

Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models

Mario Ohlberger, Stephan Rave

The MULTIBAT Project

- Understand degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation.
- ► Focus: Li-Plating.

Challenge

Li-plating is initiated at interface between active particles and electrolyte.

- ⇒ Need pore-scale models which resolve active particle geometry.
- ⇒ Huge nonlinear discretizations.
 - Cannot be solved at cell scale on current hardware.
 - Parameter studies extremely expensive, even on small domains.

Figure: Simulation of half-cell geometry with plated lithium (green) on $65.6\mu m \times 44\mu m \times 44\mu m$ domain.

Stochastic Structure Modeling [Feinauer, Schmidt, Westhoff (Ulm)]

 Visual comparison of 2D and 3D cut-outs of experimental data (left) and simulated (right) shows good agreement.

Microscale Modeling [Hein, Latz (HIU)]

Variables:

c: Li⁺ concentration

 ϕ : electrical potential

Electrolyte:

$$\begin{split} \frac{\partial c}{\partial t} - \nabla \cdot (D_e \nabla c) &= 0 \\ - \nabla \cdot \left(\kappa \frac{1 - t_+}{F} RT \frac{1}{c} \nabla c - \kappa \nabla \phi \right) &= 0 \end{split}$$

Electrodes:

$$\frac{\partial c}{\partial t} - \nabla \cdot (D_s \nabla c) = 0$$
$$-\nabla \cdot (\sigma \nabla \phi) = 0$$

Coupling: Normal fluxes at interfaces given by Butler-Volmer kinetics

$$j_{inter} = 2k\sqrt{c_ec_s}\sinh\left(rac{\eta}{2RT}\cdot F
ight)$$
 $\eta = \phi_s - \phi_e - U_0(rac{c_s}{c_{max}})$ $N_{inter} = rac{1}{F}\cdot j_{inter}$

Microscale Modeling – Lithium Plating

Two possible reaction at negative electrode (Graphite):

- Intercalation Li⁺_{Electrolyte} + e_{Solid} ≠ LiC_{6,Solid}
- Lithium plating $Li_{Electrolyte}^+ + e_{Solid}^- \rightleftharpoons Li_{Solid}^{\Theta}$

Overpotential with lithium reference:

- $\eta_{\rm i} = \Phi_{\rm Solid} \varphi_{\rm Electrolyte}^{\rm Li^+} U_0(c_{\rm Solid})$
- $\eta_{\rm p} = \Phi_{\rm Solid} \varphi_{\rm Electrolyte}^{\rm Li^+}$

Lithium plating if
$$\eta_p \le 0$$
 $\eta_i + U_0(c_{So}) \le 0$

$$\eta_i + U_0(c_{S_0}) \leq 0$$

Active material and Electrolyte

$$\begin{split} i_{\text{Inter}} &= i_{\text{I,0}} \left(\exp \left[\frac{F}{2RT} \eta_i \right] - \exp \left[-\frac{F}{2RT} \eta_i \right] \right) \quad i_{\text{Li}} = i_{\text{Li,0}} \left(\exp \left[\frac{F}{2RT} \eta_{\text{Li}} \right] - \exp \left[-\frac{F}{2RT} \eta_{\text{Li}} \right] \right) \\ i_{\text{I,0}} &= i_{\text{I,00}} \cdot \sqrt{c_{\text{E}}} \cdot c_{\text{S}} \cdot \left(c_{\text{S}}^{\text{max}} - c_{\text{S}} \right) \end{split}$$

$$i_{\text{Li}} = i_{\text{Li},0} \left(\exp \left[\frac{F}{2RT} \eta_{\text{Li}} \right] - \exp \left[-\frac{F}{2RT} \eta_{\text{Li}} \right] \right]$$
$$i_{\text{Li},0} = i_{\text{Li},00} \cdot \sqrt{c_E}$$

Discretization [Iliev, Schmidt, Zausch (Fraunhofer ITWM)]

Cell centered **Finite Volume** discretization on voxel grid + **implicit Euler** leads to nonlinear equation systems of the form:

Full Order Model

Find $[c_{\mu}^{(n)},\phi_{\mu}^{(n)}]\in V_h\oplus V_h=:V$ such that

$$\begin{bmatrix} \frac{1}{\Delta t} (c_{\mu}^{(n+1)} - c_{\mu}^{(n)}) \\ 0 \end{bmatrix} + A_{\mu} \begin{pmatrix} \begin{bmatrix} c_{\mu}^{(n+1)} \\ \phi_{\mu}^{(n+1)} \end{bmatrix} \end{pmatrix} = 0, \qquad c_{\mu}^{(0)} = c_{\mu,0}.$$

- Numerical fluxes on interfaces = Butler-Volmer fluxes.
- Newton scheme with algebraic multigrid solver.
- ► Implemented by Fraunhofer ITWM in ●�� BEST.
- $\mu \in \mathcal{P}$ indicates dependence on model parameters (e.g. temperature T, charge rate).

Reduced Basis Approximation [Ohlberger, R (Münster)]

Reduced Order Model

Find $[ilde{arepsilon}_{\mu}^{(n)}, ilde{\phi}_{\mu}^{(n)}]\in ilde{V_c}\oplus ilde{V_\phi}=: ilde{V}$ solving projected equation

$$\begin{bmatrix} \frac{1}{\Delta t} (\tilde{c}_{\mu}^{(n+1)} - \tilde{c}_{\mu}^{(n)}) \\ 0 \end{bmatrix} + \left\{ \frac{\boldsymbol{P}_{\tilde{\boldsymbol{V}}}}{\boldsymbol{O}} \circ \boldsymbol{A}_{\mu} \right\} \begin{pmatrix} \begin{bmatrix} \tilde{c}_{\mu}^{(n+1)} \\ \tilde{c}_{\mu}^{(n+1)} \end{bmatrix} \end{pmatrix} = 0, \qquad \tilde{c}_{\mu}^{(0)} = \boldsymbol{P}_{\tilde{\boldsymbol{V}}_{\boldsymbol{c}}}(\boldsymbol{c}_{\mu,0}).$$

- Basis generation: POD of a priori selected solution trajectories, separately for c and φ (different scales).
- POD (=Proper Orthogonal Decomposition): truncated singular value decomposition of snapshot matrix (a.k.a. principal component analysis)
- ▶ More advanced: Use greedy search to select snapshot parameters.

Empirical Operator Interpolation (a.k.a. DEIM, EIM)

Problem: Still expensive to evaluate

$$P_{\tilde{V}} \circ A_{\mu} : \tilde{V} \longrightarrow V \longrightarrow \tilde{V}.$$

Solution:

Use locality of finite volume operators:

to evaluate
$$M$$
 DOFs of $A_{\mu}([c, \phi])$ wee need $M' \leq C \cdot M$ DOFs of $[c, \phi]$.

Approximate

$$A_{\mu} pprox \mathcal{I}_{M}[A_{\mu}] := I_{M} \circ \tilde{A}_{M,\mu} \circ R_{M'},$$

where

 $R_{M'}: V \to \mathbb{R}^{M'}$ $\tilde{A}_{M,\mu}: \mathbb{R}^{M'} \to \mathbb{R}^{M}$ $I_{M}: \mathbb{R}^{M} \to V$

restriction to M' DOFs needed for evaluation A_{μ} restricted to M interpolation DOFs linear combination with interpolation basis

Empirical Operator Interpolation (2)

Empirical Operator Interpolation

Given M interpolation DOFs (magic points) and corresponding interpolation basis, approximate:

$$A_{\mu} pprox \mathcal{I}_{M}[A_{\mu}] := I_{M} \circ \tilde{A}_{M,\mu} \circ R_{M'}.$$

Basis Generation:

- Compute operator evaluations on solution snapshots (including Newton stages).
- Iteratively extend interpolation basis with worst-approximated evaluation.
 Choose new interpolation DOF where new vector is maximal (EI-GREEDY).
- Interpolate Butler-Volmer part of A_{μ} and $1/c \cdot \nabla c$ separately $(\phi$ -part of A_{μ} vanishes for solutions).
- More advanced: Build RB and interpolation basis simultaneously using error estimator to select snapshots (POD-EI-GREEDY).

Full Reduction

Reduced Order Model with EI

Find $[ilde{c}_{\mu}^{(n)}, ilde{\phi}_{\mu}^{(n)}]\in ilde{V_c}\oplus ilde{V_\phi}= ilde{V}$ solving projected equation

$$\begin{bmatrix} \frac{1}{\Delta t} (\tilde{c}_{\mu}^{(n+1)} - \tilde{c}_{\mu}^{(n)}) \\ 0 \end{bmatrix} + \left\{ (\textbf{\textit{P}}_{\tilde{\textbf{\textit{V}}}} \circ \textbf{\textit{I}}_{\textbf{\textit{M}}}) \circ \tilde{\textbf{\textit{A}}}_{\textbf{\textit{M}},\mu} \circ \textbf{\textit{R}}_{\textbf{\textit{M'}}} \right\} \begin{pmatrix} \left[\tilde{c}_{\mu}^{(n+1)} \\ \tilde{\phi}_{\mu}^{(n+1)} \right] \end{pmatrix} = 0, \quad \tilde{c}_{\mu}^{(0)} = \textbf{\textit{P}}_{\tilde{\textbf{\textit{V}}}_{\textbf{\textit{c}}}}(c_{\mu,0}).$$

Offline/Online decomposition

- ▶ Precompute the linear operators $P_{\tilde{V}} \circ I_M$ and $R_{M'}$ w.r.t. basis of \tilde{V} .
- ► Effort to evaluate $(P_{\tilde{V}} \circ I_M) \circ \tilde{A}_{M,\mu} \circ R_{M'}$ w.r.t. this basis:

$$\mathcal{O}(NM) + \mathcal{O}(M) + \mathcal{O}(CMN),$$

where $N := \dim \tilde{V}$.

Numerical Results

Model:

- ► Half-cell with plated Li
- μ = discharge current
- > 2.920.000 DOFs

Reduction:

- Snapshots: 3
- N = 178 + 67
- M = 924 + 997
- ▶ Rel. err.: $< 4.5 \cdot 10^{-3}$

Timings:

- Full model: \approx 15.5h
- ▶ Projection: \approx 14h
- ▶ Red. model: \approx 8m
- ► Speedup: 120

Figure: Validation of reduced order model output for random discharge currents; solid lines: full order model, markers: reduced order model.

Semi-Heuristic Error Estimate [Hain, Ohlberger, Radic, Urban, 2018]

Idea: Use extended ROM as surrogate for FOM solution:

$$[\hat{c}_{\mu}^{n},\hat{\varphi}_{\mu}^{(n)}]\in\hat{V}_{c}\oplus\hat{V}_{\varphi}\supset\tilde{V}_{c}\oplus\tilde{V}_{\varphi}$$

Saturation Assumtion:

$$\|\hat{c}_{\mu}^{(n)} - c_{\mu}^{(n)}\| \le \Theta \cdot \|\tilde{c}_{\mu}^{(n)} - c_{\mu}^{(n)}\|$$

$$\|\hat{c}_{\mu}^{(n)} - c_{\mu}^{(n)}\| \leq \Theta \cdot \|\tilde{c}_{\mu}^{(n)} - c_{\mu}^{(n)}\|, \qquad \qquad \|\hat{\varphi}_{\mu}^{(n)} - \varphi_{\mu}^{(n)}\| \leq \Theta \cdot \|\tilde{\varphi}_{\mu}^{(n)} - \varphi_{\mu}^{(n)}\|$$

Error Estimate:

$$\|\tilde{c}_{\mu}^{(n)} - c_{\mu}^{(n)}\| \leq \frac{1}{1 - \Theta} \cdot \|\tilde{c}_{\mu}^{(n)} - \hat{c}_{\mu}^{(n)}\|, \quad \|\tilde{\varphi}_{\mu}^{(n)} - \varphi_{\mu}^{(n)}\| \leq \frac{1}{1 - \Theta} \cdot \|\tilde{\varphi}_{\mu}^{(n)} - \hat{\varphi}_{\mu}^{(n)}\|$$

- $\hat{N} N = 28 + 30$
- $\Theta := 0$
- max rel overest: 1.08 / 3.46
- min rel underest:
 - 2.89 / 1.45

Outlook: Localized RB Approximation

Figure: First experiments on small battery geometry; left: local RB dimensions, right: error for varying N, M; top: Li-concentration c, bottom: electrical potential ϕ .

Software Interfaces in MULTIBAT

Software Interfaces in MULTIBAT

Interfaces allow us to:

- ▶ easily exchange solver with ♦♦♦ BEST.
- ▶ independently develop MOR algorithms.
- easily apply MOR algorithms to updated models in @@@BEST.
- reuse MOR algorithms for other problems.

mitegration becimark i

- Using all APs
- Using all Interfaces

modeling

pyMOR - Model Order Reduction with Python

- Quick prototyping with Python.
- Seamless integration with high-performance PDE solvers.
- Out of box MPI support for reduction algs. and PDE solvers.
- ▶ BSD-licensed, fork us on Github!

pyMOR - Some More Applications

Linear elasticity (deal.II)

Nonlinear diffusion (FEniCS)

MPI distributed transport problem (DUNE)

Free boundary problem (NGSolve)

Localized RB Multiscale Method (DUNE)

Your problem here!

Thank you for your attention!

MULTIBAT: Unified Workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction

J. Comp. Sci., 2018.

Localized Reduced Basis Approximation of a Nonlinear Finite Volume Battery Model with Resolved Electrode Geometry.

In: Model Reduction of Parametrized Systems, Springer, 2017.

pyMOR – Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), 2016. http://www.pymor.org/

My homepage http://stephanrave.de/