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Lecture notes chapter 2, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture

This chapter can be regarded as a digression. The purpose of the digression
is to explain why spherical fibrations and the Adams conjecture matter in
the classification theory of manifolds.

2.1. Poincaré duality spaces

Definition 2.1.1. A compact T-connected CW-space X is a Poincaré duality
space of formal dimension n if there exists an element ¢ € H, (X;Z) such
that the homomorphisms

HYX;Z) — Ho k(X Z) s a— a —~ ¢

(cap product with ¢ ) are isomorphisms for all k. The element @ is called a
fundamental class for X.

Example 2.1.2. Every 1-connected compact orientable n-manifold (without
boundary) is a Poincaré duality space. This follows from the Poincaré duality
theorem.

Remark 2.1.3. Let X be a PD space as in definition 2.1.1, and suppose in
addition that it is connected. Then H°(X;Z) = Z and we deduce H,(X;Z) =
Z by Poincaré duality. It is clear that ¢ must be a generator of the group
H,.(X;Z) = Z. Therefore there are exactly two choices for a fundamental
class @. (A choice of fundamental class can also be called an orientation.)

A more general definition of Poincaré duality space is available. We will
not need this, but it is worth knowing anyway. The standard version is
as follows: A compact CW-space X (which need not be 1-connected) is an
orientable Poincaré duality space of formal dimension n if there exists an
element @ € H,,(X;Z) such that the homomorphisms

HX;]) — Hox(X;]); a—a—~ ¢

are isomorphisms for all k and every local coefficient system | on X. — To
explain what a local coefficient system is, let me assume that X is a connected
and based CW-space (no Poincaré duality whatsoever required here), so that
we have a universal covering

X — X
and 7 == 71 (X) acts on the left of X by deck transformations. Then the local
coefficient system ] is nothing but a 711-module, in other words an abelian

group with a left action of 71; which respects the addition (so g(x +y) =
1
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gx + gy for x,y € ] and g € m). We can define H*(X;]) as H* of the
cochain complex

homy, (C(X), ])

and H(X;]) as the {-th homology of the chain complex C(X) ®x, J. Here
C(—) denotes the singular or cellular chain complex (it does not matter
which). There is a slight subtlety in the definition of

C(X) @, J -

Since C(X) is a chain complex of left 71;-modules and | is also a left 71 -
module, the construction ®, is to be interpreted in such a way that we
enforce the relations a ® b ~ ga ® gb in the ordinary tensor product ®
for all g € m;. Equivalently, we can make left 7r;-modules into right ;-
modules by defining ag := g 'a, in which case a ® b ~ ga ® gb turns into
a®b ~ ag' ® gb which may look more familiar (to algebraists). With
these definitions, there is a “refined” cap product which takes the form of a
bi-additive (essentially bilinear) map H*(X;]) x H¢(X;Z) — Hy_¢(X;]).

This form of Poincaré duality, with local coefficient systems [, still holds
for compact orientable manifolds without boundary. The standard proof is
actually not very different from the standard proof of Poincaré duality for
ordinary coefficients Z. (Note that Z can be viewed as a 7-module with
the trivial action of 71; = 71;(X).) Also, it should be mentioned that if X is
1-connected, then all local coefficient systems on X are just “coefficients” and
it is easy to show that Poincaré duality for coefficients Z implies Poincaré
duality for all coefficients ] in such a case.

Exercise 2.1.4. Let X be a connected based CW-space and write m :=
71 (X). Write X for the universal cover.

(i) Take ] = map(7m;,Z), the abelian group of all functions from 7 to
Z. There is a nearly-obvious left action of 71; on | by translation:
for g € m; and f € J let g - f be defined by (g - f)(h) = f(hg™"). So
J is a m;-module. Show that

H(X;]) = HY(X; Z)
for all k.

(i) Take ] = @y, Z, with the left action of 7 by translation. (Details

as in (i); this J here is a my-submodule of the ] in (i).) Show that

Hu(X;]) = Hi(X; Z).
(iii) Taking J as in (ii), show that H°(X;]) =0 if 7y is an infinite group.



2.2. Normal bundles and Spivak normal fibrations

Let M be a smooth compact manifold of dimension n, without boundary,
embedded smoothly in R* for some k, possibly quite large. Then M has a
normal disk bundle E — M of fiber dimension k —n.

In more detail, without too much differential topology jargon: for each
x € M we have the tangent space T,M which can be viewed as a linear
subspace (!) of R¥. The orthogonal complement T*M of T,M in R¥ is the
fiber of the normal bundle of M at x, another vector bundle on M. The
map

™ — R

given by M 2 v — x+v is far from being an embedding (make a drawing,
taking for example M = S' and R* = R?). The map

T*M — R

given by TAM > v = x +v is usually still far from being an embedding, but
if we restrict it by allowing only vectors v of norm < ¢ (for small enough ¢),
then it is a smooth embedding. So we think of E — M as the disk bundle of
fiber radius ¢ associated with the normal bundle T*M — M, and then we
have a canonical smooth embedding E < R¥ by the formula just given. Let
OE — M be the boundary sphere bundle (with fibers = S* ™ 1), Clearly
(E,OE) is a smooth manifold with boundary, of dimension k and contained
in R* as a compact codimension 0 submanifold (with boundary).

