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Lecture notes chapter 5, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture

5.1. The Poincaré-Hopf index theorem for a closed manifold

Let M be a closed smooth m-dimensional manifold; closed means compact,
with empty boundary. Let ξ be a smooth vector field on M with isolated
zeros.

Definition 5.1.1. For x ∈ M where ξ(x) = 0 the index of ξ at x is
the integer defined as follows. Choose a chart or local coordinate system
ϕ : U→ Rm taking x to 0 ; here U is an open neighborhood of x in M . In
the local coordinates, ξ is a vector field on the open set ϕ(U) ⊂ Rm which
has a zero at the origin, and we can also view it as a map ξϕ : ϕ(U) → Rm
taking 0 to 0 . For sufficiently small r > 0 , the restriction of ξϕ to the
sphere of radius r about the origin is a map Sm−1(r) → Rm r {0} by our
assumption (isolated zeros). The degree of that map is the index of ξ at x ,
denoted indexx(ξ) . It does not depend on the choice of local coordinates.

Theorem 5.1.2 (Poincaré-Hopf index theorem).
∑

x indexx(ξ) = χ(M),
where χ(M) is the Euler characteristic. The sum is to be taken over all
x ∈M where ξ(x) = 0.

Wikipedia tells me that Poincaré proved this for 2-dimensional M and
Heinz Hopf generalized it to higher dimensions. There is a variant for com-
pact smooth manifolds M with boundary, too. In that case it is a condition
that ξ(y) 6= 0 for every y ∈ ∂M , and moreover ξ(y) should belong to the
outwards half of the tangent space TyM . (The tangent space TyM is m-
dimensional but comes with an (m− 1)-dimensional linear subspace Ty∂M ;
therefore we can speak of an outward halfspace and an inward halfspace.)

The theorem is considered easier in the cases where ξ is transverse to the
zero section. That is to say, for x ∈M where ξ(x) = 0 , the composition of
linear maps

TxM
dξ // T(x,0)(TM) //

T(x,0)TM

TxM
∼= TxM

is a linear isomorphism. The index of ξ at x is equal to +1 if that linear
map has positive determinant, and to −1 if it has negative determinant.

(We have used the canonical inclusion of vector spaces TyM→ T(y,0)(TM) ,
for any y ∈M . This is determined by the zero section M→ TM . The quo-
tient alias cokernel of this linear map TyM→ T(y,0)(TM) is always identified
with TyM .)

Exercise 5.1.3. How is that cokernel identified with TyM ?
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Although I assume the theorem is well known, let me outline the main
steps of the proof as I know it. (This may be a little conservative.) In the
first step, perturb ξ slightly to ensure that the perturbed thing is transverse
to the zero section, taking care to ensure that the sum of the indices does
not change. In the second step, show that the expression

∑
indexx(ξ) is

independent of ξ as long as ξ is transverse to the zero section. In the third
step, choose a smooth triangulation of M and use it to construct a vector
field ξ on M which is transverse to the zero section and which has ξ(x) = 0
if and only if x is the barycenter of a simplex in the triangulation. More
precisely, we need indexx(ξ) = (−1)k if x is the barycenter of a k-simplex.
Then for this vector field ξ , obviously,

∑
x indexx(ξ) is equal to χ(M) .

Let’s follow Becker and Gottlieb in giving a rather ingenious homotopical
interpretation of the Poincaré-Hopf index theorem. For this purpose suppose
that M is embedded in Rk as a smooth submanifold; k might be very large.
Let p : E → M be a tubular neighborhood for M in Rk ; that is to say,
p : E → M has the structure of a smooth vector bundle but at the same
time E comes with a smooth (codimension zero) embedding E → Rk which
extends the embedding M → Rk . Then we have the Pontryagin collapse
map

c : Rk ∪∞ −→ E ∪∞ =: thom(E).

(This was introduced in chapter 2, with slightly different conventions. It
agrees with the identity on E ⊂ Rk and takes all other elements of Rk ∪∞
to the point ∞ in thom(E) . In chapter 2 it seemed convenient to use disk
bundles, but here I find it more convenient not to use disk bundles. The Thom
space thom(V) of a vector bundle V on a compact Hausdorff space is the
one-point compactification of the total space.) We compose the Pontryagin
collapse map with some other obvious maps as follows:

Rk ∪∞
c

��

Rk ∪∞ = thom(Rk × ∗)

thom(E)
j // thom(E⊕ TM) ∼= thom(Rk ×M)

OO

(This uses an identification of E⊕ TM with a trivial vector bundle Rk×M .
The map j is the obvious inclusion.)

Lemma 5.1.4 (Becker-Gottlieb). The degree of the composite map from
Sk ∼= Rk ∪∞ to Sk ∼= Rk ∪∞ is χ(M).

Proof. The idea is to replace the inclusion j : thom(E) −→ thom(E ⊕ TM)
in the above composition of maps by a perturbed variant, homotopic to j of
course. To this end choose a smooth vector field ξ on M which is transverse
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to the zero section of TM . Let x1, . . . , xr be the finitely many points of M
where ξ takes the value 0 . Replace j by the map

jξ : thom(E) −→ thom(E⊕ TM) ; (x, v) 7→ (x, v+ ξ(x)).

Here x ∈M and v ∈ Ex ; then (x, v) is supposed to have meaning as a point
in E ⊂ thom(E) and v+ ξ(x) ∈ Ex ⊕ TxM and so (x, v+ ξ(x)) should have
meaning as a point in E⊕ TM ⊂ thom(E⊕ TM) . The composition

Rk ∪∞
c

��

Rk ∪∞ = thom(Rk × ∗)

thom(E)
jξ // thom(E⊕ TM) ∼= thom(Rk ×M)

OO

is a map g which is smooth on E ⊂ Rk , therefore on a neighborhood of the
preimage of 0 . Moreover

g−1(0) = {x1, x2, . . . , xr} ⊂M ⊂ E ⊂ Rk

and the linear maps dg(xi) : Rk → Rk are invertible by our assumption on
ξ . Their orientation behavior is encoded in the indices of ξ at the points
x1, . . . , xr . Therefore the degree of g can be calculated as the sum of the
local degrees of g at the points x1, . . . , xr , which is

r∑
i=1

indexxi(ξ),

and that is equal to χ(M) . �

Exercise 5.1.5. Set up a variant of lemma 5.1.4 where M is a compact
smooth manifold with boundary. (Hint : Begin with a smooth embedding
M→ Rk−1 × [0,∞) taking ∂M to Rk−1 × 0 .)

5.2. The Becker-Gottlieb transfer

Let X be a compact CW-space and let p : Y → X be a fiber bundle with
smooth compact manifold fibers. (More precisely, it is assumed that we can
find a covering of X by open subsets Ui and bundle charts

ϕi : Y|Ui
∼=−→Mi ×Ui

(over Ui ) such that ϕjϕ
−1
i : Mi × (Ui ∩Uj) →Mj × (Ui ∩Uj) is adjoint to

a continuous map from Ui ∩ Uj to the space of diffeomorphisms from Mi

to Mj . That space of diffeomorphisms is an open subspace of C∞(Mi,Mj)
equipped with the compact-open C∞ topology. Such a covering together
with the charts ϕi would be called a smooth bundle atlas. If X is connected,
then all Mi are diffeomorphic and we may assume that they are all the same:
Mi =M for all i .)
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The compactness of X guarantees that for sufficiently large k we can find
a smooth bundle embedding of p : Y → X in a trivial bundle X× Rk → X :

e : Y → Rk × X .

(In more detail, it is required that, for every bundle chart ϕi in the selected
atlas, the composition

Mi ×Ui
ϕ−1
i // Y|Ui

e // Rk ×Ui

is adjoint to a continuous map from Ui to the space of smooth embeddings
from Mi to Rk .) In this situation we can do the Becker-Gottlieb construction
(of lemma 5.1.4) fiberwise, viewing X as a parameter space. There is hardly
anything left to prove but there is a lot to state.

Notation: Suppose that A is any compact Hausdorff space with a map
q1 : A→ X , and q2 : V → A is a vector bundle. Let

thomX(V)

be the disjoint union of V and X , not with the disjoint union topology but
with the following: a subset W of thomX(V) = V q X is considered to be
open if

- W ∩ V is open in V
- every z ∈W∩X has an open neighborhood U in X such that U ⊂W

and (q1q2)
−1(U)rW is compact (as a subset of V ).

Briefly, thomX(V) has a projection map to X (given by the identity on X and
by q1q2 on A), and the fiber of that map over y ∈ X is exactly the ordinary
Thom space thom(V |Ay) of the vector bundle V |Ay → Ay . If q1 : A→ X is
a fiber bundle, which is the typical situation here, then thomX(V) → X is
also a fiber bundle.

(We return to the situation where p : Y → X is a bundle of smooth mani-
folds etc., as above.)

Theorem 5.2.1. The Becker-Gottlieb construction produces a map

p! : thomX(Rk × X) −→ thomX(Rk × Y)

which respects the base sections. The composition

thomX(Rk × X)
p! // thomX(Rk × Y)

p∗ // thomX(Rk × X)

is a map over X which, on the fiber Rk ∪∞ ∼= Sk over x ∈ X, has degree
equal to χ(Yx).
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The two spaces in the theorem are spaces with a preferred map to X .
Their fibers over x ∈ X are, respectively, thom(Rk × {x}) ∼= Rk ∪∞ and
thomX(Rk × Yx) , the Thom space of the trivial vector bundle

Rk × Yx → Yx

The map p! in the theorem is just the Becker-Gottlieb construction of the
previous section done fiberwise.

Exercise 5.2.2. For a compact CW-space Z with base point, πsta
k (Z) should

be thought of as πk+`(S
` ∧Z) where ` is a sufficiently large positive integer.

