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Lecture Notes, week 14
Topology WS 2014/15 (Weiss)

14.1. Higher homotopy groups

Definition 14.1. Let X be a space with base point ? and let n be a non-
negative integer. Write πn(X, ?) for the set [Sn, X]∗ (based homotopy classes
of based maps from Sn to X). It is clear that πn is a covariant functor from
HoTop? (the homotopy category of based spaces) to sets.

The case n = 1 has already been looked at in detail and we saw that
π1(X, ?) is a group in a natural way.

The case n = 0 is also useful. Namely, π0(X, ?) is just the set of path
components of X . Indeed, a based map f : S0 → X must send the base point
−1 of S0 to the base point of X . So the only interesting feature it has is
the value f(1) ∈ X . And if we pass to homotopy classes, only the path
component of f(1) remains.
There is no point in trying to put a natural group structure on π0(X, ?) . We
must accept that it is in most cases just a set. (There are exceptions: if X
has the structure of a topological group, then π0(X) also has the structure
of a group in an obvious way, and that can be useful.)

Definition 14.2. For n ≥ 2, the set πn(X, ?) has the structure of an abelian
group in a natural way. In other words we can equip πn(X, ?) with a structure
of abelian group in such a way that, for every based map f : X → Y , the
induced map of sets

πn(X, ?) → πn(Y, ?)

becomes a homomorphism of abelian groups. The neutral element of πn(X, ?)
is represented by the unique constant based map from Sn to X.

For the proof, we note first that

πn(X, ?)× πn(X, ?) = [Sn, X]? × [Sn, X]? ∼= [Sn ∨ Sn, X]?

(where ∼= is used for an obvious bijection). Therefore it is reasonable to try
to construct a multiplication map

µ : πn(X, ?)× πn(X, ?) → πn(X, ?)

by writing this in the form µ : [Sn ∨ Sn, X]? −→ [Sn, X]? and defining it as
pre-composition with some fixed element κ ∈ [Sn, Sn ∧ Sn]∗ .

Elementary description of κ. Think of Sn as the quotient space of [0, 1]n

obtained by collapsing the subspace consisting of all points which have some
coordinate equal to 0 or 1 . Think of Sn ∨ Sn as the quotient space of
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[0, 2] × [0, 1]n−1 obtained by collapsing all points which have some coor-
dinate equal to 0 or 1, or first coordinate 2 . Then κ can be defined by
κ(x1, x2, . . . , xn) := (2x1, x2, . . . , xn) , where x1, x2, . . . , xn ∈ [0, 1] . It is easy
to verify the following directly: the compositions

Sn
κ // Sn ∨ Sn

id∨κ // Sn ∨ (Sn ∨ Sn)

and

Sn
κ // Sn ∨ Sn

κ∨id // (Sn ∨ Sn)∨ Sn

are based homotopic. This implies that our formula for the multiplication µ
on [Sn, X]? is associative. Next, it is easy to verify the following directly: the
composition

Sn
κ // Sn ∨ Sn

permute summands // Sn ∨ Sn

is based homotopic to κ . (Here we need n > 1 .) This implies that our
formula for the multiplication µ on [Sn, X]? is commutative. Furthermore, it
is easy to verify directly that the constant based map Sn → X is a two-sided
neutral element for the multiplication µ . (In cubical coordinates for Sn ,
multiplication with the constant map has the effect of replacing a based map

f :
[0, 1]

∼
−→ X

by the based map g where g(x1, . . . , xn) = f(2x1, x2, . . . , xn) when 2x1 ≤ 1
and g(x1, . . . , xn) = ? ∈ X when 2x1 ≥ 1 . So the task is to show that f is
based homotopic to g ... and that is easy.) Next, it is easy to verify directly
that an element [f] ∈ [Sn, X]? has an inverse given by [f◦η] where η : Sn → Sn

is given in cubical coordinates by (x1, x2, . . . , xn) 7→ (1− x1, x2, . . . , xn) . (In
cubical coordinates for Sn , the product of [f] and [f ◦ η] is given by g
where g(x1, . . . , xn) = f(2x1, x2, . . . , xn) when 2x1 ≤ 1 and g(x1, . . . , xn) =
f(2− 2x1, x2, . . . , xn) when 2x1 ≥ 1 .)

