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Lecture notes chapter 1, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture

1.1. Vector bundles and K-theory

Let X be a compact space. For finite dimensional real vector bundles E→ X
and E ′ → X , the Whitney sum E⊕E ′ → X is the vector bundle on X defined
by

E⊕ E ′ := {(v,w) ∈ E× E ′ | v,w have same value in X}

etc., so that the fiber (E⊕E ′)x over x ∈ X is identified as a vector space with
Ex ⊕ E ′x for x ∈ X . The Whitney sum makes the set of isomorphism classes
of (f.d.) real vector bundles on X into an abelian monoid (=semigroup) with
neutral element.

Note: A f.d. real vector bundle on X has a fiber dimension which is locally
constant as a function of x ∈ X .

Definition 1.1.1. For a compact Hausdorff space X , let KR(X) be the
Grothendieck group associated with the abelian monoid (semigroup) of iso-
morphism classes of (f.d.) real vector bundles on X . Similarly let KC(X) be
the Grothendieck group associated with the abelian monoid of isomorphism
classes of (f.d.) complex vector bundles on X .

Remark 1.1.2. Suppose that X is compact Hausdorff as above. It is easy
to show that for every (f.d. real) vector bundle E→ X , there exists another
(f.d. real) vector bundle E ′ → X such that E⊕ E ′ is isomorphic to a trivial
vector bundle, i.e., a product X × Rp for some p . This has the following
consequence. We say that two (f.d. real) vector bundles E and E ′ on X are
stably isomorphic if the vector bundle E×Rm is isomorphic to E ′ ×Rn , for
some m,n ≥ 0 . Let

K̃R(X)

be the set of stable isomorphism classes of f.d. real vector bundles. This is
then an abelian group (using the Whitney sum — no Grothendieck construc-
tion needed!) and if X is nonempty we have a short exact sequence

Z −→ KR(X) −→ K̃R(X)

If X is path connected, this has a preferred splitting. — Similar remarks
apply to KC(X) .

Remark 1.1.3. It is mildly wrong but very convenient to confuse a vector
bundle p : E → X with its total space E . This convention is much used by
Atiyah (not so much by Adams, who would normally write something like
ξ : Eξ → X). I will try to follow the Atiyah convention when it is not too
confusing. The previous remark illustrates that! For example E × Rm is (if
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we are totally honest) the total space of a certain vector bundle on X which
we make from E→ X ; you are supposed to guess the details.

Although we are generally happy to assume that “all” spaces X are CW-
spaces, it is not a good idea to assume that they are all compact. The above
definition of KR(X) and KC(X) would make sense for a noncompact X , but
it is not the agreed definition in such a case. We will give a better (more
correct) definition for noncompact X later.

Exercise 1.1.4. Compute KR(S
1) and KC(S

2) using bare hands.

1.2. Spherical fibrations

Definition 1.2.1. A spherical fibration on a space X is a fibration E → X
where each fiber Ex is homotopy equivalent to a sphere, Sn−1 , for some n
(which may depend on x ∈ X).

Definition 1.2.2. The join U ∗ V of two spaces U and V is the space
obtained from the topological disjoint union

U q (U× [0, 1]× V) q V

by making the identifications (u, 0, v) ∼ u and (u, 1, v) ∼ v for u ∈ U and
v ∈ V . In particular Sm−1 ∗ Sn−1 is homeomorphic to Sm+n−1 .

Definition 1.2.3. The Whitney sum (more descriptively, the fiberwise join)
of two spherical fibrations E → X and E ′ → X is the spherical fibration
E ⊕ E ′ → X obtained by taking the fiberwise join of E and E ′ , so that the
fiber of E⊕ E ′ over x ∈ X is identified with the join Ex ∗ E ′x .

Exercise 1.2.4. E⊕ E ′ → X in the previous definition is indeed a spherical
fibration.

In the case of spherical fibrations on X , the appropriate equivalence re-
lation is fiberwise homotopy equivalence. More generally, if p : E → X and
q : E ′ → X are fibrations, then we say that they are fiberwise homotopy
equivalent if there exist maps

u : E→ E ′ , v : E ′ → E

such that qu = p and pv = q and vu , uv are homotopic to the respective
identity maps by homotopies which are over X . (For example in the first
homotopy required, (ht : E → E)t∈[0,1] from vu to idE , each map ht must
satisfy pht = p .) Here is a “funny” lemma related to this concept.

Lemma 1.2.5. Let p : E→ X and q : E ′ → X be fibrations, where E, E ′ and
X are all homotopy equivalent to CW-spaces. Let f : E → E ′ be a map over
X. Then the following are equivalent:
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(i) f is a homotopy equivalence;
(ii) f is a fiberwise homotopy equivalence;

(iii) For every x ∈ X, the restriction Ex → E ′x of f is a homotopy equiva-
lence.

In Adams’ paper On the groups J(X) - I, this is described as Dold’s theorem
(in the case where the fibers are homotopy equivalent to spheres). I found
this disturbing since it looks like a profoundly “formal” statement. (I would
not have been disturbed if Adams had attributed it to Bourbaki.) But let’s
see whether we can prove it using formal arguments only.

Proof. Clearly (ii) ⇒ (iii). Also (iii) implies (i) using the long exact sequence
of homotopy groups of a fibration and JHC Whitehead’s theorem relating
homotopy groups to homotopy equivalences. Therefore the only interesting
part is the implication (i) ⇒ (ii).

Let map(E, E ′) be the space of maps from E to E ′ and let mapX(E, E
′) be

the subspace of map(E, E ′) consisting of those maps f : E→ E ′ which satisfy
qf = p . I will also need map(E, E) and mapX(E, E) , etc. Mutatis mutandis.
There is a commutative diagram of mapping spaces

mapX(E, E)
inc. // map(E, E)

p◦ // map(E, X)

mapX(E
′, E)

◦f

OO

inc. // map(E ′, E)

◦f

OO

p◦ // map(E ′, X)

◦f

OO

where the rows are fibration sequences. (This is supposed to mean that the
horizontal arrows on the right are fibrations, and the horizontal arrows on the
left are the inclusions of the fibers over the base point, which is p ∈ map(E, X)
for the top row and q ∈ map(E ′, X) for the bottom row.) Now assumption (i)
implies that the vertical arrows in the middle and to the right of the diagram
are homotopy equivalences, and it follows (using long exact sequences of
homotopy groups and JHC Whitehead) that the vertical arrow on the left
is a homotopy equivalence. In particular there exists g ∈ mapX(E

′, E) such
that g◦f = gf is in the same path component of mapX(E, E) as idE . In other
words, g : E ′ → E is a fiberwise left homotopy inverse for f . Repeating this
argument with g instead of f (interchanging the roles of E and E ′ , we can
find a fiberwise left homotopy inverse for g (and there is also a silly formal
argument showing that this is fiberwise homotopic to f). �

Exercise 1.2.6. Is there anything wrong or incomplete with this sketch
proof, and if so, how would you repair it?
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Exercise 1.2.7. Suppose that E → B is a fibration. Let f0, f1 : X → B
be two maps which are homotopic. Show that f∗0E and f∗1E are fiberwise
homotopy equivalent.

