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Lecture notes chapter 3, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture
This chapter will be, at best, a review/extract/summary of Atiyah’s article
Algebraic topology and operators in Hilbert space (1969). The article has a
proof of Bott periodicity in complex K-theory which is based on elementary
functional analysis. I am planning to add some remarks of a general nature
and some remarks on Bott periodicity for real K-theory if I can sort it out.

3.1. Products in K-theory

For compact CW-spaces X and Y , the (external) tensor product of vector
bundles leads to a natural homomorphism

K(X)⊗ K(Y) −→ K(X× Y)
called external product. (I am now using K(X) as an abbreviation for KC(X) ,
and where I write vector bundle I probably mean complex vector bundle,
unless otherwise specified.) In more detail, if E → X and F → Y are vector
bundles, then we can make a vector bundle

E� F −→ X⊗ Y
whose fiber over (x, y) ∈ X×Y is the vector space Ex⊗C Fy . (The reason for
not writing E⊗F is that we may want to reserve that notation for an internal
tensor product.) In these terms, the above homomorphism of K-groups is
defined and well defined by

[E, E ′]⊗ [F, F ′] 7→ [ (E� F)⊕ (E ′ � F ′), (E� F ′)⊕ (E ′ � F)]

where E, E ′ are vector bundles on X and F, F ′ are vector bundles on Y .
(Remember that we should think of [E, E ′] as a formal difference E−E ′ . This
justifies the surprising complexity of the formula, which is felt in practice as
much as in theory.)

Next, suppose that X is a based compact CW-space; that is, X comes
equipped with a base point which is also a 0-cell in the CW-structure. Pre-
viously we defined K̃(X) as the cokernel of the homomorphism from Z = K(?)
to K(X) induced by the unique map X→ ? . Now we prefer to view it as the
kernel of the homomorphism

K(X) → K(?) = Z

induced by the inclusion of the base point, ∗ ↪→ X . This does not matter
much — the two descriptions are related by a preferred isomorphism. But it
is worth noting that for a based CW-space X we have a canonical splitting

K(X) ∼= K̃(X)⊕ K(?) = K̃(X)⊕ Z
1
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even if X is not (path) connected.
If Y is a also a based compact CW-space, then the external tensor product

of vector bundles leads to a natural homomorphism

K̃(X)⊗ K̃(Y) −→ K̃(X∧ Y).

(which could be called the reduced external product in K-theory) where X∧Y
is the quotient CW-space (X×Y)/(X∨Y) (smash product). This homomor-
phism can be defined by “diagram chasing” in the commutative diagram of
abelian groups

K(X∨ Y)

K(X)⊗ K(Y) // K(X× Y)

restr.

OO

K̃(X)⊗ K̃(Y)

incl.

OO

// K̃(X∧ Y)

OO

whose right-hand column is short exact.

Exercise 3.1.1. Explain why the right-hand column is short exact and do
the diagram chase. Some instructions :

(i) Let P be a compact based CW-space, Q ⊂ P a based CW-subspace
which is a retract of P (i.e., there exists r : P → Q such that r|Q =
idQ ). Let P/Q be the CW-quotient. Then

K̃(P) ∼= K̃(Q)⊕ K̃(P/Q).

(ii) In particular K̃(X∨ Y) ∼= K̃(X)⊕ K̃(Y) .

(iii) Show that K̃(X∧ Y) → K̃(X× Y) → K̃(X∨ Y) is short exact.

3.2. The Bott element

The Bott element is an element b ∈ K̃(S2) . It is represented by the formal
difference

L− T

of 1-dimensional (complex) vector bundles on S2 = CP1 where L is the
tautological line bundle on CP1 and T = S2 × C is a trivial 1-dimensional
vector bundle. (If we think of the points of CP1 as 1-dimensional C-linear
subspaces of C2 , then the fiber of L over such a point V is the 1-dimensional
complex vector space V itself. If we think of points of CP1 as unit vectors v
in C2 modulo an equivalence relation, v ∼ cv for scalars c ∈ C of modulus
1, then the fiber of L over the point represented by v should be thought of
as the 1-dimensional linear subspace of C2 spanned by v .)
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Let’s note that K̃(S2) is isomorphic to Z and b is a generator. The best
way to see that may be to write

K̃(S2) ∼= π2(BU) ∼= π1U ∼= Z
where U =

⋃
n≥0 U(n) and U(n) is the group of unitary C-linear automor-

phisms of Cn .

Exercise 3.2.1. Why is π1U ∼= Z ? More to the point, why is π1U(n) ∼= Z
for all n ≥ 1 ?

Again let X be a based compact CW-space. External tensor product with
b ∈ K̃(S2) gives us a homomorphism

β : K̃(X) ∼= K̃(S2)⊗ K̃(X) −→ K̃(S2 ∧ X).

Theorem 3.2.2. (Bott periodicity in complex K-theory). This homomor-
phism β is always an isomorphism.

The proof, or rather the outline of a proof, will take up most of this chapter.
— From a homotopical point of view, we should think of β not so much as a
natural homomorphism relating reduced K-groups, but as a map. This can
be written either in the form

S2 ∧ BU −→ BU

or in the adjoint form

(∗) BU −→ Ω2BU .

(Notation: Ωn(−) is standard notation for a space of base-point preserving
maps, map∗(S

n,−) , so that the blank “−” is to be filled by a based space.
Use the compact-open topology on map∗(S

n,−) . We often identify Sn with
the n-fold smash product S1 ∧ S1 ∧ · · · ∧ S1 ; then we may also think of
Ωn as the n-fold iteration of Ω1 .) The map (∗) should make the following
diagram(s) commutative (for any based connected CW-space X):

(∗∗)

K̃(X)
β // K̃(S2 ∧ X)

[X,BU]∗

∼=

OO

// [S2 ∧ X,BU]∗ ∼= [X,Ω2BU]∗

∼=

OO

where [−,−]∗ denotes homotopy classes of based maps. The dotted horizon-
tal arrow is given by composition with (∗) .

Corollary 3.2.3. The map (∗) gives a homotopy equivalence from BU to
the base point (path) component of Ω2BU. The homotopy groups of BU are
given by πk(BU) ∼= Z for even k > 0, whereas πk(BU) = 0 for odd k > 0.
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Proof. ... modulo Bott perodicity. The Bott periodicity theorem together
with diagram (∗∗) implies that (∗) induces isomorphisms on all homotopy
groups except π0 . (Take X = S1, S2, S3, . . . in the diagram, but not X = S0

because we must have a connected X .) Therefore the map (∗) is a homotopy
equivalence (after selecting the base point component in the target) by the
JHC Whitehead theorem. The computation of the homotopy groups of BU
follows by induction on k . We begin with the knowledge that π1(BU) ∼=
π0U ∼= 0 and π2(BU) ∼= π1U ∼= Z . �

Remark 3.2.4. The map (∗) is not immensely difficult to understand. If we
think of BU as a direct limit of (complex) Grassmannians Grm(p, q) , then we
should construct compatible maps S2 ∧ Grm(p, q) → BU. The tautological
vector bundle of fiber dimension p on Grm(p, q) defines an element

zp,q ∈ K̃(Grm(p, q))

(after formal subtraction of a trivial vector bundle of fiber dimension p).
This is permitted notation because Grm(p, q) is compact. Then we have

β(zp,q) ∈ K̃(S2 ∧ Grm(p, q)) ∼= [S2 ∧ Grmp,q, BU]∗ ∼= [Grmp,q,Ω
2BU]∗ .

This gives us a distinguished homotopy class of maps

Grmp,q −→ Ω2BU

for each p, q . These homotopy classes satisfy the compatibility conditions
that one might reasonably wish for. Unfortunately this fact does not give
us a well defined map (or even a well defined homotopy class of maps) from
the union or direct limit BU =

⋃
p,q Grm(p, q) to Ω2BU, but it does suggest

that there should be such a map. We shall return to this slightly tricky issue
later in this chapter with another “model” for BU.

3.3. Fredholm operators on Hilbert space

Hilbert space will mean a complex vector space H with hermitian inner prod-
uct 〈−,−〉 such that

• H is a Banach space (complete normed vector space) with the norm

‖v‖ =
√
〈v, v〉;

• H is infinite dimensional and separable. This means that there is a
subset S of H which is countably infinite, satisfies ‖s‖ = 1 for all
s ∈ S and 〈s, t〉 = 0 whenever s, t ∈ S are distinct, and the C-linear
subspace of H spanned by S is dense in H . (Such a subset S is
probably called a Hilbert basis for H , but it is obviously not a vector
space basis in the usual sense.)
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These conditions imply that every v ∈ H can be uniquely written in the form

v =
∑
s∈S

ass

with coefficients as ∈ C which satisfy
∑

s |as|
2 < ∞ . To put it somewhat

differently, the conditions imply that H is isomorphic (as a complex vector
space with inner product) to the vector space `2 of all sequences (ak)k=0,1,2,...
with ak ∈ C , subject to the condition that

∑
k |ak|

2 <∞ and with hermitian
inner product given by

〈(ak), (bk)〉 :=
∑
k

akb̄k ∈ C .

Example 3.3.1. Let V = C0([0, 1]) be the vector space of all complex valued
continuous functions from [0, 1] to C . This has a hermitian inner product
given by

〈f, g〉 :=
∫ 1
0

f(x) · (g(x))− dx .

That does not make V into a Hilbert space, but it does make V into a
normed vector space. The completion of V with respect to that norm is
a Hilbert space L2([0, 1]) . It has a Hilbert basis given by the functions gk
where k ∈ Z and gk(x) = exp(2kπix) . (This seems to be the most basic
theorem of Fourier analysis.)

Exercise 3.3.2. (The old exercise that Euler failed to do.) Let f(x) = x
for x ∈ [0, 1] . Express f in the Hilbert basis of example 3.3.1 and use this
expression to calculate ‖f‖2 in a roundabout way. Deduce a famous formula
(due to Euler, who used a more complicated argument).

A linear operator on H will usually mean a continuous linear map A from
H to H . It is well known that continuity of A is equivalent to boundedness
(on the unit disk of H). In other words, A is continuous iff there exists r ≥ 0
such that A(v) ≤ r for all v ∈ H of norm ≤ 1 . The minimal such r is the
norm of A . This notion of norm makes the (complex) vector space of all
linear operators on H into a Banach space (complete normed vector space).
Standard notation: B(H) (maybe other fonts).

The adjoint of an operator A ∈ B(H) is A∗ ∈ B(H) determined uniquely
by the equation 〈Av,w〉 = 〈v,A∗w〉 , valid for all v,w ∈ H . Note that
A∗∗ = A and (AB)∗ = B∗A∗ for A,B ∈ B(H) . An operator A ∈ B(H) is
self-adjoint if A∗ = A .

Proposition 3.3.3. (kerA)⊥ = closure of im(A∗) in H. �

Definition 3.3.4. An operator A ∈ B(H) is of finite rank if its image is a
finite-dimensional linear subspace of H . An operator A ∈ B(H) is compact
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if it belongs the closure of the linear subspace of B(H) given by the operators
of finite rank. (In other words, A is a compact operator iff, for every ε > 0 ,
there exists a finite rank operator B ∈ B(H) such that ‖A − B‖ < ε . An
equivalent condition: the closure of {A(v) | ‖v‖ ≤ 1} in H is compact. That’s
a little theorem.)

Exercise 3.3.5. (Fredholm.) Let κ : [0, 1] × [0, 1] → C be a continuous
function. Define an operator A on the Hilbert space L2([0, 1]) by

A(f)(x) =

∫ 1
0

κ(x, y) · f(y) dy

for f ∈ L2([0, 1]) and x ∈ [0, 1] . Show that A is a compact operator and
that its adjoint A∗ is given by

A∗(f)(x) =

∫ 1
0

κ(y, x)− · f(y) dy.

(Such an operator A is called an integral operator and the function κ is often
called a kernel, although that’s a little unhelpful for us.)

Definition 3.3.6. An operator A ∈ B(H) is a Fredholm operator if im(A)
is a closed (linear) subspace of H and ker(A), ker(A∗) are both finite dimen-
sional. The integer

dim(ker(A)) − dim(ker(A∗))

is the index of the Fredholm operator A .

Exercise 3.3.7. The closed graph theorem for Banach spaces states that
a linear map A : V1 → V2 between (complex) Banach spaces V1 , V2 is
continuous if its graph is closed as a subset of V1×V2 . (No proof given here.
Note that the converse is obvious: if A continuous, then the graph is closed.)
Use this to show that a (continuous) operator A on H which has a finite
dimensional kernel and a finite dimensional cokernel has a closed image. —
It follows that A ∈ B(H) is a Fredholm operator if and only if it has finite
dimensional kernel and finite dimensional cokernel. The index of A is the
dimension of the kernel minus the dimension of the cokernel.

Example 3.3.8. In H = `2 , the “shift” operator Pn given by

Pn(a0, a1, a2, . . . ) = (an, an+1, . . . )

is clearly surjective and has adjoint P∗n given by

P∗n(a0, a1, a2, a3, . . . ) = (0, 0, ..., 0, 0, a0, a1, a2, a3, . . . ).

Then ker(P∗n) = 0 while ker(Pn) is n-dimensional. Therefore Pn is a Fred-
holm operator and the index of Pn is n .
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Exercise 3.3.9. Let A be the operator on the Hilbert space H given by
A(f)(x) := xf(x) for f ∈ L2([0, 1]) and x ∈ [0, 1] . This is self-adjoint. Is it a
Fredholm operator? If so, what is its index?

Let A be a Fredholm operator on H . Let V = ker(A) and W = ker(A∗) .
Then A is determined by its restriction to V⊥ , which we can view as a
continuous linear bijection

A22 : V
⊥ →W⊥ .

By the closed graph theorem (see exercise 3.3.7), that continuous linear bijec-
tion A22 is continuously invertible. Now let B be any operator on H whose
norm is less than 1/‖(A22)−1‖ . If we use the splittings to write A and B in
block/matrix form as linear maps from V ⊕ V⊥ to W ⊕W⊥ , then we have

A =

[
0 0
0 A22

]
, B =

[
B11 B12
B21 B22

]
, A+ B =

[
B11 B12
B21 A22 + B22

]
where A22 +B22 is still invertible. This makes it clear that the restriction of
A + B to V⊥ is still injective, and the composition of A + B : H → H with
the projection H → H/W is still surjective. It follows that A + B is still a
Fredholm operator.

To solve (A+B)(v) = 0 we write v = v1+ v2 where v1 ∈ V and v2 ∈ V⊥ ,
so that we get a system of two equations

B11(v1) + B12(v2) = 0 ∈W , B21(v1) + (A22 + B22)(v2) = 0 ∈W⊥ .

This teaches us that v2 = −(A22 + B22)
−1B21(v1) , and then(

B11 − B12(A22 + B22)
−1B21

)
(v1) = 0 .

Therefore ker(A+ B) is isomorphic (not claimed to be equal) to

ker
(
B11 − B12(A22 + B22)

−1B21 : V →W
)
.

A similar calculation shows that ker(A∗ + B∗) is isomorphic to

ker
((
B11 − B12(A22 + B22)

−1B21
)∗
: W → V

)
.

Now it follows easily that the index of A + B is dim(V) − dim(W) , and
therefore equal to the index of A . Therefore we have shown:

Proposition 3.3.10. The space of Fredholm operators is an open subspace
of B(H). The index is a continuous function from that subspace to Z. �

Theorem 3.3.11. (Fredholm.) Let A be a compact operator on H. Then
idH −A is a Fredholm operator and its index is 0.
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Proof. Write W = ker(id−A) . Assume for a contradiction that W is infinite
dimensional. It is a closed subspace of H . Let D(H) be the unit disk of H .
Then A(D(H)) contains D(W) = D(H) ∩W , a closed subset of H which is
not compact (theorem of Riesz). This contradicts one of the definitions of a
compact operator.

Therefore W = ker(id − A) is finite dimensional. Similarly, the kernel
of (id − A)∗ = id − A∗ is finite dimensional (since A∗ is again a compact
operator). It remains to show that im(id −A) is a closed linear subspace of
H . Choose a sequence

v0, v1, v2, v3, . . .

in W⊥ such that ((id − A)(vi))i≥0 converges to some u ∈ H . We need to
show u ∈ im(id−A) . If the sequence of numbers ‖vi‖ is not bounded, then
we can assume wlog that

lim
k→∞ ‖vk‖ = ∞

(by selecting a subsequence) and we find that

lim
k→∞ (id −A)(vk/‖vk‖) = 0 .

Wlog, the limit
lim
k→∞ A(vk/‖vk‖)

exists (otherwise select a subsequence, using compactness of operator A) and
it follows that

lim
k→∞ vk/‖vk‖

also exists, and belongs to W = ker(id−A) . This contradicts the assumption
that vk/‖vk‖ are unit vectors in W⊥ . Therefore our assumption that the
sequence of numbers ‖vi‖ is not bounded was erroneous. It is a bounded
sequence. Therefore we may assume wlog that

lim
k→∞A(vi)

exists, using the compactness of operator A to select a subsequence if nec-
essary. But then

v∞ = lim
k→∞ vi

also exists and we have u = (id −A)(v∞) .
Finally we have to show that the index of id −A is zero. But this is clear

since we have a continuous function taking t ∈ [0, 1] to the index of id− tA ,
an integer. �

Fredholm’s theorem 3.3.11 has a more abstract formulation which also
looks more general. For that we observe that B(H) is a Banach algebra:
operators from H to H can be composed (the product in B(H) is composi-
tion). In the Banach algebra B(H) , the compact operators form a two-sided
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ideal K . This is fairly clear from any of the two definitions of compact opera-
tor. Therefore we can form the quotient algebra B(H)/K , for the time being
without any discussion of a topology. This is known as the Calkin algebra.

Corollary 3.3.12. An operator A ∈ B(H) is a Fredholm operator if and
only if its class in B(H)/K is invertible.

Exercise 3.3.13. Deduce corollary 3.3.12 from theorem 3.3.11. (Note also
that theorem 3.3.11 is a trivial consequence of corollary 3.3.12.)

Exercise 3.3.14. Let A,B ∈ B(H) be Fredholm operators. Show that A◦B
is a Fredholm operator whose index is index of A plus index of B . (Hint :
arrange the kernels and cokernels of A,B and A ◦ B in an exact sequence.)

3.4. The theorems of Kuiper and Atiyah-Jänich

Let GL(H) ⊂ B(H) be the subspace consisting of the invertible operators.
We can think of GL(H) as a topological group.

Theorem 3.4.1. (N Kuiper.) GL(H) is contractible.

This is considered easy, but I will not attempt a proof. Let us instead
use the theorem to learn something about Fredholm operators. A Fredholm
operator A : H → H determines finite-dimensional linear subspaces V =
ker(A) and W = ker(A∗) and splittings H = V ⊕ V⊥ , H = W ⊕W⊥ as in
the proof of proposition 3.3.10. Therefore, viewing A as a linear map from
V ⊕ V⊥ to W ⊕W⊥ , we have

A =

[
0 0
0 A22

]
where A22 : V

⊥ →W⊥ is (continuous and) invertible. Since V⊥ and W⊥ are
Hilbert spaces in their own right (they are as such isomorphic to our preferred
H , whatever that may be), the space of such invertible continuous linear maps
V⊥ → W⊥ is contractible according to Kuiper’s theorem. Therefore, if we
feel like “making” a Fredholm operator A , our task is mainly to choose finite
dimensional linear subspaces ker(A) = V and ker(A∗) =W of H ; after that,
it remains only to choose A22 : V

⊥ → W⊥ , a contractible choice. The more
serious choices V and W remind us of the definition of K-theory in terms of
a Grothendieck group, of Grassmannians and all that. In this way Kuiper’s
theorem leads rather inexorably to a comparison between F ⊂ B(H) , the
space of Fredholm operators, and BU.

Theorem 3.4.2. (Atiyah-Jänich.) The space F of Fredholm operators is
homotopy equivalent to BU× Z.
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(I shall only prove weakly homotopy equivalent. To get the stronger state-
ment from the weaker one, we would need to know in addition that F is
homotopy equivalent to a CW-space.)

Proof. I have decided to give a baaad proof: details obscure, intention clear.
It took all my criminal energy. — Let H be our standard Hilbert space with
Hilbert basis {e0, e1, e2, . . . } and let H ′ be another Hilbert space with Hilbert
basis {e−1, e−2, e−3, . . . } . Let F be the space of Fredholm operators on H and
let F] be the space of all surjective continuous linear maps

A : H ′ ⊕H → H

with the following additional property:

A|H is Fredholm.

Our model for BU × Z is as follows: it is the space of all closed linear
subspaces L of H ′ ⊕H such that the composition

H incl. // H ′ ⊕H = L⊕ L⊥ proj. // L⊥

is Fredholm (has finite dimensional kernel and cokernel). This opportunistic
choice of model makes it immediately clear that we have a forgetful map

ϕ : F] −→ BU× Z

given by A 7→ ker(A) . (Write ker(A) =: L and A|H = A1Q where A1 is
the restriction of A to L⊥ and Q is the restriction to H of the orthogonal
projection to L⊥ . Since A1 : L

⊥ → H is invertible and A|H is Fredholm, it
follows that Q is Fredholm.) It is not hard to show that ϕ is a fibration
and, by Kuiper’s theorem and the closed graph theorem, the fibers are con-
tractible. (The fiber ϕ−1(L) is identified with the space of continuous linear
bijections from the orthogonal complement of L in H ′⊕H to H .) Therefore
ϕ is a homotopy equivalence.

There is another forgetful map ρ : F] → F given by restriction: A 7→ A|H .
We need to show that this is a weak homotopy equivalence. Let us look
at the fibers. For A ∈ F , to construct an element in ρ−1(A) we need to
construct a continuous linear B : H ′ → H such that im(B) + im(A) = H .
Write B = B1 + B2 where B1 : H ′ → im(A) and B2 : H ′ → im(A)⊥ ⊂ H .
There is no condition on B1 . It follows that the choice of B1 is a contractible
choice. But B2 needs to be onto. The adjoint of B2 is an injective linear map
from the finite dimensional im(A)⊥ to the infinite dimensional H ′ . Now we
see that B2 is also a contractible choice. So the fibers of ρ are contractible.

Now there is a magic little criterion which says: a Serre microfibration
with contractible fibers is a Serre fibration — still with contractible fibers,
therefore a weak equivalence. Let me decode the jargon. When we say that
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a map p : E → X is a fibration, we mean to say that it has the homotopy
lifting property:

Y × {0}

incl.
��

// E

p

��
Y × [0, 1]

;;

// X

When we say Serre fibration, it means that we are satisfied if the homotopy
lifting property can be established in the cases where Y is a compact CW-
space. When we say Serre microfibration, it means that we are already
satisfied if Y is a compact CW-space and the dotted arrow is only defined
on Y × [0, ε] for some ε > 0 , which may depend on Y and the other data in
the homotopy lifting problem.

So it only remains to show that ρ is a Serre microfibration. But this is
easy. Let us try a homotopy lifting problem

Y × {0}

incl.
��

g // F]

��
Y × [0, 1]

77

f // F

where Y is a compact CW-space. For y ∈ Y write g(y, 0) = e(y) + f(y, 0)
where e(y) : H ′ → H is a continuous linear map (so that f(y, 0) : H → H
and e(y) together determine a continuous linear map H ′ ⊕ H → H which
satisfies the conditions for membership in F] ). We try to define the dotted
arrow by

(y, t) 7→ e(y) + f(y, t)

for y ∈ Y and t ∈ [0, 1] . Clearly e(y) + f(y, t) is still a continuous linear
map from H ′ ⊕ H to H . Of the conditions for membership in F] , only the
surjectivity is in doubt; but this will also hold for small enough t since it
holds for t = 0 by assumption. �

Exercise 3.4.3. (i) The above proof used a certain model for BU×Z . The
points are closed linear subspaces L of H ′ ⊕ H such that dim(L ∩ H) < ∞
and dim(L⊥ ∩ H ′) < ∞ . Show that this model has a structure of (infinite
dimensional) Banach manifold, with charts in the Banach space B(H) .

(ii) A related question: given a map from X to the Banach manifold in (i),
where X is a compact CW-space, is there a practical way to associate with
that one or two honest vector bundles on X , hence an element of K(X) ?

Exercise 3.4.4. In the proof above it was claimed that for a surjective
continuous linear map A : H ′⊕H → H , the following are equivalent: (i), the
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restriction of A to H is Fredholm; (ii), the vector spaces ker(A) ∩ H and
ker(A)⊥ ∩H ′ are finite dimensional.

We can use the Atiyah-Jänich theorem to make some attractive models
for addition and subtraction (etc.) in BU × Z . (I don’t want to exaggerate
the importance of such models, but I promised something along these lines.)
To start with let H be a Hilbert space with an orthogonal splitting H =
H1 ⊕ H2 , where both H1 and H2 are infinite dimensional (therefore again
Hilbert spaces in the narrow sense). Let F , F1 and F2 be the corresponding
spaces of Fredholm operators. We have an “inclusion” F1 → F which takes
a Fredholm operator A : H1 → H1 to[

A 0
0 id

]
: H1 ⊕H2 → H1 ⊕H2 .

Corollary 3.4.5. This “inclusion” F1 → F is a homotopy equivalence. �

Corollary 3.4.6. (Informal statement) Composition of Fredholm operators
on H is a good model for (direct sum) addition in BU× Z.

Proof. We can assume H = H1 ⊕H2 as in corollary 3.4.5. By that corollary,
it does not matter much whether we view composition of Fredholm operators
as a map (A,B) 7→ A ◦ B from F × F to F , or as a map (A,B) 7→ A ◦ B
from F1 × F2 to F . (In the latter case, we regard F1 and F2 as subspaces
of F in the usual way.) But if we view it as a map F1 × F2 → F , then it is
given in block matrix notation by

F1 × F2 3 (A,B) 7→ [
A 0
0 id

] [
id 0
0 B

]
=

[
A 0
0 B

]
∈ F .

In this form we can also view it as a map F
]
1 × F

]
2 → F] (notation as in

the proof of theorem 3.4.2). This is more obviously an implementation of
Whitney sum. �

Definition 3.4.7. A self-adjoint (continuous linear) operator A : H → H is
positive if 〈v,A(v)〉 ≥ 0 for all v ∈ H .

Lemma 3.4.8. The space P of (self-adjoint) positive operators on H, a
subspace of B(H), is contractible. The intersection P∩F is also contractible.

Proof. The space P is star-shaped with idH as the center of the star. The
same argument works for P ∩ F . �

Corollary 3.4.9. (Informal statement) The map F → F given by A 7→ A∗

is a good model for additive inverse (wrt direct sum) on BU× Z.
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Proof. We regard P∩F as an inflated base point for F . (It is a contractible
subspace.) Suppose that we agreed to view composition of Fredholm opera-
tors as a good model for the Whitney sum in BU×Z . Then we observe that
the map A 7→ A ◦A∗ takes all of F to the inflated base point P ∩ F . �

Corollary 3.4.10. (Informal statement) Let V be a p-dimensional linear
subspace of Cn , where n > 0. For A ∈ F let AV : H ⊗C Cn → H ⊗C Cn be
defined so that AV agrees with A ⊗ idV on H ⊗ V and with the identity on
H⊗ V⊥ . Then AV is a Fredholm operator on H⊗C Cn . The map

(V,A) 7→ AV

is a good model for the map Grm(p, n − p) × (BU × Z) −→ BU × Z which
corresponds to the tensor product of (virtual) vector bundles. �

Now we can give a description of the Bott map in Fredholm operator terms.
Write S2 = CP1 and imagine points of CP1 as 1-dimensional linear subspaces
V ⊂ C2 . One of these is the base point: V0 = C1 ⊂ C2 . Then the Bott map
can be described by

A 7→ (V 7→ AV ◦ (AV0)∗) .
Let us see what this could mean. We are dealing with two spaces of Fredholm
operators: F , space of Fredholm operators on H , and Fe , space of Fredholm
operators on H ⊗C C2 ; the e superscript is for enlarged. The formula gives
a map

F −→ map(CP1,Fe) .
But the maps from CP1 to Fe that we obtain here take the base point to the
inflated base point of Fe (consisting of the positive self-adjoint operators in
Fe ). Therefore it should be permitted to describe our map in the form

β : F −→ map∗(CP1,Fe) = Ω2Fe .

3.5. Töplitz operators

Let H be the Hilbert space L2(S1) . It is the completion of C0(S1) , space of
complex-valued continuous functions on S1 , with respect to the norm

‖f‖ := 1√
2π

(∫
S1
|f(z)|2 dz

)1/2
.

(The factor 1/
√
2π is for easier bookkeeping.) It has a Hilbert basis

{fk | k ∈ Z}

where fk(z) := z
k for z ∈ S1 . There is an orthogonal sum splitting

H = H(−)⊕H(+)
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where H(−) is the closure of the span of {fk | k < 0} and consequently H(+)
is the closure of the span of {fk | k > 0} . An element of H(+) , say

f :=
∑
k≥0

akfk

has a canonical extension to a function (in the L2 -sense) defined on the unit
disk in C by the formula

z 7→ ∑
k≥0

akz
k .

This is in fact a convergent power series in the open unit disk, so defines a
holomorphic function in the open unit disk. So we should see H(+) as the
linear subspace of H consisting of those L2 -functions on S1 which extend
“nicely” to the open unit disk. (This is only a remark for motivation.)

Töplitz operators arise as follows. Let u ∈ C0(S1) be a continuous complex-
valued function on S1 . Define a continuous linear map

Tu : H(+) −→ H(+)

by composing

H(+)
incl. // H mult. with u // H

proj. // H(+) .

Here multiplication with u means pointwise multiplication of elements in
H(+) , which are functions on S1 , with the fixed u , also a function on S1 .

Proposition 3.5.1. If u is invertible, i.e. u(z) 6= 0 for all z ∈ S1 , then
Tu is a Fredholm operator on H(+).

Proof. Let v(z) = 1/u(z) for z ∈ S1 . It suffices to show that TuTv − id
is a compact operator on H(+) . This is mainly a calculation with Fourier
coeffients. Suppose therefore that

u =
∑
k∈Z

bkfk , v =
∑
k∈Z

ckfk

and let us apply TuTv to fj where j ≥ 0 . Multiplication of functions corre-
sponds to convolution of Fourier series ; this is actually obvious in our context
since fk · f` = fk+` almost by definition. Therefore

v · fj =
∑
`∈Z

c`−jf` , Tv(fj) =
∑
`≥0

c`−jf` ,

and similarly

TuTv(fj) =
∑
k,`≥0

bk−`c`−jfk .
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For fixed k we have
∑

`∈Z bk−`c`−j = 0 if j 6= k and = 1 if j = k (since
u · v ≡ 1); therefore

(TuTv − id)(fj) = −
∑
k≥0

∑
`<0

bk−`c`−j fk .

This is enough to tell us that (TuTv − id) is a finite rank operator if u has
a finite Fourier series. At this point it is wise to leave the Fourier theory
alone. The function u can be uniformly approximated by finite C-linear
combinations of the functions fk ; this follows from Stone-Weierstrass, not
Fourier theory! Therefore, if we choose a finite C-linear combination u1 of
the functions fk which is sufficiently close to u in the uniform metric on
C0(S1) , then v1 = 1/u1 is also in C0(S1) and

Tu1Tv1 − id

is a finite rank operator which (by easy estimates not using Fourier theory)
is as close as we wish to TuTv − id, in the usual norm on B(H(+)) . �

Exercise 3.5.2. Determine the index of Tu when u = fk , that is, u(z) = zk .

There is a more general version of Töplitz operator where we begin with a
continuous map u from S1 to the matrix ring homC(Cn,Cn) . In such a case
Tu is a continuous operator on H(+)⊗ Cn , defined by composing

H(+)⊗ Cn incl. // H⊗ Cn mult. with u // H⊗ Cn
proj. // H(+)⊗ Cn .

Here multiplication with u means pointwise multiplication of elements in
H(+)⊗Cn , which are functions on S1 with values in Cn , with the fixed u ,
which is a function on S1 whose values are complex (n×n)-matrices. (Place
the matrix to the left of the vector.)

Theorem 3.5.3. If u is invertible, i.e. det(u(z)) 6= 0 for all z ∈ S1 , then
Tu is a Fredholm operator on H(+)⊗ Cn .

The proof is similar to the proof of proposition 3.5.1. �

3.6. A homotopy inverse for the Bott map

By theorem 3.5.3, a continuous map u : S1 → U(n) ⊂ GL(n) ⊂ homC(Cn,Cn)
determines a Fredholm operator Tu on H(+)⊗Cn . It does not cost us any-
thing to assume that u is a based map, i.e., that it takes the base point to
the identity n× n-matrix. Then we have

α : ΩU(n) −→ F ′

where F ′ is (dreadfully improvised notation) the space of Fredholm operators
on H(+) ⊗ Cn . (We know from corollary 3.4.5 that we don’t need to dis-
tinguish carefully between spaces of Fredholm operators on distinct Hilbert
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spaces, as long as these Hilbert spaces are separable and infinite dimensional.)
We can make n as large as we like. We can say that ΩU(n) is the same as
Ω2BU(n) .

Remark 3.6.1. It is useful to know that α preserves addition in some form.
If we write n = n1 + n2 , then we have U(n1) × U(n2) ⊂ U(n) . And if we
restrict α : ΩU(n) → F ′ to Ω(U(n1) × U(n2)) , then we see that blockwise
addition of (loops of) matrices corresponds to blockwise addition of Fredholm
operators.

This map α is our candidate for a homotopy inverse for the Bott map β .
We can view α and β as natural transformations

α∗ : K̃(S
2 ∧ X) → K̃(X), β∗ : K̃(X) → K̃(S2 ∧ X)

where X is a compact pointed CW-space. (Both are natural homomor-
phisms.) Let us try to show that α∗β∗ = id and β∗α∗ = id for every
such X . (After that we can discuss whether that is enough.)

The following elementary lemma about products in K-theory and clutching
maps will be needed. (The statement is elementary, but I am still working
on the proof.) Let P and Q be based compact CW-spaces, E → S1 ∧ P
and F → Q complex vector bundles. We can write S1 ∧ P as a union of
two copies of D1 ∧ P , with intersection S0 ∧ P ∼= P . Since the two copies of
D1 ∧ P are contractible, E can be trivialized over each and the difference of
the trivializations is a based map (the clutching map)

ψ : P −→ U(n) ' GL(n)

where n is the fiber dimension of E . If we know the map ψ , we can recover
E → S1 ∧ P . Now E and F determine elements in K̃(S1 ∧ P) and in K̃(Q) ;
we need to subtract certain trivial bundles formally, but they will not matter
in this discussion. The product of these elements is an element of

K̃(S1 ∧ P ∧Q).

This can be represented by a vector bundle over S1∧P∧Q which we should
be able to describe by a clutching map Ψ : P ∧Q −→ U(m) for some m .

Is there a formula for Ψ in terms of ψ ? I believe yes. Choose a vector
bundle embedding of F → Q in a trivial vector bundle Ck ×Q → Q . Take
m = kn . Define

ψ� F : P ×Q −→ U(kn) = U(Cn ⊗ Ck)

by (x, y) 7→ ψx ⊗ id on Cn ⊗ Fy and by (x, y) 7→ id ⊗ id on Cn ⊗ F⊥y ,
where x ∈ P and y ∈ Q . Similarly define ψ� F0 : P ×Q −→ U(kn) so that
(ψ� F0)(x, y) = (ψ� F)(x, ∗) , where ∗ ∈ Q is the base point.
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Lemma 3.6.2. Let Ψ := (ψ � F) · (ψ � F0)−1 , pointwise product. Then the

element of K̃(S1 ∧ P ∧Q) determined by Ψ : P ∧Q→ U(kn) is the reduced

� product of the elements of K̃(S1∧ P) and K̃(Q) described by E→ S1∧ P ,
with clutching map ψ, and F→ Q, respectively. �

Remark 3.6.3. Let Q+ = Q q ∗ where the extra point serves as the new
base point (and the old base point is demoted to ordinary status). The based
map Q+ → Q which is the identity on Q ⊂ Q+ induces a split injection

γ : K̃(S1 ∧ P ∧Q) −→ K̃(S1 ∧ P ∧Q+).

(Use part (i) of exercise 3.1.1.) The maps ψ � F and ψ � F0 are both well
defined as maps from P∧Q+ = (P×Q)/(∗×Q) to U(kn) . Therefore, under
the homomorphism γ , the element determined by Ψ maps to the difference
of the elements determined by ψ� F and ψ� F0 respectively.

Application. Let X and Y be based CW-spaces, p ∈ K̃(S2 ∧ X) and

q ∈ K̃(Y) so that p� q ∈ K̃(S2 ∧ X∧ Y) . We show

(♦) α∗(p� q) = α∗(p)� q ∈ K̃(X∧ Y).

Suppose that p is described by a clutching map

ψ : S1 ∧ X −→ U(n)

and q ∈ K̃(Y) can be written q1 − q2 in K(Y) , where q1 is represented by
a vector bundle F → Y and q2 is represented by a suitable trivial vector
bundle. Let Y+ = Y q ∗ . Then

p� q ∈ K̃(S2 ∧ X∧ Y),

or preferably its image in K̃(S2 ∧ X ∧ Y+) , is the difference of two elements
determined by clutching maps

ψ� F : S1 ∧ X∧ Y+ −→ U(kn) , ψ� F0 : S
1 ∧ X∧ Y+ −→ U(kn)

respectively. Applying α to these elements (and using the homomorphism
property of α , remark 3.6.1), we get a contribution α∗(p)� q1 for the first
and a contribution −α∗(p)� q2 for the second. (Use corollary 3.4.10 here.)
The total is α∗(p)� (q1 − q2) = α∗(p)� q . �

Proof of α∗β∗ = id. Take X = S0 in equation (♦) , so that S2 ∧ X = S2 ; let
p = b be the Bott element. Then

α∗β∗(q) = α∗(b� q) = α∗(b)� q = 1� q = q .

Here we have used α∗(b) = 1 , which is contained in exercise 3.5.2. �

Proof of β∗α∗ = id. We use a mirror image form of (♦) , namely:

α∗(q� p) = q� α∗(p)
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for q ∈ K̃(Y) and p ∈ K̃(X∧S2) . Take X and p arbitrary, Y = S2 and q = b ,
the Bott element. Then β∗α∗(p) = b� α∗(p) = α∗(b� p) = α∗β∗(p) = p .
Here we have used α∗β∗ = id. �

(Remark added later: Depending on conventions, we might find α∗(b) = −1
instead of α∗(b) = 1, but that does not matter much. Then we get α∗β∗ =
−id and β∗α∗ = −id.)

3.7. Bott periodicity and complex conjugation

In his paper K-theory and reality (1966), Atiyah develops a general method
by which, it seems, almost any good proof of Bott periodicity for complex
K-theory can be refined to prove Bott periodicity for real K-theory, too. The
plot is quite surprising. My description of it will remain very superficial.
Regrettably.

Atiyah makes the following remark for motivation. A complex-valued
g ∈ L2(S1) (as in section 3.5) has a Fourier transform which is a two-sided
sequence (ak)k∈Z of complex numbers. For us this is simply the expression
of g in the Hilbert basis {fk | k ∈ Z} where fk(z) = z

k . If g happens to be
real-valued, then the Fourier transform (ak)k∈Z of g is typically not a string
of real numbers! Instead it has the more intriguing symmetry

a−k = āk

where the bar is for complex conjugation.

It turns out that the Bott map β has a similar (unexpected) equivariance
property. Suppose that HR is a real Hilbert space and let H be the tensor
product of HR with C (over R), which is then a complex Hilbert space in a
rather obvious way. Let F be the space of Fredholm operators on H and let
FR be the space of (real) Fredholm operators on HR . There is an embedding
FR → F (by extension of scalars) which we can regard as an inclusion.

Now H has a linear automorphism κ given by κ(v⊗z) = v⊗ z̄ for v ∈ HR
and z ∈ C ; this is only R-linear, though. It satisfies κκ = id. Then we have

FR = {A ∈ F | κAκ = A}.

To make it more wordy: F comes with an involution given by

A 7→ κAκ = κ ◦A ◦ κ

and the set of fixed points of that involution is exactly FR . (Involution tends
to mean automorphism of order two; and here automorphism means self-
homeomorphism.) Atiyah’s message is that we should direct our attention
not so much to FR , but to F which is now to be regarded as a space with
involution (alias action of Z/2).
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Then we should look at the Bott map (as described at the end of section
3.4) from this point of view:

β : F −→ Ω2F .

Does it respect the involutions? At first sight, the answer appears to be
no, but if we define the involution on the target space Ω2F correctly, then,
miraculously, the map does respect the involutions.

To this end, suppose that X is any based space with an action of Z/2
respecting the base point. Let Ω1,1X be the space of (all continuous) based
maps from C∪∞ to X (where C∪∞ has base point ∞). This is really the
same as Ω2X , inasmuch as C ∪∞ is not very different from R2 ∪∞ or S2 ,
for that matter, but we write Ω1,1X in order to specify an action of Z/2 on
Ω2X as follows. The nontrivial element T ∈ Z/2 acts by

f 7→ (
z 7→ T · (f(z̄))

)
for f : C ∪∞ → X and z ∈ C ∪∞ ; if z = ∞ , we set z̄ = ∞ . With this
notation, it turns out that the Bott map

β : F −→ Ω1,1F

as defined in section 3.4 respects the standard involutions. (Maybe we should
write F −→ Ω1,1Fe to be consistent.)

Theorem 3.7.1. The Bott map F −→ Ω1,1F is an equivariant (weak) ho-
motopy equivalence. Unraveled:

- it respects the actions of Z/2 ;
- the underlying ordinary map is a (weak) homotopy equivalence;
- the induced map of the fixed point subspaces is also a (weak) homo-

topy equivalence.

Note that the induced map of the fixed point subspaces has the form

FR −→ mapZ/2
∗ (C ∪∞,F)

where map
Z/2
∗ (−) means space of based maps respecting the actions of Z/2 on

source and target. (The action on the source C∪∞ is given by conjugation,
z 7→ z̄ .) That may seem disappointing since it does not resemble what we
are after, a homotopy equivalence from FR to Ω8FR (which is what Bott
found using different methods).

One might think that the proof of theorem 3.7.1 consists in noting that
the map α that we constructed in section 3.6. also respects the standard
involutions (if we apply it in a situation where H has the form HR tensored
with C , etc.). This may be so for the map α , but the geometry becomes
hard to manage. Let us therefore switch from geometry to algebra, replacing
spaces by their homotopy groups. Here we are dealing with spaces with
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an action with Z/2 and we need to reconsider what we mean by homotopy
groups.

Let Rp,q = Rp × Rq with the linear action by Z/2 where the nontrivial
element acts by −id on the factor Rp and by id on Rq . Let

S(p,q) = Rp,q ∪∞
be the one-point compactification of Rp,q , action of Z/2 extended in the
obvious way. The base point of this is always ∞ . (Atiyah writes Sp,q for
the unit sphere of Rp,q , so that I need to insist on the brackets in S(p,q) for
distinction.) Let X be a based space with an action of Z/2 which respects
the base point. Then we define

πp,q(X)

as the set of equivariant homotopy classes of equivariant based maps from
S(p,q) to X . (Equivariant means respecting actions — of Z/2 , in our case.)
For the usual reasons, πp,q(X) is a group if q > 0 and an abelian group if
q > 1 . Note that

π0,q(X) = πq(X
Z/2)

where XZ/2 is the set of fixed points of the action. Similarly, it is not difficult
to see that

π1,q(X) ∼= πq+1(X,X
Z/2).

These properties can be used to show the following. Suppose that f : X→ Y
is an equivariant map between based spaces with an action of Z/2 . Suppose
that f induces bijections πp,q(X) → πp,q(Y) whenever p ≥ 0 and q > 0 .
Then, under mild conditions, f is an ordinary weak homotopy equivalence
and induces an ordinary weak equivalence of the fixed-point subspaces,

XZ/2 → YZ/2.

A sufficient mild condition is that X and Y and the subspaces XZ/2 ⊂ X ,
YZ/2 ⊂ Y are path connected. — This mild condition is unfortunately not
satisfied in the case of interest to us, where X = F and Y = Ω1,1F . In that
case there is another feature which makes up for the nuisance: an addition
map, related to Whitney sum of vector bundles (but I don’t want to explain
in detail how that makes up for the nuisance).

Previously we noted that based maps from a based compact CW-space X
to F could be interpreted in vector bundle terms:

[X,F]∗ ∼= K̃(X).

In the equivariant setting, this correspondence goes as follows. Let X be a
compact Hausdorff space with an action of Z/2 . We are interested in complex
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vector bundles E→ X with the following extra datum: an action of Z/2 on
E which

- makes the projection map E→ X into a Z/2-map;
- is such that the generator T ∈ Z/2 acts in a conjugate-linear way,

i.e., for all x ∈ X the action of T gives an R-linear isomorphism from
Ex to ET(x) and we have zTv = T z̄v for all v ∈ Ex and all z ∈ C .

In particular, the restriction of E → X to XZ/2 is a complex vector bundle
with an action of Z/2 which is R-linear, C-conjugate linear and respects
the fibers. It is easy to see that this is recoverable from EZ/2 → XZ/2 , a real
vector bundle.

Out of the isomorphism classes of complex vector bundles on X with these
additional data we make a Grothendieck group which Atiyah denotes KR(X) .
(He also writes Real K-theory with a capital R for that ... a habit which
evolved after the article K-theory and reality.) If X comes with a chosen
base point which is a fixed point for the action of Z/2 , then we have a
reduced version

K̃R(X)

defined as the kernel of the restriction map KR(X) → KR(∗) ∼= Z .

We can think of K̃R(X) as the set of equivariant homotopy classes of equi-
variant based maps from X to F . (Of course we are assuming here that F is
the space of Fredholm operators on H , where H is the complexification of a
real Hilbert space HR .) In particular, taking X = S(p,q) we can write

K̃R(S(p,q)) = πp+q(F) .

Using this interpretation, we can say the following.

(i) πp,q(F) has an abelian group structure for all p, q ≥ 0 . (We can use
the Whitney sum of vector bundles for that ... although for q > 0 this
coincides with the standard group structure which we always have on
πp,q(Y) , for any based space Y with action of Z/2 .)

(ii) The groups πp,q(F) taken together form a bi-graded ring: there are
bi-additive multiplication maps

πp,q(F)× πr,s(F) −→ πp+r,q+s(F)

(given by the tensor product of vector bundles). There is a unit

1 ∈ π0,0(F) ∼= Z .

(iii) π0,q(F) = πq(FR) .
(iv) The forgetful maps πp,q(F) → πp+q(F) , taken for all p, q ≥ 0 to-

gether, form a ring homomorphism (from a bigraded ring to a graded
ring).
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In (iv), forming the “ordinary” homotopy group πp+q(F) we should pay no
attention to the action of Z/2 on F . Let’s also note that πp,q(Ω

1,1Y) ∼=
πp+1,q+1(Y) for any based space Y with action of Z/2 fixing the base point.
Therefore the Bott map β : F → Ω1,1F induces homomorphisms

β∗ : πp,q(F) → πp+1,q+1(F)

and we want to show that these are bijective (in order to prove theorem 3.7.1).
Therefore we should ensure that we have

α∗ : πp+1,q+1(F) → πp,q(F)

or more generally, in K-theoretic notation,

α∗ : K̃R(S
(1,1) ∧ X) → K̃R(X).

Let me give some evidence that we have such an α∗ . As in section 3.5, a
(continuous) map

u : S1 → GLn(C)
determines a Töplitz operator Tu : H(+)⊗Cn −→ H(+)⊗Cn . Suppose that
u, v : S1 → GLn(C) are two continuous maps related by

u(z) = v(z̄)

where S1 = S(1,0) is viewed as the unit circle in C , with the action of Z/2
by conjugation. Then Tu = κTvκ . I believe this follows from the definitions
if we view H(+) as HR(+) ⊗R C where HR(+) has the same Hilbert basis
{f0, f1, f2, . . . } that we use normally for H(+) as a complex Hilbert space.
Example, for myself : n = 1 and u has Fourier series

∑
k∈Z akfk where

fk(z) = zk , here for all k ∈ Z ; then v must have Fourier series
∑

k∈Z ākfk .
For j ≥ 0 and c ∈ C we get

Tu(cfj) =
∑
k≥−j

akcfj+k , Tv(κ(cfj)) = Tv(c̄fj) =
∑
k≥−j

ākc̄fj+k = κ(Tu(fj)).

It follows that if u : S(1,0) ∧ X → GL(n,C) is a (based) map which is equi-
variant, i.e., satisfies

u(z, x) = u(z̄, x̄)

(where I am using a conjugation bar to describe the involution on X), then
the map x 7→ Tu(−,x) from X to F (the space of Fredholm operators on
H(+) ⊗C Cn ) is equivariant: Tu(−,x) = κTu(−,x̄)κ . Since these equivariant
maps u are exactly the clutching functions that we would use to describe
elements of the group

K̃R(S(1,1) ∧ X),

that explains how we get from K̃R(S(1,1)∧X) to K̃R(X) , set or abelian group
of homotopy classes of based Z/2-maps from X to F .
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3.8. Computation of π∗BO in a range

We can use theorem 3.7.1 to get information about the groups πkBO for
k ≤ 8 , and the homomorphisms πkBO → πkBU induced by the inclusion
BO → BU.

By specializing the theorem to the fixed point spaces, we obtain a homo-
topy equivalence

FR → mapZ/2
∗ (S(1,1),F)

where F is the space of Fredholm operators on H = HR⊗R C equipped with
the involution A 7→ κAκ . (And FR is the fixed point space of that involution
on F which we can also identify with the space of real Fredholm operators
on HR .) Writing S(1,1) as the union of two disks which are interchanged by
the involution, with intersection S(0,1) , we get

mapZ/2
∗ (S(1,1),F) = map∗((D

2, S1), (F,FR)),

space of based maps of pairs from the pair (D2, S1) to the pair (F,FR) . Using
(D2, S1) ∼= (D1 ∧ S1, S0 ∧ S1) , this space of maps of pairs turns into

map∗((D
1, S0), (ΩF,ΩFR));

it is the homotopy fiber (over the base point) of the inclusion

ΩFR → ΩF .

So the specialization of theorem 3.7.1 to fixed points gives a homotopy equiv-
alence

FR −→ hofiber[ΩFR → ΩF]

which we can also write in the form of a homotopy equivalence

BO× Z → hofiber[O ↪→ U].

Making this substitution in the long exact sequence relating the homotopy
groups of O, U and hofiber[O → U] , we obtain a long exact sequence

· · ·→ πkO → πk+1O → πk+1U → πk−1O → πkO → πkU → · · ·
(ending in · · · → π2U → π0O → π1O → π1U). To this we add some
observations or known facts:

(i) π0O ∼= Z/2, π1O ∼= Z/2, π2O = 0 .
(ii) πkU ∼= Z for odd k ≥ 0 and πkU = 0 for even k ≥ 0 .

(iii) By construction, the homomorphisms πk−1O → πkO in the LES,
equivalently πkBO → πk+1BO, are given by multiplication with the
nonzero element h of

K̃R(S
1) = π1BO = π0O ∼= Z/2.

(iv) The generator of Z/2 acts on K̃C(S
2k) = π2k−1U = π2kF ∼= Z by

x 7→ (−1)kx . Therefore π2k−1O → π2k−1U has to be zero for odd k .
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By (i), (ii) and (iv) the above long exact sequence breaks up into shorter
exact sequences

(v) 0→ π3O → π3U → π1O → 0
(vi) 0→ π5U → π3O → π4O → 0
(vii) 0→ π4O → π5O → 0

(viii) 0→ π6O → π7O → π7U → π5O → π6O → 0

We need an additional argument to show that π4O = 0 . By (v) we have an
injection π3O → π3U = Z with cokernel of order 2, induced by the inclusion.
It follows that the forgetful homomorphism

π4BU = K̃C(S
4) −→ K̃R(S

4) = π4BO

is an isomorphism. The commutative diagram

K̃C(S
4)

forget

∼=
//

·h
��

K̃R(S
4)

·h
��

K̃C(S
5)

forget // K̃R(S
5)

tells us that the right-hand vertical map is zero, since K̃C(S
5) = π4U = 0 .

But that map is surjective by (vi). Therefore π5BO = 0 , meaning π4O = 0 .
— Now π4O = 0 implies π5O = 0 by (vii) and then π6O = 0 by (viii).

Corollary 3.8.1. (a) The homomorphism π7O → π7U ∼= Z induced by the
inclusion is an isomorphism.

(b) The homomorphism π3O → π3U ∼= Z induced by the inclusion is
injective and its cokernel has order 2.

(c) The groups π4O, π5O, π6O are zero. �

3.9. Bott periodicity in the real case

Lemma 3.9.1. There is a based Z/2-homeomorphism

g : S(4,4)/S(0,4) → S(8,0)/S(4,0).

Proof. We can view g as a Z/2-homeomorphism

R4,4 rR0,4 −→ R8,0 rR4,0

to be constructed — after that we can apply one-point compactification. For
clarification: we shall interpret R0,4 ⊂ R4,4 as the linear subspace spanned
by the last 4 basis vectors, which may seem obvious, but we shall also read
R4,0 ⊂ R8,0 as the linear subspace spanned by the last 4 basis vectors. This
is not in conflict with the Rp,q notation.

For this purpose we write the two 8-dimensional euclidean spaces (both)
as H×H , where H is the algebra of quaternions. Now let g(v,w) := (v, vw) ,
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using quaternion multiplication. Then clearly g(−v,w) = −g(v,w) , which
means that g is equivariant as a map from R4,4 to R8,0 . As such it is not
a homeomorphism, but if we delete the linear subspace 0×H in source and
target, we get a homeomorphism. �

Corollary 3.9.2. The forgetful homomorphism K̃R(S(8,0)) → K̃C(S
8) is sur-

jective.

Proof. There is a commutative diagram

K̃R(S(8,0)/S(4,0)) // K̃R(S(8,0))
forget // K̃C(S

8)

K̃R(S(4,4)/S(0,4))

OO

// K̃R(S(4,4))
forget

∼=
// K̃C(S

8)

where the left-hand vertical arrow is induced by the homeomorphism of
lemma 3.9.1. The horizontal arrow decorated with a ∼= sign is an isomor-
phism as a consequence of theorem 3.7.1. Now it only remains to show that
the other horizontal arrow in the lower row is surjective.

The group in the middle of the lower row is isomorphic to Z and has
generator b4$ where we think of b$ as an element of

K̃R(S(1,1))

which lifts b ∈ K̃C(S
2) , in accordance with theorem 3.7.1. (I am trying to

make a distinction between b$ and b .) Therefore it suffices to show that the
restriction homomorphism

K̃R(S(4,4)) −→ K̃R(S(0,4)) = K̃R(S
4)

takes b4$ to 0. We know that it takes b4$ to h4 , where h is the unique nonzero
element of

K̃R(S
1).

But h4 is zero because already h3 is zero; indeed h3 lives in a group which
is zero. �

By corollary 3.8.1, the group K̃R(S
8) is isomorphic to Z . More precisely,

the complexification homomorphism

K̃R(S
8) → K̃C(S

8)

is an isomorphism. Let c ∈ K̃R(S
8) be the element taken to b4 ∈ K̃C(S

8) .

Theorem 3.9.3. For every compact based CW-space X, external multiplica-
tion with c is an isomorphism

K̃(X) → K̃(S8 ∧ X).
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Proof. Think of X as a space with trivial action of Z/2 . The homomorphism
that we are investigating can be written as

K̃R(X) −→ K̃R(S(0,8) ∧ X)

and is given by multiplication with c ∈ K̃R(S(0,8)) . Select

d ∈ K̃R(S(8,0))
which maps to b4 ∈ K̃C(S

8) under the forgetful homomorphism; this can be
done by corollary 3.9.2. Now

dc = b8$ ∈ K̃R(S(8,8)) ∼= Z

since dc maps forgetfully to b8 ∈ K̃C(S
8) by construction. Therefore multi-

plication with c has an inverse which is multiplication by d . In more detail,
we have multiplication by c ,

(i) K̃R(X) −→ K̃R(S(0,8) ∧ X)

and multiplication by d ,

(ii) K̃R(S(0,8) ∧ X) −→ K̃R(S(8,8) ∧ X)

and again multiplication by c ,

(iii) K̃R(S(8,8) ∧ X) −→ K̃R(S(8,16) ∧ X).

The composition (ii)◦(i) is a bijection since it is multiplication with b4$ and
the composition (iii)◦(ii) is a bijection for the same reason. Therefore (i) is
a bijection. �


