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Abstract

The Karlsruhe Tritium Neutrino Experiment (KATRIN) experiment attempts to reach a
model independent neutrino mass estimate from kinematic observations of tritium [-decays.
A major source of systematic uncertainty are energy losses of decay electrons by inelasti-
cally scattering off tritium molecules. It is therefore necessary to obtain information on the
differential scattering cross section for this process. The method suggested by Hannen et
al.[1] applies Truncated Singular Value Decomposition to experimental scattering functions
obtained from an in-situ experiment. It is extended by means of Tikhonov regularisation, con-
strained optimisation and a parametrisation approach. Numerical experiments based upon
simulations of the KATRIN experiment indicate that these methods allow for an improved
reconstruction of the energy loss function that respects the assigned KATRIN error budget
even at a higher noise level.
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1 Introduction

The standard model of particle physics summarises long established theories concerning the
various elementary particles and their possible interactions. In recent years, experiments
from various fields of physics provided strong evidence that it is incomplete, though. Proving
physics beyond the standard model has therefore become one of the most intensely researched
fields in experimental particle physics. The Karlsruhe Tritium Neutrino Experiment (KA-
TRIN) attempts to contribute to these efforts by determining the mass of neutrinos. In the
standard model, neutrinos are assumed to be massless, so neutrino mass determination is
another import step towards physics beyond the standard model. The idea of the KATRIN
experiment is to determine the shape of the energy spectrum of electrons created in tritium
B-decays. In its endpoint, it follows a distribution that depends heavily on the energy (or
equivalently mass) of neutrinos. Conversely, observing this distribution should in theory al-
low for a determination of the neutrino mass. However, multiple sources of uncertainty need
to be considered in order to attain the aspired sensitivity of 0.2eV/c* at 90% confidence
level. One of them is energy loss of electrons due to inelastic scattering within the experi-
ment’s tritium source. Hence, the differential scattering cross section needs to be known with
sufficient precision in order to limit energy loss effects in KATRIN evaluation methods. By
defining a corresponding energy loss function and scattering functions, Hannen et al. showed
that this can be achieved by applying Truncated Singular Value Decomposition (TSVD) to
data obtained from a KATRIN pre-experiment|l]. However, their method relies on a low
noise level, i. e. very long measuring campaigns, and the resulting energy loss function still
shows several nonphysical properties, including negative energies and strong oscillatory be-
haviour. It is therefore desirable to provide an augmented method that yields a more realistic
representation of energy losses while respecting the associated KATRIN error budget.

The underlying deconvolution problem can be seen as a typical inverse problem where a well-
defined forward operator O, applied to some input z, yields an output y. A measurement 3°
of y is typically corrupted by some noise d, though. Since O frequently does not possess a
well-defined, continuous inverse, it is in most physical applications highly unlikely to recover
the true x. Instead, it is convenient to find some reasonable approximation x, to x. This
can be achieved by determining it as

zo = argmin D(x) + Ry (), (1.1)

e

where () is a suitable function space and the functional D(x) denotes a solution’s fidelity to
the measured data. R, (x) refers to the regularisation term that reflects on the solution’s
accordance with some desired properties.

This thesis primarily investigates the choice of a suitable regularisation method for this
deconvolution problem and the identification of a good regularisation parameter o.

After giving a brief overview of the physical context, the meaning and some expected prop-
erties of the KATRIN energy loss function will be discussed in section 2. Section 3 provides
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the necessary mathematical background to establish the regularisation methods discussed in
section 4. The solution offered by TSVD will there be compared in terms of reconstruction
quality and parameter choice to Tikhonov regularisation as its most "natural” refinement.
Additionally, solutions through parametrisation and constrained minimisation are presented
that make stronger model assumptions. Finally, numerical experiments on simulated KA-
TRIN measurements are performed in section 5 that evaluate the expected influence of the
different deconvolution methods on the KATRIN neutrino mass estimate.

2 Physical Background

The existence of neutrinos was first proposed in 1930 by Wolfgang Pauli in order to provide
an explanation for the observation of continuous (-decay spectra that respects conservation
of energy — a fundamental principle of physics that others like Bohr were willing to sacrifice
at that time in the wake of quantum theory[2]. If B-decays were two particle decays like the
a-decay

A+2 A 4
M—|—2X — MY + QHe,

conservation of momentum and energy would require them to provide a discrete energy
spectrum (and spherically opposed detection locations with respect to the centre-of-mass
system). -decays by contrast, or more precisely the

f~-decay: n —p+e” + (2.1)

as the then only known form of a wider group of processes nowadays summarised by the former
term, yield a continuous angular distribution and a rather characteristically shaped electron
energy spectrum up to the region of the total decay energy. Although it took another 26 years
until the famous poltergeist experiment by Cowan and Reines confirmed their existence by
observing inverse -decay events|3], neutrinos quickly gained acceptance within the scientific
community. The corresponding theory has since been massively expanded, predicting and
detecting neutrino flavours and corresponding antineutrinos, which were included into a wider
theoretical framework commonly referred to as the standard model of particle physics. It
associates the three different neutrino flavours with the respective particle generations in
which they first occur.

Despite providing an abundance of predictions that could be experimentally validated to high
precision, the standard model has proven to be an incomplete theory as it fails to account
for some recent discoveries, most notably neutrino oscillations. In contrast to Pauli, who
originally expected neutrinos to have masses similar to that of the concurrent $-particle, the
standard model assumes neutrinos from all particle generations to be massless. Large-scale
detectors like Super-Kamiokande, however, display strong evidence for a description of neu-
trinos or the respective neutrino flavours as superpositions of the different mass eigenstates.
The fact that the rate changes, at which neutrinos of a specific flavour are detected, can then



be traced back to differences in the particular mass states. Thus detailed observations do not
only show that neutrinos have non-vanishing masses but can provide first-order estimates for
the mass difference between the three flavours. This is clear evidence for physics beyond the
standard model; it does not provide absolute values for the neutrino mass, though[4].

Another approach for determining neutrino masses could be pursued by detecting neutrinoless
double -decays. If neutrinos were Majorana fermions, so neutrinos and antineutrinos were
in fact identical particles (in contrast to the standard model), a simultaneous decay of two
neutrons could occur that only emits two electrons by exchange of virtual neutrinos. In-depth
considerations on the decay rates could allow for sensible, but highly model-sensitive mass
estimates[>]. Claims of neutrinoless 3-decay observations have been made, but met criticism
on the statistical methodology and could not be reproduced|(].

KATRIN pursues a different strategy within this highly active field of research by attempting
to determine the neutrino mass from purely kinematic, hence model-independent observa-
tions. The energy released in a [-decay is shared among the emitted B-particle and its
associated neutrino in form of kinetic energy and the respective rest mass energy. A high-
resolution measurement of a -particle’s energy spectrum near the total decay energy would
provide valuable information because its shape will strongly depend on the neutrino’s rest
mass energy. While this could be achieved with a variety of decaying nuclei, the tritium
[~ -decay

*H — *Het 4+ e + 7, (2.2)

is especially well suited due to its low decay energy of 18.6keV, as well as its simple atomic
structure and tritium molecules’ moderate half-time of about twelve years. This decay will
from now on be referred to as TBD and the comprised electron antineutrino 7, will be simply
called neutrino (v).

