
The Entropy-Regularized Wasserstein
Distance as a Metric for Machine Learning

Based Post-Processing of Structural
MR Images of the Brain

Master thesis
for attainment of the academic degree of

Master of Science

Westfälische Wilhelms-Universität Münster
Department of Mathematics und Informatics

Institute for Applied Mathematics

Submitted by:
Juliane Braunsmann

Thesis supervised by:
Prof. Dr. Benedikt Wirth
Prof. Dr. Xiaoyi Jiang
PD Dr. Tim Hahn

Münster, 30th September 2018

Abstract

This thesis treats the Wasserstein distance and its applicability as a metric between magnetic
resonance images of the brain, represented as densities on a voxel grid. We aim to use the
Wasserstein distance for dimensionality reduction of MR images by using it as a loss function in
autoencoders. This requires a computationally feasible approach to calculate a large amount of
distances, which can further be incorporated into machine learning frameworks. For this reason,
we consider entropy regularization. We introduce this regularization for probability measures
on compact metric spaces and explain why it suits these requirements. We further introduce
an extension of the Wasserstein distance to measures with arbitrary mass, to which the same
regularization approach can be applied. To evaluate the suitability of the Wasserstein distance
to MR images, we incorporate it in kernel support vector machines and kernel principal com-
ponent analysis to predict gender and depression, using a dataset provided by the Department
of Psychiatry. Finally, we show that the Wasserstein distance can indeed be used to train au-
toencoders. However, we also address the question whether the application of the Wasserstein
distance as a loss function for comparing MR images is advisable in practice.

I

Declaration of Academic Integrity

I hereby confirm that this thesis on “The Entropy-Regularized Wasserstein Distance as a Metric for
Machine Learning Based Post-Processing of Structural MR Images of the Brain” is solely my own work
and that I have used no sources or aids other than the ones stated. All passages in my thesis for
which other sources, including electronic media, have been used, be it direct quotes or content
references, have been acknowledged as such and the sources cited.

(date and signature of student)

I agree to have my thesis checked in order to rule out potential similarities with other works and
to have my thesis stored in a database for this purpose.

(date and signature of student)

III

Acknowledgements

I would like to express my gratitude to everyone who made this thesis possible through their
support:

• Prof. Dr. Benedikt Wirth for taking time to help me work out the mathematical problems
that arose during the process of writing this thesis, for answering all my questions and for
supporting my pursuit of a dual master’s degree in mathematics and computer science.

• Prof. Dr. Xiaoyi Jiang for offering me an interesting and challenging topic that combines
mathematics and computer science and for establishing the cooperation with the depart-
ment of psychiatry and for making time for group meetings.

• PD Dr. Tim Hahn for introducing me to the topic of machine learning in psychiatry, for
many interesting discussions, for offering me a space to work and for making the compu-
tational resources of the department and the MRI data available to me.

• The AI and Machine Learning in Psychiatry Group for helping me get started and for being
pleasant office co-workers, always willing to answer my questions. I would like to espe-
cially thank Claas Kähler for always being approachable and Kelvin Sarink for being good
at his job of looking after and fixing technical things.

• Dr. Bernhard Schmitzer for giving me advice regarding the implementation and derivation
of the algorithm and for providing results obtained from his personal implementation of
the algorithm for comparison.

• My parents for their support throughout my studies and especially during the last months
of my thesis.

• Last but not least, I would like to thank my friends in Münster for always having a sym-
pathetic ear, cheering me up and providing me with distraction when I struggled and of
course for proofreading my thesis.

V

Contents

Introduction 1

1 Machine Learning and Neural Networks 5
1.1 Feedforward Neural Networks . 5
1.2 Autoencoders . 9
1.3 Support Vector Machines . 12
1.4 Principal Component Analysis . 17

2 Mathematical Background 23
2.1 The Space of Measures and its Dual . 23
2.2 Convex Analysis and Nonlinear Optimization . 27

3 A Metric between Measures based on Optimal Transport Theory 31
3.1 The Kantorovich Problem and the Wasserstein Distance 31
3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 36

3.2.1 The Kantorovich Extension . 37
3.2.2 The Unbalanced Mass Transportation Problem 39
3.2.3 Connection between UMTP and K-Norm 44

3.3 The Entropy-Regularized Kantorovich Problem . 52
3.3.1 Introduction of the Entropy-Regularized Kantorovich Problem 52
3.3.2 A Dual Formulation . 62
3.3.3 Solving the Regularized Kantorovich Problem using Alternate Projections 69

3.4 The Entropy-Regularized Wasserstein Distance and its Properties 71

4 Application to MR images 75
4.1 A Summary of the Results for Finite Spaces . 75
4.2 The Setting of MR Images and Numerical Improvements 79

5 Connecting the Wasserstein Distance and Machine Learning 83
5.1 Using the Wasserstein Distance for the Construction of Kernels 83
5.2 Using the Wasserstein Distance as a Loss Function 87

6 Implementation 89
6.1 Libraries . 89
6.2 Implementation of the Wasserstein Distance Algorithm 91
6.3 Implementation of SVM, PCA and Autoencoder 95

6.3.1 SVM and PCA . 95
6.3.2 Autoencoder . 97

VII

VIII Contents

7 Experiments 99
7.1 Description of the Data Set . 99
7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 100

7.2.1 Calculating the Wasserstein Distance with Different Parameters 100
7.2.2 Classification . 105
7.2.3 Summary . 109

7.3 Using the Wasserstein Distance as a Loss Function in Autoencoders 110
7.3.1 Fully Connected Autoencoder for Amygdala 110
7.3.2 Convolutional Autoencoder for Amygdala 112
7.3.3 Convolutional Autoencoder and Fully Connected Autoencoder for Hippo-

campus . 112
7.3.4 Summary . 113

8 Conclusion and Outlook 119

Bibliography 123

1

Introduction

The human brain is one of the most important organs of the human body and there has been
much research into neuroimaging techniques such as Magnetic Resonance Imaging (MRI), which
simplifies the (early) diagnosis of conditions such as brain tumors and aneurysms as well as
chronic conditions such as multiple sclerosis. The obtained MR images are subsequently ana-
lyzed by a specifically trained professional and a report is sent to the treating physician.

Professionals are however not yet able to use neuroimaging techniques to diagnose a very com-
mon condition of the brain, which is one of the leading causes of disability worldwide: depres-
sion. It can affect people independently of their age, gender, wealth and location and has a large
impact on the life of the affected individual as well as on their family and friends. The worst
consequence of depression is suicide, which makes depression a disease with significant mor-
tality. Despite depression being such a major issue, a reliable diagnosis of depression as well
as the identification of a suitable treatment for each individual case remain difficult. To date,
depression is diagnosed on the basis of behavioral symptoms, which means that the diagnosis
depends on the patient’s cooperation and perception. This makes the distinction between major
depressive disorder and bipolar disorder an especially hard challenge: while bipolar patients pass
through manic as well as depressive episodes, they only perceive depressive episodes as un-
usual. Time limitations and patient denial are additional factors that complicate diagnosis. For
these reasons, the interest in a diagnosis based on neurobiological markers has grown in recent
years.

Using high-resolution structural magnetic resonance imaging, researchers have found that struc-
tural changes are present in the brains of patients with depression. These findings motivate the
quest for an automated system that could assist medical specialists in their decision-making.
Such a system could be acquired by making use of machine learning models. Some research has
been carried out in the direction of supervised learning, the dominant classification method
being support vector machines (SVMs). Since the introduction of SVMs in the 1960s, signific-
ant progress has been made in the domain of supervised learning with neural networks (NNs)
and convolutional neural networks (CNNs). While they had been introduced not much later than
SVMs, their usage only became feasible recently thanks to advanced hardware, notably high per-
formance graphics processing units (GPUs) and software developed for the use with GPUs, like
Tensorflow. While CNNs have been very successful for example in object classification, there
have been no comparable successes in the field of psychiatry. This has various reasons, one of
them being the lack of large labeled datasets. As a reference, the largest database of labeled
images, ImageNet, consists of over 14 million images, while datasets acquired from psychiatric
studies usually only consist of less than one hundred subjects. The data set made available for
this thesis by the Department of Psychiatry consists of almost two thousand labeled MR images,
which is still not much compared to ImageNet, the data set is bound to grow further in the
following years.

2 Contents

Much of the success of deep learning in the field of computer vision can be attributed to the
fact that it renders the manual selection of suitable features for the task at hand unnecessary.
Instead, “raw” images are fed into the network and suitable features are extracted automatically.
In order to exploit this advantage for classification of depression, raw MR data has to be fed into
the network. In this thesis, the raw images are unsmoothed, realigned, spatially normalized
T1-weighted gray matter MR scans. Since MR images have many more voxels than images have
pixels, this can be problematic memory-wise. For this reason it can be useful to perform post-
processing in the form of dimensionality reduction, where optimally, redundant information is
eliminated in the process. A common dimensionality reduction technique is principal component
analysis (PCA), which gives a linear transformation of the data into a lower dimensional space.
A more modern technique for performing dimensionality reduction can be found in the field
of machine learning. The concept is to use a network consisting of an encoder and a decoder and
train it in a way such that the output of the decoder is similar to the input of the encoder. Such a
network is called an autoencoder. In contrast to PCA, autoencoders are in theory able to model ar-
bitrary functions. Another advantage compared to PCA is that the representation resulting from
dimensionality reduction with an autoencoder is not fixed after the end of training, but can be
further adapted to any specific classification problem. This can be achieved by replacing the de-
coder with a neural network for classification, which could be further advantageous over directly
using a neural net, since autoencoders do not require labels for training. It is thus possible to
perform unsupervised learning with an autoencoder on a large unlabeled dataset, which makes
it possible to feed more information on the structure of MR images into the network without
requiring further labeling.

In order for an autoencoder to work well, a useful notion of similarity between two MR images
is needed. Since taking the whole brain image would still be computationally infeasible, in this
thesis we restrict ourselves to smaller brain regions which have been shown to be linked to de-
pression. One possibility is to take the sum of squared voxel-wise differences, also referred to as
the Euclidean distance or the 2-distance. However, this distance does not take into account the
additional information of the spatial structure of the MR image. For this reason, the Wasserstein
distance might define a better metric between MR images of brain regions. This thesis deals with
the investigation of the usability of this idea.

The Wasserstein distance is an optimal transport based distance between probability measures.
MR images can be understood as measures over a three dimensional grid, where the density of
the gray matter determines the density of the measure. However, several problems arise. For
one, the measure defined in this way does not usually define a probability measure. This can-
not be alleviated by simply scaling the density values, because the total gray matter volume of
regions may be subject to individual variation. We consider two ways of dealing with this prob-
lem: normalizing the MR images to have constant total gray matter volume, and extending the
Wasserstein distance to unnormalized measures. We present an extension that was originally
proposed by Leonid Kantorovich in the 1950s. An alternative formulation for computation was
introduced in the 1990s, which we will make use of. A different problem is the high compu-
tational power required for calculating the Wasserstein distance. For this reason, we use the
entropy-regularized variant of the Wasserstein distance instead, which was proposed in 2013 by
Marco Cuturi. Compared to the original Wasserstein distance, a fast, parallelizable algorithm
exists, which can be implemented in Tensorflow. The resulting regularized distance has the
further advantage of being differentiable, which is important for the use with an autoencoder.

Contents 3

We first aim to evaluate whether the Wasserstein distance defines a useful notion of similarity
between MR images. Our attempt is to use the Wasserstein distance to define kernel functions,
which are usually defined using the squared Euclidean distance. Such kernel functions can
be used for classification by integrating them into kernel SVMs. Kernel functions can also be
integrated into PCA. Using kernel PCA in a pipeline in combination with standard SVM for
classification supplies another way to evaluate the performance of the Wasserstein distance as
a metric between MR images. The classification tasks used for evaluation are the classification
of patients with major depressive disorder and healthy controls, as well as the classification
regarding gender, which is less difficult. The same evaluation metrics can be used to assess the
value of autoencoders trained with the Wasserstein distance as a loss function.

This thesis is organized as follows. In Chapter 1, a short introduction to machine learning is
given, including neural networks and specifically autoencoders, (kernel) support vector ma-
chines and (kernel) principal component analysis. Chapter 2 gives a short overview of the math-
ematical background. Chapter 3 treats the mathematical theory behind Wasserstein distances
and their extension to general measures and entropic regularization. In this chapter, we give
rigorous proofs of some statements for which no such proofs could be found in the literature.
Chapter 4 is a short chapter about the application to MR images. Chapter 5 explains how the
Wasserstein distance can be used in machine learning. In Chapter 6 a description of the imple-
mentation follows, which contains also a short description of the packages used. In Chapter
7, the experiments conducted using the implementation from Chapter 6 are described and the
results are stated. Finally, Chapter 8 gives a conclusion and an outlook on future work.

5

1 Machine Learning and Neural Networks

This chapter gives a short introduction to machine learning and neural networks. The following
citation gives a good impression of what machine learning is about:

[Machine Learning is about] searching for useful representations of some input data,
within a predefined space of possibilities, using guidance from a feedback signal.1

This predefined space, which is called “hypothesis space”, is defined by the architecture of a
neural network. We describe two special kinds of neural networks: feedforward neural networks
and autoencoders.

1.1 Feedforward Neural Networks
This section describes feedforward neural networks. We introduce some useful notations and
give an overview of different layers. References for this section are [2, §5] and [1, §1].

We start with the definition of a tensor.

1.1.1. Definition (Tensor). Let

[𝑛] ≔ {�0, … , 𝑛 − 1}� for 𝑛 ∈ ℕ

and 𝑑 ∈ ℕ. Let 𝑛1, … , 𝑛𝑑 ∈ ℕ. Define

𝐼 ≔ [𝑛1] × … × [𝑛𝑑] = {𝑖 = (𝑖1, … , 𝑖𝑑) ∶ 𝑖𝑗 ∈ [𝑛𝑗] for 1 ≤ 𝑗 ≤ 𝑑} .

We reserve the letter 𝐼 for such objects. Then a tensor 𝑎 of dimension 𝑑 is a map 𝑎 ∶ 𝐼 → ℝ and
can be identified with an element in ℝ𝑛1×…×𝑛𝑑 ≅ ℝ𝑛1…𝑛𝑑 . We say that 𝑎 has shape 𝑛1 × … × 𝑛𝑑.

This means basically that a tensor is a multidimensional array. A tensor of dimension 1 is a
vector, and a tensor of dimension 2 is a matrix. A tensor of dimension 0 is simply a scalar.

Let 𝑥 be a tensor, identified as 𝑥 ∈ ℝ𝑛 for some 𝑛 ∈ ℕ. A feedforward neural network is defined
by a mapping of an input tensor 𝑥 to some output tensor 𝑦 ∈ ℝ𝑚 for some 𝑚 ∈ ℕ,

𝑦 = 𝑓 (𝑥; 𝜃),

where 𝑓 further depends on some parameters 𝜃 ∈ ℝ𝑙 for some 𝑙 ∈ ℕ. Usually, 𝑓 consists of
the concatenation of many different functions, which is where the name “network” comes from.
For example, 𝑓 could be the concatenation of three functions 𝑓𝑖 ∶ ℝ𝑛𝑖 → ℝ𝑛𝑖+1 , 𝑖 = 1, 2, 3, with
𝑛𝑖 ∈ ℕ, 𝑛4 ≔ 𝑚 and 𝑛1 ≔ 𝑛, where each function also depends on some parameters 𝜃𝑖 ∈ ℝ𝑙𝑖 for
some 𝑙𝑖 ∈ ℕ, 𝑖 = 1, 2, 3. In this case, 𝜃 = (𝜃1, 𝜃2, 𝜃3) ∈ ℝ𝑙1+𝑙2+𝑙3 , and

𝑓 (𝑥; 𝜃) = 𝑓3(�𝑓2(�𝑓1(𝑥; 𝜃1); 𝜃2)�; 𝜃3)�.
1[1, §1.1.3]

6 1 Machine Learning and Neural Networks

The individual functions 𝑓𝑖 are usually of a specific form and can be interpreted as layers of the
network, and the amount of layers is called the depth of the network. In the above case, we have a
network with three layers, where 𝑓1 defines the first layer, 𝑓2 defines the second layer and 𝑓3 defines
the last layer, which is called the output layer. The other layers, whose output is not seen, are also
called hidden layers. The goal is to use the network to approximate some function 𝑓 ∗ ∶ ℝ𝑛 → ℝ𝑚.
In order to achieve this, one needs training data (𝑥(1), … , 𝑥(𝑘)) with 𝑥(𝑖) ∈ ℝ𝑛, 𝑖 = 1, … , 𝑘, 𝑘 ∈ ℕ,
associated to training labels (𝑦1, … , 𝑦𝑘) with 𝑦𝑖 ≈ 𝑓 ∗(𝑥(𝑖)), 𝑖 = 1, … , 𝑘. We want the neural network
to learn to output 𝑦𝑖 whenever the input is 𝑥(𝑖). For this we need a cost function or loss function,
specifying a penalty if 𝑓 (𝑥(𝑖)) deviates from 𝑦𝑖. Let 𝐿 ∶ ℝ𝑚 × ℝ𝑚 → ℝ≥0 be such a loss function.
Then, the goal is to find

𝜃∗ = arg inf
𝜃

𝑘
∑
𝑖=1

𝐿(𝑓 (𝑥(𝑖); 𝜃), 𝑦𝑖).

This can be done using gradient descent based methods. It is also possible for the loss function
to depend on the function 𝑓 or on 𝜃.

Next, we will introduce some typical functions that define layers. The most simple layer is
the dense or fully-connected layer. In this case, the parameter 𝜃 is a matrix 𝑊 of weights combined
with a bias vector 𝑏. Let 𝑥 ∈ ℝ𝑛, 𝑊 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. Then the function describing the fully
connected layer is

𝑓fc ∶ ℝ𝑛 → ℝ𝑚, (𝑥; (𝑊, 𝑏)) ↦ 𝑊𝑥 + 𝑏.

This means the output 𝑦 of the fully connected layer is calculated by

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑤𝑖,𝑗𝑥𝑗 + 𝑏𝑖, 𝑖 = 1, … 𝑚.

The name “fully connected” emphasises that every output variable is connected with every input
variable, so that every input variable contributes to the result of every output variable.

In some cases, the input has some geometrical structure, more specifically a grid-like structure.
In such cases it might be sensible that not every input variable contributes to an output variable,
but only a neighborhood of variables of a specified size. This results in locally connected layers.

Another variant are convolutional layers. In this case, the same weights are used for every
neighborhood. The name “convolutional” comes from the mathematical concept of convolution.
However, in machine learning, usually a similar operation is implemented, namely the cross-
correlation. The definition is based on the implementation in Tensorflow, see [3].

1.1.2. Definition (Cross-correlation with zero-padding). Let 𝑎 ∶ 𝐼 → ℝ be a 𝑑-dimensional
tensor and let 𝑚1, … , 𝑚𝑑 ∈ ℕ. Define

𝐽 ≔ {−⌈𝑚1
2 ⌉ + 1, … , ⌊𝑚1

2 ⌋} × … × {−⌈𝑚𝑑
2 ⌉ + 1, … , ⌊𝑚𝑑

2 ⌋} .

Let 𝑘 ∶ 𝐽 → ℝ be a tensor, called filter. Let

̂𝑎 ∶ 𝐼 + 𝐽 → ℝ, 𝑘 ↦
⎧{
⎨{⎩

𝑎(𝑘), if 𝑘 ∈ 𝐼
0, else.

�

Then the cross-correlation 𝑎 ∗ 𝑘 of 𝑎, an 𝑛1 × … ×𝑑 input, and 𝑘, an 𝑚1 × … × 𝑚𝑑 filter, is defined
by

(𝑎 ∗ 𝑘)(𝑖1, … , 𝑖𝑑) = ∑
𝑗∈𝐽

̂𝑎(𝑖1 + 𝑗1, … , 𝑖𝑑 + 𝑗𝑑)𝑘(𝑗1, … , 𝑗𝑑)

1.1 Feedforward Neural Networks 7

Figure 1.1: Computing the output values of cross-correlation for 𝑑 = 2. The blue field corres-
ponds to the tensor 𝑎 on 𝐼, the dashed grid corresponds to the tensor ̂𝑎 on 𝐼 + 𝐽, and the grey
shadow corresponds to the filter 𝑘 on 𝐽. The green field is the resulting output 𝑎 ⋆ 𝑘.

for (𝑖1, … , 𝑖𝑑) ∈ 𝐼.

The definition of 𝐽 in this way assures that the tensor 𝑘 ∶ 𝐽 → ℝ always has shape 𝑚1 × … × 𝑚𝑑,
regardless of the parity of the 𝑚𝑖. For a convolutional layer, the parameter 𝜃 thus takes the form
of the filter 𝑘. The function of a convolutional layer is

𝑓conv ∶ ℝ𝑛1×…×𝑛𝑑 → ℝ𝑛1×…×𝑛𝑑 , (𝑎; 𝑘) ↦ 𝑎 ⋆ 𝑘.

The domain 𝐽, on which the filter is defined, is like a window that slides across the domain 𝐼,
which has been enlarged to 𝐼 + 𝐽. This enlargement is known as padding or zero-padding. The
window is often called receptive field. For example, if 𝑑 = 2, 𝑛1 = 𝑛2 = 5, 𝑚1 = 𝑚2 = 5, we have
𝐼 = {0, 1, 2, 3, 4, 5}2, 𝐽 = {−1, 0, 1}2 and 𝐼 + 𝐽 = {−1, 0, 1, 2, 3, 4, 5, 6}2, so we have a padding of one
in each direction. The concept of receptive fields and padding with these values is visualized
in Figure 1.1. It is possible to further define strides, so the sliding window skips some pixels,
which results in a smaller output. The operation of cross-correlation using striding is illustrated
in Figure 1.2. Cross-correlation can be used with different filters in order to examine local
properties of images.

For example, the well-known Sobel operators

𝑆𝑥 =
⎛⎜⎜⎜⎜⎜
⎝

1 0 −1
2 0 −2
1 0 −1

⎞⎟⎟⎟⎟⎟
⎠

and 𝑆𝑦 =
⎛⎜⎜⎜⎜⎜
⎝

1 2 1
0 0 0

−1 −2 −1

⎞⎟⎟⎟⎟⎟
⎠

are used to detect vertical and horizontal edges, because they can be seen as a discrete version
of the gradient in 𝑥- and 𝑦-direction, respectively.

Using convolution in neural networks means that the filters are not predefined, but are being
learned. This means that the network learns by itself which features to look for in the input in
order to better approximate the wanted function.

Other layers using the sliding window technique are pooling layers. Here, a reduction is per-
formed on the receptive field, usually by either taking the maximum or by averaging, resulting
in max pooling and average pooling, respectively. Usually, pooling is used to reduce the amount
of neurons, which is achieved by using strides and no padding, i. e. the output is only defined
for those 𝑖 ∈ 𝐼 for which 𝑖 + 𝑗 ∈ 𝐼 for all 𝑗 ∈ 𝐽. An illustration of max pooling on a 5 × 5 in-
put with a 3 × 3 filter with no strides and no padding is shown Figure 1.3. It can be seen that
many values are redundant, which can be avoided when using strides. Another important part

8 1 Machine Learning and Neural Networks

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2

6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

0

0

0

0

0

0

0

0

2

2

3

0

3

0

0

0

0

1

0

3

0

0

0

0

2

1

2

0

0

0

2

2

3

1

0

0

1

2

3

1

0

0

0

0

0

0

0

0

0

0

2

0

1

2

1

2

0

2
6.0

8.0

6.0

4.0

17.0

17.0

4.0

13.0

3.0

Figure 1.2: Computing the output values of cross-correlation with a 3 × 3 filter on a 5 × 5 input
and striding 2 in both directions. The gray highlighting in the blue image shows which
values are considered to compute the value of the pixel highlighted in gray in the green
output image.

Source: [4]

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

2

2

3

0

3

0

0

1

0

3

0

0

2

1

2

0

2

2

3

1

1

2

3

1

0

3.0

3.0

3.0

2.0

3.0

3.0

3.0

3.0

3.0

Figure 1.3: Computing the output values of a 3 × 3 max pooling operation on a 5 × 5 input using
no strides and zero padding. The gray highlighting in the blue image shows which values
are considered to compute the value of the pixel highlighted in gray in the green output
image.

Source: [4]

1.2 Autoencoders 9

inputs

σ(·)

σ(·)

σ(·)

σ(·)

σ(·)

σ(·)

hidden units outputs

Figure 1.4: Illustration of a feedforward neural network consisting of two dense layers including
activation functions. The input, hidden and output variables are represented as nodes, and
the weights 𝑤𝑖𝑗 correspond to the lines connecting the nodes. The bias parameter 𝑏 corres-
ponds to the lines starting at the blue (hidden) node. The arrows emphasize the forward
direction of the data flow through the network.

of neural networks are so called activation functions, which introduce non-linearities into the net-
work. Especially fully connected layers are followed by an activation function 𝜎 of some kind.
These activation functions are not considered to be separate layers. Let 𝑦 = (𝑦1, … , 𝑦𝑚) ∈ ℝ𝑚.
Some popular activation functions are

• Sigmoid function: 𝜎sig(𝑦)𝑖 = 1
1+exp(−𝑦𝑖)

,

• Tanh function: 𝜎tanh(𝑦)𝑖 = exp(𝑦𝑖)−exp(−𝑦𝑖)
exp(𝑦𝑖)+exp(−𝑦𝑖)

,

• ReLu function: 𝜎ReLu(𝑦)𝑖 =
⎧{
⎨{⎩

𝑦𝑖, if 𝑦𝑖 ≥ 0
𝛼 · 𝑦𝑖, if 𝑦𝑖 < 0,

� where 𝛼 ≥ 0 is some small constant,

• Softmax function: 𝜎softmax(𝑦)𝑖 = exp(𝑦𝑖)
∑𝑚

𝑗=1 exp(𝑦𝑗)

The softmax function can be used to obtain normalized outputs. The sigmoid function outputs
values between 0 and 1. An illustration of a general feedforward neural network is depicted in
Figure 1.4.

1.2 Autoencoders
There are many different types of neural networks, suited to the task at hand, or the type of
function to be approximated, respectively. In this section, we want to address autoencoders. The
purpose of an autoencoder is to find an encoding function which reduces the dimension of its
input by eliminating irrelevant information. This is attempted by simultaneously training an
encoder and a decoder to produce a faithful copy of its input when concatenated. The main
source for this section is [5, §14].

An autoencoder consists of two parts, the encoder and the decoder. A schematic diagram of an
autoencoder network can be seen in Figure 1.5. More formally an autoencoder consists of the
concatenation of two functions 𝑓enc and 𝑓dec, the encoder and the decoder function. The encoder
produces a hidden code ℎ representing an input 𝑥. Taking this hidden code ℎ as input, the

10 1 Machine Learning and Neural Networks

encoder hidden
representation decoder

input output (≈ input)

loss

Figure 1.5: A schematic diagram of an autoencoder. It consists of an encoder function, a hidden
representation and a decoder function. The autoencoder is trained to produce an output
similar to the respective input. The loss function is a dissimilarity measure between input
and output.

decoder then produces a decoding 𝑦. Summarized in formulas, this means

ℎ = 𝑓enc(𝑥), 𝑦 = 𝑓dec(ℎ), 𝑦 = (𝑓dec ∘ 𝑓enc)(𝑥).

If the code has a lower dimension than the input, the encoder can be used for dimensionality re-
duction. Such types of autoencoders are called undercomplete. The objective of an undercomplete
autoencoder is to minimize a loss of the type

𝐿(𝑥, 𝑓dec(𝑓enc(𝑥)))

for some dissimilarity function 𝐿 ∶ ℝ𝑛 × ℝ𝑛 → ℝ≥0. Ideally, forcing the encoder to use a smaller
dimension leads to the encoder capturing the most distinguishing features of the input. How-
ever, if the encoder and decoder could learn any arbitrary function, it might happen that no
useful information on the distribution of the data is extracted. An extreme example would be
an autoencoder with a one-dimensional encoding layer, see [5, §14.1]. If this autoencoder is
very powerful and no further restrictions are made, it could be possible that the encoder learns
to encode each training example 𝑥(𝑖) with the code 𝑖,

𝑓enc(𝑥(𝑖)) = 𝑖 ∀1 ≤ 𝑖 ≤ 𝑘.

The decoder could in turn learn to map these codes back to the original inputs,

𝑓dec((𝑖)) = 𝑥(𝑖) ∀1 ≤ 𝑖 ≤ 𝑘.

Thus the autoencoder has simply memorized the training data. For any loss function penaliz-
ing only the dissimilarity of input and reconstruction, this would be optimal. However, such
an autoencoder would perform very badly on unseen test data. Thus, only learning to copy
the input to the output is not sufficient to learn meaningful representations. This means that
some constraints on the encoding or decoding function are necessary to guarantee that the auto-
encoder does not overfit on the training data. One option to put a constraint on the functions
is by choosing an architecture that limits the capacity of the network. For example, this can be
achieved by limiting the parameters of the neural network. One possibility to limit parameters is

1.2 Autoencoders 11

given by using convolutions, if the input to reproduce has some spatial geometric structure. By
using convolutional filters, the autoencoders are constrained to capture information on the data
by using spatial filters. An autoencoder using convolutions is called a convolutional autoencoder.

Many other ideas to encourage the autoencoder to learn useful representations have been pro-
posed. One of them is the denoising autoencoder, which gets as input a vector ̄𝑥, which is a version
of the original input 𝑥 that has been corrupted by noise. Forcing the autoencoder to learn to re-
produce 𝑥 by minimizing a loss

𝐿(𝑥, 𝑓dec(𝑓enc(̄𝑥)))

makes the autoencoder learn implicitly the distribution of the data. A nice byproduct of denoising
autoencoders is that it can be applied to data that is naturally noisy instead of artificially corrup-
ted data and can thus effectively denoise data.

Another variant of an autoencoder is the contractive autoencoder.The idea of contractive autoen-
coders is to encourage the derivatives of the encoder to be small by adding a regularization term
to the loss function. This is intended to prevent that small variations in the input data lead to
distinct changes in the hidden presentation. More precisely, let

𝑅(𝑓enc(𝑥)) = ∥𝐷𝑓enc(𝑥)∥2
𝐹 ,

where 𝐷𝑓enc(𝑥) is the Jacobian matrix of 𝑓enc at the point 𝑥 and ‖·‖𝐹 is the Frobenius norm. The
goal is then to minimize

𝐿(𝑥, 𝑓dec(𝑓enc(𝑥))) + 𝜆𝑅(𝑓enc(𝑥))

for some 𝜆 > 0.

So far, we have only considered autoencoders as a dimensionality reduction method. As already
noted for denoising autoencoders, there are further usecases for autoencoders. One such use
case is pretraining neural networks: an autoencoder does not only provide a lower dimensional
representation of the input, but with the encoder it also provides a trainable function to produce
these representations. Using this encoder, a classification network can be constructed by append-
ing a classification function. A schematic diagram of such a network can be seen in Figure 1.6,
compare also the diagram of the corresponding autoencoder in Figure 1.5. This means that au-
toencoders can effectively be used to pretrain networks, which can be useful to avoid getting
stuck in a poor local minimum while training. Since autoencoders do not need labels, the set of
available training data for autoencoders might be also larger, and thus more information on the
structure of the data can be introduced into a network. Pretraining is further discussed in [6]. An
example where such a scheme was successful is [7]. They use a stack of two-layer convolutional
autoencoders, which are successively trained. The trained convolutional layers are then stacked
and classification layers are added. This network is then fine-tuned to a specific task. They use
this architecture successfully to diagnose Alzheimer’s Disease using structural MR brain scans.

To conclude, at first glance autoencoders are neural networks to perform dimensionality reduc-
tion. Such a reduction is normally done with a specific goal in mind, such as classification. In this
case, the encoder function can further be used, while the decoder function becomes irrelevant.
This suggests that the dissimilarity measure used as a loss function does not have to guarantee
a one-to-one reconstruction, but should rather assure that all features relevant for classification
are kept. The choice of a suitable loss function is thus not trivial. In the course of this thesis, we

12 1 Machine Learning and Neural Networks

encoder

output

classifier

input
hidden

representation
(bound to change)

Figure 1.6: A schematic diagram of a network whose first layers consists of the pretrained en-
coding layers of an autoencoder. Instead of a decoding function, a classification function is
added.

want to examine if the Wasserstein distance could be a replacement for the Euclidean distance in
the case of MR images: the Euclidean distance as a loss function aims to reconstruct the image
voxelwise, which might not be necessary to keep relevant features.

1.3 Support Vector Machines
Support vector machines (SVMs) solve classification problems between two sets of points be-
longing to two classes 𝐴 and 𝐵 by finding a good decision boundary. This decision boundary is a
hyperplane separating the two sets. A good decision boundary is characterized by a large dis-
tance between the hyperplane and the closest data point of each class. The goal of an SVM is to
find the hyperplane that maximizes this distance.

The following introduction to classical SVMs is based on [8]. Let

(𝑥(1), … , 𝑥(𝑘)), 𝑥(𝑖) ∈ ℝ𝑛, 𝑖 = 1, … , 𝑘 for 𝑘, 𝑛 ∈ ℕ

with labels
(𝑦1, … , 𝑦𝑘), 𝑦𝑖 ∈ {� ± 1}�,

where

𝑦𝑖 =
⎧{
⎨{⎩

1, if 𝑥(𝑖) is in class 𝐴,
−1, if 𝑥(𝑖) is in class 𝐵.

� (1.1)

The goal is to learn a linear decision function 𝐷(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 with parameters 𝑤 ∈ ℝ𝑛 and
𝑏 ∈ ℝ, satisfying

𝐷(𝑥(𝑖)) > 0, if 𝑥(𝑖) is in class A

𝐷(𝑥(𝑖)) < 0, if 𝑥(𝑖) is in class B

for all 1 ≤ 𝑖 ≤ 𝑘.

1.3 Support Vector Machines 13

𝐷(𝑥) =
⟨𝑤, 𝑥⟩ + 𝑏 =

0

𝑤

𝑤
· 𝑥 =

0

|𝑏|
‖𝑤‖

margin

Figure 1.7: Illustration of a separating hyperplane. The hyperplane is visualized as a thick line.
The dashed lines are defined by the support vectors. The margin 𝑀 can be calculated as the
distance of two points 𝑣 and 𝑢 that are multiples of 𝑤.

Then, an unknown point 𝑥 is classified according to the rule

𝑥 is in class
⎧{
⎨{⎩

𝐴, if 𝐷(𝑥) > 0,
𝐵, otheriwse.

�

The decision boundary defined as {𝑥 ∈ ℝ𝑛 ∶ 𝐷(𝑥) = ⟨𝑤, 𝑥⟩ + 𝑏 = 0} is a hyperplane. Then vec-
tor 𝑤 is orthogonal to the hyperplane. This representation of the hyperplane is not unique, be-
cause 𝑤 and 𝑏 can be multiplied by some nonzero constant. We want to avoid this by taking a
canonical hyperplane. First we see that using the class labels, the conditions can be reformulated
as

𝑦𝑖𝐷(𝑥(𝑖)) > 0 for all 1 ≤ 𝑖 ≤ 𝑘. (1.2)

Then a canonical hyperplane is a hyperplane with

min
𝑖=1,…,𝑘

𝑦𝑖𝐷(𝑥(𝑖)) = min
𝑖=1,…,𝑘

𝑦𝑖(⟨𝑤, 𝑥⟩(𝑖) + 𝑏) = 1. (1.3)

Of course such a function can only be found if the data is linearly separable. Let us assume
that this is the case. Then we wish to find a decision function, i. e. a separating hyperplane, that
generalizes well. To achieve this, we search for the hyperplane which maximizes the smallest
perpendicular distance between the training samples and the decision boundary. We call this
distance the margin. An illustration can be seen in Figure 1.7. The distance between any point 𝑥
and the hyperplane defined above is given by |𝐷(𝑥)|

‖𝑤‖ .

14 1 Machine Learning and Neural Networks

Now, if a hyperplane separating the classes 𝐴 and 𝐵 exists, it follows from (1.1) and (1.2) that
the distance between a point and the hyperplane is

𝑦𝑖𝐷(𝑥(𝑖))
‖𝑤‖ for all 1 ≤ 𝑖 ≤ 𝑘.

We can now consider this distance using canonical hyperplane as defined in (1.3), i. e. a hyper-
plane that satisfies

𝑦𝑖𝐷(𝑥(𝑖)) = 1

for all points 𝑥(𝑖) with the closest distance to the hyperplane. Then smallest distance between a
point and the hyperplane, i. e. the margin, will be 1

‖𝑤‖ .
Now we want to maximize the margin, which amounts to maximizing 1

‖𝑤‖ , which is in turn
equivalent to minimizing ‖𝑤‖2. This leads to the consideration of the following optimization
problem:

min
𝑤∈ℝ𝑛, 𝑏∈ℝ

1
2‖𝑤‖2

subject to 𝑦𝑖(⟨𝑤, 𝑥(𝑖)⟩ + 𝑏) ≥ 1 for all 1 ≤ 𝑖 ≤ 𝑘.
(1.4)

It can be shown that in the case of linearly separable classes, the above problem is equivalent to

max
𝑎∈ℝ𝑛

𝑘
∑
𝑖=1

𝑎𝑖 − 1
2

𝑘
∑

𝑖,𝑗=1
𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗⟨𝑥(𝑖), 𝑥(𝑗)⟩

subject to 𝑎𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘

and
𝑘

∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0,

(1.5)

and a solution to this problem exists and can be calculated using quadratic programming. The
elements 𝑥(𝑖) for which 𝑎𝑖 > 0 are called support vectors, and these are exactly the elements that
fulfill

𝑦𝑖𝐷(𝑥(𝑖) = 1,

thus their margin is exactly 1
‖𝑤‖ . The parameters of the optimal hyperplane can be recovered

from the optimal solution 𝑎 of (1.5) as

𝑤 =
𝑘

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥(𝑖),

where only support vectors contribute to the sum. Using some support vector 𝑥(𝑖0), the optimal
offset 𝑏 can be calculated by

𝑦𝑖0⟨𝑤, 𝑥(𝑖0)⟩ + 𝑏 = 1.

In practice, we often encounter cases where two classes are not linearly separable. To solve this
problem, Vapnik and Cortes introduced the following modification of support vector classific-
ation in [9], called soft margin hyperplanes. The main idea is to replace the constraints (1.2) with
relaxed constraints

𝑦𝑖⟨𝑥(𝑖), 𝑤⟩ + 𝑏 ≥ 1 − 𝜁𝑖, 1 ≤ 𝑖 ≤ 𝑘, (1.6)

where
𝜁𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘, (1.7)

1.3 Support Vector Machines 15

are the so-called slack variables. Adding the slack variables assures that the constraints can always
be fulfilled, since 𝜁𝑖 only has to be chosen large enough. In order to still get sensible hyperplanes,
we thus need to penalize large slack variables in the objective function.
Thus we want to solve

min
𝑤∈ℝ𝑛, 𝜁∈ℝ𝑘, 𝑏∈ℝ𝑛

1
2‖𝑤‖2 + 𝐶

𝑘
𝑘

∑
𝑖=1

𝜁𝑖

subject to the constraints (1.6) and (1.7) for some 𝐶 > 0. If 𝜁𝑖 = 0, this means that the constraints
are met, and 𝑥(𝑖) lies behind margin line. If 𝜁𝑖 > 0, the constraint is violated. The element 𝑥(𝑖)

might lie between the margin line and the hyperplane, or it might even lie on the wrong side of
the hyperplane if 𝜁𝑖 > 1. The value 𝐶 controls how much margin errors are penalized. For small
values of 𝐶, margin errors are more likely than for bigger values. As before, the optimization
problem can be shown to be equivalent to a maximization problem, which can be solved using
quadratic programming:

max
𝑎∈ℝ𝑘

𝑘
∑
𝑖=1

𝑎𝑖 − 1
2

𝑘
∑

𝑖,𝑗=1
𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗⟨𝑥(𝑖), 𝑥(𝑗)⟩,

subject to 0 ≤ 𝑎𝑖 ≤ 𝐶
𝑚, 1 ≤ 𝑖 ≤ 𝑘,

and
𝑘

∑
𝑖=1

𝑎𝑖𝑦𝑖 = 0.

(1.8)

Again, the optimal 𝑤 can be obtained through the optimal 𝑎 by

𝑤 =
𝑘

∑
𝑖=1

𝑎𝑖𝑦𝑖𝑥(𝑖),

and 𝑏 can be calculated using the support vectors. A further generalization of support vector
classification consists of the kernel trick. This is based upon the fact that in the above problems,
only the inner product of the training samples 𝑥(𝑖) is required. Now one can consider replacing
the inner product ⟨𝑥(𝑖), 𝑥(𝑗)⟩ by a kernel function 𝑘(𝑥(𝑖), 𝑥(𝑗)). This means that the samples 𝑥(𝑖)

need not lie in ℝ𝑛, but can lie in any set 𝒳 . We now give a short interpretation of this idea. First,
we consider which functions can be used as kernels.

1.3.1. Definition (Positive Definite Kernel). Let 𝒳 be a nonempty set. A function 𝑘 ∶ 𝒳 × 𝒳 → ℝ
is called positive definite if 𝑘 is symmetric and for any 𝑚 ≥ 0, any family 𝑥(1), … , 𝑥(𝑚) ∈ 𝒳 and
any sequence 𝑐1, … , 𝑐𝑚 ∈ ℝ the inequality

𝑚
∑

𝑖,𝑗=1
𝑐𝑖𝑐𝑗𝑘(𝑥(𝑖), 𝑥(𝑗)) ≥ 0

holds. Such kernels are also called Mercer kernels and the above condition is called Mercer’s
condition.

Exchanging the standard inner product in ℝ𝑛 with the kernel 𝑘 can be interpreted as mapping
the elements 𝑥(𝑖) to a different feature space and thus effectively performing support vector classi-
fication in a higher dimensional feature space. More specifically, if 𝑘 is a positive definite kernel,
it can be shown that there exists a map 𝜑 ∶ 𝒳 → 𝒳ℝ = {𝑓 ∶ 𝒳 → ℝ} and an inner product ⟨·, ·⟩ on
𝒳ℝ such that

𝑘(𝑥, 𝑥′) = ⟨𝜑(𝑥), 𝜑(𝑥′)⟩. (1.9)

16 1 Machine Learning and Neural Networks

Figure 1.8: Example of synthetic data from two classes. The decision boundary using a Gaus-
sian kernel is shown as the thick black line. The support vectors are circled in green. The
contours show the points of constant 𝑦(𝑥).

Source: [2, §7.1]

This map is given by
𝜑(𝑥) = 𝑘(·, 𝑥) for all 𝑥 ∈ 𝒳. (1.10)

The closure of the image of 𝜑 under this map is a Hilbert Space, and it is called Reproducing
Kernel Hilbert Space (RKHS). We will refer to this space as the feature space and to the map 𝜑 as
the feature map. Since all calculations above are valid in arbitrary Hilbert spaces, using a Mercer
kernel in SVM is the same as performing SVM in the feature space. However, it is not necessary
to calculate the mapping, nor to even know the mapping or the resulting feature space explicitly.

An example of a kernel is the popular Gaussian radial basis function kernel. For 𝒳 = ℝ𝑛 it is
defined as

𝑘gauss(𝑥, 𝑦) = exp⎛⎜
⎝

−‖𝑥 − 𝑦‖2

2𝜎2
⎞⎟
⎠

for 𝑥, 𝑦 ∈ ℝ𝑛, 𝜎 ∈ ℝ. (1.11)

It is indeed a positive semidefinite Mercer kernel, a shown for example in [2, §6.2]. The form
of the map 𝜑 is not explicitly given. However, it can be shown that for 𝑙 distinct elements
𝑥(1), … , 𝑥(𝑙), the vectors 𝜑(𝑥(1), … , 𝜑(𝑥(𝑙) are linearly independent, see [10, Thm. 2.18]. Thus,
the corresponding feature space has infinite dimension if the number of training samples is not
restricted. This kernel describes a measure of similarity between two points 𝑥 and 𝑥′: the value
𝑘RBF(𝑥, 𝑥′) increases if the Euclidean distance between the points decreases. So for two points
very close to each other, the kernel will give a high value. The parameter 𝜎 controls how fast
the function decreases. Since the feature map is given by 𝜑(𝑥) = 𝑘(·, 𝑥), the image of 𝑥 in feature
space can be seen as a vector of similarities of 𝑥 to all other points in ℝ𝑛. An illustration of a
decision boundary obtained using a Gaussian kernel can be seen in Figure 1.8.

It makes sense to use this kernel if the Euclidean distance describes a meaningful distance.
But other distances are imaginable: one can define a general radial basis function kernel for a
metric space (Ω, 𝑑) through

𝑘rbf
𝑑 (𝑥, 𝑦) = exp(−𝜀𝑑(𝑥, 𝑦)2) for 𝑥, 𝑦 ∈ Ω, 𝜀 ∈ ℝ>0, (1.12)

1.4 Principal Component Analysis 17

see [11]. For example, if Ω is a set of strings, 𝑑 could be the string edit distance, see [12]. However,
this kernel is not guaranteed to be positive semidefinite, which means that the existence of an
RKHS feature space is not guaranteed. In [13] it is remarked that it is still possible to formulate
the optimization problems (1.5) and (1.8) and they obtain good results using non-Mercer kernels.
They also remark, that it is not guaranteed that the resulting hyperplane maximizes some margin
in a hidden space. But it can be shown that the symmetry of the kernel still guarantees the exist-
ence of a feature map 𝜑 and a symmetric bilinear form 𝑄(·, ·) such that 𝑘(𝑥, 𝑥′) = 𝑄(𝜑(𝑥), 𝜑(𝑥′)),
see [10, Prop. 2.25]. The lack of the positive definiteness means that 𝑄 does not define an inner
product, and the resulting feature space is not a Hilbert space. In [14], Reproducing Kernel Krein
Spaces have been introduced to study the feature spaces associated to non-Mercer kernels and a
feature space interpretation of classical SVM with non-Mercer kernels has been given in [15].

1.4 Principal Component Analysis
In this section we want to introduce Principal Component Analysis. This technique, used for di-
mensionality reduction, has already been introduced in 1901 in [16] and has become a widely
used tool. An extension of PCA making it possible to perform PCA in feature space has been in-
troduced as Kernel PCA in 1992 by [17]. We will first explain the idea behind PCA and describe
standard PCA, using [2, §12] as a source. Then we will present the extension of Kernel PCA,
using [17] as a source.

The idea behind PCA is to search new axes in the input space, orthogonal to each other, such
that most of the variance of the given data set is along those axes. For dimensionality reduction,
one can then consider the subspace spanned only by a subset of the axes which consists of those
axes along which the points are most dispersed, which is measured by variance. A point is then
represented by the coordinates in that new subspace, which is called the principal subspace.

Another approach to reduce the dimensionality of some data is to find a linear projection
onto a lower dimensional space such that the mean squared error between the original data
points and their projections is minimized. It can be shown that this approach is equivalent to
the first approach, which means that the subspace constructed through the directions with most
variance is also the subspace that minimizes the mean squared distance between data points
and projections. An illustration can be seen in Figure 1.9. We will now formalize the concept of
maximum variance and describe how to find the axes with most variance.

Let (𝑥(1), … , 𝑥(𝑘)), 𝑥(𝑖) ∈ ℝ𝑛, 𝑖 = 1, … , 𝑘 with 𝑘, 𝑛 ∈ ℕ be a set of centered sample points, i. e.

̄𝑥 = 1
𝑘

𝑘
∑
𝑖=1

𝑥(𝑖) = 0.

The maximum variance formulation aims to successively find normed, orthogonal directions
(axes) 𝑢(1), … , 𝑢(𝑙) for some 𝑙 < 𝑛 that maximize the empirical variance of the projection ℎ𝑢(𝑥) =
⟨𝑢, 𝑥⟩ defined as

var(𝑢) = 1
𝑘

𝑘
∑
𝑖=1

ℎ𝑢(𝑥(𝑖))2 = 1
𝑘

𝑘
∑
𝑖=1

⟨𝑢, 𝑥(𝑖)⟩2.

18 1 Machine Learning and Neural Networks

Now, let 𝑋 be the (𝑛 × 𝑘)-matrix whose 𝑖-th column is the sample 𝑥(𝑖), 𝑋 = (𝑥(1) … 𝑥(𝑘)) and let
𝑆 = 1

𝑘 𝑋𝑋𝑇 . Then we have, since 𝑋𝑇𝑢 = (𝑥(1) … 𝑥(𝑘))𝑇𝑢 = (⟨𝑥(1), 𝑢⟩ … ⟨𝑥(𝑘), 𝑢⟩)𝑇 ,

var(𝑢) = 1
𝑘 ⟨𝑋𝑇𝑢, 𝑋𝑇𝑢⟩ = 1

𝑘 ⟨𝑢, 𝑋𝑋𝑇𝑢⟩ = ⟨𝑢, 𝑆𝑢⟩. (1.13)

Now, the objective is to maximize var(𝑢) under the constraint ‖𝑢‖ = 1. Using Lagrange multipli-
ers, it can be shown that a stationary point fulfills

𝑆𝑢 = 𝜆𝑢

and using 𝑢𝑇𝑢 = 1 this means the variance is

var(𝑢) = 𝑢𝑇𝑆𝑢 = 𝑢𝑇𝜆𝑢 = 𝜆.

This means that the first direction is the eigenvector of 𝑆 with maximal eigenvalue. It is called
the first principal component. The next principal component will be the direction amongst all dir-
ections orthogonal to the first principal component that again maximizes the empirical variance.
It can be shown by induction that the principal components 𝑢(1), … , 𝑢(𝑝) are the eigenvectors
corresponding to the 𝑝 largest eigenvalues 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑝 of 𝑆. Note that for every real,
symmetric matrix there always exists an orthonormal basis of real eigenvectors of the respective
vector space by the spectral theorem, thus the 𝑢(𝑖) can be chosen to be pairwise orthogonal. For
any point 𝑥 ∈ ℝ𝑛, its new coordinates in the principal subspace with respect to the orthonormal
basis 𝑢(1), … , 𝑢(𝑝) can be calculated as

𝑥code = (⟨𝑢(1), 𝑥⟩, … , ⟨𝑢(𝑝), 𝑥⟩)
𝑇

.

Denoting by 𝑈 the matrix whose 𝑖-th column is 𝑢(𝑖), this can be rewritten as

𝑥code = 𝑈𝑇𝑥,

which shows that the reduction defines a linear map. Forming the linear combination of the
coordinates and the basis vectors 𝑢(1), … , 𝑢(𝑝), we get a vector ̃𝑥 in the original space ℝ𝑛 as

̃𝑥 =
𝑝

∑
𝑖=1

𝑥code,𝑖𝑢(𝑖) =
𝑝

∑
𝑖=1

⟨𝑢(𝑖), 𝑥⟩𝑢(𝑖) (1.14)

which can be interpreted as a reconstruction or decoding of 𝑥.
This leads to the second formulation: let 𝑓enc ∶ ℝ𝑛 → ℝ𝑝, 𝑥 ↦ 𝐷𝑇𝑥 for any matrix 𝐷 with

normed orthogonal columns be an encoding function, and let the decoding function be given
by 𝑓dec ∶ ℝ𝑝 → ℝ𝑛, 𝑥 ↦ 𝐷𝑥. It can be shown that the matrix 𝑈 consisting of the eigenvectors
corresponding to the maximal eigenvalues of 𝑋𝑋𝑇 as defined above minimizes the mean squared
error

𝑘
∑
𝑖=1

∥𝑥(𝑖) − 𝑓dec(𝑓enc(𝑥(𝑖)))∥2 =
𝑘

∑
𝑖=1

∥𝑥(𝑖) − 𝐷𝐷𝑇𝑥(𝑖)∥2

between the sample points 𝑥(𝑖) and the reconstruction ̃𝑥(𝑖) = 𝐷𝐷𝑇𝑥(𝑖), which corresponds to the
projection of 𝑥(𝑖) onto the principal subspace, see Figure 1.9.

1.4 Principal Component Analysis 19

⟨𝑥,
𝑢⟩

‖𝑥 −
̃𝑥‖

𝑥

𝑢

Figure 1.9: One formulation of PCA is to minimize the error ‖𝑥 − ̃𝑥‖ between the point 𝑥 (blue
circle) and its projection ̃𝑥 (pink circle) onto the principal subspace, illustrated as the diag-
onal axis 𝑢. An equivalent formulation is to maximize the variance of 𝑥 along 𝑢, i. e. the
length of 𝑥 along 𝑢, calculated as ⟨𝑥, 𝑢⟩ for a normed vector 𝑢.

Let us now look at the optimal reconstruction error. Since the principal components are a part
of a complete basis 𝑢(1), … , 𝑢(𝑛) of ℝ𝑛, 𝑥 can be written as ∑𝑛

𝑖=1⟨𝑢(𝑖), 𝑥⟩𝑢(𝑖). Then the optimal
reconstruction error is, using the orthonormality of the basis and (1.13),

𝑘
∑
𝑗=1

∥𝑥(𝑗) − ̃𝑥(𝑗)∥2 =
𝑘

∑
𝑖=1

∥�
𝑛

∑
𝑖=1

⟨𝑢(𝑖), 𝑥(𝑗)⟩𝑢(𝑖) −
𝑝

∑
𝑖=1

⟨𝑢(𝑖), 𝑥(𝑗)⟩𝑢(𝑖)∥�
2

=
𝑘

∑
𝑗=1

∥�
𝑛

∑
𝑖=𝑝+1

⟨𝑢(𝑖), 𝑥(𝑗)⟩𝑢(𝑖)∥�
2

=
𝑘

∑
𝑗=1

𝑛
∑

𝑖=𝑝+1
⟨𝑢(𝑖), 𝑥(𝑗)⟩

2

=
𝑛

∑
𝑖=𝑝+1

var(𝑢(𝑖)) =
𝑛

∑
𝑖=𝑝+1

⟨𝑢(𝑖), 𝑆𝑢(𝑖)⟩ =
𝑛

∑
𝑖=𝑝+1

⟨𝑢(𝑖), 𝜆𝑖𝑢(𝑖)⟩

=
𝑛

∑
𝑖=𝑝+1

𝜆𝑖.

On the other hand, the maximum variance is

𝑝
∑
𝑖=1

var(𝑢(𝑖)) =
𝑝

∑
𝑖=1

⟨𝑢(𝑖), 𝑆𝑢(𝑖)⟩ =
𝑝

∑
𝑖=1

⟨𝑢(𝑖), 𝜆𝑖𝑢(𝑖)⟩

=
𝑝

∑
𝑖=1

𝜆𝑖.

Thus, the amount of eigenvalues controls both the reconstruction error and variance. These
quantities can be used to choose a fitting value for 𝑝.

We now want to use the kernel trick in order to be able to perform non-linear PCA. An illus-
tration of why this can be useful is shown in Figure 1.10.

So far, the method is not formulated in terms of inner products, but it can be reformulated.
Denote by 𝜑 the feature map, and by ℋ the corresponding RKHS. The matrix 𝑆 in this setting

20 1 Machine Learning and Neural Networks

Figure 1.10: Top row: a synthetic nonlinearly separable dataset and the projection onto one
dimension using standard PCA. Bottom row: the projection of the dataset onto two dimen-
sions and one dimension using RBF kernel PCA. The projection onto two dimensions shows
the distribution of the data in feature space.

Source: [18]

has to be seen as a linear operator 𝑆 ∶ ℋ → ℋ and is defined by

𝑆𝑥 = 1
𝑘

𝑘
∑
𝑗=1

𝜑(𝑥(𝑗))⟨𝜑(𝑥(𝑗)), 𝑥⟩ for all 𝑥 ∈ ℋ.

It is easily seen that in the case where 𝜑(𝑥) = 𝑥, this definition yields exactly the definition of 𝑆
as above. Denote by 𝐾 the kernel matrix defined through 𝐾𝑖𝑗 = ⟨𝜑(𝑥(𝑖)), 𝜑(𝑥(𝑗))⟩.

So far, we have assumed the data to be centered. Now we have to assume that the data is
centered in the feature space, which cannot be done explicitly, since the feature map is usually not
explicitly known. However, it is easy to see that the kernel of the centered data can be expressed
through the kernel of the uncentered data as

𝐾̃ = 𝐾 − 1𝑘𝐾 − 𝐾1𝑘 + 1𝑘𝐾1𝑘,

where (1𝑘)𝑖𝑗 = 1
𝑘 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘, which is sufficient, since we aim for a formulation in terms

of the kernel anyway.
As before, we aim to find eigenvectors 𝑢 ≠ 0 ∈ ℋ and eigenvalues 𝜆 ≥ 0 satisfying

𝑆𝑢 = 𝜆𝑢, (1.15)

since all calculations done up to this point can be done in arbitrary Hilbert spaces. Our goal now
is to rewrite this equation in a way such that it only depends on inner products. First, we see
that every solution of (1.15) is also a solution of

⟨𝜑(𝑥(𝑗)), 𝑆𝑢⟩ = 𝜆⟨𝜑(𝑥(𝑗)), 𝑢⟩ for every 1 ≤ 𝑗 ≤ 𝑘. (1.16)

1.4 Principal Component Analysis 21

Denote by 𝑉 the span of 𝜑(𝑥(1)), … , 𝜑(𝑥(𝑘)). We claim that the solutions of (1.15) are exactly the
solutions of (1.16) which lie in 𝑉. Assume that 𝑢 is a solution of (1.16). Then, by taking linear
combinations, (1.16) implies that ⟨𝑣, 𝑆𝑢⟩ = 𝜆⟨𝑣, 𝑢⟩ for all 𝑣 ∈ 𝑉, or ⟨𝑣, 𝑆𝑢 − 𝜆𝑢⟩ = 0 for all 𝑣 ∈ 𝑉.
If we now assume 𝑢 ∈ 𝑉, we get that 𝑆𝑢 − 𝜆𝑢 ∈ 𝑉 and thus

⟨𝑆𝑢 − 𝜆𝑢, 𝑆𝑢 − 𝜆𝑢⟩ = ‖𝑆𝑢 − 𝜆𝑢‖2 = 0,

which shows 𝑆𝑢 − 𝜆𝑢 = 0. This means that any 𝑢 ∈ 𝑉 which is a solution to (1.16) is also a
solution to (1.15). On the other hand, if 𝑢 is a solution of (1.15), it follows immediately from the
definition of 𝑆 that for 𝜆 ≠ 0 any solution 𝑢 of (1.16) lies in the span of 𝜑(𝑥(1)), … , 𝜑(𝑥(𝑘)). We
conclude that the solutions to (1.15) are indeed exactly the solutions to (1.16) which lie in 𝑉. So
instead of looking for solutions to (1.15), we can constrain (1.16) to 𝑉 by expressing 𝑢 as

𝑢 =
𝑘

∑
𝑖=1

𝛼𝑖𝜑(𝑥(𝑖)) (1.17)

for some 𝛼 ∈ ℝ𝑘. The problem of finding eigenvectors 𝑢 is then equivalent to finding coefficients
𝛼. By putting 𝑢 into (1.16), we get

𝑘
∑
𝑖=1

𝛼𝑖⟨𝜑(𝑥(𝑗)), 𝑆𝜑(𝑥(𝑖))⟩ = 𝜆
𝑘

∑
𝑖=1

𝛼𝑖⟨𝜑(𝑥(𝑗)), 𝜑(𝑥(𝑖)⟩ (1.18)

and by further replacing the definition of 𝑆 we get

1
𝑘

𝑘
∑
𝑖=1

𝛼𝑖⟨�𝜑(𝑥(𝑗)),
𝑘

∑
𝑙=1

𝜑(𝑥(𝑙))⟨𝜑(𝑥(𝑙)), 𝜑(𝑥(𝑖))⟩⟩� = 𝜆
𝑘

∑
𝑖=1

𝛼𝑖⟨𝜑(𝑥(𝑗)), 𝜑(𝑥(𝑖))⟩.

This formula can be expressed in terms of the kernel as

𝐾2𝛼 = 𝑘𝜆𝐾𝛼. (1.19)

It can be shown that solving the equation

𝐾𝛼 = 𝑘𝜆𝛼 (1.20)

instead yields all solution that are of interest for us, see [17, Appendix A].
Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝 denote the first 𝑝 eigenvalues of 𝐾 (which are the solutions 𝑘𝜆 of (1.20)),

where 𝑝 is chosen such that 𝜆𝑝 is positive, and let 𝛼(1), … , 𝛼(𝑝) be the corresponding eigenvectors.
Note that the eigenvectors 𝛼(𝑙) now describe the coefficients of the principal components 𝑢(𝑙) as a
linear combination of the feature vectors. In order to get normalized principal components, we
have to normalize the coefficients 𝛼(𝑙). By using (1.17) and (1.20), we see that

⟨𝑢(𝑙), 𝑢(𝑙)⟩ = ⟨
𝑘

∑
𝑖=1

𝛼(𝑙)
𝑖 𝜑(𝑥(𝑖)),

𝑘
∑
𝑖=1

𝛼(𝑙)
𝑖 𝜑(𝑥(𝑖))⟩

=
𝑘

∑
𝑖,𝑗=1

𝛼(𝑙)
𝑖 𝛼(𝑙)

𝑗 ⟨𝜑(𝑥(𝑖)), 𝜑(𝑥(𝑗))⟩ =
𝑘

∑
𝑖,𝑗=1

𝛼(𝑙)
𝑖 𝛼(𝑙)

𝑗 𝐾𝑖𝑗

= ⟨𝛼(𝑙), 𝐾𝛼(𝑙)⟩ = 𝑘𝜆⟨𝛼(𝑙), 𝛼(𝑙)⟩.

Thus, requiring ‖𝑢‖ = 1 amounts to normalizing 𝛼(𝑙) to have ∥𝛼(𝑙)∥
2

= 1
𝑘𝜆𝑙

. Now, in order to

22 1 Machine Learning and Neural Networks

compute the new coordinates of a test point 𝜑(𝑥), we have to calculate the projection of 𝜑(𝑥)
onto the eigenvectors 𝑢(𝑙), which can be done as

𝜑(𝑥)code,𝑙 = ⟨𝑢(𝑙), 𝜑(𝑥)⟩ =
𝑘

∑
𝑖=1

𝛼(𝑙)
𝑖 ⟨𝜑(𝑥(𝑖)), 𝜑(𝑥)⟩.

Again, it can be shown that choosing the vectors 𝑢(𝑙) as the eigenvectors to the maximal eigen-
values leads to a minimal reconstruction error, with the same reconstruction error value as be-
fore. However, this reconstruction error has to be interpreted as a reconstruction error in the
feature space. The reconstruction formula (1.14) in the case of Kernel PCA reads

𝜑(𝑥) =
𝑝

∑
𝑖=1

𝛽(𝑖)𝑢(𝑖) =
𝑝

∑
𝑖=1

𝛽(𝑖)
𝑘

∑
𝑙=1

𝛼(𝑙)𝜑(𝑥(𝑙))

for 𝛽(𝑖) = ∑𝑘
𝑗=1 𝛼(𝑖)

𝑗 ⟨𝜑(𝑥(𝑗), 𝜑(𝑥)⟩. In order to get a reconstruction in the original space, we thus
need to invert the (unknown) function 𝜑. Further, there might not even exist a preimage for 𝜑(𝑥).
Methods to handle this problem are discussed in [19] and [20].

As a last point, let us remark on indefinite kernels. Since in order to calculate the principal
components one really only needs to calculate eigenvectors, PCA can be implemented for in-
definite kernels without any problems. As remarked before, the feature space corresponding
to indefinite kernels is not a Hilbert space, which means that the interpretation of minimum
reconstruction error and maximum variance do not remain correct, but in [21] it is shown that
there exists an alternative formulation in the feature space. They also demonstrate the usability
of indefinite kernels in the case of a truncated ℓ1 distance kernel compared to RBF kernel PCA and
linear PCA. Using six different datasets, they show that the indefinite kernel outperforms the
RBF kernel and linear kernel on some datasets and gives similar accuracy as the RBF kernel on
the others.

23

2 Mathematical Background

In this chapter we give a brief overview of the mathematical background we will need in the
next chapter. The first section treats the space of measures on a compact metric space and its
dual, the space of continuous functions. We further state some well known theorems such as the
Radon-Nikodym and Hahn Decomposition theorems. The second section collects some results
from the field of convex analysis that we will need for the next chapter, most notably the Fenchel
Duality theorem. We will start off with a short motivation for choosing the setting of a compact
metric space.

Our motivation is to consider Wasserstein distances between MR images of brain regions. Since
the Wasserstein metric is a metric between probability measures, it is thus necessary to model
MR images of brain regions as probability measures on some space. After preprocessing, an
MR image is a three-dimensional image, which can be understood to be a function on a three-
dimensional grid as a subset of ℝ3. Two-dimensional images, as functions on subsets of ℝ2, are
usually represented as matrices. They are defined on grids consisting of pixels, which have two
coordinates (𝑖, 𝑗) ∈ ℕ2, where usually the 𝑖 is the row and 𝑗 is the column. The three-dimensional
analogon to a pixel is a voxel, which has three coordinates (𝑖, 𝑗, 𝑘) ∈ ℕ3. The analogon to a matrix
in higher dimension is often called tensor, as defined in Definition 1.1.1. An MR image is a rank
three tensor of shape (𝑛1, 𝑛2, 𝑛3) ∈ ℕ3. Since a voxel grid is a subset of ℝ3, a natural definition
of a metric on a voxel grid is through the Euclidean metric. It consists of finitely many elements,
which means that it can be seen as a compact metric space. Now unlike images in general, MR
images can be interpreted as measures, since they describe gray matter volume. This means
we can see an MR image as a measure on a compact metric space. We could concentrate on
finite metric spaces, but the mathematical theory becomes much more conceptual if we consider
general compact metric spaces. However, we always assume the metric space to be compact,
since it is sufficient for our purposes.

2.1 The Space of Measures and its Dual
In this section we will introduce the space of Radon measures and its dual. The definitions are
based on [22, §6]. We start with the definition of a Radon measure.

2.1.1. Definition. Let (𝑋, 𝑑) be a compact metric space, equipped with the Borel sigma algebra.
A Radon measure is a finite, signed Borel measure on 𝑋. We define ℳ(𝑋) as the set of all Radon
measures. Further, we define ℳ+(𝑋) as the set of all non-negative Radon measures. The set
of all probability measures, i.e. non-negative Radon measures 𝜇 with 𝜇(𝑋) = 1, is denoted by
𝒫(𝑋).

If 𝑋 = {1, … , 𝑛} is finite, then a Radon measure can be identified with a vector in ℝ|𝑋|, since
every measure 𝜇 is uniquely determined by the mass of singletons, since 𝜇(𝐴) = ∑𝑖∈𝐴 𝜇({𝑖}) for
all 𝐴 ⊆ 𝑋.

24 2 Mathematical Background

2.1.2. Example (Dirac Measure and Counting Measure). Let 𝑋 be any set.

• For some 𝑥 ∈ 𝑋, the Dirac measure is the measure 𝛿𝑥 defined by

𝛿𝑥(𝐸) =
⎧{
⎨{⎩

1, if 𝑥 ∈ 𝐸
0, if 𝑥 ∉ 𝐸,

�

for any subset 𝐸 ⊆ 𝑋. Since 𝛿𝑥 ≥ 0 and 𝛿𝑥(𝑋) = 1, it is a probability measure. If
𝑋 = {1, … , 𝑛} is finite, then 𝛿𝑘 for 𝑘 ∈ 𝑋 is the unit vector 𝑒𝑘 ∈ ℝ𝑛.

• The counting measure is the measure 𝜆count defined by

𝜆count(𝐸) =
⎧{
⎨{⎩

∞, if 𝐸 is infinite

number of elements in 𝐸, if 𝐸 is finite,
�

for any subset of 𝐸 ⊆ 𝑋. The counting measure is not a probability measure if 𝑋 has
more than one element. If 𝑋 is finite, it is possible to consider the normalized counting
measure, defined as

𝜆1
count(𝐸) = number of elements in 𝐸

number of elements in 𝑋 ,

which fulfills 𝜆1
count ≥ 0 and 𝜆1

count(𝑋) = 1 and is thus a probability measure.

So far, we have only considered ℳ(𝑋) as a set. Since we allow measures to be negative in ℳ(𝑋),
we can scalar multiplication and addition of measures by

(𝜇 + 𝜈)(𝐸) = 𝜇(𝐸) + 𝜈(𝐸)
(𝑐𝜇)(𝐸) = 𝑐𝜇(𝐸)

(2.1)

for all measurable sets 𝐸, measures 𝜇, 𝜈 ∈ ℳ(𝑋) and 𝑐 ∈ ℝ. The axioms of a vector space are
satisfied. For example, using this vector space structure, we can write the counting measure as
a sum of Dirac measures,

𝜆count = ∑
𝑥∈𝑋

𝛿𝑥.

For finite 𝑋 = {1, … , 𝑛}, this structure corresponds to the vector space structure of ℝ𝑛. In
order to define a norm on the vector space ℳ(𝑋), we need the following definition.

2.1.3. Definition (Total, Positive and Negative Variation Measures). The total variation measure
∣𝜇∣ ∈ ℳ+(𝑋) of a measure 𝜇 ∈ ℳ(𝑋) is defined as

∣𝜇∣(𝐸) = sup
ℰ

∑
𝐸𝑖∈ℰ

∣𝜇(𝐸𝑖)∣,

where the supremum is taken over all partitions ℰ of 𝐸 into measurable sets 𝐸𝑖. The positive
variation measure 𝜇+ ∈ ℳ+(𝑋) is defined as

𝜇+ = 1
2(∣𝜇∣ + 𝜇),

and the negative variation measure 𝜇− ∈ ℳ+(𝑋) is defined as

𝜇− = 1
2(∣𝜇∣ − 𝜇).

2.1 The Space of Measures and its Dual 25

If 𝜇 is a positive measure, we have ∣𝜇∣ = 𝜇, 𝜇+ = 𝜇 and 𝜇− = 0. If 𝑋 is finite and 𝜇 is given as
a vector (𝜇1, … , 𝜇𝑛) ∈ ℝ𝑛, then ∣𝜇∣ = (∣𝜇1∣, … , ∣𝜇𝑛∣). The following relations exist between the
measure, which is easy to see from the definition.

𝜇 = 𝜇+ − 𝜇− and |𝜇| = 𝜇+ + 𝜇−. (2.2)

An intuitive description of positive and negative variation is given by the following theorem.

2.1.4. Theorem (Hahn Decomposition Theorem). Let 𝜇 ∈ ℳ(𝑋). Then there exist two measur-
able sets 𝑃 and 𝑁 with 𝑃 ∪ 𝑁 = 𝑋, 𝑃 ∩ 𝑁 = ∅, such that the positive and negative variations
𝜇+ and 𝜇− of 𝜇 satisfy

𝜇+(𝐸) = 𝜇(𝑃 ∩ 𝐸) and 𝜇−(𝐸) = −𝜇(𝑃 ∩ 𝐸)

for all measurable sets 𝐸 ⊆ 𝑋. The pair (𝑃, 𝑁) is called Hahn decomposition of 𝑋.

This means that 𝑋 is the union of two disjoint sets 𝑃 and 𝑁 such that “𝑃 carries all the positive
mass of 𝜇” and “𝑁 carries all the negative mass of 𝜇”. This “disjointness” of 𝜇+ and 𝜇− can be
formalized by the notion of singularity. As a reference see [23, §4].

2.1.5. Definition. Let 𝜇, 𝜈 ∈ ℳ(𝑋) be two measures. Then 𝜇 is said to be singular w. r. t. 𝜈, 𝜇⊥𝜈,
if there exists a set 𝐵 ⊆ 𝑋 such that

𝜇(𝐵) = 0 and 𝜈(𝐵𝑐) = 0,

where 𝐵𝑐 denotes the complement of 𝐵 in 𝑋. Since this relation is symmetric, we also say that
𝜇 and 𝜈 are mutually singular. It further holds that for all measurable sets 𝐸,

𝜇(𝐸) = 𝜇(𝐸 ∩ 𝐵𝑐) and 𝜈(𝐸) = 𝜈(𝐸 ∩ 𝐵).

Since 𝜇+ and 𝜇− satisfy
𝜇+(𝑁) = 𝜇+(𝑃 ∩ 𝑁) = 𝜇+(∅) = 0

and
𝜇−(𝑁𝑐) = 𝜇−(𝑃) = 𝜇−(𝑃 ∩ 𝑁) = 𝜇−(∅) = 0,

we see that 𝜇+ and 𝜇− are mutually singular, 𝜇+⊥𝜇−.

We can now define a norm on ℳ(𝑋) by ∥𝜇∥ = ∣𝜇∣(𝑋), where ∣𝜇∣ is the total variation measure.
For non-negative measures, this simplifies to ∥𝜇∥ = 𝜇(𝑋). All axioms for a norm are satisfied
and ℳ+(𝑋) is thus a normed vector space. When 𝑋 is finite and 𝜇 is a vector, ∥𝜇∥ = ∥𝜇∥1 is the
1-norm.

Next, we want to describe the relation of the space ℳ(𝑋) to the space of continuous real-valued
functions. The following discussion is based on [24, §13].

2.1.6. Definition. The space 𝐶(𝑋) is the space of all continuous real-valued functions on 𝑋. It is
a Banach space with the norm

∥𝑓 ∥ = sup
𝑥∈𝑋

∣𝑓 (𝑥)∣.

As a first relation between the two spaces, we have the following lemma.

26 2 Mathematical Background

2.1.7. Lemma. Every 𝜌 ∈ ℳ(𝑋) defines a bounded functional on 𝐶(𝑋) through

𝛼(𝑓) = ∫
𝑋

𝑓 d𝜌.

This means that every measure in ℳ(𝑋) defines an element in the dual space of 𝐶(𝑋). The
inverse is also true, which is stated in the following lemma.

2.1.8. Lemma. Let (𝑋, 𝑑) be a compact metric space. For every bounded functional 𝛼 on 𝐶(𝑋),
there exists a unique finite signed measure 𝜌 ∈ ℳ(𝑋) such that

𝛼(𝑓) = ∫
𝑋

𝑓 d𝜌,

for all 𝑓 ∈ 𝐶(𝑋).

We thus get a bijection between the space of Radon measures and the dual of the space of con-
tinuous real-valued functions. We can further identify the subset of continuous functions that
stands in bijection with the set of non-negative Radon measures.

2.1.9. Definition (Positive Functional). A functional 𝛼 on 𝐶(𝑋) is called positive if and only if

𝑓 ≥ 0 ⇒ 𝛼(𝑓) ≥ 0 for all 𝑓 ∈ 𝐶(𝑋).

Now, it can be shown that the functional 𝛼 is positive if and only if 𝜌 is non-negative, i.e. 𝜌 ∈
ℳ+(𝑋), which means that non-negative measures correspond exactly to positive functionals.
We finally summarize everything in the following theorem. It is known in a more general setting
as the Riesz–Markov–Kakutani Representation Theorem or Riesz Representation Theorem.

2.1.10. Theorem (Riesz Representation Theorem). Let (𝑋, 𝑑) be a compact metric space. Then
the map

𝜔 ∶ ℳ(𝑋) → 𝐶(𝑋)∗, 𝜌 ↦ 𝛼, where 𝛼(𝑓) = ∫
𝑋

𝑓 d𝜌

defines an isometric isomorphism between 𝐶(𝑋)∗ and ℳ(𝑋). In particular,

∥𝜌∥ = ∣𝜌∣(𝑋) = ‖𝛼‖.

Finally, 𝛼 is positive if and only if 𝜌 is non-negative.

This shows that we can interpret ℳ(𝑋) as the dual space of 𝐶(𝑋). This means we can use the
notion of weak-* convergence on ℳ(𝑋).

2.1.11. Definition. A sequence of measures (𝜇𝑛)𝑛 ⊆ ℳ(𝑋) converges weakly-* to 𝜇 ∈ ℳ(𝑋) if
and only if

∫
𝑋

𝑓 d𝜇𝑛 ⟶ ∫
𝑋

𝑓 d𝜇

in ℝ for all 𝑓 ∈ 𝐶(𝑋). We write 𝜇𝑛 ⇀∗ 𝜇.

The subset of probability measures 𝒫(𝑋), i. e. the set of all non-negative measures 𝜇 with 𝜇(𝑋) =
1 is of special interest to us. It can be written as

𝒫(𝑋) = {𝜇 ∈ ℳ(𝑋) ∶ ∥𝜇∥ ≤ 1 and 𝜇(𝑋) = 1} ,

since the conditions ∥𝜇∥ = 𝜇+(𝑋) + 𝜇−(𝑋) ≤ 1 and 𝜇(𝑋) = 𝜇+(𝑋) − 𝜇−(𝑋) = 1 imply 𝜇− = 0
and hence 𝜇 ≥ 0. It can thus be seen as a subset of the unit ball in ℳ(𝑋).

2.2 Convex Analysis and Nonlinear Optimization 27

This gives rise to the following theorem, which is a corollary of the Banach-Alaoglu theorem.
For details see [24, Cor. 13.9].

2.1.12. Theorem (Sequential Compactness). Let 𝑋 be a compact metric space. Then the set
𝒫(𝑋) is sequentially compact in the weak-* topology.

In the next chapter, we will need the concept of densities additionally to the concept of measures.
Some measures can be expressed as a density with respect to another measure. This is the case
if and only if that measure is absolutely continuous with respect to the other measure. This is the
content of the following definition and theorem.

2.1.13. Definition (Absolute Continuity and Equivalence of Measures). A measure 𝜇 ∈ ℳ(𝑋)
is called absolutely continuous with respect to a measure 𝜈 ∈ ℳ(𝑋), written 𝜇 ≪ 𝜈, if 𝜇(𝐴) = 0
for any measurable subset 𝐴 with 𝜈(𝐴) = 0. Two measures 𝜇1, 𝜇2 ∈ ℳ(𝑋) are called equivalent,
𝜇1 ∼ 𝜇2, if 𝜇1 ≪ 𝜇2 and 𝜇2 ≪ 𝜇1.

2.1.14. Theorem (Radon-Nikodym). Let 𝜇, 𝜆 ∈ ℳ(𝑋) be measures. If 𝜇 ≪ 𝜆, then there exists a
function 𝑓 ∈ 𝐿1(𝑋, 𝜆) such that

𝜇(𝐴) = ∫
𝐴

𝑓 (𝑥)d𝜆(𝑥) (2.3)

for every measurable set 𝐴 ⊆ 𝑋. The function 𝑓 is called the Radon-Nikodym derivative of 𝜇
with respect to 𝜆 and is denoted by d𝜇

d𝜆 . Further, there always exists a unique pair of measures
𝜇𝑎 and 𝜇𝑠 such that

𝜇 = 𝜇𝑎 + 𝜇𝑠, 𝜇𝑎 ≪ 𝜆 and 𝜇𝑠⊥𝜆,

and the measure 𝜇 can be written as

𝜇 = d𝜇
d𝜆 · 𝜆 + 𝜇𝑠, 𝜇𝑠⊥𝜆.

This is called the Radon-Nikodym decomposition.

As a reference see [22, Thm. 6.10].
Thus, if we fix some non-negative measure 𝜆, the space 𝐿1(𝑋, 𝜆) corresponds to a subset of

measures 𝜇 ∈ ℳ(𝑋) by forming 𝜇 = 𝑓 𝜆 for some 𝑓 ∈ 𝐿1(𝑋, 𝜆).

2.2 Convex Analysis and Nonlinear Optimization
In this section we give a short summary of definitions and results from convex analysis and
nonlinear optimization that will be of use to us. An important tool in convex analysis is given
by Fenchel conjugation.

2.2.1. Definition (Fenchel Conjugate). Let 𝒳 be a Banach space and let 𝑔 ∶ 𝒳 → ℝ ∪ {∞} be a
functional. Then the Fenchel conjugate 𝑔∗ ∶ 𝒳∗ → ℝ ∪ {∞} of 𝑔 is defined as

𝑔∗(𝑥∗) = sup
𝑥∈𝒳

⟨𝑥∗, 𝑥⟩ − 𝑔(𝑥).

For non-reflexive spaces, we further define the Fenchel preconjugate. Let 𝑓 ∶ 𝒳∗ → ℝ ∪ {∞},
then the Fenchel preconjugate ∗𝑓 ∶ 𝒳 → ℝ ∪ {∞} is defined as

∗𝑓 (𝑥) = sup
𝑥∗∈𝒳∗

⟨𝑥∗, 𝑥⟩ − 𝑓 (𝑥∗).

28 2 Mathematical Background

We say that a function 𝑓 ∶ 𝒳 → ℝ ∪ {∞} is proper if there exists 𝑥0 ∈ 𝒳 such that 𝑓 (𝑥0) < ∞.

2.2.2. Proposition. Let 𝑓 ∶ 𝒳∗ → ℝ ∪ {∞} be proper, convex and weak-* lower semicontinuous.
Then

(∗𝑓)∗ = 𝑓 .

This is a variant of the well-known Fenchel Moreau Theorem, and a proof can be found in [25,
Thm. 9.3.4].

We now want to look at a special family of functionals, examined in [26], which we use as a
reference.

2.2.3. Definition (Integral functional). Let (𝑋, 𝜆) be a compact measure space.
Let 𝑓 ∶ 𝑋 × ℝ → ℝ ∪ {∞} such that 𝑓 (𝑥, 𝑡) is convex in 𝑡 for every 𝑥 ∈ 𝑋. Then the integral

functional 𝐼𝑓 ∶ 𝐿1(𝑋, 𝜆) → ℝ ∪ {∞} is defined by

𝐼𝑓 (𝑢) = ∫ 𝑓 (𝑥, 𝑢(𝑥))d𝜆(𝑥).

We can then look at the Fenchel conjugate of integral functionals. This is examined in [26, Thm.2].

2.2.4. Proposition. Let 𝑓 ∶ 𝑋 × ℝ such that 𝑓 (𝑥, 𝑡) is measurable in 𝑥 for each 𝑡 and convex in 𝑡
for each 𝑥. Let 𝑓 ∗ ∶ 𝑋 × ℝ be the conjugate of 𝑓 in 𝑡, i. e. 𝑓 ∗(𝑥, 𝑡) = 𝑓 ∗

𝑥 (𝑡) for fixed 𝑥 ∈ 𝑋. Let
𝑓 ∗(𝑥, 𝑢∗(𝑥)) be integrable in 𝑥 for at least one 𝑢∗ ∈ 𝐿∞(𝑋, 𝜆) and let 𝑓 (𝑥, 𝑢(𝑥)) be integrable in
𝑥 for at least one 𝑢 ∈ 𝐿1(𝑋, 𝜆).

Then the Fenchel conjugate 𝐼∗
𝑓 of the integral functional 𝐼𝑓 is 𝐼𝑓 ∗ .

Another definition we need is the adjoint of a linear map.

2.2.5. Definition (Adjoint). Let 𝐴 ∶ 𝒳 → 𝒴 be a bounded, linear map. Then the adjoint 𝐴∗ ∶ 𝒴∗ →
𝒳∗ of 𝐴 is defined by the identity

⟨𝐴∗𝑦∗, 𝑥⟩𝒳∗,𝒳 = ⟨𝑦∗, 𝐴𝑥⟩𝒴∗,𝒴

for all elements 𝑦∗ ∈ 𝒴∗, 𝑥 ∈ 𝒳 .

The Fenchel duality theorem is a very important theorem to obtain duality results. The following
theorem can be obtained easily from the classical version of Fenchel Duality, stated for example
in [27, Theorems 4.4.2/4.4.3].

2.2.6. Theorem (Fenchel Duality). Let 𝒳 and 𝒴 be Banach spaces. Let 𝑓 ∶ 𝒳 → ℝ ∪ {+∞} and
𝑔 ∶ 𝒴 → ℝ ∪ {∞} be convex functions and 𝐴 ∶ 𝒳 → 𝒴 be a bounded linear map with adjoint
map 𝐴∗ ∶ 𝒴∗ → 𝒳∗. Let 𝑓 ∗ ∶ 𝒳∗ → ℝ and 𝑔∗ ∶ 𝒴∗ → ℝ denote the Fenchel conjugates of 𝑓 and
𝑔, respectively. Then the primal and dual values 𝑝, 𝑑 ∈ [−∞, +∞] defined by the problems

𝑝 = sup
𝑥∈𝒳

{−𝑓 (𝑥) − 𝑔(𝐴𝑥)}

𝑑 = inf
𝑦∗∈𝒴∗

{𝑓 ∗(−𝐴∗𝑦∗) + 𝑔∗(𝑦∗)}
(2.4)

satisfy the weak duality inequality 𝑑 ≥ 𝑝. Denote by dom 𝑓 the set of points where 𝑓 is finite,

dom 𝑓 ≔ {𝑥 ∈ 𝑋 ∶ 𝑓 (𝑥) < ∞} .

Now, if further 𝐴 dom 𝑓 contains a point 𝑥 at which 𝑔 is continuous, then 𝑝 = 𝑑.

2.2 Convex Analysis and Nonlinear Optimization 29

We now want to discuss differentiability. As a reference, we use [25, §9]. There exist different
notions of differentiability on Banach spaces, including the Fréchet derivative, which is a gen-
eralization of the derivative of real-valued functions in a single variable. For our purposes, we
need the weaker notion of the subdifferential. This is defined for Banach spaces in a similar way
as for real-valued functions in a single variable.

2.2.7. Definition (Subdifferential). Let 𝒳 be a Banach space with dual 𝒳∗. Let 𝑓 ∶ 𝒳 → ℝ ∪ {∞}
be a convex, proper, lower semi-continuous function. Then we say an element 𝑥∗ ∈ 𝒳∗ belongs
to the subdifferential of 𝑓 at 𝑥 ∈ 𝒳 if and only if

𝑓 (𝑦) ≥ 𝑓 (𝑥) + ⟨𝑥∗, 𝑦 − 𝑥⟩ for all 𝑦 ∈ 𝒳.

We write 𝑥∗ ∈ 𝜕𝑓 (𝑥).

We are particularly interested in the subdifferential of Fenchel conjugates. We have the fol-
lowing theorem, which is a combination of [25, Prop. 9.5.1 and Thm. 9.5.1].

2.2.8. Theorem. Let 𝒳 be a Banach space with dual 𝒳∗. Let 𝑓 ∶ 𝒳 → ℝ∪{∞} be a convex, proper,
lower semi-continuous function. Then for 𝑥∗ ∈ 𝒳∗ and 𝑥 ∈ 𝑋 the following three conditions
are equivalent.

(i) 𝑥∗ ∈ 𝜕𝑓 (𝑥)

(ii) 𝑥 ∈ 𝜕𝑓 ∗(𝑥∗)

(iii) 𝑓 (𝑥) + 𝑓 ∗(𝑥∗) − ⟨𝑥∗, 𝑥⟩ = 0

Similarly to differentiable functions, we have the following theorem concerning minimizers
of convex functions.

2.2.9. Theorem. Let 𝒳 be a Banach space with dual 𝒳∗. Let 𝑓 ∶ 𝒳 → ℝ∪{∞} be a convex, proper,
lower semi-continuous function. Then 𝑥 ∈ 𝒳 is a minimizer of 𝑓 if and only if 0 ∈ 𝜕𝑓 (𝑥).

31

3 A Metric between Measures based on
Optimal Transport Theory

This chapter treats the Wasserstein distance. We start with the definition of the Wasserstein
distance and introduce optimal transport using the Kantorovich formulation. We then suggest
an extension of the Wasserstein distance which makes it possible to define transport between
measures with different mass. Next, we introduce the entropy-regularized version of optimal
transport, which makes it possible to efficiently compute Wasserstein distances. We then dis-
cuss the properties of the entropy-regularized Wasserstein distance. For the underlying space
on which measures are defined we consider a compact metric space, at times equipped with a
measure.

The new contributions of this thesis consist primarily in providing rigorous proofs for results
which have either been stated only in a less abstract setting, or for which no detailed proofs
could be found in the literature. Section 3.1 treats standard results and definitions. Section 3.2,
which introduces an extension of the Wasserstein distance for arbitrary measures, contains res-
ults which have been stated in a discrete setting, but have been proved neither in a general setting
nor in the discrete setting. We contribute a formulation that is valid in the setting of a compact
metric space and give detailed proofs of the results using this formulation (Proposition 3.2.2,
Lemma 3.2.6, Proposition 3.2.7, Theorem 3.2.8 and Corollary 3.2.9). Section 3.3 introduces the
entropy-regularized version of optimal transport and Section 3.4 examines properties of the res-
ulting regularized distance. Various papers treating this approach are available, but many are
concerned only with a discrete setting or do not include proofs. The main results in this sec-
tion for which new rigorous proofs are provided are Theorem 3.3.19 and Theorem 3.3.20. We
also give some new counterexamples (Example 3.3.22, Example 3.4.2). Most of the stated prop-
erties in Section 3.4 have been stated before, but without proof. Some properties had not been
formulated before to our knowledge (Corollary 3.4.3, Corollary 3.4.7).

3.1 The Kantorovich Problem and the Wasserstein Distance
The goal of this section is to define a notion of similarity of measures. For this, we look to optimal
transport theory.

Optimal transport is concerned with the question of how to transport several items, distribu-
ted at different starting locations, to specific target locations in an optimal way. The distribution
of the items can be interpreted as a probability measure, which can be either discrete or con-
tinuous. This problem was first formulated by Monge. His formulation looked for a mapping
of starting locations to target locations, with the interpretation that all items at one location are
transported to the same target location. Such a map is shown in Figure 3.1. However, it is not
always possible to find such a map. The problem was then reformulated by Kantorovich, allow-
ing for items at one starting location to be split up and transported to different target locations.

32 3 A Metric between Measures based on Optimal Transport Theory10 Theoretical Foundations

x1

x2

y1 y2

x1

x2

y1

y2

x4

x5
x6

x3
y3

x7

Figure 2.2: (left) blue dots from measure – and red dots from measure — are pairwise equidistant.
Hence, either matching ‡ = (1, 2) (full line) or ‡ = (2, 1) (dotted line) is optimal. (right) a Monge map
can associate the blue measure – to the red measure —. The weights –i are displayed proportionally
to the area of the disk marked at each location. The mapping here is such that T (x1) = T (x2) = y2,
T (x3) = y3, whereas for 4 Æ i Æ 7 we have T (xi) = y1.

a map T : {x1, . . . , xn} æ {y1, . . . , ym} must verify that

’ j œ JmK, bj =
ÿ

i:T (xi)=yj

ai (2.4)

which we write in compact form as T˘– = —. Because all the elements of b are
positive, that map is necessarily surjective. This map should minimize some trans-
portation cost, which is parameterized by a function c(x, y) defined for points
(x, y) œ X ◊ Y

min
T

I
ÿ

i

c(xi, T (xi)) : T˘– = —

J

. (2.5)

Such a map between discrete points can be of course encoded, assuming all x’s
and y’s are distinct, using indices ‡ : JnK æ JmK so that j = ‡(i), and the mass
conservation is written as ÿ

iœ‡≠1(j)
ai = bj ,

where the inverse ‡≠1(j) is to be understood as the pre-image set of j. In the special
case when n = m and all weights are uniform, that is ai = bj = 1/n, then the mass
conservation constraint implies that T is a bijection, such that T (xi) = y‡(i), and
the Monge problem is equivalent to the optimal matching problem (2.2) where the
cost matrix is

Ci,j

def.= c(xi, yj).

When n ”= m, note that, optimality aside, Monge maps may not even exist between
a discrete measure to another. This happens when their weight vectors are not

Figure 3.1: We have 7 different starting loca-
tions 𝑥1, … , 𝑥7, and the size of the circles
representing the locations can be inter-
preted to be proportional to the amount
of contained “items” (the “mass”). We
have 3 different target locations, to
which specific amounts of items should
be transported.

Source: [28, §2.2]18 Theoretical Foundations

�

�

� �
�

�

Figure 2.6: Left: “continuous” coupling fi solving (2.14) between two 1-D measure with density. The
coupling is localized along the graph of the Monge map (x, T (x)) (displayed in black). Right: “discrete”
coupling T solving (2.11) between two discrete measures of the form (2.3). The non-zero entries Ti,j

are display with a black disk at position (i, j) with radius proportional to Ti,j .

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

��

Figure 2.7: Four simple examples of optimal couplings between 1-D distributions, represented as
maps above (arrows) and couplings below. Inspired by Levy and Schwindt [2017].

sities). Using (2.7), these marginal constraints are equivalent to imposing that
fi(A ◊ Y) = –(A) and fi(X ◊ B) = —(B) for sets A µ X and B µ Y. The Kan-
torovich problem (2.11) is then generalized as

Lc(–, —) def.= min
fiœU(–,—)

⁄

X ◊Y

c(x, y)dfi(x, y). (2.15)

This is an infinite-dimensional linear program over a space of measures. If (X , Y)
are compact spaces and c is continuous, then it is easy to show that it always
has solutions. Indeed U(–, —) is compact for the weak topology of measures (see
Remark (2.2)), fi ‘æ

s
cdfi is a continuous function for this topology and the con-

straint set is non-empty (for instance – ¢ — œ U(–, —)). Figure 2.6 shows examples
of discrete and continuous optimal coupling solving (2.15). Figure 2.7 shows other
examples of optimal 1-D couplings, involving discrete and continuous marginals.

Figure 3.2: Optimal transport between two one-dimensional probabilities (left) and between two
discrete measures (right). While the transport plan on the left corresponds to a map between
locations, the one on the right does not. For example, the mass at the last location of 𝛼 (the
largest circle) is split up and distributed to two different locations.

Source: [28, §2.3]

The goal is now to find a matching, specifying not only which starting location is mapped to
which target location, but also how many items are transported. This matching corresponds
to a map on the Cartesian product of starting locations and target locations and it is called an
optimal coupling or optimal transport plan. Instead of talking about amounts of items, we usually
talk about mass. This is illustrated in Figure 3.2 for discrete locations and continuous locations.
Having already in mind the application to MR images, the locations correspond in this case to

voxels in a three-dimensional grid, and the mass corresponds to gray matter volume located at
the voxels.

We will now formalize the above problem and prove some classical results. We first need the
following definition and proposition, to be found for example in [29, §3.6]

3.1.1. Definition (Pushforward measure). Let 𝑋, 𝑌 be two measurable spaces, 𝑇 ∶ 𝑋 → 𝑌 a
measurable mapping and 𝜇 a measure on 𝑋. The pushforward measure 𝑇#𝜇 is a measure on 𝑌
defined through

𝑇#𝜇(𝐴) = 𝜇(𝑇−1(𝐴))

for all 𝐴 ⊂ 𝑌.

This construction makes it possible to define a measure on 𝑌 for any given measure on 𝑋, using
a map from 𝑋 to 𝑌. Integration of a function with respect to this new measure on 𝑌 can be
expressed in terms of the original measure on 𝑋 through the following change-of-variables for-
mula.

3.1 The Kantorovich Problem and the Wasserstein Distance 33

3.1.2. Proposition. Let 𝜇 ∈ ℳ(𝑋) and 𝑇 ∶ 𝑋 → 𝑌. A measurable function 𝑔 on 𝑌 is integrable
with respect to the pushforward measure 𝑇#𝜇 if and only if 𝑔 ∘ 𝑇 is integrable with respect to
𝜇, and the integrals are related by

∫
𝑌

𝑔d(𝑇#𝜇) = ∫
𝑋

𝑔 ∘ 𝑇d𝜇. (3.1)

Now let Ω1 and Ω2 be two compact metric spaces. We will assume that they are equipped with
the Borel sigma algebra, which implies that they are also measurable spaces. Let the projection
maps from Ω1 × Ω2 onto the respective components be given by pr1 ∶ Ω1 × Ω2 → Ω1, (𝑥, 𝑦) ↦ 𝑥
and pr2 ∶ Ω1 × Ω2 → Ω2, (𝑥, 𝑦) ↦ 𝑦.

3.1.3. Definition. Let Ω1 and Ω2 be two compact metric spaces. Given 𝜇 ∈ ℳ+(Ω1), 𝜈 ∈ ℳ+(Ω2)
with 𝜇(Ω1) = 𝜈(Ω2), i.e. ‖𝜇‖ = ‖𝜈‖, and a continuous function 𝑐 ∶ Ω1 × Ω2 → ℝ+, the Kan-
torovich problem is defined as

inf {𝑊(𝜋) = ∫
𝑋

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) ∶ 𝜋 ∈ Π(𝜇, 𝜈)} , (KP)

where Π(𝜇, 𝜈) is the set of so-called transport plans,

Π(𝜇, 𝜈) ≔ {𝜋 ∈ ℳ+(Ω1 × Ω1) ∶ pr#1 𝜋 = 𝜇, pr#2 𝜋 = 𝜈} . (3.2)

The function 𝑐 is called cost function, since it specifies the cost of transporting mass from loca-
tion 𝑥 to location 𝑦.

The entity 𝜋(𝐴, 𝐵) indicates how much mass is moved from a subset 𝐴 ⊆ Ω1 to a subset 𝐵 ⊆
Ω2. The conditions pr#1 𝜋 = 𝜇 and pr#2 𝜋 = 𝜈 mean that 𝜋(𝐴, 𝑌) = 𝜇(𝐴) and 𝜋(𝑋, 𝐵) = 𝜈(𝐵),
respectively, i.e. the total mass moved away from 𝐴 by 𝜋 must be exactly the mass given to 𝐴 by
𝜇, and the total mass moved to 𝐵 by 𝜋 must be exactly the mass given to 𝐵 by 𝜈. Figure 3.2 (left)
shows the density of a transport plan 𝜋 between two one-dimensional measures 𝜇 and 𝜈, which
are also visualized as densities. Without loss of generality we will from now on assume that 𝜇
and 𝜈 are probability measures, i. e. ‖𝜇‖ = ‖𝜈‖ = 1.

We now want to prove that the above problem always admits a minimizer. First, we have the
following statement about the set of transport plans.

3.1.4. Lemma. Let Ω1 and Ω2 be compact metric spaces, 𝜇 ∈ 𝒫(Ω1) and 𝜈 ∈ 𝒫(Ω2). Let
𝜇 ⊗ 𝜈 ∈ 𝒫(Ω1 × Ω1) be the product measure, i. e. the unique measure that satisfies

(𝜇 ⊗ 𝜈)(𝐴, 𝐵) = 𝜇(𝐴) · 𝜈(𝐵) (3.3)

for all measurable sets 𝐴 ⊆ Ω1, 𝐵 ⊆ Ω2. Then the set Π(𝜇, 𝜈) as defined above always contains
𝜇 ⊗ 𝜈 and it is closed in the weak-* topology.

Proof. We have

pr#1(𝜇 ⊗ 𝜈)(𝐴) = (𝜇 ⊗ 𝜈)(𝐴 × Ω2) = 𝜇(𝐴)𝜈(Ω2) = 𝜇(𝐴)

for all 𝐴 ⊆ Ω1 and likewise,
pr#2(𝜇 ⊗ 𝜈)(𝐵) = 𝜈(𝐵)

for all 𝐵 ⊆ Ω2. Hence, 𝜇 ⊗ 𝜈 ∈ Π(𝜇, 𝜈). Now let (𝜋𝑛)𝑛 ⊂ Π(𝜇, 𝜈) be a sequence with 𝜋𝑛 ⇀∗ 𝜋∗.
We have to show that 𝜋∗ is in Π(𝜇, 𝜈). The concatenation 𝑓 ∘pr1 is in 𝐶(Ω1 ×Ω2) for all 𝑓 ∈ 𝐶(Ω1)

34 3 A Metric between Measures based on Optimal Transport Theory

and therefore, using weak-* convergence and the change-of-variables property (3.1), we get

∫
Ω1

𝑓 (𝑥)d pr#1 𝜋∗(𝑥) = ∫
Ω1×Ω2

(𝑓 ∘ pr1)(𝑥, 𝑦)d𝜋∗(𝑥, 𝑦) = lim𝑛 ∫
Ω1×Ω2

(𝑓 ∘ pr1)(𝑥, 𝑦)d𝜋𝑛(𝑥, 𝑦)

= lim𝑛 ∫
Ω1

𝑓 (𝑥)d pr#1 𝜋𝑛(𝑥) = ∫
Ω1

𝑓 (𝑥)d𝜇(𝑥).

This shows that pr#1 𝜋∗ and 𝜇 define the same functional in 𝐶(Ω1)∗. By Theorem 2.1.10 we there-
fore get pr#1 𝜋∗ = 𝜇. One shows in the same way that (pr2)#𝜋∗ = 𝜈. Thus, Π(𝜇, 𝜈) is closed in the
weak-* topology. ■

Now, the existence of a minimizer of the above problem can easily be shown by the Direct
Method of Calculus of Variation, as seen in the following theorem.

3.1.5. Theorem. Let Ω1 and Ω2 be two compact metric spaces, 𝜇 ∈ 𝒫(Ω1), 𝜈 ∈ 𝒫(Ω2) and
𝑐 ∶ Ω1 × Ω2 → ℝ+ a continuous function 𝑐 ∈ 𝐶(Ω1 × Ω2). Then KP is finite and admits a
solution.

Proof. As seen in the above lemma, Π(𝜇, 𝜈) contains 𝜇 ⊗ 𝜈. Further 𝑐 is a continuous function
on a compact space and is thus bounded. In particular, 𝑊(𝜇 ⊗ 𝜈) is finite. For all 𝜋 ∈ Π(𝜇, 𝜈)
we have ‖𝜋‖ = 𝜋(Ω1 × Ω2) = 𝜇(Ω1) = 𝜈(Ω2) = 1, so Π(𝜇, 𝜈) ⊆ 𝒫(Ω1 × Ω2). Now let
(𝜋𝑛)𝑛 ⊂ Π(𝜇, 𝜈) be a minimizing sequence. By Theorem 2.1.12, there exists a subsequence
(𝜋𝑛𝑘

)𝑘 such that 𝜋𝑛𝑘
⇀∗ 𝜋∗ for some 𝜋∗ ∈ 𝒫(Ω1 × Ω2). Since Π(𝜇, 𝜈) is closed by the above

lemma, 𝜋∗ ∈ Π(𝜇, 𝜈). By definition, 𝑊(𝜋) = ∫Ω1
𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) is continuous with respect to

weak-* convergence, because 𝑐 ∈ 𝐶(Ω1 × Ω2). Consequently we get 𝑊(𝜋𝑛𝑘
) → 𝑊(𝜋∗), so 𝜋∗ is

a minimizer. ■

The above theorem however does not guarantee uniqueness of the optimal transport plan. For
example, if the cost function 𝑐 is constant, every transport plan is optimal.

Using the duality of measures and continuous functions, the following dual formulation of
the Kantorovich problem (KP) can be derived.

3.1.6. Theorem. Let Ω1 and Ω2 be two compact metric spaces, let 𝜇 ∈ 𝒫(Ω1) and 𝜈 ∈ 𝒫(Ω2)
be two probability measures and let 𝑐 ∶ Ω1 × Ω2 → ℝ+ be a continuous cost function 𝑐 ∈
𝐶(Ω1 × Ω2). Then the optimal value of (KP) with cost function 𝑐 is equal to the optimal value
of

max
𝑣∈𝐶(Ω1),
𝑤∈𝐶(Ω2)

{∫
Ω1

𝑣d𝜇 + ∫
Ω2

𝑤d𝜈 ∶ 𝑣 ⊕ 𝑤 ≤ 𝑐} , (DP)

where 𝑣 ⊕ 𝑤 ∶ Ω1 × Ω2 → ℝ, (𝑣 ⊕ 𝑤)(𝑥, 𝑦) = 𝑣(𝑥) + 𝑤(𝑦).

This dual problem is formulated for example in [30, §1.2]. A proof of the result can be found in
[30, §1.6.3].

The case where Ω ≔ Ω1 = Ω2 and the cost function 𝑐 ∶ Ω × Ω → ℝ is of the form 𝑐(𝑥, 𝑦) =
𝑑(𝑥, 𝑦)𝑝 for 𝑝 ∈ [1, ∞) is of particular interest to us. Note that the metric 𝑑 defines a continuous
function 𝑑 ∶ Ω × Ω → ℝ. We then define the Wasserstein Distance.

3.1.7. Definition. Let (Ω, 𝑑) be a compact metric space. We call the metric 𝑑 the ground metric.
The Wasserstein Distance of order p between two measures 𝜇 ∈ 𝒫(Ω) and 𝜈 ∈ 𝒫(Ω) is defined
for 𝑝 ∈ [1, ∞) through

𝒲𝑝(𝜇, 𝜈)𝑝 ≔ min
𝜋∈Π(𝜇,𝜈)

∬
Ω×Ω

𝑑(𝑥, 𝑦)𝑝d𝜋(𝑥, 𝑦).

3.1 The Kantorovich Problem and the Wasserstein Distance 35

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

𝑥 𝑦

Figure 3.3: The transport plan between two identical measures is concentrated on the diagonal.
Measures are visualized as densities. Note that the diagonal (dotted line) is actually a null-
set with respect to the Lebesgue measure.

3.1.8. Theorem. Let Ω be a compact metric space. Then the Wasserstein Distance of order 𝑝
with 𝑝 ∈ [1, ∞) defines a metric on 𝒫(Ω).

While this result is stated for probability measures, it still holds true if a set of measures with
arbitrary fixed volume is considered instead. A proof can be found in [31, §I.6]. As an example,
we show that the Wasserstein distance between identical measures is zero.

3.1.9. Example. Let 𝜇 ∈ 𝒫(Ω). We want to calculate 𝒲𝑝(𝜇, 𝜇)𝑝. Intuitively, it should be
possible to transport mass solely on the diagonal, i. e. “𝜋({𝑥} × {𝑥}) = 𝜇({𝑥})" and 𝜋 has no
mass outside of the diagonal, see Figure 3.3. This can be formalized in the following way. Let
Δ ∶ Ω → Ω × Ω, 𝑡 ↦ (𝑡, 𝑡) be the diagonal map. Then we define 𝜋∆ = Δ#𝜇 ∈ ℳ+(Ω × Ω).
The first marginal is pr#1 𝜋∆ = pr#1 Δ#𝜇 = (pr1∘Δ)#𝜇 = 𝜇, since pr1∘Δ is the identity map.
Analogously, pr#2 𝜋∆ = 𝜇, i.e. both marginals of 𝜋∆ are indeed 𝜇, so 𝜋∆ is admissible. Now

∬
Ω×Ω

𝑑(𝑥, 𝑦)𝑝d𝜋∆(𝑥, 𝑦) = ∬
Ω×Ω

𝑑(𝑥, 𝑦)𝑝dΔ#𝜇(𝑥, 𝑦) = ∫
Ω

𝑑(Δ(𝑥))𝑝d𝜇(𝑥)

= ∫
Ω

𝑑(𝑥, 𝑥)𝑝d𝜇(𝑥) = 0.

But ∬Ω×Ω 𝑑(𝑥, 𝑦)𝑝d𝜋(𝑥, 𝑦) ≥ 0 for all 𝜋 ∈ ℳ+(Ω × Ω), so 𝜋∆ is optimal.

For 𝑝 = 1, i. e. when the cost function 𝑐 is a distance function 𝑑, the dual formulation can be
simplified, see [30, §3.1.1].

3.1.10. Theorem (Kantorovich-Rubinstein duality). Let (Ω, 𝑑) be a compact metric space, and
let 𝜇 ∈ 𝒫(Ω) and 𝜈 ∈ 𝒫(Ω) be two probability measures. Then

𝒲1(𝜇, 𝜈) = max
𝑣∈𝐶(Ω)

{∫
Ω

𝑣(𝑥)d(𝜇 − 𝜈)(𝑥) ∶ 𝑣 is 1-Lipschitz continuous} .

A consequence of this formula is that the 1-Wasserstein distance depends only on the difference
of the two measures.

3.1.11. Corollary. Let (Ω, 𝑑) be a compact metric space, and let 𝜇, 𝜇′ ∈ 𝒫(Ω) and 𝜈, 𝜈′ ∈ 𝒫(Ω)
be measures with 𝜇 − 𝜈 = 𝜇′ − 𝜈′ . Then

𝒲1(𝜇, 𝜈) = 𝒲1(𝜇′, 𝜈′).

36 3 A Metric between Measures based on Optimal Transport Theory

Proof. Using Theorem 3.1.10, we have

𝒲1(𝜇, 𝜈) = max
𝑣∈𝐶(Ω)

{∫
Ω

𝑣(𝑥)d(𝜇 − 𝜈)(𝑥) ∶ 𝑣 is 1-Lipschitz continuous}

= max
𝑣∈𝐶(Ω)

{∫
Ω

𝑣(𝑥)d(𝜇′ − 𝜈′)(𝑥) ∶ 𝑣 is 1-Lipschitz continuous}

= 𝒲1(𝜇′, 𝜈′),

which proves the claim. ■

If 𝜇 − 𝜈 = 𝜇′ − 𝜈′, this means that 𝜇′ = 𝜇 + 𝜂 and 𝜈′ = 𝜈 + 𝜂 with 𝜂 ≔ 𝜇 − 𝜇′ = 𝜈 − 𝜈′. In terms
of transport plans, one can then imagine that we get a transport plan between 𝜇′ and 𝜈′ from a
transport plan between 𝜇 and 𝜈 by transporting the additional mass of 𝜂 on the diagonal, which
does not add any additional transport costs.

The following examples give an intuition for how the Wasserstein distance works.

3.1.12. Example. Let Ω be a compact metric space and let 𝑎, 𝑏 ∈ Ω. We want to calculate
𝒲𝑝(𝛿𝑎, 𝛿𝑏). The only transport plan in Π(𝜇, 𝜈) is 𝛿𝑎 ⊗ 𝛿𝑏, which means that the mass in 𝑎 is
transported to 𝑏. We thus have

𝒲𝑝(𝛿𝑎, 𝛿𝑏)𝑝 = ∬
Ω×Ω

𝑑𝑝(𝑥, 𝑦)d(𝛿𝑎 ⊗ 𝛿𝑏)(𝑥, 𝑦) = 𝑑𝑝(𝑎, 𝑏).

3.1.13. Example. Let Ω = ℝ and let 𝜇1 and 𝜇2 be two Gaussian measures with standard
deviations 𝜎1 and 𝜎2 and means 𝑚1 and 𝑚2. Then the 2-Wasserstein distance between 𝜇1 and
𝜇2 is

𝒲2(𝜇1, 𝜇2)2 = (𝑚1 − 𝑚2)2 + (𝜎1 − 𝜎2)2,

see [32].

3.2 An Extension of the Wasserstein Distance for Arbitrary
Measures

In the previous section we have defined the Wasserstein distance, which gives a metric on the
set of probability measures. Since we want to use the Wasserstein distance as a metric between
MR brain region images, whose volume can be subject to individual variation and which can
thus not be interpreted as probability measures, we want to extend the Wasserstein distance to
arbitrary measures. One possibility to deal with this problem is to relax the marginal constraints
by replacing the equalities by inequalities, see [33] and [34]. However, this does not keep the
metric properties of the Wasserstein distance. An approach that gives a metric was introduced
by Kantorovich [35] and is further discussed in [36]. It is shown in [37] that this approach can be
cast as a classical optimal transport problem, which means that we only need to develop tools to
solve one problem. This approach is also successfully used in [38] with application to averaging
neuroimaging data, which suggests that it might be applicable in our case as well. A very similar
construction has also been introduced by [39] to compare SIFT histograms.

We will first introduce the approach by Kantorovich, then the reformulation into the unbalanced
mass transportation problem introduced by [37], which is shown to be reducible to the classical
mass transportation problem. Finally we will show that these formulations are equivalent.

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 37

3.2.1 The Kantorovich Extension

The extension proposed by Kantorovich is only possible for the 1-Wasserstein distance. It relies
on the fact that the 1-Wasserstein distance can be extended into a norm, which can then further
be extended into a norm on the whole space of measures. We will first introduce this norm,
using [36] as a reference, and then the extension, using [37] as a reference.

Let 𝜇1, 𝜇2 ∈ 𝒫(Ω). Our goal is to define a norm, such that 𝒲1(𝜇1, 𝜇2) = ‖𝜇1 − 𝜇2‖. The
condition 𝜇1(Ω) = 𝜇2(Ω) = 1 implies that (𝜇1 − 𝜇2)(Ω) = 0, thus this norm has to be defined
only for measures 𝜈 with 𝜈(Ω) = 0. Let 𝜈 be such a measure. From the Hahn decomposition (see
Theorem 2.1.4) we know that 𝜈 = 𝜈+ − 𝜈−. Similar to the Kantorovich problem, we can define
the set

Π𝜈 ≔ {𝜋 ∈ ℳ+(Ω × Ω) ∶ pr#1 𝜋 = 𝜈+, pr#2 𝜋 = 𝜈−} (3.4)

as the set of transport plans between 𝜈+ and 𝜈−. The norm is the defined as follows.

3.2.1. Definition (Kantorovich Norm). Let (Ω, 𝑑) be a compact metric space. Let 𝜈 ∈ ℳ(Ω)
with 𝜈(Ω) = 0. Then the Kantorovich norm is

‖𝜈‖0
𝑑 = inf

𝜋∈Π𝜈
∬

Ω×Ω
𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦), (3.5)

with Π𝜈 as in (3.4).

Note that this is exactly (KP) with marginals 𝜈+ and 𝜈− and 𝑑 as a cost function. The existence
of a minimizer thus follows from Theorem 3.1.5. That this definition yields indeed a norm is
shown in [36, §1]. Note that since this is exactly (KP), one could replace 𝑑 by 𝑑𝑝 or some other
cost function in the definition. We now want to show that ‖𝜇 − 𝜈‖0

𝑑 = 𝒲1(𝜇, 𝜈). This is (almost)
clear from the definition.

3.2.2. Proposition. Let (Ω, 𝑑) be a compact metric space, and let 𝜇, 𝜈 ∈ ℳ+(Ω) with ‖𝜇‖ = ‖𝜈‖.
Then

𝒲1(𝜇, 𝜈) = ‖𝜇 − 𝜈‖0
𝑑.

Proof. We have

‖𝜇 − 𝜈‖0
𝑑 = inf

𝜋∈Π𝜇−𝜈
∬

Ω×Ω
𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦)

= inf
𝜋∈Π((𝜇−𝜈)+,(𝜇−𝑣)−))

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦)

= 𝒲1((𝜇 − 𝜈)+, (𝜇 − 𝜈)−).

We now want to show that this is equal to 𝒲1(𝜇, 𝜈). We have

(𝜇 − 𝜈)+ − (𝜇 − 𝜈)− = 𝜇 − 𝜈,

see (2.2). Now it follows from Corollary 3.1.11 that the 1-Wasserstein distance only depends on
the difference of the measures, so

𝒲1((𝜇 − 𝜈)+, (𝜇 − 𝜈)−) = 𝒲1(𝜇, 𝜈),

which proves the claim. ■

38 3 A Metric between Measures based on Optimal Transport Theory

We now want to extend this norm on the whole space ℳ(𝑋). We introduce a waste penalty function
𝑝 ∶ Ω → ℝ satisfying the properties

∣𝑝(𝑥) − 𝑝(𝑦)∣ ≤ 𝑑(𝑥, 𝑦), (3.6)

and
𝑝(𝑥) ≥ 𝛼 for some 𝛼 ≥ 0. (3.7)

We then define the extended norm.

3.2.3. Definition (K-norm). Let (Ω, 𝑑) be a compact metric space. Let 𝑝 ∶ Ω → ℝ be a function
satisfying the properties (3.6) and (3.7). For 𝜇 ∈ ℳ(Ω), the K-norm is defined as

‖𝜇‖𝑝 = inf {‖𝜈‖0
𝑑 + ∫

Ω
𝑝(𝑥)d|𝜇 − 𝜈|(𝑥) ∶ 𝜈 ∈ ℳ(𝑋), 𝜈(Ω) = 0} . (3.8)

According to [37, Thm. 2.2], this definition yields a norm. The function 𝑝 plays the role of a
waste penalty function, since only the mass of 𝜈 is transferred and the mass |𝜇 − 𝜈| is wasted,
which is penalized by 𝑝. However, this norm is not a true extension of the Kantorovich norm in
the sense that if 𝜇(Ω) = 0, we do not necessarily have ‖𝜇‖𝑝 = ‖𝜇‖0

𝑑. This is because the condition
𝑝(𝑥) ≥ 𝛼 allows for cases where it is “cheaper” to waste mass instead of transferring it. This is
demonstrated in the following example (cf. [37, §2.0.2]).

3.2.4. Example. Let Ω ⊆ ℝ2 and take 𝑥, 𝑦 ∈ Ω with 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2 > 2. Let 𝜇 = 𝛿𝑥 − 𝛿𝑦
and let 𝑝 ≡ 1. To calculate ‖𝜇‖𝑝, we first consider the option of simply wasting everything by
taking 𝜈 = 0. This results in costs of

∫
Ω

1d|𝛿𝑥 − 𝛿𝑦| = ∫
Ω\{𝑦}

1d|𝛿𝑥| + ∫
{𝑦}

1d|−𝛿𝑦| = 1 + 1 = 2.

Another option would be to transfer everything, i. e. taking 𝜈 = 𝜇. However, since 𝑑(𝑥, 𝑦) > 2,
transferring the mass from 𝑥 to 𝑦 costs more than 2, i. e.

‖𝜈‖0
𝑑 + ∫

Ω
𝑝(𝑥)d|𝜇 − 𝜈|(𝑥) = ‖𝜇‖0

𝑑 = 𝑑(𝑥, 𝑦) > 2.

This shows that in this case ‖𝜇‖𝑝 < ‖𝜇‖0
𝑑.

The above example shows that in order for the norms to be identical for measures with zero total
mass, it should be more expensive to waste mass than to transfer it. This means that 𝑝 should
fulfill the condition

𝑝(𝑥) > max
𝑥,𝑦∈Ω

𝑑(𝑥, 𝑦). (3.9)

Indeed, if 𝑝 satisfies (3.6) and (3.9), the K-norm is a true extension of the Kantorovich norm, i. e.
‖𝜇‖𝑝 = ‖𝜇‖0

𝑑 for all measures 𝜇 with 𝜇(Ω) = 0, see [37, Lemma 2.1]. This extension was originally
proposed by Kantorovich (cf. [35]). If 𝑝 is taken to be constant, the weaker condition

𝑝 > 1
2 max

𝑥,𝑦∈Ω
𝑑(𝑥, 𝑦) (3.10)

is also a sufficient condition, which follows from [37, Lemma 2.3].
Finally, a distance between two arbitrary measures 𝜇, 𝜈 ∈ ℳ+(Ω) can be calculated as ‖𝜇−𝜈‖𝑝.

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 39

3.2.2 The Unbalanced Mass Transportation Problem

While the above construction is only possible for the 1-Wasserstein distance, the unbalanced
mass transportation problem can be formulated for arbitrary cost functions.

3.2.5. Definition (Unbalanced Mass Transportation Problem). Let (Ω, 𝑑) be a compact meas-
urable space. Let 𝑝 ∶ Ω → ℝ be a continuous function satisfying the properties (3.6) and
(3.7). For 𝜇, 𝜈 ∈ ℳ+(Ω) and a continuous cost function 𝑐 ∶ Ω × Ω → ℝ≥0, the unbalanced mass
transportation problem (UMTP) for 𝜇 and 𝜈 is defined as

inf
𝜋∈ℳ+(Ω×Ω)

∬
Ω×Ω

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥)

+ ∫
Ω

𝑝(𝑥)d(𝜈 − pr#2 𝜋)(𝑥)

subject to pr#1 𝜋 ≤ 𝜇, pr#2 𝜋 ≤ 𝜈.

(UMTP)

The intuition behind this definition is the following. Since 𝜇 and 𝜈 do not have the same total
mass, it is not possible to find a transport plan that has exactly the marginals 𝜇 and 𝜈. Instead,
we look for a transport plan whose marginals are smaller than the given measures 𝜇 and 𝜈.
For example, such a transport plan could be a transport plan between the minimum of the two
measures. This would mean that the total mass of the difference of 𝜇 and the minimum as well
as the total mass of the difference of 𝜈 and the minimum is wasted, which is penalized by the
latter two terms, using the waste function 𝑝. A similar problem has been formulated in a discrete
setting in [37]. They then noticed that this can be cast as a classical transportation problem. The
same is true in our setting. The idea is to interpret the “wasting” of mass as transporting this
mass to an additional remote point 𝑥∗, where the cost of transporting mass to the remote point
is the same as wasting it. To formalize this idea, we first need to extend our domain Ω. Let

Ω̃ = Ω ∪ {𝑥∗}.

We can make Ω̃ into a metric space by defining

̃𝑑 ∶ Ω̃ × Ω̃ → ℝ, ̃𝑑(𝑥, 𝑦) =

⎧{{{
⎨{{{⎩

𝑑(𝑥, 𝑦), if 𝑥, 𝑦 ∈ Ω
𝐶, if 𝑥 = 𝑥∗ or 𝑦 = 𝑥∗

0, if 𝑥 = 𝑦 = 𝑥∗,

�

for 𝐶 > 1
2 sup𝑥,𝑦∈Ω 𝑑(𝑥, 𝑦). One easily checks that (Ω̃, ̃𝑑) is a metric space, see the proof of

Proposition 3.2.7. Next we want to define two measures 𝜇̃ and ̃𝜈 that have the same mass. Denote
by 𝜄 ∶ Ω → Ω̃ the inclusion map. Let 𝑀 be a constant such that 𝑀 > max(𝜇(Ω), 𝜈(Ω)). Then we
define

𝜇̃ ≔ 𝜄#𝜇 + (𝑀 − 𝜇(Ω)) · 𝛿𝑥∗ ,
̃𝜈 ≔ 𝜄#𝜈 + (𝑀 − 𝜈(Ω)) · 𝛿𝑥∗ ,

(3.11)

which means that 𝜇̃ is 𝜇 on Ω and the point 𝑥∗ has mass 𝑀 − 𝜇(Ω), and similarly for 𝜈.

40 3 A Metric between Measures based on Optimal Transport Theory

This construction assures that 𝜇̃(Ω̃) = ̃𝜈(Ω̃), since

𝜇̃(Ω̃) = 𝜄#𝜇(Ω̃) + (𝑀 − 𝜇(Ω)) · 𝛿𝑥∗(Ω̃) = 𝜇(𝜄−1(Ω̃)) + (𝑀 − 𝜇(Ω))
= 𝜇(Ω) + 𝑀 − 𝜇(Ω) = 𝑀

and in the same way
̃𝜈(Ω̃) = 𝑀.

Let further

̃𝑐 ∶ Ω̃ × Ω̃ → ℝ, ̃𝑐(𝑥, 𝑦) =

⎧{{{{
⎨{{{{⎩

𝑐(𝑥, 𝑦), if 𝑥, 𝑦 ∈ Ω
𝑝(𝑥), if 𝑥 = 𝑥∗, 𝑦 ≠ 𝑥∗

𝑝(𝑦), if 𝑥 ≠ 𝑥∗, 𝑦 = 𝑥∗

0, if 𝑥 = 𝑦 = 𝑥∗.

�

The set {𝑥∗} is open and closed, since

{𝑥∗} = {𝑥 ∈ Ω̃ ∶ 𝑑(𝑥, 𝑥∗) ≤ 1
2𝐶} = ̄𝐵 1

2 𝐶(𝑥∗) = 𝐵 1
2 𝐶(𝑥∗).

Thus, Ω is closed. This means that Ω × Ω, Ω × {𝑥∗} and {𝑥∗} × Ω are closed. Since 𝑐 and 𝑝 are
continuous, this implies that ̃𝑐 is continuous.

Thus we can now consider the Kantorovich problem

inf {∬
Ω̃×Ω̃

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) ∶ 𝜋̃ ∈ Π(𝜇̃, ̃𝜈)} . (K̃P)

The following lemma states that the Kantorovich problem using the above extension yields the
same value as the unbalanced mass transportation problem.

3.2.6. Lemma. Let (Ω, 𝑑) be a compact metric space and let 𝜇, 𝜈 ∈ ℳ+(Ω). Then the optimal
cost of (K̃P) is equal to the optimal cost of (UMTP).

Proof. We show that the optimal costs are equal by showing both inequalities. For better under-
standing, an illustration can be seen in Figure 3.4 (measures are visualized as densities). First
we show inf (K̃P) ≥ inf (UMTP) by showing that for every 𝜋̃ which is admissible for (K̃P) there
exists a 𝜋 admissible for (UMTP) such that the costs for both problems are equal. We claim that
such a 𝜋 can be constructed as 𝜋 ≔ 𝜋̃| Ω×Ω. Intuitively, this means we have to show that the
mass that 𝜋̃ transports outside of Ω × Ω, i. e. on the slices Ω × {𝑥∗} and {𝑥∗} × Ω, is equal to the
mass that is wasted in (UMTP), i. e. the differences 𝜇 − pr#1 𝜋 and 𝜈 − pr#2 𝜋, respectively. This
follows from the definition of the marginal conditions on 𝜋̃. We formalize this intuition.
Let 𝜋̃ be admissible for (K̃P) and let 𝜋 ≔ 𝜋̃| Ω×Ω. We first show that 𝜋 is admissible for (UMTP)
by checking the marginal inequality conditions. For any measurable 𝐴 ⊆ Ω we have

pr#1 𝜋(𝐴) = 𝜋(𝐴 × Ω) = 𝜋̃(𝐴 × Ω) ≤ 𝜋̃(𝐴 × Ω̃) = pr#1 𝜋̃(𝐴) = 𝜇̃(𝐴) = 𝜇(𝐴),

and in the same way,
pr#1 𝜋(𝐴) ≤ 𝜈(𝐴).

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 41

𝜇

𝜈

𝜋

pr#1 𝜋

pr#2 𝜋 𝑀 − 𝜈(Ω)

𝑀 − 𝜇(Ω)

𝜇 − pr#1 𝜋

𝜈 − pr#2 𝜋

𝑀 − 𝜈(Ω) − (𝜇 − pr#1 𝜋)(Ω)
= 𝑀 − 𝜈(Ω) − 𝜇(Ω)

+𝜋(Ω × Ω)

Figure 3.4: Illustration of relation between UMTP and K̃P. The original marginals 𝜇 and 𝜈 are
shown in blue. Ω × Ω corresponds to the white square. The new marginals 𝜇̃ and ̃𝜈 are
constructed by adding mass to a remote point. This mass is depicted as blue bars. The
marginals of 𝜋 are shown in pink. The difference between the marginals of 𝜋 and the target
marginals is colored in beige. This difference is transported on the slices Ω×{𝑥∗} and {𝑥∗}×Ω
in K̃P.

Now, by splitting Ω̃ × Ω̃ into four parts, we get that the costs are

∬
Ω̃×Ω̃

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) = ∬
Ω×Ω

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) + ∬
{𝑥∗}×Ω

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦)

+ ∬
Ω×{𝑥∗}

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) + ∬
{𝑥∗}×{𝑥∗}

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦)

= ∬
Ω×Ω

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∬
{𝑥∗}×Ω

𝑝(𝑦)d𝜋̃(𝑥, 𝑦)

+ ∬
Ω×{𝑥∗}

𝑝(𝑥)d𝜋̃(𝑥, 𝑦).

We have

∬
Ω×{𝑥∗}

𝑝(𝑥)d𝜋̃(𝑥, 𝑦) = ∬
Ω×Ω̃

𝑝(𝑥)d𝜋̃(𝑥, 𝑦) − ∬
Ω×Ω

𝑝(𝑥)d𝜋̃(𝑥, 𝑦)

= ∫
Ω

𝑝(𝑥)d pr#1 𝜋̃(𝑥) − ∬
Ω×Ω

𝑝(𝑥)d𝜋(𝑥, 𝑦)

= ∫
Ω

𝑝(𝑥)d𝜇̃(𝑥) − ∫
Ω

𝑝(𝑥)d pr#1 𝜋(𝑥)

= ∫
Ω

𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥).

Analogously,
∬

{𝑥∗}×Ω
𝑝(𝑦)d𝜋̃(𝑥, 𝑦) = ∫

Ω
𝑝(𝑦)d(𝜈 − pr#2 𝜋)(𝑦).

Finally we get

∬
Ω̃×Ω̃

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) = ∬
Ω×Ω

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥)

+ ∫
Ω

𝑝(𝑥)d(𝜈 − pr#2 𝜋)(𝑥),

which shows that the costs of 𝜋 for (UMTP) and the costs of 𝜋̃ for (K̃P) are equal.

42 3 A Metric between Measures based on Optimal Transport Theory

Now for the other inequality, we construct a transport plan 𝜋̃ from 𝜋. The idea is that 𝜋̃ behaves
like 𝜋 on Ω × Ω, and transports the differences 𝜇 − pr#1 𝜋 and 𝜈 − pr#2 𝜋 on the respective slices.
Because of the marginal condition, 𝜋̃ has to transport a total mass of 𝑀 − 𝜈(Ω) and 𝑀 − 𝜇(Ω)
on the respective slices. In order to reach this total mass, an additional mass of

𝐶 ≔ 𝑀 − 𝜈(Ω) − (𝜇(Ω) − pr#1 𝜋(Ω))
= 𝑀 − 𝜇(Ω) − 𝜈(Ω) + 𝜋(Ω × Ω)
= 𝑀 − 𝜇(Ω) − (𝜈(Ω) − pr#2 𝜋(Ω))

has to be transported from 𝑥∗ to 𝑥∗, see also Figure 3.4. To define 𝜋̃ on the slices, let

𝜄1 ∶ Ω → Ω̃ × Ω̃, 𝑥 ↦ (𝑥, 𝑥∗),
𝜄2 ∶ Ω → Ω̃ × Ω̃, 𝑥 ↦ (𝑥∗, 𝑥),

𝜄 ∶ Ω → Ω̃, 𝑥 ↦ 𝑥

Then we define

𝜋̃ = (𝜄 × 𝜄)#𝜋 + 𝜄#1(𝜇 − pr#1 𝜋) + 𝜄#2(𝜈 − pr#2 𝜋) + 𝐶 · 𝛿(𝑥∗,𝑥∗).

Since pr#1 𝜋 ≤ 𝜇 and pr#2 𝜋 ≤ 𝜈, 𝜋̃ ≥ 0. Now we can calculate the marginals for each part. We
have, using properties of pushforward,

pr#1((𝜄 × 𝜄)#𝜋) = (pr1 ∘(𝜄 × 𝜄))#𝜋.

For the second term, using the identities 𝜄1 ∘ pr1 = (𝜄 × 𝜄) and pr1 ∘𝜄1 = 𝜄,

pr#1(𝜄#1(𝜇 − pr#1 𝜋)) = (pr1 ∘𝜄1)#𝜇 − (pr1 ∘𝜄1 ∘ pr1)#𝜋
= 𝜄#𝜇 − (pr1 ∘(𝜄 × 𝜄))#𝜋.

For the third term, note that pr1 ∘𝜄2 is the map sending every 𝑥 ∈ Ω to 𝑥∗. Thus,

(pr1 ∘𝜄2)#𝜂(𝐴) =
⎧{
⎨{⎩

𝜂(Ω), if 𝑥∗ ∈ 𝐴
𝜂(∅) = 0, else

�

= 𝜂(Ω) · 𝛿𝑥∗(𝐴)

for any measure 𝜂 ∈ ℳ+(Ω) and any measurable set 𝐴 ⊆ Ω̃. We get

pr#1(𝜄#2(𝜈 − pr#2 𝜋)) = (pr1 ∘𝜄2)#(𝜈 − pr#2 𝜋) = 𝜈(Ω) · 𝛿𝑥∗ − pr#2 𝜋(Ω) · 𝛿𝑥∗ .

Lastly, pr#1 𝛿(𝑥∗,𝑥∗) = 𝛿𝑥∗ . Putting everything together, we get

pr#1 𝜋̃ = (pr1 ∘(𝜄 × 𝜄))#𝜋 + 𝜄#𝜇 − (pr1 ∘(𝜄 × 𝜄))#𝜋 + 𝜈(Ω) · 𝛿𝑥∗ − pr#2 𝜋(Ω) · 𝛿𝑥∗ + 𝐶 · 𝛿𝑥∗

= 𝜄#𝜇 + 𝜈(Ω) · 𝛿𝑥∗ − 𝜋(Ω × Ω) · 𝛿𝑥∗ + (𝜋(Ω × Ω) + 𝑀 − 𝜈(Ω) − 𝜇(Ω)) · 𝛿𝑥∗

= 𝜄#𝜇 + (𝑀 − 𝜇(Ω)) · 𝛿𝑥∗

= 𝜇̃.

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 43

Analogously,
pr#2 𝜋̃ = ̃𝜈.

Thus the marginal conditions are satisfied and 𝜋̃ ∈ Π(𝜇̃, ̃𝜈) is admissible. Now, for the costs we
have

∬
Ω̃×Ω̃

̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) = ∬
Ω̃×Ω̃

̃𝑐(𝑥, 𝑦)d(�(𝜄 × 𝜄)#𝜋 + 𝜄#1(𝜇 − pr#1 𝜋) + 𝜄#2(𝜈 − pr#2 𝜋)
+ 𝜋(Ω × Ω) · 𝛿(𝑥∗,𝑥∗))�(𝑥, 𝑦)

(1)=
∬

Ω×Ω
̃𝑐(𝜄(𝑥), 𝜄(𝑦))d𝜋(𝑥, 𝑦) + ∬

Ω
̃𝑐(𝜄1(𝑥))d(𝜇 − pr#1 𝜋)(𝑥)

+ ∬
Ω

̃𝑐(𝜄2(𝑥))d(𝜈 − pr#2 𝜋)(𝑥) + ̃𝑐(𝑥∗, 𝑥∗)𝜋(Ω × Ω)
(2)= ∬

Ω×Ω
𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∬

Ω
𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥)

+ ∬
Ω

𝑝(𝑥)d(𝜈 − pr#2 𝜋)(𝑥),

where (1) follows from the change of variables formula for pushforward and (2) follows from
̃𝑐(𝑥∗, 𝑥∗) = 0. We thus arrived at the costs for (UMTP). ■

Now, if the costs ̃𝑐 define a metric, (K̃P) is the 1-Wasserstein distance, which means that (K̃P) and
thus (UMTP) defines a metric. This is the case in the following setting.

3.2.7. Proposition. Let (Ω, 𝑑) be a compact metric space and let 𝜇, 𝜈 ∈ ℳ+(Ω). Let 𝑝 ∶ Ω → ℝ>0
be a waste function satisfying (3.6) and (3.10). Then the cost function

̃𝑑(𝑥, 𝑦) =

⎧{{{{
⎨{{{{⎩

𝑑(𝑥, 𝑦), if 𝑥, 𝑦 ∈ Ω
𝑝(𝑥), if ≠ 𝑥∗, 𝑦 = 𝑥∗

𝑝(𝑦), if 𝑥 = 𝑥∗, 𝑦 ≠ 𝑥∗

0, if 𝑥 = 𝑥∗ = 𝑦

� (3.12)

defines a metric on Ω̃. and the UMTP defines a metric on ℳ+(Ω).

Proof. First, we prove that ̃𝑑 defines a metric. It is immediate that ̃𝑑 ≥ 0 and ̃𝑑(𝑥, 𝑦) = 0 if and
only if 𝑥 = 𝑦 for all 𝑥, 𝑦 ∈ Ω̃. The symmetry for 𝑥, 𝑦 ∈ Ω follows because 𝑑 is a metric. For
𝑥 = 𝑥∗, 𝑦 ≠ 𝑥∗ we have ̃𝑑(𝑥∗, 𝑦) = 𝑝(𝑦) = ̃𝑑(𝑦, 𝑥∗). Finally, the triangle inequality is satisfied for
𝑥, 𝑦, 𝑧 ∈ Ω, i. e. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). Otherwise, we have to consider the cases where one of
𝑥, 𝑦, 𝑧 is 𝑥∗. If 𝑧 = 𝑥∗,

𝑑(𝑥, 𝑥∗) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑥∗) ⇔ 𝑑(𝑥, 𝑥∗) − 𝑑(𝑦, 𝑥∗) ≤ 𝑑(𝑥, 𝑦) ⇔ 𝑝(𝑥) − 𝑝(𝑦) ≤ 𝑑(𝑥, 𝑦),

which follows from (3.6). By symmetry,

𝑑(𝑥∗, 𝑥) ≤ 𝑑(𝑥∗, 𝑦) + 𝑑(𝑦, 𝑥)

holds as well. Further, if 𝑦 = 𝑥∗, we have

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑥∗) + 𝑑(𝑥∗, 𝑧) ⇔ 𝑑(𝑥, 𝑧) ≤ 𝑝(𝑥) + 𝑝(𝑧).

This is true because it follows from (3.10) that

𝑝(𝑥) + 𝑝(𝑧) ≥ 2 · 1
2 sup

𝑦,𝑦′
𝑑(𝑦, 𝑦′) ≥ 𝑑(𝑥, 𝑧).

44 3 A Metric between Measures based on Optimal Transport Theory

This shows that ̃𝑑 is a metric on Ω̃. From Lemma 3.2.6, we know that the optimal cost for (UMTP)
is equal to the optimal cost of (K̃P) with cost function ̃𝑑. By Theorem 3.1.8, the solution of (K̃P)
yields the 1-Wasserstein distance, which is a metric. We thus have that the optimal cost for UMTP
is equal to the 1-Wasserstein distance between 𝜇̃ and ̃𝜈 with ̃𝑑 as ground metric. Denoting by
𝒲1(𝜇, 𝜈) the optimal cost for the UMTP between 𝜇 and 𝜈, this means

𝒲1(𝜇, 𝜈) = 𝒲1(𝜇̃, ̃𝜈).

We can now derive the metric axioms from this equality. Symmetry, non-negativity and identity
of indiscernibles are immediate from this formula. For the triangle inequality, if 𝜇, 𝜈, 𝜂 ∈ ℳ+(Ω),
we just have to choose the same 𝑀 in the definition of 𝜇̃, ̃𝜈 and ̃𝜂. For example, we could choose
𝑀 = max(𝜇(Ω), 𝜈(Ω), 𝜂(Ω)). Then the triangle inequality is also immediate from the above
formula. ■

3.2.3 Connection between UMTP and K-Norm

We will now concentrate again on the case where the costs are of the form 𝑐 = 𝑑 for a metric
𝑑, since the Kantorovich Norm is only defined for this case. We additionally assume that the
function 𝑝 is constant. We then want to show that the optimal cost of the UMTP between two
measures 𝜇 and 𝜈 is equal to the K-norm ‖𝜇 − 𝜈‖𝑝, and thus the K-norm can be cast as an optimal
transport problem. This is the content of the following theorem. The goal of this section is the
proof of this theorem.

For a better overview, we restate the two problems first. For 𝜇, 𝜈 ∈ ℳ+(Ω), the unbalaced mass
transportation problem (UMTP) is

inf
𝜋∈ℳ+(Ω×Ω)

∬
Ω×Ω

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥)

+ ∫
Ω

𝑝(𝑥)d(𝜈 − pr#2 𝜋)(𝑥)

subject to pr#1 𝜋 ≤ 𝜇, pr#2 𝜋 ≤ 𝜈.

(UMTP)

Denote by ℳ0(Ω) the set of all measures with zero total mass,

ℳ0(Ω) ≔ {𝜇 ∈ ℳ(Ω) ∶ 𝜇(Ω) = 0} .

For 𝜇 ∈ ℳ0(Ω), the K-norm is

‖𝜇‖𝑝 = inf
𝜂∈ℳ0(Ω)

‖𝜂‖0
𝑑 + ∫

Ω
𝑝(𝑥)d∣𝜇 − 𝜂∣(𝑥)

= inf
𝜂∈ℳ0(Ω)

inf
𝜋∈Π𝜂

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d∣𝜇 − 𝜂+ + 𝜂−∣(𝑥).

We then have the following theorem, where we consider 𝑐 = 𝑑 in the UMTP.

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 45

pr#2 𝜋
pr#1 𝜋

𝜇

𝜈

𝐵

pr#1 𝜋𝑠
pr#1 𝜋𝑎

𝐶

̄𝐶

𝐴
Figure 3.5: Illustration how the sets 𝐴, 𝐵, 𝐶 and ̄𝐶 could look like.

pr#2 𝜋
pr#1 𝜋

𝜇

𝜈

Ω1 Ω4Ω2 Ω3

+

+
−

−

Figure 3.6: Illustration of the sets Ω1, Ω2, Ω3, Ω4 along with the signs with which the single
densities appear in the K-norm.

pr#1 𝜋̄ = pr#1 𝜋𝑎

𝜇

pr#2 𝜋

𝜈

𝐵 × Ω

pr#2 𝜋̄

pr#1 𝜋

𝜋

𝜋̄

Figure 3.7: Illustration of restricting 𝜋 to 𝐵 × Ω. The original measures are visualized in blue,
the restricted measures in turquoise.

46 3 A Metric between Measures based on Optimal Transport Theory

3.2.8. Theorem. Let (Ω, 𝑑) be a compact metric space. Let 𝜇, 𝜈 ∈ ℳ+(Ω) be mutually singular,
𝜇⊥𝜈. Let 𝑝 ∶ Ω → ℝ>0 be a constant waste function. Then

‖𝜇 − 𝜈‖𝑝 = inf (UMTP)

and further
‖𝜇 − 𝜈‖𝑝 = inf

𝜋̃∈Π(𝜇̃, ̃𝜈)
∬

Ω̃×Ω̃
̃𝑐(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦)

with 𝜇̃, ̃𝜈, Ω̃ and ̃𝑐 for 𝑐 = 𝑑 as defined in Subsection 3.2.2.

Proof. We first write down the definition of ‖𝜇 − 𝜈‖𝑝 as stated above. We have

‖𝜇 − 𝜈‖𝑝 = inf
𝜂∈ℳ0(Ω)

inf
𝜋∈Π𝜂

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d∣𝜇 − 𝜈 − 𝜂+ + 𝜂−∣(𝑥)

= inf
𝜋≥0, pr#1 𝜋⊥ pr#2 𝜋

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + ∫
Ω

𝑝(𝑥)d∣(𝜇 − pr#1 𝜋) − (𝜈 − pr#2 𝜋)∣(𝑥)

≕ (∗),

where we have used the condition 𝜋 ∈ Π𝜂, i. e. pr#1 𝜋 = 𝜂+ and pr#2 𝜋 = 𝜂− and 𝜋 ≥ 0 and added
the condition pr#1 𝜋⊥ pr#2 𝜋 instead, since 𝜂+ and 𝜂− are mutually singular. This already looks
very similar to the UMTP: we only need to show that the optimal 𝜋 can be chosen such that
pr#1 𝜋 ≤ 𝜇 and pr#2 𝜋 ≤ 𝜈. Then 𝜇 − pr#1 𝜋 and 𝜈 − pr#2 𝜋 are non-negative and mutually singular,
since 𝜇 and 𝜈 are mutually singular, and we get

∫
Ω

𝑝(𝑥)d∣(𝜇 − pr#1 𝜋) − (𝜈 − pr#2 𝜋)∣(𝑥) = ∫
Ω

𝑝(𝑥)d(𝜇 − pr#1 𝜋)(𝑥) + ∫
Ω

𝑝(𝑥)(𝜈 − pr#2 𝜋)(𝑥).

This shows the equality between the K-norm and UMTP.

We show that an optimal 𝜋 can always be chosen such that pr#1 𝜋 ≤ 𝜇 and pr#2 𝜋 ≤ 𝜈. We do this
in two steps. First, we show that 𝜋 can be chosen such that pr#1 𝜋 ≪ 𝜇. Analogously, we then
also get pr#2 𝜋 ≪ 𝜈. Making use of the absolute continuity, we then show the desired inequality
in the second step.

Step 1 We show that 𝜋 can be chosen such that pr#1 𝜋 ≪ 𝜇.
Intuitively, it makes sense that pr#1 𝜋 should not have any mass anywhere that 𝜇 itself lacks

mass, since this would lead to additional costs.
The idea is thus to construct a coupling 𝜋̄ from 𝜋 such that pr#1 𝜋̄ only has mass on a set 𝐵

where 𝜇 also has mass. If we find such a set 𝐵, we can define 𝜋̄ ≔ 𝜋| 𝐵×Ω. We then have to
show that the costs have not increased. Since we have restricted 𝜋, the transport costs in the first
term have decreased. For the second term, on the part of Ω where pr#1 𝜋 had mass and 𝜇 did not,
the costs have also decreased. However, restricting 𝜋 also changes pr#2 𝜋, which can increase the
costs. We thus need to show that the increase is not higher than the decrease.

First, we define the set 𝐵. An illustration of the construction is shown in Figure 3.5.
Let

pr#1 𝜋 = (pr#1 𝜋)𝑎 + (pr#1 𝜋)𝑠, (pr#1 𝜋)𝑎 ≪ 𝜇, (pr#1 𝜋)𝑠⊥𝜇

be the Radon-Nikodym decomposition of pr#1 𝜋 with respect to 𝜇. We now aim to restrict 𝜋 to a
set such that we only keep the absolutely continuous part of the projection. First, we look for a
set such that the singular part (pr#1 𝜋)𝑠 is zero on this set. By definition, since (pr#1 𝜋)𝑠⊥𝜇, there

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 47

exists a set 𝐶 ⊆ Ω such that (pr#1 𝜋)𝑠(𝐸) = 0 for all measurable sets 𝐸 ⊆ 𝐶 and 𝜇(𝐸) = 0 for all
measurable sets 𝐸 ⊆ 𝐶𝑐, i. e. (pr#1 𝜋)𝑠 = 0 on 𝐶 and 𝜇 = 0 on 𝐶𝑐. However, 𝜇 is not guaranteed
to be positive on 𝐶. We further know that 𝜇⊥𝜈. We thus have a different set ̄𝐶 ⊂ Ω such that
𝜈 is zero on ̄𝐶 and 𝜇 is zero on ̄𝐶𝑐. We define 𝐵 ≔ 𝐶 ∩ ̄𝐶, such that both 𝜈 = 0 on 𝐵 ⊆ ̄𝐶 and
(pr#1 𝜋)𝑠 = 0 on 𝐵 ⊆ 𝐶. Further we have 𝜇 = 0 on 𝐵𝑐 = 𝐶𝑐 ∪ ̄𝐶𝑐, since 𝜇 is zero on 𝐶𝑐 and well as
on ̄𝐶𝑐. Since also pr#1 𝜋⊥ pr#2 𝜋, we have another decomposition into sets 𝐴 and 𝐴𝑐. All together,
we have the following relations:

(pr#1 𝜋)𝑠 = 𝜈 = 0 on 𝐵
𝜇 = 0 on 𝐵𝑐

pr#2 𝜋 = 0 on 𝐴
pr#1 𝜋 = 0 on 𝐴𝑐.

(3.13)

Now, we define 𝜋̄ = 𝜋| 𝐵×Ω ≥ 0. An illustration of the restriction is shown in Figure 3.7.
Since 𝜋̄ ≤ 𝜋, the marginals of 𝜋̄ are still mutually singular and they are still zero on 𝐴 and 𝐴𝑐,
respectively. Since 𝜋̄ ≤ 𝜋, the first term of the cost is decreased, i. e.

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋̄(𝑥, 𝑦) ≤ ∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦).

In order to show that the costs have not increased in the second term, we want to split Ω into
four disjoint regions such that on each region, only two out of the four measures 𝜇, 𝜈, pr#1 𝜋 and
pr#2 𝜋 contribute to the integral. We list these regions below, together with the measures that are
zero on those regions:

Ω1 ≔ 𝐴 ∩ 𝐵, pr#2 𝜋 = 𝜈 = 0 on Ω1
Ω2 ≔ 𝐴 ∩ 𝐵𝑐, pr#2 𝜋 = 𝜇 = 0 on Ω2
Ω3 ≔ 𝐴𝑐 ∩ 𝐵𝑐, pr#1 𝜋 = 𝜇 = 0 on Ω3
Ω4 ≔ 𝐴𝑐 ∩ 𝐵, pr#1 𝜋 = 𝜈 = 0 on Ω4.

(3.14)

One easily sees that the sets are disjoint and that their union is Ω. An illustration of the sets is
shown in Figure 3.6. We now calculate the marginals of 𝜋̄. We have

pr#1 𝜋̄(𝐸) = 𝜋̄(𝐸 × Ω) = 𝜋((𝐸 ∩ 𝐵) × Ω) = pr#1 𝜋| 𝐵(𝐸)

for any measurable 𝐸 ⊂ Ω, so we have pr#1 𝜋̄ = pr#1 𝜋| 𝐵. Further,

pr#2 𝜋̄(𝐸) = 𝜋̄(Ω × 𝐸) = 𝜋(𝐵 × 𝐸) = 𝜋(Ω × 𝐸) − 𝜋(𝐵𝑐 × 𝐸)
= pr#2 𝜋(𝐸) − 𝜋(𝐵𝑐 × 𝐸)

for any measurable 𝐸 ⊂ Ω, thus pr#2 𝜋̄ = pr#2 𝜋 − 𝜋(𝐵𝑐 × (·)). We now calculate the new costs for
each region Ω𝑖, 𝑖 = 1, 2, 3, 4. Since we assume the waste function to be constant, i. e. 𝑝 ≡ 𝛼 for
some constant 𝛼 > 0, we have

∫
Ω𝑖

𝑝(𝑥)d∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(𝑥) = 𝛼∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω𝑖)

for 𝑖 = 1, 2, 3, 4. In the following calculations, we omit the constant 𝛼. First, since Ω1 ⊂ 𝐵 and

48 3 A Metric between Measures based on Optimal Transport Theory

thus, on Ω1, restricting pr#1 𝜋 to 𝐵 does not change anything,

∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω1) = ∣pr#1 𝜋̄ − 𝜇∣(Ω1) = ∣pr#1 𝜋| 𝐵 − 𝜇∣(Ω1)
= ∣pr#1 𝜋 − 𝜇∣(Ω1)
= ∣pr#1 𝜋 − 𝜇 − (pr#2 𝜋 − 𝜈)∣(Ω1).

Second, since Ω2 ⊂ 𝐵𝑐 and thus pr#1 𝜋| 𝐵(Ω2) = 0,

∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω2) = ∣pr#1 𝜋̄ + 𝜈∣(Ω2) = pr#1 𝜋̄(Ω2) + 𝜈(Ω2)
= pr#1 𝜋| 𝐵(Ω2) + 𝜈(Ω2)
= 𝜈(Ω2)
= ∣pr#1 𝜋 − 𝜇 − (pr#2 𝜋 − 𝜈)∣(Ω2) − pr#1 𝜋(Ω2).

We see that the costs have decreased by pr#1 𝜋(Ω2). Third,

∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω3) = ∣𝜈 − pr#2 𝜋̄∣(Ω3) = ∣𝜈 − pr#2 𝜋 + 𝜋(𝐵𝑐 × (·))∣(Ω3)
≤ ∣𝜈 − pr#2 𝜋∣(Ω3) + ∣𝜋(𝐵𝑐 × (·))∣(Ω3)
= ∣pr#1 𝜋 − 𝜇 − (pr#2 𝜋 − 𝜈)∣(Ω3) + 𝜋(𝐵𝑐 × Ω3).

We see that the costs have increased by at most 𝜋(𝐵𝑐 × Ω3). Last,

∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω4) = ∣−𝜇 − pr#2 𝜋̄∣(Ω4)
= ∣𝜇 + pr#2 𝜋̄∣(Ω4) = 𝜇(Ω4) + pr#2 𝜋̄(Ω4)
≤ 𝜇(Ω4) + pr#2 𝜋(Ω4)
= ∣𝜇 + pr#2 𝜋∣(Ω4) = ∣−𝜇 − pr#2 𝜋∣(Ω4)
= ∣pr#1 𝜋 − 𝜇 − (pr#2 𝜋 − 𝜈)∣(Ω4),

so the costs have decreased. Now, putting everything together, we see that we have a decrease of
at least pr#1 𝜋(Ω2) = pr#1 𝜋(𝐴∩𝐵𝑐) and an increase of at most 𝜋(𝐵𝑐×Ω3) ≤ 𝜋(𝐵𝑐×Ω) = pr#1 𝜋(𝐵𝑐).
Since pr#1 𝜋 is zero on 𝐴𝑐, we have pr#1 𝜋(𝐵𝑐) = pr#1 𝜋(𝐴 ∩ 𝐵𝑐), which shows that increase and
decrease cancel each other out. So we indeed have

𝛼∣pr#1 𝜋̄ − 𝜇 − (pr#2 𝜋̄ − 𝜈)∣(Ω) ≤ 𝛼∣pr#1 𝜋 − 𝜇 − (pr#2 𝜋 − 𝜈)∣(Ω).

This shows that we get pr#1 𝜋̄ = pr#1 𝜋| 𝐵 = pr#1 𝜋𝑎| 𝐵, since pr#1 𝜋𝑠 is zero on 𝐵.
By replacing 𝜋 by 𝜋̄, we can thus assume that the projection pr#1 𝜋 is absolutely continuous

with respect to 𝜇 for any optimal 𝜋. Similarly, we can assume pr#2 𝜋 to be absolutely continuous
with respect to 𝜈. In total, we have that 𝜇 is zero on 𝐵𝑐, and since pr#1 𝜋 ≪ 𝜇, so is pr#1 𝜋, which
means that their difference 𝜇−pr#1 𝜋 is also zero on 𝐵𝑐. Analogously, since 𝜈 is zero on 𝐵, 𝜈−pr#2 𝜋
is zero on 𝐵. Thus, 𝜇 − pr#1 𝜋⊥𝜈 − pr#2 𝜋 and we get

(∗) = inf
𝜋∈ℳ+(Ω×Ω)

∬
Ω×Ω

𝑑(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + 𝛼 ∫
Ω

d∣𝜇 − pr#1 𝜋∣(𝑥) + 𝛼 ∫
Ω

∣𝜈 − pr#2 𝜋∣(𝑥)

subject to pr#1 𝜋⊥ pr#2 𝜋
and pr#1 𝜋 ≪ 𝜇, pr#2 𝜋 ≪ 𝜈

≕ (∗∗).

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 49

pr#1 𝜋̄

𝜇

𝜈

pr#1 𝜋

𝜋̄

difference is
smaller

difference is
larger

pr#2 𝜋̄

pr#2 𝜋

Figure 3.8: Visualization of rescaling 𝜋 to 𝜋̄. While the absolute difference between pr#2 𝜋̄ and
𝜈 might locally be larger than the absolute difference between pr#2 𝜋 and 𝜈, increase and
decrease in the costs cancel each other out in total.

Step 2 Next, we want to show that we can even choose 𝜋 such that pr#1 𝜋 ≤ 𝜇 and pr#2 𝜋 ≤ 𝜈,
which means we can omit taking the total variation measure and we get (∗∗) = (UMTP) under
the assumption 𝜇⊥𝜈. Again, we aim to define a transport plan 𝜋̄ as a modified version of 𝜋 that
satisfies pr#1 𝜋̄ ≤ 𝜇, such that the costs do not increase, and argue in the same way for the other
marginal. The idea is to modify 𝜋 such that pr#1 𝜋̄ = 𝜇 wherever we had pr#1 𝜋 > 𝜇 before, which
will lead to a decrease of costs. In order to keep 𝜋 nonnegative, we reach this goal by scaling 𝜋.
This will lead to smaller transport costs. However, like before, we might get an increase of costs
from the second marginal. We will again show that increase and decrease cancel each other out.
An illustration can be seen in Figure 3.8. In order to be able to scale 𝜋, we consider densities. Let

𝜑 ≔ d pr#1 𝜋
d𝜇

and let
Ω+ ≔ {𝑥 ∶ 𝜑(𝑥) ≤ 1 𝜇 − 𝑎. 𝑒. } , Ω− ≔ {𝑥 ∶ 𝜑(𝑥) > 1 𝜇 − 𝑎. 𝑒. } .

For 𝐸 ⊆ Ω+, we have

pr#1 𝜋(𝐸) = ∫
𝐸

𝜑(𝑥)d𝜇(𝑥) ≤ ∫
𝐸

1d𝜇(𝑥) = 𝜇(𝐸),

so 𝜇 − pr#1 𝜋 ≥ 0 on Ω+. Similarly, for 𝐸 ⊆ Ω−, we have pr#1 𝜋 > 𝜇 and 𝜇 − pr#1 𝜋 < 0. We thus
want to modify pr#1 𝜋 on Ω−, which can be reached by modifying 𝜋 on the slice Ω− × Ω. We
define

𝜋̄ ≔ 1/�max(1, 𝜑 ∘ pr1)𝜋.

Note that since the properties 𝜑 ≤ 1 on Ω+ and 𝜑 > 1 on Ω− hold 𝜇 − 𝑎. 𝑒. , there exists a set
𝑁 ⊆ Ω with 𝜇(𝑁) = 0 such that the properties hold on Ω\𝑁. Since pr#1 𝜋 ≪ 𝜇, we also have
pr#1 𝜋(𝑁) = 0 and thus 𝜋(𝑁 × Ω) = pr#1 𝜋(𝑁) = 0, so 𝑁 × Ω is a 𝜋-null set. This assures that

50 3 A Metric between Measures based on Optimal Transport Theory

1/�max(1, 𝜑(𝑥)) ≤ 1 𝜋 − 𝑎. 𝑒. and thus 𝜋̄ ≤ 𝜋. Further, for 𝐸 ⊆ Ω+,

𝜋̄(𝐸 × 𝐸′) = ∬
𝐸×𝐸′

1/�max(1, 𝜑(𝑥))d𝜋(𝑥, 𝑦) = ∬
𝐸×𝐸′

1d𝜋(𝑥, 𝑦) = 𝜋(𝐸 × 𝐸′).

Thus, we have not modified 𝜋 on Ω+ × Ω, which implies pr#1 𝜋̄ = pr#1 𝜋 on Ω+.
Let 𝐸 ⊆ Ω−. Then

pr#1 𝜋̄(𝐸) = 𝜋̄(𝐸 × Ω) = ∬
𝐸×Ω

1/�max(1, 𝜑(𝑥))d𝜋(𝑥, 𝑦)

= ∬
𝐸×Ω

1/�𝜑(𝑥)d𝜋(𝑥, 𝑦) = ∫
𝐸

1/�𝜑(𝑥) ∫
Ω

d𝜋(𝑥, 𝑦)

= ∫
𝐸

1/�𝜑(𝑥)d pr#1 𝜋(𝑥) = ∫
𝐸

1/�𝜑(𝑥)𝜑(𝑥)d𝜇(𝑥)

= 𝜇(𝐸),

so pr#1 𝜋̄ = 𝜇 on Ω−. Now, we show that the costs have not increased. Since 𝜋̄ ≤ 𝜋, the transport
costs have not increased. Let us now evaluate the terms 𝛼 ∫Ω d∣𝜇 − pr#1 𝜋̄∣(𝑥) and 𝛼 ∫Ω∣𝜈 − pr#2 𝜋̄∣(𝑥).
We have

∣𝜇 − pr#1 𝜋̄∣(Ω) = ∣𝜇 − pr#1 𝜋̄∣(Ω+) + ∣𝜇 − pr#1 𝜋̄∣(Ω−)
= ∣𝜇 − pr#1 𝜋∣(Ω+)
= ∣𝜇 − pr#1 𝜋∣(Ω) − ∣𝜇 − pr#1 𝜋∣(Ω−),

since pr#1 𝜋̄ = pr#1 𝜋 on Ω+ and pr#1 𝜋̄ = 𝜇 on Ω−. We thus have a decrease of

∣𝜇 − pr#1 𝜋∣(Ω−) = pr#1 𝜋(Ω−) − 𝜇(Ω−), (3.15)

since 𝜇 − pr#1 𝜋 < 0 on Ω−. Now,

∣𝜈 − pr#2 𝜋̄∣(Ω) = ∣𝜈 − pr#2 𝜋̄ + pr#2 𝜋 − pr#2 𝜋∣(Ω)
≤ ∣𝜈 − pr#2 𝜋∣(Ω) + ∣pr#2 𝜋 − pr#2 𝜋̄∣(Ω),

which means we have an increase of at most ∣pr#2 𝜋 − pr#2 𝜋̄∣(Ω). Since pr#2 𝜋̄ ≤ pr#2 𝜋, we have

∣pr#2 𝜋 − pr#2 𝜋̄∣(Ω) = pr#2 𝜋(Ω) − pr#2 𝜋̄(Ω)
= pr#1 𝜋(Ω) − pr#1 𝜋̄(Ω)
= pr#1 𝜋(Ω+) + pr#1 𝜋(Ω−) − pr#1 𝜋̄(Ω+) − pr#1 𝜋̄(Ω−)
= pr#1 𝜋(Ω+) + pr#1 𝜋(Ω−) − pr#1 𝜋(Ω+) − 𝜇(Ω−)
= pr#1 𝜋(Ω−) − 𝜇(Ω−),

which is exactly the decrease (3.15). So increase and decrease indeed cancel each other out, and
we have

𝛼 ∫
Ω

d∣𝜇 − pr#1 𝜋̄∣(𝑥) + 𝛼 ∫
Ω

d∣𝜈 − pr#2 𝜋̄∣(𝑥) ≤ 𝛼 ∫
Ω

d∣𝜇 − pr#1 𝜋∣(𝑥) + 𝛼 ∫
Ω

d∣𝜈 − pr#2 𝜋∣(𝑥).

This proves that we can always find a transport plan 𝜋 such that pr#1 𝜋 ≤ 𝜇. With a mirrored
argument for the other marginal, we achieve both pr#1 𝜋 ≤ 𝜇 and pr#2 𝜋 ≤ 𝜈 which yields (∗∗) =
(UMTP) and thus ‖𝜇 − 𝜈‖𝑝 = 𝒲1(𝜇̃, ̃𝜈) for mutually singular measures.

This concludes the proof. ■

3.2 An Extension of the Wasserstein Distance for Arbitrary Measures 51

We now consider the case where the cost function ̃𝑐 defined through 𝑑 and the waste constant is
a metric.

3.2.9. Corollary. Let (Ω, 𝑑) be a compact metric space. Let 𝜇, 𝜈 ∈ ℳ+(Ω). Let 𝑝 ∶ Ω → ℝ be a
constant waste function satisfying 𝑝 = 𝛼 ≥ 1

2 sup𝑥,𝑦∈Ω 𝑑(𝑥, 𝑦). Then

‖𝜇 − 𝜈‖𝑝 = inf (UMTP)

and further
‖𝜇 − 𝜈‖𝑝 = inf

𝜋̃∈Π(𝜇̃, ̃𝜈)
∬

Ω̃×Ω̃
̃𝑑(𝑥, 𝑦)d𝜋̃(𝑥, 𝑦) = 𝒲1(𝜇̃, ̃𝜈)

with 𝜇̃, ̃𝜈, Ω̃ and ̃𝑑 as defined in Subsection 3.2.2.

Proof. Note that since the cost function ̃𝑑 is a metric, we can speak of the Wasserstein distance in
this case. We can now remove the assumption that 𝜇 and 𝜈 are singular. Let 𝜇∧𝜈 ≔ 𝜇−(𝜇−𝜈)+.
Then 𝜇0 = (𝜇 − 𝜈)+ and 𝜈0 = (𝜇 − 𝜈)−. As seen in the proof of Corollary 3.1.11, 𝜇0 − 𝜈0 = 𝜇 − 𝜈.
Further, 𝜇0 and 𝜈0 are mutually singular. Then by Theorem 3.2.8,

‖𝜇 − 𝜈‖𝑝 = ‖(𝜇 − 𝜈)+ − (𝜇 − 𝜈)−‖𝑝 = ‖𝜇0 − 𝜈0‖𝑝 = 𝒲1(𝜇̃0, ̃𝜈0).

We have

𝜇̃0 − ̃𝜈0 = 𝜄#𝜇0 + 𝜈0(Ω) · 𝛿𝑥∗ − 𝜄#𝜈0 − 𝜇0(Ω) · 𝛿𝑥∗

= 𝜄#(𝜇0 − 𝜈0) + (𝜈0 − 𝜇0)(Ω) · 𝛿𝑥∗

= 𝜄#(𝜇 − 𝜈) + (𝜈 − 𝜇)(Ω) · 𝛿𝑥∗

= 𝜇̃ − ̃𝜈.

Since the 1-Wasserstein distance only depends on the difference by Corollary 3.1.11, we get

𝑊1(𝜇̃0, ̃𝜈0) = 𝑊1(𝜇̃, ̃𝜈).

This shows ‖𝜇 − 𝜈‖𝑝 = 𝑊1(𝜇̃, ̃𝜈) for arbitrary measures 𝜇, 𝜈 ∈ ℳ+(Ω), if the waste constant is
such that 𝛼 > 1

2 sup𝑥,𝑦∈Ω 𝑑(𝑥, 𝑦). ■

52 3 A Metric between Measures based on Optimal Transport Theory

3.3 The Entropy-Regularized Kantorovich Problem
While there has been a lot of research into efficient ways to calculate the Wasserstein distance,
many algorithms only work for specific forms of the cost function or for small domains. Recently,
it was suggested in [40] to add an entropic constraint on the transport plans. The resulting
functional, which gives rise to a regularized variant of the Kantorovich problem, has turned out
to have many nice properties and there exists a very fast algorithm to solve the corresponding
minimization problem. As sources for the idea of regularized optimal transport, we use several
papers, mainly [41], [42], [43], [28], [40] and [33].

3.3.1 Introduction of the Entropy-Regularized Kantorovich Problem

In this section, we define the regularized Kantorovich Problem and show that it admits a unique
solution.

We define the relative entropy or Kullback-Leibler divergence of a measure. Let 𝑋 be a compact
metric space.

3.3.1. Definition. The Kullback-Leibler divergence of two measures 𝜇1, 𝜇2 ∈ ℳ+(𝑋) is defined as

KL(𝜇1 ∥ 𝜇2) = ∫
𝑋

(log(d𝜇1
d𝜇2

(𝑥)) − 1)d𝜇1(𝑥)

with the convention KL(𝜇1 ∥ 𝜇2) = ∞ if 𝜇1 is not absolutely continuous with respect to 𝜇2.

This definition differs from the classical definition (see [44]) by the additional “−1”. The intro-
duction of the “−1” is inspired by [41].

The Kullback-Leiber divergence can be formulated in different ways. We have

KL(𝜇1 ∥ 𝜇2) = ∫
𝑋

(log(d𝜇1
d𝜇2

(𝑥)) − 1)d𝜇1(𝑥)

= ∫
𝑋

(log(d𝜇1
d𝜇2

(𝑥)) − 1)d𝜇1
d𝜇2

(𝑥)d𝜇2(𝑥)

= ∫
𝑋

log(d𝜇1
d𝜇2

(𝑥))d𝜇1
d𝜇2

(𝑥)d𝜇2(𝑥) − 𝜇1(𝑋)

(3.16)

and if we assume that 𝜇1 and 𝜇2 are absolutely continuous with respect to a common measure
𝜆, we get, letting 𝑚1 = d𝜇1

d𝜆 , 𝑚2 = d𝜇2
d𝜆 ,

KL(𝜇1 ∥ 𝜇2) = ∫
𝑋

(log(d𝜇1
d𝜇2

(𝑥)) − 1)d𝜇1(𝑥)

= ∫
𝑋

(log(d𝜇1
d𝜆 (𝑥) d𝜆

d𝜇2
(𝑥)) − 1)d𝜇1

d𝜆 (𝑥)d𝜆(𝑥)

= ∫
𝑋

(log(𝑚1(𝑥)
𝑚2(𝑥)) − 1)𝑚1(𝑥)d𝜆(𝑥)

= ∫
𝑋

log(𝑚1(𝑥)
𝑚2(𝑥))𝑚1(𝑥)d𝜆(𝑥) − 1.

(3.17)

Now, if 𝑋 is a measure space (𝑋, 𝜆) for some measure 𝜆, we can consider the Kullback-Leiber
divergence relative to this measure. We get the definition of the (negative) entropy of a measure
with respect to 𝜆, defined as

ℎ(𝜇) ≔ KL(𝜇 ∥ 𝜆) = ∫
𝑋

(log(d𝜇
d𝜆 (𝑥)) − 1)d𝜇

d𝜆 (𝑥)d𝜆(𝑥). (3.18)

3.3 The Entropy-Regularized Kantorovich Problem 53

0 1 2 3 4 5 6 7 8

0

2

4

6

8

Figure 3.9: The function 𝜙(𝑟) = 𝑟 · (log 𝑟 − 1), extended continuously in 0. It can be negative, but
this can be easily alleviated by adding a constant. It is strictly convex.

Now let 𝜙 ∶ ℝ → (−∞, +∞] be defined by

𝜙(𝑟) =

⎧{{{
⎨{{{⎩

𝑟(log 𝑟 − 1), if 𝑟 > 0
0, if 𝑟 = 0
+∞ else.

� (3.19)

A plot of the function 𝜙 is shown in Figure 3.9. Then the negative entropy of a measure with
respect to 𝜆 equals

ℎ(𝜇) = ∫
𝑋

𝜙(d𝜇
d𝜆)d𝜆(𝑥). (3.20)

Note that 𝜙 is bounded from below, and thus the entropy is always bounded from below.
Let us now fix reference measures 𝜆𝑖 on Ω𝑖 for 𝑖 = 1, 2. We equip the product space Ω1 × Ω2

with the product measure 𝜆1 ⊗ 𝜆2. If we assume the marginals 𝜇 and 𝜈 and the transport plan
𝜋 to be absolutely continuous with respect to the respective reference measure, i. e. 𝜇 ≪ 𝜆1, 𝜈 ≪
𝜆2, 𝜋 ≪ 𝜆1 ⊗ 𝜆2, we can reformulate the conditions describing Π(𝜇, 𝜈) in the following way. For
the density of pr#1 𝜋 with respect to 𝜆1 we have

pr#1 𝜋(𝐴) = 𝜋(𝐴 × Ω2) = ∬
𝐴×Ω2

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

= ∫
𝐴

(∫
Ω2

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦)d𝜆2(𝑦)) d𝜆1(𝑥)

for all measurable sets 𝐴 ⊆ Ω1. This shows

d pr#1 𝜋
d𝜆1

(𝑥) = ∫
Ω2

d𝜋
d𝜆 (𝑥, 𝑦)d𝜆2(𝑦).

Analogously, for the second marginal we have

d pr#2 𝜋
d𝜆2

= ∫
Ω1

d𝜋
d𝜆 (𝑥, 𝑦)d𝜆1(𝑥).

Consequently, the marginal conditions become

d pr#1 𝜋
d𝜆1

(𝑥) = d𝜇
d𝜆1

(𝑥) ⇔ ∫
Ω2

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦)d𝜆2(𝑦) = d𝜇
d𝜆1

(𝑥) for all 𝑥 ∈ Ω1

d pr#2 𝜋
d𝜆2

(𝑦) = d𝜈
d𝜆2

(𝑦) ⇔ ∫
Ω1

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦)d𝜆1(𝑥) = d𝜈
d𝜆1

(𝑦) for all 𝑦 ∈ Ω2.
(3.21)

We are now in a position to define the regularized Kantorovich problem.

54 3 A Metric between Measures based on Optimal Transport Theory

𝛾 = 10 𝛾 = 1 𝛾 = 0.1 𝛾 = 0.01

Figure 3.10: Illustration of the influence of the regularization parameter 𝛾 on the optimal trans-
port plan between two one-dimensional densities. In the top row, the transport plans from
the bottom row are shown from above. For larger values of 𝛾, the transport plan is more
spread out. For 𝛾 → 0, it converges to the unregularized transport plan, which is a line.

Source: [28, §4.1]

3.3.2. Definition. Let (Ω1, 𝜆1), (Ω2, 𝜆2) be two compact measure spaces and (Ω1 × Ω2, 𝜆1 ⊗ 𝜆2)
the product measure space. Given 𝜇 ∈ 𝒫(Ω1) and 𝜈 ∈ 𝒫(Ω2) such that 𝜇 ≪ 𝜆1 and 𝜈 ≪ 𝜆2
and a continuous function 𝑐 ∶ Ω1 × Ω2 → ℝ+, the regularized Kantorovich problem is defined as

inf {𝑊𝛾(𝜋) ∶ 𝜋 ∈ Π(𝜇, 𝜈), 𝜋 ≪ 𝜆1 ⊗ 𝜆2} , (KP-reg)

where

𝑊𝛾(𝜋) = ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + 𝛾ℎ(𝜋)

= ∬
Ω1×Ω2

𝑐(𝑥, 𝑦) + 𝛾(log(d𝜋
d𝜆 (𝑥, 𝑦)) − 1)d𝜋(𝑥, 𝑦)

(3.22)

for 𝛾 > 0 and Π(𝜇, 𝜈) is the set of transport plans as in (3.2).

The idea behind this definition is that for small 𝛾, the solution to this problem will converge
against a solution of the unregularized problem, but calculating a solution to (KP-reg) is much
easier. The proof of convergence is simple for finite metric spaces and can be found in [28, Prop.
4.1]. For more general settings, it is studied in [45]. The influence of the regularization on the
optimal transport plan is illustrated in Figure 3.10.
We now want to show that (KP-reg) admits a minimizer. This is not as easy as in the unreg-

ularized case and we actually need an additional assumption on 𝜇 and 𝜈, the assumption that
they both have finite entropy. Before we get to the proof, we will examine some properties of
the Kullback-Leibler divergence.

As already noted, our definition of the Kullback-Leibler divergence differs slightly from clas-
sical definitions. The classical Kullback-Leibler divergence between two probability measures
has the property that it is always non-negative and vanishes only if the measures are equal, see
for example [44, Lemma 3.1]. In our setting, this property becomes the following.

3.3 The Entropy-Regularized Kantorovich Problem 55

3.3.3. Lemma. Let 𝜇1 ∈ 𝒫(𝑋) and 𝜇2 ∈ 𝒫(𝑋) be two probability measures. Then

KL(𝜇1 ∥ 𝜇2) + 1 ≥ 0

with equality if and only if 𝜇1 = 𝜇2.

3.3.4. Lemma. Let 𝜇1 ∈ 𝒫(𝑋) be a probability measure and 𝜇2 ∈ ℳ+(𝑋) be an non-negative
measure. Then

KL(𝜇1 ∥ 𝜇2) = KL(𝜇1 ∥ 1
𝜇2(𝑋)𝜇2) − log(𝜇2(𝑋))

and
KL(𝜇1 ∥ 𝜇2) ≥ − log(𝜇2(𝑋)) − 1

with equality if and only if 𝜇1 = 1
𝜇2(𝑋)𝜇2.

Proof. We note that d𝜇1
d𝑐⋅𝜇2

= 1
𝑐

d𝜇1
d𝜇2

for any constant 𝑐. Now,

KL(𝜇1 ∥ 𝜇2) = ∫
𝑋

log(d𝜇1
d𝜇2

− 1)d𝜇1(𝑥)

= ∫
𝑋

log(d𝜇1
d𝜇2

𝜇2(𝑋)
𝜇2(𝑋) − 1)d𝜇1(𝑥)

= ∫
𝑋

log(1
𝜇2(𝑋)−1

d𝜇1
d𝜇2

1
𝜇2(𝑋) − 1)d𝜇1(𝑥)

= ∫
𝑋

log(d𝜇1
d𝜇2(𝑋)−1𝜇2

− 1)d𝜇1(𝑥) − ∫
𝑋

log(𝜇2(𝑋))d𝜇1

= ∫
𝑋

log(d𝜇1
d𝜇2(𝑋)−1𝜇2

− 1)d𝜇1(𝑥) − log(𝜇2(𝑋)),

which proves the first claim. Now, using that 𝜇2(𝑋)−1𝜇2 is a probability measure, we can apply
Lemma 3.3.3 and get the second claim. ■

The following properties are stated in [40] in the discrete case for the classical Kullback-Leibler
divergence.

3.3.5. Lemma (Properties of the Kullback-Leibler divergence and entropy). Let (Ω𝑖, 𝜆𝑖), 𝑖 = 1, 2
be two compact measure spaces and (Ω1 × Ω2, 𝜆1 ⊗ 𝜆2) the compact measure space defined
as the product measure space. Let 𝜇 ∈ 𝒫(Ω1), 𝜇 ≪ 𝜆1 and 𝜈 ∈ 𝒫(Ω2), 𝜈 ≪ 𝜆2. Then 𝜇 ⊗ 𝜈 is
absolutely continuous with respect to 𝜆1 ⊗ 𝜆2 with

d𝜇⊗𝜈
d𝜆1⊗𝜆2

(𝑥, 𝑦) = d𝜇
d𝜆1

(𝑥) d𝜈
d𝜆2

(𝑦),

and
ℎ(𝜇 ⊗ 𝜈) = ℎ(𝜇) + ℎ(𝜈) + 1.

Further, for any 𝜋 ∈ Π(𝜇, 𝜈) with 𝜋 ≪ 𝜆1 ⊗ 𝜆2,

ℎ(𝜋) ≥ ℎ(𝜇) + ℎ(𝜈) + 1.

Proof. First, we show that d𝜇⊗𝜈
d𝜆1⊗𝜆2

(𝑥, 𝑦) = d𝜇
d𝜆1

(𝑥) d𝜈
d𝜆2

(𝑦). Let 𝐴 ⊆ Ω1, 𝐵 ⊆ Ω2 be two measurable
sets. Then

∬
𝐴×𝐵

d𝜇
d𝜆1

(𝑥) d𝜈
d𝜆2

(𝑦)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦) = ∫
𝐴

d𝜇
d𝜆1

(𝑥) (∫
𝐵

d𝜈
d𝜆2

(𝑦)d𝜆2(𝑦)) d𝜆1(𝑥)

= ∫
𝐴

d𝜇
d𝜆1

(𝑥)𝜈(𝐵)d𝜆1(𝑥)

= 𝜇(𝐴)𝜈(𝐵),

56 3 A Metric between Measures based on Optimal Transport Theory

which proves the claim. Next, we prove

KL(𝜋 ∥ 𝜇 ⊗ 𝜈) = ℎ(𝜋) − ℎ(𝜇) − ℎ(𝜈) − 2

and deduce the two statements. Let 𝑚 ≔ d𝜇
d𝜆1

, 𝑛 ≔ d𝜈
d𝜆2

and 𝑝 ≔ d𝜋
d𝜆 . We have

KL(𝜋 ∥ 𝜇 ⊗ 𝜈) (3.17)= ∬
Ω1×Ω2

log(𝑝(𝑥, 𝑦)
𝑚(𝑥)𝑛(𝑦))𝑝(𝑥, 𝑦)d𝜆(𝑥, 𝑦) − 1

= ∬
Ω1×Ω2

𝑝(𝑥, 𝑦) log(𝑝(𝑥, 𝑦))d𝜆(𝑥, 𝑦)

− ∬
Ω1×Ω2

𝑝(𝑥, 𝑦) log(𝑚(𝑥))d𝜆(𝑥, 𝑦)

− ∬
Ω1×Ω2

𝑝(𝑥, 𝑦) log(𝑛(𝑦))d𝜆(𝑥, 𝑦) − 1

= ∬
Ω1×Ω2

𝑝(𝑥, 𝑦) log(𝑝(𝑥, 𝑦))d𝜆(𝑥, 𝑦)

− ∫
Ω1

log(𝑚(𝑥)) (∫
Ω2

𝑝(𝑥, 𝑦)d𝜆2(𝑦)) d𝜆1(𝑥)

− ∫
Ω2

log(𝑛(𝑦)) (∫
Ω1

𝑝(𝑥, 𝑦)d𝜆1(𝑥)) d𝜆2(𝑦) − 1

(3.21)= ∬
Ω1×Ω2

𝑝(𝑥, 𝑦) log(𝑝(𝑥, 𝑦))d𝜆(𝑥, 𝑦) − ∫
Ω1

log(𝑚(𝑥))𝑚(𝑥)d𝜆1(𝑥)

− ∫
Ω2

log(𝑛(𝑦))𝑛(𝑦)d𝜆2(𝑦) − 1

(3.16)= KL(𝜋 ∥ 𝜆) + 1 − (KL(𝜇 ∥ 𝜆1) + 1) − (KL(𝜈 ∥ 𝜆2) + 1) − 1

= ℎ(𝜋) − ℎ(𝜇) − ℎ(𝜈) − 2,

as claimed. This means

ℎ(𝜋) = KL(𝜋 ∥ 𝜇 ⊗ 𝜈) + ℎ(𝜇) + ℎ(𝜈) + 2

for all couplings 𝜋 with marginals 𝜇 and 𝜈. Applying Lemma 3.3.3, we see KL(𝜋 ∥ 𝜇 ⊗ 𝜈) ≥ −1
and KL(𝜇 ⊗ 𝜈 ∥ 𝜇 ⊗ 𝜈) = −1 and it follows immediately that

ℎ(𝜇 ⊗ 𝜈) = ℎ(𝜇) + ℎ(𝜈) + 1 and ℎ(𝜋) ≥ ℎ(𝜇) + ℎ(𝜈) + 1.

In order to prove existence of a minimizer for the regularized Kantorovich problem, we need
some theory about the lower semicontinuity of functionals defined in terms of densities. The
following theorem is helpful.

3.3.6. Theorem ([25, Thm. 13.3.1]). Let 𝑓 ∶ ℝ → [0, ∞] be a lower semicontinuous convex
function and 𝜆 be a measure in ℳ+(𝑋). Then the functional defined on ℳ(𝑋) by

𝐹(𝜇) = ∫
𝑋

𝑓 (d𝜇
d𝜆(𝑥)) d𝜆(𝑥) + ∫ 𝑓 ∞ (d𝜇𝑠

d|𝜇𝑠| (𝑥)) d|𝜇𝑠|(𝑥),

where 𝜇 = d𝜇
d𝜆 ⋅ 𝜆 + 𝜇𝑠 is the Radon-Nikodym decomposition of 𝜇 with respect to 𝜆 and

𝑓 ∞(𝑎) = lim
𝑡→∞

𝑓 (𝑡𝑎)
𝑡 for 𝑎 ∈ ℝ,

is lower semicontinuous for the weak-* convergence in ℳ(𝑋).

3.3 The Entropy-Regularized Kantorovich Problem 57

In the following we abbreviate “almost everywhere” with a. e. .

3.3.7. Corollary. Let 𝑓 ∶ ℝ → [0, ∞] be a lower semicontinuous convex function with superlinear
growth, i.e. lim𝑡→∞ 𝑓 (𝑡𝑎)/�𝑡 = ∞ for 𝑎 ≠ 0, and let 𝜆 be a measure in ℳ+(𝑋). Let (𝜇𝑛)𝑛 ⊆ ℳ(𝑋)
be a sequence with 𝜇𝑛 ≪ 𝜆 and 𝜇𝑛 ⇀∗ 𝜇 with 𝜇 ∈ ℳ(𝑋). If ∫𝑋 𝑓 (d𝜇𝑛

d𝜆 (𝑥)) d𝜆 is bounded, then
𝜇 ≪ 𝜆 and

∫
𝑋

𝑓 (d𝜇𝑛
d𝜆 (𝑥)) d𝜆(𝑥) ≤ lim inf

ℎ→∞
∫

𝑋
𝑓 (d𝜇𝑛

d𝜆 (𝑥)) d𝜆(𝑥).

Proof. Let 𝐹 ∶ ℳ(𝑋) → ℝ ∪ {∞} as in Theorem 3.3.6. Since 𝜇𝑛 ≪ 𝜆, we have

𝐹(𝜇𝑛) = ∫
𝑋

𝑓 (d𝜇𝑛
d𝜆 (𝑥)) d𝜆(𝑥),

which is bounded by some constant 𝐶 by assumption. Applying the theorem we get

𝐶 ≥ lim inf𝑛→∞ 𝐹(𝜇𝑛) ≥ 𝐹(𝜇) = ∫
𝑋

𝑓 (d𝜇
d𝜆 (𝑥)) d𝜆(𝑥) + ∫ 𝑓 ∞ (d𝜇𝑠

d|𝜇𝑠 |(𝑥)) d|𝜇𝑠|(𝑥).

The function 𝑓 is positive, thus ∫𝑋 𝑓 ∞ (d𝜇𝑠

d|𝜇𝑠 |(𝑥)) d|𝜇𝑠|(𝑥) ≤ 𝐶. But 𝑓 ∞ = ∞ since the function 𝑓 is

superlinear. So necessarily d𝜇𝑠

d|𝜇𝑠 |(𝑥) = 0 |𝜇𝑠|-a.e., which implies 𝜇𝑠 = 0. This shows that 𝜇 admits
a density w. r. t. 𝜆 and thus 𝜇 ≪ 𝜆 and ∫𝑋 𝑓 ∞ (d𝜇𝑠

d|𝜇𝑠 |(𝑥)) d|𝜇𝑠|=0. ■

We now have all the tools to prove the existence of a minimizer of the regularized Kantorovich
problem. However, we have to make the additional assumption that both measures have finite
entropy.

3.3.8. Proposition. Let (Ω1, 𝜆1) and (Ω2, 𝜆2) be two compact measure spaces. Let 𝜇 ∈ 𝒫(Ω1)
and 𝜈 ∈ 𝒫(Ω2) with finite entropy, i. e. ℎ(𝜇) < ∞ and ℎ(𝜈) < ∞ . Then the problem

inf {𝑊𝛾(𝜋) ∶ 𝜋 ∈ Π(𝜇, 𝜈), 𝜋 ≪ 𝜆} (KP-reg)

admits a unique solution.

Proof. First, we note that 𝑊𝛾 is bounded from below, since the first term is non-negative and
the entropy ℎ is bounded from below. As in the classical case, 𝜇 ⊗ 𝜈 has marginals 𝜇 and 𝜈. It
follows from Lemma 3.3.5 that 𝜇 ⊗ 𝜈 ≪ 𝜆1 ⊗ 𝜆2 and that ℎ(𝜇 ⊗ 𝜈) < ∞, since both 𝜇 and 𝜈 have
finite entropy. Thus, 𝑊𝛾(𝜇⊗𝜈) < ∞. Now, since 𝒫(𝑋) is sequentially compact w. r. t. the weak-*
convergence, we can find a minimizing sequence 𝜋𝑛 ⇀∗ 𝜋. Since it is a minimizing sequence, we
have 𝜋𝑛 ≪ 𝜆1 ⊗ 𝜆2. Let

̃𝜙 ∶ ℝ → [0, ∞], ̃𝜙(𝑥) = 𝜙(𝑥) + 1 =

⎧{{{
⎨{{{⎩

𝑥 · (log(𝑥) − 1) + 1, 𝑥 > 0
1, 𝑥 = 0
∞, 𝑥 < 0.

�

with 𝜙 as defined in (3.19). We note that ̃𝜙 is convex and lower semicontinuous, since it is con-
tinuous in 0 by L’Hôpital’s rule, see also Figure 3.9. Further ̃𝜙 has superlinear growth, since

lim
𝑡→∞

̃𝜙(𝑡𝑎)
𝑡 = lim

𝑡→∞
𝑡𝑎 · (log(𝑡𝑎) − 1) + 1

𝑡 = lim
𝑡→∞

𝑎 · (log(𝑡𝑎) − 1) + 1
𝑡 = ∞.

Now consider the functional 𝐺1 defined on ℳ(Ω1 × Ω2) by

𝜋 ↦ ∬
Ω1×Ω2

̃𝜙(d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦))d𝜆1 ⊗ 𝜆2(𝑥, 𝑦).

58 3 A Metric between Measures based on Optimal Transport Theory

Since 𝜋𝑛 is a minimizing sequence of 𝑊𝛾 , which is bounded from below, and since an admissible
transport plan exists, we can assume (by possibly taking subsequences) that

∬
Ω1×Ω2

̃𝜙(𝜋𝑛(𝑥, 𝑦))d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

is bounded. Now, Theorem 3.3.6 provides the lower semicontinuity of 𝐺1 w. r. t. weak-* conver-
gence and the absolute continuity of 𝜋 w. r. t. 𝜆1 ⊗ 𝜆2. As before, the functional 𝐺2 defined on
ℳ(Ω1 × Ω2) by

𝜋 ↦ ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦)

is lower semicontinuous w. r. t. the weak-* convergence since 𝑐 is a continuous function. Finally,

𝑊𝛾(𝜋) = ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + 𝛾ℎ(𝜋)

(3.20)= ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + 𝛾 ∬
Ω1×Ω2

𝜙(d𝜋
d𝜆 (𝑥, 𝑦))d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

(3.20)= ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋(𝑥, 𝑦) + 𝛾 ∬
Ω1×Ω2

̃𝜙(d𝜋
d𝜆 (𝑥, 𝑦)) − 1d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

= 𝐺2(𝜋) + 𝛾𝐺1(𝜋) − 𝛾𝜆1 ⊗ 𝜆2(𝑋).

Since both 𝐺2 and 𝐺1 are lower semicontinuous w. r. t. weak-* convergence, 𝑊𝛾 is lower semicon-
tinuous. As before, by Lemma 3.1.4, the marginal conditions are kept under weak-* convergence.
This shows that 𝜋 is indeed a minimizer of (KP-reg). The uniqueness follows from the strict con-
vexity of 𝜙. ■

In [41], the existence of a solution is claimed for all probability measures. The finite entropy
condition is however necessary: Lemma 3.3.5 states

ℎ(𝜋) ≥ ℎ(𝜇) + ℎ(𝜈) + 1

whenever 𝜋 ∈ Π(𝜇, 𝑣), so if either 𝜇 or 𝜈 have infinite entropy, i. e. ℎ(𝜇) = ∞ or ℎ(𝜈) = ∞, then
ℎ(𝜋) = ∞. Thus, 𝑊𝛾(𝜋) = ∞ for every admissible transport plan 𝜋.

The absolute continuity of the limit measure 𝜋 is not trivial, which is demonstrated in the
following two examples.

3.3.9. Example (Absolutely continuous marginals do not guarantee absolutely continuous
transport plans). Let Ω = [0, 1] and let 𝜆 denote the Lebesgue measure on [0, 1]. Let 𝜇 ∈
𝒫(Ω) be an absolutely continuous measure, 𝜇 ≪ 𝜆. Let Δ ∶ Ω → Ω × Ω, 𝑡 ↦ (𝑡, 𝑡) be the
diagonal map. As in Example 3.1.9, we define the transport plan on the diagonal, 𝜋 ≔ Δ#𝜇 ∈
ℳ(Ω × Ω). The image of Δ is the diagonal Δ(Ω) = {(𝑥, 𝑥) ∶ 𝑥 ∈ Ω} ⊆ Ω × Ω. Then 𝜋 is not
absolutely continuous, since 𝜋(Δ(Ω)) = 𝜇(Δ−1(Δ(Ω))) = 𝜇(Ω) = 1, but the diagonal is a null
set for the Lebesgue measure on Ω×Ω. But the marginals of 𝜋 are both 𝜇, which is absolutely
continuous. An illustration can be seen in Figure 3.3.

3.3 The Entropy-Regularized Kantorovich Problem 59

3.3.10. Example (Absolute continuity is not preserved under weak-* convergence). Let Ω be
a compact metric space, 𝜆 ∈ ℳ(Ω) a reference measure where all singleton sets are null sets,
and 𝑥0 ∈ Ω a fixed point. Let

𝑓𝑛 ∶ Ω → ℝ, 𝑓𝑛(𝑥) =
⎧{{
⎨{{⎩

𝜆 (𝐵 1
𝑛
(𝑥0))

−1
, 𝑥 ∈ 𝐵 1

𝑛
(𝑥0)

0, else,
�

and let 𝜇𝑛 = 𝑓𝑛𝜆 be the measure with density 𝑓𝑛 w. r. t. the reference measure 𝜆. This means
𝜇𝑛 is a probability measure supported on a ball around 𝑥0, whose radius decreases with 𝑛.
Intuitively, this sequence should converge against the measure which only has mass in 𝑥0.
Formally, this means 𝜇𝑛 ⇀∗ 𝛿𝑥0

, , which we will now prove. We have

∣� ∫
Ω

𝑔(𝑥)d𝜇𝑛(𝑥) − ∫
Ω

𝑔(𝑥)d𝛿𝑥0
(𝑥)∣� = ∣� ∫

𝐵 1
𝑛

(𝑥0)
𝑔(𝑥) ⋅ 𝜆 (𝐵 1

𝑛
(𝑥0))

−1
d𝜆(𝑥) − 𝑔(𝑥0)∣�

= ∣� ∫
𝐵 1

𝑛
(𝑥0)

𝑔(𝑥) ⋅ 𝜆 (𝐵 1
𝑛
(𝑥0))

−1
d𝜆(𝑥)

− ∫
𝐵 1

𝑛
(𝑥0)

𝑔(𝑥0)𝜆 (𝐵 1
𝑛
(𝑥0))

−1
d𝜆(𝑥)∣�

= ∣� ∫
𝐵 1

𝑛
(𝑥0)

(𝑔(𝑥) − 𝑔(𝑥0)) ⋅ 𝜆 (𝐵 1
𝑛
(𝑥0))

−1
d𝜆(𝑥)∣�

≤ ∫
𝐵 1

𝑛
(𝑥0)

𝐿 ⋅ 𝑑(𝑥, 𝑥0) ⋅ 𝜆 (𝐵 1
𝑛
(𝑥0))

−1
d𝜆(𝑥)

= 𝐿 ⋅ 1
𝑛

for all 𝑔 ∈ 𝐶(𝑋), where 𝐿 is the Lipschitz constant of 𝑔, which exists because all continuous
functions on a compact space are Lipschitz continuous. This shows 𝜇𝑛 ⇀∗ 𝛿𝑥0

. But 𝛿𝑥0
is not

absolutely continuous w. r. t. 𝜆, since 𝛿𝑥0
({𝑥0}) = 1, but by assumption, 𝜆({𝑥0}) = 0.

3.3.11. Remark (Dependence on the reference measures). In contrast to the original Kantorovich
problem, the regularized Kantorovich problem depends on densities with respect to a the
product measure 𝜆 ≔ 𝜆1 ⊗𝜆2 of the reference measures 𝜆1 and 𝜆2 on Ω1 and Ω2, respectively.
First off, we reason that 𝜆 ∼ 𝜇 ⊗ 𝜈 can be assumed without changing the value of 𝑊𝛾 . We
already know that 𝜇 ⊗ 𝜈 ≪ 𝜆, and if 𝜇 ⊗ 𝜈 is zero on any set, then so is any 𝜋 ∈ Π(𝜇, 𝜈)
because of the marginal conditions. Thus, this set would not contribute to the integral 𝑊𝛾 ,
and we can assume 𝜆 to be zero on this set as well. Now let 𝜆′ = 𝜆′

1 ⊗𝜆′
2 be a second reference

measure. Then 𝜆′ ∼ 𝜇 ⊗ 𝜈 ∼ 𝜆, and thus any 𝜋 with 𝜋 ≪ 𝜆 also fulfills 𝜋 ≪ 𝜆′. Further,
the marginal conditions do not depend on the reference measure. Thus, in both problems the
same transport plans are considered. For the value of the functional with reference measure
𝜆′ we have

∬
Ω1×Ω2

𝑐 + 𝛾(log(d𝜋
d𝜆′) − 1)d𝜋 = ∬

Ω1×Ω2
𝑐 + 𝛾(log(d𝜋

d𝜆
d𝜆
d𝜆′) − 1)d𝜋

= ∬
Ω1×Ω2

𝑐 + 𝛾(log(d𝜋
d𝜆) + log(d𝜆

d𝜆′) − 1)d𝜋

= 𝑊𝛾(𝜋) + 𝛾 ∬
Ω1×Ω2

log(d𝜆
d𝜆′)d𝜋.

The value of the functional thus differs by 𝛾 ∬Ω1×Ω2
log(d𝜆

d𝜆′)d𝜋. If d𝜆
d𝜆′ is constant, the value

of the functional only differs by a constant, and while we get a different value, the optimal

60 3 A Metric between Measures based on Optimal Transport Theory

transport plan is the same. However, if d𝜆
d𝜆′ = d𝜆1

d𝜆′
1

d𝜆2
d𝜆′

2
is not constant, choosing a different

reference measure can lead to a different optimal transport plan.

We have the following alternative expression for the functional 𝑊𝛾 . Let

𝐾𝛾 ∶ Ω1 × Ω2 → ℝ, 𝐾𝛾(𝑥, 𝑦) = exp(−𝑐(𝑥, 𝑦)
𝛾).

Then
𝑊𝛾(𝜋) = 𝛾KL(𝜋 ∥ 𝐾𝛾𝜆), (3.23)

where we ignore for now that formally, the Kullback-Leibler divergence is only defined for prob-
ability measures. We can then rewrite the regularized Kantorovich problem as

inf
𝜋∈Π(𝜇,𝜈)

𝛾KL(𝜋 ∥ 𝐾𝛾𝜆). (3.24)

This means the optimal transport plan is the KL-projection of the kernel 𝐾𝛾 onto the set Π(𝜇, 𝜈).
This identity can easily be seen. Indeed, we have

𝑊𝛾(𝜋) = ∬
Ω1×Ω2

𝑐(𝑥, 𝑦) + 𝛾(log(d𝜋
d𝜆 (𝑥, 𝑦)) − 1)d𝜋(𝑥, 𝑦)

= ∬
Ω1×Ω2

−𝛾 log(exp(−𝑐(𝑥, 𝑦)
𝛾)) + 𝛾(log(d𝜋

d𝜆 (𝑥, 𝑦)) − 1)d𝜋(𝑥, 𝑦)

= 𝛾 ∬
Ω1×Ω2

log(d𝜋
d𝜆 (𝑥, 𝑦)) − log(𝐾𝛾(𝑥, 𝑦)) − 1d𝜋(𝑥, 𝑦)

= 𝛾 ∬
Ω1×Ω2

d𝜋
d𝜆 (𝑥, 𝑦) (log(d𝜋

d𝜆 (𝑥, 𝑦)) − log(𝐾𝛾(𝑥, 𝑦)) − 1) d𝜆(𝑥, 𝑦)

= 𝛾 ∬
Ω1×Ω2

d𝜋
d𝜆 (𝑥, 𝑦) ⎛⎜

⎝
log⎛⎜

⎝

d𝜋
d𝜆 (𝑥, 𝑦)
𝐾𝛾(𝑥, 𝑦)

⎞⎟
⎠

− 1⎞⎟
⎠

d𝜆(𝑥, 𝑦)

= 𝛾KL(𝜋 ∥ 𝐾𝛾𝜆).

As a last step in this section, we want to examine the support of the optimal transport plan 𝜋. We
will see that in contrast to the classical Kantorovich problem, the optimal transport plan always
has “full support”, i. e. the support of 𝜋 is equal to the product of the supports of 𝜇 and 𝜈. The
function 𝜙 satisfies the following properties.

3.3.12. Lemma ([42, Lemma 2.6]). For 𝑟 ∈ (0, ∞) and 𝑑 ∈ ℝ,

(i) (𝜙(𝑟 + ℎ𝑑) − 𝜙(𝑟))/�ℎ ↓ 𝑑 log 𝑟 for ℎ ↓ 0

(ii) 𝜙(ℎ𝑑)/�ℎ ↓ −∞ for ℎ ↓ 0.

The following lemma is an analogon to [42, Thm. 2.7].

3.3.13. Lemma. Suppose there is a feasible solution 𝜋̂ to (KP-reg) with

d𝜋̂
d𝜆1⊗𝜆2

> 0 (𝜆1 ⊗ 𝜆2)-almost everywhere, i. e. 𝜋̂ ∼ 𝜆1 ⊗ 𝜆2. (3.25)

Then the unique optimal solution 𝜋0 to (KP-reg) satisfies d𝜋0
d𝜆1⊗𝜆2

> 0 (𝜆1 ⊗ 𝜆2)-almost every-
where, i. e. 𝜋0 ∼ 𝜆1 ⊗ 𝜆2.

Proof. Let 𝑢0 ≔ d𝜋0
d𝜆1⊗𝜆2

and ̂𝑢 = d𝜋̂
d𝜆1⊗𝜆2

. Suppose the set 𝑁 = {(𝑥, 𝑦) ∈ Ω1 × Ω2 ∶ 𝑢0(𝑥, 𝑦) = 0}
has positive measure 𝜆1 ⊗ 𝜆2(𝑁) > 0. We have

𝛾 ∬
Ω1×Ω2

𝜙(̂𝑢(𝑥, 𝑦))d𝜆1 ⊗ 𝜆2(𝑥, 𝑦) = 𝑊𝛾(𝜋̂) − ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d𝜋̂(𝑥, 𝑦) ≤ 𝑊𝛾(𝜋̂) < ∞

3.3 The Entropy-Regularized Kantorovich Problem 61

since 𝜋0 is feasible. Thus, 𝜙(̂𝑢) ∈ 𝐿1(Ω1 × Ω2, 𝜆1 ⊗ 𝜆2). Analogously, since 𝜋0 is optimal,
𝜙(𝑢0) ∈ 𝐿1(Ω1 × Ω2, 𝜆1 ⊗ 𝜆2). By Lemma 3.3.12 and since 𝜙 is convex, letting ℎ ↓ 0, we have

𝜙(̂𝑢) − 𝜙(𝑢0) ≥ ℎ−1(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0))

=
⎧{
⎨{⎩

ℎ−1(𝜙(ℎ ̂𝑢)) a. e. on 𝑁
ℎ−1(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0)) a. e. on 𝑁𝑐

�

↓
⎧{
⎨{⎩

−∞ a. e. on 𝑁
(̂𝑢 − 𝑢0) log 𝑢0 a. e. on 𝑁𝑐.

�

The sequence is decreasing as ℎ → 0, so we get from the Monotone Convergence Theorem that

∬
Ω1×Ω2

ℎ−1(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0))d𝜆1 ⊗ 𝜆2

= ∬
𝑁

ℎ−1(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0))d𝜆1 ⊗ 𝜆2

+ ∬
𝑁𝑐

ℎ−1(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0))d𝜆1 ⊗ 𝜆2

→ −∞,

since ∬Ω1×Ω2
(̂𝑢 − 𝑢0) log 𝑢0d𝜆1 ⊗ 𝜆2 ≤ ∬Ω1×Ω2

𝜙(̂𝑢) − 𝜙(𝑢0)d𝜆1 ⊗ 𝜆2 < ∞ and since 𝑁 has
positive measure. This means

ℎ−1(𝑊𝛾(𝜋0 + ℎ(𝜋̂ − 𝜋0)) − 𝑊𝛾(𝜋0))

= ℎ−1(� ∬
Ω1×Ω2

𝑐 · (𝑢0 + ℎ(̂𝑢 − 𝑢0)) + 𝛾𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0))d𝜆1 ⊗ 𝜆2

− ∬
Ω1×Ω2

𝑐𝑢0 + 𝛾𝜙(𝑢0)d𝜆1 ⊗ 𝜆2)�

= ℎ−1(�∬
Ω1×Ω2

𝑐ℎ(̂𝑢 − 𝑢0)d𝜆1 ⊗ 𝜆2)�

+ ℎ−1𝛾 ∬
Ω1×Ω2

(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0)) − 𝜙(𝑢0)d𝜆1 ⊗ 𝜆2)

= ∬
Ω1×Ω2

𝑐 · (̂𝑢 − 𝑢0) + ℎ−1𝛾(𝜙(𝑢0 + ℎ(̂𝑢 − 𝑢0) − 𝜙(𝑢0))d𝜆1 ⊗ 𝜆2

→ −∞

as ℎ → 0, since ∬Ω1×Ω2
𝑐(̂𝑢−𝑢0) < ∞. But the optimality and uniqueness of 𝜋0 and the feasibility

of 𝜋̂ imply that the quotient is positive for all ℎ > 0. This is a contradiction, and thus 𝑁 has to
be a (𝜆1 ⊗ 𝜆2)-zero set. ■

3.3.14. Remark. As already noted in Remark 3.3.11, we can always take a reference measure 𝜆
with 𝜆 ∼ 𝜇⊗𝜈. Then condition (3.25) is always satisfied, since we can choose 𝜋̂ = 𝜇⊗𝜈. Thus,
the statement of Lemma 3.3.13 states that the optimal 𝜋0 is equivalent to 𝜇 ⊗ 𝜈, which implies
supp𝜋0 = supp𝜇 × supp𝜈.

62 3 A Metric between Measures based on Optimal Transport Theory

3.3.2 A Dual Formulation

We now want to find a dual formulation for (KP-reg) using Fenchel Duality. This approach is
inspired by [33] and [46]. We use the formulation stated in Theorem 2.2.6. With this notation, we
have 𝒳∗ = ℳ(Ω1 × Ω2), 𝒴∗ = ℳ(Ω1) × ℳ(Ω2) with 𝒳 = 𝐶(Ω1 × Ω2), 𝒴 = 𝐶(Ω1) × 𝐶(Ω2). The
problem (KP-reg) is stated in the dual space, thus has to be considered as the “dual problem” in
the above setting. These considerations lead to stating (KP-reg) as

inf
𝜋∈ℳ(Ω1×Ω2)

𝑊𝛾(𝜋) + ℎ(− ̃𝐴𝜋), (3.26)

where

ℎ ∶ ℳ(Ω1) × ℳ(Ω2) → ℝ, ℎ((𝜇′

𝜈′)) =
⎧{
⎨{⎩

0, −𝜇 = 𝜇′ and − 𝜈 = 𝜈′

∞, else
�

is the indicator function and

̃𝐴 ∶ ℳ(Ω1 × Ω2) → ℳ(Ω1) × ℳ(Ω2), ̃𝐴𝜋 = (pr#1
pr#2

) .

The term ℎ(− ̃𝐴𝜋) asserts that the constraints are satisfied. Now, we need to show that all the
functions involved are actually conjugate functions of some other function. We note that 𝑊𝛾
and ℎ are convex and lower semicontinuous w. r. t. the weak-* convergence. For 𝑊𝛾 this follows
from Theorem 3.3.6, as seen in the proof of Theorem 3.1.5. For the indicator function ℎ this is
apparent. Thus, 𝑊𝛾 = (∗𝑊𝛾)∗ and ℎ = (∗ℎ)∗ by Proposition 2.2.2, so 𝑊𝛾 is the conjugate of the
preconjugate ∗𝑊𝛾 and ℎ is the conjugate of the preconjugate ∗ℎ. So 𝑔 = ∗𝑊𝛾 and 𝑓 = ∗ℎ are the
corresponding “primal functions” in Theorem 2.2.6. We then need to show that ̃𝐴 is the adjoint
of some operator. This is the content of the following proposition.

3.3.15. Proposition. The operator

̃𝐴 ∶ ℳ(Ω1 × Ω2) → ℳ(Ω1) × ℳ(Ω2), ̃𝐴𝜋 = ((pr1)#
(pr2)#

)

is the adjoint of the operator

𝐴 ∶ 𝐶(Ω1) × 𝐶(Ω2) → 𝐶(Ω1 × Ω2), 𝐴 (𝑣
𝑤) = 𝑣 ⊕ 𝑤

for 𝑣 ∈ 𝐶(Ω1), 𝑤 ∈ 𝐶(Ω2), where

(𝑣 ⊕ 𝑤)(𝑥, 𝑦) = 𝑣(𝑥) + 𝑤(𝑦) for all 𝑥 ∈ Ω1, 𝑦 ∈ Ω2.

Proof. Denote by ⟨·, ·⟩ the dual pairing between 𝐶(Ω1) × 𝐶(Ω2) and ℳ(Ω1) × ℳ(Ω2). Then

⟨𝐴 (𝑣
𝑤) , 𝜋⟩ = ∬

Ω1×Ω2
𝑣(𝑥) + 𝑤(𝑦)d𝜋(𝑥, 𝑦)

= ∬
Ω1×Ω2

𝑣(pr1(𝑥, 𝑦))d𝜋(𝑥, 𝑦) + ∬
Ω1×Ω2

𝑤(pr2(𝑥, 𝑦))d𝜋(𝑥, 𝑦)

= ∫
Ω1

𝑣(𝑥)d pr#1 𝜋(𝑥) + ∫
Ω2

𝑤(𝑦)d pr2 #𝜋(𝑦)

= ⟨(𝑣
𝑤) , ̃𝐴𝜋⟩.

This shows the identity ̃𝐴 = 𝐴∗. ■

3.3 The Entropy-Regularized Kantorovich Problem 63

We now calculate the preconjugates ∗ℎ and ∗𝑊𝛾 .
For the indicator function, let 𝑣 ∈ 𝐶(Ω1), 𝑤 ∈ 𝐶(Ω2). Then we have

∗ℎ((𝑣
𝑤)) = sup

(𝜇′,𝜈′)
∫

𝑋
𝑣d𝜇′ + ∫

𝑋
𝑤d𝜈′ − 𝟙(−𝜇

−𝜈)((𝜇′

𝜈′)) = − ∫
𝑋

𝑣d𝜇 − ∫
𝑋

𝑤d𝜈,

since the indicator function becomes infinity if 𝜇′ ≠ 𝜇, 𝜈′ ≠ 𝜈.
For 𝑊𝛾 we have the following proposition.

3.3.16. Proposition. The Fenchel conjugate ∗𝑊𝛾 of the function 𝑊𝛾 as defined in Definition 3.3.2
is given by

∗𝑊𝛾(𝑢) = 𝛾 ∬
Ω1×Ω2

exp(𝑢(𝑥,𝑦)
𝛾)𝐾𝛾(𝑥, 𝑦)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

for 𝑢 ∈ 𝐶(Ω1 × Ω2).

Proof. The Fenchel conjugate is defined as

∗𝑊𝛾(𝑢) = sup
𝜋∈ℳ(Ω1×Ω2)

∬
Ω1×Ω2

𝑢(𝑥, 𝑦)d𝜋(𝑥, 𝑦) − 𝑊𝛾(𝜋).

Since 𝑊𝛾(𝜋) = ∞ if 𝜋 is not absolutely continuous, we can replace the supremum over measures
by a supremum over densities. Let 𝜆 ≔ 𝜆1 ⊗ 𝜆2. We get, using (3.23) and (3.17),

∗𝑊𝛾(𝑢) = sup
𝑟∈𝐿1(Ω1×Ω2, 𝜆)

∬
Ω1×Ω2

𝑢(𝑥, 𝑦)𝑟(𝑥, 𝑦)d𝜆(𝑥, 𝑦) − 𝛾KL(𝑟𝜆 ∥ 𝐾𝛾𝜆)

= sup
𝑟∈𝐿1(Ω1×Ω2, 𝜆)

∬
Ω1×Ω2

𝑢(𝑥, 𝑦)𝑟(𝑥, 𝑦) − 𝛾 (log(𝑟(𝑥, 𝑦)
𝐾𝛾(𝑥, 𝑦)) − 1) 𝑟(𝑥, 𝑦)d𝜆(𝑥, 𝑦)

= sup
𝑟∈𝐿1(Ω1×Ω2, 𝜆)

⟨𝑢, 𝑟⟩∞,1 − ∬
Ω1×Ω2

𝑓 ((𝑥, 𝑦), 𝑟(𝑥, 𝑦))d𝜆(𝑥, 𝑦)

= sup
𝑟∈𝐿1(Ω1×Ω2, 𝜆)

⟨𝑢, 𝑟⟩∞,1 − 𝐼𝑓 (𝑟)

= 𝐼∗
𝑓 (𝑢),

for the function 𝑓 ∶ (Ω1 × Ω2) × ℝ → ℝ defined through 𝑓 ((𝑥, 𝑦), 𝑡) ≔ 𝛾𝑡(log 𝑡 − log 𝐾𝛾(𝑥, 𝑦) − 1)
for 𝑥 ∈ Ω1, 𝑦 ∈ Ω2, 𝑡 ∈ ℝ with the usual conventions. This function fulfills all requirements
for Proposition 2.2.4, thus the equality 𝐼∗

𝑓 = 𝐼𝑓 ∗ holds, where 𝑓 ∗ is the convex conjugate of 𝑓 with
respect to 𝑡. Thus we only need to solve

𝑓 ∗((𝑥, 𝑦), 𝑡′) = sup
𝑡∈ℝ

𝑡𝑡′ − 𝑓 ((𝑥, 𝑦), 𝑡),

which can be done by a simple analysis of extremal points, since 𝑓 is differentiable for 𝑡 > 0. If
the optimal 𝑡0 satisfies 𝑡0 > 0, we must have

0 = d
d𝑡 (𝑡𝑡′ − 𝑓 ((𝑥, 𝑦), 𝑡)) ∣𝑡=𝑡0

⇔ 𝑡0 = exp(𝑡′

𝛾)𝐾𝛾,𝑝(𝑥, 𝑦), 𝑥 ∈ Ω1, 𝑦 ∈ Ω2.

For 𝑡 = 0, the expression in the supremum becomes 0, and for 𝑡 < 0 it becomes −∞. Putting the
optimal 𝑡0 for 𝑡 > 0 into the expression and taking the maximum over all possibilities gives

𝑓 ∗((𝑥, 𝑦), 𝑡′) = max {−∞, 0, 𝛾 exp(𝑡′

𝛾)𝐾𝛾(𝑥, 𝑦)} = 𝛾 exp(𝑡′

𝛾)𝐾𝛾(𝑥, 𝑦).

64 3 A Metric between Measures based on Optimal Transport Theory

Now,
𝐼𝑓 ∗(𝑢) = 𝛾 ∬

𝑋×𝑋
exp(𝑢(𝑥,𝑦)

𝛾)𝐾𝛾(𝑥, 𝑦)d𝜆(𝑥, 𝑦),

which proves the claim. ■

Putting everything together, we can now apply Theorem 2.2.6 to 𝑔 = ∗𝑊𝛾,𝑝, 𝑓 = ∗ℎ and 𝐴 as
in Proposition 3.3.15. Let

𝐵𝛾(𝑣, 𝑤) ≔ ∫
Ω1

𝑣d𝜇 + ∫
Ω2

𝑤d𝜈 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆1 ⊗ 𝜆2 (3.27)

for 𝑣 ∈ 𝐶(Ω1), 𝑤 ∈ 𝐶(Ω2). Then we get the “dual formulation”, which is actually a primal
formulation.

sup
𝑣∈𝐶(Ω1),𝑤∈𝐶(Ω2)

𝐵𝛾(𝑣, 𝑤).

We see that this problem is very similar to the unregularized dual problem (DP). The constraint
𝑣 ⊕ 𝑤 ≤ 𝑐 has been replaced by a “soft constraint”

𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆 = 𝛾 ∬

Ω1×Ω2
exp(𝑣⊕𝑤−𝑐

𝛾)d𝜆.

Since we are looking for 𝑣, 𝑤 that maximize 𝐵𝛾(𝑣, 𝑤), the terms ∫Ω1
𝑣d𝜇 and ∫Ω2

𝑤d𝜈 favor large
𝑣 and 𝑤. However if 𝑣 ⊕ 𝑤 ≥ 𝑐, the argument of the exponential function is positive and it goes
faster to −∞ than the linear terms go to +∞.

Before we assert that strong duality actually holds, we want to examine the relation between
the variables 𝑣 and 𝑤 and the optimal 𝜋. We need the following property of the function 𝜙,
stated in [42, Lemma 2.4].

3.3.17. Lemma. Let 0 < 𝑟0 ∈ ℝ. Then for all 𝑟 ∈ ℝ,

(𝑟 − 𝑟0) log 𝑟0 ≤ 𝜙(𝑟) − 𝜙(𝑟0).

We have the following characterization of the optimal 𝜋.

3.3.18. Proposition. Suppose that 𝜋0 is feasible for (KP-reg). Suppose further that there exist
measurable functions 𝑣 ∶ Ω1 → ℝ and 𝑤 ∶ Ω2 → ℝ with 𝑣 ⊕ 𝑤 = 𝛾 log(d𝜋0

d𝜆1⊗𝜆2
) + 𝑐. Then 𝜋0

is optimal for (KP-reg).

Proof. Let 𝜆 ≔ 𝜆1 ⊗ 𝜆2. Let 𝜋 ∈ ℳ(Ω1 × Ω2) be any feasible transport plan. Since

𝛾 log(d𝜋0
d𝜆 (𝑥, 𝑦)) = 𝑣(𝑥) + 𝑤(𝑦) − 𝑐(𝑥, 𝑦) ∈ ℝ for all 𝑥 ∈ Ω1, 𝑦 ∈ Ω2,

d𝜋0
d𝜆 > 0 𝜆-a. e. . Thus, by Lemma 3.3.17, we have

𝜙(d𝜋
d𝜆 (𝑥, 𝑦)) − 𝜙(d𝜋0

d𝜆 (𝑥, 𝑦)) ≥ (d𝜋
d𝜆 (𝑥, 𝑦) − d𝜋0

d𝜆 (𝑥, 𝑦)) log(d𝜋0
d𝜆 (𝑥, 𝑦)) 𝜆-a. e. .

3.3 The Entropy-Regularized Kantorovich Problem 65

This means

𝑊𝛾,𝑝(𝜋) − 𝑊𝛾,𝑝(𝜋0) = ∬
Ω1×Ω2

𝑐(𝑥, 𝑦)d(𝜋 − 𝜋0)(𝑥, 𝑦) + 𝛾ℎ (d𝜋
d𝜆) − 𝛾ℎ (d𝜋0

d𝜆)

= ⟨𝑐, 𝜋 − 𝜋0⟩ + 𝛾 ∬
Ω1×Ω2

𝜙 (d𝜋
d𝜆 (𝑥, 𝑦)) − 𝜙 (d𝜋0

d𝜆 (𝑥, 𝑦)) d𝜆(𝑥, 𝑦)

≥ ⟨𝑐, 𝜋 − 𝜋0⟩ + 𝛾 ∬
Ω1×Ω2

(d𝜋
d𝜆 (𝑥, 𝑦) − d𝜋0

d𝜆 (𝑥, 𝑦)) log(d𝜋0
d𝜆 (𝑥, 𝑦))d𝜆(𝑥, 𝑦)

= ⟨𝑐, 𝜋 − 𝜋0⟩ + 𝛾 ∬
Ω1×Ω2

log(d𝜋0
d𝜆 (𝑥, 𝑦))d(𝜋 − 𝜋0)(𝑥, 𝑦)

= ⟨𝑐, 𝜋 − 𝜋0⟩ + ∬
Ω1×Ω2

𝑣(𝑥) + 𝑤(𝑦) − 𝑐(𝑥, 𝑦)d(𝜋 − 𝜋0)(𝑥, 𝑦)

= ∬
Ω1×Ω2

𝑣(𝑥) + 𝑤(𝑦)d(𝜋 − 𝜋0)(𝑥, 𝑦)

= ∫
Ω1

𝑣(𝑥)d(pr#1 𝜋 − pr#1 𝜋0)(𝑥) + ∫
Ω2

𝑤(𝑦)d(pr#2 𝜋 − pr#2 𝜋0)(𝑦)

= 0,

where ⟨·, ·⟩ denotes the dual pairing between 𝐶(Ω1 × Ω2) and ℳ(Ω1 × Ω2). This shows

𝑊𝛾,𝑝(𝜋) ≥ 𝑊𝛾,𝑝(𝜋0)

for every feasible 𝜋 and thus 𝜋0 is optimal. ■

We summarize everything in the following theorem. We will see that the functions 𝑣 and 𝑤 from
the above proposition are exactly the dual optimizers, if they exist.

3.3.19. Theorem (Dual problem). The dual problem of (KP-reg) is

sup
𝑣∈𝐶(Ω1),
𝑤∈𝐶(Ω2)

∫
Ω1

𝑣d𝜇 + ∫
Ω2

𝑤d𝜈 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆1 ⊗ 𝜆2, (D-reg)

where (𝑣 ⊕ 𝑤)(𝑥, 𝑦) = 𝑣(𝑥) + 𝑤(𝑦) for all 𝑥 ∈ Ω1, 𝑦 ∈ Ω2 and 𝐾𝛾(𝑥, 𝑦) = exp(−𝑐(𝑥,𝑦)
𝛾). Strong

duality holds, i. e. min(KP-reg) = sup(D-reg). Further, the the density d𝜋
d𝜆1⊗𝜆2

of the optimal
primal variable can be recovered from the optimal dual variables 𝑣, 𝑤 through

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦) = exp(𝑣(𝑥)
𝛾)𝐾𝛾,𝑝(𝑥, 𝑦) exp(𝑤(𝑦)

𝛾). (3.28)

Conversely, if the optimal 𝜋 is given (3.28), then 𝑣 and 𝑤 are optimal dual variables. The
optimal dual variables are unique up to a constant shift, i. e. if (𝑣1, 𝑤1) and (𝑣2, 𝑤2) are pairs
of dual optimizers, then (𝑣1 − 𝑣2, 𝑤1 − 𝑤2) = (𝐶, −𝐶) for some constant 𝐶 ∈ ℝ.

Proof. From the above considerations, using Theorem 2.2.6, we get sup(D-reg) ≤ min(KP-reg).
It remains to show that the continuity condition in Theorem 2.2.6 is satisfied. The function 𝑔 to
consider is

𝑔(𝑢) = 𝛾 ∬
Ω1×Ω2

exp(𝑢(𝑥,𝑦)
𝛾)𝐾𝛾(𝑥, 𝑦)d𝜆(𝑥, 𝑦)

for 𝑢 ∈ 𝐶(Ω1 × Ω2), and continuity is w. r. t. uniform convergence. Now, if (𝑢𝑛)𝑛 → 𝑢 in 𝐶(Ω1 ×
Ω2) is uniformly convergent, then so is exp(𝑢𝑛

𝛾)𝐾𝛾 , since the exponential function is continuous
and 𝐾𝛾 is bounded. This means that we can switch the limit and the integral, so 𝑔 is continuous
everywhere. Thus, strong duality holds.

66 3 A Metric between Measures based on Optimal Transport Theory

Now, assume that there exist optimal dual variables 𝑣 and 𝑤. Define

𝑢(𝑥, 𝑦) ≔ exp(𝑣(𝑥)
𝛾)𝐾𝛾(𝑥, 𝑦) exp(𝑤(𝑦)

𝛾) = exp(𝑣(𝑥)+𝑤(𝑦)−𝑐(𝑥,𝑦)
𝛾).

Consider any smooth test function 𝜑 ∈ 𝐶(Ω1). The optimality of 𝑣 implies

0 = d
d𝑡𝐵𝛾(𝑣 + 𝑡𝜑, 𝑤)| 𝑡=0

= ∫
Ω1

𝜑(𝑥) d𝜇
d𝜆1

(𝑥)d𝜆1(𝑥) − ∬
Ω1×Ω2

𝜑(𝑥) exp(𝑣(𝑥)+𝑤(𝑦)
𝛾)𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

= ∫
Ω1

𝜑(𝑥) (d𝜇
d𝜆1

(𝑥) − ∫
Ω2

exp(𝑣(𝑥)+𝑤(𝑦)
𝛾)𝐾𝛾(𝑥, 𝑦)d𝜆2(𝑦)) d𝜆1(𝑥).

By the fundamental lemma of calculus of variations, this implies

0 = d𝜇
d𝜆1

(𝑥) − ∫
Ω2

exp(𝑣(𝑥)+𝑤(𝑦)
𝛾)𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆2(𝑦)) 𝜆1-a. e. on Ω1.

This means

d𝜇
d𝜆1

(𝑥) = ∫
Ω2

exp(𝑣(𝑥)+𝑤(𝑦)
𝛾)𝐾𝛾(𝑥, 𝑦)d𝜆2(𝑦) = ∫

Ω2
𝑢(𝑥, 𝑦)d𝜆1 ⊗ 𝜆2(𝑦), (3.29)

in terms of measures
𝜇 = pr#1(𝑢𝜆).

Analogously, one shows
𝜈 = pr#2(𝑢𝜆),

which shows that 𝑢𝜆 satisfies the marginal conditions and is thus feasible for (KP-reg). Further
we have 𝑣(𝑥) + 𝑤(𝑦) = 𝛾 log 𝑢(𝑥, 𝑦) + 𝑐(𝑥, 𝑦) and thus by Proposition 3.3.18, 𝑢𝜆 is optimal. Con-
versely, if 𝑢0𝜆 is optimal and 𝑣0(𝑥) + 𝑤0(𝑦) = 𝛾 log 𝑢0(𝑥, 𝑦) + 𝑐(𝑥, 𝑦) for some 𝑣0 ∈ 𝐶(Ω1), 𝑤0 ∈
𝐶(Ω2), then

d
d𝑡𝐵𝛾(𝑣0 + 𝑡𝜑, 𝑤0)| 𝑡=0 = 0,

since the marginal conditions are satisfied. Similarly for 𝑤0. Thus, 𝑣0 are 𝑤0 are optimal. Now
assume we have optimal dual variables 𝑣1, 𝑣2, 𝑤1, 𝑤2. Then, since the optimal 𝑢 is unique (up to
a 𝜆1 ⊗ 𝜆2-null set),

𝑣1(𝑥) + 𝑤1(𝑦) = 𝛾 log 𝑢(𝑥, 𝑦) + 𝑐(𝑥, 𝑦) = 𝑣2(𝑥) + 𝑤2(𝑦) 𝜆1 ⊗ 𝜆2-a. e. for 𝑥 ∈ Ω1, 𝑦 ∈ Ω2

and thus
𝑣1(𝑥) − 𝑣2(𝑥) = 𝑤2(𝑦) − 𝑤1(𝑦) 𝜆-a. e. for 𝑥 ∈ Ω1, 𝑦 ∈ Ω2,

which shows the uniqueness of the optimal dual variables up to a constant shift. ■

Since we know that the measures 𝜇 and 𝜈 are absolutely continuous with respect to 𝜆1 and 𝜆2,
respectively, we can also formulate the dual problem in terms of densities, using duality between
𝐿1(Ω𝑖, 𝜆𝑖) and 𝐿∞(Ω𝑖, 𝜆𝑖) for 𝑖 = 1, 2.

3.3 The Entropy-Regularized Kantorovich Problem 67

3.3.20. Theorem (Dual problem Using Densities). Let 𝑟 = d𝜇
d𝜆1

and 𝑠 = d𝜈
d𝜆2

. The dual problem
of (KP-reg) in terms of 𝑟 and 𝑠 is

sup
𝑣∈𝐿∞(Ω1,𝜆1),
𝑤∈𝐿∞(Ω2,𝜆2)

∫
Ω1

𝑟𝑣d𝜆1 + ∫
Ω2

𝑠𝑤d𝜆2 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆, (D-reg’)

where (𝑣 ⊕ 𝑤)(𝑥, 𝑦) = 𝑣(𝑥) + 𝑤(𝑦) for all 𝑥 ∈ Ω1, 𝑦 ∈ Ω2 and 𝐾𝛾(𝑥, 𝑦) = exp(−𝑐(𝑥,𝑦)
𝛾). Strong

duality holds, i. e. min(KP-reg) = sup(D-reg).

Proof. This proof is inspired by [46]. We show that the optimal cost of (D-reg’) is equal to the
optimal cost of (D-reg). Let

𝐵′
𝛾(𝑣, 𝑤) = ∫

Ω1
𝑟𝑣d𝜆1 + ∫

Ω2
𝑠𝑤d𝜆2 − 𝛾 ∬

Ω1×Ω2
exp(𝑣⊕𝑤

𝛾)𝐾𝛾d𝜆

for 𝑣 ∈ 𝐿∞(Ω1), 𝑤 ∈ 𝐿∞(Ω2). Since 𝐶(Ω𝑖) ⊆ 𝐿∞(Ω𝑖) for 𝑖 = 1, 2, we have

sup
𝑣∈𝐿∞(Ω1),
𝑤∈𝐿∞(Ω1)

𝐵′
𝛾(𝑣, 𝑤) = sup

𝑣∈𝐿∞(Ω1),
𝑤∈𝐿∞(Ω1)

∫
Ω1

𝑟𝑣d𝜆1 + ∫
Ω2

𝑠𝑤d𝜆2 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆

≥ sup
𝑣∈𝐶(Ω1),
𝑤∈𝐶(Ω2)

∫
Ω1

𝑟𝑣d𝜆1 + ∫
Ω2

𝑠𝑤d𝜆2 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆

= sup
𝑣∈𝐶(Ω1),
𝑤∈𝐶(Ω2)

∫
Ω1

𝑣d𝜇 + ∫
Ω2

𝑤d𝜈 − 𝛾 ∬
Ω1×Ω2

exp(𝑣⊕𝑤
𝛾)𝐾𝛾d𝜆

= sup
𝑣∈𝐶(Ω1),
𝑤∈𝐶(Ω2)

𝐵𝛾(𝑣, 𝑤)

We need to show that the optimal cost of (D-reg’) can be approximated by continuous functions.
For this we approximate functions 𝑣 ∈ 𝐿∞(Ω1), 𝑤 ∈ 𝐿∞(Ω2) by continuous functions. Since
𝐶(Ω1) and 𝐶(Ω2) are dense in 𝐿1(Ω1) and 𝐿1(Ω2), respectively (see [22, Thm. 3.14]), we have
sequences (𝑣𝑛)𝑛 ⊆ 𝐶(Ω1), (𝑤𝑛)𝑛 ⊆ 𝐶(Ω2) such that 𝑣𝑛 → 𝑣 in 𝐿1(Ω1) and 𝑤𝑛 → 𝑤 in 𝐿1(Ω2).
Since the limits 𝑣, 𝑤 are in 𝐿∞(Ω1) and 𝐿∞(Ω2), respectively, they are bounded. We can thus
assume (𝑣𝑛)𝑛 and (𝑤𝑛)𝑛 to be uniformly bounded by some constant 𝐶 < ∞, by cutting off too
large values if necessary. By the sequential Banach-Alaoglu theorem, we can then assume (by
restricting to a subsequence) that 𝑣𝑛 ⇀∗ 𝑣 in 𝐿∞(Ω1) = 𝐿1(Ω1)∗ and 𝑤𝑛 ⇀∗ 𝑤 in 𝐿∞(Ω2) =
𝐿1(Ω2)∗. We get

∫
Ω1

𝑟𝑣𝑛d𝜆1 + ∫
Ω2

𝑠𝑤𝑛d𝜆2 → ∫
Ω1

𝑟𝑣d𝜆1 + ∫
Ω2

𝑠𝑤d𝜆2

by the weak-* convergence. We can further assume (by again restricting to a subsequence), that
𝑣𝑛 → 𝑣 pointwise almost everywhere and 𝑤𝑛 → 𝑤 pointwise almost everywhere, see [22, Thm.
3.12]. Since the exponential function is continuous, exp(𝑣𝑛⊕𝑤𝑛

𝛾) → exp(𝑣⊕𝑤
𝛾) pointwise almost

everywhere. Further, 𝑣𝑛 and 𝑤𝑛 are uniformly bounded, and thus exp(𝑣𝑛⊕𝑤𝑛
𝛾) is uniformly

bounded. By the Dominated Convergence Theorem ([22, Thm. 1.34]), we then get

𝛾 ∬
Ω1×Ω2

exp(𝑣𝑛⊕𝑤𝑛
𝛾)𝐾𝛾d𝜆1 ⊗ 𝜆2 → 𝛾 ∬

Ω1×Ω2
exp(𝑣⊕𝑤

𝛾)𝐾𝛾d𝜆1 ⊗ 𝜆2.

In total, this shows
𝐵′

𝛾(𝑣𝑛, 𝑤𝑛) → 𝐵′
𝛾(𝑣, 𝑤) = 𝐵𝛾(𝑣, 𝑤),

which concludes the proof. ■

68 3 A Metric between Measures based on Optimal Transport Theory

The next step will be to examine whether the supremum in the dual problem is attained. We
have the following result.

3.3.21. Proposition (Existence of dual optimizers). Let 𝜇 ∈ ℳ+(Ω1) and 𝜈 ∈ ℳ+(Ω2) with
finite entropy. Then there exist measurable functions 𝑎 ∶ Ω1 → ℝ and 𝑏 ∶ Ω2 → ℝ such that
the density of the optimal 𝜋 for (KP) is given as

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦) = 𝑎(𝑥)𝐾𝛾(𝑥, 𝑦)𝑏(𝑥) (𝜆1 ⊗ 𝜆2)-a. e. .

If further (3.25) is satisfied, 𝑣 = 𝛾 log 𝑎 and 𝑤 = 𝛾 log 𝑏 satisfy

d𝜋
d𝜆 (𝑥, 𝑦) = exp(𝑣(𝑥)

𝛾)𝐾𝛾(𝑥, 𝑦) exp(𝑤(𝑦)
𝛾) (𝜆1 ⊗ 𝜆2)-a. e. .

Proof. If we consider the the Kantorovich problem (KP) as in (3.23) as the KL-projection of the
kernel function 𝐾𝛾 on the set of measures with fixed marginals, the existence of 𝑎 and 𝑏 follows
from [47, Thm. 3]. Now if (3.25) is satisfied, Lemma 3.3.13 assures that

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦) = 𝑎(𝑥)𝐾𝛾(𝑥, 𝑦)𝑏(𝑦) > 0 𝜆1 ⊗ 𝜆2-a. e. ,

thus 𝑎 > 0 and 𝑏 > 0 and log 𝑎 and log 𝑏 are finite 𝜆1 ⊗ 𝜆2-a. e. . ■

Now, together with Proposition 3.3.18, we have that 𝜋 is optimal if and only if

d𝜋
d𝜆1⊗𝜆2

(𝑥, 𝑦) = exp(𝑣(𝑥)
𝛾)𝐾𝛾(𝑥, 𝑦) exp(𝑤(𝑦)

𝛾) (𝜆1 ⊗ 𝜆2)-a. e.

for some measurable functions 𝑣 ∶ Ω1 → ℝ and 𝑤 ∶ Ω2 → ℝ.
We can now ask ourselves if those functions are continuous or bounded. This is not the case

in general, which can be seen in the following example.

3.3.22. Example (Dual problem has no solution). We will now consider two examples where
the dual problem admits no solution. Assume that the dual problem for some marginals 𝜇, 𝜈
admits a solution 𝑣 ∈ 𝐶(Ω1), 𝑤 ∈ 𝐶(Ω2). Then the optimality condition (3.29) for 𝑣 is

d𝜇
d𝜆1

(𝑥) = ∫
Ω2

exp(𝑣(𝑥)+𝑤(𝑦)
𝛾)𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆2(𝑦)

= exp(𝑣(𝑥)
𝛾) ∫

Ω2
exp(𝑤(𝑦)

𝛾)𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆2(𝑦).

Let 𝑧(𝑥) = ∫Ω2
exp(𝑤(𝑦)

𝛾)𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆2(𝑦). Now, let Ω1 = Ω2 = [0, 1], 𝜆 = 𝜆1 = 𝜆2 the
Lebesgue measure and let 𝜇 be defined by the density

d𝜇
d𝜆 (𝑥) =

⎧{
⎨{⎩

0.5, 𝑥 ≤ 0.5
1.5, 𝑥 > 0.5.

�

We have ℎ(𝜇) ≈ −0.87, so a solution to the primal problem exists. We get

𝑣(𝑥) = 𝛾 log(d𝜇2
d𝜆 (𝑥))𝑧(𝑥)−1 =

⎧{
⎨{⎩

𝛾 log 0.5
𝑧(𝑥) , 𝑥 ≤ 0.5

𝛾 log 1.5
𝑧(𝑥) , 𝑥 > 0.5.

�

But since 𝑧(𝑥) > 0 for all 𝑥 ∈ [0, 1] and log(0.5) < 0 while log(1.5) > 0, we see 𝑣(𝑥) < 0 for
𝑥 ≤ 0.5 and 𝑣(𝑥) > 0 for 𝑥 > 0.5, so 𝑣 is not a continuous function. Thus, (D-reg) does not

3.3 The Entropy-Regularized Kantorovich Problem 69

admit an optimizer. Moreover, existence does not fail just because of the continuity, which we
can see in the next example. Let 𝜇 be defined by the density d𝜇

d𝜆 (𝑥) = exp(−1
√𝑥). Again, 𝜇 has

finite entropy ℎ(𝜇) ≈ −0.52. If we assume 𝑤 ∈ 𝐿∞([0, 1]), then 𝑧 is bounded. Now,

𝑣(𝑥) = 𝛾 log(d𝜇
d𝜆 (𝑥))𝑧(𝑥)−1 = 𝛾 −1

√𝑥𝑧(𝑥)

and thus
𝑣(𝑥) → −∞ as 𝑥 → 0.

Thus, 𝑣 cannot be in 𝐿∞([0, 1]) and (D-reg’) does not admit an optimizer either.

However, if Ω1 and Ω2 are finite, all measurable functions are bounded by the maximal at-
tained value, which can be selected as a maximum over a finite set. Thus, the dual problem
(D-reg’) has a solution in the finite case because of Proposition 3.3.21.

This lies the basis for an algorithm to compute the optimal transport plan.

3.3.3 Solving the Regularized Kantorovich Problem using Alternate
Projections

In this section we will state an algorithm for solving the regularized Kantorovich problem defined
in Definition 3.3.2, using as a reference [48]. It relies on the expression of the density 𝑢 of the op-
timal transport plan shown in Theorem 3.3.19 and the marginal conditions. We will first restate
these results.

Denote the density of the optimal transport plan by 𝑢 and the densities of the marginals 𝜇 and
𝜈 by 𝑟 and 𝑠, respectively, i. e. 𝜋 = 𝑢(𝜆1 ⊗ 𝜆2), 𝜇 = 𝑟𝜆1, 𝜈 = 𝑠𝜆2. Remember that the density of
the optimal transport plan can be expressed as

𝑢(𝑥, 𝑦) = exp(𝑣(𝑥)
𝛾)𝐾𝛾,𝑝(𝑥, 𝑦) exp(𝑤(𝑦)

𝛾) (3.28)

for some measurable functions 𝑣, 𝑤. Now, let 𝑎 = exp(𝑣
𝛾) and 𝑏 = exp(𝑤

𝛾). Then

𝑢(𝑥, 𝑦) = 𝑎(𝑥)𝐾𝛾,𝑝(𝑥, 𝑦)𝑏(𝑦). (3.30)

The marginal conditions, or optimality conditions for 𝑣, 𝑤 in the dual problem, then are

𝑎(𝑥) ∫
Ω2

𝐾𝛾(𝑥, 𝑦)𝑏(𝑦)d𝜆2(𝑦) = 𝑟(𝑥) 𝜆1-a. e.

𝑏(𝑦) ∫
Ω1

𝐾𝛾(𝑥, 𝑦)𝑎(𝑥)d𝜆1(𝑥) = 𝑠(𝑦) 𝜆2-a. e. ,
(3.31)

see (3.21). These equations are often called Schrödinger equations in the literature.
The idea of the algorithm is to iteratively reestimate 𝑎 and 𝑏 by enforcing alternately the con-

straint on the first and the second marginal of the density associated to 𝑎 and 𝑏 through 𝑢. This
means we construct a sequence 𝑢(0), 𝑢(1), 𝑢(2), … such that for the even elements of the sequence,
the first marginal density is 𝑟, and for the odd elements, the second marginal density is 𝑠. This
can be done by alternately solving the equations in (3.31) for 𝑎 and 𝑏.

The resulting algorithm is known in many forms and can be found under the names “Iterative
Proportional Fitting Procedure (IPFP)”, “Sinkhorn-Knopp algorithm” (in the discrete case) or
“Iterative Bregman Projections”, where the last comes from the interpretation of projecting (with
respect to the KL-divergence) the transport plan alternately on the sets of probability measures

70 3 A Metric between Measures based on Optimal Transport Theory

with one fixed marginal. Explicitly, the algorithm consists of the following recursion:

𝑏0(𝑦) = 1,

𝑎0(𝑥) = 𝑟(𝑥)
∫Ω2

𝐾𝛾(𝑥, 𝑦)d𝜆2(𝑦)
,

𝑏1(𝑦) = 𝑠(𝑦)
∫Ω1

𝐾𝛾(𝑥, 𝑦)𝑎0(𝑥)d𝜆1(𝑥)
,

𝑎1(𝑥) = 𝑟(𝑥)
∫Ω2

𝐾𝛾(𝑥, 𝑦)𝑏1(𝑦)d𝜆2(𝑦)
,

(3.32)

and for arbitrary 𝑛,

𝑏𝑛(𝑦) = 𝑠(𝑦)
∫Ω1

𝐾𝛾(𝑥, 𝑦)𝑎𝑛−1(𝑥)d𝜆1(𝑥)
,

𝑎𝑛(𝑥) = 𝑟(𝑥)
∫Ω2

𝐾𝛾(𝑥, 𝑦)𝑏𝑛(𝑦)d𝜆2(𝑦)
.

(3.33)

Note that for all 𝑛, 𝑎𝑛 > 0 𝜆1-a. e. and 𝑏𝑛 > 0 𝜆2-a. e. , since 𝐾𝛾 > 0. Thus, the quotients are well
defined. The corresponding sequence of transport plan densities is defined by

𝑢(2𝑛)(𝑥, 𝑦) = 𝑎𝑛(𝑥)𝐾𝛾,𝑝(𝑥, 𝑦)𝑏𝑛(𝑦),
𝑢(2𝑛+1)(𝑥, 𝑦) = 𝑎𝑛(𝑥)𝐾𝛾,𝑝𝑏𝑛+1(𝑦), 𝑛 ≥ 0.

(3.34)

As described above, we have for the marginal densities

∫
Ω2

𝑢(2𝑛)(𝑥, 𝑦)d𝜆2(𝑦) = ∫
Ω2

𝑎𝑛(𝑥)𝐾𝛾(𝑥, 𝑦)𝑏𝑛(𝑦)d𝜆2(𝑦)

= 𝑎𝑛(𝑥) ∫
Ω2

𝐾𝛾(𝑥, 𝑦)𝑏𝑛(𝑦)d𝜆2(𝑦)

= 𝑟(𝑥)
∫Ω2

𝐾𝛾(𝑥, 𝑦)𝑏𝑛(𝑦)d𝜆2(𝑦)
∫

Ω2
𝐾𝛾(𝑥, 𝑦)𝑏𝑛(𝑦)d𝜆2(𝑦)

= 𝑟(𝑥),

which shows pr#1(𝑢(2𝑛)𝜆1 ⊗ 𝜆2) = 𝑟𝜆1, see (3.21). Analogously,

∫
Ω1

𝑢(2𝑛+1)(𝑥, 𝑦)d𝜆1(𝑥) = 𝑠(𝑦).

The convergence of this scheme is proved in [48] under very mild assumptions.

3.3.23. Theorem (Convergence of IPFP). If 𝑠 is bounded, then the sequence (𝑢(𝑛)𝜆1 ⊗ 𝜆2)𝑛 con-
verges to an optimal transport plan 𝑢𝜆1 ⊗ 𝜆2 in total variation.

Proof. This follows from [48, Thm. 3.5] and because 𝐾𝛾 is continuous and thus bounded. ■

3.3.24. Remark. Formally, the measure with respect to which the KL projection is considered
has to be a probability measure, which is not the case for 𝐾𝛾𝜆. This can be alleviated by rescal-
ing, which only changes the value of the functional 𝑊𝛾 by a constant, as seen in Lemma 3.3.4.

This algorithm can now be used to calculate a solution to the regularized Kantorovich problem
(KP-reg). Since it is possible to apply the same regularization to the Kantorovich problem for
unbalanced mass transport (K̃P), the algorithm can also be applied for unbalanced mass trans-
port.

3.4 The Entropy-Regularized Wasserstein Distance and its Properties 71

3.4 The Entropy-Regularized Wasserstein Distance and its
Properties

In the previous section, we have considered the regularized Kantorovich problem. We showed
that this problem admits a unique solution and stated an algorithm to solve it. Now we can ap-
ply this regularization to approximate the Wasserstein distance by using considering a ground
metric to a specific power as the cost function in the Kantorovich problem. We formally define
the entropy-regularized Wasserstein distance and examine some of its properties, including metric
properties as well as some properties that make it suitable as a loss function, notably differenti-
ability and convexity.

3.4.1. Definition (Entropy-Regularized Wasserstein Distance). Let (Ω, 𝑑) be a compact metric
space. Let 𝜆1, 𝜆2 be two measures on Ω. The entropy-regularized Wasserstein distance (ERWD)
of order p between two probability measures 𝜇 and 𝜈 is defined as

𝒲𝑝
𝛾,𝑝(𝜇, 𝑣) ≔ inf {𝑊𝛾,𝑝 ∶ 𝜋 ∈ Π(𝜇, 𝜈), 𝜋 ≪ 𝜆1 ⊗ 𝜆2} (3.35)

where
𝑊𝛾,𝑝 ≔ ∬

𝑋×𝑋
𝑑(𝑥, 𝑦)𝑝d𝜋(𝑥, 𝑦) + 𝛾ℎ(𝜋).

First, we want to examine if the ERWD actually deserves the name “distance”. For several reas-
ons, the answer to this question is negative. The first reason is that the value 𝒲𝑝

𝛾,𝑝(𝜇, 𝑣) defined
above is not actually guaranteed to be positive for all 𝛾. This is because

∬
Ω×Ω

𝑑(𝑥, 𝑦)𝑝d𝜋(𝑥, 𝑦) ≤ diam(Ω)𝑝𝜋(Ω × Ω) = diam(Ω)𝑝,

but if ℎ(𝜋) is negative, 𝛾 can be such that −𝛾ℎ(𝜋) ≥ diam(Ω)𝑝. A concrete example follows.

3.4.2. Example (ERWD can be negative). Let Ω be a finite metric space with 𝜆1 = 𝜆2 the counting
measure. Let 𝑎, 𝑏 ∈ Ω and 𝜇 = 𝛿𝑎, 𝜈 = 𝛿𝑏. Then the only transport plan is given by 𝜋 = 𝛿(𝑎,𝑏).
The density of the Dirac measure 𝛿(𝑎,𝑏) with respect to the counting measure on the product
space is the function

𝑓𝛿𝑥
(𝑥′) =

⎧{
⎨{⎩

1, 𝑥′ = 𝑥
0, else.

�

Thus,
ℎ(𝜋) = ∬

Ω×Ω
𝑓𝛿𝑥

(𝑥, 𝑦)(log(𝑓𝛿𝑥
)(𝑥, 𝑦) − 1)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦) = −1

and
𝑊𝛾(𝜋) = 𝑑(𝑎, 𝑏)𝑝 − 𝛾,

which is negative for 𝛾 > 𝑑(𝑎, 𝑏)𝑝.

The problem of negative values can easily be bypassed by adding a constant, since the entropy
function 𝜑 is bounded from below by −1. A more accurate way to assure non-negativity is to
subtract the minimum of the functional 𝑊𝛾,𝑝. This minimum can be calculated by making use
of the properties of the Kullback-Leibler divergence stated in Section 3.3.

72 3 A Metric between Measures based on Optimal Transport Theory

3.4.3. Corollary. For any two probability measures 𝜇, 𝜈 ∈ 𝒫(Ω) we have

𝒲𝛾,𝑝(𝜇, 𝜈) ≥ −𝛾(1 + log(vol𝐾𝛾,𝑝
)),

where
vol𝐾𝛾,𝑝

= (𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2)(Ω × Ω) = ∬
Ω×Ω

𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆1 ⊗ 𝜆2(𝑥, 𝑦)

with equality if and only if

d𝜇
d𝜆1

= 1
vol𝐾𝛾,𝑝

∫
Ω

𝐾𝛾,𝑝(·, 𝑦)d𝜆2(𝑦) and d𝜈
d𝜆2

= 1
vol𝐾𝛾,𝑝

∫
Ω

𝐾𝛾,𝑝(𝑥, ·)d𝜆1(𝑥).

Proof. Let 𝜋 be the optimal transport plan between 𝜇 and 𝜈. From (3.23) we know that

𝒲𝛾,𝑝(𝜇, 𝜈) = 𝑊𝛾,𝑝(𝜋) = 𝛾KL(𝜋 ∥ 𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2)

and from Lemma 3.3.4 we know that

KL(𝜋 ∥ 𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2) ≥ −1 − log((𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2)(Ω × Ω)) = −1 − log(vol𝐾𝛾,𝑝
)

with equality if and only if
𝜋 = 1

vol𝐾𝛾,𝑝
𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2.

This is the case if and only if 𝜇 and 𝜈 are the marginals of 1
vol𝐾𝛾,𝑝

𝐾𝛾,𝑝𝜆1 ⊗ 𝜆2, which is the case if

d𝜇
d𝜆1

= 1
vol𝐾𝛾,𝑝

∫
Ω

𝐾𝛾,𝑝(·, 𝑦)d𝜆2(𝑦),

and analogously for d𝜈
d𝜆2

. Further, 𝜋 is indeed optimal in this case, since 𝑊𝛾,𝑝 assumes its min-
imum. ■

This suggests that the ERWD between two identical measures might not be zero. Indeed, we
will see later that the ERWD is not even minimal for two identical measures, i. e. there exists for
every 𝜇 ∈ 𝒫(Ω) a 𝜇̃ ∈ 𝒫(Ω) such that

𝒲𝛾,𝑝(𝜇, 𝜇̃) < 𝒲𝛾,𝑝(𝜇, 𝜇).

A second reason why the ERWD does not really deserve the name distance is that the triangle
inequality is only fulfilled approximately, as noted in [41, §4]. The symmetry however holds.

3.4.4. Proposition. If 𝜆1 = 𝜆2, the regularized Wasserstein distance is symmetric. For all 𝜇, 𝜈 ∈
𝒫(Ω) with finite entropy, all 𝛾 > 0 and all 1 ≤ 𝑝 < ∞,

𝒲𝛾,𝑝(𝜇, 𝜈) = 𝒲𝛾,𝑝(𝜈, 𝜇).

Proof. Let 𝜋 ∈ Π(𝜇, 𝜈) be the optimal transport plan between 𝜇 and 𝜈. The idea is to “transpose”
𝜋. Let 𝜆 ≔ 𝜆1 = 𝜆2. Let 𝑢 ≔ d𝜋

d𝜆⊗𝜆 . Define 𝑢𝑡(𝑥, 𝑦) ≔ 𝑢(𝑦, 𝑥) and 𝜋𝑡 = 𝑢(𝑡𝜆 ⊗ 𝜆). Then

∫
Ω

𝑢𝑡(𝑥, 𝑦)d𝜆(𝑦) = ∫
Ω

𝑢(𝑦, 𝑥)d𝜆(𝑦) = d𝜈
d𝜆(𝑥)

and
∫

Ω
𝑢𝑡(𝑥, 𝑦)d𝜆(𝑥) = ∫

Ω
𝑢(𝑦, 𝑥)d𝜆(𝑥) = d𝜇

d𝜆 (𝑦),

3.4 The Entropy-Regularized Wasserstein Distance and its Properties 73

so 𝜋𝑡 ∈ Π(𝜈, 𝜇). Now,

𝑊𝛾,𝑝(𝜋𝑡) = ∬
Ω×Ω

𝑑(𝑥, 𝑦)𝑝𝑢𝑡(𝑥, 𝑦) + 𝛾(log(𝑢𝑡(𝑥, 𝑦)) − 1)𝑢𝑡(𝑥, 𝑦)d𝜆 ⊗ 𝜆(𝑥, 𝑦)

= ∬
Ω×Ω

𝑑(𝑦, 𝑥)𝑝𝑢(𝑦, 𝑥) + 𝛾(log(𝑢(𝑦, 𝑥)) − 1)𝑢(𝑦, 𝑥)d𝜆(𝑥)d𝜆(𝑦)

= ∬
Ω×Ω

𝑑(𝑦, 𝑥)𝑝𝑢(𝑦, 𝑥) + 𝛾(log(𝑢(𝑦, 𝑥)) − 1)𝑢(𝑦, 𝑥)d𝜆(𝑦)d𝜆(𝑥)

= 𝑊𝛾,𝑝(𝜋).

This shows 𝒲𝛾,𝑝(𝜈, 𝜇) ≤ 𝒲𝛾,𝑝(𝜇, 𝜈). By swapping the roles of 𝜇 and 𝜈, we also have 𝒲𝛾,𝑝(𝜇, 𝜈) ≤
𝒲𝛾,𝑝(𝜈, 𝜇), and thus 𝒲𝛾,𝑝(𝜈, 𝜇) = 𝒲𝛾,𝑝(𝜇, 𝜈). ■

3.4.5. Proposition (Convexity). Let 𝜇 ∈ 𝒫(Ω). Then the functions

𝒲𝜇
𝛾,𝑝 ∶ 𝒫(Ω) → ℝ, 𝜈 ↦ 𝒲𝛾,𝑝(𝜇, 𝜈) and 𝒲𝜈

𝛾,𝑝 ∶ 𝒫(Ω) → ℝ, 𝜈 ↦ 𝒲𝛾,𝑝(𝜈, 𝜇)

are convex functions.

Proof. Since

𝒲𝛾,𝑝(𝜇, 𝜈) = sup
𝑣,𝑤∈𝐶(Ω)

∫
Ω

𝑣d𝜇 + ∫
Ω

𝑤d𝜈 − 𝛾 ∬
Ω×Ω

exp(𝑣⊕𝑤
𝛾),

the function 𝒲𝛾,𝑝 is convex as a supremum of affine functions. This implies the convexity of
𝒲𝜇

𝛾,𝑝 and 𝒲𝜈
𝛾,𝑝. ■

A very nice property of the ERWD is its differentiability.

3.4.6. Corollary. Let 𝜇, 𝜈 ∈ 𝒫(Ω). Then

𝜕𝒲𝛾,𝑝(𝜇, 𝜈) = {(𝑣, 𝑤) ∈ 𝐶(Ω) × 𝐶(Ω) ∶ (𝑣, 𝑤) are optimizers of (D-reg)} .

The elements in the subdifferential only differ by a constant shift, i. e. for each (𝑣1, 𝑤1) and
(𝑣2, 𝑤2) in the subdifferential, (𝑣1 − 𝑣2, 𝑤1 − 𝑤2) = (𝐶, −𝐶) for some constant 𝐶 ∈ ℝ.

Proof. The dual problem

sup
𝑣∈𝐶(Ω),
𝑤∈𝐶(Ω)

∫
Ω

𝑣d𝜇 + ∫
Ω

𝑤d𝜈 − 𝛾 ∬
Ω×Ω

exp(𝑣⊕𝑤
𝛾)𝐾𝛾,𝑝d𝜆1 ⊗ 𝜆2

= sup
𝑣∈𝐶(Ω),
𝑤∈𝐶(Ω)

⟨(𝜇
𝜈) , (𝑣

𝑤)⟩ − 𝛾 ∬
Ω×Ω

exp(𝑣⊕𝑤
𝛾)𝐾𝛾,𝑝d𝜆1 ⊗ 𝜆2

can be interpreted as the Fenchel conjugate 𝐹∗ of the function

𝐹 ∶ 𝐶(Ω) × 𝐶(Ω) → ℝ ∪ {+∞}, (𝑣, 𝑤) ↦ 𝛾 ∬
Ω×Ω

exp(𝑣⊕𝑤
𝛾)𝐾𝛾,𝑝d𝜆1 ⊗ 𝜆2.

Thus we have 𝜕𝒲𝛾,𝑝(𝜇, 𝜈) = 𝜕𝐹∗(𝜇, 𝜈). Now, if (𝑣, 𝑤) are dual optimizers, we have

𝐹∗((𝜇
𝜈)) = ⟨(𝜇

𝜈) , (𝑣
𝑤)⟩ − 𝐹((𝑣

𝑤)).

The function 𝐹 is continuous with respect to uniform convergence, thus also lower semi-continuous
(see also the proof of Theorem 3.3.19). It is further convex and proper. We can thus apply The-
orem 2.2.8 and get (𝑣

𝑤) ∈ 𝜕𝐹∗((𝜇
𝜈)). The rest follows from Theorem 3.3.19. ■

74 3 A Metric between Measures based on Optimal Transport Theory

This implies that

𝜕𝒲𝜇
𝛾,𝑝(𝜈) = {𝑤 ∈ 𝐶(Ω) ∶ (𝑣, 𝑤) are optimizers of (D-reg) for some 𝑣 ∈ 𝐶(Ω)}

and

𝜕𝒲𝜈
𝛾,𝑝(𝜇) = {𝑣 ∈ 𝐶(Ω) ∶ (𝑣, 𝑤) are optimizers of (D-reg) for some 𝑤 ∈ 𝐶(Ω)} .

While this does not actually mean that the function 𝒲𝜇
𝛾,𝑝 is differentiable, since more than one

element is contained in the subdifferential, we will see later that there is a natural choice for the
gradient if we want to use it in a gradient descent scheme.

We can now examine for which measure 𝒲𝜈
𝛾,𝑝 is minimized and we will see as already in-

dicated that it is not minimized by 𝜈. An illustration is depicted in Figure 4.1.

3.4.7. Corollary. The function 𝒲𝜈
𝛾,𝑝 is minimized for ̃𝜈 defined by the density

d ̃𝜈
d𝜆1

(𝑥) = ∫
Ω

𝐾𝛾,𝑝(𝑥, 𝑦) (∫
Ω

𝐾𝛾,𝑝(𝑧, 𝑦)d𝜆1(𝑧))
−1

d𝜈(𝑦).

Proof. Since 𝒲𝜈
𝛾,𝑝 is convex, it is minimized by ̃𝜈 ∈ 𝒫(Ω) if and only if 0 ∈ 𝜕𝒲𝜈

𝛾,𝑝, as stated in
Theorem 2.2.9. Thus, we need to evaluate the condition

0 ∈ 𝜕𝒲𝜈
𝛾,𝑝(̃𝜈) = {𝑣 ∈ 𝐶(Ω) ∶ (𝑣, 𝑤) are optimizers of (D-reg) for some 𝑤 ∈ 𝐶(Ω)} .

This means that 0 is a dual optimizer. By (3.28), the density 𝑢 of the primal optimizer then is

𝑢(𝑥, 𝑦) = 𝐾𝛾,𝑝(𝑥, 𝑦) exp(𝑤(𝑦)
𝛾)

for some 𝑤 ∈ 𝐶(Ω). Because of the marginal conditions, the first marginal has to be ̃𝜈, thus

d ̃𝜈
d𝜆1

(𝑥) = ∫
Ω

𝑢(𝑥, 𝑦)d𝜆2(𝑦) = ∫
Ω

𝐾𝛾,𝑝(𝑥, 𝑦) exp(𝑤(𝑦)
𝛾)d𝜆2(𝑦)

and the second marginal is

d𝜈
d𝜆2

(𝑦) = ∫
Ω

𝑢(𝑥, 𝑦)d𝜆1(𝑥) = ∫
Ω

𝐾𝛾,𝑝(𝑥, 𝑦) exp(𝑤(𝑦)
𝛾)d𝜆1(𝑥)

= exp(𝑤(𝑦)
𝛾) ∫

Ω
𝐾𝛾,𝑝(𝑥, 𝑦)d𝜆1(𝑥)

Combining these equations we get

d ̃𝜈
d𝜆1

(𝑥) = ∫
𝑋

𝐾𝛾,𝑝(𝑥, 𝑦) (∫
Ω

𝐾𝛾,𝑝(𝑧, 𝑦)d𝜆1(𝑧))
−1

d𝜈(𝑦),

which is the desired expression. ■

The term (∫ 𝐾𝛾,𝑝(𝑧, 𝑦)d𝜆(𝑧))
−1

in the above expression is a “normalization term”, providing
that ̃𝜈 ∈ 𝒫(𝑋). The minimizer is thus basically attained by convolving the reference 𝜈 with
the kernel 𝐾𝛾,𝑝. Since for 𝛾 → 0, the density of 𝐾𝛾,𝑝(𝑥, 𝑦) decreases continually for 𝑑(𝑥, 𝑦) > 0,
i. e. 𝐾𝛾,𝑝(𝑥, 𝑦) → 0 for 𝑥 ≠ 𝑦, the minimizer ̃𝜈 converges to 𝜈. Thus, for small values of 𝛾, the
minimizer resembles the reference 𝜈. For larger values of 𝛾, the minimizer is very diffuse, and
for 𝛾 → ∞, 𝐾𝛾,𝑝(𝑥, 𝑦) → 1, and the minimizer converges to ̃𝜈 ≡ 1

𝜆1(Ω)𝜆1. This implies that for
large values of 𝛾, all measures seem more and more similar to the measure 1

𝜆1(Ω)𝜆1, so they seem
more and more alike.

75

4 Application to MR images

In this chapter we will discuss how the theory developed in the previous chapter can be applied
to MR images. We will first examine the more general case of measures on a finite space Ω,
since MR images, understood as measures on a three-dimensional finite grid, also fall into this
category, but other applications exist. One example is the case where Ω is constructed from a
compact set Ω ⊆ ℝ𝑛 via discretization. This gives rise to a metric on Ω defined through the
Euclidean metric on ℝ𝑛. Images are defined in this way, using a subset of ℝ2. It is also possible
to use Riemannian manifolds and triangle meshes, see [41]. Other examples for discrete metric
spaces that do not arise from discretization schemes include the case where Ω is a set of strings,
and 𝑑 is a string edit distance, for example the Hamming distance or the Levenshtein distance,
and in [49], Ω is a set of words and 𝑑 is chosen such that it represents semantic discrepancy
between the words. We thus see that there is a broad field of applications. In the case of a finite
space, measures as well as densities can be represented as vectors. Rewriting the formulas from
Chapter 3 using sums, vectors and matrices makes it easier to implement them later.

4.1 A Summary of the Results for Finite Spaces
We will now give a summary of the most important concepts and results, reformulated in the
setting of finite spaces. In this section, we denote by ⊗ and ⊘ the componentwise multiplication
and division. We first redefine the Wasserstein distance. Let Ω = {𝑥1, … 𝑥𝑛}. Measures or den-
sities on Ω are vectors in ℝ𝑛, and integrals become sums. We assume that the metric on Ω is
given as a symmetric matrix 𝑑 ∈ ℝ𝑛×𝑛

≥0 . The Wasserstein distance between two vectors 𝑟, 𝑠 ∈ ℝ𝑛
≥0

with ‖𝑟‖1 = ‖𝑠‖1 is

𝒲𝑝(𝑟, 𝑠)𝑝 = min
𝑢∈ℝ𝑛×𝑛

≥0
∑
𝑖𝑗

𝑢𝑖𝑗𝑑
𝑝
𝑖𝑗

subject to ∑
𝑖

𝑢𝑗𝑖 = 𝑟𝑗 and ∑
𝑖

𝑢𝑖𝑗 = 𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑛.
(4.1)

This definition yields a metric. However, it is only defined for vectors with the same 𝐿1-norm,
since the constraints cannot be fulfilled otherwise. To circumvent this problem, we introduced
the Unbalanced Mass Transport Problem (UMTP) in Subsection 3.2.2 and showed that it can be cast
in the same setting as above. We repeat this construction in the discrete setting. First, we need
a waste penalty vector 𝑝 ∈ ℝ𝑛

>0 that satisfies |𝑝𝑖 − 𝑝𝑗| ≤ 𝑑𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then the UMTP
between 𝑟 and 𝑠 is

min
𝑢∈ℝ𝑛×𝑛

≥0
∑
𝑖𝑗

𝑢𝑖𝑗𝑑
𝑝
𝑖𝑗 + ∑

𝑖
𝑝𝑖(�𝑟𝑖 − ∑

𝑗
𝑢𝑖𝑗)� + ∑

𝑖
𝑝𝑖(�𝑠𝑖 − ∑

𝑗
𝑢𝑗𝑖)�

subject to ∑
𝑗

𝑢𝑖𝑗 ≤ 𝑟𝑖, ∑
𝑗

𝑢𝑗𝑖 ≤ 𝑠𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.
(4.2)

This means we replace the usual constraints by inequality constraints and additionally penalize
the deviation from the desired marginal with the waste penalty vector 𝑝.

76 4 Application to MR images

In Subsection 3.2.3, we showed that this is equivalent to a different construction, which be-
comes the following in the discrete setting. Let Ω̃ = Ω ∪ {𝑥𝑛+1} = {𝑥1, … 𝑥𝑛+1}. We define a new
(𝑛 + 1) × (𝑛 + 1) distance matrix ̃𝑑 as

̃𝑑 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑑11 … 𝑑1𝑛 𝑝1
⋮ … ⋮ ⋮

𝑑𝑛1 … 𝑑𝑛𝑛 𝑝𝑛
𝑝1 … 𝑝𝑛 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.3)

Denote by 𝟙 the vector of ones. Then the 𝐿1-norm of 𝑟 can be calculated as

𝑛
∑
𝑖=1

𝑟𝑖 = 𝟙𝑇𝑟,

and analogously for 𝑠. We choose a constant 𝑀 dominating the total masses of 𝑟 and 𝑠, i. e.
𝑀 ≥ max(𝟙𝑇𝑟, 𝟙𝑇𝑠) and define new marginals as

̃𝑟 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑟1
⋮

𝑟𝑛
𝑀 − 𝟙𝑇𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and ̃𝑠 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑠1
⋮

𝑠𝑛
𝑀 − 𝟙𝑇𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.4)

This means we added an additional point 𝑥𝑛+1 that serves as mass difference compensation:
additional mass can be transported to and from this remote point. For the construction of new
marginals ̃𝑟 and ̃𝑠, additional mass is put on 𝑥𝑛+1 to assure that both vectors have the same mass
𝑀. They can then be rescaled to have unit mass. With this construction, solving the UMTP is
equivalent to solving the transportation problem

min
𝑢∈ℝ(𝑛+1)×(𝑛+1)

≥0

∑
𝑖𝑗

𝑢𝑖𝑗 ̃𝑑𝑝
𝑖𝑗

subject to ∑
𝑖

𝑢𝑗𝑖 = ̃𝑟𝑗 and ∑
𝑖

𝑢𝑖𝑗 = ̃𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑛 + 1.
(4.5)

Further, if the vector 𝑝 satisfies 𝑝𝑖 ≥ 1
2 max𝑖,𝑗 𝑑𝑖𝑗, this construction yields a metric, since ̃𝑑 is a

metric in this case.
In Section 3.3, we suggested entropic regularization for efficient computation. We introduced

a “reference measure”, with respect to which we considered densities. In the finite case this
corresponds to “area weights”, see [41].

Let 𝛼 be the vector of area weights. The vectors 𝑟, 𝑠 ∈ ℝ𝑛 and the matrix 𝑢 ∈ ℝ𝑛×𝑛 are now
considered as densities, the corresponding measures are 𝑟 ⊗ 𝛼, 𝑠 ⊗ 𝛼 and 𝑢 ⊗ 𝛼𝛼𝑇 . They are
assumed to be normalized such that 𝛼𝑇𝑟 = 𝛼𝑇𝑠 = 1. We define the entropy of a density 𝑢 ∈ ℝ𝑛

with respect to 𝛼 as

ℎ(𝑢) = ∑
𝑖,𝑗

(log 𝑢𝑖𝑗 − 1)𝑢𝑖𝑗𝛼𝑖𝛼𝑗.

4.1 A Summary of the Results for Finite Spaces 77

Then we consider the discrete entropy-regularized Wasserstein distance for some 𝛾 > 0 as

𝒲𝑝
𝛾,𝑝(𝑟, 𝑠) = min

𝑢∈ℝ𝑛×𝑛
≥0

∑
𝑖𝑗

𝑢𝑖𝑗𝑑
𝑝
𝑖𝑗𝛼𝑖𝛼𝑗 + 𝛾ℎ(𝑢)

subject to ∑
𝑖

𝑢𝑗𝑖 = 𝑟𝑗 and ∑
𝑖

𝑢𝑖𝑗 = 𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑛.
(4.6)

This regularization converges to the classical Wasserstein distance for 𝛾 → 0. The same regu-
larization works for the unbalanced problem by using ̃𝑟, ̃𝑠 and ̃𝑑 instead. We also need an area
weight for the new point 𝑥𝑛+1. This could be chosen as the average of 𝛼.

We further derived a dual formulation for this problem in Subsection 3.3.2. This dual formu-
lation now reads

max
𝑣,𝑤∈ℝ𝑛

∑
𝑖

𝑣𝑖𝑟𝑖𝛼𝑖 + ∑
𝑖

𝑤𝑖𝑠𝑖𝛼𝑖 − 𝛾 ∑
𝑖,𝑗

exp(𝑣𝑖
𝛾)𝐾𝛾,𝑝

𝑖𝑗 exp(
𝑤𝑗
𝛾)𝛼𝑖𝛼𝑗,

where

𝐾𝛾,𝑝 ∈ ℝ𝑛×𝑛, 𝐾𝛾,𝑝
𝑖𝑗 = exp⎛⎜⎜

⎝

−𝑑𝑝
𝑖𝑗

𝛾
⎞⎟⎟
⎠

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

We have seen that the optimal coupling 𝑢 is related to the dual optimizers 𝑣 and 𝑤 through

𝑢𝑖𝑗 = exp(𝑣𝑖
𝛾)𝐾𝛾,𝑝

𝑖𝑗 𝑒𝑥𝑝
𝑤𝑗
𝛾 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

This means we can represent 𝑢 using 2𝑛 instead of 𝑛2 variables. Additionally, 𝑢 is always optimal
if it can be expressed in this way. This expression can be used to find the optimal 𝑢 by starting
with arbitrary vectors 𝑣 and 𝑤 and alternatingly adapting them in such a way that the marginal
conditions are satisfied. Letting 𝑎 = exp(𝑣

𝛾) and 𝑏 = exp(𝑤
𝛾), these read

𝑟𝑗 = ∑
𝑖

𝑢𝑗𝑖𝛼𝑖 = ∑
𝑖

𝑎𝑗𝐾
𝛾,𝑝
𝑗𝑖 𝑏𝑖𝛼𝑖 = 𝑎𝑗𝐾𝛾,𝑝(𝛼 ⊗ 𝑏)𝑗,

𝑠𝑗 = ∑
𝑖

𝑢𝑖𝑗𝛼𝑖 = ∑
𝑖

𝑎𝑖𝐾
𝛾,𝑝
𝑖𝑗 𝑏𝑗𝛼𝑖 = 𝑏𝑗𝐾𝛾,𝑝(𝛼 ⊗ 𝑎)𝑗,

for 1 ≤ 𝑗 ≤ 𝑛. In terms of vectors, this can be stated as

𝑟 = 𝑎 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑏),
𝑠 = 𝑏 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑎),

(4.7)

The algorithm proposed in Subsection 3.3.3 becomes now the “area weighted version of Sink-
horn’s algorithm” stated in [41]. It is also known as RAS algorithm and it is known to converge
for arbitrary matrices 𝐾𝛾,𝑝 with positive entries ([50, Theorem 3]. In Corollary 3.4.6, we calcu-
lated the subdifferential of the ERWD with respect to one fixed marginal. For fixed 𝑠, we have
for any 𝑟0,

𝜕𝑟𝒲
𝑝
𝛾,𝑝(𝑟0, 𝑠) = {𝑣 ∶ (𝑣, 𝑤) ∈ ℝ2𝑛 are dual optimizers} .

If we want to use this gradient in a gradient descent scheme, we want the total mass to stay the
same. We can thus use a “canonical gradient” 𝑣0 with 𝛼𝑇𝑣0 = 0, asserting 𝑟0 − 𝑡𝑣0 has the same
total mass as 𝑟0. We can get such a 𝑣0 from an arbitrary dual optimizer 𝑣 by setting

𝑣0 = 𝑣 − 𝛼𝑇𝑣. (4.8)

78 4 Application to MR images

By setting 𝑤0 = 𝑤 + 𝛼𝑇𝑤, (𝑣0, 𝑤0) stays a valid pair of dual optimizers. This was also proposed
in [34]. The complete algorithm is stated in Algorithm 4.1. This same algorithm can be applied
for standard Wasserstein distances as well as for unbalanced mass transport by using ̃𝑟 and ̃𝑠
instead of 𝑟 and 𝑠 and ̃𝑑 instead of 𝑑 in the definition of 𝐾𝛾,𝑝.

Algorithm 4.1 Algorithm to calculate the dual variables that define the optimal transport
plan.

1: 𝑏 ← 1
2: // projection iterations
3: for 𝑖 = 1, 2, 3, … do
4: 𝑎 ← 𝑟 ⊘ 𝐾(𝛼 ⊗ 𝑏)
5: 𝑏 ← 𝑠 ⊘ 𝐾(𝛼 ⊗ 𝑎)
6: end for
7: // transform
8: 𝑣 ← 𝛾 ln 𝑎
9: 𝑤 ← 𝛾 ln 𝑏

10: // shift to get canonical gradient in r
11: 𝑣 ← 𝑣 − 𝛼𝑇𝑣
12: 𝑤 ← 𝑤 + 𝛼𝑇𝑣
13: return 𝑣, 𝑤

To get the final value 𝒲𝛾,𝑝(𝜇, 𝜈), one has to plug the result of the algorithm into the dual
formulation (D-reg). If we assume that 𝑣 and 𝑤 are indeed optimal, then

∑
𝑖,𝑗

exp(𝑣𝑖
𝛾)𝐾𝛾,𝑝

𝑖𝑗 exp(
𝑤𝑗
𝛾)𝛼𝑖𝛼𝑗 = ∑

𝑖,𝑗
𝑢𝑖𝑗𝛼𝑖𝛼𝑗 = ∑

𝑗
𝑠𝑗𝛼𝑗 = 1.

Consequently, we get
𝒲𝛾,𝑝(𝑟, 𝑠) = 𝛼𝑇(𝑣 ⊗ 𝑟 + 𝑤 ⊗ 𝑠) − 𝛾. (4.9)

As noted in Section 3.4, this value can be negative. We propose to deal with this problem by
subtracting the minimal value. This is useful if the ERWD is used as a loss function. As seen in
Corollary 3.4.3, this minimal value is given by

−𝛾(1 + log(𝛼𝑇𝐾𝛾,𝑝𝛼)). (4.10)

We have further seen that the ERWD with one marginal fixed is in general not minimized by that
fixed marginal, i. e. the function

𝑠 ↦ 𝒲𝛾,𝑝(𝑟, 𝑠)

is not minimized by 𝑟. Instead, it is minimized by

̃𝑟 = (𝐾𝛾,𝑝(𝑟 ⊗ 𝛼)) ⊘ (𝐾𝛾,𝑝𝛼). (4.11)

An illustration can be seen in Figure 4.1.

4.2 The Setting of MR Images and Numerical Improvements 79

Figure 4.1: Minimizers for different values of 𝑝 and 𝛾. On the left, the original is pictured. It
can be interpreted as a measure, where mass is represented in black. The measures that
minimize the ERWD to the original image are depicted next to it for different values of 𝛾
. Upper row: 𝑝 = 0.1, bottom row: 𝑝 = 2. For 𝑝 = 0.1 the cost function does not increase
significantly for far away points, and the entropy function favors a spread out transport plan.
Since the costs are high for far away points for 𝑝 = 2, the blur only occurs locally.

4.2 The Setting of MR Images and Numerical Improvements
Now we want to consider the case of MR images of the brain (or brain regions). As already noted
in Chapter 2, an MR image is defined on a grid of three-dimensional voxels. Such a voxel has
three coordinates (𝑖, 𝑗, 𝑘) ∈ ℕ3. In Definition 1.1.1, we defined the concept of a tensor, which is
basically a multidimensional array, understood as a function from a set of coordinates into ℝ.
An MR image is then a rank three tensor of shape (𝑛1, 𝑛2, 𝑛3) ∈ ℕ3. Thus we will now describe
the setting where Ω is a voxel grid, which encompasses not only MR images.

Let ℎ ∈ (0, ∞) be a step size. Let 𝑥𝑖 ≔ ℎ𝑖 for 𝑖 ∈ ℤ3. This gives a discretization of ℝ3 as a voxel
grid. Next, let

[𝑛] ≔ {�0, … , 𝑛 − 1}� for 𝑛 ∈ ℕ,

𝐼 ≔ [𝑛1] × [𝑛2] × [𝑛3] = {𝑖 = (𝑖1, 𝑖2, 𝑖3) ∶ 𝑖𝑗 ∈ [𝑛𝑗] for 1 ≤ 𝑗 ≤ 3}

as in Definition 1.1.1. Further let

Ω = {𝑥𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3) ∈ ℝ3 ∶ 𝑖 ∈ 𝐼, 𝑥𝑖 = ℎ𝑖 = (ℎ𝑖1, ℎ𝑖2, ℎ𝑖3)} .

The distance between voxels 𝑥𝑖 and 𝑥𝑗 is their Euclidean distance. MR images are then functions
on Ω, which is the same as a function on 𝐼, which means in turn that they are tensors.

We can equip Ω with a reference measure 𝜆 or area weights 𝛼 by taking into account the step
size. Let 𝛼𝑖 = ℎ3, and 𝜆({𝑥𝑖}) = 𝛼𝑖. In the previous section, we have assumed that Ω is ordered.
To achieve this, we have to relabel the elements of 𝐼 to sort them linearly. One option would be to
sort them lexicographically. This is however not compatible with how multidimensional arrays
are converted to one-dimensional arrays in Python and C. Instead, they reorder colexicographic-
ally, which corresponds to mapping

(𝑖1, 𝑖2, 𝑖3) ↦ 𝑖1 · (𝑛2 · 𝑛3) + 𝑖2 · 𝑛3 + 𝑖3,

see Table 4.1.
We can then calculate 𝐾𝛾,𝑝 as a matrix and store it. Let 𝑛 ≔ 𝑛1 · 𝑛2 · 𝑛3. Then 𝐾𝛾,𝑝 is an 𝑛 × 𝑛

matrix. This can however be very memory intensive: for example, if 𝑛1 = 𝑛2 = 𝑛3 = 30, then

80 4 Application to MR images

input output
(0, 0, 0) ↦ 0
(0, 0, 1) ↦ 1

⋮ ⋮
(0, 0, 𝑛3 − 1) ↦ 𝑛3 − 1

(0, 1, 0) ↦ 𝑛3
(0, 1, 1) ↦ 𝑛3 + 1

⋮ ⋮
(𝑛1 − 1, 𝑛2 − 1, 𝑛3 − 1) ↦ 𝑛1 · 𝑛2 · 𝑛3 − 1

Table 4.1: Ordering 3-tuples linearly. The order is colexicographic, i. e. lexicographic when read-
ing sequences from right to left.

𝑛 = 303 = 27 000, thus the 𝑛 × 𝑛-matrix 𝐾𝛾,𝑝 has over 700 million entries. Storing this matrix in
single precision takes up almost 3GB, and double that amount for double precision. Since the
Euclidean metric is translation invariant, we are storing a lot of redundant information. This can
be avoided using convolutions or more precisely cross-correlation.

We have 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ for 𝑥, 𝑦 ∈ Ω, which implies the translation invariance. We can thus
write

𝐾𝛾,𝑝(𝑥, 𝑦) = 𝑔𝛾,𝑝(𝑥 − 𝑦) with 𝑔𝛾,𝑝 ∶ ℝ3 → ℝ, 𝑔𝛾,𝑝(𝑥) = exp(− ‖𝑥‖𝑝

𝛾). (4.12)

Let 𝑖 ∈ 𝐼 be fixed. Let 𝑓 be a function on Ω. Using index shift and the above observation, we get
on the voxel grid

(∗) ≔ ∫
Ω

𝑓 (𝑦)𝐾𝛾,𝑝(𝑥𝑖, 𝑦)d𝜆(𝑦) = ∑
𝑗∈𝐼

𝑓 (𝑥𝑗)𝑔𝛾,𝑝(𝑥𝑗 − 𝑥𝑖)𝜆({𝑥𝑗}) = ∑
𝑗∈𝐼

𝑓 (𝑥𝑗)𝑔𝛾,𝑝(𝑥𝑗−𝑖)𝜆({𝑥𝑗})

= ∑
𝑗∈𝐼−𝑖

𝑓 (𝑥𝑖+𝑗)𝑔𝛾,𝑝(𝑥𝑗)𝜆({𝑥𝑖+𝑗}),

where 𝐼 − 𝑖 = {(𝑗1 − 𝑖1, 𝑗2 − 𝑖2, 𝑗3 − 𝑖3) ∶ (𝑖1, 𝑖2, 𝑖3) ∈ 𝐼}. The index set 𝐼 − 𝑖 is now dependent on
𝑖, which is impractical. Considering all 𝑖, the values that 𝑗 can take are in the set

̂𝐼 ≔ {−𝑛1 + 1, … , 𝑛1 − 1} × {−𝑛2 + 1, … , 𝑛2 − 1} × {−𝑛3 + 1, … , 𝑛3 − 1} .

This means that the tensor corresponding to 𝑔𝛾,𝑝 needs to have shape (2𝑛1 − 1) × (2𝑛2 − 1) ×
(2𝑛3 − 1). If we now consider the set ̂𝐼 instead of 𝐼 and define ̂𝑓 (𝑥𝑖) = 0 if 𝑖 ∈ ̂𝐼\𝐼, we finally get,
interpreting 𝑓 and 𝑔𝛾,𝑝 as tensors,

(∗) = ∑
𝑗∈ ̂𝐼

̂𝑓 (𝑥𝑖+𝑗)𝑔𝛾,𝑝(𝑥𝑗)𝜆({𝑥𝑖+𝑗}

=
𝑛1−1
∑

𝑗1=−𝑛1+1

𝑛2−1
∑

𝑗2=−𝑛2+1

𝑛3−1
∑

𝑗3=−𝑛3+1
(̂𝑓 ⊗ 𝛼)[𝑖1 + 𝑗1, 𝑖2 + 𝑗2, 𝑖3 + 𝑗3]𝑔𝛾,𝑝[𝑗1, 𝑗2, 𝑗3].

The formula on the right is known in the literature as cross-correlation and is often understood
when talking of convolution, see for example the implementation in [3]. Defining ̂𝑓 corresponds
to “padding” 𝑓 with zeros. An illustration in 2D in the case where the image has shape 3 × 3 and
the kernel has shape (2 · 3 − 1) × (2 · 3 − 1) = 5 × 5 is shown in Figure 4.2.

This means that we now only have to store a filter kernel of size (2𝑛1−1)×(2𝑛2−1)×(2𝑛3−1) ⪅
8𝑛1𝑛2𝑛3. If again 𝑛1 = 𝑛2 = 𝑛3 = 30, then our filter kernel has have approximately 200 000
entries, which only amounts to 1 MB of memory usage.

4.2 The Setting of MR Images and Numerical Improvements 81

22222

2 2 2 2

2 2 2
222

2

01 1
11

1
11

1 22222

2 2 2 2

2 2 2
222

2

01 1
11

1
11

1 22222

2 2 2 2

2 2 2
222

2

01 1
11

1
11

1

Figure 4.2: An illustration of calculating the integral (∗) via convolution. The function 𝑓 is a mat-
rix of shape 3 × 3 and is visualized in blue. The kernel 𝐾𝛾,𝑝 has shape 5 × 5 and is visualized
in gray. The printed values are not the values of the kernel, but of the underlying distance,
which is in this case the maximum metric for simplification. The output is visualized in
green and the highlighted pixel corresponds to the fixed 𝑖 in (∗). We see that choosing a
5 × 5 filter, the integral over the whole image 𝑓 is computed.

In the special case where 𝑝 = 2, we can further simplify the calculation, since

𝑔𝛾,2(𝑥) = exp⎛⎜
⎝

−‖𝑥‖2

𝛾
⎞⎟
⎠

= exp⎛⎜
⎝

−
𝑥2

1 + 𝑥2
2 + 𝑥2

3
𝛾

⎞⎟
⎠

= exp⎛⎜
⎝

−
𝑥2

1
𝛾

⎞⎟
⎠

exp⎛⎜
⎝

−
𝑥2

2
𝛾

⎞⎟
⎠

exp⎛⎜
⎝

−
𝑥2

3
𝛾

⎞⎟
⎠

.

Let 𝑔𝛾 ∶ ℝ → ℝ, 𝑔𝛾(𝑥) = exp(−𝑥2

𝛾) with corresponding discretization on the grid ℤℎ.
Now using the previous calculations for 𝑝 = 2, we have

(∗) =
𝑛1−1
∑

𝑗1=−𝑛1+1

𝑛2−1
∑

𝑗2=−𝑛2+1

𝑛3−1
∑

𝑗3=−𝑛3+1
(̂𝑓 ⊗ 𝛼)[𝑖1 + 𝑗1, 𝑖2 + 𝑗2, 𝑖3 + 𝑗3]𝑔𝛾,2[𝑗1, 𝑗2, 𝑗3]

=
𝑛1−1
∑

𝑗1=−𝑛1+1

𝑛2−1
∑

𝑗2=−𝑛2+1

𝑛3−1
∑

𝑗3=−𝑛3+1
(̂𝑓 ⊗ 𝛼)[𝑖1 + 𝑗1, 𝑖2 + 𝑗2, 𝑖3 + 𝑗3]𝑔𝛾[𝑗1]𝑔𝛾[𝑗2]𝑔𝛾[𝑗3]

=
𝑛1−1
∑

𝑗1=−𝑛1+1
𝑔𝛾[𝑗1]

𝑛2−1
∑

𝑗2=−𝑛2+1
𝑔𝛾[𝑗2]

𝑛3−1
∑

𝑗3=−𝑛3+1
𝑔𝛾[𝑗3](̂𝑓 ⊗ 𝛼)[𝑖1 + 𝑗1, 𝑖2 + 𝑗2, 𝑖3 + 𝑗3].

This corresponds to applying a one-dimensional convolution three times. By further zero-padding
̂𝑓 , we can take 𝑛max ≔ max{𝑛1, 𝑛2, 𝑛3} in every sum instead of 𝑛1, 𝑛2 and 𝑛3 and thus only one

filter is needed, which has 2𝑛max − 1 entries.
Another issue to consider is numerical precision. The values of 𝐾𝛾,𝑝 can be very small. Let 𝛿

be the smallest nonzero representable number. Then

𝐾𝛾,𝑝(𝑥𝑖, 𝑥𝑗) > 𝛿 ⇔ exp⎛⎜
⎝

−‖𝑥𝑖 − 𝑥𝑗‖𝑝

𝛾
⎞⎟
⎠

> 𝛿

⇔ ‖𝑥𝑖 − 𝑥𝑗‖𝑝 < −𝛾 log 𝛿

⇔ ℎ
𝑝
2 ‖𝑖 − 𝑗‖𝑝 < −𝛾 log 𝛿 (4.13)

⇔ 𝛾 > ℎ
𝑝
2 ‖𝑖 − 𝑗‖𝑝(− log 𝛿)−1. (4.14)

82 4 Application to MR images

So for fixed 𝛾, we can calculate for which points the value of the kernel is even representable,
using (4.13). Or, we can see how small 𝛾 is allowed to be, using (4.14) (note that since 𝛿 is small,
− log 𝛿 will be positive). However, choosing

𝛾 > ℎ
𝑝
2 max

𝑖,𝑗
(‖𝑖 − 𝑗‖𝑝)(− log 𝛿)−1

is often too restrictive. We thus decide to allow the kernel to assume zero values, which cor-
responds to a “truncation” of the kernel. This is discussed in [43, §3.3]. Formally, for a subset
𝑁 ⊆ Ω × Ω, the truncated kernel is defined as

𝐾̂𝛾,𝑝(𝑥, 𝑦) =
⎧{
⎨{⎩

𝐾𝛾,𝑝(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝑁
0, else.

�

This corresponds to setting 𝑑(𝑥, 𝑦) = ∞ if (𝑥, 𝑦) ∈/ 𝑁. This does not define a metric. Further, it
does not define a continuous function, so the results about existence of minimizers / maximizers
are no longer applicable. However, it is sufficient for us if the algorithm converges. So if we know
of a subset 𝑁 ⊆ 𝑋 × 𝑋 on which most of the mass of the optimal transport plans is concentrated,
it is enough to solve the problem restricted to 𝑁 and thus using the truncated kernel. Since MR
images of brains or brain regions are very similar to each other, we can assume that transport
plans are not going to transport mass “very far”, and thus take 𝑁 to be the set of all points that
are not further apart than some threshold, i. e.

𝑁 = {(𝑥, 𝑦) ∈ Ω × Ω ∶ 𝑑(𝑥, 𝑦) ≤ 𝜃} (4.15)

for some 𝜃 > 0. This corresponds to taking a smaller filter kernel instead of the whole one. In
terms of the matrix 𝐾𝛾,𝑝, this leads to sparsity. We further elaborate on choosing neighborhoods
in Subsection 7.2.1.

More numerical issues arise during the iterations of the algorithm. As we have seen in Ex-
ample 3.3.22, the dual variables are not necessarily bounded, which can lead to over- and under-
flows in lines 4 and 5 in Algorithm 4.1. This problem is treated in Section 6.2.

83

5 Connecting the Wasserstein Distance and
Machine Learning

In this chapter we describe how the Wasserstein distance can be used in machine learning. The
first possibility is to use the Wasserstein distance in a kernel, used to implicitly perform calcula-
tions in a hidden feature space, see Section 1.3 and Section 1.4. The second presented possibility
in this chapter is the usage of the Wasserstein distance as a loss function. In the context of com-
puter vision, the Wasserstein distance has further been used for image retrieval [51] and SIFT
matching [39].

5.1 Using the Wasserstein Distance for the Construction of
Kernels

As presented in Section 1.3 and Section 1.4, kernel functions can be used to perform Support
Vector Classification and Principal Component Analysis in a hidden feature space. Using the
Wasserstein distance in kernels for Support Vectors Classification has been done for example in
[40] to classify MNIST images, and in [52] the Wasserstein distance has been applied to histo-
grams of local descriptors and used for texture and object classification. The following defini-
tions are based on [53]. There are several ways to define kernels from metrics, the most popular
being the radial basis function (RBF) kernel, defined as

𝑘rbf
𝑓 (𝑥, 𝑦) = exp(−𝜀𝑓 (𝑥, 𝑦)) for 𝑥, 𝑦 ∈ 𝒵, 𝜀 ∈ ℝ>0, (5.1)

where 𝒵 is some set and 𝑓 is a symmetric, non-negative, zero-diagonal function. For example, if
a metric 𝑑 is defined on 𝒵 , we get the kernel

𝑘rbf(𝑥, 𝑦) = exp(−𝜀𝑑(𝑥, 𝑦)𝑞) for 𝑥, 𝑦 ∈ 𝒵, 𝜀, 𝑞 ∈ ℝ>0. (5.2)

Another kernel is the linear distance substitution kernel, defined as

𝑘lin
𝑑 (𝑥, 𝑦) = −1

2(𝑑(𝑥, 𝑦)2 − 𝑑(𝑥, 𝑂)2 − 𝑑(𝑦, 𝑂)2) (5.3)

for 𝑥, 𝑦 ∈ 𝒵 and some origin 𝑂 ∈ 𝒵 , see [11, §2]. The idea behind this definition is that if
the metric 𝑑 is induced by an inner product, as is the case for the Euclidean distance, and if
𝑂 = 0, 𝑘lin

𝑑 (𝑥, 𝑦) is equal to the inner product ⟨𝑥, 𝑦⟩. The advantage is that the definition 𝑘lin
𝑑 only

depends on distances, which can be advantageous if the inner product is unknown or no inner
product inducing the metric exists.

A special property of the linear distance substitution kernel is that it is distance-preserving,
which is stated in the following proposition, see also [12].

84 5 Connecting the Wasserstein Distance and Machine Learning

5.1.1. Proposition. Let 𝑑 be a metric function on 𝒵 which is negative definite. Let ℋ be the
RKHS associated to 𝑘lin

𝑑 . Let 𝜙 ∶ 𝒵 → ℋ be the corresponding feature map. Then the distance
between feature vectors in the RKHS ℋ is equal to the distance of the corresponding elements
in 𝒵 , i. e. for any 𝑥, 𝑦 ∈ 𝒵 ,

‖𝜙(𝑥) − 𝜙(𝑦)‖ℋ = 𝑑(𝑥, 𝑦).

Proof. We have

‖𝜙(𝑥) − 𝜙(𝑦)‖2
ℋ = ⟨𝜑(𝑥) − 𝜑(𝑦), 𝜑(𝑥) − 𝜑(𝑦)⟩ = ⟨𝜑(𝑥), 𝜑(𝑥)⟩ + ⟨𝜑(𝑦), 𝜑(𝑦)⟩ − 2⟨𝜑(𝑥), 𝜑(𝑦)⟩

= 𝑘lin
𝑑 (𝑥, 𝑥) + 𝑘lin

𝑑 (𝑦, 𝑦) − 2𝑘lin
𝑑 (𝑥, 𝑦)

= − 1
2(𝑑(𝑥, 𝑥)2 − 𝑑(𝑥, 𝑂)2 − 𝑑(𝑥, 𝑂)2) − 1

2(𝑑(𝑦, 𝑦)2 − 𝑑(𝑦, 𝑂)2 − 𝑑(𝑦, 𝑂)2)
+ (𝑑(𝑥, 𝑦)2 − 𝑑(𝑥, 𝑂)2 − 𝑑(𝑦, 𝑂)2)

= 𝑑(𝑥, 𝑂)2 + 𝑑(𝑦, 𝑂)2 + 𝑑(𝑥, 𝑦)2 − 𝑑(𝑥, 𝑂)2 − 𝑑(𝑦, 𝑂)2

= 𝑑(𝑥, 𝑦)2,

which proves the claim. ■

We now want to discuss the definiteness of such kernels. We define what it means for a kernel
to be negative definite.

5.1.2. Definition (Negative Definite Kernel). Let 𝒵 be a nonempty set. A function 𝑓 ∶ 𝒵 ×𝒵 → ℝ
is called negative definite if 𝑓 is symmetric and for any 𝑚 ≥ 0, any family 𝑥(1), … , 𝑥(𝑚) ∈ 𝒵 and
any sequence 𝑐1, … , 𝑐𝑚 ∈ ℝ with ∑𝑚

𝑖=1 𝑐𝑖 = 0 the inequality

𝑚
∑

𝑖,𝑗=1
𝑐𝑖𝑐𝑗𝑓 (𝑥(𝑖), 𝑥(𝑗)) ≤ 0

holds.

Concerning definiteness of the above kernels, the following theorem holds.

5.1.3. Theorem (Definiteness of Kernels). The following statements are equivalent for any sym-
metric, non-negative, zero-diagonal distance function 𝑓 .

(i) There exists a Hilbert space ℋ and an embedding 𝜙 ∶ 𝒵 → ℋ , such that
𝑓 (𝑥, 𝑦) = ‖𝜙(𝑥) − 𝜙(𝑦)‖2.

(ii) The kernel 𝑘rbf
𝑓 is positive definite for all 𝜀.

(iii) The kernel 𝑘lin
𝑓 is positive definite.

(iv) The function 𝑓 is negative definite.

Proof. The equivalence between (i) and (iv) is stated, for example, in [53, Thm. 4.3]. The equi-
valence between (i) and (ii) is stated in [28, Prop. 8.1]. The equivalence between (i) and (iii) is
stated in [11, Prop. 1]. ■

The kernels 𝑘rbf
𝑓 and 𝑘lin

𝑓 being positive definite means that the corresponding hidden feature
space is a Reproducing Kernel Hilbert Space (RKHS), see Section 1.3. This means that in order
to check if the hidden feature space is indeed a Hilbert space, it suffices to check if the function
𝑓 is negative definite. Unfortunately, we have the following result for 𝑓 = 𝒲𝑝𝑞

𝛾,𝑝.

5.1.4. Proposition ([28, Prop. 8.2]). For 𝒵 = ℝ3 and 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖2, the 𝑝-Wasserstein distance
is not negative definite for 𝑝 = 1, 2.

5.1 Using the Wasserstein Distance for the Construction of Kernels 85

This means that the hidden feature space corresponding to Wasserstein kernels is not guaranteed
to be a Hilbert space. However, as already noted in Section 1.3, the positive definiteness of the
kernel is not necessary in order to perform support vector classification and principal component
analysis. It is also still possible that 𝑘rbf

𝑓 is positive definite for some 𝜀 > 0.

We want to conclude with a toy example, illustrating why using Wasserstein distances in SVM
can be useful. Consider as data a set of probability measures with mutually disjoint support,
split into two classes. Then to any distance function that depends only on “pointwise” differ-
ences, all these measures will look the same. The Wasserstein distance, on the other hand, takes
into account the ground metric, and can thus distinguish the measures from each other. For
example, let Ω = [0, 1]2 and

𝑋1 = {𝛿(𝑥,𝑦) ∶ 𝑥 < 𝑦} , 𝑋2 = {𝛿(𝑥,𝑦) ∶ 𝑥 > 𝑦} ,

so 𝑋1 consists of Dirac measures concentrated above the diagonal, and 𝑋2 consists of Dirac meas-
ures concentrated below the diagonal. Let 𝑋 = 𝑋1 ∪ 𝑋2. Now if we consider the total variation
distances between these measures, we get

𝑑𝑇𝑉(𝛿(𝑥,𝑦), 𝛿(𝑥′, 𝑦′)) = ‖𝛿(𝑥,𝑦) − 𝛿(𝑥′, 𝑦′)‖ =
⎧{
⎨{⎩

0, if 𝑥 = 𝑥′ and 𝑦 = 𝑦′

2, else.
�

Intuitively, this cannot lead to a good classification result. But if we consider Wasserstein dis-
tances, we have

𝒲𝑝(𝛿(𝑥,𝑦), 𝛿(𝑥′, 𝑦′)) = ‖(𝑥 − 𝑥′, 𝑦 − 𝑦′)‖2.

This means that the Wasserstein distance between elements in 𝑋 is the same as the distance
between the corresponding points in ℝ2, where the classes are trivially linearly separable by the
diagonal. To test this in practice, we discretize the Dirac measures as can be seen in Figure 5.1.
We can now consider the 1-distance and 2-distance or Euclidean distance between the discretized
images, interpreted as vectors. Since the supports of the discretized measures are no longer
disjoint, classification using 1- or 2-distances might not be completely impossible, but should
still perform worse.

To test this, we use a set of 800 generated images, with 400 images for each class. We keep
out a test set of 40 images for each class and train a classifier on the rest. As kernel, we con-
sider the respective kernels 𝑘rbf and 𝑘lin. We test the parameters 𝐶 = {0.001, 0.01, 0.1, 1, 10} and
𝜀 = {10𝑘 ∶ 𝑘 ∈ {−3, −2.5, −2, … , 2}}. An accuracy of ≈ 98% could be achieved using both 1-
and 2-Wasserstein distances and an accuracy of ≈ 80% could be achieved using both 1- and
2-distances. The accuracy was independent of the used kernel. The samples that were misclassi-
fied by the Wasserstein distance kernels were samples that had nonzero values on the diagonal
due to discretization and were thus hard to classify. They can be seen in Figure 5.2.

The superiority of the Wasserstein distance in this case is even more apparent when perform-
ing PCA. Since we know that the data has been constructed from points in the plane, it should
be easy to perform a dimensionality reduction to 2 dimensions. We apply PCA using the negat-
ive distance kernel and compare the performance of 1- and 2-Wasserstein distances and 1- and
2-distances. As with the SVM, we use 80 images as a test set. The results are visualized in
Figure 5.3. It is apparent that the Wasserstein kernels work as expected, while 1- and 2-distances
fail to capture the structure of the dataset.

86 5 Connecting the Wasserstein Distance and Machine Learning

Figure 5.1: Discretization of Dirac measures. In the bottom row a zoom in can be seen.

Figure 5.2: Discretized Dirac measures that were misclassified by Wasserstein kernel SVM.

Figure 5.3: Projection of the Dirac measures onto the two main principal components. The colors
represent the two classes. Top row: 1-Wasserstein and 2-Wasserstein kernel, bottom row: 𝐿1

and 𝐿2 kernel.

5.2 Using the Wasserstein Distance as a Loss Function 87

5.2 Using the Wasserstein Distance as a Loss Function
Another possibility to use the Wasserstein distance in machine learning is to use it as a loss
function for neural networks. In 2015, this has been proposed in [34] for multiclass learning.
They consider networks that outputs a vector of scores or probabilities for the classes. These
vectors are then compared with the Wasserstein distance. The Wasserstein distance has become
popular when it was applied as a loss function for Generative Adversarial Networks in [54] in
2017. These two papers use two different methods to compute the Wasserstein distance. [34]
use the entropic regularization scheme presented in this thesis, and [54] use the Kantorovich-
Rubinstein duality Theorem 3.1.10, which works only for the 1-Wasserstein distance.

Using the Wasserstein distance as a loss function means, in the notation of Section 1.1, if we have
a neural net 𝑓 (·; 𝜃) where 𝜃 ∈ ℝ𝑛 represents the parameters to learn, we want to minimize

𝑘
∑
𝑖=1

𝒲𝛾,𝑝(𝑓 (𝑥(𝑖); 𝜃), 𝑦𝑖),

where {𝑥(1), … , 𝑥(𝑘)} is a set of samples with corresponding ground truth labels 𝑦𝑖, 𝑖 = 1, … , 𝑘, 𝑘 ∈
ℕ. Let us consider the example of multiclass learning. In multiclass learning, the ground truth
labels are usually encoded as binary vectors (“one hot encoding” or ”1-of-K encoding”). For
example, if we have 𝑙 classes, and 𝑥(𝑖) is of class 𝑗 ∈ {1, … , 𝑙}, then 𝑦𝑖 is the 𝑗-th unit vector in ℝ𝑙.
This can be interpreted as the probability that 𝑥(𝑖) belongs to class 𝑗 being 1. The output of 𝑓 will
then also be a probability vector, representing with which probability 𝑥(𝑖) belongs to which class.
These probability vectors can be compared with the Wasserstein distance. The advantage is that
similarity of classes is taken into account. The loss could then give feedback that classifying a
muffin as a chihuahua is very bad, while classifying a muffin as a cookie or cake is more or less
okay. This works if the distance between muffin and cookie in the ground metric is much lower
than the distance between muffin and chihuahua.

Another application, which is the application we propose in this thesis, is the application to un-
supervised learning with an autoencoder. To our knowledge, this has not been tried before. In
this case the samples 𝑥(𝑖) are themselves interpreted as measures and the ground truth labels
are equal to the input. Now the main idea why the Wasserstein distance could be a good loss
function is that it takes into account the ground metric. This is especially useful if the distribu-
tions to be compared have a non-overlapping support, since other loss functions like the 2- or 1-
distances are often constant in such cases. An illustration can be seen in Figure 5.4.

More formally, let 𝜃 ∈ [0, 1] and let 𝑓𝜃 be a function like in Figure 5.4 with a peak at 𝜃 and 𝑓𝜃
is zero outside of (𝜃 − ℎ, 𝜃 + ℎ) for some ℎ ∈ (0, 1). Assume we have a network 𝑔(𝑥; 𝜃) with

𝑔(𝑥; 𝜃) = 𝑓𝜃(𝑥) for 𝑥, 𝜃 ∈ [0, 1]

and we want to learn 𝑓𝜃0
for some 𝜃0 ∈ [0, 1] using gradient descent and an 𝐿2 loss function. The

function 𝑓𝜃0
corresponds to the red function in the left plot in Figure 5.4. The loss as a function

in 𝜃 is calculated as ‖𝑓𝜃0
− 𝑔(𝜃)‖2

2. This corresponds to the red function in the right plot. Now we
have

‖𝑓𝜃0
− 𝑔(𝜃)‖2

2 = 𝑐

for some constant 𝑐 ∈ ℝ for all 𝜃 with |𝜃 − 𝜃0| ≥ 2ℎ, which means that

88 5 Connecting the Wasserstein Distance and Machine Learning

Figure 5.4: Different distances between probability densities with one peak. If two densities have
disjoint support, their 1- and 2- distances are constant, while the Wasserstein distances do
not exhibit this problem. Since the plot shows the squared 2- and 𝒲2 distances, they are
technically only divergences.

Source: [55]

d
d𝜃 ‖𝑓𝜃0

− 𝑔(𝜃)‖2
2 = 0

for all 𝜃 with |𝜃 − 𝜃0| ≥ 2ℎ. Thus, if 𝑔𝜃 is initialized badly, it is impossible to learn the correct
parameter 𝜃0 because of the vanishing gradient. However, as can be seen in the right plot in
Figure 5.4, the gradient of the 1-Wasserstein and 2-Wasserstein distances do not vanish. A sim-
ilar example is also given in [54] to motivate the usage of Wasserstein distances for Generative
Adversarial Networks.

89

6 Implementation

6.1 Libraries
To implement the algorithm, we use the programming language Python, which is standardly
used in the field of machine learning. In this section we want to give a short overview of some
important Python libraries that have been used and why these libraries have been chosen.

Scikit-Learn Scikit-Learn is a free software library for machine learning in Python. It in-
cludes standard machine learning algorithms such as support vector machines and principal
component analysis. It allows the possibility to define classification pipelines consisting for ex-
ample of data reduction and classification. It further includes many useful tools to evaluate the
performance of a model, including cross-validation and hyperparameter optimization.

TensorFlow TensorFlow is an open-source software library designed for distributed numerical
computation. It is mainly used for programming neural networks, but can also be used for other
mathematical problems. A big advantage of TensorFlow is its support of multiple CPUs and
GPUs as well as the support of different platforms. It models all operations and their depend-
encies in a dataflow graph. Such a graph consists of nodes, which represent the operations, and
edges, which represent the data that flows between the nodes, thus modeling dependencies. The
data is saved in multidimensional arrays, which are called tensors, as seen in Section 1.1. This
explains the name “TensorFlow”. When programming in TensorFlow, the first step is always
to define a computation graph. This is a symbolic model, and in order to perform actual calcu-
lations, a session has to be started, during which different chunks of data can be “fed” into the
computation graph. A simple TensorFlow program could look like the following:

import tensorflow as tf

define two placeholders

x = tf.placeholder(dtype=tf.float32, shape=[None, 3, 3], name='x')

y = tf.placeholder(dtype=tf.float32, shape=[None, 3, 1], name='y')

multiply placeholders

z = tf.matmul(x, y)

First, two “placeholders” are defined. The first one represents a list of matrices of arbitrary
length, which is why the first dimension is “None”. The second represents a list of vectors.
Next, a tensor z is defined, which is to be the matrix-vector product of x and y. Now if we want
to calculate the matrix-vector product of some 3 × 3 matrix and 3 × 1 vector, we have to do the
following:

90 6 Implementation

Figure 6.1: A TensorFlow computation graph for matrix-vector multiplication as visualized
using TensorBoard.

evaluate

with tf.Session() as sess:

print(sess.run(z, feed_dict={x: [numpy.full((3, 3), fill_value=1)],

y: [numpy.full((3, 1), fill_value=1)]}))

Here we used lists of length 1 as input in the feed_dict. TensorFlow also supports autodifferen-
tiation. This means that it is possible to calculate gradients for all operations that are defined in
TensorFlow. For example, we can do the following:

define gradient

grad = tf.gradients(z, x)

evaluate gradient

with tf.Session() as sess:

print(sess.run(grad, feed_dict={x: [numpy.full((3, 3), fill_value=1)],

y: [numpy.full((3, 1), fill_value=1)]}))

This calculates the sum of the partial derivatives d𝑧𝑖
d𝑥𝑗

for 𝑧𝑖 in 𝑧 for each direction 𝑥𝑗. In this
example, the result would be the vector (3, 3, 3)𝑇 .
TensorFlow also contains visualization tools in the suite called TensorBoard. This makes it

possible to visualize the training loss and validation loss as well as other metrics during and after
training a network. It is further possible to visualize the computation graph. A visualization of
the above graph in TensorBoard can be seen in Figure 6.1.

We use TensorFlow to implement the calculation of the entropy-regularized Wasserstein dis-
tances. TensorFlow is a natural choice because of its native support of GPUs, which can be very
well exploited by the algorithm presented in Chapter 4. Further, it can later be used as a loss
function, since TensorFlow supports autodifferentiation.

Keras Keras is an open source high-level machine learning software library. It provides a con-
venient way to rapidly prototype almost any neural network. This is done by supplying build-
ing blocks that can easily be combined to create neural networks. Keras does not handle any
low-level computations, but relies instead on a backend engine. One example for such a backend
engine is TensorFlow. Functionalities provided by Keras include training and building networks
with little code, evaluating the loss and validation loss across the training epochs and automat-
ically saving the best model. A simple neural networks can be defined like this ([1, §3.2.1]):

6.2 Implementation of the Wasserstein Distance Algorithm 91

from keras import models, layers, optimizers

define model

model = models.Sequential()

model.add(layers.Dense(32, activation='relu', input_shape=(784,)))

model.add(layers.Dense(10, activation='softmax'))

compile the model by specifying which optimizer, loss function

and validation metrics to use

model.compile(optimizer=optimizers.RMSprop(lr=0.001),

loss='mse',

metrics=['accuracy'])

fit the model on some training data

model.fit(input_tensor, target_tensor, batch_size=128, epochs=10)

The parameter batch_size specifies how many samples are passed through the network at once.
After each batch is passed through the network, the loss is evaluated on this batch and the model
is updated using the optimizer. A full training cycle on the complete training set is called an
epoch. For example, if our training set consisted of 1280 samples and the batch size was 128,
an epoch consists of 10 updates of the neural network weights. The number of epochs can
be specified with the parameter epochs. We use Keras for the development of autoencoders.
When using TensorFlow as backend, the entropy-regularized Wasserstein distance implemen-
ted in TensorFlow can be incorporated into Keras as a loss function.

Additional libraries include numpy, scipy and matplotlib, which we do not introduce further.

6.2 Implementation of the Wasserstein Distance Algorithm
This section treats the implementation of the Wasserstein distance algorithm in Tensorflow. We
address the specifics of the implementation that are due to the usage of Tensorflow and its
graph model, some numerical considerations and how to use the Wasserstein distance as a loss
function in Keras.

The implementation is split into a Python module containing low-level methods including
the algorithm and a class that can be initialized with all relevant parameters, which contains
high-level methods for easy computation of Wasserstein distances.

The module contains the following methods:

• calculate_dual_variables(dist0, dist1, kernel_mat, niter=1000,

evaluate_convergence=None, reference_measure=None)

• calculate_dual_variables_convolutional(dist0, dist1, convolutional_filter,

reference_measure, niter=1000, evaluate_convergence=None)

• calculate_dual_variables_convolutional_separable(dist0, dist1,

convolutional_filter, dim, niter=1000, reference_measure=None)

• calculate_min(dist0, kernel_mat, reference_measure=None)

• calculate_min_gamma(neighborhood_size, num_dims, np_dtype, exponent):

92 6 Implementation

• conv_distance(v, w, dist0, dist1, gamma, reference_measure=None)

• conv_distance_original(u, v, cost_mat, kernel_mat,

reference_product_measure=None)

• conv_distance_primal(u, v, gamma, cost_mat, kernel_mat,

reference_product_measure=None)

• convolutional_filter(dim, gamma, exponent=2, size=None, cut=True,

tf_dtype=tf.float32, scale_factor=None)

• convolutional_filter_separable(dim, gamma, radius=None, tf_dtype=tf.float32,

scale_factor=None)

• convolutional_kernel_separable(conv_filter, x, dim)

• convolve(x, filter)

• coordinates(dim)

• distance_matrix(dim, metric='sqeuclidean', dtype=np.float32,

scale_factor=None, neighborhood_size=None)

• entropy(measure, reference_measure=None)

• calc_coupling(v, w, kernel_mat)

• calc_tilde_distributions(dist0, dist1, max_volume, reference_measure=None)

• calc_tilde_distance(distance_mat, remote_point_distance=None)

• kernel_matrix(dim, gamma, p=2, scale_factor=None)

• kernel_matrix_precomputed(dist_mat, gamma, p=2)

• normalize(data, flatten=False, reference_measure=None, add_eps=True)

The method calculate_dual_variables contains the algorithm stated in Algorithm 4.1 in
Chapter 4, where the kernel is stored as a matrix. In Section 4.2, we presented the possibility to
use convolutions instead of saving the kernel as a matrix.

An implementation of Algorithm 4.1 using separable convolutions and standard convolu-
tions can be found in the methods calculate_dual_variables_convolutional_separable and
calculate_dual_variables_convolutional, respectively. While we have seen in Section 4.2
that storing the whole kernel as a matrix takes up a lot more memory than using convolutions,
the computation time using convolutions is only lower if the convolutional filter is very small.
Using a separable convolutional filter has not led to any speed up compared to using standard
convolutions. The reason for these phenomena is probably due to the efficient implementation
of matrix-vector multiplication on GPUs.

The method calculate_min_gamma calculates the minimal value for 𝛾 such that all kernel val-
ues in a specified neighborhood are representable, see Equation 4.15 and Subsection 7.2.1.

To apply the kernel to vectors using convolution, the four methods convolutional_filter,
convolve, convolutional_filter_separable and convolutional_kernel_separable are used.
To save the kernel as a matrix, the methods kernel_matrix and kernel_matrix_precomputed can
be used. The kernel matrix is calculated from the ground distance matrix, which is calculated
using the methods coordinates and distance_matrix.

The method calculate_min calculates the minimal value that can be assumed by the ERWD
using the formula (4.10).

6.2 Implementation of the Wasserstein Distance Algorithm 93

The methods conv_distance, conv_distance_original and conv_distance_primal calcu-
late different costs from the dual variables. The “dual cost” (4.9) is calculated directly from the
dual variables using conv_distance. The method conv_distance_primal calculates the “primal
cost” from the optimal coupling, which can be calculated from the dual variables using the
method calc_coupling, and from the entropy of the optimal coupling, which is returned by the
method entropy. The transport cost of the coupling using the original, unregularized functional
can be calculated using the method conv_distance_original.

The two methods calc_tilde_distributions and calc_tilde_distance make it possible to
calculate the ERWD between distributions with different mass by using the transformations
stated in (4.3) and (4.4).

Finally, the method normalize is used to normalize the data with respect to a given reference
measure. Further, a small value 𝜀 is added, such that the data is everywhere positive and condi-
tions (3.25) is satisfied. The value 𝜀 is chosen as the smallest representable positive number such
that 1 + 𝜀 ≠ 1. This depends on the datatype of the given data (single or double precision).

We now want to address some specifics concerning the implementation of the algorithm by the
method calculate_dual_variables. As input, it takes two tensors of shape (𝑚, 𝑛), representing
lists containing the marginal distributions. Here, 𝑛 is the total amount of voxels/pixels in the
underlying space, and 𝑚 is the amount of samples that are being processed at the same time (the
length of the list). It further takes the kernel saved as a matrix, the number of iterations and the
reference measure as inputs. Lastly, it can be specified if the convergence should be evaluated.
If an integer 𝑘 is given, the convergence is evaluated every 𝑘 iterations. Evaluation is done by
storing the 1-norm (TV-norm) between the marginal of the current coupling and the desired
marginal.

The kernel can be either stored in the computation graph as a constant, or a placeholder can
be used. In this case, the values for the kernel matrix have to be fed into the placeholder at
runtime. Since the latter option is more complicated, we use the first one. However, it is not
always possible to save the kernel in the graph, because the graph definition is not allowed to
be larger than 2GB. This limit is exceeded when we save the kernel in double precision. In this
case, we have to use placeholders. The algorithm further consists of matrix multiplications and
divisions, which can be easily implemented using the TensorFlow functions matmul and div.

The trickiest part is the for loop. Using a standard Python for loop would lead to the op-
erations defined in the body of the loop being added to the computation graph once for each
iteration. This would lead to a very large graph and should be avoided. Instead of Python loops,
we thus use the TensorFlow while_loop. A simple TensorFlow while loop program, adding up
numbers from 1 to 10 would look like this:

import tensorflow as tf

r0 = tf.constant(0)

condition = lambda i, r: tf.less(i, 10)

body = lambda i, r: [tf.add(i, 1), tf.add(r, i)]

result = tf.while_loop(condition, body, [r0, r0])

with tf.Session() as sess:

print(result.eval())

Condition and body are functions that take the loop variables r and i as arguments. The function

94 6 Implementation

condition returns a boolean depending on the loop variables. The function body calculates
something using the loop variables and returns the new values for the loop variables, to be used
in the next iteration. These two functions are then given to the function while_loop, together
with the starting values for the loop variables. In our case, the loop variables are a counter i

and the dual variables v and w. Additionally, to evaluate the convergence, lists diff0 and diff1

containing the differences between current and desired marginal are added to the loop variables.
The projection steps are contained in the body function. They look like this:

project on constraint on dist1

Kv = tf.matmul(kernel_mat, a * v)

Kv = tf.clip_by_value(Kv, min_val, max_val)

w = tf.div(dist1, Kv)

w = tf.clip_by_value(w, min_val, max_val)

Between the matrix multiplication and division we have added a clipping step. This takes care
of over- and underflows by clipping any values smaller than min_val and larger than max_val.
These two values are chosen depending on the data type.

The correctness of the implementation is hard to test. We use some unit test to test some obvi-
ous requirements. We test the non-negativity of the optimal coupling and the non-negativity
of the value of the original functional. Further, for random target marginals, we test the imple-
mentation of the algorithm by comparing the marginals of the optimal coupling to the target
marginals, and by asserting the approximate equality of primal and dual cost. We test the al-
gorithm for unnormalized measures by asserting that it returns approximately the same cost
as the standard algorithm when using normalized marginals as input. For a test concerning
the actual data, some test data was kindly provided by Bernhard Schmitzer, who used his im-
plementation (which does not use TensorFlow) to calculate some distances. Comparing both
results showed that they were approximately the same, where the difference was smaller when
using double precision.

The two use-cases of Wasserstein distances are calculating a pairwise distance matrix to use it
in RBF kernels for SVM or PCA and using it as a loss function. For this purpose, there exists a
class WassersteinCalculator. This class is initialized once with the parameters

• spatial_input_dim: the dimension of the underlying grid,

• neighborhood_size: size of the neighborhood where the distance is finite (for kernel trun-
cation), default is whole grid, see also Subsection 7.2.1,

• gamma: the regularization parameter, if ’auto’, gamma assumes the smallest value such that
all kernel values are representable in the neighborhood specified in neighborhood_size,

• niter: the number of iterations

• exponent: the exponent used to construct the cost matrix from the Euclidean distance mat-
rix,

• conv_size: the size of the convolutional filter to use, can be None,

• unnormalized: boolean to determine if the extension for unnormalized measures should
be used,

• max_volume: maximal volume of measures, needed if unnormalized is True,

6.3 Implementation of SVM, PCA and Autoencoder 95

• remote_point_distance: distance of the additional point to all other points in unnormal-
ized extension, given relative to maximum distance, standard is 0.5,

• dtype: data type to use, float32 or float64,

• step_size: step size ℎ to use for the underlying grid, needed to calculate the ground metric,

• reference_measure: the reference measure, can be a scalar, a vector or None,

• variant: ’reg’ or ’noreg’, whether to return regularized or unregularized costs,

• subtract_min_constant: whether to subtract the minimum value assumed by ERWD,

This class supplies a method calc_wasserstein_distance, which returns a tensor containing
the distance if evaluated. It additionally returns the lists containing the convergence values, if
specified. Further, there exists a method wloss, which acts as a wrapper for Keras. It takes the
parameters y_true and y_pred and calls calc_wasserstein_distance. At this point we need
to consider how we want TensorFlow to differentiate this loss function. One possibility is to
use autodifferentiation. This is suggested in [28, §9.1.3], but no example application is given. It
turned out that in our case, this is numerically instable if 𝛾 is small or if we make many iterations.
Instead we use the theoretical gradient, which we normalize as stated in (4.8). This approach is
also used by [34]. The normalizing of the gradient is done in the method conv_distance. Now,
we do not want the autodifferentiation to further differentiate the dual variables with respect to
the input marginals. To implement this, we use the TensorFlow function stop_gradient. So the
call to conv_distance looks like this:

distance = conv_distance(tf.stop_gradient(v), tf.stop_gradient(w), ...).

To facilitate the computation of pairwise distances between a set of measures, the class further
contains a method calculate_pairwise_distances_batch, which builds a computation graph
using calculate_wasserstein_distance and then feeds the data into this graph in batches. It
returns a complete distance matrix.

6.3 Implementation of SVM, PCA and Autoencoder
In this section we describe the implementation of SVM, PCA and autoencoder. In particular, we
discuss how SVM and PCA can be implemented with precomputed kernel matrices. We further
describe the structure of an autoencoder and how the Wasserstein loss is incorporated.

6.3.1 SVM and PCA

We start with SVM and PCA. Both are implemented in sklearn. Support vector classification
is implemented in sklearn.svm.SVC, see [56]. Using precomputed kernel matrices is supported.
However, we want to be able to use precomputed kernel matrices with different parameters 𝜀 and
𝑞, see Equation 5.2. These parameters should be optimized using a hyperparameter optimization
strategy, for example grid search. For this reason, we need a wrapper class for the class SVC

implemented in sklearn that takes those parameters as arguments and computes the respective
kernels from a given distance matrix. This class is then compatible with sklearn. A similar
wrapper class is needed for PCA for the same reasons. PCA using kernels is implemented in
sklearn in sklearn.decomposition.KernelPCA, see [57]. Compared to standard PCA, it is not
possible to invert the transformation for precomputed kernels. Note that the implementation of
PCA is independent of the definiteness of the kernel. The implementation of SVM in sklearn is

96 6 Implementation

based on LIBSVM, which also works for indefinite kernels, since it is not assumed that the kernel
matrix is positive semidefinite, see [58, §4.1].

We implement two wrapper classes SVCPrecomputed and PCAPrecomputed as subclasses of SVC
and KernelPCA, respectively. We implement functions fit, predict, decision_function and
score for the SVM. First, one needs to decide how to feed the train and test data. One option
would be to number the whole data consecutively, feed indices and implement a kernel function
that looks up the corresponding values in the precomputed matrix. However, this option leads
to a high run time, since the values are looked up one by one. We thus choose to feed the distance
matrix instead. As training input, the square matrix containing all pairwise distances between
training instances is used. Similarly, the matrix containing all pairwise distances between train-
ing instances and test instances has to be used as testing input. Since sklearn already supports
the usage of precomputed matrices, the splitting and feeding can be handled automatically by
the class KFold or StratifiedKFold that handle k-fold cross-validation.

Now in order to use RBF and linear distance substitution kernels as introduced in Section 5.1,
we implement a method transform_kernel that calculates linear distance substitution kernel
and RBF kernel with specified parameters. Instead of implementing the kernel

𝑘lin
𝑑 (𝑥, 𝑦) = −1

2(𝑑(𝑥, 𝑦)2 − 𝑑(𝑥, 𝑂)2 − 𝑑(𝑦, 𝑂)2)

for some origin 𝑂, we implement instead the negative distance kernel

𝑘nd
𝑑 (𝑥, 𝑦) ≔ −1

2(𝑑(𝑥, 𝑦)2).

These are equivalent for SVMs as stated in [11]. Since the kernel matrix is centered for PCA, the
choice of origin is irrelevant, see [59]. Choosing as origin the mean of the data, 𝑘lin

𝑑 and 𝑘nd
𝑑 only

differ by a constant, which leads to the same eigenvectors in (1.20). Thus, these kernels are also
equivalent for PCA.

Implementing fit, predict, decision_function and score is then done by first transforming
the passed distance matrix into a kernel matrix and then calling the corresponding method of
the superclass. The implementation of PCAPrecomputed works in a similar manner. One only
needs to pay attention in which methods this transformation is done, since some methods call
other methods (fit_transform calls fit and score calls predict), and thus transforming the
kernel in both methods would lead to applying the transformation twice. To make sure that
the implementations are correct, we use unit tests to test that SVCPrecomputed gives the same
result as SVC when using Euclidean distances. As a data set, we take the Dirac image set we also
used in Section 5.1. Similarly, we test that PCAPrecomputed gives the same result as KernelPCA

for the RBF kernel. It turns out that the reductions using PCAPrecomputed and PCA when using
the negative distance kernel are mirrored. This is probably due to some implementation details.
We further test that GridSearch returns the same best parameters and best scores using SVC and
SVCPrecomputed, respectively.

The following is an extract of the class SVCPrecomputed:

from sklearn.svm import SVC

import numpy as np

class SVCPrecomputed(SVC):

6.3 Implementation of SVM, PCA and Autoencoder 97

def __init__(self, C=1.0, gamma='auto', exponent=1, kernel_type='rbf', ...):

super().__init__(C=C, kernel='precomputed', ...)

self.gamma = gamma

self.exponent = exponent

self.kernel_type = kernel_type

...

def _transform_kernel(self, X):

if self.kernel_type == 'rbf':

return np.exp(-self.gamma * X ** self.exponent)

else:

return -0.5 * X ** 2

def fit(self, X, y, sample_weight=None):

kernel = self._transform_kernel(X)

return super().fit(X=kernel, y=y, sample_weight=sample_weight)

6.3.2 Autoencoder

We now give a short description of the implementation of the autoencoders. Since we do not
implement overly complicated autoencoders, the implementation can be done completely in
Keras.

We use three levels of abstraction: an abstract class Autoencoder specifying an interface consist-
ing of methods encode, decode, transform, reconstruct and train. The class also already
holds placeholders for input, hidden representation and output, which are linked through the
methods. The second level is an abstract class StandardAutoencoder, which supplies some
functionality that is specific for the type of autoencoder we want to test. It additionally con-
tains functionality to transform the autoencoder into a classifier, see Section 1.2 and Figures 1.5
and 1.6. This includes methods classify, train_classifier and evaluate_classifier. A
method evaluate is also added for the autoencoder. The methods train and train_classifier

are implemented. Training of the autoencoder supports Wasserstein loss and Euclidean loss.
This is done by initializing the loss function at class instantiation:

if loss == 'wasserstein':

initialize wasserstein loss calculator

self.loss_func = wloss.WassersteinCalculator(spatial_input_dim=self.

spatial_input_dim, gamma=gamma, niter=niter,

exponent=exponent, neighborhood_size=neighborhood_size,

reference_measure=1, step_size=1).wloss

elif loss == 'sqeuclidean':

self.loss_func = 'mean_squared_error'

Note that the function wloss has exactly the signature required for a Keras loss function. For
training, we then compile the model with the loss function:

model.compile(optimizer=optimizer, loss=self.loss_func)

As optimizer, we use the optimizer Adam, keras.optimizers.adam, where we specify the learn-
ing rate, but leave all other hyperparameters fixed. The fitting method further uses a concept

98 6 Implementation

Flatten Reshape

Figure 6.2: An autoencoder using dense layers with 3-dimensional input.

Convolution MaxPooling Convolution
MaxPooling UpSampling Convolution UpSampling

Convolution

Convolution

Figure 6.3: An autoencoder using convolutional layers. For reduction, MaxPooling is used. For
decoding, UpSampling is used. In this autoencoder, 5 different convolutional filters are
used in every layer except in the last one, where only 1 is used.

introduced in Keras called callbacks. A callback is a set of functions that will be automatically
applied at given stages of the training procedure, for example after every epoch. We use the
callbacks Tensorboard, ModelCheckpoint, EarlyStopping and a custom callback saving some
example reconstructions at different iterations. Tensorboard is used for visualizing the train-
and validation loss and accuracy during and after training. The class ModelCheckpoint supplies
the automatic storage of the best model weights. It can be specified what “best“ means: criteria
could be validation loss, which is the default setting, or other validation metrics such as valid-
ation accuracy. EarlyStopping monitors the improvement of the validation loss. If it has not
improved for more than a specified amount of epochs, the training procedure is stopped.

In total, the class StandardAutoencoder only the leaves the encoding, decoding and classific-
ation methods to be implemented. We derive two different subclasses: one which uses only
standard dense layers for encoding and decoding, and one that only uses 3D convolutions. The
architecture of the convolutional autoencoder is inspired by the convolutional autoencoder in
[60]. In both cases, the classification is done by a single dense layer, mapping to a single output
value in [0, 1]. This is achieved using a sigmoid loss function. As loss, we use binary crossentropy,
which is a standard loss used for two-class classification. A schematic diagram of the dense
autoencoder is shown in Figure 6.2, and a schematic diagram of the convolutional autoencoder
is shown in Figure 6.3.

99

7 Experiments

In this chapter we present some experiments using the Wasserstein distance as a metric between
brain regions. The chapter opens with a description of the data set. The first part of experiments
serve as an evaluation of how the Wasserstein distance as a metric compares to the Euclidean
distance. The second part of experiments concerns training autoencoders using the Wasserstein
distance as a loss function.

7.1 Description of the Data Set

right
Amygdala

right
Hippocampus

Figure 7.1: An axial slice of the AAL at-
las. The left and right Amygdala is de-
picted in light pink in the upper half.
The left and right Hippocampus can
be seen in yellow next to the Amyg-
dala. The image was obtained through
MRIcron.

The considered data set of MR brain scans origin-
ates from various studies conducted by different
compartments of the Universitätsklinikum Münster.
The two main contributors to the data set are the
BiDirect Study1 and the study FOR21072.

For classification tasks we only use the data ori-
ginating from the BiDirect study, since all scans
have been performed by the same 3-Tesla MRI
scanner [61], which means the influence of the par-
ticular scanner on the scan is eliminated. For this
thesis, 993 T1-weighted (gray matter) MR scans of
993 different individuals, originating from the Bi-
Direct study, were available. Out of these 993 indi-
viduals, 558 were female and 435 were male. Fur-
thermore, 443 individuals were healthy controls
aged between 35 and 66 years, randomly sampled
from the population register of the city Münster.
The other 560 individuals were diagnosed with ma-
jor depressive disorder and recruited from differ-
ent psychiatric and psychosomatic hospitals in the region [62].

The MR scans were then processed using voxel based morphometry, which includes fitting
the scan to a template and correcting for total brain volume. Since the resolution of the whole
brain scan is too large to consider for Wasserstein distances, we restrict ourselves to the right
Amygdala and the right Hippocampus. These are regions which have been shown to be asso-
ciated with depression, see for example [63]. The position of the regions within the brain are
determined using the AAL atlas3, and an interface for extraction was supplied by the software
Photon4, which was developed by the machine learning team of the Department of Psychiatry of
the University of Münster. The regions are embedded into a cuboid. After extraction, the region

1https://www.medizin.uni-muenster.de/epi/probanden/bidirect-studie/
2http://for2107.de/
3http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling
4https://www.photon-ai.com/

https://www.medizin.uni-muenster.de/epi/probanden/bidirect-studie/
http://for2107.de/
http://neuro.imm.dtu.dk/wiki/Automated_Anatomical_Labeling

100 7 Experiments

Figure 7.2: Visualization of coronal, sagittal and axial slices (yz-, xz- and xy-planes) of the re-
gions Hippocampus (top row) and Amygdala (bottom row) for three different individuals.

Amygdala has shape 13 × 11 × 13 and consists of a total of 1859 voxels. The region Hippocampus
is slightly larger with a size of 21 × 28 × 27 and consists of a total of 15876 voxels. The extracted
regions can be visualized with the software MRIcron5. Figure 7.2 shows such a visualization. A
visualization of the AAL atlas that divides the brain template into different regions is shown in
Figure 7.1.

7.2 Evaluation of the Wasserstein Distance as a Metric
Between MR Images

In this section we want to describe some experiments to evaluate if the Wasserstein distance is
suitable as a metric between brain region MR images. For lack of alternatives, we try to do this
by comparing how well classification tasks can be performed using the Wasserstein distance
instead of the Euclidean distance. This can be done by replacing the Euclidean distance in clas-
sification pipelines. It is necessary to choose parameters for the Wasserstein distance. These
parameters include parameters arising from the algorithm used to approximate the real Wasser-
stein distance, and a parameter concerning the ground metric. We treat the choice of parameters
in the first subsection, and apply the different resulting configurations to classification pipelines
in the following subsection.

7.2.1 Calculating the Wasserstein Distance with Different Parameters

In this section we discuss the different parameters that need to be chosen to calculate Wasserstein
distances. While some of these parameters can be fixed without loss of generality, there are
several possibilities for others, which leads to different configurations.

The entropy-regularized Wasserstein distance (ERWD) depends on the following parameters:

• the exponent 𝑝 of the ground distance,

• the side length ℎ of the voxels,

• the regularization parameter 𝛾,
5https://www.nitrc.org/projects/mricron

https://www.nitrc.org/projects/mricron

7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 101

• the number of iterations performed in Algorithm 4.1,

• the reference measure 𝜆 in the general setting corresponding to the area weights 𝛼 in the
discrete setting,

• the numerical precision (single or double),

• the remote point distance, if using the Kantorovich extension for unnormalized measures.

For the choice of the reference measure, we note that all voxels have the same size, thus it makes
sense to define constant area weights 𝛼𝑖. The voxels further have a given volume defined through
their side length ℎ. A natural choice would thus be to define 𝛼𝑖 = ℎ3 for 𝑖 ∈ 𝐼 with 𝐼 as in
Definition 1.1.1. As noted in Remark 3.3.11, choosing any other constant area weights 𝛼 only
results in a constant shift of the resulting distance values, thus the particular choice of the value
of 𝛼𝑖 is not really relevant. Further, the choice of ℎ is linked to the choice of 𝛾: only the relation ℎ𝑝

𝛾
is relevant, since the distance appears only in the kernel 𝐾𝛾,𝑝 = exp(−𝑑𝑝

𝛾). We can thus fix ℎ = 1
and 𝛼𝑖 = 1 in the following experiments. Now for choosing feasible values for 𝛾, it makes sense
to consider that the values of the kernel 𝐾𝛾,𝑝 should not be too small for numerical precision.
We have seen in Equation 4.14, that

𝐾𝛾,𝑝(𝑥𝑖, 𝑥𝑗) > 𝛿 ⇔ 𝛾 > ℎ
𝑝
2 ‖𝑖 − 𝑗‖𝑝(− log 𝛿)−1

for 𝑖, 𝑗 ∈ 𝐼 and for any small constant 𝛿. Letting ℎ = 1, we should thus choose

𝛾 > (− log 𝛿)−1

to have at least some values greater than 𝛿 (for points with ‖𝑖 − 𝑗‖ ≤ 1). For single precision,
the smallest representable positive number is approximately 10−37 and for double precision it
is 10−308. This results in 𝛾 > 0.01 and 𝛾 > 0.001, respectively. However, just having some
representable numbers is not enough, but we choose instead to consider a neighborhood on
which all values should be representable. Let 𝑟 be the “radius” of the neighborhood, i. e. we
consider for each voxel 𝑥𝑖 a neighborhood centered at this voxel in the shape of a cube of side
length 2𝑟 + 1. The maximal distance of 𝑥𝑖 to any point in this cube is √3𝑟2. We thus have to
choose

𝛾 > (3𝑟2)
𝑝
2 (− log 𝛿)−1.

However, this is not sufficient to guarantee the convergence of the algorithm, since the problem
of potentially unbounded dual variables remains. In order to evaluate how many representable
values are necessary to obtain sensible results, we first calculate a value for 𝛾 such that all values
are representable. This 𝛾 depends on the size of the region. We then truncate the kernel to dif-
ferent cube-shaped neighborhoods and consider the difference between the distances resulting
from a truncated kernel and the distances resulting from the full kernel. We take a mean over 10
computed distances for each region. The resulting plots for different exponents are depicted in
Figure 7.4 for the Amygdala. We conclude from the plot that choosing a radius of 5 is sufficient
for all exponents. A similar plot for the Hippocampus suggests a radius of 7.

The exponent 𝑝 is chosen from the set {0.1, 0.5, 1, 2}. Using an exponent smaller than 1 was
proposed in [40] for classification of MNIST images using Wasserstein kernels. The exponent 𝑝 =
0.1 has to be interpreted as the 1-Wasserstein distance with the ground metric 𝑑(𝑥, 𝑦) = ‖𝑥−𝑦‖0.1

2 .
An illustration of how the different exponents influence the costs is shown in Figure 7.3. It can
be seen that for the exponent 0.1, the most variance is within a local neighborhood.

102 7 Experiments

Exponent: 0.1 Exponent: 0.5 Exponent: 1 Exponent: 2

Figure 7.3: Distances of the central point for different exponents in two dimensions. Each plot
has its own color scale for visualization purposes. Darker colors correspond to lower values.

The remote point distance is chosen dependent on the maximum ground distance. We con-
sider factors of 0.5 and 1.1, which both make the extended distance a metric.

In order to choose a number of iterations, we have to evaluate the convergence of the algorithm.
Remember that the algorithm calculates “dual variables” 𝑎 and 𝑏 defining the transport plan as
𝑢 = 𝐷𝑎𝐾𝛾,𝑝𝐷𝑏, where 𝐷𝑎 denotes the matrix whose diagonal is 𝑎. These variables 𝑎 and 𝑏 define
the optimal solution if the marginal conditions

𝑎 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑏) = 𝑟
𝑏 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑎) = 𝑠.

(7.1)

as stated in Equation 4.7 are fulfilled. Remember further that the algorithm works by alternat-
ingly enforcing one of the conditions. Thus after each iteration, one of the conditions should
always be fulfilled if no numerical issues have arisen. We propose to evaluate the convergence
by looking at

∥𝑎 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑏) − 𝑟∥1,

∥𝑏 ⊗ 𝐾𝛾,𝑝(𝛼 ⊗ 𝑎) − 𝑠∥1.
(7.2)

We evaluate the convergence for different parameters using 10 samples for each region and plot-
ting the average. Table 7.1a lists the considered configurations.
We do not treat the unnormalized variant, since it became clear after a few experiments that

𝑝 𝛾 truncate iterations
(1) 0.1 0.015 no 1000
(2) 0.1 0.014 5 2000
(3) 0.5 0.054 no 1000
(4) 0.5 0.034 5 1000
(5) 1 0.258 no 500
(6) 1 0.099 5 1000
(7) 2 5.805 no 150
(8) 2 0.859 5 200

(a) Configurations using automatically cal-
culated 𝛾 values.

𝑝 𝛾 truncate iterations

(9) 0.1 0.01 no 30006

(10) 0.1 0.1 no 100
(11) 0.1 1 no 3

(b) Additional configurations.

Table 7.1: List of configurations for the Amygdala. For truncation, the neighborhood size was
chosen as per Figure 7.4.

6With double precision

7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 103

Figure 7.4: Differences of Amygdala distances after constraining transport to a neighborhood
of a specific radius compared to using the full grid (radius = 13). For 𝑝 = 2 the difference is
more distinctive. This is reasonable since the costs for far transport increase fast for 𝑝 = 2.

(1) (2) (2a) (10) (10a) (10b) (10c) (11)
(1) 0.0 0.58 10.46 21.06 19.84 19.77 21.06 52.07
(2) 0.58 0.0 10.24 21.31 19.57 19.51 21.31 51.82
(2a) 10.46 10.24 0.0 19.92 9.44 9.81 19.92 42.48
(10) 21.06 21.31 19.92 0.0 29.5 29.02 0.0 60.92
(10a) 19.84 19.57 9.44 29.5 0.0 0.76 29.5 33.92
(10b) 19.77 19.51 9.81 29.02 0.76 0.0 29.02 33.2
(10c) 21.06 21.31 19.92 0.0 29.5 29.02 0.0 60.92
(11) 52.07 51.82 42.48 60.92 33.92 33.2 60.92 0.0

Table 7.3: Average deviation between distances resulting from two different configurations in
percent, relative to the maximum value, rounded to two decimals. The considered region
was the Amygdala.

the convergence behavior does not change significantly.
The convergence of the algorithm depends on 𝛾. The larger 𝛾 is, the longer it takes for the

algorithm to converge. As an example, we consider additionally the configurations listed in 7.1b
for the region Amygdala using the exponent 0.1. The approximate numbers of iterations needed
for convergence of the respective configurations are listed in Table 7.1. If not stated otherwise,
the calculations were always made with single precision. Some selected convergence plots are
shown in Figure 7.5.

Out of the configurations listed in Table 7.1, we test the those which use the exponent 𝑝 = 0.1
as well as the following modified configurations:

• (2a) using UMTP and a factor of 0.5 (relative to the neighborhood),

• (10a) using UMTP and a factor of 0.5,

• (10b) using UMTP and a factor of 1.1,

• (10c) using double precision.

7Using a convolutional filter of shape (7, 7, 7)

104 7 Experiments

200 1300 2400 3500 4600 5700 6800 7900 9000

0.025

0.050

0.075

0.100

0.125

0.150

di
ffe

re
nc

e

γ = 0.01
single precision
configuration (9)

200 1300 2400 3500 4600 5700 6800 7900 9000
0.000

0.025

0.050

0.075

0.100

di
ffe

re
nc

e

γ = 0.01
double precision
configuration (9)

100 200 300 400 500 600 700 800 900
iteration

0.000

0.025

0.050

0.075

0.100

0.125

di
ffe

re
nc

e

γ = 0.015 (auto)
configuration (1)

10 20 40 60 80 100 120 140 160 180
iteration

0.00

0.01

0.02

0.03

0.04

di
ffe

re
nc

e

γ = 0.1
configuration (10)

first marginal second marginal

Figure 7.5: Convergence plots for different configurations for the region Amygdala with expo-
nent 𝑝 = 0.1. To put the values into context, note that the marginals have total mass 1.

We exclude configuration (9), because the runtime was too long. All calculations were performed
on a server made available by the Department of Psychiatry, which is equipped with NVIDIA
Titan Xp and NVIDIA GeForce GTX 1080 graphic cards. To evaluate the influence of the dif-
ferent parameters, we consider the average absolute difference between the pairwise distance
matrices resulting from two different configurations. To obtain relative values, we divide these
differences by the largest distance value of the two configurations and further multiply by 100
to get percentage values. The results are listed in Table 7.3. As already suggested by Figure 7.4,
the difference between configurations (1) and (2) is small. Similarly, the difference between con-
figurations (10a) and (10b) is small, since they are the same except for the remote point distance.
There is however a rather large difference between using UMTP and not using UMTP, see the
differences between (10) and (10a) and between (2) and (2a). The largest differences occur for
configuration (11). Configurations (10) and (10c) yield practically identical distances, so using
only single precision did not make a difference in this case. Table 7.2 lists the runtimes and
iterations for each configuration.

For comparison, we have also included a run using convolution, as proposed in Section 4.2. We
used a filter of shape (7, 7, 7), which corresponds to a neighborhood of radius 3. It is remarkable
that it took much longer than using matrix multiplication. This effect is also visible when using
CPU instead of GPU: calculating 100 distances using convolutions took about 60 times as long
as calculating the same 100 distances using matrices. We further see that using double precision
instead of single precision had a large impact on the runtime. All these effects are probably due
to implementation details of TensorFlow.

We conclude for further experiments that using convolutions is not advisable. We also choose
not to further consider double precision calculations: The runtime when using double precision
is dramatically higher than for single precision, yet we observed, by comparing configurations
(10) and (10c), that there does not seem to be a large difference between single and double pre-
cision when both lead to convergence. However, double precision has to be considered when
using single precision is not sufficient, as is the case for smaller values of 𝛾, for example in config-

7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 105

uration (9). We saw that for smaller values of 𝛾, the amount of iterations needed for convergence
increases, which leads to yet longer runtime.

iterations runtime

(1) 1000 46m 50s
(2) 2000 57m 29s
(2a) 2000 57m 15s
(10) 300 13m 33s
(107) 300 5h54min58s
(10a) 300 9m 20s
(10b) 300 13m 28s
(10c) 300 4h 47m 59s
(11) 300 8m 51s

Table 7.2: Runtimes of the different
configurations for the Amygdala.

A comparison between configurations (10a) and (10b)
also showed that the influence of the remote point dis-
tance seems to be little. We thus fix a remote point dis-
tance of 0.5.

7.2.2 Classification

In this subsection, all experiments are performed using
the following setup. We consider two tasks for classific-
ation: classification regarding gender and classification
regarding diagnosis, where the diagnosis can be one of
“major depressive disorder (MDD)” and “healthy con-
trol (HC)”. As a scoring metric we use accuracy, where

accuracy =
number of correctly classified samples

number of total classified samples .

This is only informative if both classes are balanced, i. e. if the set to classify consists of samples
of both classes in equal shares.

For validation, we use 4-fold stratified cross-validation, meaning that the data set is split into
four parts, where each part contains roughly the same amount of samples of the first class as of
the second. The model is then trained on three of the four parts, while the other part is used
for testing. This is repeated for each combination, such that each part is used once as a test
set. We repeat this procedure 6 times, each time shuffling the data. We then report the average
test accuracy score. This is implemented using RepeatedStratifiedKFold from the package
model_selection of scikit-learn.

We use grid search as a hyperparameter optimization strategy, meaning we test every combin-
ation of hyperparameters in a set range. Grid search is implemented in scikit-learn in the pack-
age model_selection as GridSearchCV and it is possible to use it with RepeatedStratifiedKFold.

Wasserstein SVC

As explained in Section 5.1, we can define a kernel function from the Wasserstein distance. We
now want to examine how well support vector classification with Wasserstein RBF kernels per-
forms in comparison to support vector classification with Euclidean RBF kernels for different
parameters of 𝜀.

As a reminder, the RBF kernel is defined as

𝑘rbf
𝑓 (𝑥, 𝑦) = exp(−𝜀𝑓 (𝑥, 𝑦)) for 𝑥, 𝑦 ∈ 𝒵, 𝜀 ∈ ℝ>0,

for some function 𝑓 that is symmetric, positive and has zero-diagonal, where 𝒵 is the set of
MR images of brain regions. We now want to compare the usage of the Euclidean distance, i. e.
𝑓 (𝑥, 𝑦) = ‖𝑥 − 𝑦‖2

2, to the usage of the 𝑝-Wasserstein distance for various parameters 𝑝 and 𝑞, i. e.
𝑓 (𝑥, 𝑦) = 𝒲𝑝𝑞

𝛾,𝑝. In order for the influence of the 𝜀 value to be comparable for Wasserstein and Eu-
clidean distances, we divide the distances by the 50th percentile of the respective precomputed

106 7 Experiments

𝛾 score
(1) 0.015 75.9
(2) 0.014 75.9
(2a) 0.014 73.9
(10) 0.1 75.3
(10a) 0.1 73.8
(10b) 0.1 73.9
(10c) 0.1 75.3
(11) 1 61.3

Euclidean 74.0
(a) Scores for 𝑝 = 0.1.

p score
(2) 0.1 75.9
(2a) 0.1 73.9
(4) 0.5 74.3
(4a) 0.5 72.2
(6) 1 71.9
(6a) 1 69.9
(8) 2 72.0
(8a) 2 66.1

Euclidean 74.0
(b) Scores for different

exponents.

Table 7.4: Accuracy scores in percent obtained for gender classification using different exponents
on the region Amygdala.

distance matrix. We consider 𝜀 ∈ {10−3, 10−2, 10−1, 1, 10}.
An additional hyperparameter is given by the misclassification penalty parameter 𝐶, as de-

scribed in Section 1.3. We consider 𝐶 ∈ {0.1, 1, 10, 100}.
As exponent 𝑞 for the Wasserstein kernel, we consider the values 𝑞 = 0.5 and 𝑞 = 1 for 𝑝 =

2, and 𝑞 = 1 and 𝑞 = 2 for 𝑝 = 1 (remember that 𝑝 = 0.1 actually means the 1-Wasserstein
distance with a different ground metric). As already noted in Chapter 5 in Proposition 5.1.4,
these kernels are not guaranteed to be positive definite. We can however evaluate how many
negative eigenvalues appear in the empirical, finite kernel matrices. It turns out that there are
almost always negative eigenvalues present for 𝑞 = 2, and that all kernels constructed using
configuration (11), which has a high regularization parameter, have negative eigenvalues.

Since the classification accuracy for the diagnosis using support vector machines on the region
Amygdala is only marginally above 50%, we consider only gender classification on this region.
The results using the configurations from the previous section are shown in Table 7.4a. The
performance is not significantly better, however the best result using Wasserstein kernels is 2
percentage points above the best result using Euclidean kernels. Both were obtained using RBF
kernels. It is surprising that the configurations using the UMTP (2a and 10a,b) do not give better
results than the configurations where the brain region volume is normalized. It is however not
surprising that the configuration (11) performs badly, since the regularization parameter was
chosen very high, which means that subtle differences cannot be detected well. Since the config-
urations (1) and (2), the ones using an automatic 𝛾-value, gave the best results, we consider for
the other exponents only the corresponding configurations and the UMTP-variant. The results,
including the corresponding configurations for 𝑝 = 0.1, are shown in Table 7.4b.

To test the influence of negative eigenvalues, we take a closer look of the classification results
of configuration (2). It had negative eigenvalues for 𝑞 = 2. The performance of the specific RBF
kernels is depicted in Table 7.5.

We repeat some of the experiments for the larger region Hippocampus. We consider the con-
figurations listed in Table 7.6. The iterations and runtime for the whole data set are included. It
is apparent that the size of the region has a large impact on the runtime, which is why we do not
consider any larger regions. However, this would not prevent an application in practice, since
to classify a new sample one only has to calculate the distance of one rather than of 993 samples
to all other samples. It is actually even enough to calculate the distance to all support vectors

7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 107

𝑞 𝜀 score std. score neg. ev.
1 0.001 67.45 3.26 0
1 0.01 70.40 2.68 0
1 0.1 75.34 2.49 0
1 1.0 75.94 2.38 0
1 10.0 63.47 3.36 0
2 0.001 66.02 3.21 405
2 0.01 66.02 3.21 405
2 0.1 71.84 2.78 405
2 1.0 74.71 2.56 402
2 10.0 75.73 2.74 369

Table 7.5: Mean classification scores for dif-
ferent kernels, using configuration (2) on
the region Amygdala. Additionally to
the mean score, we also list the standard
deviation of the scores. The misclassific-
ation parameter 𝐶 is always 10, since this
always gave the best results. The last row
lists the amount of negative eigenvalues
of the RBF kernel. No relation between
negative eigenvalues and score is appar-
ent.

when using SVMs. This can be done in about a minute. The classification results are shown in
7.7a. Differently to the previous region, the configuration (1), which uses a higher 𝛾 performs
a little better than the configuration (2), which uses the smallest possible 𝛾 for a neighborhood.
Again the results are only marginally better than those obtained using the Euclidean distance.

𝑝 𝛾 truncate UMTP iterations runtime
(1) 0.1 0.1 no no 300 14h18min48s
(1a) 0.1 0.1 no yes 300 18h3min23s
(2) 0.1 0.015 7 no 1000 1d22h56min
(3) 0.5 0.1 no yes 1000 1d23h32min

Table 7.6: Considered configurations for the region Hippocampus, including the number of iter-
ations made and the runtimes for the whole data set.

𝑝 𝛾
score
gender

score
diagnosis

(1) 0.1 0.1 84.9 60.2
(1a) 0.1 0.1 79.2 60.1
(2) 0.1 0.015 83.3 58.6
(3) 0.5 0.1 78.1 59.9

Euclidean 83.3 58.4
(a) Raw MR images

γ
score
gender

score
diagnosis

(1) 0.1 84.1 58.7
(1a) 0.1 81.2 57.3
(2a) 0.015 83.8 58.1
(1) 0.1 83.4 58.4
(b) Gradient images. Top: full gradi-

ents, bottom: 50th percentile.

Table 7.7: Accuracy scores for classification with respect to gender and diagnosis on the region
Hippocampus.

For both regions, we have seen that the Wasserstein distance does not seem to perform better
than the Euclidean distance. A cause for this might be the fact that the images have a large
overlapping support. As we have seen in Chapter 5, the Wasserstein distances lead to better
results than the Euclidean distance if the samples have little overlapping support. Further, the
Wasserstein distance might perform badly because the regions contain homogeneous parts and
we might be more interested in contours. For this reason, we generate contour images by taking
the gradient magnitude, i. e. the norm of the gradient. The gradient can be computed using
the Sobel filter, see Section 1.1. A corresponding function is implemented in scipy.ndimage.
We further consider a variant where values in the 50th percentile are set to zero. Illustrations
can be seen in Figure 7.6, which shows that the images still have a large common support. No
improvement in classification accuracy could be achieved, as can be seen in 7.7b.

8https://www.nitrc.org/projects/mricron

https://www.nitrc.org/projects/mricron

108 7 Experiments

Figure 7.6: Slices from the region Hippocampus for two different samples. Left: original, cen-
ter: gradient magnitude, right: gradient magnitude using only the upper 50th percentile.
Visualized using MRIcron.8White pixels correspond to large values.

Wasserstein PCA

The Wasserstein kernel can not only be used for support vector classification, but also in kernel
principal component analysis, which was introduced in Section 1.4. An evaluation of the result-
ing reduction is again possible by classification. For classification we use Euclidean RBF SVM
and Linear SVM, where the hyperparameters 𝜀, 𝐶 and 𝑞 are chosen in the same range as before.

As in the previous subsection, we start with the classification with respect to gender on the
region Amygdala. As reduction size we consider the extreme reduction to only 2 components,
the reduction to approximately 10% of the components, which amounts to 185 components and
the reduction to approximately 2% of the components, which amount to 32 components. We
consider the configurations (2), (2a), (4), (4a), (6), (6a), (8), (8a), (10), (10a) and (11) as in Table 7.4.
We only consider a Wasserstein RBF kernel, since it seemed to perform better than the linear
kernel. The results are shown in Table 7.8a.

It is surprising that configuration (11) yields results almost as good as the other configurations,
while the classification using SVM performed noticeably worse. Again, the results are compar-
able to those obtained using the Euclidean distance in an RBF kernel. We see that a classification
using only 2 components is not possible. However, a reduction to 185 components performs sim-
ilarly to using all components, where the best classification accuracy was 75.9%, see 7.4a. The
classification using only 32 components performs a little worse.

The same experiment can be repeated with the region Hippocampus. We test a reduction to
128 components, which corresponds to a reduction to approximately 1% of the components. The
results are shown in 7.8b. In total, the diagnosis can be predicted with similar accuracy on a
basis of 128 components as on a basis of all components, where the best achieved accuracy was
60.2%, see Table 7.7a. For gender reduction, the accuracy is a little lower using a basis of 128
components, since the accuracy was almost 85% before, see Table 7.7a. We only compared the
exponents 𝑝 = 0.1 and 𝑝 = 0.5, since the other exponents did not perform well for the Amygdala.
We observe that 𝑝 = 0.1 performs considerably better than 𝑝 = 0.5.

7.2 Evaluation of the Wasserstein Distance as a Metric Between MR Images 109

p 2 cp. 32 cp. 185 cp.
(2) 0.1 58.6 73.1 75.4
(2a) 0.1 55.7 73.1 73.7
(4) 0.5 59.0 72.6 74.4
(4a) 0.5 58.7 70.3 72.9
(6) 1 59.7 71.4 72.1
(6a) 1 58.3 67.9 71.7
(8) 2 60.4 70.9 71.9
(8a) 2 54.6 66.4 66.5
(10) 0.1 60.7 73.1 75.7
(10a) 0.1 55.1 73.0 74.5
(11) 0.1 58.7 72.6 73.8

Euclidean 60.7 72.7 75.3
(a) Gender classification on Amygdala.

p γ
score
gender

score
diagnosis

(1) 0.1 0.1 81.0 58.7
(1a) 0.1 0.1 78.2 59.4
(2) 0.1 0.015 81.1 56.9
(3) 0.5 0.1 73.9 58.2

Euclidean 79.9 60.0
(b) Classification on Hippocampus for 128

components.

Table 7.8: Classification results on the regions Amygdala and Hippocampus after a reduction to
different amounts of components using kernel PCA with different kernels.

7.2.3 Summary

To summarize, we have seen that the Wasserstein distance performs marginally better than the
Euclidean distance over an average of 24 train and test splits. However, the results have not been
cross-validated in a nested fashion, which means that the results tend to be optimistic. It would
thus be incautious to leap to any conclusions starting from such small differences.

We have observed that the exponent 𝑝 = 0.1 performed noticeably better in almost all exper-
iments. An explanation for this might be that the most relevant differences in the images are
local: the cost function corresponding to 𝑝 = 0.1 still penalizes higher transport distances, but
the increase of costs is slowed for higher distances, while for 𝑝 = 1 the increase remains con-
stant, and for 𝑝 = 2 it gets faster with higher distances (the derivatives of 𝑑𝑝 with respect to the
distance 𝑑 are strictly monotonically decreasing, constant and strictly monotonically increasing,
respectively). This means that local changes carry much weight for 𝑝 = 0.1, while they carry
little weight for 𝑝 = 2. Compare also Figure 7.3. We have further observed that the UMTP vari-
ant for unnormalized measures did not perform better. This was unexpected, since we assumed
that we lose information by normalizing the MR images. It remains an open question why this
loss of information seems to be irrelevant.

Since the Wasserstein distance did not perform worse than the Euclidean distance, it still
makes sense to test it as a loss function in autoencoders. For this, we aim to choose parameters
on the basis of the previous results. Thus, we choose the exponent 𝑝 = 0.1. For the Amygdala,
we choose a neighborhood size of 5 with the corresponding 𝛾 value. For the Hippocampus, the
configuration with a larger value of 𝛾 = 0.1 seemed to perform better and additionally requires
fewer iterations.

However, we cannot put too much trust into these choices, since these parameters were only
tested on images of actual brain regions, which are already quite similar to each other. When
using the Wasserstein distance in an autoencoder, we compare these images to artificial images
that do not look like brain regions in the first epochs. But since we cannot try all configurations,
we stick with this choice.

110 7 Experiments

7.3 Using the Wasserstein Distance as a Loss Function in
Autoencoders

In this section we will present the results obtained by using the Wasserstein distance in an auto-
encoder. We conduct experiments using the regions Amygdala and Hippocampus. For training
the autoencoder, we use the total data made available by the Department of Psychiatry, obtained
through different studies. We then discard the decoder of the autoencoder and replace it by a
very simple classifier. This classifier is then trained using only the data from the BiDirect study,
which was also used in the previous experiments. No hyperparameter optimization has been
made and the presented models have been found by trial and error.

7.3.1 Fully Connected Autoencoder for Amygdala

The first architecture we present is a fully connected architecture as shown as a schematic dia-
gram in Figure 6.2. We use two layers for encoding and two layers for decoding, as in the dia-
gram. For the region Amygdala, we consider a reduction to a hidden representation of size 32,
which is approximately 2% of the original size. The intermediate layers have size 1024. We then
try two activation functions: a sigmoid activation function and a ReLu activation function. An
illustration of the Amygdala autoencoder can be seen in Figure 7.7.

If a Wasserstein loss is used, the data is normalized before training and the last activation
function is replaced by a softmax function to assure that the output is also normalized. As
parameters for the Wasserstein distance, we use 𝑝 = 0.1, a neighborhood of size 5 with the 𝛾 as
the smallest value that asserts representable numbers in the neighborhood, and 1000 iterations.
The same architectures are tested using a Euclidean loss, with the only difference that the data
is not normalized and the last activation function is not a softmax function. As learning rate
we have chosen a small rate of 10−5, since we found that this prevented overfitting. We stop
training if the validation loss has not improved for 100 epochs when using a Euclidean loss and
for 50 epochs when using a Wasserstein loss. We choose a lower number for the Wasserstein
loss because training takes much longer: while training with a Euclidean loss took about 0.5s
per epoch, training with a Wasserstein loss took about 15s per epoch.

A plot of the loss is shown in Figure 7.8. It can be seen that none of the configurations suffers
from overfitting, since both validation loss and train loss go down. The Euclidean loss comes
closer to zero, but this does not necessarily have to mean anything: while we have subtracted
the theoretical minimum from the Wasserstein distance, asserting that the smallest assumable
value is indeed zero (which is in general not the case because of the regularization), the minimum
distance is not achieved between any two identical measures, see Corollary 3.4.3.

For classification, we replace the decoder with a classifier, which adds a fully connected layer
with size 1, followed by a sigmoid activation function, which outputs a value between 0 and

Flatten Reshape

13x11x13 1859 1024
32

1024 1859 13x11x13

Figure 7.7: Architecture of the dense Amygdala autoencoder.

7.3 Using the Wasserstein Distance as a Loss Function in Autoencoders 111

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4
tra

in
 lo

ss
Using ReLu activation

0 100 200 300 400 500 600 700
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

Using sigmoid activation

0 100 200 300 400 500 600 700
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss
Wasserstein Euclidean

Figure 7.8: Train and validation loss for different configurations for the dense autoencoder
trained on the region Amygdala.

sigmoid ReLu PCA no pretraining
Wasserstein 66.4 73.3 73.1 72.2Euclidean 71.5 70.7 72.7

Table 7.9: Gender classification results using a classifier constructed from the autoencoder in
Figure 7.7 trained on the region Amygdala using Wasserstein and Euclidean loss, respect-
ively.

1. This value is then rounded to get a class prediction of either 0 or 1. To prevent overfitting,
a dropout layer is added, which consists of randomly setting a fraction of input units to 0. We
have experimentally chosen a dropout rate of 60%. To evaluate the performance of the classifier,
we have applied the same repeated cross-validation scheme as before, notably a 4-fold cross
validation repeated 6 times. This was possible since the network to train and the training set
were not very large. The results are presented in Table 7.9. We see that the average results are
relatively similar for all methods. We also test training the classifier without pretraining the
lower layers with an autoencoder. This leads to a slightly worse result. Note that while the
results using autoencoders instead of principal component analysis are only marginally better,
there exists further potential in hyperparameter and architecture optimization, while there are
no additional parameters for principal component analysis.

A visualization of the learning process of the different configurations is shown in Figure 7.11.
It can be seen that the configurations using a Wasserstein loss have already learned a good re-
construction after 100 epochs in contrast to the configurations using a Euclidean loss. This is
also mirrored in the train and validation loss shown in Figure 7.8. It further looks like the con-
figuration with Euclidean loss and ReLu activations learned the mean of the images, since the
final reconstructions are not distinguishable. All other configurations produced distinguishable
reconstructions.

112 7 Experiments

conv
8 × (3,3,3)

mp mp

Crop 13×11×13

13×11×13×8
7×6×7×8 7×6×7×8

conv
8 × (3,3,3)

4×3×4×8

8×6×8×8

conv
8 × (3,3,3)

us

conv
8 × (3,3,3)

8×6×8×8
16×12×16×8

us

conv
1 × (3,3,3)

16×12×16×1

(13, 11, 13)

Figure 7.9: Architecture of the convolutional Amygdala autoencoder. MaxPooling layers and
UpSampling layers are abbreviated with “mp” and “us”, respectively. Since the dimensions
of the Amygdala are not powers of two, the output has to be cropped.

7.3.2 Convolutional Autoencoder for Amygdala

The second architecture is a convolutional autoencoder. The architecture is shown in Figure 7.9.
We use 8 convolutional filters of size (3,3,3) for each of the two convolutional layers. Between
those layers, we use MaxPooling layers with a pooling size of (2,2,2) and strides of (2,2,2), result-
ing in a reduction by a factor of 8. Since we apply MaxPooling two times, we get a total reduction
by a factor of 64, which amounts to a reduction to approximately 1.5% of the input size. After
summing up the results from the 8 different filters, which is done implicitly by the following con-
volutional layers in the decoder, the hidden representation has shape 4×3×4 (size 48). A plot of
the loss for different configurations is shown in Figure 7.10. For a Euclidean loss, no difference
between ReLu and sigmoid activation is apparent. For the Wasserstein loss, sigmoid activation
functions lead to more oscillation and no improvement in the validation loss, which is why train-
ing broke off after approximately 350 iterations. We notice that here, the Euclidean validation
loss is smoother, while for the dense autoencoder, the Wasserstein validation loss was smoother.
One could hypothesize that the Wasserstein loss behaves better than the Euclidean loss for the
dense autoencoder because it already incorporates spatial information, while for the Euclidean
loss it is necessary to incorporate the spatial structure by using convolutions. The advantage
of using spatial information is further suggested by the reconstructions shown in Figure 7.12:
the Euclidean reconstructions after 100 epochs (see Figures 7.12a and 7.12c) already look much
better than the reconstructions after 100 epochs using the dense autoencoder, see Figures 7.11a
and 7.11c. However, a more detailed analysis would be necessary to support this hypothesis.
Figure 7.12 further shows that the reconstructions are less accurate than with the dense auto-
encoder, which is mirrored by the respective loss values: for both Euclidean and Wasserstein
loss, train and validation loss are lower for the dense architecture. We also trained classifiers
using the convolutional autoencoder, but the results were similarly inconclusive as with the
dense autoencoder.

7.3.3 Convolutional Autoencoder and Fully Connected Autoencoder for
Hippocampus

We further tried the same techniques on the region Hippocampus. For the Wasserstein loss, we
decided to use the parameters 𝑝 = 0.1 and 𝛾 = 0.1 with 300 iterations (configuration (1) from
Table 7.6). For the dense autoencoder, we used a hidden layer of size 2048 and a reduction size of
128. For the convolutional autoencoder, we used the same size and number of filters, resulting
now in a reduced representation of shape 6 × 7 × 7 (size 294). Since this region is larger than
the Amygdala, training times were longer: Training using a Euclidean loss took about 2s per
epoch for both autoencoders. Training using a Wasserstein loss took about 150s per epoch for
the dense autoencoder and 280s per epoch for the convolutional autoencoder. This means that

7.3 Using the Wasserstein Distance as a Loss Function in Autoencoders 113

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4
tra

in
 lo

ss
Using ReLu activation

0 100 200 300 400 500 600 700
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

Using sigmoid activation

0 100 200 300 400 500 600 700
epoch

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss
Wasserstein Euclidean

Figure 7.10: Train and validation loss for different configurations of the convolutional auto-
encoder trained on the region Amygdala.

training the dense autoencoder for 1000 epochs with a Wasserstein loss would take over 3 days.
Again, we stopped training after no improvement in the validation loss for 50 and 100 epochs,
respectively.

Plots of the losses can be seen in Figures 7.13 and 7.14. Both show that using a sigmoid ac-
tivation function with a Wasserstein loss did not give good results. As on the Amygdala, the
Euclidean loss is smoother for the convolutional autoencoder. When using a ReLu activation
function, the Wasserstein training loss is smooth, and the validation loss is smooth with one
exception after about 100 iterations. Thus, the losses behave similarly as before.

For the more promising ReLu configurations, we also take a look at the reconstructions after
100 iterations, as well as at the final reconstructions, see Figure 7.16. We can see that all final
reconstructions look good, except for the one resulting from using a Wasserstein loss with a con-
volutional autoencoder. We also see that the dense autoencoder with Wasserstein loss already
gives very good reconstructions after 100 epochs, while the Euclidean loss reconstruction still
has a lot of artifacts. Again, we also tried classification, but without any noteworthy results.

7.3.4 Summary

To summarize, we have shown that training an autoencoder with a Wasserstein loss is possible.
We observed that training with a Wasserstein loss is especially advantageous over training

with a Euclidean loss when using dense autoencoders and hypothesized that this might be due
to the spatial structure being incorporated into the Wasserstein loss. While not shown in this
thesis, it also became obvious that a very small learning rate has to be used. However, this might
be due to the relatively small training set. We further observed that using a Wasserstein loss led
to better reconstructions after fewer epochs. Nevertheless, it cannot be said that training with
a Wasserstein loss is “faster”, since it takes about 10 times as long as training with a Euclidean
loss (which is still rather remarkable, considering the complexity of the Kantorovich problem).

We did not achieve any noteworthy classification results, but this could probably not be ex-
pected since we used rather small and simple autoencoders and classification networks.

114 7 Experiments

(a) Euclidean with ReLu activations.

(b) Wasserstein with ReLu activations.

(c) Euclidean with sigmoid activations.

(d) Wasserstein with sigmoid activations.

Figure 7.11: Reconstructions of two different samples of the Amygdala with a dense autoencoder:
after 100 epochs, after 300 epochs and after the final epoch. The original is shown in the right
column.

7.3 Using the Wasserstein Distance as a Loss Function in Autoencoders 115

(a) Euclidean with ReLu activations.

(b) Wasserstein with ReLu activations.

(c) Euclidean with sigmoid activations.

(d) Wasserstein with sigmoid activations.

Figure 7.12: Reconstructions of two different samples of the Amygdala with a convolutional
autoencoder: after 100 epochs, after 300 epochs and after the final epoch. The original is
shown in the right column.

116 7 Experiments

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4
tra

in
 lo

ss
Using ReLu activation

0 100 200 300 400 500 600 700
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

Using sigmoid activation

0 100 200 300 400 500
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

Wasserstein Euclidean

Figure 7.13: Train and validation loss for different configurations for the dense autoencoder
trained on the region Hippocampus.

0 100 200 300 400 500 600 700
0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

Using ReLu activation

0 100 200 300 400 500 600 700
epoch

0.0

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

tra
in

 lo
ss

Using sigmoid activation

0 100 200 300 400 500
epoch

0.1

0.2

0.3

0.4

va
lid

at
io

n
lo

ss

Wasserstein Euclidean

Figure 7.14: Train and validation loss for different configurations for the convolutional auto-
encoder trained on the region Hippocampus.

7.3 Using the Wasserstein Distance as a Loss Function in Autoencoders 117

Figure 7.15: Reconstructions of Hippocampus after 100 epochs. Top: Dense autoencoder with
Euclidean and Wasserstein loss, and original. Bottom: Convolutional autoencoder with
Euclidean and Wasserstein loss, and original.

Figure 7.16: Reconstructions of Hippocampus after final epoch. Top: Dense autoencoder with
Euclidean and Wasserstein loss, and original. Bottom: Convolutional autoencoder with
Euclidean and Wasserstein loss, and original.

119

8 Conclusion and Outlook

In this thesis we have examined the usability of the Wasserstein distance as a metric between
structural magnetic resonance images of the brain with the goal of using it for machine learning
based post-processing. More specifically, we aimed to use the Wasserstein distance as a loss
function in a specific kind of neural network called autoencoder to perform dimensionality re-
duction. An autoencoder, consisting of a decoder and an encoder, is trained to replicate its input.
Replication, in this context, has to be understood in terms of a similarity measure: we aimed to
use the Wasserstein distance as such. This goal was achieved.

The main challenge in achieving this goal was to find a way to apply the Wasserstein distance in
a machine learning setting. Traditional algorithms are limited to specific settings which do not
include three-dimensional data, have far too high a runtime to be considered in a machine learn-
ing setting, where a large amount of data has to be processed, or do not supply a way to calculate
gradients for backpropagation. We thus proposed to use the entropy-regularized Wasserstein
distance, which shares many of the properties of the exact Wasserstein distance, while its compu-
tation can be performed much more efficiently. We introduced this regularization in Section 3.3
and derived the algorithm with mathematical rigor in the setting of probability measures on
a compact metric space. Because the computation algorithm is very compatible with GPUs, it
suits machine learning well. While not being differentiable in the strict sense, the regularized
distance possesses a canonical gradient, which is also rigorously proven in Section 3.3. This
gradient occurs as a side product of the algorithm and can be employed for backpropagation.
With these prerequisites it was possible to implement the algorithm in the machine learning
framework TensorFlow and to further provide an interface allowing integration with the high-
level framework Keras.

To evaluate the usability of the Wasserstein distance, we aimed to employ it for classification of
brain images with respect to gender and diagnosis. Despite the significant speedup resulting
from the regularization, processing whole brain images is still computationally difficult. We
thus extracted the brain regions Amygdala and Hippocampus from each brain image. These
regions had previously been shown to be connected to depression. We then classified these
regions using support vector machines with radial basis function kernels. These radial basis
function kernels depend on a distance function, for which both the Wasserstein distance and the
Euclidean distance can be substituted. However, a major drawback of the Wasserstein distance
is its restriction to measures with fixed volume, which requires a normalization of gray matter
volume. We proposed to deal with this drawback by introducing an extension of the Wasserstein
distance on the whole space of measures in Section 3.2. We provided a detailed proof of the
equivalence of this extension to a formulation in terms of a standard optimal transport problem
to which entropic regularization can be applied, allowing us to use the same algorithm as before.

Despite successfully having dealt with this drawback, the classification results were rather un-
derwhelming. The Wasserstein distance with previous normalization outperformed the exten-

120 8 Conclusion and Outlook

sion allowing for a volume change, and performed only marginally better than the Euclidean
distance. Since the results have not been validated with nested cross-validation, they tend to be
optimistic and are thus not significant. We have further employed the same kernel trick with
principal component analysis with similarly underwhelming results.

It remains unclear why the inclusion of the ground metric did not lead to much improvement.
We have demonstrated the superiority of the Wasserstein example on a toy data set in Chapter 5.
Yet even here the superiority was not as outright as expected: In theory, classification without
any information on the ground metric should have been impossible due to disjoint supports of
the considered measures. However, as a consequence of discretization, some of the measures
had a minimal overlap. This was already enough to achieve a classification accuracy of 80% using
the Euclidean distance. This suggests that the additional information on the ground metric is
only instrumental if the considered measures have little to no common support. As this is not
the case for MR images, this might be an explanation as to why the Euclidean distance worked
similarly well. However, since the Wasserstein distance also did not perform worse than the
Euclidean distance, we still tried to use it in autoencoders.

We tried two different architectures of autoencoders and used a data set of 1800 samples to train
it. While this worked well, the training time was very long due to the higher computation time
of Wasserstein distances compared to the Euclidean distance. This was a problem especially
for the larger region Hippocampus, where training for 150 epochs already took a whole day,
yet not having converged. This will only be amplified by an eventual growth of the data set,
which poses a big problem, since one advantage of an autoencoder is the possibility to include
large amounts of unlabeled data. It also makes hyperparameter optimization even more tedious
than it already is without a complex loss function. Since the Wasserstein distance could not be
shown to be better suited as a distance than the Euclidean distance, we conclude that training
autoencoders with a Wasserstein loss is not worth the computational effort.

A few options that could not be treated in this thesis, however, remain to be tried out, and might
be addressed in future work. They are outlined as follows:

• The Wasserstein distance could be used to pretrain an autoencoder for a few epochs, con-
tinuing fine-tuning with the Euclidean distance. This could also be combined with dif-
ferent kinds of autoencoders such as denoising autoencoders or contractive autoencoders,
which were shortly presented in Section 1.2.

• While we focused on distance values resulting from a converged algorithm, another option
could be to fix a much smaller number of iterations to make the computation quicker and
use this approximate value instead. The proposed method to obtain a gradient is then no
longer valid, since the variable proposed as gradient only corresponds to a gradient upon
convergence. Instead, one could use autodifferentiation to calculate the gradient.

• We further tried to approximate the true Wasserstein distance as well as possible by choosing
a small regularization parameter, which, however, leads to a slower convergence behavior.
We have seen in Subsection 7.2.1 that the convergence is very fast for larger parameters.
While the classification results with larger parameters were worse, it might still be pos-
sible that an autoencoder is pushed in the right direction, even with a larger regularization
parameter. It could then be fine-tuned.

121

• Another possible disadvantage of the Wasserstein distance is that the images are normal-
ized before feeding them into the autoencoder, possibly leading to loss of information.
Alternative possibilities to deal with this problem could be examined, for example to feed
the total mass as an extra input variable either into the autoencoder or into the classifier.
Furthermore, the Wasserstein distance really only needs input and output to have the same
mass. So instead of normalizing all inputs and outputs to have mass 1, the inputs could
be left untouched and the outputs could be normalized to have the same mass as the cor-
responding input. This would require a few changes in the implementation.

• It has been proposed in [64] to learn the ground metric on which the Wasserstein distance
depends. While a natural ground metric arising from the three-dimensional structure of
the voxel grid was already available, it turned out that not the Euclidean distance, but the
distance to a power of 0.1 gave the best results. It might thus be possible that yet other
ground metrics could be better suited to the structure of a brain.

• In this thesis, we considered the representation of MR images as images on a voxel grid. It
is also possible to obtain surface data on a triangulation grid, between which the Wasser-
stein distance could also be defined. Similar experiments as presented in this thesis could
then be constructed with this representation.

• The Wasserstein distance could further be used on functional MRI data, which has an ad-
ditional time axis. The ground metric would then have to be extended along this time
axis.

• The entropy-regularized variant of the Wasserstein distance further makes it possible to
interpolate between data efficiently. This could be interesting for follow-up studies or for
functional MRI data.

123

Bibliography

[1] Francois Chollet. Deep Learning with Python. 1st. Greenwich, CT, USA: Manning Publica-
tions Co., 2017.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[3] Documentation of Convolution in Tensorflow. url: https://www.tensorflow.org/api_docs/
python/tf/nn/convolution.

[4] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep learn-
ing”. In: ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[6] Dumitru Erhan et al. “Why Does Unsupervised Pre-training Help Deep Learning?” In: J.
Mach. Learn. Res. 11 (Mar. 2010), pp. 625–660.

[7] E. Hosseini-Asl, R. Keynton, and A. El-Baz. “Alzheimer’s disease diagnostics by adapt-
ation of 3D convolutional network”. In: 2016 IEEE International Conference on Image Pro-
cessing (ICIP). Sept. 2016, pp. 126–130.

[8] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training Algorithm for
Optimal Margin Classifiers”. In: Proceedings of the Fifth Annual Workshop on Computational
Learning Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: ACM, 1992, pp. 144–152.

[9] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In: Mach. Learn. 20.3
(Sept. 1995), pp. 273–297.

[10] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001.

[11] Bernard Haasdonk and Claus Bahlmann. “Learning with Distance Substitution Kernels”.
In: Pattern Recognition. Ed. by Carl Edward Rasmussen et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 220–227.

[12] Michel Neuhaus and Horst Bunke. “Edit Distance-based Kernel Functions for Structural
Pattern Classification”. In: Pattern Recogn. 39.10 (Oct. 2006), pp. 1852–1863.

[13] O. Chapelle, P. Haffner, and V. N. Vapnik. “Support Vector Machines for Histogram-based
Image Classification”. In: Trans. Neur. Netw. 10.5 (Sept. 1999), pp. 1055–1064.

[14] Cheng Soon Ong et al. “Learning with Non-positive Kernels”. In: Proceedings of the Twenty-
first International Conference on Machine Learning. ICML ’04. Banff, Alberta, Canada: ACM,
2004, pp. 81–.

[15] B. Haasdonk. “Feature space interpretation of SVMs with indefinite kernels”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 27.4 (Apr. 2005), pp. 482–492.

[16] K. Pearson. “On Lines and Planes of Closest Fit to Systems of Points in Space”. In: Philo-
sophical Magazine 2 (6 1901), pp. 559–572.

https://www.tensorflow.org/api_docs/python/tf/nn/convolution
https://www.tensorflow.org/api_docs/python/tf/nn/convolution
1603.07285
http://www.deeplearningbook.org
http://www.deeplearningbook.org

124 Bibliography

[17] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem”. In: Neural Computation 10.5 (1998), pp. 1299–
1319.

[18] Sebastian Raschka. Kernel tricks and nonlinear dimensionality reduction via RBF kernel PCA.
2014. url: https://sebastianraschka.com/Articles/2014_kernel_pca.html (visited on
09/11/2018).

[19] Sebastian Mika et al. “Kernel PCA and De-Noising in Feature Spaces”. In: ADVANCES IN
NEURAL INFORMATION PROCESSING SYSTEMS 11. MIT Press, 1999, pp. 536–542.

[20] GH. Bakir, J. Weston, and B. Schölkopf. “Learning to Find Pre-Images”. In: Advances in
Neural Information Processing Systems 16. Cambridge, MA, USA: MIT Press, June 2004, pp. 449–
456.

[21] Xiaolin Huang et al. “Indefinite kernels in least squares support vector machines and prin-
cipal component analysis”. In: Applied and Computational Harmonic Analysis 43.1 (2017),
pp. 162–172.

[22] Walter Rudin. Real and Complex Analysis, 3rd Ed. New York, NY, USA: McGraw-Hill, Inc.,
1987.

[23] Krishna B. Athreya and Soumen N. Lahiri. Measure Theory and Probability Theory (Springer
Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[24] M.E. Taylor. Measure Theory and Integration. Vol. 76. Graduate studies in mathematics. Amer-
ican Mathematical Soc., 2006.

[25] Hedy Attouch, Giuseppe Buttazzo, and Grard Michaille. Variational Analysis in Sobolev and
BV Spaces: Applications to PDEs and Optimization, Second Edition. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2014.

[26] R. T. Rockafellar. “Integrals which are convex functionals.” In: Pacific J. Math. 24.3 (1968),
pp. 525–539.

[27] J.M. Borwein and Q.J. Zhu. Techniques of Variational Analysis. CMS Books in Mathematics.
Springer, 2005.

[28] G. Peyré and M. Cuturi. “Computational Optimal Transport”. In: ArXiv e-prints (Mar. 2018).
arXiv: 1803.00567 [stat.ML].

[29] V.I. Bogachev. Measure Theory. Measure Theory Vol. 1. Springer Berlin Heidelberg, 2007.

[30] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling. Progress in Nonlinear Differential Equations and Their Applications. Springer
International Publishing, 2015.

[31] C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2008.

[32] D.C Dowson and B.V Landau. “The Fréchet distance between multivariate normal distri-
butions”. In: Journal of Multivariate Analysis 12.3 (1982), pp. 450–455.

[33] “Scaling algorithms for unbalanced optimal transport problems”. In: Math. Comp. 87 (2018),
pp. 2563–2609.

[34] Charlie Frogner et al. “Learning with a Wasserstein Loss”. In: Proceedings of the 28th Inter-
national Conference on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal,
Canada: MIT Press, 2015, pp. 2053–2061.

https://sebastianraschka.com/Articles/2014_kernel_pca.html
http://arxiv.org/abs/1803.00567

Bibliography 125

[35] L.V. Kantorovich and G.S. Rubinstein. “On a space of completely additive functions (Rus-
sian)”. In: Vestnik Leningrad Univ. 7 (13 1958), pp. 52–59.

[36] Leonid G. Hanin. “An extension of the Kantorovich norm”. In: Contemp. Math. (226 1999):
Monge Ampère Equation: Applications to Geometry and Optimization (Deerfield Beach, FL, 1997),
pp. 113–130.

[37] Kevin Guittet. Extended Kantorovich norms : a tool for optimization. Research Report RR-4402.
INRIA, 2002.

[38] A. Gramfort, G. Peyré, and M. Cuturi. “Fast Optimal Transport Averaging of Neuroima-
ging Data”. In: Information Processing in Medical Imaging. Ed. by Sebastien Ourselin et al.
Cham: Springer International Publishing, 2015, pp. 261–272.

[39] Ofir Pele and Michael Werman. “A Linear Time Histogram Metric for Improved SIFT
Matching”. In: Proceedings of the 10th European Conference on Computer Vision: Part III. ECCV
’08. Marseille, France: Springer-Verlag, 2008, pp. 495–508.

[40] Marco Cuturi. “Sinkhorn Distances: Lightspeed Computation of Optimal Transport”. In:
Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges et al. Curran
Associates, Inc., 2013, pp. 2292–2300.

[41] Justin Solomon et al. “Convolutional Wasserstein Distances: Efficient Optimal Transport-
ation on Geometric Domains”. In: ACM Trans. Graph. 34.4 (July 2015), 66:1–66:11.

[42] J.M. Borwein, A.S. Lewis, and R.D. Nussbaum. “Entropy Minimization, DAD Problems,
and Doubly Stochastic Kernels”. In: Journal of Functional Analysis 123.2 (1994), pp. 264–307.

[43] Bernhard Schmitzer. “Stabilized Sparse Scaling Algorithms for Entropy Regularized Trans-
port Problems”. In: ArXiv pre-print (Oct. 2016). arXiv: 1610.06519 [math.OC].

[44] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: Ann. Math. Statist. 22.1
(Mar. 1951), pp. 79–86.

[45] Christian Léonard. “From the Schrödinger problem to the Monge–Kantorovich problem”.
In: Journal of Functional Analysis 262.4 (2012), pp. 1879–1920.

[46] “Continuous entropic regularization and Sinkhorn-type algorithms”. work in progress.

[47] L. Rüschendorf and W. Thomsen. “Note on the Schrödinger equation and I-projections”.
In: Statistics & Probability Letters 17.5 (1993), pp. 369–375.

[48] Ludger Rüschendorf. “Convergence of the Iterative Proportional Fitting Procedure”. In:
Ann. Statist. 23.4 (Aug. 1995), pp. 1160–1174.

[49] Antoine Rolet, Marco Cuturi, and Gabriel Peyré. “Fast Dictionary Learning with a Smoothed
Wasserstein Loss”. In: Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics. Ed. by Arthur Gretton and Christian C. Robert. Vol. 51. Proceedings of Ma-
chine Learning Research. Cadiz, Spain: PMLR, Sept. 2016, pp. 630–638.

[50] Michael Bacharach. “Estimating Nonnegative Matrices from Marginal Data”. In: Interna-
tional Economic Review 6.3 (1965), pp. 294–310.

[51] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. “The Earth Mover’s Distance As a
Metric for Image Retrieval”. In: Int. J. Comput. Vision 40.2 (Nov. 2000), pp. 99–121.

[52] J. Zhang et al. “Local Features and Kernels for Classification of Texture and Object Cat-
egories: A Comprehensive Study”. In: International Journal of Computer Vision 73.2 (June
2007), pp. 213–238.

http://arxiv.org/abs/1610.06519

126 Bibliography

[53] Sadeep Jayasumana et al. “Kernel Methods on the Riemannian Manifold of Symmetric Pos-
itive Definite Matrices”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2013.

[54] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative Adversarial
Networks”. In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. In-
ternational Convention Centre, Sydney, Australia: PMLR, June 2017, pp. 214–223.

[55] Rémi Flamary. Optimal transport for machine learning. 2017. url: https://remi.flamary.
com/pres/OTML_ISIS_2017.pdf (visited on 09/11/2018).

[56] Documentation of sklearn.svm.SVC. url: http://scikit- learn.org/stable/modules/
generated/sklearn.svm.SVC.html.

[57] Documentation of sklearn.decomposition.KernelPCA. url: http://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.KernelPCA.html.

[58] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for Support Vector Machines”.
In: ACM Trans. Intell. Syst. Technol. 2.3 (May 2011), 27:1–27:27.

[59] Bernhard Schölkopf. “The Kernel Trick for Distances”. In: Proceedings of the 13th Interna-
tional Conference on Neural Information Processing Systems. NIPS’00. Denver, CO: MIT Press,
2000, pp. 283–289.

[60] Francois Chollet. Building Autoencoders in Keras. url: https://blog.keras.io/building-
autoencoders-in-keras.html (visited on 09/17/2018).

[61] H. Wersching and K. Berger. “Neue Kohorten”. In: Bundesgesundheitsblatt - Gesundheits-
forschung - Gesundheitsschutz 55.6 (June 2012), pp. 822–823.

[62] Henning Teismann et al. “Establishing the bidirectional relationship between depression
and subclinical arteriosclerosis – rationale, design, and characteristics of the BiDirect Study”.
In: BMC Psychiatry 14.1 (June 2014), p. 174.

[63] Ronny Redlich et al. “Brain Morphometric Biomarkers Distinguishing Unipolar and Bi-
polar Depression: A Voxel-Based Morphometry–Pattern Classification Approach”. In: JAMA
psychiatry 71.11 (2014), pp. 1222–1230. eprint: /data/journals/psych/931006/yoi140054.
pdf.

[64] M. Cuturi and D. Avis. “Ground Metric Learning”. In: ArXiv e-prints (Oct. 2011). arXiv:
1110.2306 [stat.ML].

https://remi.flamary.com/pres/OTML_ISIS_2017.pdf
https://remi.flamary.com/pres/OTML_ISIS_2017.pdf
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
/data/journals/psych/931006/yoi140054.pdf
/data/journals/psych/931006/yoi140054.pdf
http://arxiv.org/abs/1110.2306

	Introduction
	Machine Learning and Neural Networks
	Feedforward Neural Networks
	Autoencoders
	Support Vector Machines
	Principal Component Analysis

	Mathematical Background
	The Space of Measures and its Dual
	Convex Analysis and Nonlinear Optimization

	A Metric between Measures based on Optimal Transport Theory
	The Kantorovich Problem and the Wasserstein Distance
	An Extension of the Wasserstein Distance for Arbitrary Measures
	The Kantorovich Extension
	The Unbalanced Mass Transportation Problem
	Connection between UMTP and K-Norm

	The Entropy-Regularized Kantorovich Problem
	Introduction of the Entropy-Regularized Kantorovich Problem
	A Dual Formulation
	Solving the Regularized Kantorovich Problem using Alternate Projections

	The Entropy-Regularized Wasserstein Distance and its Properties

	Application to MR images
	A Summary of the Results for Finite Spaces
	The Setting of MR Images and Numerical Improvements

	Connecting the Wasserstein Distance and Machine Learning
	Using the Wasserstein Distance for the Construction of Kernels
	Using the Wasserstein Distance as a Loss Function

	Implementation
	Libraries
	Implementation of the Wasserstein Distance Algorithm
	Implementation of SVM, PCA and Autoencoder
	SVM and PCA
	Autoencoder

	Experiments
	Description of the Data Set
	Evaluation of the Wasserstein Distance as a Metric Between MR Images
	Calculating the Wasserstein Distance with Different Parameters
	Classification
	Summary

	Using the Wasserstein Distance as a Loss Function in Autoencoders
	Fully Connected Autoencoder for Amygdala
	Convolutional Autoencoder for Amygdala
	Convolutional Autoencoder and Fully Connected Autoencoder for Hippocampus
	Summary

	Conclusion and Outlook
	Bibliography

