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The Problem Method of Freezing

Reduced basis methods can effectively approximate the so- Setting. Consider an evolution equation Phase Conditions. Determine 7n(t) by adding an algebraic
ution manifolds of parameterized evolution problems by 3 ut) — £luls 0 ‘phase condition’ which forces v to have minimal change.
low-dimensional linear spaces, enabling fast online evalua- cu(t) = Lu(t))

tion of the solution for arbitrary parameter values. A possible choice if V' is a Hilbert space is to require the

with u(t) € V for some function space V. change of v to be orthogonal to the action of LG:
For convection dominated problems however, standard meth- Let G be a Lie group of transformations acting on V.
ods fail to adequately handle the variation of the solution r B
manifold over time that is introduced by the convection. ( (v(t)) — n(t).v(t), f-v(t)) = )
Example Basic Idea. Choose v(t) € V, g(t) € G with forall § € LG
f;onsiderthe linear transport of a bump function on the real u(t) = g(t)w(t) Denote such a phase condition by ®(v(t),n(t)) = 0.
Ine: r\
Opu(t,x) +b-0yu(t,z) =0 dynamics of u shape of u
_b large variation in time small variation in time
_/\ UQ U(Ov ZC) — uO(m)
2 Y e R.t € [0, Tyusl u(t) € V cubstitute Into ) assume action of G Met!10d .of freez.ing. Inste.ad of sqlving (1), solve the frozen
is smooth enough partial differential algebraic equation (PDAE)

e To approximate u(t) by a linear subspace of V', we need -

~ Tonaqe Dasis functions. Org(t).v(t) + g(t).0sv(t) = L(g(t).v(t)) Ay (t) = L(v(t)) — n(t).v(t)
e However, we can describe u(t) easily as B(u(#). n(1)) = 0

u(t, ) = ug(x — bt) : 1 assume action is invariant (v(t),n(t)) =
. l b ] f . hich i f db multiply by g(t) ie.g"1L(gv) = L(v)
usn?[.g lonh;./ﬁone asis function which is transformed by and the reconstruction equation
spatial shifts.
Oru(t) = L(v(t)) — n(t).v(?) _
We present the method of freezing as a new ingredient for 0 = g~10,9(1 Org(t) = g(t)n(1).
reduced basis schemes to approach this problem: 77&\ g .'
The linear reduced basis space is enlarged by allowing non- pe) € LG UealgebReie) The method of freezing was developed independently by Row-
linear transformations of its elements via the action of an action of LG = differential of action of & ley et al d i ili i
ey et al. [1] and Beyn and Thiimmler [2] for stability analysis

arbitrary Lie group. Phase conditions choose appropriate of relative equilibria (e.g. travelling waves). See also [3].

transformations dynamically during time stepping.

Reduced Basis Methods Freezing of the two-dimensional Burgers Equation

Problem Problem Frozen PDAE (IR acting by shifts of the domain)
Quickly solve the time-dependent parameterized partial
differential equation (P2DE) owu(t,z,y) = —b- Vu(t,z,y)?, b= (1,1)" Ov = —b - V¥ 4+ 1,00 4 1,0, v

Opu(t; w) = L(u(t; p); ) w(0,2,y) = 0.5 - (1 + sin(27z) sin(27y)) {(%v,ﬁ’mv) (%vaaxv)] | {%} _ {(UWP,%U)}
w(t; 1) € V,t € [0, Trnas] With initial data u(0; u) = uo () domain: [0,2] x |0, 1], periodic boundary conditions (020, 0yv)  (Oyv,0yv)| |1y (b- VoP, 9,v)

for differing parameters © € P C R”.

t = 0.000 t = 0.075 t = 0.150 t = 0.225 t = 0.300
Assumption s ! Discretization
| o A L AR LA LB LA LB LA L ""Io.g e
There is an (expensive) discrete scheme, e.g. St 11 R T T TP RETTNTRETNOTIOTOY e finite volumes
_ 1 = - 0. . .
dt = (up ™ () — uh () = L (upy (1); 1) g 2 1101 X1 L LAAL AL AL AL i ey ¢ BE'Z'SSZCQT;HUX
0 5 ¢
unlp) = uno(p) %....'....'....'.....:.:'.02 e time-stepping (u? 7):

5 1o . . . . . . . n S — - 7
providing detailed solutions in a high-dimensional discrete - | o - . pping \u,; ~~» u
space V. 0.000 t = 0.075 t = 0.150 t = 0.225 t = 0.300 1. evaluate Ly (u})

5 . . ‘TR A A A . .. . '. I1 2. solve phase condition
RB-Scheme Cﬁ] N . » . .. .. .. .. . .. . . 0.6 for n+1 .. s
Solve _ - — - - . - 3. compute u, "~ with
dt=L (u (1) — u™ (1)) = Lv (u (1) ) = 8.... ': .= e ......'..... "" Zi forward Euler
— UN — N 9 % | '
0 . ”’.... . ._n._ -m. a2 B .O
upn (1) = uno(p)
with solutions in a low-dimensional reduced basis space
VN C V,,. Ly is a projection of L, onto V. Frozen-RB-Scheme
Vi is precomputed in an offline-phase by approximating a time-dependent frozen P?DE e disc. frozen P2DE standard red. frozen P2DE
finite snapshot set {u} (u;)}. If £ is nonlinear, use empir- phase condition disc. phase cond. JEEL UM red. phase cond.
ical operator interpolation [4] of L to achieve fast online
evaluation of L. reconstruction eq. EECEN (i reconstr. eq. alseectec reconstructed
times reduced solution

Application of the Frozen-RB-Scheme to the Burgers Problem
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Figure 1 shows the maximal L?-error of the empirical operator | Our results demonstrate that the Frozen-RB-scheme greatly
interpolation for the space operators on the snapshot set that | succeeds in reducing the temporal variation of the problem’s
is used to determine the interpolation points. Figure 2 shows | solution manifold. Both the error of the empirical operator
the maximal L#-approximation error of the fully reduced frozen | interpolation as well as the approximation error for the re-
and non-frozen schemes. The error is calculated by comparing | duced scheme are by orders of magnitude lower given the
the reduced solution to the detailed solution for randomly | same amount of interpolation points / basis vectors.

chosen parameter values.
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