The shape of the electron’s energy spectrum in a TBD can be derived from Fermi’s golden
rule as

d*N

dEdt
It links the electron transmission rate to both the electron’s and neutrino’s momentum and
energy, respectively. The Fermi function F' takes the 'charge value’ Z = 2 since a helium
nucleus is created in this process. The Heaviside function © guarantees conservation of the
total decay energy Ey. By means of the relativistic energy-momentum relation, all energy
and momentum quantities can be expressed in terms of the electron’s kinetic energy F, the
total decay energy FE, and the respective rest masses. The key idea is that around the
spectrum’s endpoint (Ey &~ E), the shape strongly depends on the neutrino mass m, which
can thus be recovered by KATRIN. Further modifications to this equation are necessary to
account for superposition of the different neutrino flavours’ mass states as a result of neutrino
oscillations. The neutrino terms therefore need to be actually expressed by an incoherent sum
over these states, weighted by the respective population probabilities. For a full derivation
see for instance Otten and Weinheimer|[7].

=C-F(E,Z) p.Ep,E,0(Ey — E —m,c). (2.3)
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Figure 1: The KATRIN experiment comprises a calibration system (a), a Windowless
Gaseous Tritium Source (b), a pumping section (c,d) to limit the amount of tritium in
the MAC-E filter type pre- (e) and main spectrometer (f) and an electron detector section
(g). From [1].

2.1 Experimental Realisation

The key components of KATRIN are depicted in fig. 1. Inside a Windowless Gaseous Tritium
Source (WGTS) tritium beta decay occurs isotropically at a sufficiently high rate. Electrons
emitted under suitable angles are guided through a pumping section, where tritium molecules
are filtered in order to reduce background effects. They then reach the spectrometer section.
By means of Magnetic Adiabatic Collimination combined with an Electrostatic filter (MAC-
E filtering), the spectrometers can convert transversal energy into longitudinal energy and
thus meet the requirements of high energy resolution as well as high luminosity, transmitting
essentially all electrons to the detector that are emitted under acceptable angles 6 < 0,4
and with kinetic energies above an adjustable retarding potential. While a pre-spectrometer
retains electrons below 18.3keV, the main spectrometer should achieve the aspired KATRIN
energy resolution.

For an experiment of this scale and precision, an abundance of uncertainties and background
effects naturally needs to be taken into account. One of these uncertainties is the electrons’
energy loss from scattering processes within the WGTS. Because there is only an extremely
low share of electrons that are emitted in TBD at the required high energies, the amount
of Ty molecules inside the WGTS needs to be high enough to allow for sufficient luminosity
and a feasible duration of measurements. Electrons transiting the WGTS then have a certain
probability of interacting with tritium molecules on their path by elastic scattering and vari-
ous inelastic processes, most importantly excitation of electronic states as well as dissociation
and ionisation. These cause different levels of energy loss and systematically reduce the share
of electrons passing the MAC-E filters, thus altering the shape of the acquired spectrum.

A suitable correction method therefore requires knowledge on the energy distribution of the
respective scattering probabilities. It is useful to describe these in terms of the differential
scattering cross sectiong—g. Normalisation by the total inelastic scattering cross section oy
then yields an energy loss function f(FE) that can be interpreted as a probability density
distribution. It is not identified to sufficient precision for tritium, though: Aseev et al.
used data from KATRIN’s predecessor Troitsk nu-mass for a simple least-squares fit to a
model that combines a Gaussian and a Lorentzian curve[3]. Rather sharp energy peaks from
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Figure 2: The discrete model energy loss function (left) for 18.6keV electrons in tritium,
based upon work by F. Gliick. The widening of sharp peaks is due to the distribution of
scattering angels (right, from [1]).

dissociation and electronic state excitation cannot be reconstructed by it due to low resolution
and smearing effects. Alternatively, time-of-flight methods have recently been applied in the
KATRIN context that can be used to ultimately operate the spectrometers as differential
rather than integral filters. This comes at the expense of cutting away huge amounts of data,
though, and thus reducing the statistical reliability of this approach. Therefore, the energy
loss needs to be evaluated by a KATRIN pre-experiment.

A promising approach is the deconvolution of scattering functions as discussed in the follow-
ing subsection. In order to determine to which level of precision this is feasible, deconvolution
methods should be tested with a sufficiently accurate energy loss model. For this purpose
detailed results for molecular hydrogen were assembled by F. Gliick and combined to a soft-
ware routine that constructs a more involved model. The Gliick routine generates energy
losses and scattering angles satisfying various stochastic expectations that are assembled to
the spectral shape in fig. 2 with a binning of 0.1eV[9]. Note that this shape is adapted to
the static laboratory system: The discrete energy losses from elastic scattering as well as
electronic excitation and dissociation would require a distributional description in a center-
of-mass system. Due to the small recoil energy taken by tritium molecules in the laboratory
system, however, f can be assumed to be continuous with the provided discrete represen-
tation. The imperfect angular resolution of KATRIN causes an additional smearing in the
actual measurement. Several key features of the energy loss function can be identified:

e As it is a probability density, f(F) needs to be positive definite and normalised, so
fR f(E)dE = 1.

e A large fraction of interactions will be elastic processes, accounting for a sharp peak of
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vanishing energy losses, weakly smeared due to recoiling tritium molecules.

e No further energy loss of less than = 10eV should be detected; any measurement that
indicates otherwise needs to be attributed to background effects.

e Because electrons are indistinguishable particles, the continuous tail accounting for
ionisation energies can take any value up to half the decay energy.

e Hence, the energy loss function f is a bounded function with compact support on
the interval [0, Fiot/2]. It decays fast, though, as indicated by the BED-model[10], so
high-energy loss ionisation events are negligible.

This model can be used to identify and evaluate suitable reconstruction methods.

2.2 Scattering Functions

The idea of the previous approach is to extract f(FE) from a scattering function[l]. It is
defined by convolution of f with the experimental KATRIN transmission function,

a(B) = (T P)(E) = [ T(E - E)F(E)dE. (2.4)

It describes how probable it is for an electron to be detected given that it has been (elastically
or inelastically) scattered exactly once.

As already suggested in the KATRIN design report[!], n-fold scattering functions €, can be
regained from measurement on the overall KATRIN response function: Consider the use of
an electron gun in the calibration section, emitting electrons at 18.6 keV. This is only slightly
above the total decay energy, so electrons should behave like electrons from TBD while any
effects from actual TBD can be neglected. The observable KATRIN response function R(E)
describes (after normalisation) the probability of an electron to be detected if the energy
associated with the set retarding potential differs by F from the original electron energy. It
is measured for multiple particle densities in the WGTS, conveniently expressed as column
densities pd. In an empty WGTS, ideal responses merely depend on the filters’ theoretical
transmission function[]

0 if £ <0

T(E> = - 17E+EqU gjl lf O < E < EJ_max
1—\/1—7%;2;7 B
1 it E e < E.

Here B, denotes the magnetic field at the electron source and B4 in the spectrometer plane.
The quantity |4 is the maximum remaining transversal energy of electrons emitted un-
der O,.x, limiting the spectrometer resolution. The measurable experimental transmission
function 7 will mildly suffer from additional smearing effects.



