)
Fa) + G(Kw) = —F"(=K"y) - G*(y)

F(=y) = (&, =) + (G(z) + G*(y) = (x,y) = 0)
+F*( K*y) — (z,—K"y)) =0

A (G(Kz)+ G*(y) — (Kz,y) =0

The third equivalence holds with the help of the Fenchel-Young inequality. Through propo-
sition 2.7 follows
Kz € 0G*(y) N —K*y € OF (x).

O

With this knowledge, an algorithm can be constructed, which needs only the proximal

operator of F' and G*, separately.

Algorithm 1: Primal-Dual algorithm

Data: F, G proper, lower semi-continuous, and convex; K : X — Y
Result: argmin, F(z) + G(Kx)
Initialization: 7,y > 0 with 7y | K|? < 1,
(29, y0) € X x Y and set #© = 20,

while Hx( ) — k=) H / H k)H > tol do

y(kH) Prox,g+(y (k )+’7K£L'( ))

2D = Prox, p(x®) — 7K *y(k+1))

GO+ = gt1) 4 (plh+1) _ p(k))

k=k+1

Theorem 2.10 (Primal-Dual convergence). The sequences (z(F);,, (y*)), created by the

Primal-Dual algorithm converge weakly to solutions of the primal and dual problem.

For the underlying proof and other convergence properties, see reference [11].
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2.2. lll-Posedness of Linear Operators

The description of inverse problems in equation ([1.1)) is introduced via a linear operator A.
A more profound analysis of the underlying linear operator in the Radon and convolution
problem is presented in the following. The ill-posedness according to Hadamard’s criteria

is examined for both.

Definition 2.11 (Linear operator). Let X, Z be normed spaces then A : X — Z is called

a linear operator when for all ug,u; € X and A € R the following conditions apply:

2. A(up +u1) = A(up) + A(uq).

| Aull
[[ull

‘ ||lu|| # 0}. A is continuous if

and only if A is bounded, i.e., there exists a constant ¢ € R with || A < ec.

The operator norm of A is given by ||A|| == sup,cx {

We first define the Fourier transform, which is required for fundamental investigations of

the convolution and Radon operator.

Definition 2.12 (Fourier transform). Let f € L'(R?). The map

(FNE = 5= [, f@)e =

denotes the Fourier transform. The inverse Fourier transform of w € L*(R?) is given by

—Lw)(z) = ! w(x)e®E
(Fhu)(a) = o= [ w@etae.

T or
2.2.1. Convolution operator

In the following, we focus on the case of convolution which was introduced in chapter [T}

Definition 2.13 (Convolution operator). The operator A : L?(R?) — L?(R?) with
(A)@) = (ka x w)(a) = [ Kale =)y

denotes the convolution operator. We call ky € L'(R?) the integration kernel.

Proposition 2.14. The convolution A is a linear continuous operator regarding to L?(R?).

Proof. Linearity follows directly from linearity of the integration operator.
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One can show that continuity still applies
2
= L. (/R? \/m\/mu(:v — z)dz) dz
< /R2 ”kA”Ll(RQ) (/R2 ka(z)u(x — z)de) dz

= lkall 1 gy / / w(z — 2)2daka(z)dz
R2 JR2

= [lkall7s e 72 (e -

With the following theorem, the problem can be re-formulated in Fourier space.

Theorem 2.15 (Convolution theorem). Consider f,g € L'(R?). The convolution theorem
states that

F(fxg)=2n(Ff)(Fg).

Proof. Let £ € R?. Then

F(f+9)(6) = f/ _”f/fa:— y)dydz

— 1/ —%yé/ f(x iy(:v—y)fdxdy
2

=27 [(Fg)(E)F (€

O]

Based on these properties, the ill-posedness of the convolution operator can be revealed.
The following theorem points out this difficulty by investigating an explicit kernel, the

Gaussian kernel.

Theorem 2.16. Let k4(z) = %67%(‘*%*"”%) be the Gaussian kernel and A : L%*(R?) —
L?(R?), with Au = k4 * u. The inverse problem z = Au
1. generally does not have a solution,

2. if a solution exists it is unique,

3. but not continuous in z.
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Proof. 1. Since ks € C*®(R?) N W°!(R?) and Young’s inequalityEl holds,

uk (0%a4) = 0% (u*ka)

is true for every multi-index a. Therefore, Au € C°°(R?) and if z is not differentiable,

Au = z does not have a solution.

2. The uniqueness applies, since

z=Au & F(z) = F(ka)F(u) < u:]—“1<

3. Let F(zx) = Xke,+[0,12- With the Plancherel theorem one can infer

HZICHLQ(RQ) = H]:(Zk)”m(Rz) =1 VkeN.

The discontinuity for A~! follows from

F(zr)
Jonllogeey = I o)y = |

L2(R2)

|z| =00
-

since F(ka)(x) 0.

2.2.2. Radon transform

F(z)
F(ka)

> 00,

The next step is a similar investigation of the Radon operator R of computerized tomo-

graphy. This includes a discuss of the ill-posedness of such transformation on R?, based on
references [12), [13]. Usually, the Radon transform is defined over smooth functions whose

derivatives (including the function itself) decay at infinity faster than any power. The

associated function space

S(R?) := {u e C®(R?) : |2°DPu| < C(o, B) Vo, B € NQ}

is called Schwartz space.

Definition 2.17 (Radon transform). Let C == {(0,s) : § € S',s € R}. The map

R : S(R?) — S(C), with
(Ru)(8, s) = / u(x)do(z),

z-0=s

is proper, linear, and continuous. We call R the Radon transform.

llus ol < llullpy [vlle for 5+ ¢ =1+ % with p,q,r > 1.
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As described in section we get integrals for every angle § € S'. In the following, we
develop an inversion formula for R. A first necessity is the L?-adjoint operator, also called

back-projection.

Theorem 2.18 (Back-projection). The map R* : S(C) — S(R?), with

(R*v)(x) = / (0,2 - )0
Sl
for z € R?, is the L2-adjoint of R.

Proof. Let u € L*(R?) and v € L?(C). Then

(R, v) 20y = /R /S 0(8,5) (Ru) (6, 5)dfds

:/ /510(9,5) /xie:s u(z)dzdfds
/S 1 /R u(x)o(8, x - 6)dzdd

_/RQ (x)/s (6, 2 - 0)d0dz
:<U,R*’U>L2(R2).

O]

The name back-projection hints that one deals with a certain kind of inversion. This, and

the difference to an entire inversion, is clarified in the following theorem.

Theorem 2.19. For u € S(R?) holds

R*Ru = 2 (’H *u)

Proof. Let x € R?. Then

(R*Ru)( /Ru&w@@

:/ / u(y)dydé

St Jy-0=x-0

= / / u(x + y)dydd
St Jy-6=0

—|50|/ @+ y)
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Note the convolution in the inversion formula of the Radon transform. First, two properties

are needed before an adjustment to the back-projection can be constructed.
Theorem 2.20 (Fourier-slice theorem). Let u € S(R?), § € S*, and s € R. This yields
1
F(Ru)(0,0) = —F(u)(o - 0).
27
Proof.

F(Ru)(0,0) —;/(Ru)(ﬁ,s)eisgds

™ JR

1 .
:%/R/xﬂ:s u(z)e” 7 dxds

1

:%/]R? u(x)e w0y

Z%(fu)(o-ﬁ)

O]

In a next step, we discuss an important connection between the convolution and the Radon

transform.

Lemma 2.21. For h € S(C) and u € S(R?) holds

(R*h) * u = R*(h * Ru).

See reference [12] for the proof.

With this, the convolution can be transferred from the image space to the data space. The

so-called filtered back-projection is obtained.

Theorem 2.22 (Filtered back-projection). For u € S(R?),
= LR (Ru )
u= u

is valid, where F(h)(z) = |z|. The convolution kernel h is referred to as Ramp filter.
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Proof. Let z € R?, then

LR (s Ru)) (@) =~ /51 (h+ Ru)) (0, - 0)d0

4 41

1 1 10T

- /Slg/R(%r\U\}"(u)(J))e 9dodd
1 10T

— /Sl /]R+ o(F(u)(0))e" 0 dodd

= [ Fl©eta
T JR2

=u(x).

O]

Now an inversion formula is established with R~!(-) = LR* ((R(-) * h). By examining this

equation, we obtain the following continuity property.

Theorem 2.23 (Ill-posedness of Radon transform). Let K C R? be compact. There exist

some constants ¢y and ¢, with
co lull go(rey < [IRull g2y < e llull gomey  Vu € C5°(K).
Furthermore, for z = Ru,

==

The inverse of the Radon transform R~! is therefore continuous if and only if the data

L2(R?)

12 (82) < cp HZHHl/Z(C) < % HR Z’

space norm contains derivatives of half orderf]]

For an underlying proof based on the Sobolev theory, see references [12, [13].

Even if there exists a continuous inversion with respect to a certain Sobolev space, this is, as
shown, not the case between general L?-spaces. With the knowledge of the noise behavior in
computerized tomography from chapter [} one generally obtains a discontinuous inversion.
Thus, the Radon transform violates the third Hadamard’s law and creates an ill-posed
problem. This already becomes visible in the reconstruction proof in theorem [2.22] The
underlying noise of the data F(u)(0, o) is amplified with magnitude |o| in the intermediate
result. For large |o| we also get arbitrarily high reconstruction errors, even where the data

noise is small.

In addition, other examples exist that deteriorate a reconstruction. A low-dose version that

processes over a few equally distributed angles may be one example [I4]. Another is an

3The Sobolev space H(R?) of real order a is defined by H® := {f € S*(R?) : (1+|£))*/2F(f) € L*(R?)}.
See chapter 7 in reference [I2] for an introduction to the underlying theory.
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angle limitation where a certain range of measurements are not included in the sinogram
[15].

2.3. Regularization

Both problems were shown to violate Hadamard’s third rule of a continuous inverse. If only
the existence condition is affected, the minimum-norm solution would suffice (remember
Fig. . For our applications, however, we examine the optimization problem . In
order to investigate specific problems of imaging, we will finally present an appropriate

concept for the convex regularization functional G.

2.3.1. Functions of bounded variation

In chapter [L.2) we briefly discussed a suitable regularization variant for images in the discrete
case: the total variation as the 1-norm of the gradient. Now we model the theoretical basis

for this approach. Our target is the existence-proof of a minimizer of equation (|1.2)).

The common approach includes splitting the image z € L?(Q) into two components, z =
u + v. This splitting is a reminiscent of the initial problem , where u and 7 differ in
similar whiteness, since u consists of the essential geometry of the image, whereas v and
n contain high oscillations. In this model u € BV(Q) represents a function of bounded
variation, while v := f — u defines the residual. This concept was pioneered by Rudin,
Osher, and Fatemi in reference [16] and is known as the ROF model. In the following, we

focus on the interaction between total variation and the space BV (Q).

The essential structure of the image as a function with bounded variation is defined with
constraints on the weak derivative. The following theory of the space BV(£2) is based on

reference [I7]. Throughout this section we denote by 2 a generic open bounded set in R2.

Definition 2.24. A function u € L'(Q) is called function of bounded variation, if the weak

derivative can be expressed as a Radon measure p € M(int Q). In other words,
| ¢@- @) == [ pl@)dut)

applies for all test functions ¢ € C& = {(p = Cl(Q) ’ gp|8ﬂ = 0},

If uw € BV(Q), the weak derivative is often denoted Du.

Definition 2.25 (Total variation). The total variation for some u € L'(Q) is given by

V() = sup{ [ u(e) ¢ @)de | ¢ € B, Il <1}
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Theorem 2.26. For v € L'(Q2) holds

u € BV(Q2) & TV(u) < oo.

See reference [I7] for the underlying proof.

As consequence, the definition for functions with bounded variations is often directly defined

BV(Q) = {ue L'(Q) | TV(u) < oo}, [llgy = Iz + TV().

Main properties of the TV-functional, obtained in references [I7, (18], can be summarized
as followed:

1. TV(:) is a semi-norm on the Banach space (BV(Q), [|-|lgy)-
2. TV(-) is proper, convex, and lower semi-continuous on each LP(Q2), 1 < p < oc.

3. Let u € LY(Q2). Then u € BV(Q) if and only if there exists a sequence (uy), C C*(£)

converging to v in L'() and satisfying
TV(u) = lim / |Vug|dr < oco.
k—o0 JQ

Another important property for the existence-proof of minimizers can be found in the next

theorem, which is based on reference [19].

Theorem 2.27 (Poincaré-Wirtinger inequality in the BV-space). Let Q C R? be a Lipschitz

open bounded set. Then, there exists a constant ¢ > 0 such that
lu—m(u)llpiq) < cTV(u) Yue BV(Q),

where m(u) == ﬁ Jo u(z)dz is the mean-value of .

Proof. Let u € BV(2) and (ug)r C C*°(2) be a sequence such that

Jim fug = ullpag) =0, lim TV(u) = TV()

Furthermore, u;, € W' since Q is bounded. In addition, limy_,oo m(uy) = m(u) so the

Poincaré-Wirtinger inequality for the Soblev-space W11(Q) infers
lue = m(ue)ll 1) < ellVurll ) = TV(u) VEEN
for some ¢ > 0. The result is obtained by going to the limit. O

We are able to prove the existence of a minimizer in the next theorem, following the scheme
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presented in reference [20].

Theorem 2.28. Let Q, ¥ C R? be an open bounded Lipschitz domain. For a linear bounded
operator A : L?(Q) — L?(X) that does not annihilate constant functions the problem (with
A>0)

A
in |€ — |[|Au — TV
unggr(lQ)[ (w) = 3 [ Au 2|72y + TV(w)]
has at least one solution. If A is injective, this solution is unique.

Proof. The functional £ is convex and lower semi-continuous, since TV and the norm are

both. In addition, A is a linear bounded operator. We proof the BV-coerciveness, i.e.
[lully(q) = o0] = [E(u) — oo].
Let u € BV (). The following decomposition holds true
u=w+wv, with w=m(u)xyq and /dex =0.
We obtain

lullgva) < lwllgv) + Ivlsve
<llwllpry + IVl 1) + TV (v)
<lwllpigy + (@ +e1) TV(v)

for the constant ¢; according to the Poincaré-Wirtinger inequality [2.27]

Since A does not annihilate constants, there exists co > 0 independent of w such that

[Awll 25y = 2wl p1q) -

Further,
E(u) > TV(v) + [|Aw + Av — 2|70
>TV(0) + | Aw| 25y (1Aw] 25y — 21 Av = 2 125
> TV (v) + | Awl| 125y (c2 1wl 1y = 201N 101 L2y + 1121l 220))
> TV (v) + [|Awl| 125 (c2 [[wll 11y — 20 Al er TV (0) + |2 2(0)))-

We have to distinguish two cases:

L ez [lwllr o) — 201 Alles TV() + 2] 2g0) > 1.
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Then £(u) > TV(0) + ¢ [ Aul] 25y and
<Lle <(Lriva)e
ol < €0 Nulloy < (5 1+ 1) EGw)
2. calfulls @y — 2014l &1 TV(0) + 1l ) < 1. Then

1
ol ey < o (14 200 Aller TV() + 2] 12gqy))

142|212 2||A| 1
lullgy - @< (

C2

+(1+ cl)) E(u).

C2

The combination of both cases shows the BV-coercivity.

Let (ug)x be a minimizing sequence for £. As shown, (uy)x is BV-bounded. So there exists
a subsequence (ug;); that converges weakly to some 4 € L?(2), since A is a continuous
linear operator (the sequence (Auy,); converges weakly to Aw, too). As convexity and

lower semi-continuity of £ is given, we obtain

£ < (o)) = 3, 0

Since ||'||%2(2) is strictly convex, the uniqueness directly follows for an injective A.

O

We have proved the existence of an optimizer and the validity for a special version of

equation ([1.2]).

Remark. The total variation can lead to so-called staircasing effects: The appearance of
unintended edges can be observed. This can be prevented by considering higher derivatives
in the TV-norm. In reference [I8] this extended regularization is investigated. This is not
required and, in addition, unnecessarily complicates numerical implementations. Therefore,

we will mainly work with the first-order total variation. Fig. [2.2]shows the described effect.
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Figure 2.2.: Staircasing effect on total-variation-based regularization. A comparison of the underly-
ing two-dimensional images can be found in Figure @

2.3.2. lterative Bregman divergence

Now, we consider an iterative extension of the regularization function. With this, we prevent
the contrast loss of total-variation regularization (remember example . In this method,
the iterative procedure converges from an over-regularized towards the degraded solution.
This process is based on the regularization functional. The iterative procedure stops as
soon as the spacing between solution and data becomes smaller than a threshold. Since
this method applies to arbitrary convex regularizations, we speak once again of a general
convex regularization function f in the following. The algorithm will later be reformulated

in terms of the concrete TV-functional.

Definition 2.29 (Bregman divergence). Let f : H — R U {oco} be a proper, lower semi-
continuous, and convex function. For p € 0f(y), the so-called Bregman divergence between
u,v € dom(f) is defined by

The symmetric Bregman divergence reads

D™ (u,v) = Di(u,v) + Dj(v,u) = (g = p,u = v),

where p € df(v) and q € Of (u).

This concept (see Fig. [2.3) can be interpreted as a distance between f at point u and a

linear extension in u developed around v. In particular

Di(u,v) = f(u) = (f(v) + (p,u—v)).

linear extension
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i ﬂw}d
% [ -
f(v) |

slope
peIf(v d = DY(u,v)

Figure 2.3.: Visualization of the Bregman divergence.

The slope of the linear extension is based on the subgradient p € df(v). Intuitively, we
get something similar to a distance between two points with respect to a convex functional.
Several well-known divergences, e.g. the Kullback-Leibler divergence, are based on this idea
[21]. Even if the Bregman divergence is not a metric in the narrow sense - since it is not

symmetric and the triangle inequality does not hold - there are some similar properties [22]:
L. Di(u,v) >0 Vu,v € H.
D?(u,v) =0 = u=v Yu,veH.

D’}(u, v) is convex in the first argument but not necessarily in the second one.

= W N

For f strictly convex, ch(u, v) is also strictly convex in u for each v. As a consequence,

conclusion 2 holds in both directions.
Therefore, D? is often called Bregman distance.

The next step involves the concretization to our imaging case. We set the Bregman diver-
gence in respect to the total variation, f(-) = TV(-). Investigations are now set up for the
explicit fidelity term F(u) = 3 ||Au — z||%2(2). We recall the same setting as in theorem
where A : L?(Q) — L?(X) is a linear bounded operator. The process is now iterated:
We iterate from an initially over-regularized solution towards the disturbed version along

the TV-functional. This results into the iteration rule

. A
u%“’=m%%%Cf“”@%=QﬂAu—dﬁmn—TVW%U—Qﬂiu—um>+TVW),
ue

with  p® ¢ aTV(u®).

With respect to reference [23], we show the well-definedness of the iteration in the following
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theorem.

Theorem 2.30. Let ug = 0 and pg = 0 € TV(up). For each k € N there exists a
minimizer u**1) of Q(k+1). There exists a subgradient p(k'H) c aTv(u(k+1)) and q(kz+1) _
9 {% A - —Z||%2(E)}, such that

(k) _ (k+1)

p(k+1) q ]

=D
The minimizer v**t1) is unique if A is injective.

Proof. This can be proven via induction. Since ug = 0 and py = 0, we have Q) (u) =
2| Au— z||%2(2) + TV (u) and according to theorem there exists a minimizer, as well
as pM) = ¢M. In addition, we introduce an auxiliary variable () := A(z — Au), so that
pM) = A*r() applies.

Now we proceed from k to k + 1 and assume that p(*) = A*r®) for r*) ¢ L2(¥). Under

these assumptions, the functional Q*+1) is convex and lower semi-continuous. The following

estimation holds
QUk+1) :% 14w — 2)1 72y — (™), u — u®) + TV (1) = TV(u®)
:% | Au — 2|32 — (P8, Au — Au®) + TV (1) — TV(u®)

2
=— HAu—z— /\717“(]“)‘ + 1<Au_Z»_)\*17«(/’4)’7«(1f)>
L2(%) 2

1
+ §<r(k), Au—2) — (r® | Au — Au®) + TV (u) — TV (u®)

:% [ =2 = A7) (—z — Au® _ \~Lp®) ()

2 1
e 2
(r® 2 — Au®) 4+ TV (u) — TV (u®)

-

2
L*(%)

_A |12 (*) )
=3 [Au = 2| 72(s) + TV(u) — (r'™, 2 — Au™™) + )

— TV (u®)

for z =z + A1) € L2(%).

Only % |Au — z H%z(z) and TV (u) are not constant on the right-hand side of the inequality.

Therefore, Q1) is BV-coercive and the existence-proof follows the same way as shown in

theorem 228

By strict convexity of 5 ||A - —z||?, the uniqueness of the minimizer follows as before via the
injectivity of A. With 8(—(p®),.)) = {—p®*)} the optimality condition for this problem
implies

A
p® € 9TV +0 | TIA- 2o | (),
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which proofs the existence of p*+1) € 9TV (u*+D) and ¢*) = AA*(AuF+D — 2). With
rkt) = (k) — X(AuF+D) — 2) € L2(Q) and p*+D) = A*r(*+1) | we obtain

PR = k) _ (kt1)
O

A general convergence theorem can be found in reference [23]. With respect to our noisy
data, we consider a specialized form: We suppose that zy is the true noise-free image and
that @ is a minimizer with 3 || Ad — zgtHQLQ(Z) = 0. In addition, we model a positive number
0 as the noise level with \
- 2 2
S 14a = 23y < 02

For this case, we conclude this section with two theorems, whose proofs are provided in

reference [23].

Theorem 2.31 (Decreasing divergence). Let @, z, and z4 be such that @ is a minimizer of
2
A _thuiz(z) and 5 || A% — ZH%Z(E) < 62 holds. Then, as long as 3 HAu(k) - ZHLQ(E) > 02,

the Bregman divergence between u(®) and @ is decreasing. More precisely,
I (k=1)
DR (i, ul )) < Dhy (i, ufh).
We set a stopping index with
._ A 2 2

where 7 > 1. The obvious choice of 7 = 1 is too severe to guarantee the boundedness of
TV (ug,).

Theorem 2.32 (Semi-convergence for noisy data). Let Aa = z. With the assumption of
theorem and stopping index k. (d), TV (uy, (s)) is uniformly bounded in § and as § — 0,
there exists a weak-" convergent subsequence (uy, (5,)); in BV(Q2). If the set {k.(0)}scpr+ is

unbounded, the limit of each weak-* convergent subsequence is a solution of Au = z4.
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Figure 2.4.: Solution of the iterative Bregman method for the case of a square. The subfigure on the
left shows the cross section over different iterations. The subfigure on the right displays
the relation to the discrepancy principle based on the mean squared error (MSE). The
underlying images are given in Fig. [C.2]

We merge the results into an algorithm that we call BTV from here on.

Algorithm 2: Iterative Bregman algorithm with respect to total variation (BTV).
2

Input: u® =0, p(o) = 0, noise-variance o
while HAu(k) - z’ Loy O || do

(%)
Solve via Primal—%)ual algorithm the discrete version of

, weight A.

A (k)
w1 = argmin 5 | Au — z||%2(2) + D%k, (u, ut).
ueL?(Q)

p§§+1) — pg? _ )\A*(Au(k:-‘rl) o Z)i.j
L k=k+1

Solving via the Primal-Dual algorithm is possible with a simple adjustment of Proxp, see
example[A2] The application of the BTV algorithm to the square example [[.I] can be seen

in Fig. 2.4
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CHAPTER 3

Spatially-Adapted Regularization

In this chapter we deal with another concept of enhanced regularization. With the Bregman
method, we introduced an iteration which proceeds from an over-regularized solution to the
degraded data along the TV-functional. A similar iterative approach will be used for the
spatially-adapted version as well. We have already seen in example [I.1] that the weighting

depends on the nature of an object. However, an image consists of many different objects:

"The fact that in general images are comprised of multiple objects at different
scales suggests that different values of A localized at image features of different
scales are desirable to obtain better restoration results. For this reason, the

use of a spatially dependent regularization parameter A € L>(2) was proposed
[...]." [24]

The next two sections list a way which spatially adjusts the regularization parameter based
on variance estimation. The sole change in the optimization problem is the weighting

parameter A which is promoted from a scalar to an element of L>°(Q). In particular,

arg min 1 / M) (Au — 2)?(z)dx + TV (u). (3.1)
u€BV () Q

To find an appropriate choice of A(z) will be the main quest in the following chapter. For
the parameter selection, which is based on variance estimation, we first have to restrict the
problem to the image processing case. For this special case, the fundamentals are described

in order to extend them later to the Radon operator.

3.1. Formulation for Image Processing

We will first establish a constraint problem for describing the spatially-adapted regulariza-
tion. Secondly, we demonstrate a connection to the form of Eq. (3.1]) in order to solve the
problem by the Primal-Dual algorithm. As a third point, we then transfer the regularization

and the associated variance estimation to the discrete case.
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To introduce the theory of local regularization, we restrict the linear operator A to the
convolution special case as mentioned. Thus, the starting point agrees with the one of the
references [24], 25], which allows us to introduce the basic concepts of their work. This type
of operators has a significant advantage in considering the residual, which is the basis for

variance-based spatially-adapted regularization.
Definition 3.1 (Smoothed residual). Let w € L*>(€2 x ) be a normalized filter and w > 0
with

[ [e@e=1 [ [ w@yétdpe> elolfen, ¥oe*@).
QJo QJo
The w-smoothed version of the residual S is defined as

S:LA(Q) — L™®(Q)

(Su)(a) = [ wle.)(Au =)y,

Note that Su may be interpreted as a local variance. The inequality property for the
normalized filter shown above must hold to guarantee boundedness in proposition|3.5] Based
on this definition, one foresees the necessity of restricting the operator to the convolution
case. A smoothed version of (Au — z)? only makes sense if local information of an object is
bound together in a neighborhood. On the contrary, when considering the Radon operator,
we have global information in every point of the data space. In section[3.2} we will formulate
an extension that also allows the consideration of the Radon operator. Meanwhile, we stay

with A as a convolution operator.

Lemma 3.2. The following properties of the local residual S are valid.

1. The Fréchet derivative of S in u with direction v € L?(2) is given by
35 (usv) = 2 [ wiz,y)l(Au - 2) A0 (y)dy.
2. S is continuous and (pointwise) convex.
Proof. 1. Let u € L*(9). Then,

5 (us v) = lim ~(S(u + av) — S(u))

a—0 «
= ilg%) é (/Qo.)(x, Y)[(Au — 2)* + 20 Audv — 20 Avz + o AvAv)(y)dy — S(u)>
:iil_%é <S(u) — S(u) + 2a/ﬂw(:n,y)[(Au — 2)Av](y)dy + QZ/Qw(x,y)AUAv(y)dy)

=2 | w(a,)[(Au = 2)4](y)dy.
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Since ||S(u +v) — S(u) — 6S(w;v)|| =0, S is Fréchet differentiable at u with Fréchet
differential 65 (u, -).

2. The continuity follows from point 1. For the convexity: Let wug,u; € L?(Q) and
A € [0,1]. Then,
SO+ (1= M) = | wle,y) (Al + (1= M) = @)y
= [ wlan) WA = 2) + (1= X) (4w — ) )y
< AS(up) + (1 — X)S(uy).

The third inequality holds due to the convexity of u +— u?.
O

Unlike before, data fidelity is now described in a novel way. Based on the smoothed residual,
the distance between reconstruction and measurement must not exceed the size of the noise

variance.

Definition 3.3 (Local ROF-model). For a linear bounded operator A : L*(Q) — L?(Q2)

and the local residual S, we define a new constrained formulation with

argmin TV (u),
uel

where U == {u € BV(Q) : S(u) < 0% a.e. in Q}.

In the following sections, the local ROF-model is investigated.

3.1.1. Existence of a solution

We will now prove the existence of a minimizer of the local ROF-model, which requires the

following properties of U.

Proposition 3.4. U C BV(Q) is closed and convex.

Proof. U is closed since the set {u € BV(Q) : u < 02 a.e. in 2} is closed and S is continuous.

The convexity is a direct consequence of the convexity of S from lemma [3.2] ]

Proposition 3.5. Assume that A does not annihilate constant functions, i.e. Axq # O.
Then, the set Y C BV(Q) is bounded in BV(Q2) or, more precisely with respect to BV-

coerciveness,

[Nlullpy — o] = [j(u) =TV (u) + /Q/Qw(x, y)(Au — 2)(y)dydz — ool .
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Proof. The proof of theorem can be mostly taken over. Let us remember the decom-
position for u € BV(Q), which reads

1
u=w+wv, with w= (/udx)xg and /vd:nzO.
Q[ Jo Q

By the assumption of w € L>(€ x Q) in definition [3.1]

T =TV(w + [ [ wiey)(4u - 2)2(0)dyds
>TV(v) + €| Aw + Av — 2|72
2 TV(v) + e[| Awll 12 () (c2 [[wl[ 1) = 2([1Aller TV (v) + [[2]l 12()))-

From here on, the statement follows with the proof of theorem O

Thus, the preparations for an existence-proof of a minimizer is placed.

Theorem 3.6. Let A : L?(2) — L?(2) be a linear bounded operator that does not anni-

hilate constant functions. Then the local ROF-model has a solution .

Proof. We first recall that TV (-) is bounded from below, convex, and lower semi-continuous.
A is a continuous linear operator. We have shown that U is closed and convex. We choose
a minimizing sequence (uy),. Due to proposition (ug)r is bounded in BV(Q). Like
before, (uy,); converges weakly to some @ € L*(Q2). By the weak lower semi-continuity, one
obtains

TV(a) < ligg)lf TV((uk].)j) = virel{{ TV (u).

Since A is a continuous linear operator, (Auy;); converges weakly to Aw. Moreover, since

U is closed and convex, 4 € U. ]

The uniqueness of the minimizer depends on the filter w. In the next assumption, we

investigate the preconditions.

Assumption 3.7. Let uj,us € BV(Q) denote two solutions of the local ROF-model, with
uy # ug. If there exist a 6 > 0 and Q5 C Q, with |[Qs| > 0, such that

2
(;A(ul + ug) — z) < % ((Au1 —2)% + (Auy — z)2) — 0 a.e. in Qy,

then there exists e¢5 such that

S (u1 ;—u2> <o?—¢5 for almost all z € Q.
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This allows to make the following statement about the uniqueness of the solution, which is

proved in reference [25].

Theorem 3.8. Assume that A : L?(Q2) — L?(2) is a linear bounded operator that does not
annihilate constant functions and suppose A1 = 1. In addition, we suppose that assumption

B is satisfied and that

inf [ w(z,y)(c—2)*(y)dy > o? a.e. inQ
ceR JO

holds true. Then, for every solution % of theorem At has the same value.

An example for a suitable mean filter that satisfies that assumption [3.7] reads

1 : w
— if —x < w

w(a;,y) w? Hy Hoo — 2 7
€p otherwise

where x € () is fixed, the essential width of the filter window w > 0 is sufficiently small,
and 0 < ¢y < min(1, ﬁ) We choose we such that [, [ow(z,y)drdy = 1. With respect to

reference [25], we have e5 = €9d|€2s].

3.1.2. First-order optimality characterization

In order to solve the problem discretely, we demonstrate a characterization over Eq. (3.1))
below. We obtain the connection by introducing a local penalty problem. We prove that
this penalty problem converges to a minimizer of the local ROF-model. Furthermore, we

show a connection via an equivalent optimality condition between this penalty problem and
Eq. (3.1).
Definition 3.9 (Local penalty problem). For the smoothed residual S, we define the local

penalty problem by

arg min | P, (u) = TV(u) + 1/ max(S(u) — o2,0)%dx| .
uEBV(Q) 2 Jo

Here, v > 0 denotes the penalty parameter.

Proposition 3.10. Assume that A : L?(Q) — L?(Q) is a linear bounded operator that
does not annihilate constant functions. Then, the local penalty problem has a solution
uy € BV(Q) for every v > 0. For v — oo, there exists a subsequence (u-, ), which
converges weakly in L?(2) to a solution of the local ROF-model.

Proof. Let @ be the solution of the local ROF-model.
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Concerning the existence result:

First, P, : BV(Q2) — R is weakly lower semi-continuous due to continuity and pointwise
convexity of S (as well as max(-,0)) and the weak lower semi-continuity of TV(:). Let

(ug)r C BV(Q) denote a minimizing sequence. Then, for all sufficiently large k£ we have
Py(ug) < Py(a) +1=TV(a)+ 1.

Since S(u) > 0 almost everywhere in  for any u € BV(Q2), there exists a constant ¢ such
that ||S(uk)ll 2 < ¢ By proposition (ug)g is bounded in BV(Q). The existence

follows from the same reasoning as before.
Concerning the convergence result:

Firstly, (uy) is bounded in BV(Q2). By lower semi-continuity, we have
TV(a,) < liminf P, (u,) < Py(a) = TV(a) = inf TV(u),

Y0 uel

where i, is a weak limit of a subsequence (u., ) in L*(£2).
It remains to show that @, € U. Because Py (u,) < P, (@) holds for all v > 0,

%/Qmax(S(uv) —0%,0)%dx < TV (a).
As consequence, we obtain
/QmaX(S(uv) —02,0)%dz =5 0.
With continuity of A, weak lower semi-continuity of max(-,0) and S, and Fatou’s Lemma,
S(iy) < o? ace. in Q
and therefore i, € U. O

‘We conclude that
Hmax(S(uv) — 02,0)‘

1
@ = o (ﬂ) , (3.2)

where o((az)x)/(ax)r — 0 for a sequence (ag), C Ry with ap "= 0.

e

For an arbitrarily fixed v > 0, we define

A5 =y max(S(uy) — )

Ay ::/ w(z,y)A\5dz.
Q
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A connection between the local penalty problem and equation (3.1) becomes clear by
observing the Fréchet derivative of both.

Proposition 3.11. The first-order optimality condition of P, coincides with that of
1 2
) / M) (Au — 2)%(2)de + TV (u),
Q
for 2\, = A(z) and all v > 0.

Proof. The calculation is directly possible by making use of the chain rule and the Fréchet

derivative of S:

5 B /Q max(S(:) —02,0)2dx] (1 0) = /Q 55w, v)y max(S(u,) — 02, 0)dy
= [ [2(du, = 2)40)
| rmax(S(u,) = 0%, 0) @)z, y)dzdy
= [ 2w, - 24l (9)dy.
The Fréchet derivative of F(-) = 3 [ A(z)(A4 - —2)?(z)dz in direction v € BV(Q) follows
with
SF(u,v) = lim ~(F(u+ av) — F(u))
— fim © ( )+ 2a / A@)[(Au — 2)Av](z)dz + o2 /Q A@)(Av)2(2)dz — F(u))

=/, AMz)[(Au — 2) Av](z)dz.

Setting A(z) = 2\, (x) shows that the two conditions coincide.
O

By convexity of the penalty problem and equation (3.1)), both problems have the same
minimizer if it exists. As long as A(z) is bounded from below, equation ([3.1]) has a minimizer
by virtue of theorem [2.28] We address this problem with the following theorem.

Theorem 3.12. Assume A is a linear bounded operator that does not annihilate constant
functions. Let @ denote a weak limit point of (., )r as vy, — co. Moreover, we assume that
)\SYH < ¢. Then, there exists a A € L®(f), a

L)

there exists a constant ¢ > 0 such that ‘

bounded Borel measure \°, and a subsequence (Vne )i such that the following conclusions
hold true:
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1. /\%k converges weakly to .

2. For all p € C(Q2) holds
/ e\ dr — / ©d)\°, and / A5, (S(uy,) — o?)dz — 0.
Q ’n/k Q Q n

See reference [25] for an underlying proof.

If equation (3.2]) holds true with o (%) replaced by O (%), i.e. there exists a constant ¢
such that

c
= T

HmaX(S(u%) B 02’0)‘ LAQ) T vy,

then A2 is uniformly bounded in L?(Q2). Therefore, there exists a weak limit X € L2(Q)
and with theorem [3.12] follows

n—oo

3 >0ae inQ S@) <o?ae in® lim / X (S(us,) — o)z = 0.
X

The last relation holds, since [, \°(S(@) — 02)dz = 0. We may equivalently write
A°>0ae inQ, X =\ 4 pmax(S(@) — o?,0) (3.3)

for an arbitrary and fixed p > 0. The connection between the local ROF-model and equation
is presented but depends on a lower bound 0 < e < A\° and the assumptions around
theorem A rigorous investigation for the case that the local ROF-model admits the

existence of a multiplier X° is beyond the scope of this work.

However, based on the statement of equation (3.3)), we are able to characterize the spatially-
dependent A(z) and construct a new iterative strategy, which will be the topic of the next

section.

3.1.3. Discrete variance estimation

To derive a meaningful algorithm, we now switch to the discrete case. Hence, the discrete
image domain {2 contains N = N X Ny pixels. The discrete smoothed residual S* depends

on a w X w window and is defined by

1
— > Tsr Tse = (2er — (Au)sy)?,

(s,1)eQ;

Sw(ui,j) =

-1 —1
0 = {(s+z',t+j>:—w2<s,t<w2 }

The Neumann boundary condition is applied.
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— N =64
N = 2562

Figure 3.1.: Dependence between the value 7 and the window size w with respect to the pixel quantity
N to imply left information in the residual S™.

The discrete version of the noise 7 in equation is also described as array-like value
of independent random variables so that 7, ; ~ N(0,0?), with 1 < i < Nj,1 < j < Na.
It is noticeable that for a small window size the process is not stable enough to require
S¥(.) a~ 2. Therefore, a boundary B(w, N) is sought such that S*(-) > B(w, N) implies

left information in the residual. We consider

} 2 . . . . 2
The sum of w”-normally-distributed variables applies T} ~ x:,.

We set )
B(w,N) =710% 7= — (E(Timax) + STD(Tiax)) (3.4)

with respect to reference [25]. Tihax denotes the maximum value of N observations dis-
tributed along foQ. An example calculation for 7 in equation (3.4) for N normal distributed

variables in 7; ; can be found in reference [25] and is shown in Fig. [3.1

With respect to the bound B(w, N), a stable variance estimator S* is defined with

S (uy ;) = . (3.5)

2

~ Sw(um) lf Sw(ui,j) Z B(w, N)
o otherwise

This ensures that the occurrence of information in the residual can be determined via S;“j,

adjusted to the window size. This is followed by the adaptation of the weight A*) according
to the following scheme: A9 is assigned a small value so that much information remains in

the residual. Therefore, S¥ (ugoj)) contains much higher variances. A(!) is increased gradually
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with respect to this value according to the following procedure:

)‘(?_1) = 5\5? + p(k) max(gw(ugz)) — 02’ 0) = 5\5? (k)(Sw( (k )) _ 0_2)
(k+1) o 1 (k+1)
Ai’j - E Z >\ )
(s,t)€Qy;

where ,0( ) > 0. Since 5’“’ is always larger than o2, the maximum vanishes. We set

(

k) = H)\(k H to maintain scaling of the new )\ kH) The following algorithm is created,

which adJusts the fidelity weight locally.

Algorithm 3: Spatially Adapted - Total Variation (SA-TV)
Data: Operator A, data z, pixel-wise noise distribution N(0, o?)
Initialization : /\Z(»S-) = /N\Eg-) € RleNZ, stepsize ( >1, L>0,k=0
Solve discrete version of Eq. (3.1) with A\(z) = )\Z(-g-) and store solution to @(® = u(9).
i (k) _ :
while HAu z‘ 2@ >0 -/[Q] do

v = (2 — Au®),

irj
)\(k+1 = (min <)\( ) + pk) < Sw(y (k)) - O') ,L>

k+1 k+1
)\Z(,j+) 1231569“’ A(+)

Solve via Primal- Dual algorithm the discrete version of

a* ) = arg mln / Ak Au — v)2(2)dz + TV (u).
u€BV(Q
U§E+1) = ul(lz) + ugﬁﬂ)
E=k+1

The starting value A(©) € RN1*N2 should be chosen small in order to evaluate the residual
effectively. While the step size ¢ describes the continuous increase in each iteration, p(*)
regulates the relationship from previous A*) to the information in the residual. ¢ > 1
is needed to guarantee convergence with respect to the boundary B(w,N). In reference
[25], ¢ = 2 is derived which comes from the notion of dyadic scales for the appropriate
highlighting of residual regions with informations left. The large positive value L is necessary
to ensure uniform boundedness of A*). Otherwise, the local regularization effect would

vanish.
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Figure 3.2.: One-dimensional image cross-section for a comparison between different regularization
techniques (TV, BTV, SA-TV). A(*) denotes a scaled version of space-different regular-
ization weight. The underlying two-dimensional images are illustrated in Fig.

The assumption that the underlying noise is normally distributed is only used to calculate
the bound B(w, N). With an adjustment of this bound (and thus the variance estimation),
other types of noise can be considered. In Fig. we see a final result of the SA-TV
algorithm. While the Bregman-based method completely eliminates smaller structures, the
global weight in TV cannot highlight the specific area between pixels 5 to 25. This area is
emphasized in the SA-TV algorithm. Therefore, the reconstruction is closer to the original

image.

3.1.4. Combination with Bregman divergence

Note that we extend the T'V-regularization in two different ways. On the one hand, we get
rid of the loss of contrast with the Bregman iteration. On the other hand, the spatially-
adapted version highlights fine structures. Both procedures operate iteratively from an
over-regularized solution towards the initial data and stop due to the discrepancy principle.
Nevertheless, both approaches differ by different problem resolutions and thus can only be
compared with each other to a limited extent. While images with many constant surfaces
are better reconstructed via the Bregman algorithm, the SA-TV algorithm provides a better

solution for fine objects.

The question arises whether it is possible to obtain both: full contrast and fine struc-
tures by combining these techniques. The concept, which is further described under the
name Spatially Adapted - Bregman Total Variation (SA-BTV), follows the idea: If we solve
the regularization by means of the Bregman-based method, one obtains a contrast-faithful
solution. From this solution, we measure the local variance using S* and calculate the
possibility of left information in the residual. According to a similar rule, the weight \(x)

is now adjusted. This is used to solve the Bregman problem once again but with the new



Chapter 3. Spatially-Adapted Regularization 40

weight A(z). This procedure is repeated until changes in the solution become negligible.

We recall the iterative subdifferential

pFH) = pk) — xA* (A — 7).

In areas with a higher value of A\, we move faster towards the original data and thus get

more details. This leads to the new algorithm.

Algorithm 4: Spatially Adapted - Total Variation with Bregman method (SA-BTV).
Input: Maximal iteration count ly, noise-variance o2, small (/\(0))2-7]- =ceR

for {=0,...,ly do

Set u® =0, p@ =0,k =0

while HAu(k) - z‘ Loy O 12| do

2(€2)
Solve via Primal—%)ual algorithm the discrete version of

u](SkTi}) = argmin ! / A® (2)(Au — 2)?(z)dz + D%\k,) (u, ul(gk%v),
ueBV(Q) 2 /0

k k D) s k
pr) = p®) 2D A (Ault) — 2),

L k=k+1
k
calculate Sw(ugl])) with (3.5)) and vz(l]) =(z— Au(l))zj
(3(+D), . = min (ng; 4 < G (u®) - a) ,L)
I+1 (41
ATV =1 2o (s e ALY
L i=1+1

Since convergence is achieved via the Bregman iterations, increasing the level of A(*+1) ig
A
ag

no longer necessary. Therefore, ¢ is omitted. Also, p*®) = 1= _ll= remains.
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Figure 3.3.: One-dimensional image cross-section for a comparison between different regularization
techniques (SA-TV, SA-BTV). A*) denotes a scaled version of the space-different regu-
larization weight (in subfigure a) for SA-TV, in subfigure b) for SA-BTV). The under-
lying two-dimensional images are illustrated in Fig. @

In Fig. we see the difference in the results of SA-BTV in contrast to SA-TV. The
contrast-loss is not reflected in the weight of the SA-BTV A\*). Thus, there is only an in-
crease in the detail range from pixel 5 to 25. The method combines the contrast preservation
of the Bregman method with the local highlighting of details from the SA-TV algorithm.

3.2. Spatially-Adapted Regularization for Radon Transform

While most of the results from the previous section are defined for general operators that do
not annihilate constant functions, the variance estimation only holds when local structures
are maintained in the data space, which is not the case for the Radon transform R. Each
area in the sinogram contains global information. Thus, we cannot separate image objects
on the basis of the residual (Ru — ).

In reference [26], this problem is solved by introducing a second variable w € L?(€2). Thus,
we formulate a new optimization problem over the pair (u,w) € BV(Q) x L?(Q). On the
one hand, w is the optimum between data fidelity and proximity to u. On the other, u
optimizes the TV-regularization in conjunction to the proximity to w. Overall, the problem

reads

3 . Q 2 1 2
BV @) Llu,w) = 5 [Rw = 2|2y + 5 /Q Az)(w — u)?(z)dz + TV(u)|, (3.6)

where 0 < eg < A(z) < L.
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Theorem 3.13 (Existence of a minimizer). Let & C R? be an open bounded subset,
R : L*(Q) — L?(C) the Radon operator, and A € L®(£2) be bounded in [eg, L]. Then, the
functional £ : BV(Q2) x L?(2) — R U {oo} has a unique minimizer (@, ).

Proof. L is convex and lower semi-continuous as a sum of convex and lower semi-continuous

functions.

We focus on the BV-boundedness of £ in u (independent of w). First, we obtain

a|R|” .

2
a|R|
€0 2

(u,w) >

(6%
lu— w720y > 5 IIRu — Rw| 720 -

Then,

o||R|? 1 2 1 2
(1 + H H > E(u,w) > (\/aHRw - ZHLQ(C)) + 5 (\/aHRU - RwHLQ(C)) + TV(U)

€0
Ja ’

> < (HRU/ — Z||L2(0) + ||RU — Rw|L2(C)>> + TV(U)

o

7 IRu — 2|72y + TV (u).

The second inequality holds due to the convexity of v — u?. With theorem applies
the BV-boundedness in u.

The L2-boundedness of £ in w (for ¢ = [ull f2(q) < 0) is given, since

1
;E(%w) > |lw = ull72q) > (Wl 2g) = ull 120))? = Nwll2(q) (lwll g2y —2¢) = lwll 20

for [Jwl| 2y — 2¢ = 1.
On the other hand, if ||wl|2(q) —2c¢ < 1, then

[w][ 2y <1+ 2¢

and hence
[wll L2y — (1 4 2¢) < L(u, w).

Therefore, the coerciveness holds with
H|(u>w)HBV(Q)><L2(Q) = HUHBV(Q) + Hw”L2(Q) — 00] = [L(u, w) — oo].

Let (ug, wg)x be a minimizing sequence for £. As shown, (ug, w )k is (BV x L2(£2))-bounded.

Therefore, a subsequence (uy,, wy; ); exists that converges weakly to some (@, W) € BV(Q) x
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L?(2). As convexity and lower semi-continuity of £ is given, we obtain

L(a,w) < lggiogfﬁ((ukj,wkj )j) = ueBV(s%)I}zEeLQ(Q) L(u,w).

Since |- ||%2(Z) is strictly convex, the uniqueness directly follows with the injectivity of R. [

The idea behind the extension is the splitting of equation (3.6)) into two subproblems:

u* 1) = arg min 1 / M) (w® — u)?(2)dz + TV (u), (3.7)
weBV(Q) 2 /0

w* Y = arg min @ |Rw — z||* + 1/ M) (w® — u)?(z)dz. (3.8)
welL?(Q) 2 2 Jo

Theorem 3.14. Let w(®) € L?(Q) and A(z) be fixed and bounded in [ey, L]. Then, the
sequence (u(k), w(k)) . converges weakly to the unique minimizer of equation ([3.6)).

Proof. For a fixed \(z), (u®),w*)), is a minimizing sequence, since

With strict convexity and boundedness of the objective function £, we obtain the weak

convergence of the algorithm to the unique minimizer (a, ). O

Thus, it is possible to apply a spatially-adapted algorithm to the operator-free part. In the
other part, the adjusted weight A is used in each case. Since the scales of both parts can
lead to some problems, the data fidelity weight « is increased until the distance to the data,
according to the discrepancy criterion, is reached. In order to guarantee convergence, a
spatially-dependent optimization of the weighting only takes place in the first kg iterations.
This results in an iteration sequence to regularize the inverse problem in the computerized

tomography with local weighting parameter.

Variance estimation is now structurally possible as it operates on the image space. Content-
wise, this is difficult because a desired noise-distance to w is not directly evident. Once
again, reference [26] is the basis for the approach presented here: The variance estimation
is based on the noise of the black background in the image structure. This means that
errors of the underlying operator are also taken into account. Depending on the situation,
this can also lead to problems. Spatially-dependent noise may be highlighted in this way.
For this reason, the algorithm should be used with caution. There are also differences in
the application areas around the Radon transform, which is shown in the simulations in the

next chapter.
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Algorithm 5: Versions of SA-TV and SA-BTV for Radon transform.
2

Input: Sinogram z, noise variance o
Initialization: k = 0, w(®) € L?(Q)
while Hw(kﬂ) — w(k)H / Hw(k)H + Hu(kﬂ) — u(k)H / Hu(k)H > 2 - tol do
if k < kg then

L Calculate u(®), A(z) by solving discrete version of Eq. via SA-TV or SA-BTV.

else
Calculate u®) by solving discrete version of Eq. (3.7) via TV or BTV with fixed
L A(x).

reset o to small value

hile HRw(k) - ZH > /1 do
Calculate w®) by solving discrete version of Eq. (3.§) via Primal-Dual algorithm
with a.

L increase «

L k=k+1

g
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CHAPTER 4

Implementation and Numerical Experiments

A description of the TV-regularized implementation and the associated extensions are the
topic of this chapter. In this context, the advantages and disadvantages of the four de-
veloped methods, i.e. TV, BTV, SA-TV, and SA-BTV, are discussed. For this purpose,
the three different problems from chapter [I] are considered separately: the denoising, the

deconvolution, and the reconstruction of the Radon transform.

Functionalities and properties are discussed via two particular images. The head phantom
from reference [27] represents an ideal motif with many constant surfaces and objects of
different scales. In addition, the black background enables the required variance estimation
for the spatially-dependent weighting in case of the Radon operator. A normalized version
with shape (N7, No) = (256, 256) and N = 2562 pixels is presented. Since the head phantom
is a piecewise constant image, we consider, in addition, a real object measured from a CT-
scanner, which was provided by the European Institute for Molecular Imaging (EIMI). Both

images are displayed in their original form in figure

In order to compare the quality of different reconstructions, two performance quantities are

determined

max (Uoriginal
PSNR(Uoriginala Uapprox) =20 loglo <MSE(U ( .O llg Za ) )) y
original s Yapprox

1 M1
MAE(Uoriginala Uapprox) :m Z Z |uorigina1(iaj) - uapprox(iaj”'
i=0 j=0
Since the peak signal-to-noise ratio (PSNR) is defined on the basis of the mean squared
errorEl, it penalizes high errors more strongly. In order to classify the loss of contrast
in a suitable way, we additionally consider the mean absolute error (MAE). To ensure

comparability, all of the following pictorial two-dimensional simulations were scaled to the

1MSE(uorigina1, uapprox) = ﬁ Z’j\;l(;l Zjvj(;l (uoriginal (7'7 J) - uapprox(ivj))2
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Figure 4.1.: Example figures for further investigations. A head phantom is shown on the left, whereas
a toy scan is shown on the right. The upper corners show a section of a respective picture
enlarged by a factor of 2.

range between zero and one, i.e.

1 if u(i, ) > 1
uplot(i,5) = {0 if u(i,j) <0.
u(i,j) else

4.1. Denoising

As before, the denoising is used as an introduction to the methods discussed in this work. On
the basis of this problem, we describe the individual processes to ensure the fairest possible

comparability. Overall, the corrupt image z; j = u; j +n; j is examined with 7; ; ~ N (0, a?).

First, we study the plain TV-regularization. The well-known optimization problem
A )
arg min o lu— 2|5+ TV(uw)
u

is used. For the Primal-Dual algorithm, the following proximal operators are considered
with respect to appendix [A]
_ o i ETAZ
u= ProxT(%”._zHg)(:v) S Uiy = Y

v = Prox,( )+ (z) & vij=

This depends only on the weighting parameter A, since the step-sizes 7 and  are chosen

with respect to 7y ||V||* < 1. Figure demonstrates the effect different weightings have
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a) b) c)

PSNR | MAE
a) Degraded || 14.02 | 0.159
b) A=1.0 17.71 | 0.067
c) A=4.5 25.2 | 0.023
DA=7 || 2512 | 0.032

Figure 4.2.: Regularization with total variation for different weightings. Subfigure a) represents the
initial degraded image with added Gaussian noise 7;; ~ N(0, %) The underlying
weight A in subfigures b)-d) can be found in the table above. The limit is marked in
green where Morozov’s discrepancy principle takes effect.

on the resulting image. In the following, the best possible one is chosen by systematically
increasing an initially small A until the discrepancy principle, i.e. ||u — z||, < 2560, takes
effect.

We have already seen the effect of different weights on a square in example[[.1} The behavior
observed in that example is confirmed on the head phantom as well. In summary, an over-
regularized solution produces a few constant surfaces which no longer correspond to the
original pixel-level. A high loss of contrast is the consequence. For an under-regularized
reconstruction, some artifacts occur in the solution. Via Morozov’s discrepancy principle,

we receive a suitable balancing of both effects.

After the plain TV-regularization method, this procedure was extended by the Bregman
scheme. Here, the algorithm iterates from an initial over-regularized solution towards the
degraded image along the TV-functional. We defined the optimization formula per iteration
with

) = arg min% Ju — 2]|3 = TV(@u®) = (p® 4 — u®) 4 TV (u),

pUHD) — )\ (BD) _ ),
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€

b) c)
PSNR | MAE
TV [Fig. h.2c)] || 25.2 | 0.023
c) BTV 25.71 | 0.017

Figure 4.3.: Bregman iterations with respect to the TV-functional, with A = 0.5. Subfigures a), b),
and c¢) represent the output of iteration number one, three, and six, respectively. The
initial degraded image corresponds to the one shown in Fig. IZ:Z}

The proximal operators change slightly to

T+ Tz + Tpg?
1+7A
xl?]

I

U= PIOX, (022 Tv(®) - (o) —u)) (2) & Uij =

v = Prox, (. )-() & vi; = m
Again, details can be found in appendix [A] Figure [£.3] displays three different iteration
steps of the Bregman scheme of the six iterations that were performed in total for this
input. Morozov’s discrepancy principle was reached after the sixth iteration. The number
of iterations is determined by the weight A, since in the calculation of p(¥) the weight works
similar to a step-size. To iterate closer to the limit of discrepancy, a relatively small A
is advised (here A = 0.5 is chosen). Especially for larger images this can lead to long

calculations until convergence is reached.

Overall, we see a clear improvement in contrast preservation. While the exact details are
still missing after three iterations, the constant surfaces are already at the original level.
This is further confirmed by the mean absolute error, which is reasonably lower than the one
of the plain TV-regularization. Even though an additional increase in the PSNR, smaller
details disappear almost completely compared to the previous reconstruction. Therefore,

the Bregman method has its great advantage in preserving contrast but not details.

In chapter 3] we introduce the spatially-adapted regularization, which will be investigated as
a next method of denoising. We set the step-size ( = 2 for all numerical tests of this chapter,

which is in accordance with reference [25]. The amount of iterations can be determined by
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a)
d)

f)
PSNR | MAE
TV [Fig. 4.2/ ¢)] 25.2 | 0.023
BTV [Fig. {k.3[c)] || 25.71 | 0.017
¢) SA-TV 26.48 | 0.02

Figure 4.4.: Solutions u*) and weight A(*) generated by the SA-TV algorithm. Subfigures a), b),
and c) display the solution and of the first, second, and third iteration, while subfigures
d), e), and f) shows the weight in the corresponding iterations, respectively. The initial
degraded image corresponds to the one shown in Fig. FI:Z}

the initial A\ as stated before. Furthermore, we have observed a rather stable result for

different starting values (see Fig. |C.5]).
Fig. [f.4]illustrates the different states of the SA-TV algorithm. As this simulation uses the

same initial starting weight A\(9), the first iteration of this method yields the same result the
first iteration of the Bregman algorithm. After the first iteration, the weight in the SA-TV
method is updated to A(!) and the resulting images begin to differ when compared to the

Bregman scheme.

To compensate the loss of contrast, areas of small detail are also accompanied by a much
higher weight A. This phenomenon is shown in the Fig. The bound B(w,N) di-
vides between noise and information effectively: no unnecessary weighting-region occurs.
Altogether, the higher mean absolute error indicates an insufficient contrast preservation

via variance estimation when compared to the Bregman method. Despite this, the PSNR
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PSNR | MAE

25.2 | 0.023

25.71 | 0.017

SA-TV [Fig. 4.4[¢c)] || 26.48 | 0.02
c) SA-BTV 27.11 | 0.015

Figure 4.5.: Solutions u*) and weight A(*) generated by the SA-BTV algorithm. Subfigures a), b),
and c) display the solution and of the first, second, and fourth iteration, while subfigures
d), e), and f) shows the weight in the corresponding iterations, respectively. The initial
degraded image corresponds to the one shown in Fig.

increases and it is recognizable that the reconstruction of detailed regions is much more
effective. In summary, small structures can be well reconstructed and no new edges are

created - at a loss of contrast.

In the SA-BTV algorithm, we have combined the contrast-preserving Bregman method
with the detail-focused SA-TV algorithm. Fig. [£.5]illustrates the output of three iterations.
Since the initial weight A(©) coincides with that from the previous methods, the first iteration
outputs the same image as in the BTV algorithm again. Based on the variance estimation
of this image, a new weighting is calculated. This does not highlight any contrast region
and focuses only on the two underrepresented regions, which is one of the main differences

to the soley spatially-adaptive method. Further iterations emphasize this effect.

Even though both PSNR and MAE are improved compared to the other variants, it still
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f) g)

c=20.3 c=0.2 c=0.1

PSNR | MAE || PSNR | MAE || PSNR | MAE
Degraded 10.5 | 0.238 || 14.02 | 0.159 || 20.04 | 0.079
a) TV 22.13 | 0.032 25.2 ] 0.023 30.1 | 0.013
b) BTV 22.89 | 0.026 || 25.71 | 0.017 || 31.85 | 0.008
c) SA-TV 23.91 | 0.026 26.6 | 0.019 31.8 | 0.011
d) SA-BTV || 24.06 | 0.022 || 27.11 | 0.015 || 32.42 | 0.008

Figure 4.6.: Overview for all regularization techniques and different noise rates 7; ; ~ N(0, o?). The
illustrated images are the results corresponding to the second column (o = 0.2) of the
table above.

generates new edges on fine structures which is typical for Bregman-based solutions. Again,
the number of iterations depends on the starting weight. However, by running the Bregman

method repeatedly, a considerable amount of Primal-Dual iterations have to be executed.

To finish the denoising, we compare all four outputs side-by-side. Fig. [£.6] shows the head
phantom reconstruction for different noise levels. Based on the residual imagesﬂ we can
clearly observe the advantages of every individual extension. While the two Bregman-based
methods map the surfaces much better (notice the yellow ring), the locally-adapted versions
are stronger in highlighting details. The respective advantages can be seen for all tested
noise levels in the PSNR and MAE.

Supplementary, Fig. shows a reconstructed representation of 45 samples (15 different

slices with 3 different seeds on each slice). The enlarged sections are particularly noteworthy

2The illustrated residual is chopped from above to visualize the loss of contrast in an easier way, i.e.
min('“ﬁhpprox - uoriginal‘, 0.2).
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and show similar behaviors as before: The Bregman-based methods can reconstruct the
bright areas more originally, whereas the spatial adapted ones can recover fine structures

much easier. Furthermore, the described effects remain present for all tested o across

different images. Therefore, one may conclude that these effects hold generally, i.e. they do

not originate from specifically selected images.

a) b) c) d)

Mpsnr | oPSNR || MMAE | OMAE
Degraded 20.01 0.02 0.079 | 0.0005
a) TV 28.32 0.85 0.024 | 0.0036
b) BTV 29.19 0.74 0.019 | 0.0024
c) SA-TV 29.76 0.79 0.021 | 0.0027
d) SA-BTV 29.92 0.81 0.018 | 0.0024

Figure 4.7.: Overview over all regularization techniques. Combination of 15 CT slices and 3 different
random seeds. All of these slices were degraded by the noise ratio 7; ; ~ N (0, 1—(1)0).

4.2. Deconvolution

Next, we consider the implementation and simulated results of the deconvolution problem.
With respect to the forward operator A and associated kernel k 4, we obtain the optimization

problem

A
arg min 5 | Au — z||5 + TV (u).

Due to the properties of the Primal-Dual algorithm, an adjustment of the proximal operator

suffices for the fidelity term. We obtain these via

F(z) + T)\f(z)f(kA)*>

B 1
u = PrOXT(%”A(,)_z“g)(x) S u=F < 14+ 7AF(ka)?

x
v = Prox,( )+ (z) & v= max(1,[2])’
where F denotes the Fourier transform. The modification based on operator A is valid with

respect to appendix [A] the convolution theorem, and reference [11].
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aG1

a) b)

Figure 4.8.: Convolved images with kpjuring in subfigure a) and with kmotion in subfigure b). These
images do not contain any noise.

We investigate the deconvolution results for every algorithm on the basis of a blurring and

a motion kernel (see the effect on the head phantom in Fig. . In particular, we consider

kblurring = E 2 4 2 and  Kmotion = TO
1 21 0 1 0

First of all, we focus on the blurring kernel. Figure [£.9] shows the results for different noise
magnitudes added to the deblurred head phantom. The resulting performance - we measure
via PSNR and MAE - depends on the underlying noise level. It is noticeable that the
Bregman-based methods perform worse for smaller noise: A decreasing standard deviation
of the Gaussian noise increases the weight of the fidelity term. Therefore, contrasts are
preserved better. For such cases, the advantage of the Bregman-based methods is omitted
and a minimally worse result is obtained due to more interrelated areas. On the other hand,

the mean absolute error shows a much better contrast retention for high levels of noise.

In contrast, the spatially-adapted weighting produces better results as long as the level of
noise is not excessive. For a higher rate of degradation, it is no longer possible to distinguish
between image details and noise. Thereby, the SA-TV and SA-BTV algorithms output an
equivalent result compared to their global-weighting counterparts. For the illustrated results
(degraded with o0 = 0.1), there is a higher data fidelity in the detailed area on the right
region. The visibility of the points on detailed area to the left side was, however, not
improved due to their tiny size and the fact that the residual is determined by the blurred

variant. The latter originates from the fact that we convolve in the smooth residual S again.

The described differences are confirmed in figure[£.10] Here, a stable performance is verified
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9] 9] 9] g

c) d)

oc=0.2 oc=0.1 o =0.04 o =10.01
PSNR | MAE || PSNR | MAE || PSNR | MAE || PSNR | MAE
Degraded 13.55 | 0.159 || 18.41 | 0.083 22.14 | 0.033 23.35 | 0.0198
a) TV 21.71 ] 0.029 || 23.25 | 0.0197 || 25.79 | 0.0121 || 28.18 | 0.007
b) BTV 22.12 | 0.023 || 23.48 | 0.018 25.69 | 0.0113 || 27.92 | 0.0069
c) SA-TV 21.8 | 0.028 23.6 0.019 25.98 | 0.012 28.44 | 0.007
d) SA-BTV || 22.11 | 0.022 || 24.02 | 0.017 25.35 | 0.011 27.84 | 0.0069

Figure 4.9.: Reconstruction from a convolved image with Kpjurring and different noise n; ; ~ N(0, 02).
The presented subfigures demonstrate the outputs of the four different algorithms (iden-
tified in the table above), with o = 0.1.

by the real toy-scan. Since the noise level ¢ = 0.1 is neither too small nor too large, the
previously mentioned observations are confirmed: On the one hand we have an increased
contrast due to the Bregman-expansion. On the other hand we obtain a higher level of
detail with the spatially-adjusted weighting. Nonetheless, we can still notice a difference.
While the points of the phantom motif all separated similarly poorly, lines in the real motif
are reconstructed much better in SA-TV. For the SA-BTV algorithm the same are displayed
as a surface (see the zoomed box on the left). This leads into an overall higher MpgNg in
the SA-TV algorithm.

The observed phenomenon cannot be adopted directly to the motion kernel kpotion (see
figure . The spatial enhancement is even less pronounced. A higher data fidelity shows
hardly any improvement compared to the standard methods. In comparison, the advantage
of the Bregman-based methods, the preservation of contrast, remains recognizable for a
decreasing data fidelity. This was derived from the MAE.

Overall, it can be concluded that Bregman-based methods are more effective for deconvo-
lutions when data fidelity is low. For a higher rate of noise these approaches should receive
more attention. Such a general statement cannot be made for the spatially-adapted meth-
ods SA-TV and SA-BTV as they are dependent on the operator (here on the underlying
kernel) and the data space. If the degradation is too high, for example for the motion

kernel, these methods are ill suited.
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b) c)

Mpsnr | oPSNR || MMAE | OMAE
Degraded 19.78 0.048 0.082 | 0.0004
a) TV 27.38 0.82 0.023 | 0.0032
b) BTV 27.49 0.8 0.022 | 0.0030
C) SA-TV 28.04 0.79 0.023 | 0.0036
d) SA-BTV 27.89 0.82 0.021 | 0.0031

Figure 4.10.: Blurred image reconstruction with added Gaussian noise 7; ; ~ N(0, %00). Combina-

tion of 15 CT slices and 3 different random seeds. The subfigures represent the results
of the algorithms a) TV, b) BTV, ¢) SA-TV, and d) SA-BTV.

oG\ laC lat IaE!

a) b) c)

oc=0.1 o =0.04 o =0.01
PSNR | MAE || PSNR | MAE || PSNR | MAE
Degraded 16.27 | 0.087 || 18.14 | 0.053 18.58 | 0.038
a) TV 20.48 | 0.032 || 23.23 | 0.0192 || 28.73 | 0.0082
b) BTV 20.77 | 0.029 || 23.67 | 0.0167 || 28.67 | 0.0079
c) SA-TV 20.86 | 0.03 23.73 | 0.0188 || 28.79 | 0.0093
d) SA-BTV || 20.75 | 0.029 || 23.74 | 0.0165 || 28.84 | 0.0076

Figure 4.11.: Motioned image reconstruction from convolved image with kpotion and different noise
level n; j ~ N(0,0?%). The subfigures represent the output of the algorithms: subfigure
a) TV, b) BTV, ¢) SA-TV and d) SA-BTV with ¢ = 0.04 (column 2).
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4.3. Radon Transform

We close the analysis with the inverse problem included in computerized tomography. For

this purpose, the general optimization problem
A )
arg min o [Ru — 2[5 + TV (u)
u

is solved, where R denotes to Radon transform, A > 0, and z is a measured sinogram.

While the adaptation of the fidelity term (from a convolution to the Radon operator) is
theoretically possible without any constraints, this turns out to be immensely difficult for
the implementation. In the calculation of Prox ARz ]2 which can be found in the appendix,
the inversion of the operator was assumed. In the discrete form, a true inverse is hardly
possible due to a limited number of angles. With an explicit limitation of the limited-angle
or low-dose computerized tomography, the inversion is completely impossible. To still be
able to apply the Primal-Dual algorithm, we follow reference [28] and redefine F,G, and K.

As consequence, we can no longer separate between fidelity and regularization terms.

The following space definitions are considered

X = RNIXN2 Y =8SxV. §:= RNGXNS V.= ]R2N1 ><N2.
Here, X denotes the primal space, which defines the images as before. The dual space Y

is now a product space of sinograms S and gradients V. The linear operator K : X — Y

maps between those two spaces, with
K(z) = (Rx,Vz), K*(s,v) = R*s — V*u.
We define F': X - RU{oo} and G: Y — RU {oco}, with
A 2
Fa)=0,  Gls,v)= "1 lls— 23+l
In the case of a Bregman-based reconstruction, we divide the linear parts into F'. Now the

proximal operator of G* must be calculated. Due to properties of the Fenchel-Legendre

conjugates, it is possible to consider them separately

G (5.0) = (31 =#17) 0+ (1@, with (51— =I) ) = g5 sl + (5.2



Chapter 4. Implementation and Numerical Experiments 57

Thus, the following three proximal operators must be calculated each iteration

A

A4y
xl?]
max(1, [z ;)

s = Prox (xij —2),

A
ll-—

23 —2p)- (&) & sij =

2

Y

v = Prox,(,)-(2) & vij =
u = Proxo(z) & wu;; = x;;.

Overall, the Primal-Dual algorithm now becomes:

Algorithm 6: Primal-Dual algorithm for regularized reconstruction of the Radon trans-

form.
Data: Measurement z € S.

