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MOR for Large Systems

Outline

1. Introduction to Reduced Basis Methods

2. HAPOD – Hierarchical Approximate POD

3. Localized Reduced Basis Additive Schwarz Methods

4. Two-Scale Reduced Basis Localized Orthogonal Decomposition

5. Model Order Reduction with pyMOR

Not featured:

▶ Model order reduction of problems with moving shocks/boundaries via nonlinear

approximation.
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MOR for Large Systems

Introduction to Reduced Basis Methods
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MOR for Large Systems

Reduced Basis Methods for Elliptic Problems

Parametric linear elliptic problem (full order model)

For given parameter μ ∈ 𝒫, find uh(μ) ∈ Vh s.t.

a(uh(μ), vh;μ) = f (vh) ∀vh ∈ Vh

yh(μ) = g(uh(μ))

Parametric linear elliptic problem (reduced order model)

For given VN ⊂ Vh, let uN(μ) ∈ VN be given by Galerkin proj. onto VN, i.e.

a(uN(μ), vN;μ) = f (vN) ∀vN ∈ VN

yN(μ) = g(uN(μ))
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MOR for Large Systems

RB Methods – Computing VN

Weak greedy basis generation

1: functionWeak-Greedy(𝒮train ⊂ 𝒫, ε)
2: VN ← {0}
3: whilemaxμ∈𝒮train Err-Est(ROM-Solve(μ),μ) > ε do
4: μ∗ ← arg-max

μ∈𝒮train
Err-Est(ROM-Solve(μ),μ)

5: VN ← span(VN ∪ {FOM-Solve(μ∗)})
6: end while
7: return VN
8: end function

Err-Est

Use residual-based error estimate w.r.t. FOM (finite dimensional; can compute dual norms).

▶ Use dual weighted residual approach for improved convergence w.r.t to output yN(μ).

Stephan Rave (stephan.rave@wwu.de) 5



MOR for Large Systems

RB Methods – Computing VN

Weak greedy basis generation

1: functionWeak-Greedy(𝒮train ⊂ 𝒫, ε)
2: VN ← {0}
3: whilemaxμ∈𝒮train Err-Est(ROM-Solve(μ),μ) > ε do
4: μ∗ ← arg-max

μ∈𝒮train
Err-Est(ROM-Solve(μ),μ)

5: VN ← span(VN ∪ {FOM-Solve(μ∗)})
6: end while
7: return VN
8: end function

Err-Est

Use residual-based error estimate w.r.t. FOM (finite dimensional; can compute dual norms).

▶ Use dual weighted residual approach for improved convergence w.r.t to output yN(μ).

Stephan Rave (stephan.rave@wwu.de) 5



MOR for Large Systems

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given VN ⊂ Vh, let uN(μ) ∈ VN be given by Galerkin proj. onto VN, i.e.

a(uN(μ), vN;μ) = f (vN) ∀vN ∈ VN

yN(μ) = g(uN(μ))

Affine decomposition

Assume that aμ can be written as

a(u, v;μ) =
Q

∑
q=1

θq(μ)aq(u, v).

Offline/Online splitting

By pre-computing

aq(φi,φj), f (φi), g(φi)

for a reduced basis φ1,… ,φN of VN, solving ROM becomes independent of dimVh.
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MOR for Large Systems

Example: RB Approximation of Li-Ion Battery Models

Experimental Data

Mathematical
Modeling

Multiscale
Numerics

Model
Reduction

Integration
Validation

MULTIBAT: Gain understanding of
degradation processes in

rechargeable Li-Ion Batteries

through mathematical modeling

and simulation at the pore scale.

FOM:

▶ 2.920.000 DOFs

▶ Simulation time: ≈ 15.5h

ROM:

▶ Snapshots: 3

▶ dimVN = 245

▶ Rel. err.: < 4.5 ⋅ 10−3

▶ Reduction time: ≈ 14h

▶ Simulation time: ≈ 8m

▶ Speedup: 120
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HAPOD – Hierarchical Approximate POD

Stephan Rave (stephan.rave@wwu.de) 8
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Computing VN with POD

Offline phase

Basis for VN is computed from solution snapshots uμs(t) of full order problem via:

▶ Proper Orthogonal Decomposition (POD)
▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V , 𝒮: = {v1,… , vS} ⊂ V , the k-th POD mode of 𝒮 is the k-th
left-singular vector of the mapping

Φ:ℝS → V , es → Φ(es): = vs

Φ ≅ V

ℝS

Optimality of POD

Let VN be the linear span of first N POD modes, then:

∑
s∈𝒮

‖s − PVN(s)‖
2 =

|𝒮|

∑
m=N+1

σ2m = min
X⊂V

dim X≤N

∑
s∈𝒮

‖s − PX(s)‖2
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MOR for Large Systems

Are your tall and skinny matrices not so
skinny anymore?

ta
ll

skinny

not so skinny

POD of large snapshot sets:

▶ large computational effort

▶ parallelization?

▶ data > RAM ⟹ disaster

Solution: PODs of PODs!
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Disclaimer

▶ You might have done this before.

▶ Others have done it before – often well-hidden in a paper on entirely different topic.

We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands,

Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

▶ Our contributions:

1. Formalization for arbitrary trees of worker nodes.

2. Extensive theoretical error and performance analysis.

3. A recipe for selecting local truncation thresholds.

4. Extensive numerical experiments for different application scenarios.

▶ Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of

right-singular vectors.
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MOR for Large Systems

HAPOD – Hierarchical Approximate POD

ρ

𝛼1

β1 β2 β3

𝛼2

β5 β6

▶ Input: Assign snapshot vectors to leaf nodes βi as input.

▶ At each node 𝛼:
1. Perform POD of input vectors with given local ℓ2-error tolerance ε(𝛼).

2. Scale POD modes by singular values.

3. Send scaled modes to parent node as input.

▶ Output: POD modes at root node ρ.
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MOR for Large Systems

HAPOD – Special Cases

Distributed HAPOD

ρ

β1 β2 β3 β4

▶ Distributed, communication avoiding

POD computation.

Incremental HAPOD

ρ

𝛼3

𝛼2

𝛼1 β1

β2

β3

▶ On-the-fly compression of large

trajectories.
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MOR for Large Systems

HAPOD – Some Notation

Trees
𝒯 the tree

ρ𝒯 root node

𝒩𝒯(𝛼) nodes of 𝒯 below or equal node 𝛼
ℒ𝒯 leafs of 𝒯
L𝒯 depth of 𝒯

HAPOD
𝒮 snapshot set

D:𝒮 → ℒ𝒯 snapshot to leaf assignment

ε(𝛼) error tolerance at 𝛼
|HAPOD[𝒮,𝒯,D, ε](𝛼)| number of HAPOD modes at 𝛼
| POD(𝒮, ε)| number of POD modes for error tolerance ε

P𝛼 orth. proj. onto HAPOD modes at 𝛼
̃𝒮𝛼 snapshots at leafs below 𝛼
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MOR for Large Systems

HAPOD – Theoretical Analysis

Theorem (Error bound1)

∑
s∈𝒮𝛼

‖s − P𝛼(s)‖2 ≤ ∑
γ∈𝒩𝒯(𝛼)

ε(γ)2.

Theorem (Mode bound)

∣HAPOD[𝒮,𝒯,D, ε](𝛼)∣ ≤ ∣POD( ̃𝒮𝛼, ε(𝛼))∣.

But how to choose ε in practice?

▶ Prescribe error tolerance ε∗ for final HAPOD modes.

▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency

(ω ∈ [0, 1]).
▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a

priori). Hence, control ℓ2-mean error
1

|𝒮|
∑

s∈𝒮 ‖s − Pρ𝒯
(s)‖2.

1For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].
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MOR for Large Systems

HAPOD – Theoretical Analysis

Theorem (ℓ2-mean error and mode bounds)
Choose local POD error tolerances ε(𝛼) for ℓ2-approximation error as:

ε(ρ𝒯): = √|S| ⋅ ω ⋅ ε∗, ε(𝛼): = √ ̃𝒮𝛼 ⋅ (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗.

Then:
1

|𝒮|
∑
s∈𝒮

‖s − Pρ𝒯
(s)‖2 ≤ ε∗2 and |HAPOD[𝒮,𝒯,D, ε]| ≤ |POD(𝒮,ω ⋅ ε∗)|,

where POD(𝒮, ε): = POD(𝒮, |𝒮| ⋅ ε).

Moreover:

|HAPOD[𝒮,𝒯,D, ε](𝛼)| ≤ |POD( ̃𝒮𝛼, (L𝒯 − 1)−1/2 ⋅
√
1 − ω2 ⋅ ε∗)|
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MOR for Large Systems

Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

∂tz(x, t) + z(x, t) ⋅ ∂xz(x, t) = u(t) exp(− 1

20
(x − 1

2
)2), (x, t) ∈ (0, 1) × (0, 1),

z(x, 0) = 0, x ∈ [0, 1],
z(0, t) = 0, t ∈ [0, 1],

where u(t) ∈ [0, 1/5] iid. for 0.1% random timesteps, otherwise 0.

▶ Upwind finite difference scheme on uniform mesh with

N = 500 nodes.

▶ 104 explicit Euler steps.

▶ 100 sub-PODs, ω = 0.75.

▶ All computations on Raspberry Pi 1B single board

computer (512MB RAM).
1 0.8 0.6

Space
0.4 0.2 0

0

0.2

0.4

0.6

0.8

1

Time

1
0.8

0.6
0.4

0.2
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Incremental HAPOD Example
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Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

ŴX ,ij: =

M

∑
m=1

∫
∞

0

⟨xmi (t), y jm(t)⟩dt ∈ ℝN×N

▶ ‘Synthetic’ benchmark model2 from MORWiki with parameter θ =
1

10
.

▶ Partition ŴX into 100 slices of size 10.000 × 100.
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M
o
d
e
l
R
e
d
u
c
ti
o
n
E
rr
o
r

POD

HAPOD

101 102 103
101
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104

105

Block Size (ε∗ = 10−6, ω = 0.5)

S
p
e
e
d
u
p

L𝒯 = 2

L𝒯 = 3

L𝒯 = 4

L𝒯 = 5

2See: http://modelreduction.org/index.php/Synthetic_parametric_model
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HAPOD – HPC Example
Neutron transport equation

∂tψ(t, x, v) + v ⋅∇xψ(t, x, v) + σt(x)ψ(t, x, v) = 1

|V |σs(x) ∫
V

ψ(t, x,w)dw + Q(x)

▶ Moment closure/FV approximation.

▶ Varying absorbtion and scattering coefficients.

▶ Distributed snapshot and HAPOD computation on

PALMA cluster (125 cores).
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HAPOD – HPC Example

𝛼n

𝛼2n

𝛼1n

τ1n,1 ⋯ τ1n,12

τ2n,1 ⋯ τ2n,12

τsn,1 ⋯ τsn,12

▶ HAPOD on compute node n. Time steps are split into s

slices. Each processor core computes one slice at a time,

performs POD and sends resulting modes to main MPI

rank on the node.

ρ

𝛼1 𝛼2

𝛼3

𝛼11

▶ Incremental HAPOD is performed on

MPI rank 0 with modes collected on

each node.
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HAPOD – HPC Example
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ω = 0.1

ω = 0.25

ω = 0.5

ω = 0.75

ω = 0.9

ω = 0.95

ω = 0.99

ω = 0.999

POD

▶ ≈ 39.000 ⋅ k3 doubles of snapshot data (≈ 2.5 terabyte for k = 200).
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Localized Reduced Basis Additive Schwarz

Methods
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RB Method – Caveats

▶ Offline time too large in not-so-many-query

scenarios?

▶ 𝒫 too large?

▶ Only local influence of μ?

▶ Local geometry changes?
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#solutions
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ROM
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Localized RB Methods for Elliptic Problems

Idea of the LRBMS: given a finely-resolved grid τh [Albrecht et al., 2012]

▶ decompose approximation space into local spaces Vh = ⊕T∈𝒯H
V T
h

▶ associated with subdomains T ∈ 𝒯H

independent local discretizations and approximation spaces (CG or DG)

and global SWIPDG coupling [Ern, Stephansen, Zunino, 2009]

▶ build local reduced spaces V T
N ⊂ V T

h

▶ reduced broken space VN = ⊕T∈𝒯H
V T
N

▶ larger VN, but sparse ROM system matrices

▶ initialization of V T
N :

▶ empty

▶ global solution snapshots

▶ local training

V T 0

h
V T 1

h

V T 2

hV T 3

h

V T 4

h

Stephan Rave (stephan.rave@wwu.de) 25



MOR for Large Systems

Localized RB Methods for Elliptic Problems

Idea of the LRBMS: given a finely-resolved grid τh [Albrecht et al., 2012]

▶ decompose approximation space into local spaces Vh = ⊕T∈𝒯H
V T
h

▶ associated with subdomains T ∈ 𝒯H

independent local discretizations and approximation spaces (CG or DG)

and global SWIPDG coupling [Ern, Stephansen, Zunino, 2009]

▶ build local reduced spaces V T
N ⊂ V T

h

▶ reduced broken space VN = ⊕T∈𝒯H
V T
N

▶ larger VN, but sparse ROM system matrices

▶ initialization of V T
N :

▶ empty

▶ global solution snapshots

▶ local training

V T 0

N
V T 1

N

V T 2

NV T 3

N

V T 4

N

Stephan Rave (stephan.rave@wwu.de) 25



MOR for Large Systems

Localized RB Methods for Elliptic Problems

Idea of the LRBMS: given a finely-resolved grid τh [Albrecht et al., 2012]

▶ decompose approximation space into local spaces Vh = ⊕T∈𝒯H
V T
h

▶ associated with subdomains T ∈ 𝒯H

independent local discretizations and approximation spaces (CG or DG)

and global SWIPDG coupling [Ern, Stephansen, Zunino, 2009]

▶ build local reduced spaces V T
N ⊂ V T

h

▶ reduced broken space VN = ⊕T∈𝒯H
V T
N

▶ larger VN, but sparse ROM system matrices

▶ initialization of V T
N :

▶ empty

▶ global solution snapshots

▶ local training

uN(μ)|
T 0

uN(μ)|
T 1

uN(μ)|
T 2uN(μ)|

T 3

uN(μ)|
T 4

Stephan Rave (stephan.rave@wwu.de) 25



MOR for Large Systems

Offline Initialization of VN

Training algorithm (adapted from [Buhr, Engwer, Ohlberger, R, 2017]) for all T ∈ 𝒯H

▶ For every μ ∈ 𝒮train ⊂ 𝒫:
∘ Solve training problem on oversampling subdomain Tδ ⊃ T :

a(φh,0(μ), vh;μ) = f (vh) in Tδ

φh,0(μ) = 0 on ∂Tδ

∘ For 1 ≤ k ≤ K, solve training problem:

a(φh,k(μ), vh;μ) = 0 in Tδ

φh,k(μ) = gk on ∂Tδ

for K random Dirichlet data functions gk on ∂T
δ.

▶ Initialize local RB space on T as

V T
N : = span ⋃

μ∈𝒮train

{φh,0(μ)∣
T
,… , φh,K(μ)∣

T
}.

▶ Use greedy algorithm for large 𝒮train.
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MOR for Large Systems

Online-Adaptive Enrichment of VN

Enrichment algorithm for some μ ∈ 𝒫
▶ compute reduced solution uN(μ)
▶ estimate error 𝜂h,N(μ)
▶ if 𝜂h,N(μ) > Δ, start intermediate local enrichment phase:

∘ compute local error indicators

∘ mark subdomains for enrichment: 𝒳 = mark(𝒯H)

∘ solve corrector problem on oversampling subdomain Tδ ⊃ T for all
T ∈ 𝒳:

a(φh(μ), vh;μ) = f (vh) in Tδ

φh(μ) = uN(μ) on ∂Tδ

∘ extend local reduced basis for all T ∈ 𝒳:

VTN : = spanV
T
N ∪ {φh(μ)|

T
}

∘ update reduced quantities

∘ compute updated reduced solution uN(μ) and 𝜂h,N(μ)

▶ iterate until 𝜂h,N(uμ,N) ≤ Δ, return uN(μ)
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LRBMS with online enrichment: Example SPE10
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LRBMS with online enrichment: Example SPE10
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μ2 = 0.75879…
μ3 = 0.63879…
μ4 = 0.24041…
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Convergence history of LRBMS with initially empty VN
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LRBMS initialized with 2 solution snapshots

Distribution of local basis size after online enrichment.
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Related Approaches (incomplete)

▶ Reduced Basis Element Method

[Maday, Ronquist, 2002]

▶ Port-Reduced Static Condensation Reduced Basis

Element Method

[Eftang, Patera, 2013]

▶ Generalized Multiscale Finite Element Methods

[Efendiev, Galvis, Hou 2013]

▶ Reduced Basis Hybrid Method

[Iapichino, Quarteroni, Rozza, Volkwein, 2014]

▶ ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications

[Buhr, Engwer, Ohlberger, R, 2017]
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MOR for Large Systems

Questions

▶ Where should be enriched?

▶ How fast will enrichment converge?

▶ Which training method to combine with enrichment?

▶ How to balance training and enrichment?

Goal: Minimize total number of local Vh-dependent computations/communication events.
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Connections with Domain Decomposition Methods

▶ Local enrichment function φh(μ)|
T

a(φh(μ), vh;μ) = f (vh) in T δ

φh(μ) = uN(μ) on ∂T δ

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

▶ In particular (for minimal overlap):

enrichment + Galerkin projection onto VN
≅

locally(!) adaptive [Spillane, 2016] RAS multi-preconditioned CG [Bridson, Greif, 2006]

▶ Moreover:

offline training of VN
≅

construction of coarse space

e.g. DtN [Nataf et al., 2011], GenEO [Spillane et al., 2014], SHEM [Gander, Loneland, Rahman, 2015]
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A Localized RB Additive Schwarz Method

1. Choose overlapping DD T ∈ 𝒯H and define local FEM spaces V T
h ⊂ Vh as usual.

2. Use RB methods to construct coarse space V0N for which abstract Schwarz framework

guarantees robustness of AS+CG iterations for every μ.

3. In each iteration compute solution uN(μ) via Galerkin projection onto V0N ⊕ V T
N .

4. Use RB estimator 𝜂h,N(uN(μ);μ) to locally enrich V T
N whith AS corrections where needed:

𝜂h,N(uN(μ);μ)2: = C(μ)2 ∑
T∈𝒯H

( sup
vh∈V T

h

f (vh) − a(uN(μ), vh;μ)
‖vh‖

)
2

where, with Cstab the stability constant of decomposition Vh = V0N +∑
T∈𝒯H

V T
h :

C(μ) ≤ Cinf -sup(μ) ⋅ Cstab
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MOR for Large Systems

Simple Experiment (without μ, local non-parametric changes)

Solution (contrast: 105) Number of local solutions (max=11)

▶ 10 × 10 subdomains
▶ 4 elements overlap
▶ 6 GenEO basis functions per domain

▶ enrich where ‖ ℛ|
T
‖ ≥ 0.5/|𝒯H| ⋅ ‖ℛ‖

▶ update V0N , keep localized soution in V
T
N for

next problem
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MOR for Large Systems

Some Remarks

▶ Communication of Vh-dependet data only with neighbors of enriched subdomains.

▶ localized enrichment ≅ flexible multi-preconditioned projected CG with full

orthogonalization.

▶ More iterations but less work.

iterations local solutions

PCG 118 11800

PCG + RB solution as initial value 84 8400

enrich localized (keep solutions in V T
N ) 38 1803

enrich everywhere (keep solutions in V T
N ) 36 3600

enrich localized (keep updates in V T
N ) 33 1718

enrich everywhere (keep updates in V T
N ) 29 2900
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Two-Scale Reduced Basis Localized

Orthogonal Decomposition
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Multiscale Model Problem

Parameterized diffusion equation

For a fixed parameter μ ∈ 𝒫 find uμ s.t.

−∇ ⋅ Aμ∇uμ = f , in Ω,

uμ = 0, on ∂Ω,
or in weak form aμ(uμ, v) = F (v), ∀v ∈ V

▶ Parameter space 𝒫 ⊂ ℝm,m ∈ ℕ

▶ Bounded Lipschitz domain Ω ⊂ ℝd, Hilbert space V .

▶ f ∈ L2(Ω), bilinear form aμ and functional F ∈ V ′.

▶ Homogeneous Dirichlet boundary conditions.

▶ Aμ ∈ L∞(Ω,ℝd×d) symmetric and uniformly elliptic: 0 < 𝛼 ≤ Aμ ≤ β < ∞.

▶ Possibly high variations in Aμ (e.g. due to soil composition).
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Multiscale Orthogonal Decomposition

▶ Fine mesh 𝒯h and coarse mesh 𝒯H with maximal element diameter H ≫ h, FE spaces Vh and

VH: = Vh ∩ 𝒫1(𝒯H).

▶ Interpolation operator ℐH:Vh → VH (e.g. L
2-projection).

▶ Finescale space V f: = ker(ℐH) = {v ∈ Vh | ℐH(v) = 0}, decomposition V = VH + V
f.

= +

▶ Finescale correction 𝒬μ:VH → V f defined by aμ(𝒬μvH, v
f) = aμ(vH, v f), ∀ v f ∈ V f.

▶ Multiscale space Vmsμ : = (I − 𝒬μ)VH.

▶ a-orthogonal decomposition Vh = Vmsμ ⊕a V
f.
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Localization

▶ Truncated finescale space V f(Uk(T )): = {v ∈ V f ∣ v∣
Ω⧵Uk(T )

= 0}.

▶ For each T ∈ 𝒯H, define localized correctors 𝒬T
kvH ∈ V f(Uk(T ))

aUk(T )(𝒬T
kvH, v

f) = aT (v, v f), ∀ v f ∈ V f(Uk(T )),

▶ Localized corrector operator 𝒬k = ∑
T∈𝒯H

𝒬T
k .

▶ LOD space Vmsk : = {λx − 𝒬kλx | x ∈ 𝒩H}

Lemma [Målqvist/Peterseim ’14]

The correctors 𝒬 decay exponentially, e.g.

|||𝒬 − 𝒬k||| ≤ C𝒬k
d/2 θk|||𝒬|||,

where 0 < θ < 1 and C𝒬 depends on 𝛼/β but not on the variations of Aμ.
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Petrov Galerkin Formulation [Elfverson/Ginting/Henning ’15]

Petrov–Galerkin LOD method

Find umsH ∈ Vmsk such that

a(umsk , v) = F (v), ∀ v ∈ VH.

▶ No interaction between correctors required.
▶ Reduced memory consumption.
▶ Still similar convergence results.

Convergence theorem

∣∣uh,μ − uH,k,μ∣∣L2 + ∣∣uh,μ − umsH,k,μ∣∣
1

≲ (H + θkkd/2)||f ||
L2(Ω)

21 22 23 24 25 26 27 28 29

1/H

2 9

2 8
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2 4
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2 2
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Er
ro

r
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Figure: Energy error |||uε − umsH,k||| for the PG–LOD
and |||uε − uh||| for the FEM for 1d model
problem from [Peterseim’16].

Stephan Rave (stephan.rave@wwu.de) 40



MOR for Large Systems

Two-Scale Formulation of the LOD

Two-Scale space

𝔙: = VH ⊕ V fh,k,T1 ⊕ ⋯ ⊕ V fh,k,T|𝒯H|

~𝔲~2
1: = ‖uH‖21 + ∑

T∈𝒯H

∥ufT ∥2
1

Two-scale bilinear form

𝔅μ (𝔲, 𝔳) : = aμ(uH − ∑
T∈𝒯H

ufT , vH) + ρ1/2 ∑
T∈𝒯H

aμ(ufT , v fT ) − aTμ(uH, v fT ),

Proposition

The two-scale solution 𝔲μ ∈ 𝔙 of

𝔅μ (𝔲μ, 𝔳) = F (vH) ∀𝔳 ∈ 𝒱.