2.2 Scattering Functions

Scattering off tritium molecules within a filled WGTS will necessarily reduce the value of
the response function within the narrow region around the endpoint energy considered in
the following. The experimental response function R can be split into contributions from
n-foldly scattered electrons:

RE)=Py - T(E)+ P -T°* f(E)+---+ P, - T°(xf)"(E)+. .. (2.5)
e1(E) en(E)

Here P, denotes the probability for an electron to be scattered exactly n times. Regarding
the total scattering cross section oy, as the inverse of an electron’s mean free column density
pdee, Scattering events can be considered independent with a scattering rate

These probabilities are therefore assumed to largely obey a Poissonian distribution, though
some adjustments need to be made in order to properly reflect scattering angles and the elec-
trons’ angular distribution at emission. Neglecting more than n-fold scattering, n additional
measurements of R(E) at non-zero column densities provide a system of linear equations

R(E)w =plr . 7e(E) + PP ¢ (B) + PV ey(E) + - - - + PPDie, (E)
R(E)wh2 =plr®> . 7e(E) + PP . ¢ (E) + Pey(E) + - - - + PPD2¢, (E)

R(E)(pd)n :PO(pd)n . TG(E) —+ Pl(pd)n € (E) + P2(pd)n€2(E) N P7(Lpd)n€n(E)
that holds for all values of E. It can be expressed as a matrix equation
R(E) —T*(E)P, = PE(E). (2.6)

Since very small n are sufficient - Hannen et al. argue that n = 3 provides satisfactory results
at the aspired KATRIN column density pd = 5 x 107 cm™2 — and its entries are of similar
order, P can easily be inverted. This allows for a stable calculation of the single scattering
function at reasonable precision. Monte Carlo simulations of the energy loss at various
column densities support this, provided measurement campaigns are sufficiently long. The
process simultaneously provides the first n scattering functions as shown in fig. 3. Although
it would in theory be possible to use these for a cross validation on the reconstructed energy
loss function, noise gets amplified in each convolution step by such amounts that this is not
feasible. The method of simulation and the impact of increased noise levels on the observed
response functions will be further investigated in section 5.

The extraction of the energy loss function from this scattering function proves to be a much
more difficult problem. A trivial approach would be to apply the convolution theorem which
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Figure 3: Simulated KATRIN response functions for four different column densities, affected
by multiple background effects (left). These can be used to calculate transmission probabil-
ities for up to triply scattered electrons by eq. (2.6) (right).

states that convolution in Euclidean space is equivalent to multiplication in Fourier space.
So if F denotes the Fourier transformation and F~! the inverse Fourier transformation,

F(El(E)))

J(E) =7 (f(Te(E))

holds. But F(T°(FE)) is oscillatory and varies strongly in magnitude, so the division operation
is numerically instable and an approach by Fast Fourier Transformation yields arbitrarily
large results. The following section outlines why the described behaviour is in fact expected
from a mathematical perspective.

3 Mathematical background

Definition 3.1 (Well- and ill-posed problems). A problem is called well-posed, if

e a unique solution to the problem exists, and
e the solution depends continuously on given boundary conditions.
Otherwise the problem is called ill-posed.
This definition is commonly attributed to Hadamard who — building upon previous work —

introduced it somewhat implicitly in a lecture series on Cauchy problems|!1] where he tried
to demarcate problems he deemed not worth a thorough consideration. This perception has

10
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shifted thanks to the huge practical impact of ill-posed problems that very frequently occur
in the context of inverse problems. Although no canonical mathematical definition exists, it
is convenient to provide the application driven

Definition 3.2 (Inverse Problem). The problem

Find z so that for a well-defined (forward) operator O
and true data y the equation Ox = y holds

is called an inverse problem if it is ill-posed and has no trivial solution.

While the uniqueness of x can often be shown (at least in some appropriate sense), the
second condition in the above definition is frequently violated, such that exact solutions
become useless when only noisy data y° is available.

By means of functional analysis it is possible to rigorously verify the ill-posedness of eq. (2.4)
as well as to establish a notion of singular systems that can be used in a first attempt to
overcome it. In order to do so, notations and descriptions are adopted from the classic
textbook by Werner[12].

3.1 Ill-Posedness for Compact Operators

Equation (2.4) may be identified as a general linear integral equation of the form
/k(x, Y)u(y)dy = v(xz) V x. (3.1)
I

It is also known as a Fredholm integral equation of the first kind and can be expressed in
terms of an integral operator K as Ku = v.

This equation is well-defined if k - u is integrable for all values of x. This can be guaranteed
by limiting k£ and u to appropriate function spaces.

Definition 3.3 (LP-spaces). For any p in the interval [1, 00),

T ( / |f|p> p

defines a semi-norm for any real-valued, measurable function on I. By the equivalence relation
f~g<|fll,=lgll, one can define equivalence classes [f] with representatives f. Restricted

to these representatives, the Lebesgue space LP(I) is then the normed vector space defined
by

LP(I) :={f : I — R is measurable with || f||,, < oco}.

11
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LP-spaces are complete and hence Banach spaces; in the case p = 2 it is even a Hilbert space.
For real-valued functions the norm is induced by the scalar product

<f,g>:/1f~g

which will mostly be the case in the upcoming considerations. If k& and u are required to be
in L?, the Holder inequality directly shows that Ku is well-defined.

Let for the moment X, Y denote general Banach spaces.

Definition 3.4 (Compact Operator). A linear operator K : X — Y is called compact, if for
any bounded subset S C X the closure of its image is compact in Y.

This statement immediately allows for an equivalent definition by

Lemma 3.5. An operator K : X — Y is compact if, and only if, the image (f(ﬂin)nem of
any bounded sequence (r,)new possesses a convergent subsequence.

Hence it can be shown that K in eq. (3.1) is a compact operator:

Lemma 3.6. Let K, : X — Y denote a sequence of bounded linear operators with finite-
dimensional image. If there is an operator K : X — Y with K,, — K 1in the operator norm,
then K is compact.

This statement follows from the observation that the space K(X,Y) of compact operators
from X to Y is a Banach space, too, and that bounded linear operators with finite dimensional
image spaces are always compact. Because a finite-dimensional approximation by ”step
functions” k, — k can be constructed for k € L? (by calculating weighted averages of k on
increasingly narrow partitions of its domain), Kisa compact operator.

This observation, however, implies that K cannot be continuously inverted. To see this,
consider

Lemma 3.7 (Riesz). Let U C X be a closed subspace. For each § € (0,1) there is always an
x5 satisfying ||zs|| = 1 and||zs —ul| >1—-0 VYueU.

For X and Y with infinite dimension assume now a compact K : X — Y had a contin-
uous inverse. For every bounded sequence (z;);en there would be a subsequence (z;, )ken
with converging image (v;, Jkenw in Y by compactness of K. Due to continuity of the in-
verse this would imply that (z;);ew already had a converging subsequence. But with Uy, =
span{xy, Ty, ..., x;_1} Riesz’s lemma allows for the construction of a bounded sequence (xy)
in X without any converging subsequences. Thus there cannot be a continuous inverse to K.

Any solution 2% to Kz = y° will thus most likely be meaningless in the sense that it does not
convey any information about the true solution in the noise-free case. The problem should
therefore be re-framed to finding an approximate solution

1 2
r = argmin —HKJE — y‘SH + R(Z), (3.2)
zex 2

12
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where the latter reqularisation term penalises undesired properties of & occurring in z° and
transforms it into a well-posed problem. While there are no general restrictions on the norm,
it is often convenient to choose it as induced by the L? scalar product. In particular, this
choice comes naturally when assuming z,y € L2

In the context of the KATRIN energy loss function this shows that eq. (2.4) is certainly
ill-posed: T° and f are bounded functions on closed intervals and thus L2-integrable; the
convolution in eq. (2.4) is therefore a well-defined compact operator. Since LP spaces have
infinite dimension, it has no continuous inverse and the second condition in definition 3.1 is
violated.

3.2 Generalised Inversion

Apart from the fact that inversion can become discontinuous for a mapping on infinite-
dimensional spaces, it often is found that a mapping is not injective in the first place, so an
inverse is ambiguous. However, a notion of inversion can be derived by means of a singular
value decomposition.

Definition 3.8 (Spectrum). For a linear operator L : X — Y on vector spaces, the spectrum
is defined as the set

o(L) ={X € R: AId —L has no continuous inverse}. (3.3)

This definition generalises the notion of the spectrum for finite-dimensional operators; A € o
is likewise called an eigenvalue.

Applying its adjoint to a linear operator L : X — Y clearly yields a normal operator, in which
case one can always find an eigensystem comprising an orthonormal set {1, x5 ...} € X that
can be expanded to an orthonormal basis and eigenvalues {\;} C R (or another field over
which X is defined). Based upon Riesz’s theorems, it can be shown for any compact operator
K that these eigenvalues are at most countable with 0 as the only possible accumulation
point. Because the product of a compact and a linear operator is always compact, K*K
is a normal, compact operator. Because it is self-adjoint, its eigenvalues are nonnegative.
Therefore they form a null sequence that can be represented as 02 > 02 > --- — 0. A set
of linearly independent, orthonormal vectors is then defined by y; := Iff ,0; # 0 which can
be canonically expanded to an orthonormal basis of Y. From these definitions the following
identities arise directly:

Kz = oy,

Kz = Zai(x,mi>yi (3.6)

Definition 3.9 (Singular Value Decomposition). The set {z;, y;, 0; }iew is called a singular
system (to the operator K) with the singular values o; if it satisfies eqgs. (3.4) to (3.6).

13
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Equation (3.6) is called the singular value decomposition (SVD) of operator K it is a series
in case of infinite dimensions.

Assume for the moment that the operator K is bijective, so all singular values are positive.
Since x = Y (x, z;)x;, SVD allows for an inversion of Kz = y as

T = Z —<x’?xi>xi = Z —<x, i*yi>xi = Z —<y(;lyl>:vz (3.7)

i ¢ i i
However, this solution is only well-defined if the series is convergent (it is then said to satisfy
the Picard criterion). This is not generally the case for a compact operator as demonstrated
in the previous section. If the amount of singular values is finite, though, or the series is
truncated for some n, a well-defined result is obtained: If o; > 0 & i < n, let K,, denote
the operator defined by

K,z = Zai(:p,mi>yi (3.8)
i=1

on the finite dimensional subspaces span{zy,...,z,} = X,, C X, span{y1,...,y,} =Y, C Y.
Then there are canonical projections for any elements z € X, y € Y:

n n

T = Z(x, )T Y= Z(%%Mi- (3.9)

i=1 i=1

These allow for an approximate solution to the original problem by K,z = y. Note that
this projection is well-defined for operators between vector spaces of dimensions k # [, too.
For k,l < oo a generalised inverse is then conveniently defined as the unique solution (by
eq. (3.7)) to the problem K,z =y where m denotes the smallest positive singular value.

If the K, are finite-dimensional operators, they can be identified with matrices. In order to
simplify the distinction between matrix and operator ”"language”, let the SVD then be given
in matrix notation as A = UX V7T with orthonormal matrices U and V7, where the columns of
U and rows of V' shall be identified in the finite-dimensional case with basis vectors {y;} and
{z;}, respectively. The matrix ¥ = diag(oy, 09, ...) contains the singular values. Finally, let
¥~ be the matrix obtained by inverting the non-zero entries and subsequently transposing
3. Then the generalised solution to the matrix equation Az = y is given by

=V Uty = A1y (3.10)
A1 is called the generalised inverse of A.

14
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3.3 Discretisation

A matrix description is especially useful if discretisation is necessary. Let K specifically
denote convolution with the kernel k£ on an interval [a, b], so Ku = v becomes

Ku(z) = / k(x — y)u(y)dy = v(zx) V. (3.11)

If the value of k is only accessible for a discrete set of arguments Z = {z1,22,...,2,} C R,
e.g. experimental measurement points, integration is not well-defined. Instead, a discrete
operator K" needs to be considered that replaces integration by summation:

m—1
KMl () = Z 'z = 2 — y)u"(y;) - (yj1 —y;) = 0"(z;) fori=1,... 1. (3.12)
j=1

The superscript h indicates the discrete setting which can only use/provide knowledge on v
or u in discrete arguments, too.

If the y have equal step width Ay (and consequently the x and z, too), eq. (3.12) can be
expressed — using physical vector notation for clarity — as a matrix equation 7 = Ay - K'a"
with

k(2 = 2p — Y1) Ei(zi) o0 KMz =20 — yme1)  EM(21)
kh(zlﬂ =T — ym_g) l{h(Zl) e k‘h(Zg = T9 — ym_g) kh(ZQ)
K" = . (3.13)
K'(zipm—ro = 21— 12) K"(2tpm-s) - K'"(zmo1 =22 —y2) K"(2m2)
' (ztom-1 = 20— y1) K'(2em—2) - K'(zm=22—31) K'(2m-1)

Note that since these arguments are subject to the condition
T, —Y; € Z Vi, ] (3.14)

(otherwise k" had no defined value), [+m—1 < n must hold. Thus, the goal of high precision
of the solution u", which is based on knowledge on the boundary condition v" and therefore
relies on a large m, conflicts with the goal of high generality of the solution, i.e. a large [. In
the context of the KATRIN energy loss this would mean that data for the single scattering
function needed to be discarded — by eq. (2.6) it has the same domain as the experimental
transmission function 7. But this is not necessary when instead T"(E) = T(FE) is assumed
as a reliable model where no measurement data is available. Since measurement will be
performed at N + M + 1 retarding potentials U;, i = —N, ..., M, eq. (2.4) is expressed by
the matrix equation

& = T°feAU with (3.15)
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4 REGULARISATION METHODS

Te  T¢, ... T°ny TN 0 0 . 0
TE  Te  T¢, ... Ty, T 0 . 0
TG, ... TE TE T¢, ... Ty, TN 0
T=| TY T4, ... T¢ Te T ... Ty, T |. (3.16)
1 Ty Ty, ... Te Tg T ... Tty
1 ... 1Ty Ty, ... TF T T,
1 1 1 TS, T4, ... T¢ Te

Equation (3.13) represents a finite-dimensional approximation to the convolution operation;
it is associated with a bounded operator of finite rank. Increasing the amount of measure-
ment points would expand it and thus define a family of linear operators in the sense of
lemma 3.6. They are continuous, but the difference in magnitude between the smallest and
largest singular value will quickly increase. Therefore the ill-posedness of eq. (3.1) makes a
more precise matrix approximation to it ill-conditioned, inflating rounding and data errors
in numeric computation. Consequently, the finite-dimensional discretisation requires some
regularisation method, too, and eq. (3.12) is restated to search for

1 2
u" = argmin §HKhﬂhAyh - vhH + R (a") (3.17)

where R" denotes a discrete regularisation term. The discrete norm is understood as the
euclidean 2-norm which is the canonical choice for a discrete analogue to the L?-norm.

4 Regularisation Methods

Let again A denote any real matrix and let Ax = b be a corresponding matrix equation while
the letter K shall be reserved for operators.
4.1 Truncated Singular Value Decomposition

Just like the divergence of eq. (3.7), the instability of a solution for the matrix equation
Ax = UXVTx = b gained by SVD,

g

7= zn: <“i’ib> v, (4.1)

mostly originates from or is amplified by small singular values. It is therefore reasonable to
assume that a better approximation is achieved by truncating the sum once singular values
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4.1 Truncated Singular Value Decomposition

fall below a specific threshold, i.e. the regularisation parameter o. This approach is therefore
called Truncated Singular Value Decomposition (TSVD).