Result: argmin, 3 [|Ru — 2|3 + TV (u)
Initialization : 7,y > 0,
(u®, (s v)) € X x (8 x V) and set a(®) = u(©).
while Hu(k) - u(k_l)H / Hu(k)H > tol do
st tl) — Tiw (s(k) +~yRa*) — z)

B gate)
max(1,|v®) +yValk)|)
D) = (0 L (R gkt D) ()

k1) — g (k1) (u(k+1) _ u(k))

E=k+1

kD)

Therefore, we can bypass the inversion requirement and obtain a suitable alternative via

the adjoint operator.

For further simulations, we consider z; ; = Ru; j+m; j, with 7; ; ~ N (0,0?) and 0 = I luo)(l)l""

In order to get an overview of the advantages and disadvantages of the reconstruction
algorithms, we consider the three different cases: a low-dose, a limited-angle, and the fully

measured variant.

The different TV-regularization methods are compared with the filtered back-projection
(FBP) and the Kaczmarz’ method El [29]. The Astra Toolbox [30] was used for the calcula-

tion of the discrete (adjoint) Radon transform, since it satisfies
(Rz,Rx) = (z,R"(Rz)) Vze X,

in addition to a performant runtime.

3 Another iterative method named after the Polish mathematician Stefan Kaczmarz, often used in comput-
erized tomography (here computed with 5 iterations).
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4.3.1. Full-measured computerized tomography

First, we consider the results for the fully measured Radon operator. In this case, an ad-
ditive data-noise is the only constraint for the reconstruction. As before, while Fig.
demonstrates the simulation on the phantom, Fig. illustrates the reconstructions of a
slice from the toy motif. Both images follow the same behavior: There is a clear difference
between regularized procedures and direct reconstruction. In the reconstruction of the fil-
tered back-projection as well as in the Kaczmarz’ method, noisy effects persist. Due to the
discrepancy principle, noise is drastically reduced in the solutions of the regularized opti-
mization approaches. A loss of contrast is also be recognizable here: Both Bregman-based
methods, BTV and SA-BTV, perform slightly better when compared to the alternatives

(note the mean absolute error).

PSNR | MAE

a) FBP 18.55 | 0.092

b) Kaczmarz’ || 22.51 | 0.053
c) TV 25.86 | 0.015

d) BTV 26.6 | 0.137

e) SA-TV 27.13 | 0.015
f) SA-BTV || 27.48 | 0.012

Figure 4.12.: Full-measured CT-reconstructions are shown with a measurement of 180 angles with
additive Gaussian noise n; ; ~ N (0, \Iﬁﬁ))o\loo ). Subfigures a) - f) illustrate solutions of
the algorithms named in the table above. Subfigure g) shows the weight of the SA-TV

algorithm, while subfigure h) represent the weight in the SA-BTV algorithm.

If we take a closer look to the level of detail, we obtain similar results as before in the case
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of denoising. The emphasis on detailed regions is clearly visible for both motifs. Even in
the head phantom, the pointy area on the left can be distinguished once again. This is due
to the fact that the variance estimation of the residual takes place on the space of images.
The weightings also indicate which areas have been focused on in the process. In SA-TV the
loss of contrast is also noticeable. However, in SA-BTV only detailed areas are weighted
higher. A high variance in the corners remains, noticeable in figure [f.12] This shows a
danger in the variance estimation. Depending on the underlying operator and measured
object, the error becomes also spatially-dependent. This is a vulnerability because any area
above a specified boundary is highlighted. In this case, it is not yet relevant because the
error structure is too disjointed. However, exactly this condition becomes important in the
limited-angle variant. The assumption of a normal distributed error is not fulfilled and thus
B(w, N) is not sharp.

d)
h)

MpsNr | oPSNR || MMAE | OMAE

a) FBP 21.24 0.94 0.069 | 0.0061
b) Kaczmarz’ 26.58 0.89 0.0368 | 0.0033
c) TV 29.46 0.85 0.0176 | 0.0034
d) BTV 29.91 0.82 0.0156 | 0.0030

e) SA-TV 31.24 0.84 0.0174 | 0.0035
f) SA-BTV 31.77 0.82 0.0146 | 0.0031

Figure 4.13.: The full-measured CT-reconstruction for a combination of 15 CT slices and 3 different

random seeds is shown for 180 angles and additive noise ratio n; ; ~ N(0, ”Rf(t))(ll ).

Subfigures a) - f) shows the solutions named in the table above. Subfigure g) denotes
the weight of the SA-TV algorithm, whereas subfigure h) denotes the weight of the
SA-BTV algorithm.
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4.3.2. Low-dose computerized tomography

A very similar behavior can be identified in the low-dose version of a computerized-tomography
reconstruction, displayed in figures and For this purpose, the measurement is
limited to a third of the angles before. This leads to a higher deterioration of all results.
However, the previous observations can be transferred to this situation, as well. While
the Kaczmarz’ method compensates the error in a much better way than the FBP, the
regularized solution produce much cleaner surfaces. The advantage in the MAE for the

Bregman-based methods is still apparent.

€ g)
PSNR | MAE
a) FBP 14.54 | 0.144
b) Kaczmarz’ || 20.8 | 0.054
¢) TV 23.26 | 0.02
d) BTV 23.65 | 0.018
e) SA-TV 24.02 | 0.022
f) SA-BTV 24.31 | 0.018

Figure 4.14.: The low-dose CT-reconstruction was performed on a measurement of 60 uniform-
distributed angles and noise level 7; ; ~ N(0, HRﬁ))O”N). Subfigures a) - f) illustrate
the solutions named in the table above. Subfigure g) denotes the weight of the SA-TV
algorithm, while subfigure h) shows the weight in the SA-BTV scheme.

In the head phantom, we can again clearly see the difference between the detailed area to
the left and to the right. The left-hand fine structures produces an insufficient variance in
the residual to exceed the border B(w, m). Therefore, there is a disadvantage in this region.

This is different on the right-hand side. Here, the solution gets an upgrade. This creates
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an overall more detailed image. As before, there is an emphasis on the corners. The error
remains incoherent in these areas and is thus not incorporated into the solution. These
results are also confirmed on the toy subject. Especially the line in the left inset can be
reconstructed in the SA-TV algorithm in a much better way. In addition, it is noticeable
that especially the Kaczmarz’ solution represents all important information well, despite an
irregular reconstruction. Overall, the effects are confirmed although the differences are less

pronounced.

f) g) h)

Mpsnr | opsNR || MMAE | OMAE

a) FBP 17.06 0.89 0.11 0.011
b) Kaczmarz’ 26.1 0.826 0.035 | 0.0035
c) TV 26.46 0.81 0.026 | 0.0034
d) BTV 27.61 0.76 0.021 | 0.0032

e) SA-TV 27.56 0.79 0.0236 | 0.0033
f) SA-BTV 28.1 0.78 0.022 | 0.003

Figure 4.15.: The low-dose CT-reconstruction for a combination of 15 CT slices and 3 different
random seeds was performed on a measurement at 60 angles with additive Gaussian

noise 7; ; ~ N (0, %). Subfigure a) - f) demonstrate the solution named in the
table above. Subfigure g) denotes the weight of SA-TV, while subfigure h) the weight
in SA-BTV.

4.3.3. Limited-angle computerized tomography

Last, a limited-angle measurement is reconstructed and shown in Fig. and Fig.

In this case, the data is given by an incomplete sinogram of 150 different degrees. Here,
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for the first time, the global-weighted optimization algorithms give better results compared

to the spatially-adapted ones. We can observe more

included striae of the missing angles

in those adjusted reconstructions, since they are evaluated as information in the residual.

This phenomenon is not observed in normal TV-based reconstructions. In both motifs, an

area is marked by an additional inset that falsely emphasizes these streaks.

Next to the streaking problem, we already notice a

suitable highlighting of the detailed

areas. The contrast retention of the Bregman-based methods is still clearly visible and

demonstrates the advantage of these regularization procedures.

Overall, we recognize once again the disadvantage of the variance estimation by the black

background. Albeit still having a high reconstruction potential, a generalization still re-

mains a challenging quest for the future.

PSNR | MAE

a) FBP 16.04 | 0.12

b) Kaczmarz’ || 19.98 | 0.064
c) TV 23.68 | 0.023

d) BTV 24.14 | 0.02

e) SA-TV 23.59 | 0.025
f) SA-BTV 23.81 | 0.021

Figure 4.16.: The limited-angle CT-reconstruction was performed for 150 angles over 150 degrees

and additive Gaussian noise 7; ; ~ N (0,

100

HRu_)”oo). Subfigures a) - f) illustrate the

solution with PSNR and MAE and are named in table above. Subfigure g) and h)
denote the weight of the SA-TV and SA-BTV algorithms, respectively.
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C

<

e) f) g) h)
Mpsnr | 0PSNR || MMAE | OMAE
a) FBP 18.85 0.75 0.083 0.007
b) Kaczmarz’ 21.41 0.69 0.057 | 0.0041
c) TV 23.11 0.65 0.036 | 0.0036
d) BTV 23.43 0.62 0.032 | 0.0032

e) SA-TV 22.54 0.7 0.041 | 0.004
f) SA-BTV 22.69 0.69 0.039 | 0.0039

Figure 4.17.: The limited-angle CT-reconstruction was performed for a combination of 15 CT slices
and 3 different random seeds and a measurement of 150 angles over 150 degrees and

additive Gaussian noise 7;; ~ N (0, %). Subfigures a) - f) demonstrate the
solutions of the algorithms, which are named in the table above. Subfigure g) denotes
the weight of the SA-TV algorithm, while subfigure h) illustrate the weight in the
SA-BTV algorithm.
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CHAPTER 5

Conclusion and Outlook

The focus of this thesis was to find a suitable regularized solution method for imaging
problems. The necessity of this procedure was discussed for two concrete situations: The
inverse problems associated with the forward convolution and the Radon operator violate
the third condition according to Hadamard. Therefore, a minimum-norm solution is not

sufficient.

The studied optimization problem consists of two different parts, the fidelity and the regu-
larization term. An enhanced weighting between both terms is described in this work. The
decisive difference here is a local weight A € L®°(2) instead of the prior scalar version. This
modification was motivated by an object-related sense, since an image is composed of many
objects at different scales. The theory arising from this idea has been worked out in this
thesis and confirmed by simulations: Fine structures can be reconstructed in more detail
compared to the scalar-weighted TV-regularization. Beyond that a loss of contrast can
also be observed, which increases for higher penalizations via total variation. To eliminate
this phenomenon, an iterative method based on the Bregman divergence was developed.
Since both enhancements are based on different problems, a comparison of these meth-
ods is only possible to a limited extent. Depending on the image characteristics, a better
solution is obtained with one or the other approach. This circumstance leads to a novel
possibility. The idea is to combine both concepts by considering variance estimation on
basis of the Bregman solution. This method was named Spatially Adapted - Bregman Total
Variation (SA-BTV) and studied in detail. Consequently, a new regularization technique,
which adapts the spatially-dependent weight on every Bregman solution was developed as
well. With this new technique, contrast preservation and highlighting domains are both

possible and constitute a significant improvement over global methods.

On the basis of denoising, we first introduced and studied the different methods step by
step. The respective improvement of the method was confirmed without further restrictions:
Across different subjects and noise sizes, improvements of the contrast by Bregman-based
methods and detailed region by the spatially-adapted methods were verified. An adaptation
to the convolution operator is straightforwardly possible, as local structures in the data

space are preserved. The simulations also showed a few limitations: The improvements
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depend on the noise level and the underlying kernel. Also, very fine structures can no

longer be highlighted in the smoothed data residual.

A direct transfer of the spatially-adapted variant to the Radon transform is not possible.
This is mainly due to the variance estimation, which requires local environments in the data.
A sinogram, on the other hand, contains global information of the entire measurement.
For this reason, the variance estimation was shifted from the data space to the image
space by a new partial term. In the simulations, the following became clear: As long
as the operator produces global errors - here, the black background-variance is a suitable
indicator - the spatially-adapted reconstructions show the same improvements as for direct
denoising. Therefore, those methods are well appropriate in the case of a full-measured or
low-dose computerized-tomographic-reconstruction. For the limited-angle CT, the method
is not suitable in its present version. Global techniques, such as TV- and Bregman-based

TV-regularizations, achieve better results.

In future work, a more appropriate variance estimation should be developed. The version
presented here is limited to normally-distributed noise. A more general version that ad-
dresses the perturbations of the underlying operator in a better way would be desirable.
Furthermore, a local description of the reachable residual would also be possible as long as
it could be approximated a priori. This would allow a generalization to many more inverse

problems, thus increasing applications.

Overall, this work shows the great advantage of regularized optimization in the context
of inverse and imaging problems. All the necessary foundations have been developed and
implemented, allowing for a well-structured introduction to the subject. Furthermore, the
advantages of spatially-adapted regularization techniques were confirmed and combined in
a novel way with the contrast-preserving Bregman-based method and applied to real and

simulated data.
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APPENDIX A

Proximal Operator

We summarize some concrete proximal operators, which are important for this work. The
determination of the proximal operator of the fidelity term is possible with the following

theorem. The proof is based on reference [31].

Theorem A.1l. Let g : Y — R U {oo} be a proper, lower semi-continuous, and convex
function. Moreover, let f(z) = g(Az — z), where b € Y and A: X — Y is a linear operator
with inverse A~!. Then

Prox;(z) = A~} (Prox,(Az — z) + 2)
for any z € X.
Proof. By the definition of the proximal operator we obtain

. 1 2
Prox¢(z) = argmin f(u) + = [Ju — z|
ueX 2
1
= argmin g(Au — 2) + 3 | — |2

ueX

1
= argmin {g(y) + 3 Ju—z|? |y = Au — Z}
ueX,yeY

1
:argmin{ | — |2 | Au = g—l—z}.
ucX 2

Here (@, ) denotes the optimal solution, which exists and is unique by properties of g. Via

strong duality transformations, there exists yg € Y with

1
@ = argmin = ||u — z|* + (yo, Au — § — 2), Aa) =g+ 2.
ueX 2

By substitution of A(@) =g+ 2

Alx — A ) =g+ 2

& Yo =Axr — 9§ — z,



and therefore
Prox(z) =i =z + A7 (§j — Az + 2).

Now substitute u = @ in the optimization problem above and the characterization for Z
holds

1 2
gy =argming(y) + B H«T + Ail(g — Az +2z) - xH
yey

. T, . 2
=argming(y) + 5 [|§ — Az + 2|
yey

=Proxy(Az — 2).

Thus, by a further substituting of ¢, the statement holds true in total. O

Example A.2. The following four examples of proximal operators are of fundamental

importance to this work.

1. Let f: H — RU {oo} with f(x) = % |||?, the proximal operator follows with the

characterization via the subdifferential

p = Proxs(z) &z —pec df(p) = {\p}
x
SP=Tn

2. Let f : H - RU{oo} with f(z) = %HAU — z||* be the fidelity term. Considering
theorem [A.1] with g(y) = 3 [ly]1%,

Ax — 2 Ax + Az
a1 a1
Proxy(z) = A <1+/\ —i—z)A (1 3 )

3. For the Bregman fidelity term f : H — RU {oo} with f(z) = 5 || Au — Z|2 =TV(e) —
(p,u—c) and c € H,

A A

Py = 4 (A0 202

holds true. This follows directly from the characterization of the subdifferential.

4. Let f: H — RU{oo} with f(z) = Lm(m) the indicator function. Then

p =Prox¢(z) &z —pedf(p)

{;c if 2 € B(0,1)
ep= .

otherwise
[|]]

In example [A.2.2] a real inverse is needed. For this reason, this proximal operator is not



sufficient for the considerations of the Radon operator in section However, we used this

operator for the deconvolution problem in section .

Theorem A.3. Example is given because it is the Fenchel-Legendre conjugate of

II|l, contained in the TV-term.

Proof. Let g(z) = ||z||, then

g"(u) = sup(z,u) — o

For ||ul| > 1, we consider the sequence x = u - k and

f*(u) = limsup(flull* = u]]) - k = oo

k—o0

For ||u|| <1, with the Cauchy-Schwarz inequality applies
[ () < sup([fuf =] = l|z[]) =
z€EH
In summary
O
Theorem A.4. Let f(z) = 3||Ax — 2||? with A > 0. The subdifferential is defined with

0f(x) = {V ()} = {AM"(Az - 2)}.

Proof.
ti HEFCDZIED iy A4+ ) = 2l [z 2IP)

— lim 2 (Afa + ay), Ale + ay)) — (A(z + ay), 2) — (2 Al + ay))

a\0 2¢
—(Azx, Az) + (Ax, z) + (z, Ax))

= lim QA ((Az, aAy) + (aAy, Ax) — (aAy, z) — (2, aAy))

a\,0
. A * * o * _ *

= lim o~ (a(A"Az, y) + ofy, A"Az) — oly, A4"2) — a(472,y)
)\ * * *

= 5 (A"Az,y) + (y, A"Az) — (y, A"2) — {472,9))

= % ((2A" Az — 2A%z,y))

= (M(Az - 2).y)
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APPENDIX B

Source Code

The complete source code for the computed simulations and functions can be found at

GitHub (https://github.com/lucasplagwitz/recon). We summarize a small list of the

kernel elements in the following.

The submodule solver contains the Primal-Dual solvers, which can be seen in listing

© 00 O Ut W N -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

class PdHgm(object):

Primal -Dual solwver.

argmin G(z) + F(Kz)

"wonon

def solve(self):

while (self.tol < self.sens or self.k == 0) and (self.k < self.max_iter):

self .x_prev = copy.copy(self.x)
self.y_prev = copy.copy(self.y)

# primal iteration

self.x = self.G.prox(self.x - self.G.prox_param * (self.K.H *x self.y))
# dual iteration
self.y = self.F_star.prox(self.y + self.F_star.prox_param *

(self .K * (2 x self.x - self.x_prev)))

if self.k % 200 == O0:

self .update_sensivity ()

return self.x

Listing B.1: Primal-Dual algorithm

The sub-module terms contains various fidelity and regularization terms. Each term con-
tains a _ call  and the prox-method. Exemplary, the listings and show the


https://github.com/lucasplagwitz/recon

L?-fidelity and the indicator term. The latter is the Fenchel-Legendre conjugate to the

1-norm.

1 class DatanormL2(BaseDataterm):

2 """Datanorm-L2

3

4 This class 4is the basic form of the L2-Datanorm in terms of A: X -> Y.

5

6 Function u(z):

7 lambda/2 * [[Az - fl]_272

8

9 Special Form with A=identity:

10 lambda/2 * [z - fl]_272

11 e

12

13

14

15

16 def __call__(self, x):

17 return self.lam/2*np.sum((self.operator*x-self.data) **2)

18

19 def prox(self, x):

20 S

21 Prozimal Operator

22

23 proz(z) = A_inv * (( A*z + tau * lambda * f) / (1 + tau * lambda *
diag_sampling))

24 e

25 u = self.inv_operator*(

26 (self.operator*x + self.prox_param * self.lam * self.data) /

27 (1 + self.prox_param * self.lam * self.diag_sampling)

28 )

29

30 return u

Listing B.2: L?-Datanorm



BwW N

38

class IndicatorL2(BaseRegTerm):
"""IndicatorL2

This function %s the indicator function of the convexz set P ("union of
pointwise L2 balls"”):

P :=A{p in Y: [p| <= upper_bound}. [p/ = maz_ij/p_ij/ = maz_ij sqrt(pl_ij*+2 +
p2_17%%2)

"o

© 0 N O

10

12
13
14
15
16
17
18
19
20

def prox(self,
Proxzimal Operator of indicator Function <P -> Projection.

proxz(f) = f / maz (1,

f_row stores row-wise: In case of f (*) as Projection and K=Grad

-> dual f_rowl[i,:] stores i-th directional derivative.

assert self._input_check(f)
if self.times is None:
norm_f = self._infty_abs(f)
norm_f = np.array([norm_fJl*self.derivate_dim).ravel() / self.upper_bound

norm_f [norm_f < 1] =1

25
26
27
28

return f/norm_f

Listing B.3: L2-Indicator
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APPENDIX C

Imaging Results

The algorithms were illustrated in Chapter [2] using cross-sections. In the following, these

cross sections are shown in their two-dimensional version.

a) b) ¢) d)

Figure C.1.: Imaging result for example with width 26 = 10. While subfigure a) demonstrates
the noisy image, subfigures b), c¢), and d) show the solutions for the underlying weights
A=2, A=55and A =13.

a) b) ¢) d)

Figure C.2.: Imaging result for Bregman-based iterations. We see the noisy image in subfigure
a), while subfigures b), c), and d) illustrate the solutions of iteration 1, 3, and 13,
respectively. The discrepancy criterion would have stopped after 3 iterations.




SA-BTV algorithm.

a) b) ¢) d)

e) f) g) h)
Figure C.3.: Results of the cross sections from chapter The noisy version of the original (subfigure
a)) is shown in subfigure b). In the placed order, Subfigure c), d), e), f) show the result

of the TV, BTV, SA-TV, SA-BTV algorithms, respectively. Subfigure g) shows the
determined weight A\ from the SA-TV algorithm while subfigure h) shows A from the

a) b) c) d)

PSNR | MAE
a) TV || 32.13 | 0.016
b) TGV || 32.84 | 0.013
¢)TV || 252 |0.024
e) TGV || 24.78 | 0.025

Figure C.4.: Differences between total generalized variation and first-order total variation are shown

on the basis of two different image structures.




PSNR | MAE | Iterations
a) A=0.1 || 26.52 | 0.02 4
b) A=0.5 | 26.31 | 0.02 3
c)A=1 26.76 | 0.02 3
e)A=2 25.77 | 0.021 2

Figure C.5.: Solutions of the SA-TV algorithm for different initial weightings are shown.

Lastly, we illustrate the results for two further motifs. In Figure [C.0] a real world motif
is shown. The zoomed-boxes demonstrate a higher level of detail in the spatially-adapted
solutions. Figure [C.7] demonstrates the results of the different algorithms for a CT-body-
scan. The TV-functional is not well suited here, since real edges hardly ever occur in the
human body. Due to the large surfaces and rather small details, spatial adaptation hardly

shows any advantages.



PSNR | MAE
a) TV 26.62 | 0.029
b) BTV || 27.01 | 0.027
) SA-TV || 27.11 | 0.029
d) SA-BTV || 27.59 | 0.026

Figure C.6.: Overview over all regularization techniques on a denoised (1; ; ~ N (O7 %)) real-world
image. Subfigure e) illustrates the weight A calculated in the SA-TV algorithm, subfig-
ure f) shows A in the SA-BTV algorithm. Image taken from Ref. [4].

a) b) c) d)
Mpsnr | opsNR || MMAE | OMAE
Degraded 20.4 0 0.079 0
a) TV 30.45 1.049 0.017 | 0.0021

b) BTV 30.76 0.984 0.0156 | 0.0019
c) SA-TV 30.56 0.879 0.017 | 0.002
d) SA-BTV 30.87 0.987 0.0156 | 0.0019

Figure C.7.: An overview over all regularization techniques applied to a combination of 30 abdomen
CT-scans is shown. Denoising from an image with noise 7; ; ~ N(0, ﬁ). Data taken

from [32].
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