These groups are called the stable homotopy groups of Z . Famous examples:
πsta
0 (S0) ∼= Z and πsta

1 (S0) ∼= Z/2 . — The covering projection Sn → RPn
induces a homomorphism of stable homotopy groups

πsta
k (Sn+) → πsta

k (RPn+).
(The + subscript means: take the disjoint union with a one-point space and
declare the new point to be the base point.) Can theorem 5.2.1 be used to
show that the cokernel of this homomorphism is a group of exponent 2 ? Is
the kernel a group of exponent 2 ? (Hint : a covering projection is also a fiber
bundle.)

5.3. Some notions from stable homotopy theory

Suppose that P and Q are based CW-spaces, P compact for simplicity. A
stable map from P to Q is a based map

Sk ∧ P → Sk ∧Q

for some non-negative integer k , which we should imagine as large. This
notion deserves to be made a little more precise.

Definition 5.3.1. We write [P,Q]sta for the set of homotopy classes of stable
maps from P to Q . In more detail,

[P,Q]sta := colim [Sk ∧ P, Sk ∧Q]∗

where [Sk ∧ P, Sk ∧Q]∗ is the set of based homotopy classes of based maps
from Sk ∧ P to Sk ∧ Q . The colim notation means that we identify any
element of [Sk∧P, Sk∧Q]∗ with its image in [Sk+1∧P, Sk+1∧Q]∗ under the
map obtained by S1∧ , smashing with (the identity map of) S1 .

While this looks clean, a slightly better way to understand stable maps is
as follows. We can write

[Sk ∧ P, Sk ∧Q]∗ :=∼= [P,Ωk(Sk ∧Q)]∗.

Instead of Sk ∧ Q , it is also customary to write ΣkQ . Letting k tend to
infinity, we understand:
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Definition 5.3.2. A stable map from P to Q is a based map from P to
Ω∞Σ∞Q . (But what is Ω∞Σ∞Q ? It is best interpreted as the mapping
telescope of

Q 7→ Ω(S1 ∧Q) → Ω2(S2 ∧Q) → Ω3(S3 ∧Q) → · · · .
And what is a mapping telescope? Form the mapping cylinder of each map
in the string separately; identify the rim (target end) of cylinder number
n with the top (source end) of cylinder number n + 1 .) We note that
[P,Ω∞Σ∞Q]∗ ∼= [P,Q]sta ; the set of homotopy classes of based maps from
P to Ω∞Σ∞Q is identified with the set of homotopy classes of stable maps
from P to Q .

Remark 5.3.3. [P,Q]sta is always an abelian group. This should be reason-
ably clear from the definitions because

[Sk ∧ P, Sk ∧Q]∗ ∼= πk(map∗(P, S
k ∧Q))

which is a group if k ≥ 1 and abelian if k ≥ 2 .

Proposition 5.3.4. Composition of stable maps makes [P, P]sta into a ring.
Moreover [P, S0]sta has the structure of a commutative ring and [P, P]sta is
an algebra over [P, S0]sta , in the weak sense that there is a preferred ring
homomorphism from [P, S0]sta to the center of [P, P]sta ).

But ... while [P, P]sta has a 1 (represented by the identity), it can happen
and it will often happen that [P, S0]sta has no unit.

Sketch of a proof. The ring structure on [P, P]sta uses composition of (homo-
topy classes of) stable maps P → P as the multiplication, as promised. The
ring axioms are not hard to verify (verification omitted). The ring structure
on [P, S0]sta is perhaps a little more surprising. An element of [P, S0]sta can
be represented by a based map

Sk ∧ P −→ Sk ∧ S0 = Sk .

By repeating the second coordinate, we can also write this as a map

f : Sk × P −→ Sk × P

which respects the projection to P and respects base points in each fiber Sk

(and moreover takes Sk × ∗ to ∗ × ∗). If we represent elements of [P, S0]sta

by maps f in this way, then it emerges that we have a way to compose. This
gives the multiplication of the ring structure. It also explains why we have
a preferred ring homomorphism from [P, S0]sta to [P, P]sta . Namely, a map
f : Sk× P −→ Sk× P as above determines a based map Sk∧ P → Sk∧ P (by
passing to quotients) which can be interpreted as an element of [P, P]sta .
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Alternatively, the ring structure on [P, S0]sta can be understood as follows.
Since

[P, S0]sta ∼= [P,Ω∞Σ∞S0]∗
it suffices to show that the based space R := Ω∞Σ∞S0 admits a structure
of ring object in the homotopy category of based spaces. That is to say, we
need certain maps

α : R× R→ R , µ : R× R→ R

which can play the role of addition and multiplication (and we need two
elements in π0R which can be called 0 and 1). Without going into details,
let’s approximate R by Rk := ΩkΣkS0 = map∗(S

k, Sk) . Then we can define
α as the map from

Rk × Rk ∼= map∗(S
k ∨ Sk, Sk)

to map∗(S
k, Sk) given by pre-composition with a selected map Sk → Sk∨ Sk

which has degree 1 on each wedge summand of Sk∨ Sk . We can define µ as
the map from Rk × Rk to Rk given by composition. �

Exercise 5.3.5. Fill in your favorite missing details of this proof. In partic-
ular, why is the ring structure on [P, S0]sta commutative? Why is it that the
ring homomorphism [P, S0]sta −→ [P, P]sta has image contained in the center
of [P, P]sta ?

Lemma 5.3.6. Suppose that P = P◦+ for some compact CW-space P◦ (see
Ex. 5.2.2 for notation). Then [P, S0]sta is a ring with 1, and the canonical
ring homomorphism

[P, S0]sta −→ [P, P]sta

is split injective, i.e., has a preferred left inverse [P, P]sta → [P, S0]sta , a
homomorphism of abelian groups.

Furthermore, [P, S0]sta comes with a preferred surjective ring homomor-
phism to map(P◦,Z). An element of [P, S0]sta is invertible if and only if its
image in map(P◦,Z) is invertible.

Proof. The element 1 of [P, S0]sta is represented by the (honest) based map
P → S0 which takes all of P◦ to the non-base point of S0 . It is easy to
verify that it is a neutral element for the multiplication in [P, S0]sta . Post-
composition with that element 1 ∈ [P, S0]sta gives a group homomorphism

[P, P]sta → [P, S0]sta

which is left inverse to the ring homomorphism [P, S0]sta → [P, P]sta defined
previously.
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The ring homomorphism from [P, S0]sta to map(P◦,Z) is as follows:

[P, S0]sta ∼= π0(map∗(P,Ω
∞Σ∞S0))

��
map(P◦, π0(Ω

∞Σ∞S0)).
Now we note that π0(Ω

∞Σ∞S0) = [S0, S0]sta ∼= Z .
Finally, suppose that some element of [P, S0]sta has image in map(P◦,Z)

which is invertible (i.e., all the values of this map N→ Z are ±1). Represent
this element by

f : Sk × P −→ Sk × P
(for some k > 0) respecting the projection to P and the base point in each
fiber, etc. This is worth as much as a map

Sk × P◦ −→ Sk × P◦

which respects the projection to P◦ and respects the base point in each fiber
Sk . Our assumption means that it has degree ±1 in each fiber Sk . Therefore
it is invertible by general facts about fibrations. �

5.4. Becker-Gottlieb transfer as a tool in homotopy theory

Using the stable language/notation, we can reformulate theorem 5.2.1 as
follows. (I downgrade this formulation to a proposition because it is weaker
than the original statement. But it may be easier to remember and it is
strong enough for our purposes.)

Proposition 5.4.1. The fiber bundle p : Y → X (with closed smooth manifold
fibers) determines a stable map

p! : X+ −→ Y+ .

The composition

X+
p! // Y+

p // X+

is an element of [X+, X+]
sta which belongs to the subring [X+, S

0]sta . The
image of that element under the standard ring homomorphism

[X+, S
0]sta → map(X,Z)

is the map defined by x 7→ χ(Yx) for x ∈ X.

Remark 5.4.2. To obtain p! in proposition 5.4.1 from p! in theorem 5.2.1,
pass from the fiberwise Thom spaces thomX(...) to the ordinary Thom spaces
thom(...) . Note that thom(Rk×X) = Sk∧X+ and thom(Rk× Y) = Sk∧ Y+
(if we write Rk ∪∞ = Sk ). In the passage from fiberwise Thom spaces to
ordinary Thom spaces, some information is lost.
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Example 5.4.3. Let X be a compact CW-space and let E → X be a real
vector bundle of even fiber dimension 2n . Suppose that E is equipped with
a Riemannian metric (i.e., each fiber Ex comes equipped with an inner prod-
uct). Let Y be the following space: an element of Y is a point x ∈ X together
with a selection of n pairwise orthogonal 2-dimensional linear subspaces of
Ex . (I am trying to emphasize that the selected linear subspaces are not enu-
merated, i.e., they are not labeled with numbers from 1 to n .) The forgetful
map

p : Y −→ X

is clearly a fiber bundle. Let us examine the fibers. For a selected x ∈ X , we
have an obvious left action of the orthogonal group O(Ex) on the fiber Yx :
a splitting of Ex into 2-dimensional linear subspaces, pairwise orthogonal,
can be transformed by a linear automoprhism of Ex . The action is clearly
transitive. Therefore Yx can be identified with the coset space

O(Ex)/H(z0)

where H(z0) is the stabilizer (isotropy group for the action) of our favorite
element z0 ∈ Yx . Furthermore, if we now choose an orthonormal basis of Ex
with basis vectors e1, e2, . . . , e2n , then our favorite element z0 is the selection
of 2-dimensional linear subspaces

Re1 + Re2 , Re3 + Re4 , ...,

and we can make identifications

O(Ex) ∼= O(2n), H(z0) ∼= Σn n (O(2))n =: Σn oO(2).

Here Σr is the symmetric group on n letters, acting on O(2)n by permuting
the n factors. Therefore, in wreath product notation:

Yx ∼=
O(2n)

Σn oO(2)
.

This is a smooth manifold and, fortunately for us, it has Euler characteristic
±1 ; see exercise 5.6.1. We want to deduce the following:

($) the homomorphism p∗ : KF(X) −→ KF(Y) is injective.

This is a key step towards the proof of the Adams conjecture. There are two
proofs (known to me). The first follows Becker and Gottlieb. In addition
to the Becker-Gottlieb transfer p! , it uses another argument which is more
formal, more difficult, too, but less surprising. The other is more direct and
uses a shortcut due to E.H. Brown (of the Brown representation theorem). I
am very grateful to Johannes Ebert for telling me about this alternative. I
must admit, I have been slow to take it on board, though not catastrophically
slow.
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But first let us see what we can do with p! . In order to show that p∗ in
($) is injective, we write it in the form

[X+, BG× Z]∗
◦ p // [Y+, BG× Z]∗

and place it in a bigger commutative diagram

[X+, BG× Z]∗

��

◦ p // [Y+, BG× Z]∗

��
[X+, BG× Z]sta ◦ p // [Y+, BG× Z]sta ◦ p! // [X+, BG× Z]sta

where the vertical arrows are obvious stabilization maps. By Becker-Gottlieb,
the composition of the two lower horizontal arrows is bijective. Therefore,
since we want to show that the upper horizontal arrow is injective, it suffices
to show that the left-hand vertical arrow is injective. This is taken care of
in the following statements, proposition 5.4.4 and theorem 5.4.5.

Proposition 5.4.4. Let Z be an infinite loop space. Then for any based
compact CW-space P , the stabilization map [P, Z]∗ → [P, Z]sta is injective.

Theorem 5.4.5. BG× Z is an infinite loop space.

Proof of prop. 5.4.4. The stabilization map that we are investigating can be
written in the form

[P, Z]∗ −→ [P,Ω∞Σ∞Z]∗ .
As such it is induced by the inclusion of Z in the mapping telescope Ω∞Σ∞Z .
It is therefore enough to show that for every k ≥ 1 the partial stabilization
map [P, Z]∗ → [P,ΩkΣkZ]∗ is injective. For that it will suffice to produce a
based map from ΩkΣkZ to Z making the following homotopy commutative:

Z

id ##

incl. // ΩkΣkZ

��
Z

Our assumption on Z implies that instead of Z we can write ΩkZk for some
(other) based CW-space Zk . Now we are looking for the dotted arrow in

ΩkZk

id &&

incl. // ΩkΣkΩkZk

��
ΩkZk
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There is an easy solution as follows:

Ωk(ΣkΩk)Zk

Ωkv
��

ΩkZk

where v : (ΣkΩk)Zk → Zk is obtained by adjunction from the identity map
ΩkZk → ΩkZk . �

Exercise 5.4.6. Verify that Ωkv makes that triangle strictly commutative.

I am not planning to give a proof of theorem 5.4.5. Instead I hope to
explain (after the Christmas break) the more direct argument for statement
($) due to Brown. As indicated above, I could have been more efficient by
explaining this right away, but I have an interesting excuse! Adams wrote in
his book Infinite loop spaces (1978): Finally I come to the proof of Becker and
Gottlieb ... Of course this involves quoting substantial results from infinite-
loop-space theory ... ; but there is no help for it — it is essential to the
argument.

5.5. Finite covering spaces and associated transfer maps

Let q : Y\ → Y be a covering space with finite fibers, where Y is a compact
CW-space. (The Y which I have in mind is the Y from example 5.4.3, but
for the moment there is no need to be so specific.

Definition 5.5.1. The covering space q : Y\ → Y determines an elementary
transfer map (wrong-way map)

q⊕ : KR(Y
\) → KR(Y)

as follows. A vector bundle V → Y\ determines a vector bundle V ] → Y by
the rule

V ]
y :=

⊕
z∈q−1(y)

Vz

for y ∈ Y . In words, the fiber of V ] over y ∈ Y is the direct sum of the
fibers of V over the n points in q−1(y) ⊂ Y\ . If an element of KR(Y

\) can
be written as [V] − [W] where V and W are vector bundles over Y\ , then
we let

q⊕([V ] − [W]) = [V ]] − [W]].

It is straightforward verify that this gives a well defined homomorphism of
abelian groups from KR(Y

\) ro KR(Y) .
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Exercise 5.5.2. Make this explicit (compute q⊕ ) in the case where Y = S1

and q is the 2-sheeted covering space determined by the subgroup of index
2 in π1(S

1) ∼= Z .

Proposition 5.5.3. The map q⊕ : KR(Y
\) → KR(Y) agrees with the homo-

morphism of K-groups induced by the stable map q! : Y+ → Y\
+ of Becker-

Gottlieb.

Proof. Write K = KR . For sufficiently large r , the Becker-Gottlieb map

q! : S8r ∧ Y+ −→ S8r ∧ Y\
+

is defined as an honest based map. We ought to show that the following
commutes:

K(Y\)

q⊕

��

∼= // K̃(Y\
+) // K̃(S8r ∧ Y\

+)

(q!)∗

��

K(Y)
∼= // K̃(Y+) // K̃(S8r ∧ Y+)

where the right-hand horizontal arrows are given by multiplication with a
generator b of K̃(S8r) . But multiplication with b is somewhat inexplicit,
inscrutable. Therefore I prefer the following setup. We view the Becker-
Gottlieb map as an honest based map

q! : S8r−1 ∧ Y+ −→ S8r−1 ∧ Y\
+

and we write

[S8r−1 ∧ Y\
+, SO]∗ , [S8r−1 ∧ Y+, SO]∗

instead of K̃(S8r ∧ Y\
+) , K̃(S8r ∧ Y+) .

In more detail, we select a “random” vector bundle V → Y\ and obtain
V ] → Y . We choose an embedding (unnamed) of V ] → Y into a trivial
vector bundle RN × Y → Y . This will automatically give us an embedding
of V → Y\ into a trivial vector bundle RN × Y\ → Y\ . Namely, we have the
composition

V ↪→ q∗(V ]) ↪→ q∗(RN × Y) = RN × Y\ .

We view Ωb as a based map S8r−1 → SO(M) for a large integer M . Now
we have

Ωb� V : S8r−1 ∧ Y\
+ −→ SO(MN),

Ωb� V ] : S8r−1 ∧ Y+ −→ SO(MN)

in the notation of section 3.6 (taking S8r−1 for P and Y+ or Y\
+ for Q). We

need to show

Ωb� V ] ' (Ωb� V) ◦ q! .
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Here we go. The definition of q! uses an embedding

Y\ ↪→ Y × R8r−1

such that the composition Y\ ↪→ Y × R8r−1 → Y is q . We fix this. Now we
argue pointwise, so we select y ∈ Y . Then q−1(y) is a finite set embedded
in R8r−1 . We also need a tubular neighborhood Uy for q−1(y) in R8r−1 .
Imagine this as the union of small disjoint metric open balls about the points
of q−1(y) . Now

(Ωb� V) ◦ q!
∣∣
S8r−1 ∧ {y}+

has the following form:

S8r−1 ∧ {y}+
∼= // S8r−1

Pontr. collapse

��

Uy ∪∞ ∼= //
∨

s∈q−1(y)

S8r−1
(Ωb�Vs)s∈q−1(y) // SO(MN)

We can also write this in the form

S8r−1

(Pontr. collapse for each conn. component of Uy)

��∏
s∈q−1(y)

S8r−1
∏
sΩb�Vs // SO(MN)

using the multiplication in SO(MN) . (Although SO(MN) is not commu-
tative, there is no need for an ordering of factors here because the specific
elements of SO(MN) that we need to multiply happen to commute pairwise.)
Now it only remains to note that the vertical arrow in the last diagram is
homotopic (by a specific homotopy (ht,y)t∈[0,1] whose construction is left to
the reader) to the diagonal map

S8r−1 −→ ∏
s∈q−1(y)

S8r−1.

These homotopies (ht,y)t∈[0,1] , taken together for all y ∈ Y , induce a homo-
topy from (Ωb� V) ◦ q! to Ωb� V ] . �
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Corollary 5.5.4. The following diagram is commutative:

KR(Y
\)

q⊕

��

Ψk // KR(Y
\)⊗ Z[k−1]

q⊕

��

KR(Y)
Ψk // KR(Y)⊗ Z[k−1]

Proof. We compare that diagram with

K̃R(S
8r ∧ Y\

+)

(q!)∗

��

k−4rΨk // K̃R(S
8r ∧ Y\

+)⊗ Z[k−1]

(q!)∗

��

K̃R(S
8r ∧ Y+)

k−4rΨk // K̃R(S
8r ∧ Y+)⊗ Z[k−1]

for large r ≥ 0 . Since r is large, we can think of q! as an honest based map

S8r ∧ Y+ −→ S8r ∧ Y\
+ .

Therefore this new diagram is commutative. By Bott periodicity, real case,
and by proposition 5.5.3, external product with a generator of K̃(S8r) ∼= Z
gives a natural isomorphism from the old diagram to the new diagram. (We
are exploiting the fact that Ψk respects products. But since Ψk applied to a
generator of K̃(S8r) multiplies that generator with k4r , we have to use k−4rΨk

instead of Ψk in the new diagram.) �

Remark 5.5.5. The map q⊕ : KR(Y
\) → KR(Y) has an analogue for spherical

fibrations:
q⊕ : KF(Y

\) → KF(Y)

(replace direct sums by joins). We will also need this. We will not need the
analogue of proposition 5.5.3 for this situation, although I believe it holds.

5.6. Proof of the Adams conjecture

We return to the situation and notation of example 5.4.3. The commutative
diagram

KR(Y)
Ψk−id // KR(Y) // KF(Y)⊗ Z[k−1]

KR(X)

p∗

OO

Ψk−id // KR(X)

p∗

OO

// KF(X)⊗ Z[k−1]

p∗

OO

and statement ($) from example 5.4.3 imply that the element [E] ∈ KR(X)
goes to zero in KF(X) ⊗ Z[k−1] provided [p∗E] ∈ KR(Y) goes to zero in
KF(Y)⊗ Z[k−1] .
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By construction, the vector bundle p∗E→ Y of fiber dimension 2n comes
with additional data as follows. For each y ∈ Y the fiber (p∗E)y ∼= Ep(y)
comes with a preferred splitting into n linear subspaces of dimension 2.
(Selecting y ∈ Y amounts to selecting x = p(y) ∈ X and a splitting of the
vector space Ex into pairwise perpendicular 2-dimensional linear subspaces.)
Now let

q : Y\ −→ Y

be the covering space obtained by saying that q−1(y) for y ∈ Y is the set of
those n selected 2-dimensional linear subspaces of (p∗E)y = Ep(y) . (The set
q−1(y) has n elements. Therefore q : Y\ → Y is an n-sheeted covering, fiber
bundle with fibers homeomorphic to {1, 2, . . . , n} , but we should not assume
that it is a trivial fiber bundle.) We set up another diagram

KR(Y
\)

q⊕

��

Ψk−id // KR(Y
\)

q⊕

��

// KF(Y
\)⊗ Z[k−1]

q⊕

��
KR(Y)

Ψk−id // KR(Y)⊗ Z[k−1] // KF(Y)⊗ Z[k−1]

It is commutative by corollary 5.5.4. By construction, the element [p∗E] in
KR(Y) (bottom left-hand term of the diagram) is the image of an element

[V] ∈ KR(Y
\)

(top left-hand term of the diagram), where V → Y\ is a two-dimensional
vector bundle. (For x ∈ X and y ∈ Y with p(y) = x and w ∈ Y\ with
q(w) = y , the fiber Vw is one of the 2-dimensional summands of Ex in the
splitting of Ex determined by y .)

By Adams’ own pre-proof of the Adams conjecture, we know that [V] goes
to 0 under the composite map in the top row of the diagram. Therefore [p∗E]
goes to 0 under the composite map in the bottom row of the diagram. This
completes the proof. �

Exercise 5.6.1. We used a special case of the following general fact. Let G
be a compact connected Lie group, T a maximal torus in G , and N(T) the
normalizer of T in G . Then the coset manifold G/N(T) has Euler charac-
teristic 1. (We used this for G = SO(2n) only.) Here is an outline of a proof
which follows Adams (proof of thm 4.21 in his book Lectures on Lie groups).
Fill in details as far as possible.

(i) It suffices to show that N(T)/T is finite and that the Euler charac-
teristic of G/T is |N(T)/T | . Why?

(ii) In the tangent space of T at the identity element e , choose a nonzero
tangent vector v such that the corresponding one-parameter subgroup
L of T is dense in T . This is always possible. Why?
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(iii) For every element xT ∈ G/T (meaning x ∈ G) let βxT : T → G/T be
the map

s 7→ sxT

and let ξ(xT) be the tangent vector at xT ∈ G/T obtained by apply-
ing the derivative dβxT to v .

(iv) Now we have a smooth vector field ξ on G/T . Show that ξ(xT) = 0
if and only if x ∈ N(T) .

(v) It only remains to show that the index of ξ at each point xT ∈ G/T
where ξ(xT) = 0 is +1 . (Maybe more instructions on that later.)

5.6. The shortcut due to Brown

E.H.Brown found a more direct way to prove the decisive statement ($) in
section 5.4. Let’s recall the assumptions: p : Y → X is a fiber bundle with
smooth compact manifold fibers, and these fibers have Euler characteristic
±1 . We are supposed to show that

p∗ : K̃F(X) → K̃F(Y)

is injective. It will not hurt to assume that X is a connected CW-space.
More surprisingly, it seems to me that for Brown’s argument we also have to
assume that the fibers of p : Y → X are connected. (In the application to the
Adams conjecture these fibers were diffeomorphic to O(2n)/Σn oO(2) which
is indeed connected.)

Lemma 5.6.1. Let g : E→ X be a spherical fibration with fibers ' Sk−1 . Let
cXE be the mapping cylinder of g, so that there are a pair (cXE, E) and a
fibration pair (cXE, E) → X with fiber pairs ' (Dk, Sk−1), and a Thom space
cXE/E. The following are equivalent:

(i) g is stably trivial;
(ii) there is a stable map u : cXE/E → Dk/Sk−1 such that the restriction

of u to czEz/Ez (for each z ∈ X) is a stable map of degree ±1.

Proof. If g is stably trivial, then the trivialization induces a (stable) map
from the Thom space of g to the Thom space of the spherical fibration
Sk−1 → ∗ . This clearly has the property mentioned in (ii).

Conversely, if we have the stable map u , then we can suppose that it is
an honest map

Sj ∧ (cXE/E) −→ Sj ∧ (Dk/Sk−1) .

Restricted to Sj ∧ (czEz/Ez) this gives a map uz of degree ±1 from the
sphere Sj∧ (czEz/Ez) to the sphere Sj∧ (Dk/Sk−1) ∼= Sj+k . We may identify
Sj ∧ (czEz/Ez) with the join Sj ∗ Ez (also ' Sj+k ), so that uz is a homotopy
equivalence from Sj ∗ Ez to Sj+k . This depends continuously on z ∈ X and
so gives a stable trivialization of g . �



17

Continuing in the notation of the lemma, let g : E → X be a spherical
fibration. Then we have the pullback spherical fibration

p∗g : p∗E→ Y

and cYp
∗E , the mapping cylinder of p∗g . Then there is a commutative

diagram

(cYp
∗E, p∗E)

q

��

// Y

p

��
(cXE, E) // X

where the horizontal arrows are fibration pairs with fibers (Dk, Sk−1) for some
k . (The label q is a new name for an otherwise obvious map.) The vertical
arrows are fiber bundle projections with smooth manifold fibers. The fibers
have Euler characteristic ±1 .

Brown’s idea is to apply the Becker-Gottlieb transfer not to p (right-hand
column), but to q , the left-hand column of the square. What we should get
as a result is a stable map of pairs

q! : (cXE+, E+) −→ (cYp
∗E+, p

∗E+).

But it is more efficient to pass to the quotients right away; so we write

q! : cXE/E −→ cYp
∗E/p∗E .

As in the lemma above, these quotients can be described as the Thom
spaces (disk fibration modulo boundary sphere fibration) of g : E → X and
p∗g : p∗E→ Y , respectively.

Now suppose that p∗g : p∗E → Y is stably trivial as a spherical fibration.
A stable trivialization leads to a stable map

v : cYp
∗E/p∗E −→ Dk/Sk−1

(as in the lemma, but with Y and p∗g instead of X and g). The composition

cXE/E
q! // cYp

∗E/p∗E
v // Dk/Sk−1

is a map reminiscent of u in lemma 5.6.1. If we can show that it satisfies the
degree ±1 condition in (ii) of lemma 5.6.1, then it follows that g : E→ X is
stably trivial as a spherical fibration.

When we try to verify this, we are automatically replacing X by a selected
point z ∈ X . So we might start again (for this purpose) and assume that X
is a single point. Then we may assume that g is the projection Sk−1 → ∗
and so p∗g is the projection Sk−1 × Y → Y . Here Y is a compact smooth
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manifold and, according to what I said earlier, I allow myself to assume that
it is connected. The map v takes the form

v : (Dk/Sk−1)∧ Y+ −→ Dk/Sk−1.

(We can assume that it is an honest map, not just a stable map; otherwise
increase k .) We should not assume that it is the standard projection, induced
by the based map Y+ → S0 which takes all of Y to the non-base point. Instead
it corresponds to some fiber homotopy trivialization of the projection

Sk−1 × Y → Y

(which is already a trivialized fibration). By contrast the map q takes the
form

q : (Dk/Sk−1)∧ Y+ −→ Dk/Sk−1

and it is the standard projection. From lemma 5.1.4 or proposition 5.4.1 we
know that the composition

Dk/Sk−1
q! // (Dk/Sk−1)∧ Y+

q // Dk/Sk−1

is a map of degree ±1 . What we need to know however is that the compo-
sition

Dk/Sk−1
q! // (Dk/Sk−1)∧ Y+

v // Dk/Sk−1

is a map of degree ±1 . For that we can write v ' q ◦ e where

e : (Dk/Sk−1)∧ Y+ −→ (Dk/Sk−1)∧ Y+

is defined by e(x, y) = (v(x, y), y) . Now it is clear that e is a stable homo-
topy equivalence. Since I am allowed to assume that Y is connected, I may
conclude that the lowest nontrivial reduced homology group of (Dk/Sk−1)∧Y+
is

H̃k((D
k/Sk−1)∧ Y+) ∼= H̃0(Y+) = H0(Y) ∼= Z

and e will induce an automorphism of that group (which can only be mul-
tiplication by 1 or −1). Therefore I can calculate the degree of v ◦ q! by

reading off what it does on reduced homology H̃k , and I find it does the
same up to sign as q ◦ q! . This completes the verification. �

∗ ∗ ∗
Plans for the weeks after the Christmas/New Year break:

• No infinite loop space theory after all! Instead, another proof of ($) in
section 5.4. which uses the Becker-Gottlieb transfer in a slightly dif-
ferent way and thereby avoids infinite loop space theory. See updates
in section 5.4. and the new section 5.6.
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• Localization theory after all! I just realized that the proof of Proposi-
tion 4.5.4 ist still missing.
• Perhaps some words on some forms of representation theory; ide-

ally this should allow me to fill in the missing details in the proof of
Proposition 4.2.5.
• How did Adams show that the upper bound on J(X) given by the

Adams conjecture is also a lower bound? (See remark 4.2.4.) Some
indications — probably not the full story.


