6.Übungsblatt Topologie WS 2014/15 (Weiss)

1. Sei A abgeschlossener Unterraum von X. Sei $K = (X \times \{0\}) \cup (A \times [0,1])$, aufzufassen als Unterraum von $X \times [0,1]$. Sei $\mathfrak{u} \colon K \to X \times [0,1]$ die Inklusion. Zeigen: die Inklusion $A \hookrightarrow X$ ist genau dann eine Kofaserung¹, wenn eine stetige Abbildung $r \colon X \times [0,1] \to K$ existiert derart, dass $r\mathfrak{u} = \mathrm{id}_K$.

Ausserdem gibt es dann eine Homotopie

$$\left(h_t\colon X\times [0,1]\to X\times [0,1]\right)_{t\in [0,1]}$$

von ur nach $\mathrm{id}_{X\times[0,1]}$ mit der Eigenschaft $h_t u = u$ für alle $t\in[0,1]$.

- **2.** Gegeben sei eine Kofaserung $A \hookrightarrow X$ wobei $A = A_0 \sqcup A_1$. Genauer, der Raum X hat einen abgeschlossenen Unterraum A, der die Form $A_0 \sqcup A_1$ hat², und die Inklusion $A \to X$ ist eine Kofaserung. Wir nehmen an $A_0, A_1 \neq \emptyset$. Sei X' der Quotientenraum von X, den man erhält, wenn man zuerst alle Elemente von A_0 zu einem zusammenschweisst, und dann alle Elemente von A_1 zu einem zusammenschweisst. Sei $\mathfrak{p} \colon X \to X'$ die Projektion. Zeigen Sie, dass cone(\mathfrak{p}) homotopieäquivalent zu $\Sigma A_0 \vee \Sigma A_1$ ist.³ [6] Hinweis: Aufgabe 1 hilft dabei. Aber wie? Wo sehen Sie hier $X \times [0,1]$ und K?
- **3.** Sei S^9 die Einheitssphäre in \mathbb{C}^5 . Wir denken uns

$$\mathbb{C}^0 \subset \mathbb{C}^1 \subset \mathbb{C}^2 \subset \mathbb{C}^3 \subset \mathbb{C}^4 \subset \mathbb{C}^5$$

und haben damit Unterräume $S^{2k-1}=S^9\cap\mathbb{C}^k$ von S^9 für k=0,1,2,3,4,5. Zeigen Sie: es existiert eine⁴ CW-Struktur auf $X=S^9$ derart, dass

$$X^{2k-1} = S^{2k-1} \subset S^9$$

für k=0,1,2,3,4,5 wie oben und derart, dass es zu jedem $\mathfrak{m}=0,1,2,3,4,5,6,7,8,9$ genau eine \mathfrak{m} -Zelle gibt. Ausserdem soll bei dieser CW-Struktur die Abbildung

$$S^1 \times S^9 \longrightarrow S^9$$
; $(z, (v_1, v_2, v_3, v_4, v_5)) \mapsto (zv_1, zv_2, zv_3, zv_4, zv_5)$

eine zelluläre Abbildung sein, wobei S^1 aufgefasst wird als Einheitskreis in \mathbb{C} und die CW-Struktur mit einer 0-Zelle $\{1\}$ und einer 1-Zelle hat. (Auf dem Produkt $S^1 \times S^9$ soll die Produkt-CW-Struktur genommen werden, die demnach 20 Zellen hat.) Hinweis: es ist nicht so schlimm, wie es aussieht.

Alles zur Abgabe am Freitag 28.11. vor 16:00.

^{1...} hat die Homotopie-Erweiterungseigenschaft ...

 $^{^2{\}rm Topologische}$ disjunkte Vereinigung.

 $^{^3}$ Genauer: X' hat zwei ausgezeichnete Elemente \star_0 und \star_1 derart, dass $\mathfrak{p}(A_0) = \{\star_0\}$ und $\mathfrak{p}(A_1) = \{\star_1\}$. Sei $\mathfrak{p}^\sharp \colon A_0 \sqcup A_1 \to \{\star_0, \star_1\}$ die Einschränkung von \mathfrak{p} . Es soll gezeigt werden, dass die Inklusion von $\operatorname{cone}(\mathfrak{p}^\sharp)$ in $\operatorname{cone}(\mathfrak{p})$ eine Homotopieäquivalenz ist.

⁴höchst merkwürdige