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Lecture notes chapter 6, WS 2015-2016 (Weiss):
Vector bundles, J-homomorphism & Adams conjecture

6.1. Localization in homotopy theory

Let A be a subring of Q . Since A is a subring, we have Z ⊂ A ⊂ Q .

Lemma 6.1.1. A is determined by the set S = {p ∈ N | p prime, p−1 ∈ A},
or alternatively by T = {p ∈ N | p prime, p−1 /∈ A}. Indeed A consists of
all a/b ∈ Q where a, b ∈ Z and b is a product of primes in S. �

In algebra, tensoring with A over Z (where applicable) has the effect
of suppressing p-torsion for all p ∈ S ; more precisely, if C is an abelian
group then CA := C ⊗Z A is an A-module, and so multiplication by p is
an isomorphism CA → CA if p ∈ S (notation of the lemma). Therefore we
also say that CA is the localization of C at the set of primes T . Example:
tensoring with A = Z[2−1] over Z is localizing away from 2 . Tensoring with
A = Z[p−1 |p odd prime] is localizing at 2 . I believe at any rate that this is
how homotopy theorists use the word localization.

Definition 6.1.2. A based connected CW-space X is A-local if, for every
k ≥ 2 , the canonical homomorphism πk(X) → πk(X) ⊗Z A (given by z 7→
z ⊗ 1) is an isomorphism. (Then we can say that πk(X) is an A-module.)
Equivalently, X is A-local if for every k ≥ 2 and every prime p which is
invertible in A , multiplication by p is an isomorphism πk(X)→ πk(X) .

Example 6.1.3. Take A = Z[2−1] . If X is A-local, then πk(X) for k ≥ 2
has no 2-torsion elements. If πk(X) for some k ≥ 2 contains an element z
which has infinite order, then we get an injection A→ πk(X) taking a ∈ A
to z⊗ a ∈ πk(X)⊗Z A ∼= πk(X) . It follows that in such a case πk(X) is not
a finitely generated abelian group (because Z is noetherian while A is not
finitely generated as an abelian group). For that reason, A-local CW-spaces
tend to be somewhat artificial constructions.

Example 6.1.4. Take A = Q . If X is A-local, then πk(X) for k ≥ 2 is a
vector space over Q .

Definition 6.1.5. Let X and Y be based connected CW-spaces, f : X → Y
a based map. The map f is an A-equivalence if

• f∗ : π1(X)→ π1(Y) is an isomorphism;
• for all k ≥ 2 , the homomorphism πk(X)⊗ZA→ πk(Y)⊗ZA induced

by f is an isomorphism (of A-modules).

The map f is said to be an A-localization (in these notes) if it is an A-
equivalence and Y is A-local.
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Example 6.1.6. Take A = Z[3−1] and X = S5 . Choose a based map
g : S5 → S5 of degree 3 . Let Y be the reduced mapping telescope (iterated
mapping cylinder) associated with the sequence of based maps

S5
g // S5

g // S5
g // S5

g // S5
g // · · ·

Then we find

πk(Y) = colim
[
πk(S

5)
·3 // πk(S

5)
·3 // πk(S

5)
·3 // πk(S

5)
·3 // · · ·

]
which is the same as πk(S

5) ⊗Z A . In other words, the inclusion X → Y is
an A-localization.

The space Y can also be described as follows. It is (homotopy equivalent
to) the pushout of a diagram of based maps∞∨

j=1

S5 ←− ∞∨
j=1

S5 −→ ∞∨
j=1

D6

where the arrow on the right is the standard inclusion and the arrow on the
left has degree matrix 

1 0 0 0 0 0 · · ·
3 1 0 0 0 0 · · ·
0 3 1 0 0 0 · · ·
0 0 3 1 0 0 · · ·
0 0 0 3 1 0 · · ·
...

...
...

...
...

...


In this description, Y is a CW-space with one 0-cell (base point), a countable
infinity of 5-cells and a countable infinity of 6-cells.

Similarly, take A = Q and X = S5 . Let gj : S
5 → S5 be a based map of

degree j , where j = 2, 3, 4, 5, . . . . Let Y be the reduced mapping telescope
associated with the sequence of based maps

S5
g2 // S5

g3 // S5
g4 // S5

g5 // S5
g6 // · · ·

Then we find

πk(Y) = colim
[
πk(S

5)
·2 // πk(S

5)
·3 // πk(S

5)
·4 // πk(S

5)
·5 // · · ·

]
which is the same as πk(S

5) ⊗Z A . In other words, the inclusion X → Y is
an A-localization.
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Exercise 6.1.7. Compute or describe [Y, S6]∗ (set of based homotopy classes
of based maps) for the two instances of Y in example 6.1.6.

The second Y in example 6.1.6 is an Eilenberg-MacLane space. That is,
it has just one nontrivial homotopy group: π5(Y) ∼= Q and πk(Y) = 0 for all
k 6= 5 . Why ?

Theorem 6.1.8. For any subring A ⊂ Q and based connected CW-space
X, there exists an (inclusion) map f : X → Y of based connected CW-spaces
which is an A-localization. This has the following universal property:

X

g
��

f // Y

g]

��
Z

for every based map g : X→ Z, where Z is an A-local connected based CW-
space, there exists a map g] : Y → Z such that g]f = g. The map g] is
unique up to a homotopy (ht : Y → Z)t∈[0,1] which is stationary on X, so that
ht|X is independent of t.

Proof of existence of the A-localization. We construct Y in the form of an
ascending union of CW-spaces ∞⋃

j=0

Xj

where X = X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · and Xj+1 is obtained from Xj by
certain elementary gluing-on operations. These gluing-on operations are as
follows.

• For every [z] ∈ πk(Xj) where k ≥ 2 and every q ∈ Z which has
q−1 ∈ A , we form a reduced mapping cylinder

cyl[Sk
deg q−→ Sk ]

and glue it to Xj using the map z for gluing (on the source end of
the mapping cylinder).
• For every [z] ∈ πk(Xj) where k ≥ 2 and every q ∈ Z which has
q−1 ∈ A and q[z] = 0 ∈ πk(Xj) , we choose a factorization

Sk

incl.

��

z // Xj

Ck,q := cone[Sk
deg q−→ Sk]

z̄

BB
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(which we can since q[z] = 0). Then we glue a copy of cone(Ck,q)
to Xj using the map z̄ for gluing. (Beware: cone(Ck,q) is the cone
of a cone, yes, but the word cone in Ck,q = cone[Sk → Sk] means a
mapping cone, while the word cone in cone(Ck,q) means an ordinary
cone, a.k.a. mapping cone of a map to a point.)

The first of these two gluing operations has the following effect: every [z] ∈
πk(Xj) becomes divisible by q in πk(Xj+1 , assuming q−1 belongs to A. The
second operation has the following effect: every [z] ∈ πk(Xj) which satisfies
q[z] = 0 in πk(Xj) maps to 0 in πk(Xj+1), assuming q−1 belongs to A. As
a consequence, for the ascending union

Y =
⋃
j

Xj

we have: every [z] ∈ πk(Y) is divisible by q in πk(Xj+1 , assuming q−1 belongs
to A ; and if [z] ∈ πk(X) satisfies q[z] = 0 , then already [z] = 0 ∈ πk(Y) .
(This is claimed for k ≥ 2 .) Therefore Y is A-local. Also, it is fairly clear
from the construction (using Seifert-vanKampen) that the inclusion X → Y
induces an isomorphism on fundamental groups, since we attached only cells
of dimension ≥ 2 , and where we attached 2-cells we did so only by forming
a wedge with S2 .

But it remains to be shown that the inclusion X → Y induces an isomor-
phism in πk ⊗Z A for all k ≥ 2 . Of course it is enough to show that the
inclusion Xj → Xj+1 induces an isomorphism in πk ⊗Z A for all k ≥ 2 .

Here (I am sorry to say) I will use Serre theory. A good reference is the old
book by Spanier. One of the major results of Serre theory says that if a based
map V →W of based simply connected CW-spaces induces an isomorphism
in H∗(−)⊗ZA , then it induces an isomorphism in π∗⊗ZA . We cannot apply
this directly to the inclusion Xj → Xj+1 since we did not try to ensure that
Xj and Xj+1 are simply connected. But we can pass to the universal covers:

X̃j ↪→ X̃j+1 .

So it remains to show that this inclusion, X̃j ↪→ X̃j+1 , induces an isomorphism
in H∗(−)⊗Z A . But this is easy. We can think of

X̃j+1

as being obtained from X̃j by certain gluing/attaching operations, essen-
tially the same operations that produced Xj+1 from Xj , just more of them.
Therefore we have attached copies of

cyl[Sk
deg q−→ Sk ]
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(along the cylinder top) and copies of cone(Ck,q) (along the boundary of the
cone). This does not change H∗(−)⊗ZA since, in both cases, the inclusion of
the cylinder top (in the cylinder) and the inclusion of the cone boundary (in
cone(Ck,q)) induce isomorphisms in H∗(−)⊗Z A . This is easy to verify. �

Proof of the universal property. We constructed Y as
⋃
Xj . Suppose per

induction that g] is already defined on Xj ; then we need to extend to Xj+1 .
(The induction begins with X0 = X , where g] = g by definition.) Since Xj+1
was constructed from Xj by attaching certain cylinders and cones, we need
to ask whether g] , already defined on Xj , can be extended when we attach
such a cylinder or cone. The map is prescribed on the top of the cylinder, or
on the boundary of the cone (because these are glued to Xj ) and we need to
extend to the entire cylinder/cone. This is straightforward in each case since
Z is A-local.

For the uniqueness, we can reason in a similar step-by-step way. Suppose
that we have found two solutions. We need a homotopy h : Y × [0, 1] → Z
connecting these two, and stationary on X ⊂ Y . Per induction we can
suppose that h is already defined on Xj× [0, 1] . We wish to extend to Xj+1×
[0, 1] . Since Xj+1 was constructed from Xj by attaching certain cylinders and
cones, we need to ask whether h , already defined on the union of Xj × [0, 1]
and Y × {0, 1} , can be extended when we attach such a cylinder or cone to
Xj . In the cylinder case, h is prescribed on the union of (cylinder top)×[0, 1]
and (all of cylinder)×{0, 1} ; we need to extend to (all of cylinder)×[0, 1] .
The extension is easy to construct since the target space Z is A-local. The
cone case is similar. In this case h is prescribed on the union of (cone
boundary)×[0, 1] and (all of cone)×{0, 1} . We need to extend to (all of
cone)×[0, 1] . �

Exercise 6.1.9. Let X, Y, Z be based connected CW-spaces. Suppose that
X ⊂ Y as a based CW-subspace and suppose that the inclusion is an A-
equivalence. Suppose that Z is A-local. Show that any based map g : X→ Z
can be extended to a map Y → Z . The extension is unique up to a homotopy
(stationary on X).

6.2. Localization and mapping spaces

Suppose that P and X are based connected CW-spaces, P compact. Let
XA be the connected CW-space obtained from X by A-localization as in
theorem 6.1.8. We may write X ⊂ XA .

Let map∗(P, X) be the space of based maps from P to X . (If we want
to insist that map∗(P, X) is strictly a CW-space, then we can define it as
the geometric realization of the simplicial set of based maps from P to X ; a
k-simplex is a based map from P ∧ ∆k+ to X .)
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Let us ask whether map∗(P, XA) has a good chance of being the A-localization
of map∗(P, X) . More precisely the inclusion X→ XA determines an inclusion

map∗(P, X) −→ map∗(P, XA).

We ask whether this satisfies the conditions for an A-localization (if we
discard the non-base-point components).

Example 6.2.1. If P = X = S5 and A = Q then

π0map∗(P, X) = π0map∗(S
5, S5) ∼= Z

whereas π0map∗(S
5, S5Q) = π5(S

5
Q)

∼= Z⊗Z Q ∼= Q . So on π0 , the inclusion

map∗(P, X) −→ map∗(P, XA)

induces an injection (but not a bijection) which looks like Z ↪→ Q . With
the same choices for P and X we have π1map∗(P, X) = π1map∗(S

5, S5) ∼=
π6(S

5) ∼= Z/2 whereas

π1map∗(S
5, S5Q)

∼= π6(S
5
Q)

∼= π6(S
5)⊗Q ∼= Z/2⊗Z Q = 0.

Therefore the inclusion map∗(P, X) −→ map∗(P, XA) does not induce a bijec-
tion on π1 .

Lemma 6.2.2. Every connected component of map∗(P, XA) is A-local, for
any choice of base point f in that component.

Proof. Choose a based map f : P → XA , declare it to be the base point of
map∗(P, XA) , and choose k ≥ 2 . Now πk(map∗(P, XA)) is the abelian group
of homotopy classes of maps from Sk × P to XA which take Sk × ∗ to the
base point and which map ∗× P by f . In this description we can replace Sk

by SkA without making a difference, since the target XA is A-local (this is
similar to exercise 6.1.9). Then we get a structure of module over the ring

A ∼= [SkA, S
k
A]∗

∼= [Sk, SkA]∗ = πk(S
k
A)

(on the abelian group πk(map∗(P, XA))) by pre-composition: g ∈ [SkA, S
k
A]∗

acts on an element represented by SkA × P → XA by pre-composition with

g× idP : S
k
A × P −→ SkA × P .

Here [SkA, S
k
A]∗ is a ring in the following way: the multiplication is given by

composition, while addition is the usual addition in πk(S
k
A) . �

Proposition 6.2.3. The inclusion map∗(P, X) → map∗(P, XA) induces an
isomorphism

πk(map∗(P, X))⊗Z A −→ πk(map∗(P, XA))⊗Z A ∼= πk(map∗(P, XA))

for every k ≥ 2 and every choice of base point f ∈ map∗(P, X) ⊂ map∗(P, XA).
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Proof. We assumed that P is a compact based CW-space. Therefore we can
proceed by induction on the number of cells in P . The induction beginning
is the case where P has no cells other than the base point. That case is clear.
For the induction step, let P be P , of dimension d , and let Q be obtained
from P by removing a d-dimensional cell (not the base point).

Let u : Sk × P → XA represent an element of πk(map∗(P, XA)) . It is un-
derstood that u takes Sk × ∗ to the base point of XA and maps ∗ × P by
f . Let z be an integer which is invertible in A . We want to show that zn[u]
comes from πk(map∗(P, X)) , for some n ≥ 0 . So we need a factorization up
to homotopy

(∗)
Sk × P

��

(deg zn)×idP // Sk × P
u

��
X // XA

(The homotopy is required to be stationary on ∗ × P .) By inductive as-
sumption we can assume that such a factorization has already been found on
Sk×Q , with a specific factor zm instead of the so far undetermined zn . The
problem of extending this factorization from Sk ×Q to Sk × P is a problem
concerning a single cell of top dimension k + d in Sk × P ; the obstruction
is therefore is an element [w] of πk+d(XA, X) (with a possibly new choice
of base point in X , which does not matter since X is connected). By the
properties of XA we know that z`[w] = 0 for some ` � 0 . It follows easily
that the factorization (∗) exists (for P , not just Q) if we use a factor zn

where n = m+ ` .
This shows that πk(map∗(P, X)) ⊗Z A −→ πk(map∗(P, XA)) ⊗Z A is onto.

The argument for injectivity is similar and left to the reader, except for the
following instructions. We begin with a map of pairs

v : (Dk+1 × P, Sk × P) −→ (XA, X).

This is meant to represent an element of πk(map∗(P, X)) which goes to zero
in πk(map∗(P, XA)) ; we have already selected a nullhomotopy which confirms
that it goes to zero. It is understood that v takes Dk+1×∗ to the base point
of XA and maps ∗ × P by f . We need a factorization up to homotopy

(∗∗)

(Dk+1 × P, Sk × P)

��

(deg zn)×idP // (Dk+1 × P, Sk × P)

v

��
(X,X) // (XA, X)

This would show that ∂v : Sk×P −→ X becomes zero after multiplying with
zn . The factorization (∗∗) can be constructed by induction on the number of
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cells of P , as before. — Note that the argument for injectivity is actually an
argument for both surjectivity and injectivity, but I felt it would be kinder
to give the surjectivity argument first. �

6.3. Localization and spherical fibrations

For n ≥ 3 let G(n) ⊂ map(Sn−1, Sn−1) be the group-like topological monoid
of homotopy automorphisms of Sn−1 as in section 1.8. Let

G ′(n) ⊂ map∗(S
n−1, Sn−1)

be the group-like topological monoid consisting of the degree ±1 components
in map∗(S

n−1, Sn−1) . We showed in section 1.8 that the inclusion⋃
n

G ′(n) '
⋃
n

G(n)

is a weak homotopy equivalence, i.e., induces an isomorphism on homo-
topy groups. (I propose that we accept that G ′(n) and G(n) have the
homotopy type of CW-spaces, and that the inclusions G(n) → G(n + 1) ,
G ′(n)→ G ′(n+1) are cofibrations; then we may conclude that the inclusion⋃

G ′(n)→ ⋃
G(n) is an honest homotopy equivalence.)

We fix a subring A ⊂ Q as before. Let

G ′(n)A,±1 ⊂ map∗(S
n−1
A , Sn−1A )

be the union of the degree ±1 connected components. (Notice that the space
map∗(S

n−1
A , Sn−1A ) has as many connected components as A has elements,

since π0map∗(S
n−1
A , Sn−1A ) = πn−1(S

n−1
A ) ∼= A . For the present discussion it is

clear that we should discard the non-invertible ones, but actually I want to
discard some more, in case A has invertible elements other than ±1 .)

Lemma 6.3.1. The inclusion BG ′(n)→ BG ′(n)A,±1 is an A-localization.

Proof. By construction, this inclusion map is a based map of connected based
spaces which induces an isomorphism on π1 . It remains to verify that the
homomorphisms

πk(BG ′(n))⊗Z A −→ πk(BG ′(n)A,±1)⊗Z A←− πk(BG ′(n)A,±1)

for k ≥ 2 (one induced by the inclusion, the other given by x 7→ x⊗ 1) are
isomorphisms. This is clear from lemma 6.2.2 and proposition 6.2.3 if we
rewrite them in the form

πk−1(G
′(n))⊗Z A −→ πk−1(G

′(n)A,±1)⊗Z A←− πk−1G ′(n)A,±1.
(The case k = 2 requires a separate verification: like example 6.2.1.) �

Let G ′A,±1 be the union
⋃
nG

′(n)A,±1 .

Corollary 6.3.2. The inclusion BG ′ → BG ′A,±1 is an A-localization.
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Proof. It suffices to note that ⊗ZA commutes with the passage to a (sequen-
tial) direct limit of abelian groups. �

For a compact connected based CW-space X we may also write

K̃F,A,±1(X) := [X,BG ′A,±1]∗

and we can view this as the set of stable fiberwise homotopy equivalence
classes of fibrations with fiber ' Sn−1A for some n , possible large. (Because
of the tilde and all that, we should be a little more careful: fibrations on X
with fiber ' Sn−1A and a specific choice of homotopy equivalence of the fiber
over the base point with Sn−1A . This specific choice must be taken into account
in the precise definition of stable equivalence between two such fibrations on
X . See also remark 6.3.6 below.) Whitney sum (=fiberwise join) of such
fibrations then defines an abelian group structure on

K̃F,A,±1(X).

It is wonderful how this leads us inexorably to the following exercise:

Exercise 6.3.3. Show that Sm−1
A ∗ Sn−1A ' Sm+n−1

A .

Corollary 6.3.4. For X as above, the homomorphism

K̃F(X) −→ K̃F,A,±1(X)

induced by the inclusion BG ′ −→ BG ′A,±1 induces an isomorphism

K̃F(X)⊗Z A −→ K̃F,A,±1(X)⊗Z A.

Proof. In the case where X is a sphere S` , we have two competing abelian
group structures on

K̃F(S
`) = [S`, BG ′]∗ = π`(BG ′).

One of these is the Whitney sum addition, the other is the ordinary addition
in a homotopy group. But it is well known, and easy to verify, that these two
abelian group structures agree. The same can be said for the two competing
abelian group structures on

K̃F,A,±1(S
`).

Therefore in the case where X is a sphere S` , the claim is that the homo-
morphism of homotopy groups

π`(BG ′) −→ π`(BG ′A,±1)

becomes an isomorphism after tensoring with A . This is correct for ` ≥ 2 by
corollary 6.3.2. It is also correct for ` = 1 , and we could invoke corollary 6.3.2
for that again, but a better argument is that

π1(BG ′)→ π1(BG ′A,±1)
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is already an isomorphism before tensoring with A , by construction. (The
two fundamental groups are both isomorphic to Z/2 = {±1} .)

In the case of arbitrary X , we now proceed by induction on the number
of cells. Suppose that X has dimension ` and let Y ⊂ X be a CW-subspace
obtained be deleting an `-cell. (We can suppose that X has only one 0-cell,
the base point; therefore it is alright to assume ` > 0 .) Then we have a
commutative diagram

K̃F(S
1 ∧ Y)

��

// K̃F(S
`)

��

// K̃F(X)

��

// K̃F(Y)

��

// K̃F(S
`−1)

��

K̃F,A,±1(S
1 ∧ Y) // K̃F,A,±1(S

`) // K̃F,A,±1(X) // K̃F,A,±1(Y) // K̃F,A,±1(S
`−1)

with exact rows. (Perhaps more details later ...) By inductive assumption the
vertical arrows number 1 and 4, counting from the left, become isomorphisms
after tensoring with A . By the separate verification for S` , vertical arrows
number 1 and 5 became isomorphisms after tensoring with A . (The case
where ` = 1 , hence ` − 1 = 0 , is a little special but in that case the terms
in column 5 are all zero.) Therefore the middle vertical arrow becomes an
isomorphism after tensoring with A . (This is a special property of A : tensor
product ⊗ZA has good exactness properties; A is a flat module over Z .) �

Remark 6.3.5. The case X = S1 shows us that K̃F,A,±1(X) in corollary 6.3.4
need not be an A-module. This is a little disappointing. The reason is clearly
that we were too afraid to touch π1 in the localization process. Here is an
observation which sheds more light on this. We can write

K̃F,A,±1(X) ∼= K̃F,A,+1(X)×H1(X;Z/2)

where K̃F,A,+1(X) is, after all, an A-module. Namely, for a fibration E → X
with fibers Sn−1A , classified stably by a map

X→ BG ′A,±1 ,

there is a homomorphism from π1(X) to Z/2 = {±1} which encodes the
orientation behavior of E→ X . (For a based map γ : S1 → X , fiber transport
in E along γ gives a map of degree ±1 from Sn−1A to itself. In this way we
get a homomorphism π1(X) → {±1} . This is worth as much as an element
of H1 of X with coefficients in Z/2 .) If the orientation behavior of E is
nontrivial, then we can form the Whitney sum (fiberwise join) of E with an
appropriate spherical fibration with fibers S0 in such a way that the Whitney
sum is an oriented spherical fibration, classified by a map from X to BG ′A,+1
and giving an element of

K̃F,A,+1(X).
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Showing that K̃F,A,+1(X) is an A-module follows the usual inductive pattern;
the important new feature is that S1 does not present a problem because

K̃F,A,+1(S
1) = 0.

Proof of proposition 4.5.4. At last. Let E → X and E ′ → X be fibrations
on X with fiber Sn−1 and assume that there exists a map f : E→ E ′ over X
which, on the fibers, has degree ±k . Let

g : S2A → S2A

be a map of degree k−1 , which we can also view as a map between fibrations
over a point. Taking the fiberwise (external) join of E and E ′ with S2A , and
of f with e , we obtain a map which, for lack of helpful notation, I describe
in words as the fiberwise join of f and g . It is a map (over X) of fiberwise
degree ±k · k−1 = ±1 from a stabilization (and fiberwise localization) of
E to a stabilization (and fiberwise localization) of E ′ . (We stabilized and
simultaneously localized by taking fiberwise join with a localized 2-sphere.)
It follows that E and E ′ represent the same element of

K̃F,A,±1(X).

Now corollary 6.3.4 tells us that [E] = [E ′] ∈ K̃F(X)⊗Z A . �

Remark 6.3.6. In chapter 1 we encountered spaces of homotopy automor-
phisms QT , where T is a compact CW-space and QT ⊂ map(T, T) is the
space (and group-like topological monoid) of homotopy invertible maps from
T to T . We constructed BQT , a classifying space for fibrations with fibers
homotopy equivalent to T .

In this chapter I may have given the impression (so far) that we can take
a localized sphere Sn−1A for T . Unfortunately these localized spheres are typ-
ically not compact (and typically not even homotopy equivalent to compact
CW-spaces). Therefore it is necessary to proceed somewhat differently. For
example, for an arbitrary CW-space T , we can re-define QT as the geometric
realization of the simplicial set of maps from T to T . (Then a k-simplex
in this simplicial set is a map from ∆k × T to T ; we may even require this
to be cellular.) With such a definition, QT is a CW-space and a group-like
topological monoid. Then we can construct BQT .

(This calls for a further explanation. A CW-space is a compactly generated
Hausdorff space, that is to say, it is a Hausdorff space in which a subset is
open if and only if its intersection with every compact subset is open. There
is such a thing as the category of compactly generated Hausdorff spaces. It
has products, but the product of two compactly generated Hausdorff spaces
X and Y does not quite agree with the product of X and Y in the category of
all spaces. It can be constructed by forming the ordinary product topology U
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on X×Y first, then redefining a subset of X×Y to be open if its intersection
with every compact subset of X × Y , according to the topology U , is open.
This gives a new topology U ′ on X×Y which certainly contains U but which,
in some cases, is strictly bigger. — The product of two CW-spaces is again a
CW-space (with an obvious cell decomposition, so that cells in the product
are products of cells in the factors) if we interpret product as the product in
the category of compactly generated Hausdorff spaces. So when I say that
the CW-space QT is a group-like topological monoid, I have in mind a map
QT × QT → QT where the product QT × QT is formed in the category of
compactly generated spaces ... and in that situation QT × QT is again a
CW-space. Furthermore, a construction like BQT should also be done in the
category of compactly generated Hausdorff spaces, for consistency.)