is uniquely determined and given by 𝔲μ = [uH,k,μ, 𝒬T1
k,μ(uH,k,μ), … , 𝒬

T|𝒯H|
k,μ (uH,k,μ)].
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Two-Scale Formulation of the LOD
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Two-Scale Formulation of the LOD

Two-Scale space
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The two-scale solution 𝔲μ ∈ 𝔙 of

𝔅μ (𝔲μ, 𝔳) = F (vH) ∀𝔳 ∈ 𝒱.

is uniquely determined and given by 𝔲μ = [uH,k,μ, 𝒬T1
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T|𝒯H|
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Two-scale Stability Estimate

Proposition

Let ρ: = Covl ⋅ κ, then 𝔅μ is ~ ⋅ ~a,μ-~ ⋅ ~1-continuous and inf-sup stable with the following

bounds on the respective constants:

sup
0≠𝔲∈𝔙

sup
0≠𝔳∈𝔙

𝔅μ(𝔲, 𝔳)
~u~a,μ ⋅ ~v~1

≤ β1/2 and inf
0≠𝔲∈𝔙

sup
0≠𝔳∈𝔙

𝔅μ(𝔲, 𝔳)
~u~a,μ ⋅ ~v~1

≥ γk/
√
5.

where

~𝔲~2
a,μ: = ‖uH − ∑

T∈𝒯H

ufT ‖2a,μ + ρ ∑
T∈𝒯H

‖𝒬T
k,μ(uH) − ufT ‖2a,μ

Error Bound

{‖uH,k,μ − uH‖21 + ρ ∑
T∈𝒯H

‖𝒬T
k,μ(uH) − ufT ‖21}

1/2

≤
√
5CℐH

𝛼−1/2γ−1k sup
𝔳∈𝔙

𝔉(𝔳) −𝔅μ(𝔲, 𝔳)
~𝔳~1

≤
√
15CℐH

(Covl + 1)1/2κ1/2γ−1k β1/2{‖uH,k,μ − uH‖21 + ρ ∑
T∈𝒯H

‖𝒬T
k,μ(uH) − ufT ‖21}

1/2

.
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Two-Scale Reduced Basis Approach

Stage 1 (for each T ∈ 𝒯H)

ROM:
aμ(𝒬

T ,rb
k,μ (vH), v fT ) = aTμ(vH, v fT ), ∀v fT ∈ V

f,rb
k,T .

Output:

𝕂rb
μ : = ∑

T∈𝒯H

𝕂rb
T ,μ, (𝕂rb

T ,μ)ji : = (Aμ(χT∇ −∇𝒬T ,rb
k,μ )ϕi , ∇ϕj)Uk(T )

Error bound:

‖𝒬T
k,μ(vH) − 𝒬T ,rb

k,μ (vH)‖a,μ ≤ 𝛼−1/2 sup
v fT∈V fh,k,T

aTμ(vH, v fT ) − aμ(𝒬
T ,rb
k,μ (vH), v fT )

‖v fT ‖1
.

Basis generation: weak greedy algorithm

Stephan Rave (stephan.rave@wwu.de) 43



MOR for Large Systems

Two-Scale Reduced Basis Approach

Stage 2

ROM:

𝔲rb
μ : = argmin

𝔲∈𝔙rb

sup
𝔳∈𝔙

𝔉(𝔳) −𝔅μ(𝔲, 𝔳)
~𝔳~1

.

Error bound:

{‖uH,k,μ − uH‖21 + ρ ∑
T∈𝒯H

‖𝒬T
k,μ(uH) − ufT ‖21}

1/2

≤
√
5CℐH

𝛼−1/2γ−1k sup
𝔳∈𝔙

𝔉(𝔳) −𝔅μ(𝔲, 𝔳)
~𝔳~1

Basis generation: weak greedy algorithm; snapshots computed with:

𝕂rb
μ ⋅ u

H,k,μ
= 𝔽

𝔲μ: = [uH,k,μ,𝒬
T1,rb
k,μ∗ (uH,k,μ),… ,𝒬T,rb

k,μ∗(uH,k,μ)]

Stephan Rave (stephan.rave@wwu.de) 44



MOR for Large Systems

Numerical Experiment

▶ 𝒫: = [1, 5]3

▶ |𝒯h| = 67, 108, 864
▶ |𝒯H| = 4, 096
▶ 1, 024 processes

▶ κ ≈ 16

▶ Stage 2 greedy until

Stage 1 error dominates.

tolerance ε1 10−1 10−2

method RBLOD TSRBLOD RBLOD TSRBLOD

toffline1 (T ) 4994 4052 10393 11241

toffline1 26008 20382 48379 53279

toffline2 - 5754 - 10385

toffline 26008 26136 83403 63665

cum. size St.1 147473 94417 278528 193289

av. size St.1 9.00 23.05 17.00 47.19

size St.2 - 10 - 18

tLOD 484.58 493.06

tonline 3.93 0.0006 4.62 0.001

speed-up w.r.t LOD 123.15 8.32e5 106.79 4.93e5

e
H1,rel
LOD 6.40e-4 1.99e-3 2.56e-5 2.04e-5

e
L2,rel
LOD 1.74e-4 1.95e-3 1.86e-6 8.86e-6
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Model Order Reduction with pyMOR

pyMOR main developers

Linus Balicki René Fritze Petar Mlinarić Stephan Rave Felix Schindler
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pyMOR – Model Order Reduction with Python

Goal

One library for algorithm development and large-scale applications.

▶ Started late 2012, 20k lines of Python code, 6k single commits.

▶ BSD-licensed, fork us on GitHub!

▶ Quick prototyping with Python 3.

▶ Comes with small NumPy/SciPy-based discretization toolkit for getting started quickly.

▶ Seamless integration with high-performance PDE solvers.

Stephan Rave (stephan.rave@wwu.de) 47



MOR for Large Systems

Generic Algorithms and Interfaces for MOR

Model

Operator
fom.product

fom.operator, fom.rhs

LincombOperator

Operator

Operator

…

VectorArray

Reductor

apply_inverse

apply2

apply2

gram_schmidt

apply2

axpy
scal

weak_greedy

U = fom.solve(mu)

Generic algorithms …

pyMOR

PDE solver deal.II FEniCS NGSolve DUNE …

dune-pymordolfinpymor-deal.II

dealii_model()
fenics_model()
dune_model()

example.py

User Code

U = fom.solve(mu)

fom.visualize(U)

greedy(m, ...)

fom, prod = ...

▶ VectorArray, Operator, Model classes represent objects in solver’s memory.
▶ No communication of high-dimensional data.

▶ Tight, low-level integration with external solver.

▶ No MOR-specific code in solver.
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Implemented Algorithms

▶ Gram-Schmidt, POD, HAPOD.

▶ Greedy basis generation with different extension algorithms.

▶ Automatic (Petrov-)Galerkin projection of arbitrarily nested affine combinations of operators.

▶ Interpolation of arbitrary (nonlinear) operators, EI-Greedy, DEIM.

▶ A posteriori error estimation.

▶ System theory methods: balanced truncation, IRKA, …

▶ Iterative linear solvers, eigenvalue computation, Newton algorithm, time-stepping

algorithms.

▶ New! Non-intrusive MOR using artificial neural networks.
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Feature Tour: FEniCS Support

▶ Directly interfaces FEniCS

LA backend, no copies needed.

▶ Use same MOR code as with builtin

discretization toolkit!

▶ Builtin support for empirical interpolation.

▶ Thermal block demo:

30 SLOC FEniCS +

15 SLOC wrapping for pyMOR.

▶ Easily increase FEM order, etc.
Figure: 3x3 thermal block problem
top: red. solution, bottom: red. error
left: pyMOR solver, right: FEniCS solver
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Feature Tour: Empirical Interpolation with FEniCS

Nonlinear Poisson problem from FEniCS docs (for μ = 1)

−∇ ⋅ {(1 + μu2(x, y)) ⋅∇u(x, y)} = x ⋅ sin(y) for x, y ∈ (0, 1)
u(x, y) = 1 for x = 1

∇u(x, y) ⋅ n = 0 otherwise

▶ mesh = UnitSquareMesh(100, 100); V = FunctionSpace(mesh, "CG", 2).
▶ Time for solution: ≈ 3.4 s.

▶ μ ∈ [1, 1000], RB size: 2, EI DOFs: 5, rel. error ≈ 10−6.

▶ Local operator evaluation implemented using

dolfin.SubMesh.
▶ Speedup: 80.
▶ See fenics_nonlinear demo.
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Feature Tour: deal.II Support

▶ pymor-deall.II support module
https://github.com/pymor/pymor-deal.II

▶ Python bindings for
▶ dealii::Vector,

▶ dealii::SparseMatrix.

▶ pyMOR wrapper classes.

▶ MOR demo for linear elasticity example

from tutorial.

0 5 10
10−12

10−7

10−2

maximum red. error

0 5 10

0.4

0.6

0.8

1

estimator effectivity

Figure: top: Solutions for (μ, λ) = (1, 1) and
(μ, λ) = (1, 10), bottom: red. errs. and max./min.
estimator effectivities vs. dimVN.

Stephan Rave (stephan.rave@wwu.de) 52

https://github.com/pymor/pymor-deal.II


MOR for Large Systems

Feature Tour: NGSolve Support

▶ Based on NGS-Py Python bindings for
NGSolve.

▶ pyMOR wrappers for vector and matrix

classes.

▶ 3d thermal block demo included.

▶ Joint work with

Christoph Lehrenfeld.

Figure: 3d thermal block problem
top: full/red. sol., bottom: err. for worst approx. μ and
max. red. error vs. dimVN.
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Feature Tour: MOR for an NGSolve Free Boundary Problem
[Lehrenfeld, R, 19]

Osmotic cell swelling model [Lippoth, Prokert, 2012]

Given Ω(0) ⊂ ℝd, u(0) ∈ H1(Ω(0)) and coefficients uext,𝛼,β, γ ∈ ℝ, the concentration u(t) and
normal velocity wΓ of Γ(t) is given by:

∂tu − 𝛼Δu = 0 in Ω(t),
wΓu + 𝛼∂nu = 0 on Γ(t),

−βκ + γ(u − uext) = wΓ on Γ(t).

▶ ALE formulation → diffusion coeffs nonlinear in

deformation field Ψ

▶ Empirical interpolation w.r.t. Ψ.
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Feature Tour: Tools for interfacing MPI parallel solvers

▶ Automatically make sequential

bindings MPI aware.

▶ Reduce HPC-Cluster models

without thinking about MPI at all.

▶ Interactively debug MPI parallel

solvers.
Figure: FV solution of 3D Burgers-type equation (27.6 ⋅ 106 DOFs,

600 time steps) using Dune .

Table: Time (s) needed for solution using DUNE / DUNE with pyMOR timestepping.

MPI ranks 1 2 3 6 12 24 48 96 192

DUNE 17076 8519 5727 2969 1525 775 395 202 107

pyMOR 17742 8904 6014 3139 1606 816 418 213 120

overhead 3.9% 4.5% 5.0% 5.7% 5.3% 5.3% 6.0% 5.4% 11.8%
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Feature Tour: System-Theoretic MOR with FEniCS

▶ MPI distributed heatsink model with FEniCS

▶ Heat conduction with Robin boundary

▶ Input: heat flow at base

▶ Output: temperature at base

▶ MOR: Balanced truncation and Padé approximation
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System-Theoretic MOR with FEniCS – Implementation

Model assembly with FEniCS

1 def discretize():
2 domain = ...
3 mesh = ms.generate_mesh(domain, RESOLUTION)
4 subdomain_data = ...
5

6 V = df.FunctionSpace(mesh, 'P', 1)
7 u = df.TrialFunction(V)
8 v = df.TestFunction(V)
9 ds = df.Measure('ds', domain=mesh, subdomain_data=boundary_markers)
10

11 A = df.assemble(- df.Constant(100.) * df.inner(df.grad(u), df.grad(v)) * df.dx
12 - df.Constant(0.1) * u * v * ds(1))
13 B = df.assemble(df.Constant(1000.) * v * ds(2))
14 E = df.assemble(u * v * df.dx)
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System-Theoretic MOR with FEniCS – Implementation

pyMOR wrapping

1 # def discretize (cont.)
2 # monkey patch apply_inverse_adjoint, assuming symmetriy
3 FenicsMatrixOperator.apply_inverse_adjoint = FenicsMatrixOperator.apply_inverse
4

5 space = FenicsVectorSpace(V)
6 A = FenicsMatrixOperator(A, V, V)
7 B = VectorOperator(space.make_array([B]))
8 C = B.H
9 E = FenicsMatrixOperator(E, V, V)
10 fom = LTIModel(A, B, C, None, E)
11 return fom

MPI wrapping

1 from pymor.tools import mpi
2 if mpi.parallel:
3 from pymor.models.mpi import mpi_wrap_model
4 fom = mpi_wrap_model(discretize, use_with=True)
5 else:
6 fom = discretize()
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System-Theoretic MOR with FEniCS – Implementation

pyMOR wrapping

1 # def discretize (cont.)
2 # monkey patch apply_inverse_adjoint, assuming symmetriy
3 FenicsMatrixOperator.apply_inverse_adjoint = FenicsMatrixOperator.apply_inverse
4

5 space = FenicsVectorSpace(V)
6 A = FenicsMatrixOperator(A, V, V)
7 B = VectorOperator(space.make_array([B]))
8 C = B.H
9 E = FenicsMatrixOperator(E, V, V)
10 fom = LTIModel(A, B, C, None, E)
11 return fom

MPI wrapping

1 from pymor.tools import mpi
2 if mpi.parallel:
3 from pymor.models.mpi import mpi_wrap_model
4 fom = mpi_wrap_model(discretize, use_with=True)
5 else:
6 fom = discretize()
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System-Theoretic MOR with FEniCS – Implementation

Balanced Truncation

1 reductor = BTReductor(fom)
2 bt_rom = reductor.reduce(10)
3

4 bt_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)

Padé approximation

1 k = 10
2 V = arnoldi(fom.A, fom.E, fom.B, [0] * r)
3 W = arnoldi(fom.A, fom.E, fom.C, [0] * r, trans=True)
4 pade_rom = LTIPGReductor(fom, W, V, False).reduce()
5

6 pade_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)
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Thank you for your attention!

Feinauer, Hein, R, Schmidt, Westhoff, et al.,MULTIBAT: Unified Workflow for fast electrochemical
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2018.

Buhr, Engwer, Ohlberger, R, ArbiLoMod, a Simulation Technique Designed for Arbitrary Local

Modifications, SISC, 39(4), 2017.
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pip3 install pymor
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