8. Übungsblatt (mit einer Lösung ...) Topologie WS 2014/15 (Weiss)

1. Umkehrung von Proposition 8.11 in Lecture Notes beweisen. Genauer: Sei Y wegzusammenhängender Raum mit Grundpunkt $\star \in Y$. Es wird angenommen, dass die Diagonalabbildung

$$Y \longrightarrow \underbrace{Y \times Y \times \cdots \times Y}_{r}$$

homotop ist zu einer Abbildung g mit der Eigenschaft $g(Y) \subset \bigcup_{i=1}^r Y^{i-1} \times \{\star\} \times Y^{r-i}$. Ausserdem soll der Grundpunkt \star wenigstens eine Umgebung V in Y besitzen, so dass die Inklusion $V \to Y$ nullhomotop ist. Dann soll gezeigt werden: Y hat LS-Invariante $\leq r-1$. (Siehe Def. 8.7 in Lecture Notes, Fassung vom 5.12. oder danach.) [8]

2. Gemeine Fragen über Abbildungszykel.

a) Hier soll ein Abbildungszykel $f\colon S^1\to S^1$ gebaut und untersucht werden. Wir fassen S^1 als Einheitskreis in $\mathbb C$ auf. Sei $V_1=S^1\smallsetminus\{1\}$ und $V_2=S^1\smallsetminus\{-1\}$, so dass $S^1=V_1\cup V_2$. Es gibt drei stetige Funktionen $s_{i1},s_{i2},s_{i3}\colon V_i\to S^1$, die den Namen dritte Wurzel verdienen. Man setze

$$f|_{V_i} := 1 \cdot s_{i1} + 1 \cdot s_{i2} + 1 \cdot s_{i3}$$

für i=1,2 (formale Linearkombination! nicht als Addition in $\mathbb C$ missverstehen). Diese Definitionen stimmen auf $V_1\cap V_2$ überein. Deswegen ist damit ein Abbildungszykel $f\colon S^1\to S^1$ definiert. Frage: Welches Element von $[[S^1,S^1]]/[[\star,S^1]]=H_1(S^1)\cong \mathbb Z$ wird durch [[f]] bestimmt? Die Hauptkandidaten sind natürlich 1 und 3.

b) Hier soll ein Abbildungszykel $g: \mathbb{R}P^2 \to S^2$ gebaut und untersucht werden. Sei $p: S^2 \to \mathbb{R}P^2$ die übliche Projektion. Man schreibe wie üblich $\mathbb{R}P^2$ als Vereinigung von drei offenen Mengen U_1 , U_2 und U_3 derart, dass $p^{-1}(U_i)$ aus allen Elementen von $S^2 \subset \mathbb{R}^3$ besteht, deren i-te Koordinate von 0 verschieden ist. Für jedes $i \in \{1, 2, 3\}$ gibt es zwei stetige Abbildungen $s_{i1}, s_{i2}: U_1 \to S^2$, die den Namen p^{-1} verdienen. Definiere

$$g|_{U_i} := 1 \cdot s_{i1} + 1 \cdot s_{i2}$$

(formale Linearkombination! nicht als Addition in \mathbb{R}^3 missverstehen). Diese Definitionen passen zusammen auf $U_1 \cap U_2$ bzw. $U_2 \cap U_3$ bzw. $U_1 \cap U_3$. Deswegen ist damit ein Abbildungszykel $g: \mathbb{R}P^2 \to S^2$ definiert. Frage: Welches Element von $[[\mathbb{R}P^2, S^2]]/[[\mathbb{R}P^2, \star]] = H^2(\mathbb{R}P^2)$ wird durch [[g]] bestimmt? Dazu sollten Sie erst $H^2(\mathbb{R}P^2)$ ausrechnen. Hinweis: $H^2(\mathbb{R}P^2)$ ist nicht 0 und ist auch nicht $\cong \mathbb{Z}$.

Alles zur Abgabe am Freitag 12.12. vor 16:00.

 $^{^1}$ Man kann ihn *nicht* als formale Summe von drei stetigen Abbildungen $S^1 \to S^1$ beschreiben. Das hat etwas damit zu tun, dass die Abbildung $S^1 \to S^1$; $z \mapsto z^3$, obwohl sie ein Faserbündel ist, kein triviales Faserbündel ist. Notfalls davon Bild malen.

 $^{^2}$ Man kann ihn nicht als formale Summe von zwei stetigen Abbildungen $\mathbb{R}P^2 \to S^2$ beschreiben. Die Abbildung p: $S^2 \to \mathbb{R}P^2$ ist ein Faserbündel, aber kein triviales Faserbündel.

Eine Lösung zu 2b). Sei $q: \mathbb{R}P^2 \to \mathbb{R}P^2/\mathbb{R}P^1$ die Quotientenabbildung. Beachten, dass $\mathbb{R}P^2/\mathbb{R}P^1 \cong S^2$. Idee: wir wählen ein gewisses $z \in S^2$ und konstruieren Homöomorphismus $f: \mathbb{R}P^2/\mathbb{R}P^1 \to S^2$ derart, dass der Abbildungszykel $g - fq: \mathbb{R}P^2 \to S^2$ beschrieben werden kann als Abbildungszykel $\mathbb{R}P^2 \to S^2 \setminus \{z\}$ gefolgt von Inklusion $S^2 \setminus \{z\} \to S^2$. Angenommen, das geht (Argument weiter unten); dann kann man so argumentieren.

- (i) Weil $S^2 \setminus \{z\}$ zusammenziehbar ist, ist g-fq homotop zu einem Abbildungszykel $\mathbb{R}P^2 \to \star$ gefolgt von Abbildung $\star \to S^2$. Also repräsentiert g-fq das Element $0 \in H^2(\mathbb{R}P^2)$. Also: q und fq repräsentieren dasselbe Element von $H^2(\mathbb{R}P^2)$.
- (ii) $H^2(\mathbb{R}P^2/\mathbb{R}P^1) \cong H^2(S^2) \cong \mathbb{Z}$ und f stellt einen Erzeuger von $H^2(\mathbb{R}P^2/\mathbb{R}P^1)$ dar. (Falls nicht überzeugt: betrachte Isomorphismus f* von $H^2(S^2)$ nach $H^2(\mathbb{R}P^2/\mathbb{R}P^1)$ und frage, was er mit der Klasse von id: $S^2 \to S^2$ macht. Ausserdem wichtiger Remark 7.2.7.)
- (iii) Wie sieht $q^* \colon H^2(\mathbb{R}P^2/\mathbb{R}P^1) \to H^2(\mathbb{R}P^2)$ aus? Das kann man mit den zellulären Kettenkomplexen gut ausrechnen. Sieht aus wie ein surjektiver Homomorphismus von \mathbb{Z} nach $\mathbb{Z}/2$.
- (iv) Es folgt

Klasse von g in $H^2(\mathbb{R}P^2)$ = Klasse von fq in $H^2(\mathbb{R}P^2)$ = q^* von Klasse von f in $H^2(\mathbb{R}P^2/\mathbb{R}P^1)$ = q^* von Erzeuger von $H^2\mathbb{R}P^2/\mathbb{R}P^1$) $\neq 0 \in H^2(\mathbb{R}P^2) \cong \mathbb{Z}/2$.

Jetzt muss noch der Homöomorphismus f konstruiert werden. Wähle z=(0,0,1), so dass $z\notin S^1\subset S^2$. Dann ist $\mathfrak{p}(z)\notin \mathbb{R}\mathsf{P}^1\subset \mathbb{R}\mathsf{P}^2$, wobei $\mathfrak{p}\colon S^2\to \mathbb{R}\mathsf{P}^2$ wie in Aufgabenstellung. Wähle f so, dass $\mathfrak{f}(\mathfrak{p}(z))=z$ und dass $\mathfrak{p}\mathfrak{f}$ mit id übereinstimmt in einer kleinen offenen Umgebung U von $\mathfrak{p}(z)$ in $\mathbb{R}\mathsf{P}^2\smallsetminus \mathbb{R}\mathsf{P}^1$. Das ist nicht schwer. Fertig. (Um zu sehen, dass der Abbildungszykel $\mathfrak{g}-\mathfrak{f}\mathfrak{q}$ aufgefasst werden kann als Abbildungszykel von $\mathbb{R}\mathsf{P}^2$ nach $S^2\smallsetminus \{z\}$, sollte man ihn auf die offenen Teilmengen U und $\mathbb{R}\mathsf{P}^2\smallsetminus \mathfrak{p}(z)$ von $\mathbb{R}\mathsf{P}^2$ einschränken.)

Antwort auf ähnliche Frage von Teilnehmer. Sei $f: S^1 \to S^1$ die Abbildung $z \mapsto z^2$, in komplexen Bezeichnungen. Es soll "explizit" gezeigt werden, dass der Abbildungszykel $f-2\cdot$ id homotop ist zu einem konstanten Abbildungszykel.

Idee: wir konstruieren zwei stetige Abbildungen $g_1,g_2\colon S^1\to S^1$ derart, dass $g_1,g_2\simeq \mathrm{id}$ und ausserdem der Abbildungszykel $f-g_1-g_2$ geschrieben werden kann als Abbildungszykel $S^1\to S^1\smallsetminus\{1\}$ gefolgt von Inklusion $S^1\smallsetminus\{1\}\to S^1$. Angenommen, das geht. Dann kann man so argumentieren: $f-2\cdot\mathrm{id}$ ist homotop zu $f-g_1-g_2$. Hier kann $f-g_1-g_2$ als Abbildungszykel von S^1 nach $S^1\smallsetminus\{1\}$ aufgefasst werden und ist damit homotop zu einem konstanten, weil $S^1\smallsetminus\{1\}$ zusammenziehbar ist.

Wie können g_1 und g_2 gewählt werden? Wir wählen sie als Diffeomorphismen, aber so, dass g_1 mit f übereinstimmt in einer kleinen offenen Umgebung U von $1 \in S^1$, während g_2 mit f übereinstimmt in einer kleinen offenen Umgebung V von $-1 \in S^1$. Sowohl g_1 als auch g_2 müssen dann orientierungserhaltend sein; also haben beide den Grad 1. (Um zu sehen, dass $f-g_1-g_2$ als Abbildungszykel von S^1 nach $S^1 \setminus \{1\}$ aufgefasst werden kann, soll man auf die offenen Teilmengen U, V und $S^1 \setminus \{1, -1\}$ von S^1 einschränken.)