Although compelling in its simplicity, it is unclear how the parameter o needs to be chosen
and to what extend results gained by this approach can be considered reliable. An answer
to the latter question is given by

Theorem 4.1 (TSVD as Minimisation). The Truncated Singular Value Decomposition so-
lution can be identified with a least norm solution to the minimisation problem

TaTSVD = argmin | Az — b||* subject to (4.2)
z€X k=max{i:c;>a}
- 2
Ap = argmin A— AH . (4.3)

A€Rm*nrk(Ay) <k

Proof. Let A = UXV7T denote the standard singular value decomposition of a matrix and let
Y, denote the diagonal matrix containing the first k singular values. Firstly,

Ay, = U%, VT = argmin||A — B| (4.4)

rk(B)<k

is the best approximation to A with at most rank k. This was first shown in the Frobenius
norm[!3], but the statement holds likewise for any norm invariant under unitary transfor-
mation as proven by Mirsky[!1]. For the spectral norm as the induced matrix norm by the
standard scalar product, this is especially easy to see: While | A — A,||” = o2 41, for any A of

same rank there is a normalised vector z € ker A N span{v; }i=1, g1 so that

oA - e s

k+1 k+1
2 2
= adllwl® > oiy Y lll* = ofs. (4.5)
i=1 i=1

Secondly, zj, := x4 rsvp 1S a best approximation because for any

|AxZ — b)) = || Ar(E — 2) + Agzry, — 0|
=[|Ak(@ = z)||” +1| Aszs — 0]

[

~\~

This is true since the last summand vanishes by definition of x. Finally, knowing A, has no
full rank, this statement also holds for any &, = xy + &) where 2 € ker(Ay). But xy is the
least norm solution to eq. (4.2) due to the orthogonality of {vii1,...,v,}, a generating set

of ker(Ayg). O
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4 REGULARISATION METHODS

The proof works analogously in the more general case of compact operators, too. It needs to
be emphasised that in eqgs. (4.2) and (4.3) two subsequent minimisations are performed, so

|Agzr — Az|| #  min
rk(A)=k, F€X

‘A@ - A:cH (4.7)

if £ # n. The theorem underlines that solutions presented by this method are, although
numerically stable, sensible to noise on the the input.

An improved solution can therefore be obtained by smoothing the input data. For the KA-
TRIN energy loss, for instance, the single scattering function’s interpretation as a probability
distribution can be used. This requires the true scattering function to be monotonously in-
creasing, so if noise on the transmission function measurements described in section 2 is
additive with mean 0,

€, = argmin|je — €| (4.8)
€20

provides an improved approximation to the true scattering function.

Smoothing data is also useful for a preliminary answer to the open question of appropriate
parameter choices. A reasonable a posteriori estimate for the regularisation parameter can be
derived from the discrepancy principle, popularised by Morozov[15] and therefore frequently
attributed to him:

Definition 4.2 (Morozov’s discrepancy principle). Let O denote a forward operator and
y® the data resulting from a measurement of some true data y, corrupted by noise 6. The
regularisation parameter a(y°,d) shall be chosen such that for a reconstruction of input data
Lo

HO(%) _ ng ~§. (4.9)

The idea behind this definition is that no reconstruction z, can be expected to provide a
lower noise level in the result than what is obtainable from an actual observation. This
requires some knowledge about the noise level present in the measurement, which is well
estimated by a comparison of the original and the smoothed data. For the discrete KATRIN
setting, eq. (4.9) suggests to use an o that satisfies

[T fo — erlly =& — &l - (4.10)

This leaves plenty of room for interpretation, though. Since the above error estimate assumes
noise to be additive with 0 mean, it necessarily results in an underestimation of the actual
noise level. While this makes it plausible to chose a rather generous o, no strict relation can be
derived. Eventually, the discrepancy merely provides a reasonable order of magnitude for the
regularisation parameter, subsequent adjustment is often necessary and therefore susceptible
to expectation biases.
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4.2 Tikhonov Regularisation

4.2 Tikhonov Regularisation

Another approach is given by the so called Tikhonov regularisation. By discarding singular
values below the regularisation threshold, the TSVD solution to the issue of high-frequency
noise in the equation Kz = y implies that any high frequency data is noise. The method
comes hence at the expense of discarding any information on ground truth associated with
these small singular values.

Lavrentiev’s method resolves this by addressing an alternative equation (K + al)z = y,
shifting all singular values by a constant parameter o, so

n

1
T = Ty, Lav = E <yza y}% (411)
o« + 0;

This would allow for a preservation of data while guaranteeing small rounding errors in
machine division. The influence of this shift on medium singular values, however, is fairly
substantial. It can be reduced when following a method suggested by Tikhonov|[16]:

n

op
R Ty, Tikh = iy Y) T 4.12
T = Ty, Tikh ;OﬁLUiZ@ y)x ( )

Equation (4.12) can be rewritten in terms of a minimisation problem:

Theorem 4.3. The vector x, defined by eq. (4.12) is a minimiser of the functional
1 2, @ 2
Falw) = 31Kz — gl + Sl (113)

Proof. E, is minimised by a solution of
KKz + ax = K™y, (4.14)
because for any feasible
Eal®) = 5|KE — gl + S|P
2 2
= G =)+ Ko~y + 5 )+ ]
= Bula) + 5| K@~ )| + 5] ol

+a(f —z,x) + (T — 2, K"Kz — K'y) > E,(z).

(. J/

424(1790,7&30}
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4 REGULARISATION METHODS

Using eqs. (3.4) to (3.6) on the other hand yields

112 o 0 - Oi
K'K o a — ) KK 7 1) %
T+ 0z z;wrag(y y) :U+Z;a+0i2<y y)a
1= :a_igxi 1=
= Zai<yi7y>xi = Z(yh?/)K*yi = K"y.
i=1 i=1
Thus z, is in fact a solution to eq. (4.14) and therefore minimises E,. O

This shows that the Tikhonov regularisation is a minimisation problem in the style of eq. (3.2).
The solution gained through singular value decomposition balances data fidelity and the
solution’s norm, thus disallowing strong oscillations. It is hence a reasonable choice if smooth
solutions are expected. The identification of the Tikhonov solution as

Ty, Tikh = argmin £, (z) (4.15)

allows for a more intuitive understanding of its deficiencies, too. As Tikhonov regularisation
imposes a penalty on the solution’s norm, it is systematically biased towards ”smaller” solu-
tions.

In comparison to a TSVD solution it can be expected that Tikhonov solutions yield less
oscillations, but fail to recover sharp peaks, e.g. for elastic scattering in the TBD energy loss
model. In more general terms, any regularisation is called a Tikhonov regularisation, if it
uses a regularisation functional

Ra(x) = 5| Dal? (4.16)

with an operator D - commonly a differential operator. In case a solution gained by direct
Tikhonov regularisation as above is oscillatory, this will naturally only provide an improve-
ment with respect to a constant offset (or a low degree polynomial for higher derivatives).

Another motivation for Tikhonov regularisation is based on the analysis of noise in a mea-
surement. By the Bayesian interpretation of inverse problems, outlined for instance by Taran-
tola[17], it is seen that Tikhonov regularisation is associated with Gaussian noise:

Theorem 4.4. For a measurement y° (via operator K) let the true cause x be a realisa-
tion of a N(0,02)-distributed random variable X and let y° be described by a N(y,o?)-
distributed random variable Y. Then the mazimum a posteriori (MAP) estimator xyap =
argmax P(X = z|Y = 4°) can be expressed in the style

2
earap = argmin|| Ko — ||+ afle]l. (4.17)

The idea behind this theorem is that from a stochastic point of view the acceptance of a
specific solution = to cause the observation y implies a judgement on how probable/reliable
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4.3 L-curve criterion

the observation itself is. A suitable solution should therefore not only reflect on how well it
reproduces an observation, but also on how likely that solution is to occur in itself. This is
expressed by the MAP estimator that applies a posteriori knowledge concerning the actual
observation.

Proof. By Bayes’ theorem, the conditional probability for x to be the correct solution, given
the observed data y°, can be expressed in terms of the unconditional probabilities P(X = z),
P(Y =3°) and the data probability P(Y = y°|X = x). Monotony of the logarithm implies

Tarap = argmax P(X = z|Y = ¢°) = argmaxlog P(X = z|Y = 1°) (4.18)
Payes argmin —log P(Y = 9°|X = z) —log P(X = 2) +log P((Y = 1°) (4.19)

T 6 , 2
= argmin¢ ||Kx —y H + co||z|| (4.20)

. 5 2 0o 2
= argmin ‘Kx -y H + =zl (4.21)
T C1

where the penultimate equality follows from the normal distribution of X and Y. O

The variances are often not sufficiently well known, so just like in the case of the Trun-
cated Singular Value Decomposition it is necessary to choose the regularisation parameter
consistently.

4.3 L-curve criterion

In theorem 4.3 the balance between residual norm R(«) := HK To — y‘5HQ and solution norm
N(a) = ||zo|” is mediated by the regularisation parameter. Choosing o very small will
severely underregularise the solution; the damping effect of o in eq. (4.12) causes almost
constant solutions if it is selected too large. A suitable regularisation parameter can then be
identified by how well it balances the conflicting requirements imposed by the regularisation
method. As had been observed earlier, but established beyond heuristics by Hansen[l&], a
logarithmic N(«) vs. R(«) plot takes in many cases a characteristic L-shape. The kink in
the plot shows where a good balance between data fidelity and smoothness in the solution
is obtained; the L-curve criterion therefore simply suggests to select the o associated with
it. For a sufficiently well-behaved L-curve — notorious counterexamples can be constructed
— this corner can be specified as the instance where the curvature is maximised. Denoting

~ A

R =log R(a), N =log N(«), it is generally defined as

E/N// - R//N/
w(a) = T N (1.22)
(R/2 + N/2)§
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4 REGULARISATION METHODS

A numerical calculation of this expression is very expensive, though. Following an observation
by Vogel[19] (with slightly different notations and hence different formula), however, it can
be greatly simplified in the case of Tikhonov regularisation:

Theorem 4.5. For a Tikhonov-regularised problem, the L-curve’s curvature is given by

RN/|N'| + a(R + aN)

= RN 3
(R? + a2N?)2

(4.23)

Proof. One may first note that by means of the Singular Value Decomposition and eq. (4.12)

2

oo oo 2
N = |z 2 4.12 (o] i i <:v¢,wj:>=5i,j a; . 2 4.94
(@) =lleal® > S v 2 Gt apt (4.24)
2
R(a) =|Kzo —yl* =||D o7y oy e WV K — e )
i=1 ‘i
2
SIS0 B ] =3 Y (4.25)
— — (0_12 + Oé) y7 yz yl - — (O‘ZZ + OZ)Q ym y . .
From this it becomes obvious that
dR dN
o= e and consequently (4.26)
d’R dN >N
e P 4.2
do? do @ do? (4.27)

Furthermore making use of R’ = R'/R and N’ = N’/N, this can be expressed as

R’ N//N_NIQ RNR_R/2 N’/
EL 5 — 5 =
k=12 _N BN (4.28)
R'2 N2\ 2
(5 + &)

—aN'R N'N—N"? + o?N"?24+RN'+aRN" N'N

— R N 1 N (4.29)
(N2 + RQ)Q%
_ rvIN “;f;']\;i(};j al) (4.30)
This shows the desired result. O

The reduction in computational effort by this approach is obvious. Unfortunately, explicit
Singular Value Decomposition might become prohibitively expensive in large scale implemen-
tations. As mentioned by Hansen[20], the result is still useful where Tikhonov solutions are
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4.4 Model-adapted Minimisation and Parametrisation

obtained as minimisers of eq. (4.14), though. Since

2 > ao;
N, :a<2a,l’a>, where Zoa = XZ: W,
it follows analogously to theorem 4.3 that
1
2 :argmin§HKz— (Kxa—y)}|2+%||z||2, (4.31)

so the same minimisation algorithm as for the original Tikhonov solution can be applied,
using the residual from the obtained solution as the new data term.

The method again has certain disadvantages, most notably that it hardly profits from (or
even breaks at) a reduced noise level: While a reasonable regularisation method should allow
for

[ Ko —yll = 0, (4.32)
that is to say it should reproduce ground truth in the limit of no regularisation, an ideal
method of parameter identification for @ = a(y?, §) should yield

é
|Kzq —y| &= 0. (4.33)
As shown by Bakushinksii[2 1], however, this cannot be achieved when o is chosen irrespective

of the noise level 8. Hanke[22] also constructed examples that illustrate well how the quality
of Tikhonov solutions identified by the L-curve criterion is reduced with respect to ground
truth for low noise on the measurement data. In case of moderately high noise, however, a
fair quality of solution is obtained.

4.4 Model-adapted Minimisation and Parametrisation

While the above shows that Tikhonov regularisation can be expected to yield more stable
results than TSVD, this direct method cannot meet the expected features of the KATRIN
energy loss function: Favouring small solutions, the sharp peaks in the model from elastic
scattering and electronic excitation/dissociation events are fully lost, as will be visualised
in section 5. Additionally, compensatory negative values are introduced that lack a valid
physical interpretation. This section therefore focuses on strategies to overcome the de-
scribed issues. Knowledge about the expected result can be used to define a model-adapted
constrained minimisation:

1
xr = argmin §||K9E —y|?

subject to supp(z) C [a, ]
p<zT<r
s<i <t (4.34)
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4 REGULARISATION METHODS

where p,r,s,t are suitable bounds and constraints to £ and its derivative. This could be
expanded by other constraints. In case of the energy loss function, a valid formulation is

1 N 2
f = argmin iHTef_el
subject to supp(f) C [0, Fiot/2]
f=0
% <0 Y E€0,Euw/2\(1leV,16eV). (4.35)

Sufficiently efficient algorithms to tackle large-scale problems of this sort exist.

Alternatively, it can be worthwhile to enhance the previous parametrisation approach by
Aseev et al.[3]: The energy loss function can be modelled as a combination of a (truncated)
Lorentzian curve for the ionisation tail and a Gaussian curve each for elastic scattering,
excitation of electronic states and dissociation, respectively. Further enforcing truncation on
these provides a parametrisation that will satisfy all of the requirements defined in section 2.1:

(x — z¢) )

=0 * Ue - exc -
fp(x) () - ae exp( o + Qe €xXp( o
Agiss €XP(——— T — Tion) * . .
¢ P Wyiss (I - bion)2 + wgon

Even higher precision is possible if superpositions and combinations of multiple Gaussians
or Lorentzians are allowed. This construction based upon model assumptions suffers from
inherent bias towards the specific model, though. In addition to that, raising the amount
of free parameters makes the parametrisation process itself increasingly ill-posed. So while
it can be refined arbitrarily towards a high-precision solution for the hydrogen-based model
problem, the same might fail when applied to tritium. One should therefore refrain from
pursuing deceptively fine approximations.

A parametrisation can also be useful in order to counteract the deficiencies of Tikhonov
regularisation. Recall that it favours solutions with small norm. When strong peaks are
expected, these cannot be accurately recovered. By contrast, consider a decomposition of an
ill-posed problem in the form Kz =y into a

well-posed problem Kz =g (4.37)
and an ill-posed residual problem Koxr = 0y, 0Jy=1y — 1y, (4.38)

yielding the solution z = £+ dx. If necessary, the operator K could also be replaced in one of
the above equations by a suitable approximation. Finding a preliminary parametrisation with
far fewer (and non-redundant) free parameters than data points will usually be well-posed.
A very rough parametrisation can then yield a residual problem with a smaller solution.
As a matter of fact, it is crucial to use only a mediocre parametrisation: Since it hardly
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reduces noise, the noise level in the residual problem increases. For an ideal parametrisation
that reproduces ground truth, the residual problem would simply be noise and the Tikhonov
solution would become completely meaningless. In consequence, this approach mainly makes
sense when the noise level is well under control, but a strong parametrisation is difficult to
obtain.

5 Numerical Experiments

The overall aim for an appropriate deconvolution method within the context of the KATRIN
energy loss function is to provide an approximation to the true energy loss function f such
that systematic errors in the ultimate neutrino mass estimate do not exceed 0.0075eV?, the
foreseen share of the KATRIN error budget[!]. Therefore any solution derived through one
of the methods discussed in section 4 should not only possess the expected characteristics
noted in section 2.1, but also reliably satisfy this error limit.

In order to evaluate the expected level of systematics, Monte Carlo experiments are per-
formed.The routine was already applied by Hannen et al. and is based on work from the
KATRIN predecessor experiment in Mainz. It is contained in the KEloss software pack-
agel9]. 1000 KATRIN measurements are simulated that provide a spectral shape according
to eq. (2.3), modified by several experimental influences. These include physical effects like
the final state distribution of TBD, as well as statistical fluctuations and up to four-fold elec-
tron scattering according to the original Gliick model. For sake of simplicity, m(#,)?*=0.2 eV?
is assumed in all simulations. Using the squared neutrino mass, the endpoint energy, the
background rate and the spectrum’s amplitude as free parameters, the obtained data is then
fitted to eq. (2.3). In this routine the same physical effects are applied as before with the ex-
ception of the energy loss model. It is now replaced by a deconvoluted energy loss according
to the aforementioned methods. The mean of the thereby obtained values for m(,)? differs
by some y from the input; this is ultimately assumed to provide the desired estimate for the
uncertainty due to energy losses by scattering events. The uncertainty of the mean is for all
simulations 45 x 1074 eV?; it will be omitted for simplicity.

For the purpose of this thesis, three variants of the discrete single scattering function (SSF)
are considered:

e The high-fidelity estimate ! s was already used by Hannen et al and has been displayed
in fig. 3. It is gained from a KATRIN-adapted simulation routine of the transmission
process, assuming observation of 10 million electrons per energy step and column den-

sity[9, 1].
e A noisy estimate €” is constructed by a adding N(0,0.001)-distributed noise to er. It

could result from shorter calibration measurements or unexpectedly strong background
effects.
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5 NUMERICAL EXPERIMENTS

e The (almost) ideal €?, is obtained by convolution of the Gliick model f" . with the
simulated transmission function from the high-fidelity estimate.

Simulations of the transmission function are performed for 551 evenly spaced retarding po-
tentials that span the range of 18550-18605 keV. Any deconvolution has been performed with
respect to that domain, using the very robust algorithms provided by the scipy.optimize li-
brary[23] in Python. The uncertainty estimates from the above described evaluation methods
are displayed in table 1.

Hannen et al. applied TSVD to ezf; their results are shown in fig. 4. They found an
optimal regularisation parameter for TSVD as a=0.3% of the maximum singular value both
by minimising || f* — f}wdnz and by the above evaluation method, yielding a satisfying j =
0.0053eV?. (Note that an optimisation of the regularisation parameter with respect to the
evaluation method itself would be desirable in order to investigate what smallest offset is
theoretically obtainable for the respective scattering functions; but it is fully impractical due
to the long run-time of the evaluation routine.) These solutions agree with the general shape

0.8— , . . . 0.8— . . .
0.7F--deeeeircioef —— model i 0.7kf-eibof —  model i
.| — SVD with w,, =0.3% || 0.6 | i | — SVD with w,, =0.6% ||

0.6

=] =]
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= =
3] 5]
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Figure 4: Energy loss functions obtained by by Truncated Singular Value Decomposition.
Note that the regularisation parameter is expressed as a percentage of the largest singular
value. From [I]

of the energy loss function f. However, they are strongly oscillatory and neither meet the
expected non-negativity of domain nor codomain. A more exotic approach by non-negative
matrix factorisation [24] cannot resolve this due to the density of the convolution matrix.
More importantly, this cannot hold as an a prior: parameter choice where measurements
yield poor data quality. If noise is further reduced, on the other hand, the potential for
increased reconstruction quality is not exhausted. Applying TSVD with o = 0.0030; to €”,
for instance, provides a prohibitively large p = 0.0145eV?, while the optimal solution for
a high precision measurement is not attained. Reconsidering this method with a modified
SSF satisfying the natural monotony constraint as defined by eq. (4.8) can eventually reduce
oscillations; yet, the result fails at limiting the uncertainty resulting from energy losses with
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Truncated Singu- | Tikhonov Regula- | Minimisation Parametrisation
lar Value Decom- | risation with Tikhonov
position Regularisation
SSF Method | m(7.)? | Method | m(7.)? | Method | m(7.)? | Method | m(#,)?
€h a = |0.0053[1]| L-curve | 0.0048 | SLSQP | 0.0045 | pure 0.038
0.0030,
Model | 0.0053[!]| Model | 0.0055 | trust- 0.0029 | L-curve | 0.0034
comp. comp. constr
ng ! =1 0.0085 | L-curve | 0.0044 | SLSQP | 0.0062
0.0030
Model | 0.0045 | Model 0.0063 | trust- 0.0029
comp. comp. constr
e Morozov| 0.0145 | L-curve | 0.0283 | SLSQP | 0.0093 | pure 0.154
Model | 0.0258 | trust- 0.0071
comp. constr
e Morozov| 0.0000 | L-curve | fails SLSQP | 0.0068
Model | 0.0000 | Model 0.0000 | trust- 0.0032 | pure 0.0137
comp. comp. constr

Table 1: Expected systematic uncertainties 4 = m(7,)? in eV?, each with an uncertainty of
+5 x 10~*eV?2, for the different regularisation methods and respective scattering models. L-
curve’ indicates a solution obtained by the L-curve criterion, ’"Morozov’ by application of the
discrepancy principle. '"Model comp.’ solutions are optimal approximations to the energy loss
model with respect to the L? norm. ’SLSQP’ and ’trust-constr’ denote the applied algorithm
for constrained optimisation. The method ’pure’ refers to the mere identification of optimal
parameters in eq. (4.36).
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5 NUMERICAL EXPERIMENTS

= 0.0085eV2. Equally, an a posteriori estimate by application of Morozov’s discrepancy
principle does not provide an improvement as it merely can identify an order of magnitude
for the regularisation parameter.

A more stable result is obtained through Tikhonov regularisation. Since the gradient and Ja-
cobian of the minimisation functional in theorem 4.3 can be easily implemented, computation
with the Newton conjugate gradient trust-region algorithm[25] is faster than the minimisa-
tion of eq. (4.23) by means of singular value decomposition. The fact that this algorithm fails

0.74
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0.4

0.3

16

Normalised cross section

—— SVD
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Figure 5: The calculation of Tikhonov solutions by Singular Value Decomposition (SVD)
is slower, but more stable in the limit & — 0 than a solution obtained by the Newton-CG
trust region algorithm. Displayed is the case a = 107'3 for the input €, where the SVD
regularised solution is not discernible from the input model. The box shows the enlarged
excitation/dissociation segment.

at handling very small regularisation parameters can be neglected for the real experiment.
Only when applied to €?, it introduces undesired, artificial features for a < 107°. Figure 5
shows solutions for the regularisation parameter o = 10713, The optimal theoretical para-
meter, chosen again from minimising H fh— f}wdnz, yields an almost perfect reconstruction of
e, and it is sufficiently strong in the case of the experimental inputs (1 = 0.0055 ev?). More
importantly, a parameter chosen by means of the L-curve criterion can provide a comparably
good deconvolution without the artificial knowledge of the original model. This indicates that
good parameter identification is possible for the real experiment when no model is available.
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However, comparing the solution displayed in fig. 6 to the already presented TSVD solution
does not show a huge improvement in visual terms. The optimal Tikhonov parameters with
respect to the input model and the L-curve both offer no substantial improvements on u.
Additionally, they still exhibit the same unpyhsical features as the TSVD solution, although
to a smaller extend.
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Figure 6: Tikhonov regularisation provides a good solution (box) that is reliably obtained
by means of the L-curve criterion.

These shortcomings do not occur when a constrained minimisation is performed that en-
forces non-negativity of the function and fidelity to the requirement of compact support on
[0, Etot/2]. As an additional constrained, non-positivity of the derivative is imposed, except
for the region of electronic excitation and dissociation between 11-16eV. These constraints
are much more difficult to handle, though, and are computationally very expensive. Suit-
able algorithms are the highly versatile constrained trust region (trust-constr) algorithm and
the slightly faster SLSQP method (Sequential Least Sqaures Programming)[23]. The former
provides the best available offset for the neutrino mass at 0.0029 eV? in the simulations; the
deconvoluted energy loss functions from €? s are displayed in fig. 7. Moreover, trust-constr is
the only applied method for which the evaluation algorithm yields an offset within the error
budget bounds even for €!. The output obtained from constrained optimisation, however,
is highly sensitive to the provided initial guess and introduces new undesired features, most
notably a staircasing effect in the ionisation tail. Additionally, the trust-constr algorithm
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5 NUMERICAL EXPERIMENTS
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Figure 7: The solutions obtained by constrained optimisation provide the best available values
for p, depending on the applied algorithm. The box shows the enlarged excitation/dissocia-

tion segment.
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provides an apparent reconstruction of the electronic excitation/dissociation section that is
essentially arbitrary, even when true input is provided. Thus the used algorithms represent
no valid regularisation method in the sense of eq. (4.32).

For the purpose of parametrisations, a suitable method must only rely on the integral data
of the SSF, so the Levenberg-Marquardt algorithm is arguably the canonical choice for this
non-linear problem. In order to maintain physical plausibility, some bounds have to be
imposed (e.g. non-negativity of the amplitudes), which can be effectively handled by the
very stable implementation leastsq in the Imfit-package[20]. As can be seen for the input
ezf in fig. 8, it provides visually compelling parametrisations that obey in principal all of
the required properties. Unfortunately, in the context of the suggested evaluation method, it
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Figure 8: An optimal parametrisation (green) according to eq. (4.36), compared to the
energy loss model (red). It is obtained from the input SSF €}, (red) that is extremely well
met when the parametrisation is convoluted with the corresponding transmission function
again (blue).

generates extremely poor results. This can be mitigated by applying Tikhonov regularisation
to a residual problem. Heuristically, a surprisingly good solution in terms of the evaluation
method can be found for

=03 % f;’ + 0f" subject to

Of" = argmin

: ]2+aHaf’1H2 (5.1)
ofh

’Teafh — (el — 03T f1)

where f]? denotes an optimal parametrisation of eq. (4.36) with respect to the input €? s and
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6 CONCLUSION AND OUTLOOK

the regularisation parameter o is determined by the L-curve criterion. However, this solution
is a poorer approximation to the input energy model in any other respect and it gives reason
to assume some instabilities in the evaluation software which is extremely sensible to the
numeric integral of the deconvoluted energy loss functions.

6 Conclusion and Outlook

This thesis has shown that the retrieval of the tritium energy loss function for 18.6keV
electrons by deconvolution of scattering functions is an ill-posed problem which can be solved
with sufficient reliability by various methods, as long as the level of noise in the energy
loss function is moderate. The approaches perform acceptably for the simulated data in
use, the observed sensibility of the evaluation routine suggests that the principal path to
low systematic errors in the KATRIN neutrino mass estimate due to inelastic scattering
remains very smooth data for the scattering functions. Canonical methods, most notably
Truncated Singular Value Decomposition and Tikhonov regularisation, provide reasonably
good estimates, although they do not present satisfactory models of physical reality. The
L-curve criterion can be trusted to provide good regularisation parameters for a larger range
of noise levels and is especially efficient to apply for Tikhonov regularisation.

The more involved solutions obtained through constrained minimisation are stable and re-
spect the KATRIN error budget best. Nevertheless, they produce certain misleading prop-
erties, too. Energy loss functions obtained from optimal parametrisations arguably offer the
visually most compelling deconvolution results but fail with respect to the the estimated un-
certainty limit for electron scattering. This can be overcome by combination with Tikhonov
regularisation; a method for consistent parameter identification that simultaneously balances
the parametrisation problem and residual problem is beyond the scope of this thesis, though.

Meanwhile, recalling that the applied Tikhonov regularisation is associated with Gaussian
noise, it could be useful to pursue regularisation terms optimised to other noise types instead.
Some more recent removal methods, e.g. for Cauchy noise[27], are promising. For the purpose
of the KATRIN experiment, the present methods should yet be sufficient to make sure that
systematic uncertainties from inelastic scattering in the tritium source will contribute by no
more than 0.0075eV? to the experiment’s error budget.
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7 Appendix

The code that was used for this thesis is provided as a 'Kelopy’ package. For convenience,
parameters are handled by txt-files:

The folder ‘parameters’ contains the parameter files that specify which input and output
is handled. For each step, there is already a respective parameter file that can easily be
adjusted to the desired use.

In order to obtain the scattering functions, note the relative path to the data files for normed
transmission probabilities and scattering probabilities (including zero-column density) as well
as for the output files in ‘parameters/scatinversion.txt’ and execute ‘scatinversion.py’.

In order to perform deconvolution by truncated singular value decomposition or Tikhononv
regularisation, note the relative path of the single scattering function, the transmission func-
tion measurement, the desired output file and, if available, the model to cross check, in
‘parameters/deconvolution.txt’. Also note the desired method (‘tikh’ for Tikhonov regula-
risation, ‘tsvd’ for TSVD) and the regularisation parameter. If a parameter should be auto-
matically chosen, the parameter can be replaced by ‘morozov’ for parameter choice according
to the discrepancy principle or ‘lcurve’ according to the L-curve criterion. The method 'mod-
elcompare’ can be used to chose it with respect to a trusted model. Execute deconv.py’ to
obtain the result.

For constrained optimisation, chose the desired method ("trust-constr’ or 'SLSQP’) in ’opti-
misation.txt” with the input and output filenames. A monotony constraint can be relieved
in a chosen interval. Execute 'constrop.py’ to obtain the result.

‘parametrisation.py’ performs a parametrisation of a convolved function. The file "parametri-
sation.txt’ further requires the specification of some free parameters.
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