The Pontryagin collapse map
c: S*=R¥Uoco — E/OE

is defined by c(z) =z if z € EX 0E C R* and c(z) = 0E/0E otherwise (also
when z = 00). Note that it is continuous! It is easy to see that c¢ takes the

fundamental class in Hy(S*;Z) to a fundamental class for the manifold-with-
boundary (E,0E).

Exercise 2.2.1. Prove this “easy” statement about fundamental classes.

We can formulate this observation as follows. Recall that we have M C R¥
with normal vector bundle T*M — M and associated disk bundle E — M.
Then E is a compact manifold with boundary OE, no surprise here; but
remarkably, the fundamental class € Hy(E,0E;Z) is in the image of the
Hurewicz homomorphism from m(E/OE) to Hy(E,0E;Z). Indeed it is the
image of the element [c] € T (E/OE).

It turns out that something similar is true for Poincaré duality spaces. In
this situation we should not be looking for a vector bundle playing the role
of normal bundle, but for a spherical fibration.



So let X be a 1-connected Poincaré duality space of formal dimension
n. For simplicity we assume that X is a compact simplicial complex (not
really an additional condition, since every compact CW-space is homotopy
equivalent to a simplicial complex). Then we can always find an embedding

X — R¥

(for some k > 0) which is linear on each simplex of X. Let’s use this to
think of X as a simplicial subcomplex of R* (in some triangulation of R*).
Then X C R* admits a reqular neighborhood E which can also be described
as a compact simplicial subcomplex in R¥. T am not planning to give many
details; I think it is customary and safe to define E as the union of all
simplices in the two-fold barycentric subdivision of (the given triangulation
of) R* which have nonemtpy intersection with X.
(i) E is a compact k-dimensional manifold with boundary OE.
(ii) There is a preferred projection r: E — X (continuous, at least) which
is a homotopy equivalence. The restriction of r to X is the identity
idx . We write r3: OE — X for the restriction of r to OE.

Note that we have a Pontryagin collapse map
c: S*=R*Uoco — E/OE

defined much as before; and again, this takes fundamental class to funda-
mental class. Now we would like to say that (E,0E) behaves like the total
space (or total pair) of a disk bundle.

Theorem 2.2.2. Fach homotopy fiber of v9: OE — X has the homology of a
sphere of dimension kK —n — 1.

This is due to M Spivak (his Princeton PhD thesis, supervised by J Milnor)
and it is therefore customary to say Spivak normal fibration of X for the
fibration associated with 0E — X. As a rule we are not averse to stabilization
(taking fiberwise join with S°, several times if required) and in that sense
we can say that the Spivak normal fibration is a spherical fibration. See the
following remark.

Remark 2.2.3. Replacing the inclusion X < R* by the composition
X — R* = R* x {0} — R
a new regular neighborhood is E x D', and for the new retraction we may
take the composition
ExD' LT X.

Restricting that to 9(E x D') we have a new map 9(E x D') — X. As an
application of the “cube theorem” we get

hofiber,[9(E x D') — X] ~ (hofibery[rs: 9 — X]) * S°
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where hofibery[...] is short for homotopy fiber of “..” over x € X. 1If
hofibery[ry: OE — X] has the homology of S*™ ! as claimed in theorem 2.2.2,
then the join of it with S° is homotopy equivalent to S*¥™. (See the exercise
which follows.)

Exercise 2.2.4. Let F be a space (~ CW-space) which has the homology
of a sphere S'. Show that F* S° ~ S“'  (Use fundamental theorems of
homotopy theory: W Hurewicz and G Whitehead).

The proof of theorem 2.2.2 reduces easily to the following statement.

Proposition 2.2.5. Let p: A — B be a map of spaces (~ CW-spaces)
and let BY be the mapping cylinder of p, so that there is a pair (B*,A).
Let R be any commutative ring (with 1). Suppose that H*(Bf A;R) is free
on one generator w € H(B% A;R) as a module over the ring H*(B;R). If
B is I-connected, then the homotopy fibers of p have the cohomology (with
coefficients R) of 1.

Reduction of theorem 2.2.2 to proposition 2.2.5. Apply the proposition with
p =Ty, so that A = OF and B = X. Then we can identify (Bf, A) with
(E,OE), by a homotopy equivalence of pairs. Poincaré duality for the oriented
manifold pair (E,0E) gives an isomorphism

H*(E,9E) = Hy.(E)

of graded H*(E)-modules; cohomology taken with coefficients in any commu-
tative ring R. But Hy_.(E) is free on one generator (in degree k— =n) as
an H*(E)-module, since E ~ X and X is a Poincaré duality space. Therefore
H*(E, OE) is also free on one generator u as an H*(E)-module. This u lives
in degree k —m; so we take j =k —n.

Now the proposition implies that the homotopy fibers of p = r; have the
cohomology of a sphere S=', for any choice of coefficient ring R. It follows
that they have the Z-homology of a sphere. (See exercise just below.) 0

Exercise 2.2.6. Show that if a space Y satisfies H*(Y;R) = H*(S~';R) for
any commutative ring R, then it satisfies H,(Y;Z) = H, (S, Z). (Hint: re-
duce as fast as possible to a statement about chain complexes of free abelian
groups. Hint: Exercise 5 in §VI.6 of Dold’s book Lectures on algebraic topol-
ogy is close to this one and comes with helpful instructions.)

Proof of proposition 2.2.5. Without loss of generality, B is a CW-space and
p: A — B is a fibration. (If not, we can use the Serre construction to turn
it into one.) Without loss of generality, and comes with a chosen base point.
The cylinder projection (B% A) — B, which we should strictly speaking write
in the form (Bf,A) — (B,B), is a fibration pair. Let (K,9dK) be the fiber
pair over the base point of B.



Note that K is contractible, being the (homotopy) fiber of BY — B. We
want to show that 0K has the cohomology (with coefficients R) of ST,
Equivalently, we want to show that H*(K, 9K) = R if *« =j and H*(K, 0K) =
0 if * #7j.

Let us now use the cohomology Serre spectral sequence (with coefficients
R throughout) for the fibration pair (B% A) — B. It has the form

ESt = HS(B; HY(K,9K)) = H™*(B* A).

The spectral sequence comes with cup products. Using these gives me a
guilty conscience, because the cohomology Serre spectral sequence with cup
products is hard to set up (and I did not do it convincingly in my topology
course of years ago). But here we only need cup products in the following
sense: we want to regard the spectral sequence as a spectral sequence of
graded modules over the graded ring H*(B). This is much easier to set up.
(Consider it done, therefore.)

The differentials in E}* go from position (s,t) to (s +2,t—1); in E}*,
from (s,t) to (s+3,t—2);in E}*, from (s,t) to (s+4,t—3); and so on.

If H'* (K, 0K) is nontrivial for some ty < j, then we can choose this minimal
and the spectral sequence shows us that the corresponding term

Ey" = H(B;H (K, 0K)) = H"(K, 9K)

survives to the infinity page, i.e., maps injectively to H'(B% A). But since
to < j, that cohomology group is zero by assumption; contradiction.

It follows that the term Eg’) = H/ (K, 0K) survives unharmed to the infinity
page, and by our assumption must map isomorphically to H/(Bf,A) = Z.
The H*(B) module structure, along with our assumption, now implies that
all terms

ES = H*(B; H/(K, 0K))
survive to the infinity page and map isomorphically to the corresponding
groups H¥(Bf, A).

If HY (K, 0K) is nonzero for some t; > j, then we can take this minimal

again, and we find that the corresponding term

EY" = HO(B H" (K, 9K)) = H" (K, 9K)

survives unharmed to the infinity page. This contradicts the fact that we
have already exhausted H*(B% A) with the terms coming from row j of the
E3*-page. 0J

Now I want to indicate briefly how theorem 2.2.2 can still be proved if we
drop the assumption that X be 1-connected. Let’s assume nevertheless that
X is connected (= path connected, since X is a CW-space) and equipped
with a base point. Let X — X be the universal covering.
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We use proposition 2.2.5 again, but this time we choose B := X (which is
1-connected) and for A we take the pullback of

X

|
OE — X

so that we have a projection A — OE which is again a covering space (fiber
bundle with discrete fibers). In order to use the proposition, we need to
know that H*(BY, A;R) is free on one generator as a graded module over the
graded ring H*(B;R). To that end we write

H*(Bf, A;R) = H*(E, 0E; )

where ] = map(m;(X),R), viewed as a left module over 71;(X) in the usual
manner. (Use exercise 2.1.4.) Then we have
H*(Ev oE; I) =(a) ka*(E; I)

= Hk—* (X) D
0 HY (X))

= HY (X;R)

= HY*(B;R).
(The isomorphism with label (a) is Poincaré duality for (E,0E); the one with
label (b) is Poincaré duality for X, which is quite a different thing; and the one
labelled (c) comes from exercise 2.1.4.) So we see that H*(E, OE;]) is isomor-

phic to HY *"*(B; R), and it is straightforward to verify that this isomorphism
(with a shift by n — k) is one of graded modules over H" %" (B;R). O



