9.Übungsblatt Topologie WS 2014/15 (Weiss)

1. Für einen Raum X mit Unterraum $A\subset X$ sei $X/\!\!/A=\mathrm{cone}(A\to X)$ der Abbildungskegel¹ der Inklusion $A\to X$.

Angenommen, X ist ein normaler Raum und eine Teilmenge $L \subset A$ ist gegeben. Bedingung: Der Abschluss von L ist enthalten im Inneren von A. Man zeige: Die Inklusion

$$(X \setminus L)/\!\!/ (A \setminus L) \longrightarrow X/\!\!/ A$$

ist eine Homotopieäquivalenz.

[5

- **2.** Man denke sich S^2 als CW-Raum mit nur zwei Zellen und dann $S^2 \times S^2$ mit der Produkt-CW-Struktur. (Sie hat vier Zellen: eine 0-Zelle, zwei 2-Zellen und eine 4-Zelle. Das 2-Skelett ist die Einpunktsumme $S^2 \vee S^2$.)
- a) Zeigen Sie, dass die anheftende Abbildung $g\colon S^3\to S^2\vee S^2$ nicht nullhomotop ist. (Hinweis: Aufgabe 4 von Übungsblatt 2 benutzen. Ringstruktur von $H^*(S^2\times S^2)$ benutzen.)
- b) Sei $p: S^2 \vee S^2 \to S^2$ die Abbildung, die den ersten der Wedge-Summanden S^2 auf den Basispunkt im Ziel abbildet und den anderen Wedge-Summanden S^2 per Identität abbildet. Zeigen Sie, dass pg nullhomotop ist.² [5]

Alles zur Abgabe am Freitag 19.12. vor 16:00.

¹Gegenwärtige Konvention: cone(A → X) bei nichtleerem X ist ein Quotient von $X \sqcup ([0,1] \times A)$, wobei $(0,x) \in A$ mit $x \in X$ identifiziert ist und die Kegelspitze den Punkten (1,x) mit $x \in A$ entspricht.

 $^{^2}$ Hinweis. Es ist nützlich, eine formelhafte Beschreibung von pgzu haben. Dazu wird empfohlen: S^2 ist der Quotient D^2/S^1 und daher ist $S^2\times S^2$ dasselbe wie $(D^2/S^1)\times (D^2/S^1)$, also ganz von selbst ein Quotientenraum von $D^2\times D^2$.