Although the homotopy groups πn have a great deal of theoretical im-
portance, they are very hard to compute in general, especially for large n .
Recently I read in an article about homotopy theory: not a single compact
connected CW-space X is known for which we have a formula describing
πn(X) for all n > 0 , except for two types:

• the totally uninteresting case where X is contractible (so that πn(X)
is the trivial group for all n > 0);
• the more interesting case where π1(X) is nontrivial but the universal

covering of X is contractible (in which case we can say that πn(X) is
the trivial group for all n > 0). Examples of this type are X = S1 ,
or X = oriented surface of any positive genus.
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In particular nobody has a really convincing formula for πn(S
2) , for all n ≥ 1

(although there are some deep results which describe these abelian groups
in algebraic/combinatorial terms ... but not in such a way that we can
easily read off how many elements). But there are many partial results,
especially about πn(S

m) . For example, we know that πn(S
m) is always a

finitely generated abelian group (m,n > 1). It is known that πn(S
m) is the

trivial group if n < m and that πn(S
m) ∼= Z if n = m ; see theorem 14.3

below. It is known that πn(S
m) is infinite if and only if m is even and n = m

or n = 2m − 1 . An example of that is π3(S
2) ∼= Z . Recall that π3(S

2) is
not trivial according to example 2.5.3, cumulative lecture notes. (This was
conditional at the time; we needed to know that S2 is not contractible, but
later we learned that S2 is not contractible since H2(S

2) ∼= Z .)

14.2. Some homotopy groups of spheres

Theorem 14.3. For 0 < n < m, the group πn(S
m) is trivial. For all n > 0,

the group πn(S
n) is isomorphic to Z, with [id] as the generator.

Proof. The proof is fiddly, but it is an important result. The case n < m
is an easy consequence of cellular approximation. By remark 11.5.2 in the
cumulative lecture notes, any based map from Sn to Sm is based homotopic
to a cellular map. But a cellular map from Sn to Sm must be constant. (Use
the CW structure on Sm which has one 0-cell and one m-cell.)
For the case m = n , it suffices to show that πn(S

n) is generated by the
element [id] . Indeed, this gives us an upper bound on the size of πn(S

n) .
A lower bound comes from the map πn(S

n) → Hn(S
n) which takes the

homotopy class of a map f to the class of the mapping cycle f . It is an
exercise to show that this is a homomorphism! (Hint: you need to say what
κ does in homology.)
With that in mind, the most important tool is Sard’s theorem (which we
also used in connection with approximation of maps by cellular maps). This
states that for a smooth map f : U→ Rm where U is open in Rn , the set of
critical values of f is a set of Lebesgue measure zero (in Rm ). An element
y ∈ Rm is a critical value of f if there exists x ∈ U such that f(x) = y and
the derivative f ′(x) , which I view as a linear map from Rn to Rm , is not
surjective. We can also assume n > 1 since π1(S

1, ?) is well understood. We
need a few observations.

(i) Any based map Sn → Sn can be written in the form of a map

f : Rn ∪ {∞} −→ Rn ∪ {∞},

and after a homotopy we can assume that f is smooth in a neighbor-
hood U of the compact set f−1(Dn) .
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(ii) In the situation of (i), if f−1(0) contains exactly one element x ∈ Rn
and the derivative f ′(x) is an invertible linear map from Rn to Rn ,
then f is based homotopic either to the identity map or to the map

η : (x1, . . . , xn) 7→ (−x1, x2, . . . , xn)

from Rn ∪ {∞} to itself.
(iii) The inclusion of the wedge Sn∨Sn into the product Sn×Sn induces

an isomorphism from πn(S
n∨Sn) to πn(S

n×Sn) ∼= πn(S
n)×πn(Sn) .

(iv) Let α : Sn → Sn ∨ Sn be any based map. Let ϕ : Sn ∨ Sn → Sn be
the fold map (which is the identity on the first summand Sn and also
on the second summand Sn ). Then we have

[ϕα] = [ϕq1α] + [ϕq2α] ∈ πn(Sn),
writing + for the multiplication in πn(S

n) and qi : S
n∨Sn → Sn∨Sn

for the map which is the identity on summand i and takes the other
summand to the base point.

Observation (iii) is a good exercise in cellular approximation; n > 1 is im-
portant. Observation (iv) follows from observation (iii). Namely, (iii) shows
that α is homotopic to a based map obtained by composing κ : Sn → Sn∨Sn

with a map Sn ∨ Sn → Sn ∨ Sn which agrees with q1α on the first wedge
summand Sn and with q2α on the second.
We had observation (ii) as an exercise (sheet 5) but it did not find many
friends. It is easy to reduce to the situation where x = 0 ∈ Rn . Then
f−1(0) = {0} and f ′(0) is an invertible linear map. The next idea is to show
that f is based homotopic to the map g : Rn ∪ {∞} −→ Rn ∪ {∞} where g is
the linear map f ′(0) (except for g(∞) = ∞). A based homotopy is given by

(ht : Rn ∪ {∞} −→ Rn ∪ {∞})

where ht(v) = t−1f(tv) for v ∈ Rn and t runs from 1 to 0 . To be more
precise, h1 is of course f and h0 is of course not really defined by our formula
for ht , but if you (re)define h0 = g then it ought to make a good homotopy,
by definition of differentiability. The next idea is to note that the space of
linear isomorphisms from Rn → Rn , also known as GLn(R) , is a space with
exactly two path components. One of these path components contains the
identity matrix and the other one contains the diagonal matrix with −1 in
row one, column one and +1 in the other diagonal positions. Therefore our
(linear) map

g : Rn ∪ {∞} −→ Rn ∪ {∞}

is based homotopic (by a homotopy through invertible linear maps) to either
id : Rn ∪ {∞} −→ Rn ∪ {∞} or to the map η from Rn ∪ {∞} to itself.
Now we start with f as in (i). We want to show that [f] ∈ πn(Sn) is in the
subgroup generated by [id] . By Sard, we know that f has a regular value
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arbitrarily close to 0 and it is easy to reduce to the case where 0 itself is
regular value (by composing with a translation Rn ). The preimage f−1(0)
is compact and discrete with the subspace topology (since f ′(x) is invertible
for any x ∈ f−1(0) ... use the inverse function theorem). Therefore f−1(0) is
a finite set. Assume that it has k distinct elements x(1), . . . , x(k) . We want
to argue by induction on k . The case k = 1 has already been settled in (ii)
and we can assume k > 1 .
Choose a small open ball Bε of radius ε about the origin 0 ∈ Rn such that
f−1(Bε) is a disjoint union of k open sets U1, . . . , Uk (so that x(i) ∈ Ui ) in
such a way that f restricts to a diffeomorphism from Ui to Bε . (This is
possible by the inverse function theorem.) Choose a map

e : Rn ∪ {∞} −→ Rn ∪ {∞}

which maps Bε diffeomorphically to all of Rn and maps the complement of
Bε to ∞ and has e ′(0) equal to the identity (matrix). Then we know that
e ' id and so ef ' f . But ef can also be written as a composition

Sn
γ // Sn ∨ Sn

ϕ // Sn

where Sn = Rn∪ {∞} , the first map takes U1 to the first wedge summand Sn

by ef and takes
⋃
i>1Ui to the second wedge summand by ef , and takes all

remaining points to the base point ∞ of the wedge. Then by (iv) we have

[f] = [ef] = [ϕγ] = [ϕq1γ] + [ϕq2γ]

where ϕq1γ and ϕq2γ are maps as in (i) for which 0 ∈ Rn∪ {∞} is a regular
value with fewer than k preimage points. By inductive assumption, [ϕq1γ]
and [ϕq2γ] are in the subgroup of πn(S

n) generated by [id] and therefore
[f] is also in that subgroup. �


