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Abstract

We study a strengthening of MM++ which is called MM∗,++ and which
was introduced in [1] and [27]. We force its bounded version MM∗,++

c ,
which is stronger than both MM++(c) as well as BMM++, by Pmax forc-
ing over a determinacy model LFuB(R∗,Hom∗). The construction of the
ground model LFuB(R∗,Hom∗) builds upon [12] and the derived model
construction of [18].

1 Introduction

In retrospect, the program of obtaining Martin’s Maximum++, abbreviated by
MM++, or just consequences thereof by forcing over models of determinacy
started with the work of Steel and Van Wesep [35]. They obtained the consis-
tency of the saturation of NSω1 plus δ

∼
1

2
= ω2 by forcing over a model of ADR+“Θ

is regular.” Later, Woodin introduced the partial order Pmax [37, Definition
4.33] and forced a restricted version of MM++ called MM++(c) over models of
ADR + “Θ is regular” [37, Theorem 9.39], and he also forced Bounded Mar-
tin’s Maximum++, abbreviated by BMM++, over models of AD + “V is closed
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under the M ♯
1 operator” [37, Theorem 10.99]. Recently, Larson and Sargsyan

[17] forced MM++(c) plus failures of square over Chang models by Pmax forcing.
Schindler [27, Definition 2.10] introduced MM∗,++ as a strengthening of MM++.
MM∗,++ is defined by replacing the clause“φ(M) may be forced to hold in sta-
tionary set preserving forcing extensions of V ” in the reformulations of MM++

as in [4] and [6, Theorem 1.3] with “φ(M) is honestly consistent.” MM∗,++ is
a natural statement in the context of Pmax extensions, and the ultimate goal of
the program seems to be to get models of MM∗,++ using Pmax forcing.

Our main result is part of this program and is on forcing MM∗,++
c . MM∗,++

c is
a global fragment of MM∗,++ stronger than both BMM++ and MM++(c).

We let Γ∞ be the set of universally Baire sets of reals. We say a pointclass
Γ consisting of universally Baire sets of reals is productive if it is closed under
complements, projections, and satisfies for all A ∈ Γ,

∃RA∗ = (∃RA)∗

holds in all generic extensions, where A∗ and (∃RA)∗ denotes the canonical
extension of A and ∃RA respectively (see Definition 2.4).

Here is the first main result.

Main Theorem 1. Suppose Γ ⊂ P(R) is a boldface pointclass and F is a class
predicate such that LF (Γ,R) satisfies the following:

(1). LF (Γ,R) ∩ P(R) = Γ,

(2). ZF+ AD+ + ADR + “Θ is regular”,

(3). Every set of reals is universally Baire,

(4). Γ∞(= P(R)) is productive.

Suppose that G ⊂ Pmax is LF (Γ,R)-generic. Suppose

H ⊂ Add(ω3, 1)
LF (Γ,R)

is LF (Γ,R)[G]-generic. Then

LF (Γ,R)[G][H] |= ZFC+MM∗,++
c .

By combining the results in [12, Lemma 3.4] and [18, Main Theorem], we con-
struct a ground model for Main Theorem 1. Here is the second main result.

Main Theorem 2. Suppose that V is self-iterable1. Let λ be an inaccessible
cardinal which is a limit of Woodin cardinals and a limit of strong cardinals,

1Broadly speaking, V is self-iterable if it knows its unique iteration strategy in any set
generic extensions. See [12, Section 2].
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and let G ⊂ Col(ω,< λ) be a V -generic filter. Let

M = (LFuB(R∗,Hom∗))V (R∗),

where FuB is as defined in [18, Definition 4.4]2. Then

(1). M |= AD++ADR+“Θ is regular”+ “Every set of reals is universally Baire”,

(2). M∩P(R∗
G) = Hom∗

G,

(3). M |= “Γ∞(= Hom∗
G) is productive”.

From these two results, the theory

ZF+ AD+ + ADR + “Θ is regular”+
“Every set of reals is universally Baire” + “Γ∞ is productive” .

seems a reasonable theory beyond V = L(P(R)). However, it is still open
whether the theory

ZF+ AD+ + ADR + “Θ is regular” + “Every set of reals is universally Baire”

implies the productivity of Γ∞ or not. The similar question was asked by Feng–
Magidor–Woodin [9, 6. OPEN QUESTIONS 3].

Chapter 2 lists preliminaries. In Chapter 3, we prove the existence of capturing
mice, which is crucial for the proof of the first main theorem. Chapter 4 is the
proof of the first main theorem, and Chapter 5 is the proof of the second main
theorem.

Notation.

• Let R = ωω as usual.

• For α < ω1, let WOα be the set of reals coding α. Let WO =
⋃
α<ω1

WOα.
For more details, see [23, 4A].

• Let ON be the class of all the ordinals.

• Let L∈̇ be the language of set theory, and let L∈̇,İNS be the language of set
theory augmented by a predicate İNS for NSω1

. In transitive models M of
ZFC− + “ω1 exists”, ∈̇ is always to be interpreted by ∈↾M, İNS is always
to be interpreted by NSω1 in the sense of M.

• For a forcing P and a P-name τ , we denote τG by the interpretation of τ
by P-generic G.

2We shall give the definition of FuB later. See Definition 5.2.
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2 Preliminaries

This chapter lists the tools and theorems used in this paper briefly.

2.1 Forcing axioms

In this section, we introduce bounded forcing axioms and their characterization.

Definition 2.1. Let Γ be a class of forcings, i.e., complete Boolean algebras,
and let κ be an uncountable cardinal.

FAκ(Γ), or FAκ for forcings in Γ, denotes the statement that whenever P ∈ Γ
and {Ai | i < ω1} is a family of maximal antichains in P such that Ai has size
at most κ for each i < ω1, then there is a filter G in P such that G∩Ai ̸= ∅ for
all i < ω1.

FA++
κ (Γ), or FA++

κ for forcings in Γ, denotes the statement that whenever P ∈ Γ,
{Ai | i < ω1} is a family of maximal antichains in P, and {τi | i < ω1} is a
family of terms for stationary subsets of ω1 such that Ai has size at most κ for
each i < ω1, then there is a filter G in P such that G∩Ai ̸= ∅ for all i < ω1 and

τGi = {α < ω1 | ∃p ∈ G(p P α̌ ∈ τ̇i)}

is stationary for all i < ω1.

We have BMM is FAℵ1 for stationary set preserving forcings, MMc is FAc for
stationary set preserving forcings, and MM is FAκ for stationary set preserving
forcings and for all κ. The same goes for the ++ version.

Definition 2.2. Let M = (M,∈, R⃗) be a transitive structure such that R⃗ =
(Ri : i < ω1) is a list of ℵ1 relations on M , and let φ be a Σ1 formula. Let
Ψ(M, φ) be the statement that there is some transitive structure M̄ of size ℵ1,
some elementary π : M̄ = (M̄,∈, (R̄i : i < ω1)) → M, and φ(M̄) holds true.

Honest consistency is motivated by the following characterization of FA++
κ (Γ).
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Lemma 2.1 ([4, Theorem 5], [6, Theorem 1.3]). Let Γ be a class of forcings.
The following are equivalent.

(1). FA++
κ (Γ).

(2). For all P ∈ Γ, for all transitive structures M of size at most κ, and for
all Σ1 formulae φ in L∈̇,İNS ,

V P |= φ(M) =⇒ V |= Ψ(M, φ).

Proof. We only prove that (2) implies (1). For more details, see [4, Theorem 5]
and [6, Theorem 1.3].

Let P be stationary set preserving complete Boolean algebra, let (Ai : i < ω1)
be a family of maximal antichains in P such that each Ai has size at most κ,
and let (τi : i < ω1) be a faimily of names for stationary subsets of ω1. Let

Bi = {(α, ||α̌ ∈ τ̇i||) | α < ω1}

for i < ω1. Let θ be sufficiently large, and let

σ : M = (M,∈, P̄, (Āi : i < ω1), (B̄i : i < ω1)) → (Hθ,∈,P, (Ai : i < ω1), (Bi : i < ω1)),

where M is transitive and of size κ, and

(ω1 + 1) ∪ {P} ∪ {τi | i < ω1} ∪
⋃
i<ω1

Ai ∪
⋃
i<ω1

Bi ⊂ ran(σ).

Let φ(M) say

φ(M) ≡∃G̃∃(Si | i < ω1)

[Ḡ is a filter in P̄
∧ ∀i < ω1(Āi ∩ Ḡ ̸= ∅)
∧ ∀i < ω1(Si ⊂ ω1 ∧ Si /∈ İNS)

∧ ∀i < ω1∀α ∈ Si∃p ∈ Ḡ

((α, p) ∈ B̄i)].

Let G ⊂ P be V -generic. Then

V [G] |= φ(M)

as witnessed by the σ-preimage of G and (τGi : i < ω1).

By our hypothesis, let π : M̄ → M be elementary and such that φ(M̄) holds.
Let Ḡ and (Si : i < ω1) witness that φ(M̄) holds true. Let G be the filter in P
generated by (σ ◦ π)[Ḡ]. Then we have that

G ∩Ai ̸= ∅,

since Ḡ ∩ Āi ̸= ∅. Moreover, since Si ⊂ τ Ḡi for each i < ω, τ Ḡi is stationary for
each i < ω1. Hence G is the desired filter. Therefore, FA++

κ (Γ) holds.
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2.2 Universally Baire property

The notion of universally Baireness is introduced by Feng, Magidor, and Woodin
[9]. The following definition of universally Baireness is still valid in choiceless
models.

Definition 2.3. Let T and U be trees on ωk ×ON, and let Z be a set. We say
the pair (T,U) is Z-absolutely complementing if we have

V Col(ω,Z) |= p[T ] = Rk \ p[U ].

We say a set of reals A is Z-universally Baire if there is a Z-absolutely comple-
menting pair (T,U) of trees such that A = p[T ] = R \ p[U ] in V . We call such
a pair (T,U) Z-absolutely complementing pair of trees for A. We say a set of
reals A is universally Baire if A is Z-universally Baire for any set Z.

In the AC context, being universally Baire is equivalent to being< ON-universally
Baire, i.e., κ-universally Baire for all κ ∈ ON. However, in the absence of AC,
the authors do not know that they are still equivalent.
Notation. Let Z be a set. Let A be a Z-universally Baire, and let (T,U) be
a Z-absolutely complementing pair of trees for A. Let G be Col(ω,Z)-generic.
Then we denote the canonical expansion of A to V [G] by

AG = p[T ]V [G],

or if G is clear from the context, we denote it by A∗.

Note that the canonical expansion does not depend on the choice of an absolutely
complementing pair of trees.

We shall use projective generic absoluteness with names for sets of reals in the
proof of Theorem 1. For that, we need tree representations compatible with
projections, i.e., (∃RA)∗ = ∃RA∗ for a universally Baire set A.

Definition 2.4. Let Γ ⊂
⋃

1≤k<ω P(Rk) be a pointclass of universally Baire
sets of reals. We say that Γ is productive if

(1). Γ is closed under taking complements and projections, and

(2). for all k < ω and for all D ∈ Γ ∩ P(Rk+2), if the trees T and U on
ωk+2 ×ON witness that D is Z-universally Baire and if

T̃ = {(s↾(k + 1), (s(k + 1), t)) | (s, t) ∈ T},

then there is a tree Ũ on ωk+1 ×ON such that

V Col(ω,Z) |= p[T̃ ] = Rk+1 \ p[Ũ ].
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Lemma 2.2 is shown by an induction on the complexity of formulae.

Lemma 2.2. Let Γ be productive, and let A ∈ Γ. Then any projective statement
about A is absolute between V and any forcing extension of V .

2.3 MM∗,++

Let us introduce MM∗,++. The notations are mainly the same as [27]. We say
x ∈ R codes a transitive set if

Ex = {(n,m) | x(⟨n,m⟩) = 0}

is an extensional and well-founded relation on ω. Let us write WF for the set
of reals coding a transitive set. Note that WF is the Π1

1-complete set of reals3.
If x ∈ WF, then let πx be the transitive collapse of the structure (ω,Ex) and
let decode(x) = πx(0). If x, y ∈ WF, then we shall write x ≃ y to express that
decode(x) = decode(y).

We say a function f : R → R is universally Baire if the graph of f is a universally
Baire subset of R2.

Definition 2.5. We say a function F : HC → HC is strongly universally Baire
in the codes, or briefly strongly universally Baire, if there is a universally Baire
function f : R → R such that

(1). if z ∈ HC and x ∈ WF with z = decode(x), then f(x) ∈ WF and F (z) =
decode(f(x));

let (T,U) witness that f is universally Baire with f = p[T ]. Then for all
posets P,

(2). V P |= “p[T ] is a function from R to R”;

(3). V P |= ∀{x, x′, y, y′} ⊂ R[(x, y), (x′, y′) ∈ p[T ] ∧ x ≃ x′ −→ y ≃ y′].

Note that both (2) and (3) of Definition 2.5 are projective statements about the
graph of f . Hence by Lemma 2.2, we have the following.

Lemma 2.3. Assume that Γ∞ is productive. Let F : HC → HC be a function.
Suppose that there is a universally Baire function f : R → R satisfying

(1). if z ∈ HC and x ∈ WF with z = decode(x), then f(x) ∈ WF and F (z) =
decode(f(x)); and

(2). ∀{x, x′, y, y′} ⊂ R[y = f(x) ∧ y′ = f(x′) ∧ x ≃ x′ −→ y ≃ y′].
3See [23, 4A].
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Then F is strongly universally Baire.

Let F : HC → HC be strongly universally Baire in the codes as witnessed by f
(and a pair (T,U) of trees). Let P be a poset, and let g ⊂ P be V -generic. Then
F canonically extends a total map

F P,g : V [g] → V [g]

as follows. Let X ∈ V [g]. Let θ be any sufficiently large cardinal, let H ⊂
Col(ω, θ) be V [g]-generic, and let x ∈ R∩ V [g][H] be such that X = decode(x).
Let y ∈ R ∩ V [g][H] be such that (x, y) ∈ p[T ]. We set F P,g(X) = decode(y).
Then F P,g is well-defined and does not depend on the choice of f , (T,U), θ, and
H by the standard argument.

Definition 2.6. Let F : HC → HC be strongly universally Baire. Let θ ∈ ON,
let g ⊂ Col(ω, θ) be V -generic, and let A ∈ V [g] be transitive. We say A is
F -closed if

(1). A is closed under FCol(ω,θ),g, and

(2). FCol(ω,θ),g ↾X ∈ A for every X ∈ A.

Definition 2.7 ([27, Definition 2.8]). Let φ be a formula in the language L∈̇,İNS ,
and let M ∈ V . Let θ = ℵ1 + |TC({M})|. We say φ(M) is honestly consistent
if for every F : HC → HC which is strongly universally Baire in the codes, if
g ⊂ Col(ω, 2θ) is V -generic, then in V [g] there is a transitive model A such that

(1). A is F -closed,

(2). A |= ZFC−,

(3). (Hθ+)
V ∈ A,

(4). İANS ∩ V = NSVω1
, and

(5). A |= φ(M).

Definition 2.8 ([27, Definition 2.10]). Let κ be an infinite cardinal.

• Martin’s Maximum∗,++
κ , abbreviated by MM∗,++

κ , is the statement that
whenever M = (M,∈, R⃗) is a models, where M is transitive with |M | ≤ κ

and R⃗ is a list of ℵ1 relations on M and whenever φ is a Σ1 formula in
the language L∈̇,İNS

such that φ(M) is honestly consistent, then Ψ(M, φ)
holds true in V .

• MM∗,++ is the statement that MM∗,++
κ holds for all κ.
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Asperó and Schindler [3, Definition 2.3 and Theorem 3.1] introduced a weaker
notion, called 1-honestly consistency, and proved that MM is Σ2-complete.

The same argument as in Lemma 2.1 shows that:

Theorem 2.4 (Schindler, [27, Theorem 2.11]). Let κ be an infinite cardinal.
Then MM∗,++

κ implies MM++
κ .

2.4 Pmax

The forcing Pmax was introduced by Woodin, see [37, Chapter 4].

To define Pmax, we need the notion of “generic iteration”. We consider structures
of the form (M,∈, I, a), where M is a countable transitive model of a sufficiently
large fragment of ZFC, (M, I) is amenable, a ⊂ ωM1 , and I is a M -normal ideal
over ωM1 . For γ ≤ ω1, we say

⟨⟨(Mα,∈, Iα, aα) | α ≤ γ⟩, ⟨jα,β | α ≤ β ≤ γ⟩, ⟨Gα | α < γ⟩⟩

is a generic iteration of (M,∈, I, a) of length γ if the following hold

(1). (M0,∈, I0, a0) = (M,∈, I, a),

(2). for α < γ, Gα is a P(ω1)
Mα/Iα-generic overMα, Mα+1 is the generic ultra-

power of Mα by Gα, and jα,α+1 : (Mα,∈, Iα, aα) → (Mα+1,∈, Iα+1, aα+1)
is the corresponding generic elementary embedding,

(3). for α ≤ β ≤ δ, jα,δ = jβ,δ ◦ jα,β ,

(4). for β is a nonzero limit ordinal ≤ γ, then ⟨Mβ , ⟨jα,β | α < β⟩⟩ is the direct
limit of ⟨Mα, jα,α′ | α ≤ α′ < β⟩.

We say good (M,∈, I, a) is generically iterable, or briefly iterable, if for all α ≤
ω1, every generic iteration of (M,∈, I, a) of length α is well-founded.

Definition 2.9. The partial order Pmax consists of all pairs (M,∈, I, a) such
that

(1). M is a countable transitive model of a sufficiently large fragment of ZFC+MAℵ1
;

(2). (M, I) is amenable;

(3). I is a M -normal ideal on ωM1 , and a ∈ P(ω1)
M ;

(4). (M, I) is iterable; and

(5). there is an x ∈ RM such that ωM1 = ω
L[a,x]
1 .
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(M,∈, I, a) <Pmax (N,∈, J, b) if (N,∈, J, b) ∈ HCM and there is a generic itera-
tion j : (N,∈, J, b) → (N ′,∈, J ′, b′) in M such that b′ = a and I ∩N ′ = J ′.

We say (M,∈, I) is a Pmax precondition if there is a ⊂ ωM1 such that (M,∈
, I, a) ∈ Pmax. Similarly, we define a generic iteration of a precondition (M,∈, I).

Notation. For a Pmax condition p = (M,∈, I, a) ∈ Pmax, we often identify p
with its universe M for notational simplicity.

In the Pmax analysis, it is important to see for eachA ⊂ R there are densely many
conditions that keep track of a name of A. It comes from Suslin representations.

Definition 2.10. Let A be a set of reals. We say a precondition (M,∈, I) is
A-iterable if

(1). A ∩M ∈M , and

(2). j(A∩M) = A∩M ′ whenever j : (M,∈, I) → (M ′,∈, I ′) is an iteration of
(M,∈, I).

Determinacy ensures that there are densely many A-iterable conditions for each
A ⊂ R. Here, AD+ is a technical variant of AD.

Lemma 2.5 (Woodin). Assume AD+. Let A be a set of reals. Then there are
densely many conditions p = (M,∈, I, a) ∈ Pmax such that

(1). (HCM ,∈, A ∩M) ≺ (HC,∈, A),

(2). (M,∈, I) is A-iterable, and

(3). if j : (M,∈, I) → (M ′,∈, I ′) is any iteration of (M,∈, I), then

(HCM
′
,∈, A ∩M ′) ≺ (HC,∈, A).

Proof. The key fact is the following.
Fact 1 (Woodin, [32, Theorem 7.1], [34]). Assume AD+. Then

(1). The pointclass Σ2
1 has the scale property, and

(2). Every lightface Σ2
1 collection of sets of reals has a lightface ∆2

1 member.

Now, suppose otherwise. Let p0 = (M0,∈, I0, a0) ∈ Pmax, and let A ⊂ R be a
conterexample to the statement of the theorem. Then we may assume that A
is Suslin and co-Sudlin by Fact 1. Let T and U be trees projecting A and its
complement respectively.
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Since ∆2
1(p0) is closed under complements, projections, and countable unions,

so there exist a ∆2
1(p0) set B ⊂ R×R such that whenever F : R → R uniformizes

B and N is a transitive model of ZF closed under F , then

(HCN ,∈, A ∩N) ≺ (HC,∈, A).

Again, by Fact 1, let F : R → R be ∆2
1(p0) and uniformize B. Let V and W be

trees projecting F and its complement respectively.

The next key fact is the following.
Fact 2 ([15, Theorem 5.4]). Assume AD. Let S be a set of ordinals. Then there
exists a real x such that for all reals y with x ∈ L[S, y],

HOD
L[S,y]
S |= ZFC+ ω

L[S,y]
2 is a Woodin cardinal.

By Fact 2, let M be a transitive proper class model of ZFC such that

(1). p0, T, U, V,W ∈M , and

(2). there exists a countable ordinal δ such that M |= “δ is a Woodin cardinal”.

Let κ < λ < δ be such that κ is measurable in M and λ is inaccessible in M .
Let g0 ⊂ Col(ω,< κ) be M -generic, and let g1 be M [g0]-generic for the standard
c.c.c. poset to force MA. Then in M [g0], an ideal dual to a fixed normal measure
on κ in M generates a precipitous ideal in M [g0]. Since c.c.c. forcings preserve
precipitous ideals, it also generates a precipitous ideal in M [g0, g1].

Let I be a precipitous ideal in M [g0, g1]. Then (Mλ[g0, g1],∈, I) is iterable.

Since T ∈ M , A ∩Mλ[g0, g1] ∈ Mλ[g0, g1]. Since Mλ[g0, g1] is closed under F ,
we have that

(HCMλ[g0,g1],∈, A ∩Mλ[g0, g1]) ≺ (HC,∈, A).

Fix an iteration
j : (Mλ[g0, g1],∈, I) → (M ′,∈, I ′).

Let
j∗ : (M [g0, g1],∈, I) → (M∗,∈, I∗)

be the lift of j. Then we have that

p[T ] = p[j∗(T )], and p[U ] = p[j∗(U)],

and similarly,
p[V ] = p[j∗(V )], and p[W ] = p[j∗(W )].
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Hence A ∩M ′ ∈M ′, and M∗ is closed under F . So we have that

(HCM
′
,∈, A ∩M ′) ≺ (HC,∈, A).

This shows that A is not a counterexample to the statement of the theorem.
This is a contradiction!

We list the facts about Pmax we need. Assume AD+.

• Pmax is σ-closed and homogeneous.

• Pmax forces the following:

– 2ℵ0 = ℵ2,
– ΘV = ω3, if ΘV is regular in V ,
– NSω1

is saturated.

• Let G be Pmax-generic. Define

AG :=
⋃

{a | ∃(M, I) [(M,∈, I, a) ∈ G]}.

Then for every p = (M,∈, I, a) ∈ G, there is a unique generic iteration of
p of length ω1 sending a to AG.
We let P(ω1)G be the set of all B such that there is a (M,∈, I, a) ∈ G and
b ∈ P(ω1)

M such that j(b) = B where j is the unique generic iteration of
(M, I) of length ω1 sending a to AG. Then P(ω1)G = P(ω1)

V .

For more details of the Pmax forcing, see [16] and [37].

3 Capturing mice and Γ-Woodins

The following theorem is due to Woodin.

Theorem 3.1 (Woodin, [33, Theorem 7.14]). Let Σ be am (ω1 + 1)-iteration
strategy for M , and suppose that κ < δ are countable ordinals such that

M |= ZF− + δ is Woodin ,

then there is a Q ⊂ VMδ such that

(1). M |= Q is a δ-c.c. complete Boolean algebra, and

(2). for any real x, there is a countable iteration tree T on M according to Σ
based on the window (κ, δ) with the last model MT

α such that iT0,α exists
and x is iT0,α(Q)-generic over MT

α .
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We call the poset Q Woodin’s extender algebra of M based on the window (κ, δ)
and denote it by BM(κ,δ). In the case that κ = 0, we denote it by BMδ

The process of iterating M to make a real generic is called genericity iteration.

The following concept is due to Woodin.

Definition 3.1 (term capturing). Let A ⊂ R. Let M be a countable premouse,
let δ ∈ M , and assume that M |= ZFC− + “δ is a Woodin cardinal”. Let Σ be
an (ω1, ω1 + 1)-iteration strategy for M . Let τ ∈MCol(ω,δ).

Then we say (M, δ, τ,Σ) captures A if the following hold:

(1). Σ satisfies hull condensation4, and branch condensation5, and is posi-
tional6;

(2). if T is an iteration tree on M of successor length θ + 1 < ω1 which is
according to Σ such that the main branch [0, θ]T does not drop, if

πT
0,θ : M → MT

θ

is the iteration map, and if g ∈ V is Col(ω, πT
0,θ(δ))-generic over MT

θ , then

πT
0,θ(τ)

g = A ∩MT
θ [g].

We say that (M,Σ) captures A if there is τ, δ ∈M such that (M, δ, τ,Σ) captures
A.

Definition 3.2. Let A ⊂ R. We say (M,Σ) strongly captures A if (M,Σ)
captures A and for all κ ≥ ℵ1, there is some (κ+, κ++1)-iteration strategy Σ̃ for
M extending Σ and such that Σ̃ has hull condensation, and branch condensation,
and is positional.

We will make use of Σ-mice to produce A-iterable conditions for A ∈ Γ∞. For
more details for Σ-mice, see [28].

Let M be a premouse, and let Σ be an iteration strategy for M . Let X be a
self-well-ordered transitive set with M ∈ L1(X). We say N is a Σ-premouse
over X if N is a J-model of the form Jα[E⃗, S⃗,X] satisfying the following;

(1). E⃗ codes a sequence of extenders satisfying the usual axioms for fine ex-
tender sequences. (See [22], [28], and [33].)

4See [25, Definition 1.31].
5See [25, Definition 2.4].
6See [25, Definition 2.35].
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(2). S⃗ codes a partial iteration strategy for M as follows:

let γ < γ + δ ≤ α be such that Jγ [E⃗, S⃗,X] |= ZFC− and γ is the largest
cardinal of Jγ+δ[E⃗, S⃗,X]. Suppose that T ∈ Jγ [E⃗, S⃗,X] is Jγ [E⃗, S⃗,X]-
least such that T is an iteration tree on M of limit length, T is according
to S⃗ ↾ γ, but (S⃗ ↾ γ)(T ) is undefined, Suppose also that δ = lh(T ), and
δ does not have measurable cofinality in Jγ+δ[E⃗, S⃗,X]. Then Σ(T ) is
defined, and S⃗(γ + δ) is an amenable code for (T ,Σ(T )).

Let N be a Σ-premouse over X, and let Γ be an iteration strategy for N . Then
we say Γ moves Σ correctly if every iterate N ′ of N according to Γ is again a
Σ-premouse over X.

We say N is a Σ-mouse over X if for every sufficiently elementary π : N̄ → N
with N̄ being countable and transitive, there is some iteration strategy Γ for N̄
which witnesses N̄ is ω1 + 1-iterable and which moves Σ correctly.

The next is the Σ-mouse version of M#
n .

Definition 3.3. Let M be a countable premouse, and let Σ be an iteration
strategy for N . Let X be a self-well-ordered transitive set with N ∈ L1(X),
and let n ∈ ω. Then we denote by

M#,Σ
n (X)

the unique Σ-mouse over X which is sound above X, not n-small above X, and
such that every proper initial segment is n-small above X, if it exists.

The next theorem is crucial for Main Theorem 1.

Theorem 3.2 (Schindler, [27, Theorem 3.14]). Let A ∈ Γ∞, and suppose that
(M, δ, τ,Σ) captures A. Let X ∈ HC, and suppose that

N =M#,Σ
2 (M,X)

exists. Let δ0 be the bottom Woodin cardinal of N , let g0 ∈ V be (Col(ω1, <
δ0))

N -generic over N , and let g1 ∈ V be Q-generic over N [g0], where Q ∈ N [g0]
is the standard c.c.c. forcing for Martin’s Axiom. Let κ be the critical point of
the top extender of N . Then

p = ((N ||κ)[g0, g1],∈, (NSω1
)(N ||κ)[g0,g1])

is an A-iterable Pmax precondition.

In order to make use of Theorem 3.2, we need to find capturing mice. One key
idea is to capture by using self-justifying systems.

14



We let T0 denote the theory

ZF+ AD+ + ADR+

“Every set of reals is universally Baire” + “Γ∞ is productive” .

Assuming T0, we shall prove the following.

(1). For every set of reals A, there is a boldface fine structural hybrid mouse
(M,Λ) such that (M,Λ) strongly captures A.

(2). For every set of reals A, letting (M,Λ) be as in (1), then for every n ∈ ω,
M ♯,Λ
n operator is total and strongly universally Baire.

We shall make use of Γ-Woodins and shall follow the notations and the results
in [26]. To make this paper reasonably self-contained, let us recall definitions
and results in [26] briefly. For more details, see [26].

We say a countable collection of sets of reals A ∈ P(R)ω is a self justifying
system, or briefly sjs, if A is closed under taking complements and for every
A ∈ A admits a scale (≤n : n ∈ ω) such that ≤n belongs to A.

Note that ADR implies that for every set of reals A ⊂ R, there is a sjs A
containing A.

We say Γ is a good pointclass if

(1). Γ is closed under recursive substitution, ∀ω, ∃ω, and ∃R,

(2). Γ is ω-parametrized and scaled.

Every good pointclass Γ has its associated CΓ-operator. For x ∈ R,

CΓ(x) = {y ∈ R | ∃ξ < ω1 y is Γ(x, z) for all z coding ξ}.

We extend x 7→ CΓ(x) to countable transitive sets. For countable transitive a
and x ∈ R, we say x codes a if φ : (a,∈) ≃ (ω,R) where nRm if and only if
(n,m) ∈ x. For b ⊂ a, let bx be the real φ”b.

For countable transitive a, CΓ(a) denotes the set of b ⊂ a such that bx ∈ CΓ(x)
for all x coding a.

We have a nice description of CΓ(a).

Theorem 3.3 (Harrington–Kechris, [13]). Assume AD. Let Γ be a good point-
class, and let T be a tree of a Γ-scale on a Γ-universal set. Then for any
countable transitive a,

CΓ(a) = P(a) ∩ L(T ∪ {a}, a).
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Definition 3.4 ([26, Definition 1.4]). We say Γ is a very good pointclass, or
briefly vg-pointclass, if there is a sjs A, γ < ΘL(A,R), a Σ1-formula φ, and a real
x such that Lγ(A,R) is the least initial segment of L(A,R) that satisfies

ZF− P+ “Θ exists” + “V = LΘ+(C,R) for some C ⊂ R” + φ(x)

and Γ = (Σ2
1(A))Lγ(A,R). We let MΓ denote Lγ(A,R).

Note that every vg-pointclass is good by scale analysis (see [31]).

We say a transitive model P of ZFC−Replacement is a Γ-Woodin if for some δ,

(1). P |= “δ is the unique Woodin cardinal”,

(2). P = CωΓ (P )(:=
⋃
k<ω C

k
Γ(P )), and

(3). for every P -inaccessible cardinal η < δ,

CΓ(V
P
η ) |= “η is not a Woodin cardinal”.

Let Γ be a vg-pointclass as witnessed by A and MΓ. Let B ∈ MΓ ∩ P(R) be
ODMΓ(A), and let a ∈ HC be transitive. Define the canonical term relation τaB
consisting of pairs (p, σ) such that

(1). p ∈ Col(ω, a),

(2). σ ∈ CΓ(a) is a standard Col(ω, a)-name for a real, and

(3). for a co-meager many g ⊂ Col(ω, a), if p ∈ g, then σg ∈ B.

Note that τaB ∈ CΓ(CΓ(a)). We iterate this process. For k = 0, let τaB,0 = τaB ,

and let τaB,k = τ
Ck

Γ(a)
B,0 .

For a Γ-Woodin P and for B ∈ ODMΓ(A), we let τPB,k = τ
V P
δP

B,k .

Theorem 3.4 ([26, Theorem 1.7]). Assume AD+ and suppose that Γ is a vg-
pointclass. Let A and MΓ witness that Γ is very good. Let A ∈ OD(A)MΓ . Then
there is a pair (P,Σ) and a Γ-condensing sequence B⃗7 such that

(1). P is Γ-Woodin,

(2). Σ is a Γ-fullness preserving (ω1, ω1)-iteration strategy for P , i.e., every
Σ-iterate of P is again Γ-Woodin,

7See [26].
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(3). for each i ∈ ω, Σ respects Bi, i.e., if whenever i : P → Q is according to
Σ, then i(τPBi,k

) = τQBi,k
for every k,

(4). Σ respects A,

(5). for every Σ-iterate Q of P , for every i ∈ ω, and for every Q-generic
g ⊂ Col(ω, δQ), (τQBi

)g = Q[g] ∩Bi,

(6). for any tree T ∈ dom(Σ), Σ(T ) = b if and only if either

(a) CΓ(M(T )) |= “δ(T ) is not a Woodin cardinal” and b is the unique
well-founded cofinal branch c of T such that CΓ(M(T )) ∈ MT

c , or
(b) CΓ(M(T )) |= “δ(T ) is a Woodin cardinal” and b is the unique well-

founded cofinal branch c of T such that letting Q = Cωγ (M(T )),
MT

c = Q and for every i ∈ ω, πT
c (τ

P
Bi
) = τQBi

.

For the definition of Γ-condensing sequence, see [26]. The point is that the sjs A
is coded into a set appearing in B⃗. We call the pair (P,Σ) above is a Γ-excellent
pair.

Now assume T0 for the rest of this section. We are given any set of reals A ⊂ R.

Let Γ be a very good pointclass as witnessed by A and MΓ such that A ∈ A.
We may find such a Γ by ADR. Let (P,Σ) be a Γ-excellent pair. Let B⃗ witness
the Γ-excellence of (P,Σ) and let u ∈ R code the sequence (τPBi

: i < ω).

Then we have M#,Σ
n (x) exists for every n ∈ ω and for every swo x ∈ HC (see

[26, Theorem 3.1]).

Let M = M#,Σ
1 (u). Let Λ be the (ω1, ω1)-iteration strategy for M. Then we

have

Theorem 3.5 (Sargsyan, [26, Theorem 4.1]). Let δ be the Woodin cardinal of
M. Then there are trees (T, S) ∈ M on ω × (δ+)M such that M |=“(T, S) are
δ-complementing” and whenever i : M → N is an iteration according to Λ and
g ⊂ Col(ω, i(δ)) is N -generic, N [g] ∩ p[i(T )] = Code(Σ) ∩N [g].

We claim that M captures A. Let (T, S) be as in Theorem 3.5. Let δ be the
Woodin cardinal of M. We define a term τ ∈ MCol(ω,δ) as follows. (p, σ) ∈ τ if

(1). p ∈ Col(ω, δ),

(2). σ ∈ MCol(ω,δ) is a standard name for a real, and

(3). p
Col(ω,δ)

M “there is an iteration tree U on P according to p[Ť ] with the

last model Q such that σ̇ is Q-generic over the extender algebra at πQ(δ̌P )
and

Q[σ̇] |=
Col(ω,δQ)

σ̇ ∈ πU (τ̌PA )”.
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Then it is clear that (M, δ, τ,Λ) capturesA8. Moreover, by Lemma 2.2, (M, δ, τ,Λ)
strongly captures A.

Then the argument of [26, Theorem 3.1] shows for every n ∈ ω and for every
swo x ∈ HC, M#,Λ

n (x) exists. By Lemma 2.3, the operator x 7→ M#,Λ
n (x) is

strongly universally Baire. Here, since ρω(M#,Λ
n (x)) = ω for each x, we may fix

a canonical coding of each M#,Λ
n (x) into a real.

Hence we obtained that

Theorem 3.6. Assume T0. Then for every A, there is a pair (M,Σ) such that

(1). M is a boldface fine structural hybrid premouse,

(2). (M,Σ) strongly captures A, and

(3). for every n ∈ ω, the operator x 7→ M#,Σ
n (x) is total and strongly univer-

sally Baire.

4 MM∗,++
c in Pmax extensions

In this section, we prove the first main theorem.

Theorem 4.1. Suppose Γ ⊂ P(R) is a boldface pointclass and F is a class
predicate such that LF (Γ,R) satisfies the following:

(1). LF (Γ,R) ∩ P(R) = Γ,

(2). ZF+ AD+ + ADR + “Θ is regular”,

(3). Every set of reals is universally Baire,

(4). Γ∞(= P(R)) is productive.

Suppose that G ⊂ Pmax is LF (Γ,R)-generic. Suppose

H ⊂ Add(ω3, 1)
LF (Γ,R)

is LF (Γ,R)[G]-generic. Then

LF (Γ,R)[G][H] |= ZFC+MM∗,++
c .

8The good properties of Λ follow from the branch uniqueness.
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Proof. Let us assume that V = LF (Γ,R). Note that V |= T0. The same
argument as [37, Theorem 9.35] gives us that

LF (Γ,R)Pmax |= ω2−DC9.

Hence we have
LF (Γ,R)Pmax∗Add(ω3,1) |= ZFC.

Let us fix a standard coding of Pmax-conditions into reals and identify a Pmax-
condition and its code. For a filter h ⊂ Pmax, we define

Rh =
⋃
p∈h

R ∩ p.

For V -generic G ⊂ Pmax and V [G]-generic H ⊂ Add(ω3, 1), we note that

RG = R ∩ V = R ∩ V [G] = R ∩ V [G][H],

since Pmax is σ-closed and Add(ω3, 1) is ω3-closed. Also, note that

P(R) ∩ V [G] = P(R) ∩ V [G][H],

since Add(ω3, 1) is ω3-closed and 2ℵ0 = ℵ2 in V [G]. Now suppose that

V Pmax∗Add(ω3,1) |= ¬MM∗,++
c .

Assume that we have the following.

(1). φ is a Σ1 formula;

(2). Ṁ = (Ṁ,∈, ˙⃗R) is a Pmax-name for a transitive structure with ℵ1-many
relations, and ḟ ∈ V Pmax ;

(3). (p, ṡ) ∈ Pmax ∗Add(ω3, 1);

(4). p Pmax
ḟ : R → Ṁ is bijective; and

(5). (p, ṡ) Pmax∗Add(ω3,1)
φ(Ṁ) is honestly consistent; and

(6). (p, ṡ) Pmax∗Add(ω3,1)
¬Ψ(Ṁ, φ).

We shall derive a contradiction by finding q <Pmax p such that

(q, ṡ) Pmax∗Add(ω3,1)
Ψ(Ṁ, φ).

Let
B= = {(p, x, y) ∈ R3 | p ∈ Pmax ∧ p Pmax

ḟ(x) = ḟ(y)},
9We will not use the notation DCω2 , since it is inconsistent with the notation DCR.
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let
B∈ = {(p, x, y) ∈ R3 | p ∈ Pmax ∧ p Pmax

ḟ(x) ∈ ḟ(y)},

and let

BR⃗ = {(p, x, y) ∈ R3 | p ∈ Pmax ∧ x ∈ WO ∧ p Pmax
ḟ(y) ∈ R|x|WO

}.

For each formula and for each z⃗ ∈ R<ω, let Eψ,z⃗ be a set of conditions p ∈ Pmax

such that

(1). p decides the sentence “Ṁ |= ∃xψ(x, ḟ(ˇ⃗z))”, and

(2). if p Pmax
Ṁ |= ∃xψ(x, ḟ(ˇ⃗z)), then there is x ∈ p such that

p Pmax
Ṁ |= ψ(ḟ(x̌), ḟ(ˇ⃗z)).

Note that Eψ,z⃗ is also a dense subset of Pmax. Let

E = {(p, ⌜ψ⌝, z⃗) | p ∈ Eψ,z⃗}.

Suppose a pair (q, h) satisfies:

(1). q = (N,∈, J, a) ∈ Pmax, h ∈ q is a filter in Pmax;

(2). (N,∈) |= ZFC−

(3). q <Pmax p for all p ∈ h; and

(4). q is (B= ⊕B∈ ⊕BR⃗ ⊕ E)-iterable.

We define a structure (Rh/∼, ∈̃, R̃) as follows. For x, y ∈ Rh and for α < ωq1,
we define

x∼y ⇐⇒ ∃r ∈ h (r, x, y) ∈ B=,

and
x∈̃y ⇐⇒ ∃r ∈ h (r, x, y) ∈ B∈,

and
R̃α(x) ⇐⇒ ∃r ∈ h∃w ∈ WOα (r, w, x) ∈ BR⃗.

Since q is (B=⊕B∈⊕BR⃗⊕E)-iterable and h is a filter, the quotient (Rh/∼, ∈̃, R̃)
is well-defined. Note that the relation ∈̃ is extensional and well-founded since h
is a filter and Pmax is σ-closed. Then we let

σh : Mh := (Mh,∈, R⃗h) ≃ (Rh/∼, ∈̃, R̃)

be the uncollapsing map.

Now we say a pair (q, h) is good if (q, h) satisfies:
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(1). q = (N,∈, J, a) ∈ Pmax, h ∈ q is a filter in Pmax;

(2). (N,∈) |= ZFC−

(3). q <Pmax
p for all p ∈ h;

(4). q is (B= ⊕B∈ ⊕BR⃗ ⊕ E)-iterable;

(5). q |= φ(Mh); and

(6). for every formula ψ and for every z⃗ ∈ (Rh)<ω, Eψ,z⃗ ∩ h ̸= ∅.

Note that “being a good pair” is Σ1
2 statement in B=, B∈, BR⃗, and E. We shall

find a good pair in the generic extension of V by Pmax ∗Add(ω3, 1)∗Col(ω, 2ω2),
and using Lemma 2.2, we shall find a good pair in V .

Claim. Let G ⊂ Pmax be V -generic with p ∈ G, let H ⊂ Add(ω3, 1) be V [G]-
generic with ṡG ∈ H, and let g ⊂ Col(ω, 2ω2) be V [G][H]-generic. Then, in
V [G][H][g] there is q ∈ Pmax such that (q,G) is good.

Proof. By Theorem 3.6, let (N, δ, τ,Σ) be such that

(1). (N, δ, τ,Σ) strongly captures (B= ⊕B∈ ⊕BR⃗ ⊕ E), and

(2). the function F : X 7→ M#,Σ
2 (X), where X ∈ HC is self-well-ordered and

N ∈ L1(X), is well-defined, total, and strongly universally Baire.

Let A ∈ V [G][H][g] be an F -closed witness to the fact that φ(ṀG) is honestly
consistent. Let X ∈ A be transitive and such that

(1). (P(ω1) ∩ A) ∪ {(NSω1
)A, G,ṀG} ∈ X, and

(2). X |= φ(ṀG).

Let M = M#,Σ
2 (X), and let δ0, g0, g1, Q, and κ be as in the statement of

Theorem 3.2.

Then by Theorem 3.2, inside V [G][H][g] we have

q = ((M ||κ)[g0, g1],∈, (NSω1)
(M ||κ)[g0,g1], AG)

is such that

(1). q ∈ Pmax and G ∈ q;

(2). ((M ||κ)[g0, g1],∈) |= ZFC;
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(3). q <Pmax r for all r ∈ G; and

(4). q is (B= ⊕B∈ ⊕BR⃗ ⊕ E)∗-iterable.

Note that MG = ṀG where MG is the transitive collapse of (RG/∼, ∈̃, R̃G).
Hence we have

q |= φ(MG).

Also, we have
Eψ,z⃗ ∩G ̸= ∅

for every formula ψ and for every z⃗ ∈ (RG)<ω by the genericity of G. Therefore,
(q,G) is a good pair. (Q.E.D. Claim.)

Therefore, by Lemma 2.2, there is a good pair (q, h) in V with q <Pmax p. We
claim that

(q, ṡ) Pmax∗Add(ω3,1)
Ψ(Ṁ, φ).

Let G ⊂ Pmax be V -generic with q ∈ G, let H ⊂ Add(ω3, 1) be V [G]-generic
with ṡG ∈ H. Let j : q → q∗ is the generic iteration of length ω1 induced by G,
and let h∗ = j(h).

Since q |= φ(Mh), we have q∗ |= φ(Mh∗). By the upward absoluteness of Σ1

formulae, φ(Mh∗) holds in V [G].

We define π : Mh∗ → ṀG as follows. For x ∈ Mh∗ , letting y ∈ Rh∗ be such
that σh∗(x) = [y]∼ where σh∗ : Mh∗ ≃ (Rh∗/∼, ∈̃, R̃) is uncollapsing and [y]∼
is the ∼-equivalence class of y, we define π(x) = ḟG(y). π is well-defined, since
h∗ ⊂ G and q is (B=⊕B∈⊕BR⃗⊕E)-iterable. We shall show that π is elementary
by Tarski–Vaught test.

Let z⃗ ∈ (Rh∗)<ω and let ψ be a formula, and suppose that

ṀG |= ∃xψ(x, ḟG(z⃗)).

Since (q, h) is good and j is elementary,

Eψ,z⃗ ∩ h∗ ̸= ∅.

Let r ∈ Eψ,z⃗ ∩ h∗. Then there is x ∈ r such that

r Pmax
ψ(ḟ(x), ḟ(z⃗)).

Hence we have ḟG(x) is in the image of π and ṀG |= ψ(ḟG(x), ḟG(z⃗)), since
r ∈ h∗ ⊂ G. This shows π : Mh∗ → ṀG is elementary. Therefore, π : Mh∗ →
ṀG witnesses that Ψ(ṀG, φ) holds in V [G][H]. This is a contradiction! This
finishes the proof.
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5 Ground model for Main Theorem 1

In this section, we prove the second main theorem. First, we recall notations
from [32].

Definition 5.1. Let λ be a limit of Woodin cardinals and G ⊂ Col(ω,< λ) be
a V -generic filter. Define:

• R∗
G =

⋃
α<λRV [G↾α],

• Hom∗
G is the pointclass of sets

⋃
α<λA

G↾α for < λ-universally Baire sets
of reals A appearing in V [G↾α] where α < λ.

We call L(R∗
G,Hom∗

G) a derived model at λ.

If G is clear from the context, then we omit the subscript G.

Theorem 5.1 (The derived model theorem, Woodin, [32]). Let λ be a limit of
Woodin cardinals, let G ⊂ Col(ω,< λ) be a V -generic filter, and let L(R∗,Hom∗)
be a derived model at λ. Then

(1). L(R∗,Hom∗) |= AD+, and

(2). Hom∗ = {A ⊂ R∗ | A is Suslin, co-Suslin in L(R∗,Hom∗)}.

Moreover, if λ is a limit of < λ-strong cardinals, then

(1). P(R∗) ∩ L(R∗,Hom∗) = Hom∗, and

(2). L(R∗,Hom∗) |= ADR.

The paper [18] constructs a generalized derived model that satisfies ZF+AD++
“Every set of reals is universally Baire”.

Definition 5.2 ([18, Definition 4.4]). The predicate FuB consists of all quadru-
ples (A,Z, p, x) such that

• A is universally Baire, Z is a set, p ∈ Col(ω,Z), x is a Col(ω,Z)-name for
a real, and

• p
Col(ω,Z)

x ∈ AĠ.

Notation. In the rest of this paper, the predicate FuB always denotes the
predicate defined in Definition 5.2.
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The paper [18, Main Theorem] shows that the predicate FuB has enough infor-
mation to get universally Baire representations.

Theorem 5.2 (Larson–Sargsyan–Wilson, [18, Main Theorem]). Let λ be a limit
of Woodin cardinals and a limit of strong cardinals, let G ⊂ Col(ω,< λ) be a
V -generic filter, and define the model

M = (LFuB(R∗,Hom∗))V (R∗).

Then
M∩P(R∗) = Hom∗,

and
M |= AD+ + “Every set of reals is universally Baire”.

Let us make a few remarks about Theorem 5.2. First, note that the model M
also satisfies ADR. And [18, Lemma 2.4, Lemma 6.1] shows that

V (R∗) |= Hom∗ is productive.

We explain the second remark briefly. Given any set Z. [18, Lemma 2.4] shows
that there is an ordinal η such that every η-absolutely complementing pair of
trees on ω×ON is Z-absolutely complementing. Such a pair of trees is obtained
by extending the pair of trees coming from the Martin–Solovay construction
with strong embeddings. This gives us tree representations compatible with
projections. For more details, see [18, Lemma 4.1, Lemma 4.2].

The same argument in [12, Lemma 3.4] gives us the regularity of Θ. For the
definition of being self-iterable, see [12, Section 2]. The second author would
like to thank Takehiko Gappo for his help in proving the following theorem.

Theorem 5.3. Suppose that V is self-iterable. Let λ be an inaccessible cardinal
which is a limit of Woodin cardinals and a limit of strong cardinals, and let
G ⊂ Col(ω,< λ) be a V -generic filter. Let

M = (LFuB(R∗,Hom∗))V (R∗).

Then

(1). M |= AD++ADR+“Θ is regular”+ “Every set of reals is universally Baire”,

(2). M∩P(R∗
G) = Hom∗

G.

Proof. By Theorem 5.2, we have

M |= AD+ + ADR + “Every set of reals is universally Baire”,

and
M∩P(R∗

G) = Hom∗
G .
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We need to check the regularity of Θ. This proof is based on [12, Section 3]. The
desired result can be obtained by replacing the usual derived model in the argu-
ments in [12, Section 3] with the generalized derived model LFuB(R∗

G,Hom∗
G).

We give an outline for the arguments.

Let ⟨δi | i < λ⟩ be an increasing enumeration of Woodin cardinals below λ. Let
x ∈ R∗

G, and δ < λ be a Woodin cardinal. Say δ = δi+1. Let T be a normal
iteration tree on V with last model W based on the window (δi, δi+1) making
x generic for the extender algebra at δi+1.

The main argument in [12, Lemma 3.4] is to recover the derived model of V by
R∗
G-genericity iteration. Let ⟨aj | j < λ⟩ be an enumeration of R∗

G in V [G]. We
inductively construct ⟨Wj ,Uj | j < λ⟩ as follows:

(1). W0 =W ,

(2). for j < λ, Wj+1 is the last model of Uj ,

(3). if j < λ is limit, then Wj is the well-founded direct limit along the unique
cofinal branch through

⊕
k<j Uk,

(4). for j < λ, Uj is an iteration tree on Wj according to the tail strat-
egy of V based on the window (δi+1+j , δi+1+j+1) making aj generic over
BWj

π((δi+1+j ,δi+1+j+1))
.

Then let U =
⊕

j<λ Uj , and let W̄ be the well-founded direct limit along the
unique cofinal branch through S = T ⌢U . Since λ is inaccessible, πS(λ) = λ.

By construction, we pick a (W̄ ,Col(ω,< λ))-generic H ∈ V [G] such that R∗
G =

R∗
H . Let R∗ = R∗

G = R∗
H . Note that W̄ [H] ⊂ V [G]. [12, Lemma 3.4] shows

(Hom∗)V (R∗) = (Hom∗)W̄ (R∗).

Hence we have
L(R∗,Hom∗)V (R∗) = L(R∗,Hom∗)W̄ (R∗).

For the same argument in [12, Lemma 3.4] (and the rest of proofs in [12, Section
3]) to hold, it is enough to show:

Claim.
(LFuB(R∗,Hom∗))V (R∗) = (LFuB(R∗,Hom∗))W̄ (R∗).

Proof. Let Z ∈ W̄ (R∗) be a set and let A ∈ (Hom∗)V (R∗) = (Hom∗)W̄ (R∗). Let
K ⊂ Col(ω,Z) be V (R∗)-generic. Then we have that

(AK)V (R∗)[K] ∩ W̄ (R∗)[K] = (AK)W̄ (R∗)[K].
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Hence we have that

p
Col(ω,Z)

V (R∗)
ẋ ∈ AK̇ ⇐⇒ p

Col(ω,Z)

W̄ (R∗)
ẋ ∈ AK̇

where p ∈ Col(ω,Z) and ẋ ∈ W̄ (R∗) is a Col(ω,Z)-name for a real.

Therefore, we have that for all X ∈ W̄ (R∗),

X ∩ (FuB)
V (R∗) = X ∩ (FuB)

W̄ (R∗).

where K̇ is the canonical Col(ω,Z)-name for a generic.

It follows that

(JFub
α (R∗,Hom∗))V (R∗) = (JFub

α (R∗,Hom∗))W̄ (R∗)

for all α, by induction on the level of J-hierarchy. (Q.E.D. Claim.)

For the rest of arguments, see [12, Section 3]. This finishes the proof.

Now we prove the productivity of Hom∗ in the smaller model M. Since FuB

only tells how to extend universally Baire sets of reals in generic extensions, it
is not trivial that we can find trees compatible with projections in M.

Lemma 5.4. Let λ, G, M be as in Theorem 5.3. Then

M |= “Hom∗ is productive”.

Proof. Let A ∈ Hom∗. We may assume that A ⊂ R2. Let Z be any set in M.
We need to check that

Col(ω.Z)

M ∃R(AḢ) = (∃RA)Ḣ .

Let H ⊂ Col(ω,Z) be V (R∗)-generic. Note that for any B ∈ Hom∗, it follows
from the absoluteness of well-foundedness that

BM[H] = BV (R∗)[H] ∩M[H].

First, we claim that
∃R(AM[H]) ⊂ (∃RA)M[H].

This is because

∃R(AM[H]) = ∃R(AV (R∗)[H] ∩M[H])

= {x ∈ R ∩M[H] | ∃y ∈ R ∩M[H] (x, y) ∈ AV (R∗)[H]}
⊂ {x ∈ R ∩M[H] | ∃y ∈ R (x, y) ∈ AV (R∗)[H]}
= ∃R(AV (R∗)[H]) ∩M[H]

= (∃RA)V (R∗[H] ∩M[H]

= (∃RA)M[H].
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We shall show the reverse inclusion

{x ∈ R ∩M[H] | ∃y ∈ R (x, y) ∈ AV (R∗)[H]}
⊂ {x ∈ R ∩M[H] | ∃y ∈ R ∩M[H] (x, y) ∈ AV (R∗)[H]}.

To prove that, we make use of the uniformization following from ADR. Let Ã
be a totalization of A, namely

Ã = {(x, ⟨0⟩⌢y) | (x, y) ∈ A} ∪ {(x, ⟨1, 1, 1, . . . ⟩ | x /∈ ∃RA}.

Let F : R → R uniformize Ã. Then by the productivity of Hom∗ in V (R∗), we
have that FV (R∗)[H] uniformizes ÃV (R∗)[H]. Moreover, we have that FM[H] =
FV (R∗)[H] ∩ M[H]. To prove the reverse inclusion, it is enough to show that
FM[H] is a total function with its domain R∩M[H]. We shall make use of the
Sargsyan’s coding trick [24, Lemma 1.21]. Define

Code(F ) := {(x,m, n) ∈ R× ω2 | F (x)(m) = n}.

Then by the productivity of Hom∗ in V (R∗), Code(F )V (R∗)[H] codes the function
FV (R∗)[H].

Our next claim is the following.

Col(ω,Z)

M ∀x ∈ R∀m ∈ ω∃!n ∈ ω(x,m, n) ∈ Code(F )Ḣ .

Proof. First, we prove the existence of such an n ∈ ω. Suppose otherwise.
Let (S, T ) ∈ M be a Z-absolutely complementing pair of trees projecting to
Code(F ) and its complement respectively. Let p ∈ Col(ω,Z), let ρ ∈ MCol(ω,Z),
and let m ∈ ω be such that

p
Col(ω,Z)

M
ρ̇ ∈ R ∧ ∀n ∈ ω (ρ̇,m, n) /∈ Code(F )Ḣ .

Note that M satisfies DCP(R), since it satisfies ADR + “Θ is regular”. (See [29,
Theorem 1.3]. ) Therefore, it satisfies DC. Let η be sufficiently large, and by
DC, let π : P → VM

η be elementary such that

• P is countable transitive,

• {F, S, T, Z, p, ρ} ⊂ ran(π).

Let π(⟨F̄ , S̄, T̄ , Z̄, p̄, ρ̄⟩) = ⟨F, S, T, Z, p, ρ⟩. Let g ⊂ Col(ω, Z̄) be P -generic with
p̄ ∈ g. Let x = ρ̄g. Then we have for any n ∈ ω, (x,m, n) /∈ p[S̄]. Hence
for any n ∈ ω, (x,m, n) ∈ p[T̄ ]. However, since p[T̄ ] ⊂ p[T ], we have for any
n ∈ ω, (x,m, n) ∈ p[T ]. This is impossible, since p[S] = Code(F ). This is a
contradiction! The similar argument shows the uniqueness. This finishes the
proof of the claim. (Q.E.D. Claim.)
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Now given any x ∈ R ∩M[H]. Define y ∈ R ∩M[H] inside of M[H]

y(m) = n ⇐⇒ (x,m, n) ∈ Code(F )M[H].

By the claim above, y is well-defined. Since Code(F )V (R∗)[H] really codes
FV (R∗)[H] and FM[H] = FV (R∗)[H] ∩ M[H], we have y = FM[H](x). This
proves that FM[H] is a total function with its domain R ∩M[H].

Therefore, this gives the reverse inclusion

{x ∈ R ∩M[H] | ∃y ∈ R (x, y) ∈ AV (R∗)[H]}
⊂ {x ∈ R ∩M[H] | ∃y ∈ R ∩M[H] (x, y) ∈ AV (R∗)[H]}.

Hence ∃R(AM[H]) = (∃RA)M[H]. This finishes the proof.

We showed that

Theorem 5.5. Suppose that V is self-iterable. Let λ be an inaccessible cardinal
which is a limit of Woodin cardinals and a limit of strong cardinals, and let
G ⊂ Col(ω,< λ) be a V -generic filter. Let

M = (LFuB(R∗,Hom∗))V (R∗).

Then

(1). M |= AD++ADR+“Θ is regular”+ “Every set of reals is universally Baire”,

(2). M∩P(R∗
G) = Hom∗

G,

(3). M |= “Γ∞(= Hom∗
G) is productive”.
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