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Lecture notes chapter 2, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture
This chapter can be regarded as a digression. The purpose of the digression
is to explain why spherical fibrations and the Adams conjecture matter in
the classification theory of manifolds.

2.1. Poincaré duality spaces

Definition 2.1.1. A compact 1-connected CW-space X is a Poincaré duality
space of formal dimension n if there exists an element ϕ ∈ Hn(X;Z) such
that the homomorphisms

Hk(X;Z) −→ Hn−k(X;Z) ; a 7→ a_ ϕ

(cap product with ϕ) are isomorphisms for all k . The element ϕ is called a
fundamental class for X .

Example 2.1.2. Every 1-connected compact orientable n-manifold (without
boundary) is a Poincaré duality space. This follows from the Poincaré duality
theorem.

Remark 2.1.3. Let X be a PD space as in definition 2.1.1, and suppose in
addition that it is connected. Then H0(X;Z) ∼= Z and we deduce Hn(X;Z) ∼=
Z by Poincaré duality. It is clear that ϕ must be a generator of the group
Hn(X;Z) ∼= Z . Therefore there are exactly two choices for a fundamental
class ϕ . (A choice of fundamental class can also be called an orientation.)

A more general definition of Poincaré duality space is available. We will
not need this, but it is worth knowing anyway. The standard version is
as follows: A compact CW-space X (which need not be 1-connected) is an
orientable Poincaré duality space of formal dimension n if there exists an
element ϕ ∈ Hn(X;Z) such that the homomorphisms

Hk(X; J) −→ Hn−k(X; J) ; a 7→ a_ ϕ

are isomorphisms for all k and every local coefficient system J on X . — To
explain what a local coefficient system is, let me assume that X is a connected
and based CW-space (no Poincaré duality whatsoever required here), so that
we have a universal covering

X̃→ X

and π1 := π1(X) acts on the left of X̃ by deck transformations. Then the local
coefficient system J is nothing but a π1 -module, in other words an abelian
group with a left action of π1 which respects the addition (so g(x + y) =
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gx + gy for x, y ∈ J and g ∈ π1 ). We can define Hk(X; J) as Hk of the
cochain complex

homπ1(C(X̃), J)

and H`(X; J) as the `-th homology of the chain complex C(X̃) ⊗π1 J . Here
C(−) denotes the singular or cellular chain complex (it does not matter
which). There is a slight subtlety in the definition of

C(X̃)⊗π1 J .
Since C(X̃) is a chain complex of left π1 -modules and J is also a left π1 -
module, the construction ⊗π1 is to be interpreted in such a way that we
enforce the relations a ⊗ b ∼ ga ⊗ gb in the ordinary tensor product ⊗
for all g ∈ π1 . Equivalently, we can make left π1 -modules into right π1 -
modules by defining ag := g−1a , in which case a⊗ b ∼ ga⊗ gb turns into
a ⊗ b ∼ ag−1 ⊗ gb which may look more familiar (to algebraists). With
these definitions, there is a “refined” cap product which takes the form of a
bi-additive (essentially bilinear) map Hk(X; J)×H`(X;Z) → Hk−`(X; J) .

This form of Poincaré duality, with local coefficient systems J , still holds
for compact orientable manifolds without boundary. The standard proof is
actually not very different from the standard proof of Poincaré duality for
ordinary coefficients Z . (Note that Z can be viewed as a π1 -module with
the trivial action of π1 = π1(X) .) Also, it should be mentioned that if X is
1-connected, then all local coefficient systems on X are just “coefficients” and
it is easy to show that Poincaré duality for coefficients Z implies Poincaré
duality for all coefficients J in such a case.

Exercise 2.1.4. Let X be a connected based CW-space and write π1 :=
π1(X) . Write X̃ for the universal cover.

(i) Take J = map(π1,Z) , the abelian group of all functions from π1 to
Z . There is a nearly-obvious left action of π1 on J by translation:
for g ∈ π1 and f ∈ J let g · f be defined by (g · f)(h) = f(hg−1) . So
J is a π1 -module. Show that

Hk(X; J) ∼= Hk(X̃;Z)
for all k .

(ii) Take J =
⊕

g∈π1 Z , with the left action of π1 by translation. (Details
as in (i); this J here is a π1 -submodule of the J in (i).) Show that

Hk(X; J) ∼= Hk(X̃;Z).
(iii) Taking J as in (ii), show that H0(X; J) = 0 if π1 is an infinite group.
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2.2. Normal bundles and Spivak normal fibrations

Let M be a smooth compact manifold of dimension n , without boundary,
embedded smoothly in Rk for some k , possibly quite large. Then M has a
normal disk bundle E→M of fiber dimension k− n .

In more detail, without too much differential topology jargon: for each
x ∈ M we have the tangent space TxM which can be viewed as a linear
subspace (!) of Rk . The orthogonal complement T⊥x M of TxM in Rk is the
fiber of the normal bundle of M at x , another vector bundle on M . The
map

TM −→ Rk

given by TxM 3 v 7→ x+ v is far from being an embedding (make a drawing,
taking for example M = S1 and Rk = R2 ). The map

T⊥M −→ Rk

given by T⊥x M 3 v 7→ x+ v is usually still far from being an embedding, but
if we restrict it by allowing only vectors v of norm ≤ ε (for small enough ε),
then it is a smooth embedding. So we think of E→M as the disk bundle of
fiber radius ε associated with the normal bundle T⊥M → M , and then we
have a canonical smooth embedding E ↪→ Rk by the formula just given. Let
∂E → M be the boundary sphere bundle (with fibers ∼= Sk−n−1 ). Clearly
(E, ∂E) is a smooth manifold with boundary, of dimension k and contained
in Rk as a compact codimension 0 submanifold (with boundary).

The Pontryagin collapse map

c : Sk ∼= Rk ∪∞ −→ E/∂E

is defined by c(z) = z if z ∈ Er∂E ⊂ Rk and c(z) = ∂E/∂E otherwise (also
when z = ∞). Note that it is continuous! It is easy to see that c takes the
fundamental class in Hk(S

k;Z) to a fundamental class for the manifold-with-
boundary (E, ∂E) .

Exercise 2.2.1. Prove this “easy” statement about fundamental classes.

We can formulate this observation as follows. Recall that we have M ⊂ Rk
with normal vector bundle T⊥M→M and associated disk bundle E→M .
Then E is a compact manifold with boundary ∂E , no surprise here; but
remarkably, the fundamental class ∈ Hk(E, ∂E;Z) is in the image of the
Hurewicz homomorphism from πk(E/∂E) to Hk(E, ∂E;Z) . Indeed it is the
image of the element [c] ∈ πk(E/∂E) .

It turns out that something similar is true for Poincaré duality spaces. In
this situation we should not be looking for a vector bundle playing the role
of normal bundle, but for a spherical fibration.
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So let X be a 1-connected Poincaré duality space of formal dimension
n . For simplicity we assume that X is a compact simplicial complex (not
really an additional condition, since every compact CW-space is homotopy
equivalent to a simplicial complex). Then we can always find an embedding

X −→ Rk

(for some k � 0) which is linear on each simplex of X . Let’s use this to
think of X as a simplicial subcomplex of Rk (in some triangulation of Rk ).
Then X ⊂ Rk admits a regular neighborhood E which can also be described
as a compact simplicial subcomplex in Rk . I am not planning to give many
details; I think it is customary and safe to define E as the union of all
simplices in the two-fold barycentric subdivision of (the given triangulation
of) Rk which have nonemtpy intersection with X .

(i) E is a compact k-dimensional manifold with boundary ∂E .
(ii) There is a preferred projection r : E→ X (continuous, at least) which

is a homotopy equivalence. The restriction of r to X is the identity
idX . We write r∂ : ∂E→ X for the restriction of r to ∂E .

Note that we have a Pontryagin collapse map

c : Sk ∼= Rk ∪∞ −→ E/∂E

defined much as before; and again, this takes fundamental class to funda-
mental class. Now we would like to say that (E, ∂E) behaves like the total
space (or total pair) of a disk bundle.

Theorem 2.2.2. Each homotopy fiber of r∂ : ∂E→ X has the homology of a
sphere of dimension k− n− 1.

This is due to M Spivak (his Princeton PhD thesis, supervised by J Milnor)
and it is therefore customary to say Spivak normal fibration of X for the
fibration associated with ∂E→ X . As a rule we are not averse to stabilization
(taking fiberwise join with S0 , several times if required) and in that sense
we can say that the Spivak normal fibration is a spherical fibration. See the
following remark.

Remark 2.2.3. Replacing the inclusion X ↪→ Rk by the composition

X ↪→ Rk ∼= Rk × {0} ↪→ Rk+1,
a new regular neighborhood is E × D1 , and for the new retraction we may
take the composition

E×D1 proj. // E
r // X .

Restricting that to ∂(E×D1) we have a new map ∂(E×D1) −→ X . As an
application of the “cube theorem” we get

hofiberx[∂(E×D1) → X ] '
(
hofiberx[r∂ : ∂E→ X ]

)
∗ S0
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where hofiberx[...] is short for homotopy fiber of “...” over x ∈ X . If
hofiberx[r∂ : ∂E→ X ] has the homology of Sk−n−1 as claimed in theorem 2.2.2,
then the join of it with S0 is homotopy equivalent to Sk−n . (See the exercise
which follows.)

Exercise 2.2.4. Let F be a space (' CW-space) which has the homology
of a sphere S` . Show that F ∗ S0 ' S`+1 . (Use fundamental theorems of
homotopy theory: W Hurewicz and G Whitehead).

The proof of theorem 2.2.2 reduces easily to the following statement.

Proposition 2.2.5. Let p : A → B be a map of spaces (' CW-spaces)
and let B\ be the mapping cylinder of p, so that there is a pair (B\, A).
Let R be any commutative ring (with 1). Suppose that H∗(B\, A;R) is free
on one generator u ∈ Hj(B\, A;R) as a module over the ring H∗(B;R). If
B is 1-connected, then the homotopy fibers of p have the cohomology (with
coefficients R) of Sj−1 .

Reduction of theorem 2.2.2 to proposition 2.2.5. Apply the proposition with
p = r∂ , so that A = ∂E and B = X . Then we can identify (B\, A) with
(E, ∂E) , by a homotopy equivalence of pairs. Poincaré duality for the oriented
manifold pair (E, ∂E) gives an isomorphism

H∗(E, ∂E) ∼= Hk−∗(E)

of graded H∗(E)-modules; cohomology taken with coefficients in any commu-
tative ring R . But Hk−∗(E) is free on one generator (in degree k− ∗ = n) as
an H∗(E)-module, since E ' X and X is a Poincaré duality space. Therefore
H∗(E, ∂E) is also free on one generator u as an H∗(E)-module. This u lives
in degree k− n ; so we take j = k− n .

Now the proposition implies that the homotopy fibers of p = r∂ have the
cohomology of a sphere Sj−1 , for any choice of coefficient ring R . It follows
that they have the Z-homology of a sphere. (See exercise just below.) �

Exercise 2.2.6. Show that if a space Y satisfies H∗(Y;R) ∼= H∗(Sj−1;R) for
any commutative ring R , then it satisfies H∗(Y;Z) ∼= H∗(S

j−1;Z) . (Hint : re-
duce as fast as possible to a statement about chain complexes of free abelian
groups. Hint : Exercise 5 in §VI.6 of Dold’s book Lectures on algebraic topol-
ogy is close to this one and comes with helpful instructions.)

Proof of proposition 2.2.5. Without loss of generality, B is a CW-space and
p : A → B is a fibration. (If not, we can use the Serre construction to turn
it into one.) Without loss of generality, and comes with a chosen base point.
The cylinder projection (B\, A) → B , which we should strictly speaking write
in the form (B\, A) → (B,B) , is a fibration pair. Let (K, ∂K) be the fiber
pair over the base point of B .
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Note that K is contractible, being the (homotopy) fiber of B\ → B . We
want to show that ∂K has the cohomology (with coefficients R) of Sj−1 .
Equivalently, we want to show that H∗(K, ∂K) = R if ∗ = j and H∗(K, ∂K) =
0 if ∗ 6= j .

Let us now use the cohomology Serre spectral sequence (with coefficients
R throughout) for the fibration pair (B\, A) → B . It has the form

Es,t2 = Hs(B;Ht(K, ∂K)) ⇒ Hs+k(B\, A).

The spectral sequence comes with cup products. Using these gives me a
guilty conscience, because the cohomology Serre spectral sequence with cup
products is hard to set up (and I did not do it convincingly in my topology
course of years ago). But here we only need cup products in the following
sense: we want to regard the spectral sequence as a spectral sequence of
graded modules over the graded ring H∗(B) . This is much easier to set up.
(Consider it done, therefore.)

The differentials in E∗∗2 go from position (s, t) to (s + 2, t − 1) ; in E∗∗3 ,
from (s, t) to (s+ 3, t− 2) ; in E∗∗4 , from (s, t) to (s+ 4, t− 3) ; and so on.

If Ht0(K, ∂K) is nontrivial for some t0 < j , then we can choose this minimal
and the spectral sequence shows us that the corresponding term

E0,t02 = H0(B;Ht0(K, ∂K)) ∼= Ht0(K, ∂K)

survives to the infinity page, i.e., maps injectively to Ht0(B\, A) . But since
t0 < j , that cohomology group is zero by assumption; contradiction.

It follows that the term E0,j2 = Hj(K, ∂K) survives unharmed to the infinity
page, and by our assumption must map isomorphically to Hj(B\, A) ∼= Z .
The H∗(B) module structure, along with our assumption, now implies that
all terms

Es,j2 = Hs(B;Hj(K, ∂K))

survive to the infinity page and map isomorphically to the corresponding
groups Hs+j(B\, A) .

If Ht1(K, ∂K) is nonzero for some t1 > j , then we can take this minimal
again, and we find that the corresponding term

E0,t12 = H0(B;Ht1(K, ∂K)) ∼= Ht1(K, ∂K)

survives unharmed to the infinity page. This contradicts the fact that we
have already exhausted H∗(B\, A) with the terms coming from row j of the
E∗∗2 -page. �

Now I want to indicate briefly how theorem 2.2.2 can still be proved if we
drop the assumption that X be 1-connected. Let’s assume nevertheless that
X is connected (= path connected, since X is a CW-space) and equipped

with a base point. Let X̃→ X be the universal covering.
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We use proposition 2.2.5 again, but this time we choose B := X̃ (which is
1-connected) and for A we take the pullback of

X̃

��
∂E // X

so that we have a projection A→ ∂E which is again a covering space (fiber
bundle with discrete fibers). In order to use the proposition, we need to
know that H∗(B\, A;R) is free on one generator as a graded module over the
graded ring H∗(B;R) . To that end we write

H∗(B\, A;R) = H∗(E, ∂E; J)

where J = map(π1(X), R) , viewed as a left module over π1(X) in the usual
manner. (Use exercise 2.1.4.) Then we have

H∗(E, ∂E; J) ∼=(a) Hk−∗(E; J)
∼= Hk−∗(X; J)
∼=(b) Hn−k+∗(X; J)

∼=(c) Hn−k+∗(X̃;R)

= Hn−k+∗(B;R).

(The isomorphism with label (a) is Poincaré duality for (E, ∂E) ; the one with
label (b) is Poincaré duality for X , which is quite a different thing; and the one
labelled (c) comes from exercise 2.1.4.) So we see that H∗(E, ∂E; J) is isomor-
phic to Hn−k+∗(B;R) , and it is straightforward to verify that this isomorphism
(with a shift by n− k) is one of graded modules over Hn−k+∗(B;R) . �


