Synopsis. pyMOR is a software library for building model order reduction ap-
plications with the Python programming language. Implemented algorithms in-
clude reduced basis methods for parametric linear and non-linear problems,
as well as system-theoretic methods such as balanced truncation or IRKA and
purely data-driven approches like DMD. All algorithms in pyMOR are formulated
in terms of abstract interfaces for seamless integration with external PDE solver
packages. Moreover, pure Python implementations of finite element and finite
volume discretizations using the NumPy/SciPy scientific computing stack are

provided for getting started quickly.

alle,

pip3 1install pymor

conda

open

Join the community!

e try one of our interactive
tutorials

¢ attend pyMOR school
https://school.pymor.org

e ask for help on
GitHub discussions

e fixa good firstissue and
win a free t-shirt!

® become a contributor or
main developer

1 Add #CSE23 to your PR. First three merged PRs win.

[m] 5.5 [m]
install -c conda-forge pymor ., E :;ff;

docker pull pymor/demo:main
https://bit.1y/3Zcf55X

$2 deal.Il

External solver support. pyMOR
includes support for many popular PDE
solver packages (with experimental
FEniCSx support). Integration with custom
solvers is easily possible by exposing inter-
nal data structures and solution algorithms
as VectorArrays, Operators and Models.

Hik 2

&)

Wl

Models

StationaryModel PHLTIModel BilinearModel QuadraticHamiltonianModel
InstationaryModel SecondOrderModel TransferFunction LinearStochasticModel
LTIModel LinearDelayModel

Algorithms

POD certified RB parametric PG projection balanced truncation
P-AAA HAPOD adaptive greedy basis generation empirical interpolation
DEIM TF-IRKA non-intrusive MOR with ANNs Arnoldi eigensolver
DMD rational Arnoldi low-rank ADI Lyapunov solver randomized GSVD

IRKA PSD cotangent lift ~ low-rank ADI Riccati solver randomized eigensolver
SAMDP PSD complex SVD bitangential Hermite interpolation biorthogonal Gram-Schmidt
LGMRES modal truncation Gram-Schmidt with reiteration tangential rational Krylov
LSMR time steppers symplectic Gram-Schmidt eigensys. realization alg.
LSQR Slycot support PSD SVD-like decomposition second-order BT/IRKA

Mathematical formulation

Projecting an elliptic model.

basis sizes.

ROM with order 30 has been computed using balanced truncation.

A(p)u(p) = F
Ap(p) =V AV
B Folp):=VIF
Ar(pur(p) = Fr
L
Low-level interface usage
T Building a model. u = A_op.apply_inverse(F, mu)
A_r = V.inner(A_op.apply(V, mu))
— Using NumPy/SciPy matrices: F_r = V.inner(F)
fom = LTIModel.from_matrices(A, B, C, D, E) u_r = np.linalg.solve(A_r, F.r)
_ Using builtin discretization toolkit: Automatic projection (parameter-aware)
p = thermal_block_problem((2,3)) # or define your own problem Ao = projeshlil, 1, W)
L fom, data = discretize_stationary_cg(diameter=1/100) .
High-level code
B Using an external solver: u = fom.solve(mu)
. red = StationaryRBReductor(fom, V)
from pymor.discretizers.fenics import discretize_stationary_cg - red.reduce()
B fom, data = discretize_stationary_cg(p, degree=3) POm T eE. TEAUCe
u_r = rom.solve(mu)
L
<« MPI-distributed v deal.ll Step-08 Linear Elasticity Problem. RB ap-
.) . Bode plot
Burgers bench- proximation of a linear elasticity problem parame- 102 =3 —= [T —
mark. POD-DEIM terized by Lamé constants A, i using an adaptive e e oM NE add]
reduction of a greedy sampling strategy; left: displacement field 510 o T
3d Burgers-type for (u, A\) = (1,10); top right: maximum MOR error =0 |10 >
benchmark prob- vs. basis size; bottom right: min/max error estima- N —ron | O[T ~ rom
lem implemented tor efficiency vs. basis size. gxN e N
in DUNE; FV dis- . \ PR .-
cretization with = 80 600 —
276N\ DOFs dis- 10_Frelg_uenlc(:.)y (rlaod/s)10 10_Frelg|_uen1c(:)y (riaod/s)10
a tributed over 192
o MPI ranks; top:
é simulation at final A Thermal Transregio 96 Model. Thermal model which describes
3 time; bottom: heat induced by friction and surrounding building blocks in one of
MOR errors Vvs. the ‘z-pillars’. The full-order model coming from a FEM discretization
POD and DEIM is represented by a linear state-space system with 39,527 DOFs. A