Remark 1.2.8. Although I suggested it is sometimes alright to confuse a
vector bundle with its total space, I do not recommend using the word fibra-
tion to mean fibration sequence or homotopy fiber sequence. Somebody whose
authority I do not want to question has told me that this is unacceptable.
A fibration sequence (or homotopy fiber sequence) is a diagram involving
two composable arrows, and perhaps additional structures or conditions. A
fibration is a single map with a good property.

1.3. The groups J(X)

For a compact Hausdorff space X , the fiberwise homotopy equivalence classes
of spherical fibrations on X form an abelian monoid (with neutral element)
under Whitney sum.

Definition 1.3.1. Let KF(X) be the Grothendieck group of this abelian
monoid. (Here the subscript F is meant to remind us of fibrations — it is
not another funny field.)

Remark 1.3.2. If X is a compact CW-space, then for every spherical fibra-
tion E → X there exists another spherical fibration E ′ → X such that the
Whitney sum E⊕E ′ (fiberwise join of E and E ′ ) is fiberwise homotopy triv-
ial. (The proof will be given later.) It follows that we can define an abelian
group

K̃F(X)

whose elements are the stable fiberwise homotopy equivalence classes of
spherical fibrations on X , and where the addition is Whitney sum (fiber-
wise join). This is analogous to remark 1.1.2. Then, if X is nonempty, there
is a short exact sequence

Z → KF(X) → K̃F(X).

A real finite dimensional vector bundle E→ X on (a paracompact space)
X determines a spherical fibration in one of several equivalent ways. The
fastest way is to delete the zero section from E ; the result is

Er (zero section) −→ X

which is a fiber bundle with fibers homeomorphic to Rn r {0} for some n .
Since Rn r {0} is homotopy equivalent to Sn−1 , this is good enough as a
spherical fibration. (It seems I have to assume that X is paracompact because
it is a nontrivial theorem that a fiber bundle over a paracompact base space
is a fibration.) An alternative is to equip E with a fiberwise scalar product
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(again I am using paracompactness of X for this) and to replace E by its
unit sphere bundle S(E) → X ; so that for x ∈ X , the fiber of S(E) → X over
x is the unit sphere of the vector space Ex . Although it does not make a big
difference (the two variants are fiberwise homotopy equivalent), the second
method has the following advantage:

S(E⊕ E ′) ∼= S(E)⊕ S(E ′).
That is, the unit sphere bundle of a Whitney sum of vector bundles E, E ′ is
identified with the Whitney sum (=fiberwise join) of the unit sphere bundles
of E and E ′ . Therefore this procedure E 7→ S(E) determines a homomor-
phism

KR(X) −→ KF(X).

Definition 1.3.3. (Atiyah, Adams, early 1960s.) Let J(X) be the image of
this homomorphism of abelian groups.

Remark 1.3.4. If X is a compact nonempty CW-space, we have a short
exact sequence

Z −→ J(X) −→ J̃(X)

in the style of remarks 1.1.2 and 1.3.2. Here J̃(X) is the image of

K̃R(X) → K̃F(X).

1.4. Universal vector bundles

Let GrmR(p, q) , or Grm(p, q) for short, be the space of p-dimensional lin-
ear subspaces of Rp+q . It is named after Grassmann. For the topology, I
like to think of Grm(p, q) as a subspace of the vector space of symmetric
real (p+ q)× (p+ q)-matrices: those which are idempotent and have rank
p . (That is to say, a p-dimensional linear subspace of Rp+q determines a
linear projection, which we view as a linear map from Rp+q to Rp+q ; it is
idempotent, has rank p and is self-adjoint with respect to the standard scalar
product.)

Proposition 1.4.1. For CW-spaces of dimension < q, there is a natural
bijection from the set of isomorphism classes of p-dimensional vector bundles
on X to [X,Grm(p, q)].

Proof. The trivial vector bundle Grm(p, q)×Rp+q on Grm(p, q) has a well-
known vector subbundle E consisting of the elements

(V,w) ∈ Grm(p, q)× Rp+q

which satisfy w ∈ V . This is the tautological vector bundle on Grm(p, q) .
It gives us a natural map

[X,Grm(p, q)] −→ {iso. classes of p-dim. vect. bundles on X}
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which takes the homotopy class of f : X → Grm(p, q) to the isomorphism
class of the vector bundle f∗E on X . Now we need to show that this map is
a bijection for dim(X) < q .

So let W → X be any p-dimensional vector bundle on X . For each x ∈ X ,
the space LWx of linear injections from the vector space fiber Wx to Rp+q
is easily seen to be (q − 1)-connected. Therefore the fiber bundle LW → X
with fiber LWx over x ∈ X admits a section and that is unique up to vertical
homotopy. Having such a section amounts to identifying W with a vector
subbundle of the trivial vector bundle X × Rp+q . In this way we get a map
from the set of isomorphism classes of p-dimensional vector bundles on X to
the set [X,Grm(p, q)] . It is clearly inverse to the other one. �

Let Grm(p,∞) be the direct limit (for q → ∞) or union of the spaces
Grm(p, q) with the direct limit topology, where we interpret Rp+q as Rp×Rq
and use the standard inclusions Rq → Rq+1 . The tautological vector bundles
on Grm(p, q) for varying q are compatible so that we can view the union
of their total spaces as the total space of a p-dimensional vector bundle on
Grm(p,∞) . This is still called the tautological vector bundle on Grm(p, q) .

Exercise 1.4.2. For a compact CW-space X , a continuous map from X to
Grm(p,∞) will always have image contained in Grm(p, q) for some q .

Corollary 1.4.3. For a compact CW-space X, the set of isomorphism classes
of p-dimensional real vector bundles on X is in natural bijection with the set
of homotopy classes [X,Grm(p,∞)].

Exercise 1.4.4. Show this is also valid for an arbitrary CW-space X .

We express the corollary informally by saying that the tautological vector
bundle on Grm(p,∞) is a universal p-dimensional vector bundle; and also
by saying that Grm(p,∞) is a classifying space for p-dimensional vector
bundles.

Let Grm(∞,∞) be the direct limit (for p → ∞) or union of the spaces
Grm(p,∞) , using the standard inclusions Rp → Rp+1 .

Corollary 1.4.5. For a compact connected CW-space X, there is a natural
bijection between the set of stable isomorphism classes of vector bundles on
X, also known as K̃R(X), and the set

[X,Grm(∞,∞)].

We express this corollary informally by saying that Grm(∞,∞) is a classi-
fying space for stable real vector bundles. (But there is no universal “stable”
vector bundle in this case.)
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Similar considerations apply to complex vector bundles. Later we will often
write BO(p) instead of GrmR(p,∞) and BO instead of GrmR(∞,∞) and
BU(p) instead of GrmC(p,∞) and BU instead of GrmC(∞,∞) . This has
something to do with different ways of constructing these classifying spaces.

1.5. Technical points about fibrations

Example 1.5.1. The property of being a fibration is not invariant under
fiberwise homotopy equivalence. Here is an example. Let α : [0, 1] → [0, 1] be
the identity map (a fibration). Let E := { (x, y) ∈ R2 | x, y ∈ [0, 1], xy = 0 } .
The projection β : E → [0, 1] , where β(x, y) = x , is not a fibration. But it
is easy to see that α and β are fiberwise homotopy equivalent.

As an answer to many prayers prompted by this disturbing (counter)exam-
ple, Dold introduced the concept of a weak fibration (and the weak homotopy
lifting property, WHLP, which he calls WCHP as in weak covering homotopy
property).

Definition 1.5.2. A map γ : E → B is a weak fibration, or has the WHLP,
if the following holds. For every map f : X→ E and homotopy

(ht : X→ B)t∈[0,1]

which satisfies h0 = γf and which is stationary near t = 0 , there exists
a homotopy (Ht : X → E)t∈[0,1] such that H0 = f and γHt = ht for all
t ∈ [0, 1] .

Stationary near t = 0 means that ht = h0 for all t in some interval [0, ε] ,
where ε > 0 . So in the WHLP, we allow only homotopy lifting problems
where the homotopy to be lifted is stationary at first, leaving a time interval
[0, ε] in which f can be adjusted by a vertical homotopy before the more
serious homotopy lifting begins.

Let’s note that the pullback of a weak fibration (along a map to the base
space) is again a weak fibration.

Exercise 1.5.3. Show that if u : E→ B and v : E ′ → B are fiberwise homo-
topy equivalent (over B) and one of them has the WHLP, then the other has
the WHLP.

In particular, β in example 1.5.1 has the WHLP.

Exercise 1.5.4. Let E → B and E ′ → B be any maps and let f : E → E ′

be a map over B which is a fiberwise homotopy equivalence. The mapping
cylinder cyl(f) of f comes with a canonical projection map to B× [0, 1] , the
mapping cylinder of id : B→ B . Show that cyl(f) as a space over B× [0, 1]
is fiberwise homotopy equivalent to E× [0, 1] .

Corollary : if E → B is a weak fibration in the above circumstances, then
so is cyl(f) → B× [0, 1] .



8

The WHLP is so close to the HLP that many of the standard consequences
of the HLP can also be deduced from the WHLP. For example, if u : E→ B
is a weak fibration and ∗ ∈ E and Y = u−1(u(∗)) is the fiber over u(∗) ∈ B ,
then πk(E, Y; ∗) ∼= πk(B;u(∗)) for all k .

Theorem 1.5.5. The WHLP is a local property for paracompact base spaces.
(In more detail, if f : E → B is a map where B is paracompact, and B has
an open covering (Ui)i∈Λ such that the restrictions f−1(Ui) → Ui have the
WHLP, then f itself has the WHLP.)

Dold proves this (and the analogous statement for the HLP) in Partitions
of unity in the theory of fibrations (Annals of Math. 78 (1963)). It looks
like a long (although self-contained) proof, and I propose that we accept the
statement.

Example 1.5.6. Let

X

��

Y
uoo

��

v // Z

��
A B

p
oo

q
// C

be a commutative diagram of spaces and maps where A,B,C are CW-spaces
and the maps p, q are cellular. Suppose that the vertical maps are weak
fibrations and that the maps

Y → p∗X, Y → q∗Z

determined by the diagram are fiberwise homotopy equivalences. Let I =
[−1, 1] for this example. I write A ∪p (B × I)q ∪ C for the double mapping
cylinder (points in B× {−1} ∼= B are identified with their values in A under
p and points in B × {1} are identified with their values in C underq). We
cannot be certain that the induced map

X ∪u (Y × I)v ∪ Z
α

��
A ∪p (B× I)q ∪ C

is again a weak fibration, but it is very close to that. Let ϕ : I → I be
defined by t 7→ −1 for t < −1/2 , t 7→ 1 for t > 1/2 and t 7→ 2t for
−1/2 ≤ t ≤ 1/2 . Let f : A ∪p (B × I)q ∪ C → A ∪p (B × I)q ∪ C be the
identity on A and C and take elements of the form (b, t) where b ∈ B to
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(b,ϕ(t)) . Make a pullback square

f∗(X ∪u (Y × I)v ∪ Z)

f∗α
��

// X ∪u (Y × I)v ∪ Z
α

��
A ∪p (B× I)q ∪ C

f // A ∪p (B× I)q ∪ C

Now the composite map from upper left to lower right is a weak fibration.
(This can be deduced from Dold’s locality theorem 1.5.5. Use the open
covering of A∪p (B× I)q ∪C by two open subsets A∪p (B× [−1, 1/2)) and
(B× (−1/2, 1]) ∪q C .) )

Let’s use all this to prove a useful homotopy theoretic statement which is
sometimes called the theorem of the cube (or similar - can’t remember the
precise name). It is really just a formal way to express what we have just
seen in example 1.5.6. Again let

X

��

Yoo

��

// Z

��
A B

p
oo

q
// C

be a commutative diagram of spaces and maps where all spaces shown are
homotopy equivalent to CW-spaces. (It follows that the homotopy fibers of
the vertical maps are also homotopy equivalent to CW-spaces. This will play
a role. Consult Milnor’s wonderful article On spaces having the homotopy
type of a CW-complex.) We assume in addition that the horizontal arrows
in the right-hand square are cofibrations. This implies that the union XtY Z
has somewhat predictabe homotopy and homology properties — for example
there is long exact Mayer-Vietoris sequence relating the homology groups of
X, Y, Z and X tY Z . A similar remark applies to A tB C .

Theorem 1.5.7. Suppose in addition that the left-hand and right-hand square
in the diagram above are homotopy pullback squares (see definition below).
Then the left-hand and right-hand square in

X

��

incl. // X tY Z

��

Zoo

��
A

incl. // A tB C Coo

are also homotopy pullback squares.
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Definition 1.5.8. Given a commutative square of spaces and maps

P
u //

v

��

Q

f
��

A
e // B

we obtain a map from P to the space

A×hBQ := {(y,ω, z) ∈ A×map([0, 1], B)×Q | ω(0) = e(y), ω(1) = f(z)}

by x 7→ (u(x),ωx , v(x)) where ωx is the constant path in B with value
ev(x) = fu(x) . If that map is a homotopy equivalence, then we say that the
square is a homotopy pullback square. In the case where all spaces involved
are CW-spaces, that condition is equivalent to each of following:

• For each z ∈ Q , the homotopy fiber of P → Q over z maps by
a homotopy equivalence to the homotopy fiber of A → B over the
image of z .
• For each y ∈ A , the homotopy fiber of P → A over y maps by

a homotopy equivalence to the homotopy fiber of Q → B over the
image of y .

This is probably easier to remember, although less symmetrical. So infor-
mally, a square is homotopy pullback square if the left-hand vertical homo-
topy fibers map by homotopy equivalences to the corresponding right-hand
vertical homotopy fibers. (Equivalently: the upper horizontal homotopy
fibers map by homotopy equivalences to the corresponding lower horizon-
tal homotopy fibers.)

