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Lecture notes chapter 4, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture

4.1. Infinite loop spaces and generalized cohomology theories

Why is Bott periodicity in K-theory so important? There are two answers.
The first answer, which is the more obvious and less profound of the two:

- it enables us to calculate all the homotopy groups of BU and BO.

Indeed, it tells us that πk(BU) ∼= πk−2(BU) for k > 2 , so that we get
away with the calculation of π1(BU) and π2(BU) . That is easy. And in
the real case it tells us that πk(BO) ∼= πk−8(BO) for k > 8 , so that we
get away with the calculation of πk(BO) for k = 1, 2, 3, 4, 5, 6, 7, 8 , which is
manageable. This is quite remarkable. Homotopy theorists like to point out
for comparison that there is no example known of a compact based CW-space
X with is simply connected, not contractible and has all its homotopy groups
πk(X) computed. (For example, the homotopy groups of S2 are not really all
known, although a curious general description in rather knot-theoretic terms
emerged about 20 years ago.)

The second answer:

- Bott periodicity creates two important generalized cohomology theo-
ries (complex K-theory and real K-theory).

Without trying to give a precise definition of the term generalized cohomology
theory, let me try to explain nevertheless. Suppose that Y is a fixed space
with base point. I will argue that Y gives rise to something like a general-
ized cohomology theory on compact CW-spaces; let me denote that by h∗

(although it depends strongly on the choice of Y ). Namely, for a compact
CW-space X and n ≥ 0 , we put

h−n(X) := πn(map(X, Y))

where map(X, Y) is the mapping space with the compact-open topology.
Note that map(X, Y) has a preferred base point, since we selected a base
point in Y ; this is good news as it helps us to make sense of πn(map(X, Y)) .
For a compact CW pair (X,A) we put

h−n(X,A) := πn(map∗(X/A, Y))

where map∗(X/A, Y) is the space of based maps from X/A to Y . In order to
make long exact sequences, we need the following lemma or exercise:

Exercise 4.1.1. For a compact CW-pair (X,A) , the restriction map

map(X, Y) −→ map(A, Y)

is a Serre fibration. The fiber over the base point is map∗(X/A, Y) .
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From the fibration sequence in the exercise, we get a long exact sequence
of homotopy groups and we can use our “cohomological” notation to write
it in the form

· · · // h−n(X,A) // h−n(X) // h−n(A) // h1−n(X,A) // · · ·

This is, incidentally, called the Barratt-Puppe sequence (except for the coho-
mological notation), discovered by Barratt and Puppe independently as far
as I know. It looks a lot like one of these long exact sequences that one wants
in a cohomology theory. There is some form of excision, too. Suppose for
example that X = A ∪ B where A and B are CW-subspaces of the compact
CW-space X . Then we clearly have

h−n(X,A) ∼= h−n(B,A ∩ B)
because X/A ∼= B/(A ∩ B) .

Exercise 4.1.2. Given a CW-space X = A ∪ B as above, and the above
definition of h∗ , try to construct a long exact Mayer-Vietoris sequence

· · · // h−n(X) // h−n(A)× h−n(B) // h−n(A ∩ B) // h1−n(X) // · · ·

(Hint: if you know the concept of a homotopy pullback square, it might help.)

The one weakness with our candidate h∗ for a generalized cohomology
theory is that the long exact sequences are not as long as they should be. It
is a problem that hk(−) is only defined for k ≤ 0 . Moreover h0(−) gives
us only sets rather than abelian groups, and h−1(−) gives us groups which
need not be abelian.

The situation is a little better if Y is homotopy equivalent to the loop
space ΩY(1) of another based space Y(1) . Then we can redefine

h−n(X) := πn+1(map(X, Y(1)))

h−n(X,A) := πn+1(map∗(X/A, Y
(1)))

which is consistent with the earlier definition since for example

πn+1(map(X, Y(1))) ∼= πn(Ωmap(X, Y(1))) ∼= πn(map(X,ΩY(1))).

But with the new formula, hk(X) and hk(X,A) are defined for k ≤ 1 (and
they are groups for k ≤ 0 , and abelian groups for k ≤ −1). This is an
improvement. And if Y(1) is homotopy equivalent to the loop space ΩY(2)

of another based space Y(2) , then we can make a further improvement by
redefining

h−n(X) := πn+2(map(X, Y(2)))

h−n(X,A) := πn+2(map∗(X/A, Y
(2)))

so that hk is defined for k ≤ 2 . And so on. This leads us mechanically to
the following definitions.
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Definition 4.1.3. An Ω-spectrum is a sequence of based spaces Y(k) where
k = 0, 1, 2, . . . together with based maps jk : Y

(k) → ΩY(k+1) which are based
weak homotopy equivalences.

The Ω-spectrum (Y(k), jk)k≥0 determines a generalized cohomology theory
h∗ on compact CW-spaces X and compact CW-pairs (X,A) by

hr(X) = πk−r(map(X, Y(k)))

hr(X,A) = πk−r(map∗(X/A, Y
(k)))

for r ∈ Z . (The right-hand side is an abelian group, independent of k up to
unique isomorphism; choose any k ≥ r to make sense of it, but take k ≥ r+1
to see a group structure and k ≥ r+ 2 to see that it is an abelian group.)

Definition 4.1.4. A space Y is called an infinite loop space if it is the space
Y(0) in some Ω-spectrum (Y(k), jk)k≥0 .

Example 4.1.5. Setting Y(k) = BU×Z for even k ≥ 0 and Y(k) = U for odd
k ≥ 0 (where U =

⋃
n U(n) is the union of the unitary groups U(n)), we

have an Ω-spectrum. Indeed there is an obvious weak homotopy equivalence
U → Ω(BU) = Ω(BU× Z) which we can call jk for k = 1, 3, 5, 7, . . . . And
there is the Bott map BU × Z → ΩU = Ω2(BU × Z) which we can call
jk for k = 0, 2, 4, . . . . (Therefore BU × Z is an infinite loop space.) The
generalized cohomology theory corresponding to this Ω-spectrum has the
name K∗ ; so that, for every CW-space X , we have abelian groups Kr(X)
(which depend only on r mod 2). This is a little confusing because what we
previously called K(X) or KC(X) must now be called K0(X) (although I am
not planning to do this consistently).

Similarly, setting Y(8m−k) = Ωk(BO×Z) for m > 0 and k = 0, 1, 2, . . . , 7 ,
and also for m = k = 0 , gives us an Ω-spectrum. (It follows that BO × Z
is an infinite loop space.) The generalized cohomology theory corresponding
to this Ω-spectrum has the name KO∗ ; so that, for every CW-space X , we
have abelian groups KOr(X) (which depend only on r mod 8).

