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Application of the Frozen-RB-Scheme to the Burgers Problem
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Figure 1: Error of empirical operator
interpolation
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Figure 2: Error of RB-approximation

• parameter space: p ∈ [1, 2]

• basis generation with greedy basis
extension and proper orthogonal
decomposition of trajectories

• empirical operator interpolation
of−b · ∇vp and−b · ∇vp − η.v

• M/N =

{
1.5 non-frozen scheme

1.6 frozen scheme

• same setting as in [4]

Figure 1 shows the maximal L2-error of the empirical operator
interpolation for the space operators on the snapshot set that
is used to determine the interpolation points. Figure 2 shows
the maximalL2-approximation error of the fully reduced frozen
and non-frozen schemes. The error is calculated by comparing
the reduced solution to the detailed solution for randomly
chosen parameter values.

Our results demonstrate that the Frozen-RB-scheme greatly
succeeds in reducing the temporal variation of the problem’s
solution manifold. Both the error of the empirical operator
interpolation as well as the approximation error for the re-
duced scheme are by orders of magnitude lower given the
same amount of interpolation points / basis vectors.

The Problem

Reduced basis methods can effectively approximate the so-
lution manifolds of parameterized evolution problems by
low-dimensional linear spaces, enabling fast online evalua-
tion of the solution for arbitrary parameter values.

For convection dominated problems however, standard meth-
ods fail to adequately handle the variation of the solution
manifold over time that is introduced by the convection.

Example
Consider the linear transport of a bump function on the real
line:

R

u0

b
∂tu(t, x) + b · ∂xu(t, x) = 0

u(0, x) = u0(x)

x ∈ R, t ∈ [0, Tmax], u(t) ∈ V

• To approximate u(t) by a linear subspace of V , we need
∼ Tmax basis functions.

• However, we can describe u(t) easily as
u(t, x) = u0(x− bt)

using only one basis function which is transformed by
spatial shifts.

We present the method of freezing as a new ingredient for
reduced basis schemes to approach this problem:
The linear reduced basis space is enlarged by allowing non-
linear transformations of its elements via the action of an
arbitrary Lie group. Phase conditions choose appropriate
transformations dynamically during time stepping.

Reduced Basis Methods

Problem
Quickly solve the time-dependent parameterized partial
differential equation (P2DE)

∂tu(t;µ) = L(u(t;µ);µ)

u(t;µ) ∈ V, t ∈ [0, Tmax] with initial data u(0;µ) = u0(µ)
for differing parameters µ ∈ P ⊆ Rk.

Assumption
There is an (expensive) discrete scheme, e.g.

dt−1(un+1
h (µ)− unh(µ)) = Lh(unh(µ);µ)

u0h(µ) = uh,0(µ),

providing detailed solutions in a high-dimensional discrete
space Vh.

RB-Scheme
Solve

dt−1(un+1
N (µ)− unN (µ)) = LN (unN (µ);µ)

u0N (µ) = uN,0(µ)

with solutions in a low-dimensional reduced basis space
VN ⊆ Vh. LN is a projection of Lh onto VN .

VN is precomputed in an offline-phase by approximating a
finite snapshot set {unh(µi)}. If L is nonlinear, use empir-
ical operator interpolation [4] of LN to achieve fast online
evaluation of LN .

Method of Freezing

Setting. Consider an evolution equation

∂tu(t) = L(u(t)) (1)

with u(t) ∈ V for some function space V .
Let G be a Lie group of transformations acting on V .

Basic Idea. Choose v(t) ∈ V , g(t) ∈ G with

u(t) = g(t).v(t)

dynamics of u
large variation in time

shape of u
small variation in time

∂tg(t).v(t) + g(t).∂tv(t) = L(g(t).v(t))

∂tv(t) = L(v(t))− η(t).v(t)

η(t) = g−1∂tg(t).

multiply by g(t)−1 assume action is invariant
i.e. g−1L(g.v) = L(v)

η(t) ∈ LG (Lie algebra ofG)
action of LG = differential of action ofG

substitute into (1)
assume action ofG
is smooth enough

Phase Conditions. Determine η(t) by adding an algebraic
‘phase condition’ which forces v to have minimal change.

A possible choice if V is a Hilbert space is to require the
change of v to be orthogonal to the action of LG:(
L(v(t))− η(t).v(t) , ξ.v(t)

)
= 0

for all ξ ∈ LG
v(t)

LG.v(t0)

v(t0)

Denote such a phase condition by Φ(v(t), η(t)) = 0.

Method of freezing. Instead of solving (1), solve the frozen
partial differential algebraic equation (PDAE)

∂tv(t) = L(v(t))− η(t).v(t)

Φ(v(t), η(t)) = 0

and the reconstruction equation

∂tg(t) = g(t)η(t).

The method of freezing was developed independently by Row-
ley et al. [1] and Beyn and Thümmler [2] for stability analysis
of relative equilibria (e.g. travelling waves). See also [3].

Freezing of the two-dimensional Burgers Equation

Problem

∂tu(t, x, y) = −b · ∇u(t, x, y)p, b = (1, 1)T

u(0, x, y) = 0.5 · (1 + sin(2πx) sin(2πy))

domain: [0, 2]× [0, 1], periodic boundary conditions

Frozen PDAE (R2 acting by shifts of the domain)

∂tv = −b · ∇vp + ηx∂xv + ηy∂yv[
(∂xv, ∂xv) (∂yv, ∂xv)
(∂xv, ∂yv) (∂yv, ∂yv)

]
·
[
ηx
ηy

]
=

[
(b · ∇vp, ∂xv)
(b · ∇vp, ∂yv)

]
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Discretization
• finite volumes
• Lax-Friedrichs flux
• 120× 60 cells
• time-stepping (unh  un+1

h ):
1. evaluate Lh(unh)

2. solve phase condition
for ηnh

3. compute un+1
h with

forward Euler
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