Exercise 1.5.9. Here are a few examples which illustrate the power of the
theorem well, although at the same time they underline how obvious it is.
(Forgive if you have seen these examples; I tend to over-sell them.)

(i) By taking A = C = RP∞ and B = point, and by making inspired
choices of X, Y, Z etc., show that the free product Z/2 ∗ Z/2 (a non-
commutative group) fits into a short exact sequence of groups and
homomorphisms Z → Z/2 ∗ Z/2→ Z/2 .

(ii) By taking A = C = CP∞ and B = point, and by making inspired
choices of X, Y, Z etc., show that πk(CP∞∨CP∞) ∼= πk(S

2) for k ≥ 3 ,
whereas π2(CP∞ ∨ CP∞) ∼= Z⊕ Z .

(iii) Returning to (i): can you make a similar statement for the free prod-
uct Z/2 ∗ Z/2 ∗ Z/2 ?

Helpful remark (which could even spoil the exercise). The construction which
to a diagram U→ V →W of spaces associates the space U∪VW is homotopy
invariant if the second arrow, V →W , is a closed cofibration. The preferred
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interpretation of homotopy invariant is as follows. If we have a commutative
diagram

U

��

Voo

��

//W

��
U ′ V ′oo //W ′

(where the horizontal arrows on the right are closed cofibrations and) where
the vertical arrows are homotopy equivalences, then the induced map from
U ∪V W to U ′ ∪V ′ W ′ is again a homotopy equivalence.

Sketch proof of the theorem. (Do not read this sketch proof before you have
had a go at exercise 1.5.9.) We may assume that the vertical arrows in
the original diagram (with X, Y, Z and A,B,C) are fibrations. Then our
assumption on homotopy pullbacks means that the maps from Y to p∗X
and from Y to q∗Z are fiberwise homotopy equivalences (over B). We may
assume that A,B,C are CW-spaces and that p, q are cellular. We may drop
the cofibration assumptions but then, instead of using X tY Z and A tB C ,
we should use the double mapping cylinders as in example 1.5.6. So, as an
acceptable substitute for the diagram given in the theorem, we get

X

��

// f∗(X ∪u (Y × I)v ∪ Z)

��

Zoo

��
A // A ∪p (B× I)q ∪ C Coo

where the middle vertical arrow is the weak fibration which we found in
example 1.5.6. Here all the vertical arrows are weak fibrations and the lit-
tle squares are (strict) pullback squares, therefore also homotopy pullback
squares (!) by the weak fibration properties. �

Definition 1.5.10. Instead of double mapping cylinder, we also say homo-
topy pushout.

1.6. Simplicial spaces and the bar construction

The category ∆ has objects [n] = {0, 1, . . . , n} where n runs through the
non-negative integers; a morphism from [m] to [n] is an order-preserving
map from [m] = {0, 1, . . . ,m} to [n] = {0, 1, . . . , n} .

There is an important (covariant) functor from ∆ to the category of spaces
given by [n] 7→ ∆n where ∆n is the space of functions s from [n] to [0, 1]
such that Σi∈[n]s(i) = 1 . The value of s ∈ ∆n on i ∈ [n] is called the i-th
barycentric coordinate of s . (Little exercise: explain in detail how this is a
covariant functor.)
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A simplicial space is a contravariant functor X from ∆ to the category
of spaces. The geometric realization of such an X is the space |X| obtained
from the disjoint union ∐

n≥0

X[n]× ∆n

by making the identifications

X[m]× ∆m 3 (f∗z, s) ∼ (z, f∗s) ∈ X[n]× ∆n

for morphisms f : [m] → [n] in ∆ and z ∈ X[n] , s ∈ ∆m .
I assume that this is (somewhat) known. The geometric realization is

occasionally not well behaved and for such cases one has substitutes which are
typically bigger, but in some respects better behaved. Here is one substitute
which I shall denote by ‖X‖ . The fat realization ‖X‖ of a simplicial space X
is obtained from the disjoint union∐

n≥0

X[n]× ∆n

by making the identifications

(f∗z, s) ∼ (z, f∗s)

only for injective morphisms f : [m] → [n] in ∆ and z ∈ X[n] , s ∈ ∆m . (So
the construction ‖X‖ does not use any information about f∗ : X[n] → X[m]
for non-injective morphisms f : [m] → [n] in ∆ .) There is a quotient map
(identification map)

‖X‖→ |X|.

Exercise 1.6.1. Show that this quotient map has contractible point inverses.
(This suggests that it has a good chance to be a homotopy equivalence.

But it is not always a homotopy equivalence. G Segal, in Categories and
cohomology theories, Topology 13 (1974), gives the following sufficient con-
dition: if the maps f∗ : X[n] → X[m] associated with surjective morphisms
f : [m] → [n] in ∆ are always (closed) cofibrations, then ... it is a homotopy
equivalence.)

The geometric realization |X| has a formal k-skeleton: the image of∐
n≤k

X[n]× ∆n

in |X| under the defining identification map. Similarly, ‖X‖ has a formal k-
skeleton. (Most people use an expression like horizontal k-skeleton or vertical
k-skeleton, but it is always impossible to remember which of the two, so I
have decided to use the word formal instead.) Beware: the quotient map
‖X‖→ |X| restricts to a map from the formal k-skeleton of ‖X‖ to the formal
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k-skeleton of |X| , but that map is typically not a homotopy equivalence, even
if X is very well behaved. Think of that as a weakness of the fat realization.
There is a fix which I may mention later.

Exercise 1.6.2. Let g : X → Y be a map (= natural transformation) be-
tween simplicial spaces X and Y . Suppose that each g[n] : X[n] → Y[n] is a
homotopy equivalence (of ordinary spaces). Show that the map from ‖X‖ to
‖Y‖ determined by g is also a homotopy equivalence. (This gives meaning
to the vague statement the fat realization is always well behaved.)

Hint: not really difficult, but possibly tiresome. Induction over formal
skeletons might be a good idea. I found the following principle useful: a map
f : A → B of spaces is a homotopy equivalence iff the standard inclusion of
A into the mapping cylinder cyl(f) admits a strong deformation retraction.

Example 1.6.3. Let Q be a nonempty space and let X be the simplicial
space defined by X[n] := map([n], Q) . (You can also write X[n] = Qn+1 ,
but the description X[n] := map([n], Q) describes better how we think of
[n] 7→ X[n] as a contravariant functor from ∆ to spaces.) Then ‖X‖ is
contractible.

Sketch proof: choose a point z in Q . For each k ≥ 0 , the inclusion
of the formal k-skeleton of ‖X‖ into the formal (k + 1)-skeleton is nullho-
motopic. More precisely, if a point p in the formal k-skeleton of ‖X‖ has
coordinates (y0, y1, ..., y` ; t0, t1, . . . , t`) where ` ≤ k and y0, . . . , y` ∈ Q
and (t0, . . . , t`) ∈ ∆` r ∂∆` , then we can make path of the form

(y0, y1, ..., y`, z ; tt0, tt1, . . . , tt`, 1− t)

in the (k + 1)-skeleton, where t runs from 1 to 0 . This path takes us
from p to a point whose coordinate description, due to the relations in the
description of ‖X‖ , has the simple form (z ; 1) because it is in the formal
0-skeleton.

Definition 1.6.4. Let C be a small category. The nerve of C is the simplicial
set NC given (as a contravariant functor from ∆ to sets) by

[m] 7→ NmC := fun([m]op,C)

where fun([m]op,C) is the set of contravariant functors from [m] to C . Here
I need to explain that we can view [m] as a category: the objects are
0, 1, 2, . . . ,m , and the set mor(i, j) has exactly one element if i ≤ j , other-
wise none. Therefore a contravariant functor from [m] to C is exactly the
same thing as a diagram in C of the shape

c0 c1
f1oo c2

f2oo · · ·oo cm−1

fm−1oo cm
fmoo
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The map NqC → NpC induced by a morphism f : [p] → [q] in ∆ is obtained
by viewing f as a functor, and pre-composing with that functor.

The geometric realization of NC (fat or not) is denoted BC and is some-
times called the bar construction applied to C .

This construction is also available if C is a small category enriched in
spaces, which means that each morphism set mor(c, d) in C comes equipped
with a topology and composition of morphisms is continuous. In this case,
clearly, NmC (defined as above) also has the structure of a topological space
and NC as a whole becomes a simplicial space. Again the geometric realiza-
tion is denoted BC . In this case it can make a difference whether we use the
fat realization or the standard one.

The reasons for defining BC as we have done will only emerge gradually.
A confusing aspect of the bar construction is that it has several uses. In the
early days, before 1970, everybody seemed to think that BC is useful as a
target: maps from other spaces to BC have interesting interpretations. After
1970, this was forgotten to some extent and instead most people seemed to
think that BC is useful as a source: maps from BC to other spaces have
interesting interpretations. But here we take the old-fashioned view; so we
look for interesting interpretations of maps from (other) spaces to BC .

Example 1.6.5. Let Q be a topological monoid with neutral element ∗ .
This means that Q is a topological space with a base point ∗ , and that it
comes with a map µ : Q×Q→ Q (a “multiplication”) which has ∗ as a two-
sided neutral element and is associative. Then we can view Q as a category
enriched in spaces. This category has only one object, call it e ; the space of
morphisms mor(e, e) is Q and the identity morphism ide is the base point
∗ ∈ Q . Composition of morphisms is given by the multiplication µ , so that
f ◦ g := µ(f, g) . For the nerve of this enriched category we write simply NQ
and we write BQ for |NQ| or for ‖NQ‖ .

For example, NkQ = Q×Q× · · · ×Q×Q (k factors) and the injective
morphism [5] → [6] in ∆ which omits the element 3 induces a map from
N6Q to N5Q which is given by

(q1, q2, . . . , q5, q6) 7→ (q1, q2, q3q4, q5, q6)

where q3q4 must be decoded using the multiplication in Q . The injective
morphism [5] → [6] in ∆ which omits the element 6 induces a map from
N6Q to N5Q given by

(q1, q2, . . . , q5, q6) 7→ (q1, q2, q3, q4, q5).

The injective morphism [5] → [6] in ∆ which omits the element 0 induces
a map from N6Q to N5Q given by (q1, q2, . . . , q5, q6) 7→ (q2, q3, q4, q5, q6) .
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The surjective morphism g : [6] → [5] in ∆ which takes the value 3 twice in-
duces a map N5Q→ N6Q given by (q1, q2, . . . , q5) 7→ (q1, q2, q3, ∗ , q4, q5) .

Example 1.6.6. This is a variation on the previous example where we start
with a monoid Q and a left action of Q on a space T . Let N(Q; T) be the
simplicial space which takes the object [k] of ∆ to

Nk(Q; T) = Qk × T = Q×Q× · · · ×Q×Q× T.
Instead of defining the induced maps properly, I will give a few special cases.
The injective morphism [5] → [6] in ∆ which omits the element 3 induces a
map from N6(Q; T) to N5(Q; T) which is given by

(q1, q2, . . . , q5, q6, t) 7→ (q1, q2, q3q4, q5, q6, t).

The injective morphism [5] → [6] in ∆ which omits the element 6 induces a
map from N6(Q; T) to N5(Q; T) given by

(q1, q2, . . . , q5, q6, t) 7→ (q1, q2, q3, q4, q5, q6t)

where q6t must be decoded using the left action of Q on T . The injective
morphism [5] → [6] in ∆ which omits the element 0 induces a map from
N6Q to N5Q given by (q1, q2, . . . , q5, q6, t) 7→ (q2, q3, q4, q5, q6, t) . The
surjective morphism g : [6] → [5] in ∆ which takes the value 3 twice induces
a map N5Q→ N6Q given by (q1, q2, . . . , q5, t) 7→ (q1, q2, q3, ∗ , q4, q5, t) .

(This construction can almost be viewed as a special case of definition 1.6.4.
The monoid Q and the action of it on T allow us to construct a category C

where an object is an element of T and a morphism from t ∈ T to t ′ ∈ T is
an element q ∈ Q such that t ′ = qt . Then N(Q; T) is NC , if we disregard
the topologies. To get the topologies right, we would have to view C as a
category with a space of objects T . This goes slightly beyond the concept of
a category enriched in spaces. Let’s not go into that.)

Theorem 1.6.7. Suppose that the topological monoid Q is grouplike (see
definition below) and homotopy equivalent to a CW-space.

(i) Then there is a homotopy fiber sequence T → B(Q; T) → BQ.
(ii) Take T := Q with the action of Q by left translation. Then B(Q;Q)

is contractible.
(iii) In the situation of (ii), the map π1(BQ) → π0(Q) from the long

exact sequence of homotopy groups associated with the homotopy fiber
sequence of (i) is an isomorphism of groups.

Definition 1.6.8. A topological monoid Q (with neutral element ∗) is grou-
plike if one of the following equivalent conditions is satisfied:

(i) for every x ∈ Q , left multiplication by x is a homotopy equivalence
from Q to Q ;



16

(ii) for every y ∈ A , right multiplication by y is a homotopy equivalence
from Q to Q ;

(iii) the monoid structure on π0Q determined by the monoid structure on
Q makes π0Q into a group.

Exercise 1.6.9. Prove that the three conditions in 1.6.8 are equivalent.

Sketch proof of thm 1.6.7 part (i). We use the fat version of geometric re-
alization throughout this proof. — There is an obvious projection map
N(Q; T) → N(Q; ∗) = NQ which induces a map of geometric realizations
B(Q; T) → BQ . The fiber of that over the base point (the unique element of
N0Q × ∆0 ⊂ BQ) is precisely N0(Q; T) = T . So we have to show that, for
the projection map

B(Q; T) → BQ ,

the inclusion of the fiber over the base point (which is T ) in the homotopy
fiber over the base point is a homotopy equivalence.

It is enough to show that, for every k ≥ 0 , for the projection map

formal k-skeleton of B(Q; T) −→ formal k-skeleton of BQ

the inclusion of the fiber over the base point (which is T ) in the homotopy
fiber over the base point is a homotopy equivalence. We proceed by induction
on k . The induction beginning is the case k = 0 and this is obvious. The
induction step is an application of theorem 1.5.7. We apply it with

X = formal k-skeleton of B(Q; T)

Y = Nk+1(Q; T)× ∂∆k

Z = Nk+1(Q; T)× ∆k

A = formal k-skeleton of BQ

B = Nk+1Q× ∂∆k

C = Nk+1Q× ∆k.

The inductive assumption tells us what the homotopy fiber of the projection
from X to A (over the base point) is — briefly, it is the fiber, T — and
so allows us to verify that the conditions in theorem 1.5.7 are satisfied. The
conclusion of the theorem is that the homotopy fiber of XtYZ→ AtBC over
the base point is still the same thing, the fiber T . But AtBC is precisely the
formal (k+1)-skeleton of BQ and XtYZ is precisely the formal k+1-skeleton
of B(Q; T) . �

Exercise 1.6.10. Where did this sketch proof use the assumption that Q
is grouplike? (Hint: the first induction step, from k = 0 to k = 1 , is more
serious than the later steps because ∂∆1 is not path connected. Verify how
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this step fails when Q is not grouplike; for example Q could be the discrete
monoid N = {0, 1, 2, . . . , } with the usual addition.)

Sketch proof of thm 1.6.7 part (ii). We compare the simplicial space N(Q;Q)
with the simplicial space X of example 1.6.3 which has X[n] = map([n], Q)
(using the same Q). There is a map N(Q;Q) → X (natural transformation
between contravariant functors ...) given at the object [m] of ∆ by

(q0, q1, . . . , qm) 7→ (q0q1 · · ·qm, q1q2 · · ·qm, · · · , qm−1qm, qm).

The grouplike condition (plus homotopy equivalent to CW-space) should (!)
imply that this is a homotopy equivalence for every m ≥ 0 . Then exer-
cise 1.6.2 applies to show B(Q;Q) ' ‖X‖ and example 1.6.3 tells us that
‖X‖ is contractible. �

Corollary 1.6.11. We have πk(BQ) ∼= πk−1(Q) (group isomorphism) for
k > 0 (and π0(BQ) is a singleton).

Remark. Both BQ and Q have preferred base points (which should be
indicated when we write about homotopy groups ... but have not been indi-
cated for the sake of brevity).

Proof. The homotopy fiber sequence Q → B(Q;Q) → BQ determines a
long exact sequence of homotopy groups. Since B(Q;Q) is contractible, this
collapses to a collection of bijections from πk(BQ) to πk−1(Q) for k > 0 .
These bijections are automatically group isomorphisms for k > 1 , because
that is part of the long-exact-sequence-of-homotopy-fiber-sequence package.
If k = 1 , we still have a group structure on π0(Q) (since Q is a grouplike
topological monoid). It can be verified manually that the boundary map
π1(BQ) → π0(Q) is not just a bijection, but an isomorphism in this case,
too. �

Example 1.6.12. If Q is a discrete group (i.e., a group with the discrete
topology), then clearly πk(Q) is trivial for k > 0 . Therefore we get

π1(BQ) ∼= Q

and πk(BQ) is trivial for all k 6= 1 .

Sketch proof of thm 1.6.7 part (iii). Each element g ∈ Q determines an ele-
ment of π1(BQ) as follows. The formal 1-skeleton of BQ (fat realization for
simplicity) is the quotient space of Q× ∆1 obtained by collapsing Q× ∂∆1
to a single point. Therefore every g ∈ Q determines a loop ∆1 → BQ by
x 7→ (g, x) ∈ Q× ∆1/ ∼ ↪→ BQ . This gives a map

λ : π0(Q) −→ π1(BQ).

It is easy to check that λ is a homomorphism. It is easy to check the the com-
position of λ with the map π1(BQ) → π0(Q) from the long exact sequence
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is the identity map. Exactness of the long exact sequence, together with con-
tractibility of the total space B(Q;Q) , also implies that π1(BQ) → π0(Q) is
injective. (This requires some good understanding of what exactness at the
end of the sequence means.) �

1.7. Monoids of homotopy automorphisms

Let T be a compact CW -space. The set of maps map(T, T) is a topological
space with the compact-open topology. Let QT ⊂ map(T, T) be the subspace
consisting of all f : T → T which are homotopy equivalences (which admit an
inverse up to homotopy). Composition of maps makes QT into a grouplike
topological monoid with neutral element idT ∈ QT . This monoid comes with
an obvious left action on T given by evaluation.

Theorem 1.7.1. The space BQT is a classifying space for fibrations with
fibers homotopy equivalent to T . More precisely, for compact CW-spaces X
there is a natural bijection

[X,BQT ] // {fibrations E→ X where all fibers are ' T }
fiber homotopy equivalence

where [X,BQT ] is the set of homotopy classes of maps from X to BQT .

Proof. The map in the theorem is easy to describe. From the previous section
we have a projection map

p : B(QT ; T) → BQT .

We can use the Serre construction to factorize this as follows,

B(QT ; T) ↪→ B(QT ; T)
] p]−→ BQT

so that the second arrow is a fibration and the first arrow is a homotopy
equivalence. By theorem 1.6.7, the fibers of the right-hand map are all ho-
motopy equivalent to T . (It is enough to check this for the fiber over the
base point since BQT is path connected.) So

p] : B(QT ; T)
] −→ BQT

is a fibration with all fibers ' T . Now suppose that X is a compact CW-
space and g : X→ BQT is any map. Then the pullback g∗p] is a fibration on
X with fibers ' T . Moreover, if g0, g1 : W → BQT are homotopic, then g∗0p

]

and g∗1p
] are fiberwise homotopy equivalent as fibrations on X (an exercise

of long long ago). Therefore

(∗) [g] 7→ fiber homotopy equivalence class of g∗p]
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is a well defined map. This is the map which the theorem refers to.
In order to be able to show that (∗) is a bijection for every X , we make

a few observations of a technical nature. (They have much in common with
an argument used in the proof of proposition 1.4.1.)

(i) The space of maps g : T → B(QT ; T) which map T by a homotopy
equivalence to a single fiber of B(QT ; T) → BQT is contractible.

(ii) The space of maps g : T → B(QT ; T)
] which map T by a homotopy

equivalence to a single fiber of B(QT ; T)
] → BQT is contractible.

(iii) Every commutative diagram

Sk−1 × T
proj

��

// B(QT ; T)
]

��
Sk−1 // BQT

which restricts to homotopy equivalences of the (vertical) fibers ad-
mits an extension as indicated, still commutative:

Dk × T
proj

��

// B(QT ; T)
]

��
Dk // BQT

(iv) For any weak fibration E→ Dk with fibers ' T , every commutative
diagram

E|Sk−1

proj
��

// B(QT ; T)
]

��
Sk−1 // BQT

which restricts to homotopy equivalences of the (vertical) fibers ad-
mits an extension as indicated, still commutative:

E

proj

��

// B(QT ; T)
]

��
Dk // BQT
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Proof of (i): That space of maps is just B(QT ;QT) .
Proof of (ii): we have a commutative square

B(QT ;QT) = that space in (i) //

��

that space in (ii)

��

BQT BQT

The fiber of the left-hand map over the base point of BQT is QT and we
showed that the inclusion of that fiber into the corresponding homotopy fiber
is a homotopy equivalence. The right-hand map is a fibration whose fiber over
the base point of BQT is identified with the space of homotopy equivalences
from T to the fiber of B(QT ; T)

] → BQT . Since the fiber of B(QT ; T)
] → BQT

contains T , and the inclusion of T in that fiber is a homotopy equivalence, we
can say that the fiber (also homotopy fiber) of the right-hand map is again
identified (up to homotopy equivalence) with QT . It follows that the left-
hand vertical homotopy fiber over the base point maps by a weak homotopy
equivalence to the right-hand homotopy fiber over the base point, i.e., that
square is a homotopy pullback square. Therefore the top horizontal arrow is
a homotopy equivalence. Therefore the top right-hand term is contractible.
Proof of (iii): this is just another way to say that every map from Sk−1 to
“that space in (ii)” extends to Dk ; and it is true because that space in (ii)
is contractible.
Proof of (iv): this should follow from (iii) because E → Dk is fiberwise
homotopy equivalent to a trivial bundle Dk × T → Dk . (Details left to the
gentle reader.)

Now we return to the map (∗) in order to show that it is surjective. Let
E → X be a fibration with fibers ' T , where X is a compact CW-space.
Suppose that X has r cells, r ≥ 0 . We want to prove by induction on r that
there exists a map g : X → B(QT ; T) and a fiberwise homotopy equivalence
of g∗p] with E (over X). Equivalently, we want to show that there exists a
commutative diagram

♥

E //

��

B(QT ; T)
]

��
X // BQT

where the top horizontal arrow restricts to homotopy equivalences between
corresponding (vertical) fibers. Therefore suppose that X = X ′∪ϕ(Dk) where
X ′ is a CW-subspace of X with only r − 1 cells, and ϕ is a characteristic
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map (from Dk to X) for the missing cell. Write E ′ for the restriction of E to
X ′ and E ′′ for ϕ∗E . By inductive assumption, there exists a commutative
square

♠

E ′ //

��

B(QT ; T)
]

��
X ′ // BQT

where the top horizontal map restricts to homotopy equivalences between
corresponding vertical fibers. We can enlarge that to

♣

(∂ϕ)∗E ′ //

��

E ′ //

��

B(QT ; T)
]

��
Sk−1

∂ϕ // X ′ // BQT

where ∂ϕ is the restriction of ϕ to Sk−1 . If we delete the middle column,
then we are in the situation of (iv) just above, although E in (iv) is now
called E ′′ and we should note that

E ′′|Sk−1 = (∂ϕ)∗E ′.

Therefore the (composed) horizontal arrows in ♣ admit extensions to Dk

and E ′′ respectively, as in (iv). Using these extensions together with the
horizontal arrows in ♠ , we obtain the horizontal arrows in ♥ . This proves
the surjectivity of (∗) .

The proof of injectivity is similar, except for a small additional precaution
that we need to take. Suppose that g0 and g1 are two maps from X to BQT

such that the fibrations g∗0p
] and g∗1p

] are fiberwise homotopy equivalent.
Does it follow that there is a fibration on the CW-space X × [0, 1] whose
restriction to X × {0} ∼= X is fiberwise homeomorphic to g0p

] and whose
restriction to X× {1} ∼= X is fiberwise homeomorphic to g1p

] ? This may not
be easy to arrange, but if we are content with a weak fibration on X× [0, 1]
having these specified restrictions over X×{0} and X×{1} , then we know that
the answer is yes. So let E→ X× [0, 1] be such a weak fibration. As in the
proof of surjectivity of (∗) , we can now construct maps from X×[0, 1] to BQT

and from E to B(QT ; T)
] , compatibly, and already prescribed on/over X× {0}

and X× {1} . We proceed in steps, one step for each cell of X× [0, 1] which
is not in X× {0, 1} . At the end, we have in particular a map from X× [0, 1]
to BQT which restricts to g0 on X× {0} and to g1 on X× {1} . This shows
that g0 and g1 are homotopic, and so achieves the proof of injectivity. �

Remark 1.7.2. There is a variant of theorem 1.7.1 for based maps, but it is
slightly more complicated. Let X be a compact CW-space with base point
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∗ which we assume to be a 0-cell. Then there is a natural bijection

[X,BQT ]∗ −→ {fibrns. E→ X , fibers ' T , fiber over ∗ trivialized}

fiber homotopy equivalence respecting triv. over ∗
.

Here [X,BQT ]∗ is the set of based homotopy classes of based maps from X
to BQT . In more detail: in the right-hand side we allow fibrations p : E→ X
where all fibers are homotopy equivalent to T , but where in addition a map
u : T → E has been selected which lands in the fiber p−1(∗) and amounts to
a homotopy equivalence from T to p−1(u) . By a fiber homotopy equivalence
respecting trivializations over ∗ between two such, say E → X and E ′ → X
with u : T → E and u ′ : T → E ′ , we mean a map f : E → E ′ over X which
is a fiberwise homotopy equivalence, together with a vertical homotopy from
fu to u ′ .

1.8. BG(n) and BG

Specializing the definitions and results of the previous section, let’s take
T = Sn−1 for some fixed n > 0 . It is customary to write G(n) instead of QT

in that case. So G(n) is the grouplike monoid of homotopy automorphisms
of Sn−1 . Then theorem 1.7.1 specializes to the following statement.

• BG(n) is a classifying space for fibrations with fibers homotopy equiv-
alent to Sn−1 ; so for any compact CW-space X , we have a natural
bijection relating [X,BG(n)] to the set of fiber homotopy equivalence
classes of fibrations on X with fiber Sn−1 .

We also obtain from theorem 1.6.7 and/or corollary 1.6.11:

πk(BG(n)) ∼= πk−1(G(n)) for all k > 0 .

Here it is important to remember that πk(BG(n)) is [Sk, BG(n)]∗ , not to
be confused with [Sk, BG(n)] . In terms of spherical fibrations, we have to
use the formulation of remark 1.7.2: so πk−1(G(n)) is in bijection with fiber
homotopy equivalence classes of fibrations E → Sk with fibers ' Sn−1 and
with a specified trivialization of the fiber over the base point ∗ ∈ Sk .
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Exercise 1.8.1. Let n be an even integer, n > 0 .
(i) The Euler class of oriented n-dimensional vector bundles on Sn gives

a homomorphism from πn(BSO(n) to Z . Is it surjective?
(ii) The standard action of π1(BO(n)) on πn(BO(n)) is nontrivial, so that

the forgetful map from πn(BO(n)) to [Sn, BO(n)] is not injective (although
clearly surjective).

(iii) The standard action of π1(BG(n)) on πn(BG(n)) is also nontrivial.

Taking join with the identity map of S0 determines a map from G(n)
(the space of homotopy automorphisms of Sn−1 ) to G(n + 1) (the space of
homotopy automorphisms of Sn ∼= Sn−1 ∗ S0 ). We tend to think of that as
an inclusion and write

G =
⋃
n>0

G(n)

for the union in that sense, with the direct limit topology (meaning that a
subset of G is considered closed if and only if its intersection with G(n) is
closed for all n). This implies for example that a continuous map from a
compact CW-space to G will always have image contained in G(n) for some
n , possibly large.

Since the inclusion G(n) → G(n + 1) is a map of monoids (a homomor-
phism), it induces an inclusion

BG(n) ↪→ BG(n+ 1).

Then we can write

BG =
⋃
n≥1

BG(n)

where the right-hand side has the direct limit topology (strictly speaking,
something to verify here).

• BG is a classifying space for stable spherical fibrations in the following
sense. For compact connected CW-spaces X there is a natural bijec-
tion between [X,BG] and the set of stable fiber homotopy equivalence
classes of spherical fibrations on X . In the notation of definition 1.3.1,
the set K̃F(X) is in natural bijection with [X,BG] .

(We have to insist on a connected CW-space X here because we
started with an interpretation of BG(n) as classifying space for fibra-
tions with fibers homotopy equivalent to Sn−1 , where n is fixed; i.e.,
strictly speaking not a classification of spherical fibrations on X if we
allow fibers ' Sn−1 with unspecified n .)
• πk(BG) = πk−1G.
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Exercise 1.8.2. π1(BG) ∼= Z/2 and the standard action of π1(BG) on
πk(BG) (for k ≥ 1) is trivial. Therefore πk(BG) can be identified with

[Sk, BG] , and also with K̃F(S
k) , and of course also with πk−1G.

The bijection K̃F(S
k) → πk−1G is actually an isomorphism of abelian

groups. (Remember that we used fiberwise join to make K̃F(S
k) into a group.)

The isomorphism K̃F(S
k) ∼= πk−1G (of abelian groups) prompts one more

remark. Let us write

Sn−1 = S0 ∗ S0 ∗ · · ·S0

(n−1 copies of S0 ) and let us fix one point in the first copy of S0 as the base
point, both for that copy of S0 and also for Sn−1 . Let G ′(n) ⊂ G(n) be the
sub-monoid consisting of the maps Sn−1 → Sn−1 which are invertible up to
homotopy and fix the base point. Now we have the following commutative
diagram

G ′(1) //

��

G ′(2) //

��

G ′(3) //

��

G ′(4) //

��

· · ·

G(1) // G(2) // G(3) // G(4) // · · ·
where all vertical arrows are inclusions, and all horizontal maps are monoid
homomorphisms given by join with the identity of (the “last” join factor)
S0 . It is easy to show that the map from G(n) to G(n+ 1) in that diagram
factors up to (based) homotopy through G ′(n+ 1) :

G ′(1) //

��

G ′(2) //

��

G ′(3) //

��

G ′(4) //

��

· · ·

G(1)

;;

// G(2)

;;

// G(3)

;;

// G(4) // · · ·

It follows that the map from

πk−1(G
′) = πk−1(

⋃
n

G ′(n)) = colimnπk−1(G
′(n))

to πk−1G (determined by the vertical arrows) is an isomorphism. But now
G ′(n) is the space of based maps Sn−1 → Sn−1 which have degree ±1 ; we
can also write

(Ωn−1Sn−1)±1

for that. Therefore G ′ is (Ω∞S∞)±1 (accepted, traditional notation). This
has two path components which are both homotopy equivalent to the base
point component of Ω∞S∞ (easy exercise). In any case

πk−1G
′ = πk−1Ω

∞S∞ = πsk−1



25

for k > 1 . So we arrive at
K̃F(S

k) ∼= πsk−1

for k > 1 . Therefore the homomorphism K̃R(X) → K̃F(X) of section 1.3
simplifies in the case X = Sk (where k > 1) to a homomorphism

K̃R(S
k) = πkBO = πk−1(O) −→ πsk−1 .

And so J̃(Sk) is the image of that homomorphism from πk−1(O) to πsk−1 .
Since the abelian groups πsk−1 are famously difficult, not well understood
but very important in algebraic topology, this gives us an indication of the
importance of J̃(X) in the special case X = Sk .

Finally it must be mentioned that, for a compact connected CW-space X ,
there is a commutative diagram

K̃R(X) //

∼=
��

K̃F(X)

∼=
��

[X,BO] // [X,BG]

where the upper horizontal arrow is as in section 1.3 and the lower hori-
zontal arrow is determined by a map BO → BG. That map BO → BG is
fairly obvious if we interpret BO as

⋃
n≥0 BO(n) and each BO(n) as the

bar construction for the topological group O(n) . The only problem is that
we have already seen another definition of BO(n) , so that we need to make
a connection between the two definitions. The following remark gives some
instructions for that.

Remark 1.8.3. (i) If we re-define BO(n) as the bar construction of O(n) ,
then we have a vector bundle E! → BO(n) where E! = B(O(n);Rn) (using
the standard action of O(n) on Rn ).

(ii) For any n-dimensional real vector space V , the space of pairs (x, f)
where x ∈ BO(n) and f : V → E!x is a linear isomorphism is contractible.
Here E!x is the fiber of E! → BO(n) over x . (Without loss of generality, V
is Rn . Then that space of pairs (x, f) agrees with B(O(n);GL(n)) where
GL(n) is the (real) general linear group. Since the inclusion O(n) → GL(n)
is a homotopy equivalence, the inclusion B(O(n);O(n)) → B(O(n);GL(n))
is also a homotopy equivalence. But B(O(n);O(n)) is contractible.)

(iii) Suppose that X is a paracompact space and carries an n-dimensional
vector bundle, E→ X . Let E] be the space of triples (x, f, y) where x ∈ X ,
y ∈ BO(n) (bar construction) and f is a linear isomorphism from the fiber
Ex to the fiber E!y . Then the forgetful map E] → X is a fiber bundle with
contractible fibers. Therefore it admits a section. Such a section means: a
map v : X → BO(n) and an isomorphism between the vector bundles f∗E!
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and E on X . In particular, X could be the old incarnation of BO(n) , the
Grassmannian, and E → X could be the tautological vector bundle. Then
this procedure gives us a map from BO(n) the Grassmannian to BO(n) the
bar construction. Since both spaces are classifying spaces for vector bundles,
it is easy to see that that map induces an isomorphism on all homotopy
groups. Therefore it is at least a weak equivalence (by definition of that
expression). But in fact both spaces are homotopy equivalent to CW-spaces,
so that we can use Whitehead’s theorem to deduce that the comparison map
is a genuine homotopy equivalence.

(iv) One should reason more carefully in (iii) to ensure that the compari-
son maps from BO(n) the Grasmannian to BO(n) the bar construction are
compatible as n varies.

To sum up: questions about the homomorphism K̃R(X) → K̃F(X) of sec-

tion 1.3 and its image J̃(X) , for “general” X , are really questions about the
inclusion map BO → BG, seen from a homotopy theory point of view.


