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Outline

1. Reduced Basis Methods for Advection Dominated Problems.

2. AGlobally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free
Boundary Problems.
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Reduced Basis Methods for Advection
Dominated Problems
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Parametric Model Order Reduction

Consider time-dependent parametric problems
&P = X([0, T Vi),  s:X([0, T]; Vi) = RS
where
> P C RP parameter domain.
» V), “truth” solution state space, dim V}, > 0.
» & maps parameters to solutions (hard to compute).

> s maps state vectors to quantities of interest.

Compute
so®:RP = X([0, T]; V) — R®

for many . € P or quickly for unknown single u € P.

Stephan Rave (stephan.rave@wwu.de)
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Reduced Basis Methods: Three Basic Ideas

Compute
sod:RP — X([0, T]; V) — R®

When 9, s sufficiently smooth, quickly computable low-dimensional approximation of s o ®
should exist.

> Idea 1: State space projection:
> Define approximation ¢ : P — X([0, T]; Vi), N := dim Vy < dim V,, via
(Petrov-)Galerkin projection.

P Approximate s o ® &~ s o .
> ldea 2: Construct Vjy from PODs of solution snapshots (1), ..., ®(uk).
> ldea 3: Select u1, . .., u iteratively via greedy search over P using quickly computable
surrogate 1(®y(p), 1) > [[ (1) — ®n (k)| (POD-GREEDY).
+ Hyper-reduction technique (EIM, DEIM, GEIM, Gappy POD, ...)

5
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Example: RB Approximation of Li-lon Battery Models

MULTIBAT: Gain understanding
of degradation processes in
rechargeable Li-lon Batteries
through mathematical modeling
and simulation at the pore scale.

[, FOM:
> 2.920.000 DOFs
> Simulation time: 2 15.5h

Hulm
# Institute of Technical
DR Thermodynamics

R | et iy
MULTIBAT *|

and Research
-
Z Fraunhofer
T™WMm

ROM:
» Snapshots: 3
> dim Vy = 245
> Rel.err.: < 4.5.1073
» Reduction time: =~ 14h
> Simulation time: ~ 8m
> Speedup: 120

Stephan Rave (stephan.rave@wwu.de)
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Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths dy of the solution manifold, but RB will only
work well for rapid decay!

dy = inf su u(t) — Py, (u(t))]|
W= i, su (o) = Py (u(9)]
dim Vy <N te[0, 7]

m Oru(t,x) + p- Oxupu(t,x) =0
uy, Uy.(O,X) = UO(X)v UM(Ov t) = “u(lv t)
0 1 My X, t € [07 1]
Here: dy ~ N=1/2w.rt. L([0, 1]).

7
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Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths dy of the solution manifold, but RB will only
work well for rapid decay!

dy = inf su u(t) — Py, (u(t))]|
W= i, su (o) = Py (u(9)]
dim Vy <N te[0, 7]

m Oru(t,x) + p- Oxupu(t,x) =0
uy, Uy.(O,X) = UO(X)v UM(Ov t) = “u(lv t)
0 1 My X, t € [07 1]
Here: dy ~ N=1/2w.rt. L([0, 1]).

However: We can describe solution easily as

up(t,x) = up(x — p -t mod1).

7
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Nonlinear Approximation

General Idea

Write u,, (t, x) as
U (t, x) = gu(t)-vu(t, x)

N

dynamics of u,, shape of vy,
large variation in time small variation in time

where V function space, v, (t) € V and g, (t) is element of Lie group G acting on V.

> v, (t,x) should be easier to approximate by a linear space than v, (t, x)!

Stephan Rave (stephan.rave@wwu.de)
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Nonlinear Approximation

General Idea

Write u,, (t, x) as
uu(t, x) = gu(t).vu(t, x)

N

dynamics of u,, shape of vy,
large variation in time small variation in time

where V function space, v, (t) € V and g, (t) is element of Lie group G acting on V.

> v, (t,x) should be easier to approximate by a linear space than v, (t, x)!

> Related/other approaches: [Rowley, Marsden, 2000] [Gerbeau, Lombardi, 2014]
[lollo, Lombardi, 2014] [Carlberg, 2015] [Taddei, Perotto, Quarteroni, 2015]
[Reiss, Schulze, Sesterhenn, Mehrmann, 2015] [Cagniart, Maday, Stamm, 2016]
[Nair, Balajewicz, 2017] [Welper, 2017] [Rim, Moe, LeVeque, 2018] ...

8
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Meth Od Of Fre eZi ng [Beyn, Thiimmler, 2004], [Rowley et. al., 2000, 2003]

Definition (Method of Freezing)

With initial conditions v, (0) = u(0), g.(0) = e, solve:

Bevi () + Lya(via(1)) + 90 (£).vu(£) = 0
O(vu(£), g (£) = 0

9u(t) = g(t) "0egu(t) reconstruction equation

Orthogonality phase condition

®(v,g) =0 <= O:rv(t) L G.v(t)
<~ (L(v)+g.v,hv)=0 VheG

frozen PDAE

Stephan Rave (stephan.rave@wwu.de)
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Test Problem

2D Burgers-type problem

Solve on Q = [0, 2] x [0, 1] with periodic boundaries, t € [0,0.3], v € R? and p € [1,2]:

Oru+V-(V-ut)=0
u(0, x1,x2) = 1/2(1 + sin(27x1 ) sin(27x2))

Let G := R? act on u by periodic shifts.

Salution for pa 1.50 Frozen Solution for p = 1.50

i i
09 09
08 o8
07 o7
08 o8

o5 03
04 o4
o3 03
02 02
01 o

o 0z o4 o0s  o0s v 2 14 e s 2 % oz o4 os  os T 2 a4 O 2

X
o1 oz 03 o4 05 o6 or o8 o8 o1 o0z 03 o+ 05 o 07 o8 09
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Test Problem

2D Burgers-type problem

Solve on Q = [0, 2] x [0, 1] with periodic boundaries, t € [0,0.3], v € R? and p € [1,2]:

Oru+V-(V-ut)=0
u(0, x1,x2) = 1/2(1 + sin(27x1 ) sin(27x2))

Let G := R? act on u by periodic shifts.

numsauuwap 150

10
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Combining RB with the Method of Freezing

FrozenRB-Scheme for 2D-shifts [Ohlberger, R, 2013]

Solve

Oevy(e),n + Pvy © Zm[Lp)(viu,n(t)) = 8u(e),n - (Pvy © V(v n(t)) =0
[(aXiVM,Nz 8Xj V,u,N)],"j . [gu,N]j = [(IM[E#](V#)» axi V,u,N)],'

and
Orgu(t) = gu(t)
with initial conditions v,,(0) = u(0), g.(0) = (0,0)7.
» EI-GREEDY, POD-GREEDY algorithms for basis generation.

> Full offline/online decomposition.

» No additional evaluations of nonlinearity.

Stephan Rave (stephan.rave@wwu.de)
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Results for the Burgers Problem

100 7 T Left:
—e— no freezing
5 —_m— frozen > 1.9 Ninterpolation points.
@ > Test set: 100 random .
L1072 - —
4
2 Bottom:
3
£ 104 - B > dim Vyy = 20, 38 interpolation points.
> =
A N S A ininink: n=15.
0 20 40 60 80 100
basis vectors (N)
detailed, no freezing  reduced, no freezing reduced, frozen

ALl o 1}
(=}
L AL B A T Y T L

o S e B . . 0.6
L L L b
e fa R s "0 T8 R
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Results for the Burgers Problem

100 [T i Left:
—e— no freezing
5 = frozen > 1.9 - Ninterpolation points.
b > Test set: 100 random .
L1072 - -
4
2 Bottom:
£ 10-4 - > dim Vyy = 20, 38 interpolation points.
A S S NN ik > p=15

0 20 40 60 80 100
basis vectors (N)

detailed, no freezing  reduced, no freezing reduced, frozen
L - L | 1
e} = = '- ‘ - ‘ . . . . 08 Freelmg Ofaves
”' . .". .‘ .. .. 0 multiple W
3 [ - — A ‘ - e ) . . 0:4 See Harshit t
B BBl
T TNTY ™ -
- e L

12
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A Globally Mass Conservative Nonlinear
Reduced Basis Method for Parabolic Free
Boundary Problems

Stephan Rave (stephan.rave@wwu.de)
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A Free Boundary Problem

Osmotic cell swelling model [Lippoth, Prokert, 2012]

Given Q(0) C R, u(0) € H*(Q(0)) and coefficients wuext, @, 3,y € R, the concentration
u(t) and normal velocity w of 9(t) is given by:

Oru —aAu =0 in Q(t),
wru + adau =0 on I(t),
=Bk 4 (U — text) = wr on I (t).

> up: constant concentration in Q(t)¢
> K mean curvature of 9Q(t)
> a: diffusivity of u
> — Bk surface tension
> ~(u — uext): 0OSMotic pressure

Stephan Rave (stephan.rave@wwu.de)
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Eulerian Approximation

> Consider u(t) € L?(Q(t)) — L?(R?) as joint e i
approximation space. s

Stephan Rave (stephan.rave@wwu.de)
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Eulerian Approximation

> Consider u(t) € L?(Q(t)) — L?(R?) as joint
approximation space.

» moving domain boundary

= moving discontinuity in u(t)
— slow singular value decay

I I
n
101 [ uh,eul

singular value

ROM for Free Boundary Problems with Mass Conservation
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Eulerian Approximation
> Consider u(t) € L2(Q(t)) < L2(R9) as joint il

approximation space.

» moving domain boundary
= moving discontinuity in u(t)
— slow singular value decay

[ [
n

] Use nonlinear transformation

T 100 B

< u(t)[W(t)[x]]

2101k —

? to freeze boundary I'(t) in space.
1072 - —

\ \ \ \ \ \ > Fix reference domain

Q= w(t)"HQ(1)).

Stephan Rave (stephan.rave@wwu.de)
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ALE Formulation
Fix reference domain € and introduce deformation field W(t) s.t. W(t)(Q) = Q(t).
Pulling back the equations to 2 leads to the following time-discretization scheme:

Stephan Rave (stephan.rave@wwu.de)
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ALE Formulation
Fix reference domain € and introduce deformation field W(t) s.t. W(t)(Q) = Q(t).
Pulling back the equations to ) leads to the following time-discretization scheme:
1. Compute boundary velocity:

/Jr"*lwﬁfhl -8 ds+5At/Jr"*1(P CFTHTT R () TTVE,) ds
r r

- _ B/Jr"‘lp N G N v/ ds+'y/J|f_1(ﬁh — Uext)8h - (F""1) " ") ds.
r r

MUNSTER ROM for Free Boundary Problems with Mass Conservation
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ALE Formulation
Fix reference domain € and introduce deformation field W(t) s.t. W(t)(Q) = Q(t).
Pulling back the equations to ) leads to the following time-discretization scheme:
1. Compute boundary velocity:

/Jr"*lwpfhl.g,, ds+,8At/J|5"1(P CFTHTT R () TTVE,) ds
r r
- B/Jr"‘lp N G N v/ ds+'y/J|f_1(ﬁh — Uext)8h - (F""1) " ") ds.

r r

2. Extend velocity to interior via harmonic extension:
—div[h (VT (Vg )T =0 inQ, wp Tt =, onag.

MUNSTER ROM for Free Boundary Problems with Mass Conservation
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ALE Formulation
Fix reference domain € and introduce deformation field W(t) s.t. W(t)(Q) = Q(t).
Pulling back the equations to ) leads to the following time-discretization scheme:
1. Compute boundary velocity:

/Jr"*lwpfhl.g,, ds+,8At/J|5"1(P CFTHTT R () TTVE,) ds
r r
- B/Jr"‘lp N G N v/ ds+'y/J|f_1(ﬁh — Uext)8h - (F""1) " ") ds.

r r

2. Extend velocity to interior via harmonic extension:
—div[h (VT (Vg )T =0 inQ, wp Tt =, onag.

3. Update deformation field:
W) =Wt A

Stephan Rave (stephan.rave@wwu.de)
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ALE Formulation
Fix reference domain € and introduce deformation field W(t) s.t. W(t)(Q) = Q(t).
Pulling back the equations to ) leads to the following time-discretization scheme:
1. Compute boundary velocity:

/Jr"*lwpfhl.g,, ds+,8At/J|5"1(P CFTHTT R () TTVE,) ds
r r
- B/Jr"‘lp N G N v/ ds+'y/J|f_1(ﬁh — Uext)8h - (F""1) " ") ds.

r r

2. Extend velocity to interior via harmonic extension:
—div[h (VT (Vg )T =0 inQ, wp Tt =, onag.

3. Update deformation field:
W) =Wt A

4. Update concentration field:
/ J" apop dx + At/ J"ap WZ’I . ((F")*T - Vp)dx
Q Q

+aAt/ J(FY)Tval) - (F") TV on) dx = / I ar oy dx.
Q Q

Stephan Rave (stephan.rave@wwu.de)
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ALE Formulation

> Rapid singular value decay of both
concentration and deformation fields.

> After space discretization this
corresponds to moving-mesh approach
(ALE), where W} (v) is the trajectory of the
vertex v.

singular value

> In contrast to “parameterized domain
problems”, the domain deformation W}
is part of the equation system.

0 20 40 60 80 100

n n )
ap vy, reconstruction

Stephan Rave (stephan.rave@wwu.de)
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Nonlinear RBM for Free Boundary Problems

Use standard RB machinery to construct ROM:

> Compute low-rank approximation spaces for a7, Wy, i | via POD.
(Could also use POD-GREEDY).

> Use EIM to approximate coefficient functions, vectors, tensors depending nonlinearly
on Wy,

» Similar to [Ballarin, Rozza, 2016] in context of FSI.

Stephan Rave (stephan.rave@wwu.de)



—_— — wwu

MUNSTER

Numerical Experiment

» Parameterization:
> o€ 0.1,1]
> 3 € [0.001,0.1]
> 51,6, €[0,1]
> Snapshots: 3*

» FOM: 3988 + 7976 DOFS

Rel. Lo -1 ~H Errorin u

107°

Erb

ROM for Free Boundary Problems with Mass Conservation 19

[T ] 5[0 n o[ ]
. | 0 - 0 ]
L | oo | —20 | ]
—2 0 2 -2 0 2 —2 0 2
51 =1,6,=0 85, =08, =1 S1=10 =1
Model Reduction Speedup Basis Sizes
[—e—u
10-2 |- —-— v
—e— wr
2
w
1074 - -
—6 (—
070 |

o

100 200

Stephan Rave (stephan.rave@wwu.de)
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Global Mass Conservation

Concentration update

/J” "o, dx+At/ I w T (F)TT - Von)dx
Q Q

+aAt/J"((F")_TVﬁ;,’)-((F")_TVV,,) dx:/J"—lﬁ;—lvh dx.
Q Q

Stephan Rave (stephan.rave@wwu.de)
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Global Mass Conservation

Concentration update

/J” a7 o, dx+At/ JmapwTh (FM T W on)dx
Q Q
+aAt/J"((F")_TVﬁ;,’)-((F")_TVV,,) dx:/J"—lﬁ;—lvh dx.
Q Q

> Testing with ¥, = 1vyields:

/ “f"rdX:/J"ﬁZdX+0+0:/J"*1a;:/ uf =t dx
ar @ Q qn—1

Stephan Rave (stephan.rave@wwu.de)
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Global Mass Conservation
/J” a7 o, dx+At/ JmapwTh (FM T W on)dx
Q Q
+aAt/ﬁJ"((F")_TVﬁ;,')-((F")_TVV,,) dx = /ﬁJ"‘lﬁ;_l\?,, dx.
> Testing with ¥, = 1vyields:

/ “f"rdX:/J"ﬁZdX+0+0:/J"*1a;:/ uf =t dx
ar @ Q qn—1

> Mass conservation is preserved by Rel. Mass Conservation Erfor
RB projection by adding 1 to RB for uj.

> Inexact assembly of mass matrix due to El
destroys mass conservation.

20
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Global Mass Conservation with El
» Note that in 2D:
/ J" A"\A/h =m ‘«Ilh7 lllh, uh7 Uh),
where

m(®p, Wy, dp, o) = / 0Py - By\llzy dp - O+ BXQDZY <O Wy -y - 0y dx.
Q

21
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Global Mass Conservation with El

> Note that in 2D:
/ J" A"\A/h =m ‘«Ilh7 lllh, u,77 Uh),

where

m(®p, Wy, dp, o) = / 0Py - By\llzy dp - O+ BXQDZy <O Wy -y - 0y dx.
Q

> Could assemble mass matrix 4-tensor exactly.

> Relatively expensive.
(dim RB = 30 = 6MB for reduced tensor)

> 5-tensorin 3D!

ROM for Free Boundary Problems with Mass Conservation

21
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Global Mass Conservation with El

> Note that in 2D:
[ I G600 = m(WI, W G0, 0y,
Q
where

m(®p, Wy, dp, o) = / 0Py - By\llzy dp - O+ BXdDZy <O Wy -y - 0y dx.
Q

Model Reduction Speedup

> Could assemble mass matrix 4-tensor exactly.

MUNSTER ROM for Free Boundary Problems with Mass Conservation 21

> Relatively expensive.
(dim RB = 30 = 6MB for reduced tensor)

w/ conservation

w/o conservation

> 5-tensorin 3D!

> Better approach:
1. Assemble mass matrix using El.
2. Assemble 3-tensor (n(<I>Z, Wi ap,1) exa_\ctly c Eei
and set corresponding row of mass matrix. rb

Stephan Rave (stephan.rave@wwu.de)
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Thank you for your attention!
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My homepage (with FrozenRB code)
http://stephanrave.de/
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Outlook: Remeshing

Strongly anisotropic mesh deformations in ALE schemes lead to:
> bad approximation spaces.

» ill-conditioned system matrices.

Possible MOR approach:
> In FOM: Locally adapt mesh 7, on Qs lll’,j(ﬁ,) has good shape regularity properties.

> Solve extension problem for W[ , on Q" instead of Q.

> Use “RB for AFEM” methods to construct ROM [Ullmann, Rotkvic, Lang, 2016]
[Yano 2016] [Ali, Steih, Urban, 2017] [Hinze, Grafile, 2017].

» Deformation-dependent norms?

> Dictionary-based approaches?

23
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