4.2. The Adams operations

Remark 4.2.1. Please do not write the Adam’s operations. His name was
Frank Adams.

The Adams operations are natural transformations

Ψk : K(X)→ K(X)

where K(X) can be read (consistently) as KC(X) or KR(X) , unless otherwise
specified. They are defined mainly for k ≥ 0 although there is a cheap way
to extend the definition to all k ∈ Z . Adams introduced these operations in
his paper Vector fields on spheres (1962). The guiding principle is as follows.
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If z ∈ K(X) is an element which can be written as a sum z = z1+z2+ · · ·+zr
where each zi is represented by a line bundle alias 1-dimensional vector
bundle, then we should have

(∗) Ψk(z) = zk1 + z
k
2 + · · ·+ zkr

in the ring K(X) . Let’s note that the assumption z can be written as a sum
z = z1+ z2+ · · ·+ zr where each zi is represented by a line bundle is awfully
restrictive if we are talking about real vector bundles, but less so if we are
talking about complex vector bundles. For example, KC(S

2) is generated
as an abelian group by elements which are represented by line bundles: the
trivial line bundle and the tautological line bundle on CP1 ∼= S2 .

Adams found a magic way to make sense of the prescription (∗) in the gen-
eral case, i.e., without having to assume that z is represented by a Whitney
sum of r line bundles. This is based on the observation that the expression
zk1 + z

k
2 + · · · + zkr viewed as a function of “abstract” variables z1, . . . , zr is

a symmetric polynomial. It is a well-known theorem in foundational alge-
bra that symmetric polynomials can always be written as polynomials in the
so-called elementary symmetric polynomials.

Theorem 4.2.2. Let A be a commutative ring (with unit). Let t1, . . . , tr be
variables. Let Σr be the symmetric group on letters or numbers {1, 2, . . . , r}.
Let A[t1, . . . , tr] be the polynomial ring. Then for the subring of polynomials
which are symmetric, i.e., invariant under the action of Σr by permutation
of the variables t1, . . . , tr , we have(

A[t1, . . . , tr]
)Σk = A[s1, s2, . . . , sr]

where s1, . . . , sr are the elementary symmetric polynomials. More precisely,

sj :=
∑
f

tf(1)tf(2) · · · tf(j)

where f runs over all order-preserving injections from the set {1, 2, . . . , j}
to the set {1, 2, . . . , r}. (For example s1 = t1 + t2 + · · · + tr and sr =
t1t2 · · · tr−1tr .)

It must be emphasized that A[s1, s2, . . . , sr] in this formulation is meant
to be the polynomial ring in the variables s1, . . . , sr . Therefore the content
of the theorem is that every symmetric polynomial in the variables t1, . . . , tr
with coefficients in A can be written uniquely as a polynomial in the ele-
mentary symmetric polynomials s1, . . . , sr with coefficients in A .

Example 4.2.3. Take r = 3 and k = 2 and A = Z . Then t21 + t
2
2 + t

2
3 =

s21 − 2s2 .
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Let’s follow Adams and manoeuver between the relatively weak assump-
tion that z is represented by a vector bundle E → X of fiber dimension r
on X , and the stronger assumption that E is a Whitney sum of line bundles
E1 , . . . , Er on X . Write Λj for the j-th alternating power. This is an oper-
ation on vector spaces or, if we wish, an operation which can be performed
fiberwise on vector bundles (over X). The operation Λj performed on r-
dimensional vector bundles has properties which are curiously reminiscent of
the elementary symmetric function sj (in variables t1, . . . , tr ). Namely, if E
happens to be a Whitney sum of line bundles E1 ⊕ E2 ⊕ · · · ⊕ Er , then

ΛjE ∼= sj(E1, E2, . . . , Er)

where we can make sense of the right-hand side by interpreting sums as
Whitney sums ⊕ and products as tensor products ⊗ . The isomorphism sign
in the middle means isomorphism of vector bundles.

But the expression ΛjE is defined for any r-dimensional vector bundle E
on X ; we do not need a splitting into line bundles for that. Therefore we can
proceed as follows. Write the symmetric polynomial tk1 + t

k
2 + · · · + tkr as a

polynomial in the elementary symmetric polynomials:

tk1 + t
k
2 + · · ·+ tkr = Pk,r(s1, s2, . . . , sr) .

Then define

Ψk(E) := Pk,r(Λ
1E,Λ2E, . . . , ΛrE) .

Again, we make sense of the right-hand side by interpreting sums as Whitney
sums ⊕ and products as tensor products ⊗ .

Example 4.2.4. If E has dimension 3, then Ψ2(E) = Λ1E⊗Λ1E− 2Λ2E =
E⊗ E− 2Λ2E (using example 4.2.3).

As the example shows, we may view E as a vector bundle on X or, more
generously, as an isomorphism class of vector bundles on X , but we must view
Ψk(E) as an element of K(X) because formal differences of vector bundles are
involved.

Proposition 4.2.5. Ψk(E) ∈ K(X) can be calculated as

Pk,r(Λ
1E,Λ2E, . . . , ΛrE)

for any r which is at least as big as the (maximal) fiber dimension of E.
Furthermore, Ψk takes Whitney sums of vector bundles on X to sums in
K(X), and tensor products of vector bundles on X to products in K(X).

Given the very algebraic definition of Ψk , this looks as it should have a
proof which is mostly algebraic. I am trying to make such a proof, and as
part of that I need a corollary to theorem 4.2.2.
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Corollary 4.2.6. Let A be a commutative ring. Let t1, . . . , tr, u1, u2, . . . , uq
be variables. Let s ′1, . . . , s

′
r be the elementary symmetric polynomials in the

variables t1, . . . , tr and let s ′′1 , . . . , s
′′
q be the elementary symmetric polyno-

mials in u1, . . . , uq . Then(
A[t1, t2, . . . , tr, u1, u2, . . . , uq]

)Σr×Σq
= A[s ′1, s

′
2, . . . , s

′
r, s
′′
1 , . . . , s

′′
q ].

Proof. For
(
A[t1, t2, . . . , tr, u1, u2, . . . , uq]

)Σr×Σq
we can write((

A[t1, t2, . . . , tr]
)Σr

[u1, u2, . . . , uq]
)Σq

=
(
A[s ′1, . . . , s

′
r][u1, . . . , uq]

)Σq
= A[s ′1, . . . , s

′
r][s

′′
1 , . . . , s

′′
q ]

= A[s ′1, . . . , s
′
r, s
′′
1 , . . . , s

′′
q ]. �

Proof of proposition 4.2.5. For the first part we can assume that X is con-
nected. If r is greater than the fiberwise dimension d of E → X , then
ΛrE, . . . , Λd+1E are zero. Therefore we only have to verify that Pk,r turns
into Pk,d if we substitute sj ∈ Z[t1, . . . , td] for sj ∈ Z[t1, . . . , tr] ; this means
in practice that we let sj be sj for j ≤ d and substitute 0 for sj if j > d .
Making these substitutions can be simulated by substituting 0 for tr, . . . td+1
in polynomials in the variables t1, . . . , tr , which may be symmetric or not.
If we do this to tk1 + · · ·+ tkr , we obtain tk1 + · · ·+ tkd .

For the second part we can also assume that X is connected. We take two
vector bundles E→ X and F→ X , of fiber dimension r and q , respectively.
Then we have

Ψk(E⊕ F) = Pk,r+q(Λ1(E⊕ F), Λ2(E⊕ F), . . . , Λr+q(E⊕ F)).
Here we view Pk,r+q as a polynomial in the elementary symmetric polynomials
s1, s2, . . . , sr+q in the variables t1, . . . , tr, u1, . . . , uq . Now we make a leap of
faith to the statement that each Λj(E⊕F) has an expression as a polynomial
in exterior powers of E and F , matching the expression of sj as a polynomial
in s ′1, . . . , s

′
r and s ′′1 , . . . , s

′′
q which we must have according to corollary 4.2.6.

(See exercise 4.2.7 below.) If we plug these expressions for Λj(E ⊕ F) into
the formula for Ψk(E⊕ F) just above, then we get

Ψk(E⊕ F) = polynomial in Λ1E, . . . , ΛrE,Λ1F, . . . , ΛqF

where that polynomial (in the right-hand side) is the unique element of

Z[s ′1, . . . , s ′r, s ′′1 , . . . , s ′′q ]

which turns into tk1 + · · ·+ tkr +uk1 + · · ·+ukq if we view s ′1, . . . , s
′
r, s
′′
1 , . . . , s

′′
q

as elements of Z[t1, . . . , tr, u1, . . . , uq] . But then we recognize that poly-
nomial as P ′k,r + P

′′
k,q where the dashes in P ′ and P ′′ indicate that we use
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variables s ′1, . . . , s
′
r for one and s ′′1 , . . . , s

′′
q for the other. — The proof for

product compatibility is (apparently) not similar. It needs more machinery
(representation theory). See section 4.6 (which was added much later). �

Exercise 4.2.7. Replace the leap of faith in the above proof by a better
argument.

Corollary 4.2.8. Ψk is well defined as a group homomorphism from K(X)
to K(X), and in fact it is a ring homomorphism. We have Ψ1 = id. For
connected X, the homomorphism Ψ0 : K(X) → K(X) is given by the virtual
dimension function K(X) → Z, followed by the unique ring homomorphism
Z→ K(X).

This is a good opportunity to say or write something about λ-rings and
special λ-rings. Initially I wanted to quote mainly from Wikipedia, but then
I found Group representations, λ-rings and the J-homomorphism by Atiyah
and Tall (1969). A λ-ring is a commutative ring R together with maps
λk : R→ R for k = 0, 1, 2, 3, . . . which imitate the behavior (on direct sums)
of the exterior powers Λi on (real/complex) vector spaces. The exterior
powers of vector spaces U,V, . . . satisfy Λ0(U) = ground field (R or C) and
Λ1(U) = U , and

Λk(U⊕ V) ∼=

k⊕
j=0

Λj(U)⊗Λk−jV .

Therefore it is a condition in λ-rings that λ0(x) = 1 and λ1(x) = x for all
x , and

λk(x+ y) =

k∑
j=0

λj(x) · λk−j(y)

for all x, y ∈ R and k ≥ 0 . These are all the conditions for a λ-ring,
according to Atiyah and Tall.

The exterior powers of vector spaces satisfy

Λk(U⊗ V) ∼= Qk(Λ
0(U), Λ1(U), . . . , Λk(U), Λ0(V), Λ1(V), . . . , Λk(V))

where Qk is a certain polynomial in 2k+2 variables, with integer coefficients.
(This polynomial Qk is extremely hard to determine for larger k , as we noted
in connection with exercise 4.2.7. It may have some negative coefficients,
so that the isomorphism can only be made sense of in a stable way: add
something to both sides to cancel out the negative contributions in Qk .)
Also, it appears that the exterior powers satisfy

Λj(Λk(U)) ∼= Q ′j,k(Λ
1(U), . . . , Λjk(U))
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for a certain polynomial Q ′j,k with integer coefficients. (At the moment I find
this even more perplexing than the previous formula.) Therefore in a special
λ-ring we impose the conditions

λk(xy) = Qk(λ
0(x), λ1(x), . . . , λk(x), λ0(y), λ1(y), . . . , λk(y)),

λj(λk(x)) = Q ′j,k(λ
1(x), . . . , λjk(x)).

Example 4.2.9. We promote the ring Z to a λ-ring in such a way that
λk(0) = 0 for k > 0 and λk(1) = 0 for k > 1 . This is surprisingly intricate.
We immediately obtain λk(n + 1) = λk(n) + λk−1(n) for k > 0 and n ∈ Z ;
therefore

λk(n) =
(
n
k

)
for all k ≥ 0 and n > 0 . It follows also that λk(−1) + λk−1(−1) = 0 for
k > 0 , so that λk(−1) = (−1)k for all k ≥ 0 . Therefore

λk(n− 1) = λk(n) − λk−1(n) + λk−2(n) − λk−3(n) + · · ·

for all n ∈ Z and all k ≥ 0 . This allows a recursive determination of λk(n)
for all n and k ≥ 0 . Briefly, we can find λk(n) by making a Taylor series
expansion

(1+ t)n =

∞∑
k=0

λk(n) · tk

where t should be thought of as a small real or complex number.

Example 4.2.10. Let X be a compact CW-space. We promote K(X) to a
λ-ring. (This works for complex K-theory as well as for real K-theory, but
let us take real K-theory here.)

If z ∈ K(X) is represented by a vector bundle E → X , then we want to
ensure that λk(z) is represented by the vector bundle ΛkE→ X . In general,
we can assume that z has the form z1−n where z1 is represented by a vector
bundle E→ X and n is a non-negative integer, alias trivial vector bundle on
X of fiber dimension n . Then we let

λk(z) = λk(z1 − n) :=

∞∑
j=0

λj(z1) · λk−j(−n)

where λj(z1) is the class of ΛjE → X and λk−j(−n) ∈ Z ⊂ K(X) is to be
determined as in example 4.2.9. (Note that the sum is finite, although it
looks infinite, because λj(z1) is zero for sufficiently large j .) I hope it is not
difficult to verify that this is well defined. (The question is how the right-
hand side changes if we replace z1 by z1 + 1 and n by n+ 1 . It should not
change at all.)
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Remark 4.2.11. Of course we would like to know that K(X) is a special
λ-ring. With the above definition of special λ-ring, this may be obvious, but
the definition is rather sketchy. With a more explicit definition (as given in
Atiyah-Tall), it is unfortunately not very obvious.

Proposition 4.2.12. Ψk` = Ψk ◦ Ψ` .

Proof. This should also go into section 4.6 (but it has not been done in full
yet). �

4.3. Some easy computations with Adams operations

We start by computing the Adams operations in K(S2) , using complex K-
theory. Let L be the tautological line bundle over S2 = CP1 . Then

K(S2) ∼= Z⊕ Z

generated (as an abelian group) by 1 in the first summand and by [L] in the
other summand. Therefore

K̃(S2) ∼= Z
with generator [L] − 1 . We can determine the ring structure, too, by noting
that

([L] − 1)2 = 0 .

Indeed, ([L] − 1)2 is the image of the external square ([L] − 1)� ([L] − 1) ∈
K̃(S2 ∧ S2) under the homomorphism of reduced K-groups

K̃(S2 ∧ S2) −→ K̃(S2)

induced by the diagonal map S2 → S2 ∧ S2 , where S2 ∧ S2 ' S4 . But any
based map from S2 to S4 is based nullhomotopic. — Therefore we have

[L]k = (1+ ([L] − 1))k = 1+ k([L] − 1)

by the binomial theorem; terms involving higher powers of [L] − 1 can be
dropped because. Therefore, by the guiding principle,

Ψk([L]) = [L]k = 1+ k([L] − 1)

which implies:

Proposition 4.3.1. Ψk([L] − 1) = k([L] − 1) in K̃C(S
2) ∼= Z, where [L] − 1

is the standard generator of that group.

Corollary 4.3.2. For the standard generator z ∈ K̃(S2n) ∼= Z we have

Ψk(z) = knz .
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Proof. For n = 1 , this is what we just calculated. For larger n , the standard
generator is z = ([L] − 1)�n , the n-fold external power of

[L] − 1 ∈ K̃(S2).
Now Ψk preserves external products; this follows in a formal way from the
fact that Ψk preserves (internal) products. �

Next, let’s find out how Ψk acts in K̃R(S
m) . Here we can get a lot for free

by using the fact that the following always commutes,

KR(X)

��

// KR(X)

��
KC(X) // KC(X)

where the vertical arrows are induced by complexification ⊗RC of real vector
bundles. Namely, complexification gives an injective homomorphism

K̃R(S
4)→ K̃C(S

4) ∼= Z
with image 2Z , and an isomorphism

K̃R(S
8)→ K̃C(S

8) ∼= Z .
This last one is particularly important because it is related to the fact that
Bott periodicity in real and complex K-theory are compatible (although the
period is 2 in complex K-theory, 8 in real K-theory. Therefore (and using
the periodicity) we can immediately deduce:

Corollary 4.3.3. For even n > 0 and for the standard generator z in
K̃R(S

2n) ∼= Z we have Ψk(z) = knz.

The remaining nontrivial groups K̃R(S
n) where 1 ≤ n ≤ 8 are those where

n = 1 and n = 2 :

K̃R(S
1) ∼= Z/2, K̃R(S

2) ∼= Z/2 .
(These are easily calculated because they correspond to π0(O) and π1(O) ,

respectively. See exercise 4.3.5.) A generator for K̃(S1) is ([L] − 1) , where L
is the canonical real line bundle on RP1 ∼= S1 ; this L is also known as the
nontrivial line bundle on S1 . A generator for K̃(S2) is ([L] − 1)�2 , in the
same notation. By the guiding principle, we get:

Ψk([L] − 1) = [L]k − 1 =

{
0 if k is even

[L] − 1 if k is odd.

This leads us to the following.

Proposition 4.3.4. Suppose that n ≡ 1, 2 modulo 8 and n > 0. Then Ψk

is the identity on K̃(Sn) if k is odd, and the zero homomorphism if k is even.
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Exercise 4.3.5. Easy arguments with fibration sequences show that the
inclusion O(3)→ O induces an isomorphism on π1 (with the standard choice
of base points). The plate trick is allegedly a way to prove that π1(O(3))
is isomorphic to Z/2 . From Wikipedia (Dec 2016): One way of doing the
trick is to rest a small plate flat on the palm, then perform two rotations of
one’s hand while keeping the plate upright, ending in the original position.
The hand makes one rotation passing over its shoulder, twisting the arm,
and then another rotation passing under, untwisting it. Finding somebody
who will perform the plate trick should not be a problem, but how exactly
does this show that π1(O(3)) ∼= Z/2 ? (Hint: easy arguments with fibration
sequences also show that the inclusion O(2) → O(3) induces a surjective
homomorphism in π1 .)

4.4. The Adams conjecture (as a statement)

The Adams conjecture as stated in the article On the groups J(X) — I by
Adams is as follows. Let X be a compact CW-space. In section 1.3 we defined
J(X) as the image of the forgetful map KR(X) → KF(X) where KF(X) is the
K-group based on spherical fibrations, join instead of Whitney sum, etc.

Statement 4.4.1. Let X be a compact CW-space. Then for any integer
k > 0 and y ∈ KR(X), there exists a positive integer e such that

ke(Ψk(y) − y) = 0 ∈ J(X) ⊂ KF(X).
Equivalently, the composition

KR(X)
Ψk−id // KR(X) // KF(X)⊗Z Z[k−1]

is zero, where Z[k−1] is the subring of Q consisting of all rational numbers
whose denominator divides ke for some integer e ≥ 0.

Remark 4.4.2. If I understand correctly, Adams also shows in his series of
four articles on the groups J(X) that, if this is true, then it is best possible.
More precisely, the lower bound on the kernel of KR(X) → J(X) ⊂ KF(X)
given by the statement is a precise description of the kernel. We should
beware that this is a complicated statement since all k ≥ 1 need to be taken
into account. (And it is not clear how much of this we are going to reach in
this course.)

Let us try to unravel this statement (including the sharpening mentioned
in the remark) when X is a sphere. First suppose X = S2n where n is even.

Write K for KR . Then K̃(S2n) is infinite cyclic; write y for the standard

generator. It follows that J̃(S2n) is also cyclic, with the same generator. We
calculated

Ψk(y) = kny ∈ K̃(S2n)
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so that the Adams equation ke(Ψk(y)−y) = 0 simplifies to ke(kn−1)y = 0 .
(This must hold for some e ≥ 0 , possibly large, depending on k and n .) It

follows immediately that J̃(S2n) is finite cyclic, and its order ω(n) divides
ke(kn − 1) . This can also be expressed as follows:

∀k ≥ 1 : k
n − 1

ω(n)
∈ Z[k−1].

Now, in the spirit of remark 4.4.2, the number ω(n) must be the largest of
all positive integers x which satisfy

∀k ≥ 1 : k
n − 1

x
∈ Z[k−1].

(We can take that as a number-theoretic re-definition of ω(n) for even n ,
independent of the Adams conjecture. The word largest can be interpreted in
the usual sense or in the greatest common multiple sense; it does not matter.)
At first sight it is not obvious that such a “largest” exists, but it is rather
easy to see after all.

Example 4.4.3. Take n = 10 . For a prime p and a nonzero integer x let
νp(x) be the exponent of the highest power of p dividing x .

If x divides 2e(210 − 1) = 2e · 3 · 11 · 31 for some e , then ν3(x) ≤ 1 ,
ν11(x) ≤ 1 , ν31(x) ≤ 1 , νp(x) = 0 for all p 6= 2, 3, 11, 31 . If x also divides
3e(310−1) = 3e ·23 ·112 ·61 for some e , then in addition ν2(x) ≤ 3 . Therefore
such an x must divide 23 · 3 · 11 = 264 . Therefore ω(10) must divide 264.

Exercise 4.4.4. (i) Show that ω(10) = 264 by investigating the multiplica-
tive group of the ring Z/264 . (ii) Determine ω(16) by the same method.
(iii) Show that ω(n) , in the number-theoretic definition, is the largest (and
also the gcm) of the positive integers x such that the multiplicative group
of the ring Z/x has n for an exponent. (In words, kn ≡ 1 mod x for every
integer k which is relatively prime to x .)

Next let X = Sm where m ≡ 1 or m ≡ 2 mod 8. Then K̃(Sm) ∼= Z/2 . If
we take k even in the statement of the Adams conjecture, then we have to
invert k and we will have inverted 2 and there is no interesting information
left. Suppose then that k is odd. Then Ψk = id on K̃(Sm) and so ke(Ψk− id)

is already zero as a homomorphism from K̃(Sm) to itself. Therefore we have
to rely on remark 4.4.2 rather than statement 4.4.1. Then we learn that
K̃(Sm) maps injectively to K̃F(S

m) . So the order of J̃(Sm) ought to be 2 in
this case.

Summary : The Adams conjecture in the strong form (4.4.1 and 4.4.2)

implies that the groups J̃(Sm) are finite cyclic of the following orders:
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- for m = 2n where n is even, order ω(n) , the gcm (and therefore
largest) of all positive integers x which satisfy

∀ positive integers k :
kn − 1

x
∈ Z[k−1] ;

- order 2 for m ≡ 1 or m ≡ 2 mod 8;
- order 1 in the remaining cases.

(Adams writes m(n) instead of ω(n) . I find this too inconspicuous. The
number which I have denoted ω(n) is better known as the denominator of
βn/2n where βn is defined for all n ≥ 0 by the power series expansion

t

exp(t) − 1
=

∞∑
n=0

βn
tn

t!
.

It turns out that βn = 0 for odd n > 1 . Furthermore ±βn is also known
as the Bernoulli number Bn/2 for even n ≥ 0 . The sign depends a little on
conventions.)

4.5. Confirming the Adams conjecture in low-dimensional cases

In the article On the groups J(X) — I, Adams confirms the Adams conjecture
in the cases where y ∈ KR(X) is represented by a vector bundle of small fiber
dimension.

Proposition 4.5.1. If y ∈ KR(X) is represented by a vector bundle of fiber
dimension 1 or 2, then

ke(Ψk(y) − y) = 0 ∈ J(X) ⊂ KF(X)
for some positive integer e.

The proof falls into two parts, corresponding to 1-dimensional vector bun-
dles and 2-dimensional vector bundles. In both cases we argue by reduction
to universal examples.

Any 1-dimensional vector bundle E → X is the pullback of the canonical
line bundle on a (real) Grassmannian Grm(1, n − 1) = RPn−1 along some
map X→ RPn−1 . Therefore we may as well assume that X = RPn−1 for some
n � 0 , and E → RPn−1 is the canonical line bundle, and y ∈ K(RPn−1) is
the class of E .

We found that Ψk(y) = y if k is odd and Ψk(y) = 1 if k is even. Therefore
the case of odd k is trivial here. For even k we obtain Ψk(y) − y = 1 − y .
So it suffices to show 2e(1− y) = 0 ∈ KR(RPn−1) for some e� 0 . This is a
consequence of the following lemma, which says that we can take e = n .

Lemma 4.5.2. The Whitney sum of 2n copies of the canonical line bundle
E→ RPn−1 is a trivial vector bundle.
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Proof. Let Cln be the Clifford algebra of the vector space V = Rn with the
standard scalar product. The algebra Cln is obtained from the free algebra
on V , which is the tensor algebra

T(V) := R ⊕ V ⊕ (V ⊗ V) ⊕ (V ⊗ V ⊗ V) ⊕ . . .

by imposing the relations

w ·w = −‖w‖2 · 1
for all w in the summand V ⊂ T(V) . More explicitly, if we use the standard
orthonormal basis e1, e2, . . . , en for V , then Cln is generated as an algebra
by (the images of the) vectors e1, e2, . . . , en and the only relations we need
are

e2j = −1

for j = 1, 2, 3, . . . , n as well as ejek+ekej = 0 for j 6= k . (The latter relation
holds because we imposed (ej + ek)

2 = −2 = e2j + e
2
k .) It follows that Cln

as a real vector space has a basis with basis vectors corresponding to the
subsets of {1, 2, . . . , n} ; namely, every monomial

ej1ej2 . . . ejk ∈ Cln
where j1 < j2 < · · · < jk qualifies as a basis element. (For example the
empty subset of {1, 2, . . . , n} corresponds to the “empty” monomial, which
stands for 1 ∈ Cln .) A multiplication table for the basis elements is easy to
make using the above relations, e2j = −1 and ejek + ekej = 0 for j 6= k . It
follows that Cln is noncommutative for n > 0 . It follows also that Cln has
dimension 2n as a real vector space; in particular it is a finite dimensional
real vector space, which was not completely obvious from the outset since
the tensor algebra T(V) is infinite dimensional (assuming n > 0).

Now we make use of Cln in the following way. We identify it with the
vector space R2n using the standard monomial basis, and note that for every
unit vector

v ∈ Sn−1 ⊂ Rn = V ⊂ Cln = R2n

we have an R-linear map

fv : R2
n −→ R2n

given by left multiplication with v in the Clifford algebra. Since v2 = −1 in
the Clifford algebra, we have fvfv = −id, so that fv is a linear isomorphism,
and also

fv = −f−v .

This last equation in particular means that the linear isomorphisms fv can
be used to give a trivialization of the vector bundle

R2n ×Z/2 S
n−1 −→ ∗ ×Z/2 S

n−1 = RPn−1
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where the generator of Z/2 acts on R2n by −id, and on Sn−1 by the antipodal
map. Namely,

orbit of (w, v) 7→ (fv(w), orbit of v) ∈ R2n × RPn−1.

Since that vector bundle (which we have just trivialized) on RPn−1 is ev-
idently the Whitney sum of 2n copies of the canonical line bundle, this
completes the proof. �

Remark 4.5.3. Lemma 4.5.2 is not optimal. A better estimate can be
obtained by working with a an irreducible (nonzero) module over the Clifford
algebra, instead of using the free module on one generator as we have done.

Now we turn to the case of 4.5.1 where y is represented by a 2-dimensional
vector bundle. The proof uses the following proposition.

Proposition 4.5.4. Let E and E ′ be spherical fibrations on X, where X is a
compact CW-space as before; assume that the fibers are homotopy equivalent
to Sn−1 in both cases. Suppose that there is a map E→ E ′ over X which has
degree ±k on the fibers. Then [E] = [E ′] ∈ KF(X)⊗Z Z[k−1].

(Let’s postpone the proof. I am not planning to skip it, but it seems to me
that it should be part of a chapter on localization, the art of making selected
prime numbers invertible in homotopy theory.)

In addition to that, we need the following fact:

Lemma 4.5.5. Let L be a complex line bundle on X. Then the forgetful
homomorphism of abelian groups

ϕ : KC(X)→ KR(X)

satisfies ϕΨkC[L] = Ψ
k
Rϕ[L].

Since ΨkC[L] = [L]k , we get ΨkRϕ[L] = ϕ([L]k) , but ϕ is not a ring homo-
morphism; so do not confuse with (ϕ[L])k .

This lemma could be true in greater generality, and perhaps there is an
algebraic proof, but I don’t know how that would go. It suffices to look at
universal examples, i.e., it suffices to confirm the cases where X is CPn−1
and L is the canonical complex line bundle. (We should allow any n .)

Proof. Adams gives a proof of lemma 4.5.5 using elementary representation
theory. I don’t see any other way, but I have made a heroic effort to avoid
characters of representations. — Let W = C , viewed as a real vector space
with an action of S1 , the unit circle in C , by scalar multiplication. We
need to look at the tensor powers of W , taken over R , with the induced
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action of S1 . More precisely, z ∈ S1 ⊂ C acts on an element of the form
v1 ⊗ v2 ⊗ · · · ⊗ vk (in the k-fold tensor power of W ) by taking it to

zv1 ⊗ zv2 ⊗ · · · ⊗ zvk .

Pour fixer les idées, let’s try the 6-th power: W ⊗W ⊗W ⊗W ⊗W ⊗W .
For every subset A of {1, 2, 3, 4, 5, 6} we make an R-linear map

gA : W ⊗W ⊗W ⊗W ⊗W ⊗W −→ C

by composing

W ⊗W ⊗W ⊗W ⊗W ⊗W
u1⊗u2⊗u3⊗u4⊗u5⊗u6

��

C

W ⊗W ⊗W ⊗W ⊗W ⊗W //W ⊗CW ⊗CW ⊗CW ⊗CW ⊗CW

where uj : W →W is complex conjugation if j ∈ A , and the identity other-
wise. Then we note the following:

(i) The map gA respects the actions of S1 if we agree that z ∈ S1 acts
on the target C of gA by scalar multiplication with z6−2|A| .

(ii) If B = {1, 2, 3, 4, 5, 6}rA , then gB equals gA followed by conjugation.
(iii) The maps gA for A not containing 1 define an R-linear isomorphism

W ⊗W ⊗W ⊗W ⊗W ⊗W −→ ∏
A⊂{2,3,4,5,6}

C .

(In (iii) we selected the subsets A not containing 1 because of (ii); we need
to select one subset from each pair of complementary subsets.) Next, by
writing the canonical complex line bundle L on CPn−1 in the form

W ⊗S1 S2n−1 −→ ∗ ×S1 S2n−1 = CPn−1

and applying the splitting of W ⊗W ⊗W ⊗W ⊗W ⊗W just obtained, we
get the following equation in KR(CPn−1) :

(ϕ[L])6 = ϕ
(
[L]6 + 5[L]4 + 10[L]2 + 10[L]0 + 5[L]−2 + [L]−4

)
= ϕ

(
[L]6 + 6[L]4 + 15[L]2 + 10[L]0

)
= ϕ

(
Ψ6C[L] + 6Ψ

4
C[L] + 15Ψ

2
C[L] + 10Ψ

0
C[L]

)
.

This story has an analogue in the world of symmetric polynomials:

(t1 + t2)
6 = t61 + 6t

5
1t2 + 15t

4
1t
2
2 + 20t

3
1t
3
2 + 15t

2
1t
4
2 + 6t1t

5
2 + t

6
2

= (t61 + t
6
2) + 6(t1t2)(t

4
1 + t

4
2) + 15(t

2
1t
2
2)(t

2
1 + t

2
2) + 20t

3
1t
3
2 .
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Let’s read this as an equation for operations on 2-dimensional real vector
bundles – more accurately, for operations taking us from isomorphism classes
of such vector bundles E on X to KR(X) :

[E]6 = Ψ6RE+ 6(Λ2E)(Ψ4RE) + 15(Λ
2E)2(Ψ2RE) + 20(Λ

2E)3 .

If E happens to be the underlying real vector bundle of a complex line bundle,
then Λ2E is a trivial line bundle and our formula simplifies to

[E]6 = Ψ6RE+ 6Ψ4RE+ 15Ψ2RE+ 20 = Ψ6RE+ 6Ψ4RE+ 15Ψ2RE+ 10Ψ0RE .

If E is the underlying real vector bundle of the complex line bundle L on
X = CPn−1 , we can combine this with the earlier computation and we get(
ϕ(Ψ6C + 6Ψ4C + 15Ψ2C + 10Ψ0C)

)
[L] = ((Ψ6R + 6Ψ4R + 15Ψ2R + 10Ψ0R

)
ϕ
)
[L].

Using this equation, we can deduce ϕΨkC[L] = Ψ
k
Rϕ[L] for k = 6 if we know

ϕΨkC[L] = ΨkRϕ[L] for k < 6 . More generally, we can use this method to
prove ϕΨkC[L] = Ψ

k
Rϕ[L] by induction on k . The induction beginning has to

deal with the cases k = 0 and k = 1 ; these are easy. This completes the
proof of lemma 4.5.5. �

Now for the proof of proposition 4.5.1 in the case where y is represented by
a 2-dimensional vector bundle. If that vector bundle is orientable, then we
can write y = ϕ(z) where z is represented by a complex line bundle L on
X . Then ΨkC([L]) = [L⊗k] and so ΨkR(y) is also represented by L⊗k (tensor
power taken over C) by lemma 4.5.5. There is a map

Lr zero section −→ L⊗k r zero section

over X defined by v 7→ v ⊗ v ⊗ · · · ⊗ v . This is of degree k in the fibers.
Therefore proposition 4.5.4 can be applied. The result is that the images of y
and Ψk(y) in KF(X)⊗ZZ[k−1] are the same, which confirms proposition 4.5.1
in this case.

If the 2-dimensional vector bundle which we have chosen to represent y is
not orientable, then y = y1y2 where y1 is represented by a real line bundle
H → X and y2 is represented by the underlying real vector bundle of a
complex line bundle L→ X . Then

Ψk(y) = Ψk(y1)Ψ
k(y2).

If k is odd, then ψk(y1) = y1 and so Ψk(y) is represented by H ⊗R L
⊗k ,

where L⊗k denotes the complex tensor power. As before we can construct a
map

H⊗R Lr zero section −→ H⊗R L
⊗k r zero section
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over X , fiberwise of degree ±k . It is defined by w⊗v 7→ w⊗v⊗v⊗· · ·⊗v .
So proposition 4.5.4 can be applied again. — If k is even, then Ψk(y1) = 1
but we are allowed to multiply by high powers of 2 :

2e(Ψk(y) − y) = 2e(Ψk(y2) − y1y2) = 2
e(Ψk(y2) − y2)

since we have 2ey1 = 2e for e � 0 . Multiplying the right-hand expression
by a suitable power of k , we get 0 in J(X) ⊂ KF(X) by what we have already
shown (case of an orientable 2-dimensional vector bundle). This completes
the proof. �

4.6. Adams operations and representation theory

In the definition of the Adams operations, we used certain functors from
finite dimensional vector spaces (over R or C) to finite dimensional vector
spaces, such as the i-th exterior power, V 7→ ΛiV . For a better understand-
ing of the properties of the Adams operations, such as multiplicativity, we
need to undertake a more systematic investigation of such functors from fi-
nite dimensional vector spaces to finite dimensional vector spaces. It should
be general enough to include the examples V 7→ ΛiV , but also, for any two
examples which are allowed, their direct sum (value-wise), their tensor prod-
uct (value-wise), and maybe their composition. Let us concentrate on the
real case to start with.

Definition 4.6.1. A k-symmetric functor from finite dimensional real vector
spaces to finite dimensional real vector spaces (my terminology) is a rule
which to every f.d. real vector space V associates a f.d. real vector space
F(V) , and to every pair of such vector spaces V,W , a linear map( k⊗

j=1

homR(V,W)
)Σk
⊗ F(V) −→ F(W)

such that an obvious associativity condition and an obvious unit condition
are satisfied. See also remark 4.6.3 below. (The symbol Σk in the superscript
position means that we are taking the fixed points for the action of Σk which
permutes the tensor factors.)

Example 4.6.2. Take k = 2 and let f, g : V →W be linear maps. Then

f⊗ g+ g⊗ f ∈
( 2⊗
j=1

homR(V,W)
)Σ2

so that, if F is any 2-symmetric functor as in definition 4.6.1, then it has to
give us a linear map named

(f⊗ g+ g⊗ f)∗ : F(V) −→ F(W).
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Remark 4.6.3. A k-symmetric functor F can also be viewed as a functor in
the ordinary sense. Indeed, a linear map f : V →W gives rise to an element

f⊗ f⊗ · · · ⊗ f ∈
( k⊗
j=1

homR(V,W)
)Σk

which induces (f⊗ f⊗· · ·⊗ f)∗ : F(V)→ F(W) . (It is tempting, but it would
not be helpful, to rename this f∗ .)

But in some sense we are taking the opposite view here. The finite dimen-
sional vector spaces over R can be made into a category so that the set of
morphisms from V to W is( k⊗

j=1

homR(V,W)
)Σk

(with an obvious convention for composition of such morphisms). A k-
symmetric functor is an endofunctor of this enlarged category, satisfying an
additional multilinearity condition.

Example 4.6.4. The functor V 7→ F(V) :=
⊗k

j=1 V has the structure of a
k-symmetric functor. Indeed every element of

k⊗
j=1

homR(V,W)

induces a linear map F(V)→ F(W) in an obvious way; a fortiori this can be
said for elements of ( k⊗

j=1

homR(V,W)
)Σk
.

Example 4.6.5. The functor V 7→ F(V) :=
⊗k

j=1 V has the structure of a
k-symmetric functor. Indeed every element of

k⊗
j=1

homR(V,W)

induces a linear map F(V)→ F(W) in an obvious way; a fortiori this can be
said for elements of ( k⊗

j=1

homR(V,W)
)Σk
.
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Example 4.6.6. The functor

V 7→ F(V) := symkV :=
( k⊗
j=1

V
)Σk

(k-th symmetric power) has the structure of a k-symmetric functor. It can
be viewed as a k-symmetric subfunctor of the functor in example 4.6.5.

Example 4.6.7. The functor V 7→ F(V) := ΛkV , k-th exterior power, has
the structure of a k-symmetric functor. It can be viewed as a k-symmetric
quotient functor of the functor in example 4.6.5. (It can also be viewed as
a subfunctor of the functor in example 4.6.5, but here I prefer to take the
quotient functor view.) This may seem counterintuitive; we may feel tempted
to say that it is k-antisymmetric. But let’s do an experiment. Take k = 3
and take vector spaces V,W and take v1, v2, v3 ∈ V and take linear maps
f1, f2, f3 : V →W . We need to make sense of(∑

σ∈Σ3

fσ(1) ⊗ fσ(2) ⊗ fσ(3)
)
(v1 ∧ v2 ∧ v3)

as an element of ΛkW . We obviously try to make sense of it by writing

(∗)
∑
σ∈Σ3

fσ(1)(v1)∧ fσ(2)(v2)∧ fσ(3)(v3)

instead. But is this well defined? In Λ3V we have certain relations, for
example, v1 ∧ v2 ∧ v3 = −v2 ∧ v1 ∧ v3 . What if we plug in −v2 ∧ v1 ∧ v3
instead of v1 ∧ v2 ∧ v3 ? Then we get

(∗∗) −
∑
σ∈Σ3

fσ(1)(v2)∧ fσ(2)(v1)∧ fσ(3)(v3).

Fortunately this is the same as (∗) , due to the fact that certain relations
hold in Λ3W .

Proposition 4.6.8. (i) If F1 and F2 are k-symmetric functors, then the
functor F1 ⊕ F2 , defined more precisely by V 7→ F1(V) ⊕ F2(V), is again a
k-symmetric functor.

(ii) If F1 is a k-symmetric functor and F2 is an `-symmetric functor, then
the functor F1 ⊗ F2 , defined more precisely by V 7→ F1(V) ⊗R F2(V), is a
(k+ `)-symmetric functor.

(iii) If F1 is a k-symmetric functor and F2 is an `-symmetric functor,
then F2 ◦ F1 , defined more precisely by V 7→ F2(F1(V)), is a k`-symmetric
functor.
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Proof. Claim (i) should be clear. Claim (ii) comes from writing U for
hom(V,W) and observing( k+⊗̀

j=1

U
)Σk+`

⊂
( k⊗
j=1

U
)Σk
⊗
(⊗̀
j=1

U
)Σ`

∼=
( k+⊗̀
j=1

U
)Σk×Σ`

which uses an inclusion or embedding Σk × Σ` ↪→ Σk+` . Claim (iii) follows
similarly from an inclusion Σ` × Σk ↪→ Σk` . This is obtained by viewing
Σk` as the group of permutations of {1, 2, . . . , k} × {1, 2, . . . , `} , and then
viewing Σ`×Σk as the subgroup consisting of permutations having the form
(t1, t2) 7→ (σ1(t1), σ2(t2)) for σ1 ∈ Σk and σ2 ∈ Σ` . �

We turn to the classification of k-symmetric functors. The ring

Ak =
( k⊗
j=1

homR(Rk,Rk)
)Σk

(an algebra over R , to be precise) is important for the classification. For a
k-symmetric functor F , the vector space F(Rk) has the structure of a left
module over Ak by means of the evaluation map, which we can write in the
abbreviated form Ak ⊗R F(Rk)→ F(Rk) .

Lemma 4.6.9. For any finite dimensional real vector space V , the adjoint
of the composition map( k⊗

j=1

homR(V,Rk)
)Σk
⊗Ak

( k⊗
j=1

homR(Rk, V)
)Σk
−→ Ak

is an isomorphism( k⊗
j=1

homR(Rk, V)
)Σk
−→ homAk

( k⊗
j=1

homR(V,Rk)
)Σk
, Ak).

Proof. Write G = Σk and write RG for the group algebra; elements are
formal linear combinations with real coefficients of elements from G . Write

X :=

k⊗
j=1

Rk , Y :=

k⊗
j=1

V

and view both of these as representations of G by permuting the tensor
factors. Then we have Ak = homRG(X,X) by definition. In this notation,
the claim of the lemma is that the adjoint of the composition map

homRG
(
Y, X
)
⊗

homRG(X,X)
homRG

(
X, Y

)
−→ homRG

(
X,X

)
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is an isomorphism

homRG
(
X, Y

)
−→ hom

homRG(X,X)

(
homRG

(
Y, X
)
, homRG

(
X,X

))
.

This turns out to be a general fact for representations of G . In other words,
we can simplify things here by assuming that X and Y are arbitrary (finite
dimensional real) representations of G = Σk . Then we can quickly reduce
to the situation where X and Y are both irreducible and isomorphic to each
other. (In the case where they are both irreducible but not isomorphic to
each other, we get homRG(Y, X) = 0 and homRG(X, Y) = 0 .) If they are
isomorphic to each other, then we can also assume that X = Y . We get
homRG(X,X) = R as a special case of Schur’s lemma. (For more general
finite G and an irreducible real representation of G , Schur’s lemma would
say that homRG(X,X) is a finite dimensional division algebra over R , so it
could also be C or H ; but in the case G = Σk , it has to be R .) This makes
the verification easy. �

Theorem 4.6.10. A k-symmetric functor F is fully determined (up to unique
natural isomorphism) by the vector space F(Rk), with the structure of left
module over Ak . Indeed we have

F(V) ∼=
( k⊗
j=1

homR(Rk, V)
)Σk
⊗Ak

F(Rk) .

Proof. Let V be any finite dimensional real vector space. It is easy to verify
that the composition map( k⊗

j=1

homR(Rk, V)
)
⊗
( k⊗
j=1

homR(V,Rk)
)
−→ ( k⊗

j=1

homR(V,V)
)

is surjective. Then it follows (reader, explain) that the composition map( k⊗
j=1

homR(Rk, V)
)Σk
⊗
( k⊗
j=1

homR(V,Rk)
)Σk
−→ ( k⊗

j=1

homR(V,V)
)Σk

is also surjective. This implies (reader, explain) that the evaluation map( k⊗
j=1

homR(Rk, V)
)Σk
⊗ F(Rk) −→ F(V)

is surjective. This last composition map can be more efficiently set up in the
form

($)
( k⊗
j=1

homR(Rk, V)
)Σk
⊗Ak

F(Rk) −→ F(V)
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where we view ( k⊗
j=1

homR(Rk, V)
)Σk

as a right Ak -module and F(Rk) as a left Ak -module and we take the tensor
product over Ak . We can of course still say that ($) is surjective. Now there
is another useful map

($$) F(V) −→ homAk

(( k⊗
j=1

homR(V,Rk)
)Σk
, F(Rk)

)
,

adjoint to an evaluation map; here homAk
(...) refers to homomorphisms of

left Ak -modules. The composition ($$) ◦ ($) is an isomorphism. (My idea
is that this follows from lemma 4.6.9 by tensoring the isomorphism of the
lemma with F(Rk) , over Ak .) Therefore ($) must be an isomorphism, too,
and we end up with the formula

F(V) ∼=
( k⊗
j=1

homR(Rk, V)
)Σk
⊗Ak

F(Rk). �

According to theorem 4.6.10, we classify k-symmetric functors by classi-
fying modules over Ak . The classification of modules over Ak reduces easily
to elementary representation theory of Σk over the field R .

(to be continued)


