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CHAPTER 1

Homotopy

1.1. The homotopy relation

Let X and Y be topological spaces. (If you are not sufficiently familiar with topological
spaces, you should assume that X and Y are metric spaces.) Let f and g be continuous
maps from X to Y . Let [0, 1] be the unit interval with the standard topology, a subspace
of R .

Definition 1.1.1. A homotopy from f to g is a continuous map

h : X× [0, 1]→ Y

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X . If such a homotopy exists, we
say that f and g are homotopic, and write f ' g . We also sometimes write h : f ' g to
indicate that h is a homotopy from the map f to the map g .

Remark 1.1.2. If you made the assumption that X and Y are metric spaces, then you
should use the product metric on X× [0, 1] and Y × [0, 1] , so that for example

d((x1, t1), (x2, t2)) := max{d(x1, x2), |t1 − t2| }

for x1, x2 ∈ X and t1, t2 ∈ [0, 1] . If you were happy with the assumption that X and
Y are “just” topological spaces, then you need to know the definition of product of two
topological spaces in order to make sense of X× [0, 1] and Y × [0, 1] .

Remark 1.1.3. A homotopy h : X× [0, 1]→ Y from f : X→ Y to g : X→ Y can be seen
as a “family” of continuous maps

ht : X→ Y ; ht(x) = h(x, t)

such that h0 = f and h1 = g . The important thing is that ht depends continuously on
t ∈ [0, 1] .

Example 1.1.4. Let f : Rn → Rn be the identity map. Let g : Rn → Rn be the map such
that g(x) = 0 ∈ Rn for all x ∈ Rn . Then f and g are homotopic. The map h : Rn× [0, 1]
defined by h(x, t) = tx is a homotopy from f to g .

Example 1.1.5. Let f : S1 → S1 be the identity map, so that f(z) = z . Let g : S1 → S1

be the antipodal map, g(z) = −z . Then f and g are homotopic. Using complex number
notation, we can define a homotopy by h(z, t) = eπitz .

Example 1.1.6. Let f : S2 → S2 be the identity map, so that f(z) = z . Let g : S2 → S2

be the antipodal map, g(z) = −z . Then f and g are not homotopic. We will prove this
later in the course.

Example 1.1.7. Let f : S1 → S1 be the identity map, so that f(z) = z . Let g : S1 → S1

be the constant map with value 1 . Then f and g are not homotopic. We will prove this
quite soon.
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4 1. HOMOTOPY

Proposition 1.1.8. “Homotopic” is an equivalence relation on the set of continuous maps
from X to Y .

Proof. Reflexive: For every continuous map f : X→ Y define the constant homotopy
h : X× [0, 1]→ Y by h(x, t) = f(x) .
Symmetric: Given a homotopy h : X × [0, 1] → Y from a map f : X → Y to a map
g : X→ Y , define the reverse homotopy h̄ : X× [0, 1]→ Y by h̄(x, t) = h(x, 1 − t) . Then
h̄ is a homotopy from g to f .
Transitive: Given continuous maps e, f, g : X → Y , a homotopy h from e to f and a
homotopy k from f to g , define the concatenation homotopy k ∗ h as follows:

(x, t) 7→ {h(x, 2t) if 0 6 t 6 1/2

k(x, 2t− 1) if 1/2 6 t 6 1 .

Then k ∗ h is a homotopy from e to g . �

Definition 1.1.9. The equivalence classes of the above relation “homotopic” are called
homotopy classes. The homotopy class of a map f : X → Y is often denoted by [f] . The
set of homotopy classes of maps from X to Y is often denoted by [X, Y] .

Proposition 1.1.10. Let X , Y and Z be topological spaces. Let f : X→ Y and g : X→ Y
and u : Y → Z and v : Y → Z be continuous maps. If f is homotopic to g and u is
homotopic to v , then u ◦ f : X→ Z is homotopic to v ◦ g : X→ Z .

Proof. Let h : X× [0, 1]→ Y be a homotopy from f to g and let w : Y × [0, 1]→ Z
be a homotopy from u to v . Then u ◦ h is a homotopy from u ◦ f to u ◦ g and the map
X × [0, 1] → Z given by (x, t) 7→ w(g(x), t) is a homotopy from u ◦ g to v ◦ g . Because
the homotopy relation is transitive, it follows that u ◦ f ' v ◦ g . �

Definition 1.1.11. Let X and Y be topological spaces. A (continuous) map f : X → Y
is a homotopy equivalence if there exists a map g : Y → X such that g ◦ f ' idX and
f ◦ g ' idY .
We say that X is homotopy equivalent to Y if there exists a map f : X → Y which is a
homotopy equivalence.

Definition 1.1.12. If a topological space X is homotopy equivalent to a point, then we say
that X is contractible. This amounts to saying that the identity map X→ X is homotopic
to a constant map from X to X .

Example 1.1.13. Rm is contractible, for any m ≥ 0 .

Example 1.1.14. Rm r {0} is homotopy equivalent to Sm−1 .

Example 1.1.15. The general linear group of Rm is homotopy equivalent to the orthogonal
group O(m) . The Gram-Schmidt orthonormalisation process leads to an easy proof of
that.

1.2. Homotopy classes of maps from the circle to itself

Let p : R → S1 be the (continuous) map given in complex notation by p(t) = exp(2πit)
and in real notation by p(t) = (cos(2πt), sin(2πt)) . In the first formula we think of S1 as
a subset of C and in the second formula we think of S1 as a subset of R2 .
Note that p is surjective and p(t + 1) = p(t) for all t ∈ R . We are going to use p to
understand the homotopy classification of continuous maps from S1 to S1 . The main
lemma is as follows.
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Lemma 1.2.1. Let γ : [0, 1]→ S1 be continuous, and a ∈ R such that p(a) = γ(0) . Then
there exists a unique continuous map γ̃ : [0, 1]→ R such that γ = p ◦ γ̃ and γ̃(0) = a .

Proof. The map γ is uniformly continuous since [0, 1] is compact. It follows that
there exists a positive integer n such that d(γ(x), γ(y)) < 1/100 whenever |x−y| ≤ 1/n .
Here d denotes the standard (euclidean) metric on S1 as a subset of R2 . We choose such
an n and write

[0, 1] =

n⋃
k=1

[tk−1, tk]

where tk = k/n . We try to define γ̃ on [0, tk] by induction on k . For the induction
beginning we need to define γ̃ on [0, t1] where t1 = 1/n . Let U ⊂ S1 be the open ball
of radius 1/100 with center γ(0) . (Note that open ball is a metric space concept.) Then
γ([0, t1]) ⊂ U . Therefore, in defining γ̃ on [0, t1] , we need to ensure that γ̃([0, t1]) is
contained in p−1(U) . Now p−1(U) ⊂ R is a disjoint union of open intervals which are
mapped homeomorphically to U under p . One of these, call it Va , contains a , since
p(a) = γ(0) ∈ U . The others are translates of the form `+ Va where ` ∈ Z . Since [0, t1]
is connected, its image under γ̃ will also be connected, whatever γ̃ is, and so it must
be contained entirely in exactly one of the intervals ` + Va . Since we want γ̃(0) = a ,
we must have ` = 0 , that is, image of γ̃ contained in Va . Since the map p restricts to
a homeomorphism from Va to U , we must have γ̃ = qγ where q is the inverse of the
homeomorphism from Va to U . This formula determines the map γ̃ on [0, t1] .
The induction steps are like the induction beginning. In the next step we define γ̃ on
[t1, t2] , using a “new” a which is γ̃(t1) and a “new” U which is the open ball of radius
1/100 with center γ(t1) . �

Now let g : S1 → S1 be any continuous map. We want to associate with it an integer, the
degree of g . Choose a ∈ R such that p(a) = g(1) . Let γ = g ◦ p on [0, 1] ; this is a map
from [0, 1] to S1 . Construct γ̃ as in the lemma. We have pγ̃(1) = γ(1) = γ(0) = pγ̃(0) ,
which implies γ̃(1) = γ̃(0) + ` for some ` ∈ Z .

Definition 1.2.2. This ` is the degree of g , denoted deg(g) .

It looks as if this might depend on our choice of a with p(a) = g(1) . But if we make
another choice then we only replace a by m+ a for some m ∈ Z , and we only replace γ̃
by m+ γ̃ . Therefore our calculation of deg(g) leads to the same result.

Remark. Suppose that g : S1 → S1 is a continuous map which is close to the constant
map z 7→ 1 ∈ S1 (complex notation). To be more precise, assume d(g(z), 1) < 1/1000 for
all z ∈ S1 . Then deg(g) = 0 .
The verification is mechanical. Define γ : [0, 1] → S1 by γ(t) = g(p(t)) . Let V ⊂ R be
the open interval from −1/100 to 1/100 . The map p restricts to a homeomorphism from
V to p(V) ⊂ S1 , with inverse q : p(V) → V . Put γ̃ = q ◦ γ , which makes sense because
the image of γ is contained in p(V) by our assumption. Then p◦ γ̃ = γ as required. Now
the image of γ̃ is contained in V and therefore

|deg(g)| = |γ̃(1) − γ̃(0)| ≤ 2/100

and so deg(g) = 0 .

Remark. Suppose that f, g : S1 → S1 are continuous maps. Let w : S1 → S1 be defined by
w(z) = f(z) · g(z) (using the multiplication in S1 ⊂ C). Then deg(w) = deg(f) + deg(g) .
The verification is also mechanical. Define ϕ,γ,ω : [0, 1]→ S1 by ϕ(t) = f(p(t)) , γ(t) =
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g(p(t)) and ω(t) = w(p(t)) . Construct ϕ̃ : [0, 1]→ R and γ̃ : [0, 1]→ R as in lemma 1.2.1.
Put ω̃ := ϕ̃+ γ̃ . Then p ◦ ω̃ = ω , so

deg(w) = ω̃(1) − ω̃(0) = · · · = deg(f) + deg(g).

Lemma 1.2.3. If f, g : S1 → S1 are continuous maps which are homotopic, f ∼ g , then
they have the same degree.

Proof. Let h : S1×[0, 1]→ S1 be a homotopy from f to g . As usual let ht : S
1 → S1

be the map defined by ht(z) = h(z, t) , for fixed t ∈ [0, 1] . For fixed t ∈ [0, 1] we can find
δ > 0 such that d(ht(z), hs(z)) < 1/1000 for all z ∈ S1 and all s which satisfy |s− t| < δ .
Therefore hs(z) = gs(z) · ht(z) for such s , where gs : S

1 → S1 is a map which satisfies
d(gs(z), 1) < 1/1000 for all z ∈ S1 . Therefore deg(gs) = 0 by the remarks above and so
deg(hs) = deg(gs) + deg(ht) = deg(ht) .
We have now shown that the the map [0, 1]→ Z given by t 7→ deg(ht) is locally constant
(equivalently, continuous as a map of metric spaces) and so it is constant (since [0, 1] is
connected). In particular deg(f) = deg(h0) = deg(h1) = deg(g) . �

Lemma 1.2.4. If f, g : S1 → S1 are continuous maps which have the same degree, then
they are homotopic.

Proof. Certainly f is homotopic to a map which takes 1 to 1 and g is homotopic
to a map which takes 1 to 1 (using complex notation, 1 ∈ S1 ⊂ C). Therefore we can
assume without loss of generality that f(1) = 1 and g(1) = 1 .
Let ϕ : [0, 1] → S1 and γ : [0, 1] → S1 be defined by ϕ(t) = f(p(t)) and γ(t) = g(p(t)) .
Construct ϕ̃ and γ̃ as in the lemma, using a = 0 in both cases, so that ϕ̃(0) = 0 = γ̃(0) .
Then

ϕ̃(1) = deg(f) = deg(g) = γ̃(1).

Note that f can be recovered from ϕ̃ as follows. For z ∈ S1 choose t ∈ [0, 1] such that
p(t) = z . Then f(z) = f(p(t)) = ϕ(t) = pϕ̃(t) . If z = 1 ∈ S1 , we can choose t = 0
or t = 1 , but this ambiguity does not matter since pϕ̃(1) = pϕ̃(0) . Similarly, g can be
recovered from γ̃ . Therefore we can show that f is homotopic to g by showing that ϕ̃ is
homotopic to γ̃ with endpoints fixed. In other words we need a continuous

H : [0, 1]× [0, 1]→ R
where H(s, 0) = ϕ̃(s) , H(s, 1) = γ̃(s) and H(0, t) = 0 for all t ∈ [0, 1] and H(1, t) =
ϕ̃(1) = γ̃(1) for all t ∈ [0, 1] . This is easy to do: let H(s, t) = (1− t)ϕ̃(s) + tγ̃(s) . �

Summarizing, we have shown that the degree function gives us a well defined map from
[S1, S1] to Z , and moreover, that this map is injective. It is not hard to show that this
map is also surjective! Namely, for arbitrary ` ∈ Z the map f : S1 → S1 given by f(z) = z`

(complex notation) has deg(f) = ` . (Verify this.)

Corollary 1.2.5. The degree function is a bijection from [S1, S1] to Z . �



CHAPTER 2

Fiber bundles and fibrations

2.1. Fiber bundles and bundle charts

Definition 2.1.1. Let p : E→ B be a continuous map between topological spaces and let
x ∈ B . The subspace p−1({x}) is sometimes called the fiber of p over x .

Definition 2.1.2. Let p : E → B be a continuous map between topological spaces. We
say that p is a fiber bundle if for every x ∈ B there exist an open neighborhood U of x in
B , a topological space F and a homeomorphism h : p−1(U)→ U× F such that h followed
by projection to U agrees with p .

Note that h restricts to a homeomorphism from the fiber of f over x to {x}×F . Therefore
F must be homeomorphic to the fiber of p over x .

Terminology. Often E is called the total space of the fiber bundle and B is called the base
space. A homeomorphism h : p−1(U)→ U×F as in the definition is called a bundle chart.
A fiber bundle p : E → B whose fibers are discrete spaces (intuitively, just sets) is also
called a covering space. (A discrete space is a topological space (X,O) in which O is the
entire power set of X .)
Here is an easy way to make a fiber bundle with base space B . Choose a topological space
F , put E = B × F and let p : E → B be the projection to the first factor. Such a fiber
bundle is considered unexciting and is therefore called trivial. Slightly more generally, a
fiber bundle p : E→ B is trivial if there exist a topological space F and a homeomorphism
h : E→ B×F such that h followed by the projection B×F→ B agrees with p . Equivalently,
the bundle is trivial if it admits a bundle chart h : p−1(U)→ U× F where U is all of B .
Two fiber bundles p0 : E0 → B and p1 : E1 → B with the same base space B are considered
isomorphic if there exists a homeomorphism g : E0 → E1 such that p1 ◦ g = p0 . In that
case g is an isomorphism of fiber bundles.

According to the definition above a fiber bundle is a map, but the expression is often used
informally for a space rather than a map (the total space of the fiber bundle).

Proposition 2.1.3. Let p : E → B be a fiber bundle where B is a connected space. Let
x0, y0 ∈ B . Then the fibers of p over x0 and y0 , respectively, are homeomorphic.

Proof. For every x ∈ B choose an open neighborhood Ux of x , a space Fx and a
bundle chart hx : p

−1(Ux) → Ux × Fx . The open sets Ux for all x ∈ B form an open
cover of B . We make an equivalence relation R on the set B in the following manner:
xRy means that there exist elements

x0, x1, . . . , xk ∈ B
such that x0 = x , xk = y and Uxj−1 ∩Uxj 6= ∅ for j = 1, . . . , k . Clearly xRy implies that
Fx is homeomorphic to Fy . Therefore it suffices to show that R has only one equivalence
class. Each equivalence class is open, for if x ∈ B belongs to such an equivalence class,
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then Ux is contained in the equivalence class. Each equivalence class is closed, since its
complement is open, being the union of the other equivalence classes. Since B is connected,
this means that there can only be one equivalence class. �

Example 2.1.4. One example of a fiber bundle is p : R → S1 , where p(t) = exp(2πit) .
We saw this in section 1. To show that it is a fiber bundle, select some z ∈ S1 and some
t ∈ R such that p(t) = z . Let V =]t − δ, t + δ[ where δ is a positive real number,
not greater than 1/2 . Then p restricts to a homeomorphism from V ⊂ R to an open
neighborhood U = p(V) of z in S1 ; let q : U → V be the inverse homeomorphism. Now
p−1(U) is the disjoint union of the translates `+V , where ` ∈ Z . This amounts to saying
that

g : U× Z→ p−1(U)

given by (y,m) 7→ m + q(y) is a homeomorphism. The inverse h of g is then a bundle
chart. Moreover Z plays the role of a discrete space. Therefore this fiber bundle is a cover-
ing space. It is not a trivial fiber bundle because the total space, R , is not homeomorphic
to S1 × Z .

Example 2.1.5. The Möbius strip leads to another popular example of a fiber bundle.
Let E ⊂ S1 × C consist of all pairs (z,w) where w2 = c2z for some c ∈ R . This is a
(non-compact) implementation of the Möbius strip. There is a projection

q : E→ S1

given by q(z,w) = z . Let us look at the fibers of q . For fixed z ∈ S1 , the fiber of q over
z is identified with the space of all w ∈ C such that w2 = c2z for some real c . This is
equivalent to w = c

√
z where

√
z is one of the two roots of z in C . In other words, w

belongs to the one-dimensional linear real subspace of C spanned by the two square roots
of z . In particular, each fiber of q is homeomorphic to R . The fact that all fibers are
homeomorphic to each other should be taken as an indication (though not a proof) that
q is a fiber bundle. The full proof is left as an exercise, along with another exercise which
is slightly harder: show that this fiber bundle is not trivial.

In preparation for the next example I would like to recall the concept of one-point com-
pactification. Let X = (X,O) be a locally compact topological space. (That is to say, X
is a Hausdorff space in which every element x ∈ X has a compact neighborhood.) Let
Xc = (Xc,U) be the topological space defined as follows. As a set, Xc is the disjoint union
of X and a singleton (set with one element, which in this case we call ∞). The topology
U on Xc is defined as follows. A subset V of Xc belongs to U if and only if

• either ∞ /∈ V and V ∈ O ;
• or ∞ ∈ V and Xc r V is a compact subset of X .

Then Xc is compact Hausdorff and the inclusion u : X→ Xc determines a homeomorphism
of X with u(X) = Xc r {∞} . The space Xc is called the one-point compactification of X .
The notation Xc is not standard; instead people often write X∪∞ and the like. The one-
point compactification can be characterized by various good properties; see books on point
set topology. For use later on let’s note the following, which is clear from the definition
of the topology on Xc . Let Y = (Y,W) be any topological space. A map g : Y → Xc is
continuous if and only if the following hold:

• g−1(X) is open in Y
• the map from g−1(X) to X obtained by restricting g is continuous
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• for every compact subset K of X , the preimage g−1(K) is a closed subset of Y
(that is, its complement is an element of W).

Example 2.1.6. A famous example of a fiber bundle which is also a crucial example in
homotopy theory is the Hopf map from S3 to S2 , so named after its inventor Heinz Hopf.
(Date of invention: around 1930.) Let’s begin with the observation that S2 is homeomor-
phic to the one-point compactification C∪∞ of C . (The standard homeomorphism from
S2 to C ∪∞ is called stereographic projection.) We use this and therefore describe the
Hopf map as a map

p : S3 → C ∪∞.
Also we like to think of S3 as the unit sphere in C2 . So elements of S3 are pairs (z,w)
where z,w ∈ C and |z|2 + |w|2 = 1 . To such a pair we associate

p(z,w) = z/w

using complex division. This is the Hopf map. Note that in cases where w = 0 , we must
have z 6= 0 as |z|2 = |z|2 + |w|2 = 1 ; therefore z/w can be understood and must be
understood as ∞ ∈ C ∪∞ in such cases. In the remaining cases, z/w ∈ C .
Again, let us look at the fibers of p before we try anything more ambitious. Let s ∈ C∪∞ .
If s =∞ , the preimage of {s} under p consists of all (z,w) ∈ S3 where w = 0 . This is a
circle. If s /∈ {0,∞} , the preimage of {s} under p consists of all (z,w) ∈ S3 where w 6= 0
and z/w = s . So this is the intersection of S3 ⊂ C2 with the one-dimensional complex
linear subspace {(z,w) | z = sw} ⊂ C2 . It is also a circle! Therefore all the fibers of p are
homeomorphic to the same thing, S1 . We take this as an indication (though not a proof)
that p is a fiber bundle.
Now we show that p is a fiber bundle. First let U = C , which we view as an open subset
of C ∪∞ . Then

p−1(U) = {(z,w) ∈ S3 ⊂ C2 | w 6= 0} .

A homeomorphism h from there to U× S1 = C× S1 is given by

(z,w) 7→ (z/w,w/|w|).

This has the properties that we require from a bundle chart: the first coordinate of h(z,w)
is z/w = p(z,w) . (The formula g(y, z) = (yz, z)/‖(yz, z)‖ defines a homeomorphism g
inverse to h .) Next we try V = (C ∪∞)r {0} , again an open subset of C ∪∞ . We have
the following commutative diagram

S3

p

��

α // S3

p

��
C ∪∞ ζ // C ∪∞

where α(z,w) = (w, z) and ζ(s) = s−1 . (This amounts to saying that p ◦ α = ζ ◦ p .)
Therefore the composition

p−1(V)
α // p−1(U)

h // U× S1
(s,w) 7→(s−1,w) // V × S1

has the properties required of a bundle chart. Since U ∪ V is all of C ∪∞ , we have
produced enough charts to know that p is a fiber bundle. �



10 2. FIBER BUNDLES AND FIBRATIONS

2.2. Restricting fiber bundles

Let p : E → B be a fiber bundle. Let A be a subset of B . Put E|A = p−1(A) . This is a
subset of E . We want to regard A as a subspace of B (with the subspace topology) and
E|A as a subspace of E .

Proposition 2.2.1. The map pA : E|A → A obtained by restricting p is also a fiber
bundle.

Proof. Let x ∈ A . Choose a bundle chart h : p−1(U) → U × F for p such that
x ∈ U . Let V = U ∩ A , an open neighborhood of x in A . By restricting h we obtain a
bundle chart hA : p−1(V)→ V × F for pA . �

Remark. In this proof it is important to remember that a bundle chart as above is not just
any homeomorphism h : p−1(U) → U × F . There is a condition: for every y ∈ p−1(U)
the U-coordinate of h(y) ∈ U× F must be equal to p(y) . The following informal point of
view is recommended: A bundle chart h : p−1(U)→ U× F for p is just a way to specify,
simultaneously and continuously, homeomorphisms hx from the fibers of p over elements
x ∈ U to F . Explicitly, h determines the hx and the hx determine h by means of the
equation

h(y) = (x, hx(y)) ∈ U× F
when y ∈ p−1(x) , that is, x = p(y) .

Let p : E → B be any fiber bundle. Then B can be covered by open subsets Ui such
that E|Ui is a trivial fiber bundle. This is true by definition: choose the Ui together with

bundle charts hi : p
−1(Ui) → Ui × Fi . Rename p−1(Ui) = E|Ui if you must. Then each

hi is a bundle isomorphism of p|Ui : E|Ui → Ui with a trivial fiber bundle Ui × Fi → Ui .
There are cases where we can say more. One such case merits a detailed discussion because
it takes us back to the concept of homotopy.

Lemma 2.2.2. Let B be any space and let q : E → B × [0, 1] be a fiber bundle. Then B
admits a covering by open subsets Ui such that

q|Ui×[0,1] : E|Ui×[0,1] −→ Ui × [0, 1]

is a trivial fiber bundle.

Proof. We fix x0 ∈ B for this proof. We try to construct an open neighborhood U
of {x0} in B such that q|U×[0,1] : E|U×[0,1] −→ U× [0, 1] is a trivial fiber bundle. This is
enough.
To minimize bureaucracy let us set it up as a proof by analytic induction. So let J be
the set of all t ∈ [0, 1] for which there exist an open U ′ ⊂ B and an open subset U ′′ of
[0, 1] which is also an interval containing 0 , such that x0 ∈ U ′ and t ∈ U ′′ and such that
q|U ′×U ′′ is a trivial fiber bundle. The following should be clear.

• J is an open subset of [0, 1] .
• J is nonempty since 0 ∈ J .
• If t ∈ J then [0, t] ⊂ J ; hence J is an interval.

If 1 ∈ J , then we are happy. So we assume 1 /∈ J for a contradiction. Then J = [0, σ[ for
some σ where 0 < σ ≤ 1 . Since q is a fiber bundle, the point (x0, σ) admits an open
neighborhood V in B× [0, 1] with a bundle chart g : q−1(V)→ V × FV . Without loss of
generality V has the form V ′×V ′′ where V ′ ⊂ B is an open neighborhood of x0 in B and
V ′′ is an interval which is also an open neighborhood of σ in [0, 1] . There exists r < σ
such that V ′′ ⊃ [r, σ] . Then r ∈ J and so there exists W = W ′ ×W ′′ open in B × [0, 1]
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with a bundle chart h : q−1(W) → U × FW such that x0 ∈ W ′ and W ′′ = [0, τ[ where
τ > r . Without loss of generality, W ′ = V ′ . Now W ′′ ∪ V ′′ is an open subset of [0, 1]
which is an interval (since r ∈ W ′′ ∩ V ′′ ). It contains both 0 and σ . Now let U ′ = V ′

and U ′′ =W ′′∪V ′′ . If we can show that q|U ′×U ′′ is a trivial fiber bundle, then the proof
is complete because U ′×U ′′ contains {x0}× [0, σ] , which implies that σ ∈ J , which is the
contradiction that we need. Indeed we can make a bundle chart

k : q−1(U ′ ×U ′′)→ (U ′ ×U ′′)× FW
as follows. For (x, t) ∈ U ′ ×U ′′ with t ≤ r we take k(x,t) = h(x,t) . For (x, t) ∈ U ′ ×U ′′
with t ≥ r we take

k(x,t) = h(x,r) ◦ g−1(x,r) ◦ g(x,t) .
Decoding: h(x,t) is a homeomorphism from the fiber of q over (x, t) ∈W ⊂ B× [0, 1] to
FW . Similarly g(x,t) is a homeomorphism from the fiber of q over (x, t) ∈ V ⊂ B× [0, 1]
to FV . Also note that

h(x,r) ◦ g−1(x,r)

is a homeomorphism from FV to FW , depending on x ∈ V1 =W1 ⊂ B . �

2.3. Pullbacks of fiber bundles

Let p : E → B be a fiber bundle. Let g : X → B be any continuous map of topological
spaces.

Definition 2.3.1. The pullback of p : E→ B along g is the space

g∗E := { (x, y) ∈ X× E | g(x) = p(y)}.

It is regarded as a subspace of X× E with the subspace topology.

Lemma 2.3.2. The projection g∗E→ X given by (x, y) 7→ x is a fiber bundle.

Proof. First of all it is helpful to write down the obvious maps that we have in a
commutative diagram:

g∗E

q

��

r // E

p

��
X

g // B

Here q and r are the projections given by (x, y) 7→ x and (x, y) 7→ y . Commutative
means that the two compositions taking us from g∗E to B agree. Suppose that we have
an open set V ⊂ B and a bundle chart

h : p−1(V)
∼=−−−−→ V × F .

Now U := g−1(V) is open in X . Also q−1(U) is an open subset of g∗E and we describe
elements of that as pairs (x, y) where x ∈ U and y ∈ E , with g(x) = p(y) . We make a
homeomorphism

q−1(U)→ U× F
by the formula (x, y) 7→ (x, hg(x)(y)) = (x, hp(y)(y)) . It is a homeomorphism because the
inverse is given by

(x, z) 7→ (x, (hg(x))
−1(z))

for x ∈ U and z ∈ F , so that (g(x), z) ∈ V × F . Its is also clearly a bundle chart. In this
way, every bundle chart

h : p−1(V)
∼=−−−−→ V × F
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for p : E→ B determines a bundle chart

q−1(U)
∼=−−−−→ U× F

with the same F , where U is the preimage of V under g . Since p : E → B is a fiber
bundle, we have many such bundle charts p−1(Vj) → Vj × Fj such that the union of the
Vj is all of B . Then the union of the corresponding Uj is all of X , and we have bundle
charts q−1(Uj)→ Uj × Fj . This proves that q is a fiber bundle. �

This proof was too long and above all too formal. Reasoning in a less formal way, one
should start by noticing that the fiber of q over z ∈ X is essentially the same (and certainly
homeomorphic) to the fiber of p over g(z) ∈ B . Namely,

q−1(z) = {(x, y) ∈ X× E | g(x) = p(y), x = z} = {z}× p−1({g(z)}) .
Now recall once again that a bundle chart h : p−1(U) → U × F for p is just a way to
specify, simultaneously and continuously, homeomorphisms hx from the fibers of p over
elements x ∈ U to F . If we have such a bundle chart for p , then for any z ∈ g−1(U) we
get a homeomorphism from the fiber of q over z , which “is” the fiber of p over g(z) , to
F . And so, by letting z run through g−1(U) , we get a bundle chart for q .

Example 2.3.3. Restriction of fiber bundles is a special case of pullback, up to isomor-
phism of fiber bundles. More precisely, suppose that p : E → B is a fiber bundle and let
A ⊂ B be a subspace, with inclusion g : A → B . Then there is an isomorphism of fiber
bundles from pA : E|A → A to the pullback g∗E → A . This takes y ∈ E|A to the pair
(p(y), y) ∈ g∗E ⊂ A× E .

2.4. Homotopy invariance of pullbacks of fiber bundles

Theorem 2.4.1. Let p : E → B be a fiber bundle. Let f, g : X → B be continuous maps,
where X is a compact Hausdorff space. If f is homotopic to g , then the fiber bundles
f∗E→ X and g∗E→ X are isomorphic.

Remark 2.4.2. The compactness assumption on X is unnecessarily strong; paracompact is
enough. But paracompactness is also a more difficult concept than compactness. Therefore
we shall prove the theorem as stated, and leave a discussion of improvements for later.

Remark 2.4.3. Let X be a compact Hausdorff space and let U0, U1, . . . , Un be open
subsets of X such that the union of the Ui is all of X . Then there exist continuous
functions

ϕ0, ϕ1, . . . , ϕn : X→ [0, 1]

such that
∑n
j=0ϕj ≡ 1 and such that supp(ϕj) , the support of ϕj , is contained in Uj

for j = 0, 1, . . . , n . Here supp(ϕj) is the closure in X of the open set

{x ∈ X | ϕj(x) > 0}.

A collection of functions ϕ0, ϕ1, . . . , ϕn with the stated properties is called a partition of
unity subordinate to the open cover of X given by U0, . . . , Un . For readers who are not
aware of this existence statement, here is a reduction (by induction) to something which
they might be aware of.
First of all, if X is a compact Hausdorff space, then it is a normal space. This means,
in addition to the Hausdorff property, that any two disjoint closed subsets of X admit
disjoint open neighborhoods. Next, for any normal space X we have the Tietze-Urysohn
extension lemma. This says that if A0 and A1 are disjoint closed subsets of X , then there
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is a continuous function ψ : X → [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0
for all x ∈ A0 . Now suppose that a normal space X is the union of two open subsets U0
and U1 . Because X is normal, we can find an open subset V0 ⊂ U0 such that the closure
of V0 in X is contained in U0 and the union of V0 and U1 is still X . Repeating this, we
can also find an open subset V1 ⊂ U1 such that the closure of V1 in X is contained in
U1 and the union of V1 and V0 is still X . Let A0 = XrV0 and A1 = XrV1 . Then A0
and A1 are disjoint closed subsets of X , and so by Tietze-Urysohn there is a continuous
function ψ : X → [0, 1] such that ψ(x) = 1 for all x ∈ A1 and ψ(x) = 0 for all x ∈ A0 .
This means that supp(ψ) is contained in the closure of XrA0 = V0 , which is contained
in U0 . We take ϕ1 = ψ and ϕ0 = 1 − ψ . Since 1 − ψ is zero on A1 , its support is
contained in the closure of V1 , which is contained in U1 . This establishes the induction
beginning (case n = 1).
For the induction step, suppose that we have an open cover of X given by U0, . . . , Un where
n ≥ 2 . By inductive assumption we can find a partition of unity subordinate to the cover
U0∪U1, U2, . . . , Un and by the induction beginning, another partition of unity subordinate
to U0, U1 ∪U2 ∪ · · ·Un . Call the functions in the first partition of unity ϕ01, ϕ2, . . . , ϕn
and those in the second ψ0, ψ1 , we see that the functions ψ0ϕ01, ψ1ϕ01, ϕ2, . . . , ϕn form
a partition of unity subordinate to the cover by U0, . . . , Un . �

Proof of theorem 2.4.1. Let h : X × [0, 1] → B be a homotopy from f to g , so
that h0 = f and h1 = g . Then h∗E → X × [0, 1] is a fiber bundle. We give this a new
name, say q : L → X × [0, 1] . Let ι0 and ι1 be the maps from X to X × [0, 1] given by
ι0(x) = (x, 0) and ι1(x) = (x, 1) . It is not hard to verify that the fiber bundle f∗E→ X is
isomorphic to ι∗0L→ X and g∗E→ X is isomorphic to ι∗1L→ X . Therefore all we need to
prove is the following.
Let q : L → X × [0, 1] be a fiber bundle, where X is compact Hausdorff. Then the fiber
bundles ι∗0L → X and ι∗1L → X obtained from q by pullback along ι0 and ι1 are iso-
morphic. To make this even more explicit: given the fiber bundle q : L → X × [0, 1] , we
need to produce a homeomorphism from L|X×{0} to L|X×{1} which fits into a commutative
diagram

L|X×{0}

res. of q

��

our homeom. // L|X×{1}

res. of q

��
X× {0}

(x,0) 7→(x,1) // X× {1}

Here L|K means q−1(K) , for any K ⊂ X× [0, 1] .
By a lemma proved last week (lecture notes week 2), we can find a covering of X by
open subsets Ui such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is a trivial bundle, for
each i . Since X is compact, finitely many of these Ui suffice, and we can assume that
their names are U1, . . . , Un . Let ϕ1, . . . , ϕn be continuous functions from X to [0, 1]
making up a partition of unity subordinate to the open covering of X by U1, . . . , Un .

For j = 0, 1, 2, . . . , n let vj =
∑j
k=1ϕk and let Γj ⊂ X × [0, 1] be the graph of vj . Note

that Γ0 is X × {0} and Γn is X × {1} . It suffices therefore to produce a homeomorphism
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ej : L|Γj−1 → L|Γj which fits into a commutative diagram

L|Γj−1

res. of q

��

ej // L|Γj

res. of q

��
Γj−1

(x,vj−1(x)) 7→ (x,vj(x)) // Γj

(for j = 1, 2, . . . , n). Since qUj×[0,1] : L|Uj×[0,1] → Uj × [0, 1] is a trivial fiber bundle, we
have a single bundle chart for it, a homeomorphism

g : L|Uj×[0,1] −→ (Ui × [0, 1])× F

with the additional good property that we require of bundle charts. Fix j now and write
L = L ′ ∪ L ′′ where L ′ consists of the y ∈ L for which q(y) = (x, t) with x /∈ supp(ϕj) ,
and L ′′ consists of the y ∈ L for which q(y) = (x, t) with x ∈ Uj . Both L ′ and L ′′ are
open subsets of L . Now we make our homeomorphism e = ej as follows. By inspection,
L|Γj−1 ∩ L ′ = L|Γj ∩ L ′ , and we take e to be the identity on L|Γj−1 ∩ L ′ . By restricting
the bundle chart g , we have a homeomorphism L|Γj−1 ∩ L ′′ → Uj × F ; more precisely, a
homeomorphism from L|Γj−1∩L ′′ to (Γj−1∩Uj×[0, 1])×F . By the same reasoning, we have
a homeomorphism L|Γj ∩ L ′′ → Uj × F ; more precisely, a homeomorphism from L|Γj ∩ L ′′
to (Γj ∩Uj × [0, 1])× F . Therefore we have a preferred homeomorphism from L|Γj−1 ∩ L ′′
to L|Γj ∩ L ′′ , and we use that as the definition of e on L|Γj−1 ∩ L ′′ . By inspection, the
two definitions of e which we have on the overlap L|Γj−1 ∩ L ′ ∩ L ′′ agree, so e is well
defined. �

Corollary 2.4.4. Let p : E → B be a fiber bundle where B is compact Hausdorff and
contractible. Then p is a trivial fiber bundle.

Proof. By the contractibility assumption, the identity map f : B → B is homotopic
to a constant map g : B → B . By the theorem, the fiber bundles f∗E → B and g∗E → B
are isomorphic. But clearly f∗E→ B is isomorphic to the original fiber bundle p : E→ B .
And clearly g∗E→ B is a trivial fiber bundle. �

Corollary 2.4.5. Let q : E→ B× [0, 1] be a fiber bundle, where B is compact Hausdorff.
Suppose that the restricted bundle

qB×{0} : E|B×{0} → B× {0}

admits a section, i.e., there exists a continuous map s : B× {0}→ E|B×{0} such that q ◦ s
is the identity on B× {0} . Then q : E→ B× [0, 1] admits a section s̄ : B× [0, 1]→ E which
agrees with s on B× {0} .

Proof. Let f, g : B × [0, 1] → B × [0, 1] be defined by f(x, t) = (x, t) and g(x, t) =
(x, 0) . These maps are clearly homotopic. Therefore the fiber bundles f∗E→ B×[0, 1] and
g∗E→ B× [0, 1] are isomorphic fiber bundles. Now f∗E→ B× [0, 1] is clearly isomorphic
to the original fiber bundle

q : E→ B× {0, 1}

and g∗E→ B× [0, 1] is clearly isomorphic to the fiber bundle

E|B×{0} × [0, 1]→ B× [0, 1]

given by (y, t) 7→ (q(y), t) for y ∈ E|B×{0} , that is, y ∈ E with q(y) = (x, 0) for some
x ∈ B . Therefore we may say that there is a homeomorphism h : E|B×{0} × [0, 1] → E
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which is over B× [0, 1] , in other words, which satisfies

(q ◦ h)(y, t) = (q(y), t)

for all y ∈ E|B×{0} and t ∈ [0, 1] . Without loss of generality, h satisfies the addi-
tional condition h(y, 0) = y for all y ∈ E|B×{0} . (In any case we have a homeomor-
phism u : E|B×{0} → E|B×{0} defined by u(y) = h(y, 0) . If it is not the identity, use the

homeomorphism (y, t) 7→ h(u−1(y), t) instead of (y, t) 7→ h(y, t) .) Now define s̄ by
s̄(x, t) = h(s(x), t) for x ∈ B and t ∈ [0, 1] . �

2.5. The homotopy lifting property

Definition 2.5.1. A continuous map p : E → B between topological spaces is said to
have the homotopy lifting property (HLP) if the following holds. Given any space X and
continuous maps f : X→ E and h : X× [0, 1]→ B such that h(x, 0) = p(f(x)) for all x ∈ X ,
there exists a continuous map H : X×[0, 1]→ E such that p◦H = h and H(x, 0) = f(x) for
all x ∈ X . A map with the HLP can be called a fibration (sometimes Hurewicz fibration).

It is customary to summarize the HLP in a commutative diagram with a dotted arrow:

X
f //

x 7→(x,0)

��

E

p

��
X× [0, 1]

h //

H

<<

B

Indeed, the HLP for the map p means that once we have the data in the outer commutative
square, then the dotted arrow labeled H can be found, making both triangles commutative.
More associated customs: we think of h as a homotopy between maps h0 and h1 from
X to B , and we think of f : X→ E as a lift of the map h0 , which is just a way of saying
that p ◦ f = h0 .

More generally, or less generally depending on point of view, we say that p : E→ B satisfies
the HLP for a class of spaces Q if the dotted arrow in the above diagram can always be
supplied when the space X belongs to that class Q .

Proposition 2.5.2. Let p : E → B be a fiber bundle. Then p has the HLP for compact
Hausdorff spaces.

Proof. Suppose that we have the data X , f and h as in the above diagram, but
we are still trying to construct or find the diagonal arrow H . We are assuming that X is
compact Hausdorff. The pullback of p along h is a fiber bundle h∗E → X × [0, 1] . The
restricted fiber bundle

(h∗E)|X×{0} → X× {0}

has a continuous section s given essentially by f , and if we say it very carefully, by the
formula

(x, 0) 7→ ((x, 0), f(x)) ∈ h∗E ⊂ (X× [0, 1] )× E .
The section s extends to a continuous section s̄ of h∗E → X × [0, 1] by corollary 2.4.5.
Now we can define H := r ◦ s̄ , where r is the standard projection from h∗E to E . �
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Example 2.5.3. Let p : S3 → S2 be the Hopf fiber bundle. Assume if possible that p is
nullhomotopic; we shall try to deduce something absurd from that. So let

h : S3 × [0, 1]→ S2

be a nullhomotopy for p . Then h0 = p and h1 is a constant map. Applying the HLP in
the situation

S3

x 7→(x,0)

��

id // S3

p

��
S3 × [0, 1]

H

::

h // S2

we deduce the existence of H : S3 × [0, 1]→ S3 , a homotopy from the identity map H0 =
id : S3 → S3 to a map H1 : S

3 → S3 with the property that p ◦ H1 is constant. Since p
itself is certainly not constant, this means that H1 is not surjective. If H1 is not surjective,
it is nullhomotopic. (A non-surjective map from any space to a sphere is nullhomotopic;
that’s an exercise.) Consequently id : S3 → S3 is also nullhomotopic, being homotopic to
H1 . This means that S3 is contractible.
Is that absurd enough? We shall prove later in the course that S3 is not contractible. Until
then, what we have just shown can safely be stated like this: if S3 is not contractible, then
the Hopf map p : S3 → S2 is not nullhomotopic. (I found this argument in Dugundji’s
book on topology. Hopf used rather different ideas to show that p is not nullhomotopic.)

Let p : E→ B be a fibration (for a class of spaces Q) and let f : X→ B be any continous
map between topological spaces. We define the pullback f∗E by the usual formula,

f∗E = {(x, y) ∈ X× E | f(x) = p(y) }.

Lemma 2.5.4. The projection f∗E→ X is also a fibration for the class of spaces Q .

The proof is an exercise. �

In example 2.5.3, the HLP was used for something resembling a computation with ho-
motopy classes of maps. Let us try to formalize this, as an attempt to get hold of some
algebra in homotopy theory. So let p : E → B be a continuous map which has the HLP
for a class of topological spaces Q . Let f : X → B be any continuous map of topological
spaces. Now we have a commutative square

f∗E

q1

��

q2
// E

p

��
X

f // B

where q1 and q2 are the projections. Take any space W in the class Q . There is then a
commutative diagram of sets and maps

[W, f∗E]

��

// [W,E]

��
[W,X] // [W,B]
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Proposition 2.5.5. The above diagram of sets of homotopy classes is “half exact” in the
following sense: given a ∈ [W,X] and b ∈ [W,E] with the same image in [W,B] , there
exists c ∈ [W, f∗E] which is taken to a and b by the appropriate maps in the diagram.

Proof. Represent a by a map α : W → X , and b by some map β : W → E . By
assumption, f ◦ α is homotopic to p ◦ β . Let h = (ht)t∈[0,1] be a homotopy, so that
h0 = p ◦β and h1 = f ◦α , and ht : W → B for t ∈ [0, 1] . By the HLP for p , there exists
a homotopy H : W × [0, 1]→ E such that p ◦H = h and H0 = β . Then H1 is homotopic
to H0 = β , and p ◦H1 = f ◦α . Therefore the formula w 7→ (α(w), H1(w)) defines a map
W → f∗E . The homotopy class c of that is the solution to our problem. �

Looking back, we can say that example 2.5.3 is an application of proposition 2.5.5 with
p : E→ B equal to the Hopf fibration and f equal to the inclusion of a point (and Q equal
to the class of compact Hausdorff spaces, say). We made some unusual choices: W = E
and b = [id] ∈ [W,E] .

2.6. Remarks on paracompactness and fiber bundles

Quoting from many books on point set topology: a topological space X = (X,O) is para-
compact if it is Hausdorff and every open cover (Ui)i∈Λ of X admits a locally finite
refinement (Vj)j∈Ψ .

There is a fair amount of open cover terminology in that definition. In this formulation,
we take the view that an open cover of X is a family, i.e., a map from a set to O (with a
special property). This is slightly different from the equally reasonable view that an open
cover of X is a subset of O (with a special property), and it justifies the use of round
brackets as in (Ui)i∈Λ , as opposed to curly brackets. Here the map in question is from
Λ to O . There is an understanding that (Vj)j∈Ψ is also an open cover of X , but Ψ need
not coincide with Λ . Refinement means that for every j ∈ Ψ there exists i ∈ Λ such that
Vj ⊂ Ui . Locally finite means that every x ∈ X admits an open neighborhood W in X
such that the set {j ∈ Ψ | W ∩ Vj 6= ∅} is a finite subset of Ψ .

It is wonderfully easy to get confused about the meaning of paracompactness. There is a
strong similarity with the concept of compactness, and it is obvious that compact (together
with Hausdorff) implies paracompact, but it is worth emphasizing the differences. Namely,
where compactness has something to do with open covers and sub-covers, the definition of
paracompactness uses the notion of refinement of one open cover by another open cover.
We require that every Vj is contained in some Ui ; we do not require that every Vj is
equal to some Ui . And locally finite does not just mean that for every x ∈ X the set
{j ∈ Ψ | x ∈ Vj} is a finite subset of Ψ . It means more.

For some people, the Hausdorff condition is not part of paracompact, but for me, it is.

An important theorem: every metrizable space is paracompact. This is due to A.H.
Stone who, as a Wikipedia page reminds me, is not identical with Marshall Stone of the
Stone-Weierstrass theorem and the Stone-Čech compactification. The proof is not very
complicated, but you should look it up in a book on point-set topology which is not too
ancient, because it was complicated in the A.H. Stone version.

Another theorem which is very important for us: in a paracompact space X , every open
cover (Ui)i∈Λ admits a subordinate partition of unity. In other words there exist contin-
uous functions ϕi : X→ [0, 1] , for i ∈ Λ , such that
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• every x ∈ X admits an open neighborhood W in X for which the set

{ i ∈ Λ | W ∩ supp(ϕi) 6= ∅}
is finite;

•
∑
i∈Λϕi ≡ 1 ;

• supp(ϕi) ⊂ Ui .

The second condition is meaningful if we assume that the first condition holds. (Then,
for every x ∈ X , there are only finitely many nonzero summands in

∑
i∈Λϕi(x) . The

first condition also ensures that for any subset Ξ ⊂ Λ , the sum
∑
i∈Ξϕi is a continuous

function on X .)
The proof of this theorem (existence of subordinate partition of unity for any open cover
of a paracompact space) is again not very difficult, and boils down mostly to showing that
paracompact spaces are normal. Namely, in a normal space, locally finite open covers
admit subordinate partitions of unity, and this is easy.

Many of the results about fiber bundles in this chapter rely on partitions of unity, and
to ensure their existence, we typically assumed compactness here and there. But now it
emerges that paracompactness is enough.
Specifically, in theorem 2.4.1 it is enough to assume that X is paracompact. In corol-
lary 2.4.4 it is enough to assume that B is paracompact (and contractible). In corol-
lary 2.4.5 it is enough to assume that B is paracompact. In proposition 2.5.2 we have the
stronger conclusion that p has the HLP for paracompact spaces.

Proof of variant of thm. 2.4.1. Here we assume only that X is paracompact
(previously we assumed that it was compact). By analogy with the case of compact X ,
we can easily reduce to the following statement. Let q : L → X × [0, 1] be a fiber bundle,
where X is paracompact. Then the fiber bundles ι∗0L → X and ι∗1L → X obtained from q
by pullback along ι0 and ι1 are isomorphic. And to make this more explicit: given the
fiber bundle q : L→ X× [0, 1] , we need to produce a homeomorphism h from L|X×{0} to
L|X×{1} which fits into a commutative diagram

L|X×{0}

res. of q

��

h // L|X×{1}

res. of q

��
X× {0}

(x,0) 7→(x,1) // X× {1}

By a lemma proved in lecture notes week 2, we can find an open cover (Ui)i∈Λ of X
such that that qUi×[0,1] : L|Ui×[0,1] → Ui × [0, 1] is a trivial bundle, for each i ∈ Λ . Let
(ϕi)i∈Λ be a partition of unity subordinate to (Ui)i∈Λ . So ϕi : X→ [0, 1] is a continuous
function with supp(ϕi) ⊂ Ui , and

∑
iϕi ≡ 1 . Every x ∈ X admits a neighborhood W

in X such that the set

{i ∈ Λ | supp(ϕi) ∩W 6= ∅}
is finite.
Now choose a total ordering on the set Λ . (A total ordering on Λ is a relation ≤ on
Λ which is transitive and reflexive, and has the additional property that for any distinct
i, j ∈ Λ , precisely one of i ≤ j or j ≤ i holds. We need to assume something here to
get such an ordering: for example the Axiom of Choice in set theory is equivalent to the
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Well-Ordering Principle, which states that every set can be well-ordered. A well-ordering
is also a total ordering.) Given x ∈ X , choose an open neighborhood W of x such that
the set of i ∈ Λ having supp(ϕi) ∩W 6= ∅ is finite; say it has n elements. We list these
elements in their order (provided by the total ordering on Λ which we selected):

i1 ≤ i2 ≤ i3 ≤ · · · in .
The functions ϕi1 , ϕi2 , . . . , ϕin (restricted to W ) make up a partition of unity on W
which is subordinate to the covering by open subsets W ∩ Ui1 ,W ∩ Ui2 , . . .W ∩ Uin .
Now we can proceed exactly as in the proof of theorem 2.4.1 to produce (in n steps) a
homeomorphism hW which makes the following diagram commute:

L|W×{0}

res. of q

��

hW // L|W×{1}

res. of q

��
W × {0}

(x,0) 7→(x,1) // W × {1}

Finally we can regard W or x as variables. If we choose, for every x ∈ X , an open
neighborhood Wx with properties like W above, then the Wx for all x ∈ X constitute
an open cover of X . For each Wx we get a homeomorphism hWx as above. These
homeomorphisms agree with each other wherever this is meaningful, and so define together
a homeomorphism h : L|X×{0} → L|X×{1} with the property that we require. �



CHAPTER 3

Presheaves and sheaves on topological spaces

3.1. Presheaves and sheaves

Definition 3.1.1. A presheaf on a topological space X is a rule F which to every open
subset U of X assigns a set F(U) , and to every pair of nested open sets U ⊂ V ⊂ X a
map

resV,U : F(V)→ F(U)

which satisfies the following conditions.

• For open sets U ⊂ V ⊂ W in X we have resV,U ◦ resW,V = resW,U (an equality
of maps from F(W) to F(U)).
• resV,V = id : F(V)→ F(V) for every open V in X .

Example 3.1.2. An important and obvious example for us is the following. Fix X as
above and let Y be another topological space. For open U in X let F(U) be the set of all
continuous maps from U to Y . Note that we make no attempt here to define a topology
on F(U) ; we just take it as a set. For open sets U ⊂ V ⊂ X there is an obvious restriction
map F(V) → F(U) . That is, a continuous map from V to Y determines by restriction a
continuous map from U to Y . The conditions for a presheaf are clearly satisfied.

Example 3.1.3. Let p : Y → X be any continuous map. We can use this to make a presheaf
F on X as follows. For an open set U in X , let F(U) be the set of continuous maps
g : U→ Y such that p ◦ g = idU . For open sets U ⊂ V ⊂ X let resV,U : F(V)→ F(U) be
given by restriction in the usual sense. Namely, if f ∈ F(V) , then f : V → Y is a continuous
map which satisfies p ◦ f = idV , and so the restriction f|U is a continuous map U → Y
which satisfies p ◦ f|U = idU .

Example 3.1.4. Suppose that X happens to be a differentiable (smooth) manifold (in
which case it is also a topological space). For open U in X , let F(U) be the set of smooth
functions from U to R . For open subsets U ⊂ V ⊂ X , let resV,U : F(V)→ F(U) be given
by restriction in the usual sense. The conditions for a presheaf are clearly satisfied by F .

Example 3.1.5. Given a topological space X and a set S , define F(U) = S for every open
U in X . For open sets U ⊂ V ⊂ X , let resV,U : F(V) → F(U) be the identity map of S .
The conditions for a presheaf are clearly satisfied.

Example 3.1.6. Fix X as above and let Y be another topological space. For open U
in X put F(U) = [U, Y] , the set of homotopy classes of continuous maps from U to Y .
For open sets U ⊂ V ⊂ X there is an obvious restriction map F(V) → F(U) . That is,
a homotopy class of continuous maps from V to Y determines by restriction a homotopy
class of continuous maps from U to Y . The conditions for a presheaf are clearly satisfied.
This example looks as if it might become very important in this course, since it connects
presheaves and the concept of homotopy. But it will not become very important except
as a source of homework problems and counterexamples.

20
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Example 3.1.7. Fix X as above and let Y be another topological space. For an open
subset U of X let F(U) be the set of formal linear combinations (with integer coefficients)
of continuous maps from U to Y . So an element of F(U) might look like 5f − 3g + 9h
where f, g and h are continuous maps from U to Y . We do not insist that f, g, h in this
expression are distinct, but if for example f and g are equal, then we take the view that
5f − 3g + 9h and 2f + 9h define the same element of F(U) . This remark is important
when we define the restriction map

resV,U : F(V)→ F(U)

This is of course determined by restriction of continuous maps. So for example, if

3a− 6b+ 10c− d

is an element of F(V) , and here we may as well assume that the continuous maps
a, b, c, d : V → Y are distinct (because we can simplify the expression if not), then resV,U
takes that element to 3(a|U) − 6(b|U) + 10(c|U) − d|U ∈ F(U) . And here we can not
assume that the continuous maps a|U, b|U, c|U, d|U : U → Y are all distinct. In any case
the conditions for a presheaf are clearly satisfied.
This example looks silly and unimportant, but it is not silly and it will become very im-
portant in this course. Let’s also note that there are more grown-up ways to describe F(U)
for this presheaf F . Instead of saying the set of formal linear combinations with integer
coefficients of continuous maps from U to Y , we can say: the free abelian group generated
by the set of continuous maps from U to Y . Or we can say: the free Z-module generated
by the set of continuous maps from U to Y . (See also section 3.4 for some clarifications.)

With a view to the next definition we introduce some practical notation. Let X be a
space, let F be a presheaf on X , and suppose that U,V are open subsets of X such that
U ⊂ V . Then we have the restriction map resV,U : F(V)→ F(U) . Let s ∈ F(V) . Instead
of writing resV,U(s) ∈ F(U) , we sometimes write s|U ∈ F(U) .

Definition 3.1.8. A presheaf F on a topological space X is called a sheaf on X if it has
the following additional properties. For every collection of open subsets (Wi)i∈Λ of X ,
and every collection

(si ∈ F(Wi))i∈Λ

with the property si|Wi∩Wj = sj|Wi∩Wj ∈ F(Wi ∩Wj) , there exists a unique

s ∈ F(
⋃
i∈Λ

Wi)

such that s|Wi = si for all i ∈ Λ . In particular, F(∅) has exactly one element.

In a slightly more wordy formulation: if we have elements si ∈ F(Wi) for all i ∈ Λ ,
and we have agreement of si and sj on Wi ∩Wj for all i, j ∈ Λ , then there is a unique
s ∈ F(

⋃
iWi) which agrees with si on each Wi .

To silence a particularly nagging and persistent type of critic, including the critic within
myself, let me explain in detail why this implies that F(∅) has exactly one element. Put
Λ = ∅ . For each i ∈ Λ , select an open subset Wi . (Easy, because there is no i ∈ Λ .) For
each i ∈ Λ , select an element si ∈ F(Wi) . (Easy.) Verify that, for each i and j in Λ , we
have si|Ui∩Uj = sj|Ui∩Uj . (Easy.) Conclude that there exists a unique

s ∈ F(
⋃
i∈Λ

Wi)
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such that s|Wi = si for every i ∈ Λ . Now note that
⋃
i∈ΛWi = ∅ and verify that every

t ∈ F(∅) satisfies the condition t|Wi = si for every i ∈ Λ . (Easy.) Therefore every
element t of F(∅) must be equal to that distinguished element s which we have already
spotted.

Obviously it is now our duty to scan the list of the examples above and decide for each of
these presheaves F whether it is a sheaf. It is a good idea to ask first in each case whether
F(∅) has exactly one element. If that is not the case, then it is not a sheaf. It looks like
a mean reason to refuse sheaf status to a presheaf. But often when F(∅) does not have
exactly one element, the presheaf F turns out to have other properties which prevent us
from promoting it to sheaf status by simply redefining F(∅) . — The following lemma is
also a good tool in testing for the sheaf property.

Lemma 3.1.9. Let F be a sheaf on X and let (Wi)i∈Λ be a collection of pairwise disjoint
open subsets of X . Then the formula s 7→ (s|Wi)i∈Λ determines a bijection

F(
⋃
i∈Λ

Wi) −→∏
i∈Λ

F(Wi).

Proof. Take an element in
∏
i∈Λ F(Wi) and denote it by (si)i∈Λ , so that si is an

element of F(Wi) . Since Wi ∩Wj = ∅ and F(∅) has exactly one element, the matching
condition

si|Wi∩Wj = sj|Wi∩Wj
is vacuously satisfied for all i, j ∈ Λ . Hence by the sheaf property, there is a unique
element s in F(

⋃
i∈ΛWi) such that s|Wi = si for all i ∈ Λ . This means precisely that

s 7→ (s|Wi)i∈Λ is a bijection. (The surjectivity is expressed in there is and the injectivity
in the word unique.) �

Discussion of example 3.1.2. This is a sheaf. What is being said here is that if we have
open Wi ⊂ X for each i ∈ Λ , and continuous maps fi : Wi → Y for each i such that fi
and fj agree on Wi ∩Wj for all i, j ∈ Λ , then we have a unique continuous map f from⋃
Wi to Y which agrees with fi on Wi for each i ∈ Λ .

Discussion of example 3.1.3. This is a sheaf. We can reason as in the case of example 3.1.2.

Discussion of example 3.1.4. This is a sheaf. What is being said here is that if X is
a smooth manifold, and we have open Wi ⊂ X for each i ∈ Λ , and smooth functions
fi : Wi → R for each i such that fi and fj agree on Wi ∩ Wj for all i, j ∈ Λ , then
we have a unique smooth f :

⋃
Wi → Y which agrees with fi on Wi for each i ∈ Λ .

An interesting aspect of this example is that, in contrast to examples 3.1.2 and 3.1.3, it
seems to express something which is not part of the world of topological spaces, something
“differentiable”. So I am suggesting that the notion of smooth manifold could be redefined
along the following lines: a smooth manifold is a topological Hausdorff space X together
with a sheaf F ... which we would call the sheaf of smooth functions (on open subsets
of X) and which would presumably have to be a subsheaf (notion yet to be defined) of
the sheaf of continuous functions on open subsets of X . That would be an alternative to
defining smooth manifolds using charts and atlases. Of course this has been noticed and
has been done by the ancients, but I am digressing.

Discussion of example 3.1.5. Here we have to make a case distinction. If S has exactly
one element, then this presheaf F is a sheaf, and the verification is easy. If S has more
than one element, or is empty, then F is not a sheaf because F(∅) does not have exactly
one element.
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Can we fix this by redefining F(∅) to have exactly one element? Let us try. So let G

be the presheaf on X defined by G(U) = S when U is nonempty, and G(∅) = {∗} , a set
with a single element ∗ . It is a presheaf as follows: for open subsets U ⊂ V of X we let
resV,U : G(V) → G(U) be the identity map of S if U 6= ∅ ; otherwise it is the unique map
of sets from G(V) to {∗} .
Is this presheaf G a sheaf? The answer depends a little on X , and on S . Suppose that X
has disjoint open nonempty subsets U1 and U2 . By lemma 3.1.9, the diagonal map from
S = G(U1 ∪U2) to S× S = G(U1)× G(U2) is bijective. We have a problem with that if S
has more than one element. The case where S has exactly one element was excluded, so
only the possibility S = ∅ remains. And indeed, if S is empty, we don’t have a problem:
G is a sheaf. Also, if X does not have any disjoint nonempty open subsets U1 and U2 ,
we don’t have a problem: G is a sheaf, no matter what S is.

Discussion of example 3.1.6. In general, this is not a sheaf, although it responds nicely to
the two standard tests. (One standard test is to ask: what is F(∅) ? Here we get the set of
homotopy classes of maps from ∅ to Y , and that set has exactly one element, as it should
have if F were a sheaf. The other standard test comes from lemma 3.1.9. If (Wi)i∈Λ is
a collection of disjoint open subsets of X , then

F(
⋃
iWi) = [

⋃
iWi, Y]

which is in bijection with
∏
i∈Λ[Wi, Y] by composition with the inclusions Wj → ⋃

i∈ΛWi
for each j ∈ Λ .) For a counterexample, let X = Y = S1 . In X we have the open sets
U1 and U2 where U1 = S1 − {1} and U2 = S1 r {−1} , using complex number notation.
Since U1 and U2 are contractible and Y is path connected, both F(U1) and F(U2) have
exactly one element. Since U1 ∩U2 is the disjoint union of two contractible open sets V1
and V2 , we get

F(U1 ∩U2) = F(V1 ∪ V2)
which is in bijection with F(V1)×F(V2) , which again has exactly one element. If F were
a sheaf, it would follow from these little calculations that F(U1 ∪ U2) has exactly one
element. But F(U1 ∪U2) = F(X) = [X, Y] = [S1, S1] , and we know that this has infinitely
many elements.

Discussion of example 3.1.7. This is obviously not a sheaf because F(∅) has more than
one element. Indeed, there is exactly one continuous map from ∅ to Y . So F(∅) is the
free Z-module one one generator, which means that it is isomorphic to Z .
It might seem pointless to look for further reasons to deny sheaf status to F . It is like
kicking somebody who is already down. Nevertheless, because this is an important ex-
ample, it will be instructive for us to know more about it, and we could argue that by
showing interest we are showing some patience and kindness. Also, there is a new aspect
here: the sets F(U) always always carry the structure of abelian groups alias Z-modules,
and the maps resV,U are always homomorphisms.
Suppose that X = {1, 2, 3, 4, 5, 6} with the discrete topology (every subset of X is declared
to be open). Let Y = {a, b} , a set with two elements, also with the discrete topology. We
note that X is the disjoint union of six open subsets Ui , where i = 1, 2, 3, 4, 5, 6 and
Ui = {i} . We have F(Ui) = Z ⊕ Z = Z2 (free Z-module on two generators) because
each Ui has exactly two continuous maps to Y . We have F(

⋃
iUi) = F(X) = Z64 (free

Z-module on 64 generators) because there are 64 continuous maps from X to Y . It follows
that the map

F(
⋃
iUi) −→∏6

i=1 F(Ui)
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of lemma 3.1.9 (which in the present circumstances is a Z-module homomorphism) cannot
be bijective, because that would make it a Z-module isomorphism between Z64 and Z12 .
(For an abstract interpretation of what is happening, the notion of tensor product is useful.
Namely, F(

⋃
iUi)

∼= Z64 is isomorphic to the tensor product

F(U1)⊗ F(U2)⊗ · · · ⊗ F(U6).

It is unsurprising that this is not isomorphic to the product
∏6
i=1 F(Ui) . So it emerges

that F fails to have the sheaf property because it has another respectable property.)
Next, re-define X and Y in such a way that X and Y are two topological spaces related by
a covering map p : Y → X with finite fibers. In other words, p is a fiber bundle whose fibers
are finite sets (viewed as topological spaces with the discrete topology). For simplicity,
suppose also that X is connected. Choose an open covering (Wj)j∈Λ of X such that p
admits a bundle chart over Wj for each j :

hj : p
−1(Wj)→Wj × F

where F is a finite set (with the discrete topology). There is no loss of generality in asking
for the same F in all cases, independent of j , because X is connected (see proposition 2.1.3).
For j ∈ Λ and z ∈ F there is a continuous map σj,z : Wj → Y given by σj,z(x) = h

−1
j (x, z)

for x ∈Wj . Define

sj =
∑
z∈F

σj,z .

This is a formal linear combination of continuous maps from Wj to Y which has meaning
as an element F(Wj) . So we can write sj ∈ F(Wj) . The matching condition

si|Wi∩Wj = sj|Wi∩Wj

is satisfied. However it seems to be hard or impossible to produce s ∈ F(X) = F(
⋃
jWj)

such that s|Wi = si for all i ∈ Λ . This indicates another violation of the sheaf property.
(Unfortunately, showing that in many cases such an s does not exist is also hard; we may
return to this when we are wiser.)

3.2. Categories, functors and natural transformations

The concept of a category and the related notions functor and natural transformation
emerged in the middle of the 20th century (Eilenberg-MacLane, 1945) and were imme-
diately used to re-organize algebraic topology (Eilenberg-Steenrod, 1952). Later these
notions became very important in many other branches of mathematics, especially alge-
braic geometry. Category theory has many definitions of great depth, I think, but in the
foundations very few theorems and fewer proofs of any depth. Among those who love
difficult proofs, it has a reputation of shallowness, boring-ness; for many of the theorizers
who appreciate good definitions, it is an ever-ongoing revelation. Young mathematicians
tend to like it better than old mathematicians ... probably because it helps them to see
some order in a multitude of mathematical facts.

Definition 3.2.1. A category C consists of a class Ob(C) whose elements are called the
objects of C and the following additional data.

• For any two objects c and d of C , a set morC(c, d) whose elements are called
the morphisms from c to d .

• For any object c in C , a distinguished element idc ∈ morC(c, c) , called the
identity morphism of c .
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• For any three objects b, c, d of C , a map from morC(c, d) × morC(b, c) to
morC(b, d) called composition and denoted by (f, g) 7→ f ◦ g .

These data are subject to certain conditions, namely:

• Composition of morphisms is associative.
• The identity morphisms act as two-sided neutral elements for the composition.

The associativity condition, written out in detail, means that

(f ◦ g) ◦ h = f ◦ (g ◦ h)
whenever a, b, c, d are objects of C and f ∈ morC(c, d) , g ∈ morC(b, c) , h ∈ morC(a, b) .
The condition on identity morphisms means that f ◦ idc = f = idd ◦ f whenever c and d
are objects in C and f ∈ morC(c, d) . Saying that Ob(C) is a class, rather than a set, is
a subterfuge to avoid problems which are likely to arise if, for example, we talk about the
set of all sets (Russell’s paradox). If the object class is a set, which sometimes happens,
we speak of a small category.
Notation: we shall often write mor(c, d) instead of morC(c, d) if it is obvious that the
category in question is C . Morphisms are often denoted by arrows, as in f : c → d when
f ∈ mor(c, d) . It is customary to say in such a case that c is the source or domain of f ,
and d is the target or codomain of f .
A morphism f : c → d in a category C is said to be an isomorphism if there exists a
morphism g : d→ c in C such that g◦ f = idc ∈ morC(c, c) and f◦g = idd ∈ morC(d, d) .

Example 3.2.2. The prototype is Sets, the category of sets. The objects of that are the
sets. For two sets S and T , the set of morphisms mor(S, T) is the set of all maps from S
to T . Composition is composition of maps as we know it and the identity morphisms are
the identity maps as we know them.
Another very important example for us is Top, the category of topological spaces. The
objects are the topological spaces. For topological spaces X = (X,OX) and Y = (Y,OY) ,
the set of morphisms mor(X, Y) is the set of continuous maps from X to Y . Composition is
composition of continuous maps as we know it and the identity morphisms are the identity
maps as we know them.
Another very important example for us is HoTop, the homotopy category of topological
spaces. The objects are the topological spaces, as in Top. But the set of morphisms from
X = (X,OX) to Y = (Y,OY) is [X, Y] , the set of homotopy classes of continuous maps from
X to Y . Composition ◦ is defined by the formula

[f] ◦ [g] = [f ◦ g]
for [f] ∈ [Y, Z] and [g] ∈ [X, Y] . Here f : Y → Z and g : X→ Y are continuous maps repre-
senting certain elements of [Y, Z] and [X, Y] , and f◦g : X→ Z is their composition. There
is an issue of well-defined-ness here, but fortunately we settled this long ago in chapter 1.
As a result, associativity of composition is not in doubt because it is a consequence of
associativity of composition in Top. The identity morphisms in HoTop are the homotopy
classes of the identity maps.
Another popular example is Groups, the category of groups. The objects are the groups.
For groups G and H , the set of morphisms mor(G,H) is the set of group homomorphisms
from G to H . Composition of morphisms is composition of group homomorphisms.
The definition of a category as above permits some examples which are rather strange.
One type of strange example which will be important for us soon is as follows. Let (P,≤)
be a partially ordered set, alias poset. That is to say, P is a set and ≤ is a relation on P
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which is transitive (x ≤ y and y ≤ z forces x ≤ z), reflexive (x ≤ x holds for all x) and
antisymmetric (in the sense that x ≤ y and y ≤ x together implies x = y). We turn this
setup into a small category (nameless) such that the object set is P . We decree that, for
x, y ∈ P , the set mor(x, y) shall be empty if x is not ≤ y , and shall contain exactly one
element, denoted ∗ , if x ≤ y . Composition

◦ : mor(y, z)×mor(x, y) −→ mor(x, z)

is defined as follows. If y is not ≤ z , then mor(y, z) is empty and so mor(y, z)×mor(x, y)
is empty, too. There is exactly one map from the empty set to mor(x, z) and we take that.
If x is not ≤ y , then mor(y, z) × mor(x, y) is empty, and we have only one choice for
our composition map, and we take that. The remaining case is the one where x ≤ y
and y ≤ z . Then x ≤ z by transitivity. Therefore mor(y, z)×mor(x, y) has exactly one
element, but more importantly, mor(x, z) has also exactly one element. Therefore there
is exactly one map from mor(y, z)×mor(x, y) to mor(x, z) and we take that.
Another type of strange example (less important for us but still instructive) can be con-
structed by starting with a specific group G , with multiplication map µ : G × G → G .
From that we construct a small category (nameless) whose object set has exactly one
element, denoted ∗ . We let mor(∗, ∗) = G . The composition map

mor(∗, ∗)×mor(∗, ∗)→ mor(∗, ∗)

now has to be a map from G × G to G , and for that we choose µ , the multiplication of
G . Since µ has an associativity property, composition of morphisms is associative. For
the identity morphism id∗ ∈ mor(∗, ∗) we take the neutral element of G .
There are also some easy ways to make new categories out of old ones. One important
example: let C be any category. We make a new category Cop , the opposite category of
C . It has the same objects as C , but we let

morCop(c, d) := morC(d, c)

when c and d are objects of C , or equivalently, objects of Cop . The identity morphism
of an object c in Cop is the identity morphism of c in C . Composition

morCop(c, d)×morCop(b, c) −→ morCop(b, d)

is defined by noting morCop(c, d)×morCop(b, c) = morC(d, c)×morC(c, b) and going from
there to morC(c, b)×morC(d, c) by an obvious bijection, and from there to morC(d, b) =
morCop(b, d) using composition of morphisms in the category C .

It turns out that there is something like a category of all categories. Let us not try to
make that very precise because there are some small difficulties and complications in that.
In any case there is a concept of morphism between categories, and the name of that is
functor.

Definition 3.2.3. A functor from a category C to a category D is a rule F which to
every object c of C assigns an object F(c) of D , and to every morphism g : b → c in C

a morphism F(g) : F(b)→ F(c) in D , subject to the following conditions.

• For any object c in C with identity morphism idc , we have F(idc) = idF(c) .
• Whenever a, b, c are objects in C and h ∈ morC(a, b) , g ∈ morC(b, c) , we have
F(g ◦ h) = F(g) ◦ F(h) in morD(F(a), F(c)) .
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Example 3.2.4. A functor F from the category Top to the category Sets can be defined
as follows. For a topological space X let F(X) be the set of path components of X . A
continuous map g : X→ Y determines a map F(g) : F(X)→ F(Y) like this: F(g) applied to
a path component C of X is the unique path component of Y which contains g(C) .
Fix a positive integer n . Let Rings be the category of rings and ring homomorphisms.
(For me, a ring does not have to be commutative, but it should have distinguished elements
0 and 1 and in this example I require 0 6= 1 .) A functor F from Rings to Groups can be
defined by F(R) = GLn(R) , where GLn(R) is the group of invertible n×n matrices with
entries in R . A ring homomorphism g : R1 → R2 determines a group homomorphism F(g)
from F(R1) to F(R2) . Namely, in an invertible n×n-matrix with entries in R1 , apply g
to each entry to obtain an invertible n× n-matrix with entries in R2 .
Let G be a group which comes with an action on a set S . In example 3.2.2 we constructed
from G a category with one object ∗ and mor(∗, ∗) = G . A functor F from that category to
Sets can now be defined by F(∗) = S , and F(g) = translation by g , for g ∈ mor(∗, ∗) = G .
More precisely, to g ∈ G = mor(∗, ∗) we associate the map F(g) from S = F(∗) to S = F(∗)
given by x 7→ g · x (which has a meaning because we are assuming an action of G on S).
Let C be any category and let x be any object of C . A functor Fx from C to Sets
can be defined as follows. Let Fx(c) = morC(x, c) . For a morphism g : c → d in C

define Fx(g) : Fx(c) → Fx(d) by Fx(g)(h) = g ◦ h . In more detail, we are assuming
h ∈ Fx(c) = morC(x, c) and g ∈ morC(c, d) , so that g ◦ h ∈ morC(x, d) = Fx(d) .

The functors of definition 3.2.3 are also called covariant functors for more precision. There
is a related concept of contravariant functor. A contravariant functor from C to D is
simply a (covariant) functor from Cop to D (see example 3.2.2). If we write this out, it
looks like this. A contravariant functor F from C to D is a rule which to every object
c of C assigns an object F(c) of D , and to every morphism g : c → d in C a morphism
F(g) : F(d) → F(c) ; note that the source of F(g) is F(d) , and the target is F(c) . And so
on.

Example 3.2.5. Let C be any category and let x be any object of C . A contravariant
functor Fx from C to Sets can be defined as follows. Let Fx(c) = morC(c, x) . For a
morphism g : c→ d in C define

Fx(g) : Fx(d)→ Fx(c)

by Fx(g)(h) = h ◦ g . In more detail, we are assuming h ∈ Fx(d) = morC(d, x) and
g ∈ morC(c, d) , so that h ◦ g ∈ morC(c, x) = F

x(c) .
There is a contravariant functor P from Sets to Sets given by P(S) = power set of S , for a
set S . In more detail, a morphism g : S→ T in Sets determines a map P(g) : P(T)→ P(S)
by “preimage”. That is, P(g) applied to a subset U of T is g−1(U) , a subset of S . (You
may have noticed that this example of a contravariant functor is not very different from a
special case of the preceding one; we will return to this point later.)
Next, let Man be the category of smooth manifolds. The objects are the smooth manifolds
(of any dimension). The morphisms from a smooth manifold M to a smooth manifold
N are the smooth maps from M to N . For any fixed integer k ≥ 0 the rule which
assigns to a smooth manifold M the real vector space Ωk(M) of smooth differential k -
forms is a contravariant functor from Man to the category Vect of real vector spaces
(with linear maps as morphisms). Namely, a smooth map f : M→ N determines a linear
map f∗ : Ωk(N)→ Ωk(M) . (You must have seen the details if you know anything about
differential forms.)
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A presheaf F on a topological space X is nothing but a contravariant functor from the
poset of open subsets of X to Sets. In more detail, write O for the topology on X , the set
of open subsets of X . We can regard O as a partially ordered set (poset) in the following
way: for U,V ∈ O we decree that U ≤ V if and only if U ⊂ V . A partially ordered set is
a small category, as explained in example 3.2.2; therefore O is (the object set of) a small
category. For U,V ∈ O , there is exactly one morphism from U to V if U ⊂ V , and none
if U is not contained in V . To that one morphism (if U ⊂ V ) the presheaf F assigns a
map resV,U : F(V) → F(U) . The conditions on F in definition 3.1.1 are special cases of
the conditions on a contravariant functor.

The story does not end there. The functors from a category C to a category D also form
something like a category. There is a concept of morphism between functors from C to
D , and the name of that is natural transformation.

Definition 3.2.6. Let F and G be functors, both from a category C to a category D . A
natural transformation from F to G is a rule ν which for every object c in C selects a
morphism νc : F(c)→ G(c) in D , subject to the following condition. Whenever u : c→ d
is a morphism in C , the square of morphisms

F(c)
νc //

F(u)

��

G(c)

G(u)

��
F(d)

νd // G(d)

in D commutes; that is, the equation G(u) ◦ νc = νd ◦ F(u) holds in morD(F(c), G(d)) .

Example 3.2.7. MacLane (in his book Categories for the working mathematician) gives
the following pretty example. For a fixed integer n ≥ 1 the rule which to a ring R assigns
the group GLn(R) can be viewed as a functor GLn from the category of rings to the
category of groups, as was shown earlier. There we allowed non-commutative rings, but
here we need commutative rings, so we shall view GLn as a functor from the category
cRings of commutative rings to Groups. Note that GL1(R) is essentially the group of
units of the ring R . The group homomorphisms

det : GLn(R)→ GL1(R)

(one for every commutative ring R) make up a natural transformation from the functor
GLn : cRings→ Groups to the functor GL1 : cRings→ Groups.
Returning to smooth manifolds and differential forms: we saw that for any fixed k ≥ 0 the
assignment M 7→ Ωk(M) can be viewed as a contravariant functor from Man to Vect.
The exterior derivative maps

d : Ωk(M) −→ Ωk+1(M)

(one for each object M of Man) make up a natural transformation from the contravariant
functor Ωk to the contravariant functor Ωk+1 .

Notation: let F and G be functors from C to D . Sometimes we describe a natural
transformation ν from F to G by a strong arrow, as in ν : F⇒ G .

Remark : one reason for being a little cautious in saying category of categories etc. is that
the functors from one big category (such as Top for example) to another big category
(such as Sets for example) do not obviously form a set. Of course, some people would
not exercise that kind of caution and would instead say that the definition of category as
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given in 3.2.1 is not bold enough. In any case, it must be permitted to say the category of
small categories.

3.3. The category of presheaves on a space

Let X = (X,O) be a topological space. We have seen that a presheaf F on X is the
same thing as a contravariant functor from the poset O (partially ordered by inclusion,
and then viewed as a category) to Sets. Therefore it is not surprising that we define a
morphism from a presheaf F on X to a presheaf G on X to be a natural transformation
between contravariant functors from O to Sets. Writing this out in detail, we obtain the
following definition.

Definition 3.3.1. Let F and G be presheaves on the topological space X . A morphism
or map of presheaves from F to G is a rule which for every open set U in X selects a
map λU : F(U)→ G(U) , subject to the following condition. Whenever U and V are open
subsets of X and U ⊂ V , the diagram

F(U)
λU // G(U)

F(V)

resV,U

OO

λV // G(V)

resV,U

OO

in Sets commutes; that is, the maps resV,U ◦ λV and λU ◦ resV,U from F(V) to G(U)
agree.

With this definition of morphism, it is clear that there is a category of presheaves on X .
It is a small category.

Example 3.3.2. Let X be a topological space. Let F be the presheaf on X such that
F(U) , for open U ⊂ X , is the set of continuous maps from U to R , and such that
resV,U : F(V) → F(U) is given by restriction of functions. Let G be the presheaf on X
such that G(U) , for open U ⊂ X , is the set of all open subsets of X which are contained
in U . More precisely G is a presheaf because in the situation U ⊂ V we define

resV,U : G(V)→ G(U)

by W 7→ W ∩ U for an open subset W of X contained in V . (Then W ∩ U is an open
subset of X contained in U .) A morphism α from presheaf F to presheaf G is defined by

αU(g) = g
−1( ]0,∞[ )

for g ∈ F(U) . In a more wordy formulation: to an element g of F(U) , alias continuous
function g : U → R , the morphism α : F → G assigns an element of G(U) , alias open set
of X contained in U , by taking the preimage of ]0,∞[ under g .

3.4. (Appendix): Abelian group vocabulary

It is customary to describe the binary operation in an abelian group by a + sign, if there
is no danger of confusion. Thus, if A is an abelian group and a, b ∈ A , we like to write
a + b instead of ab or a · b ; also −b instead of b−1 and 0 instead of 1 for the neutral
element.

The expression abelian group is synonymous with Z-module. The name Z-module is
a reminder that there is some interaction between the ring Z and the elements of any
abelian group A . This looks a lot like the multiplication of vectors by scalars in a vector
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space. Namely, let A be an abelian group (written with + etc.), let a be an element of
A and z ∈ Z . Then we can define

z · a ∈ A
as follows: if z ≥ 0 we mean a+ a+ · · ·+ a (there are z summands in the sum); if z ≤ 0
then we know already what (−z)·a means and z·a should be the inverse, z·a = −((−z)·a) .
This “scalar multiplication” has an associativity property:

(wz) · a = w · (z · a)

and also two distributivity properties, (w+z)·a = w·a+z·a as well as z·(a+b) = z·a+z·b .
Furthermore, 1 · a = a for all a ∈ A and z · 0 = 0 for all z ∈ Z . We might feel tempted
to say that A is a vector space over the field Z , but there is the objection that Z is not
a field.

(Of course there is a more general concept of R-module, where R can be any ring. An
R -module is an abelian group A with a map R × A → A which we write in the form
(r, a) 7→ r · a . That map is subject to many conditions, such as (rs) · a = r · (s · a) and
r · (a + b) = r · a + r · b , for all r ∈ R and a, b ∈ A , and a few more. Look it up in any
algebra book.)

Definition 3.4.1. Let S be a set. The free abelian group generated by S is the set AS
of all functions f : S → Z such that {s ∈ S | f(s) 6= 0} is a finite subset of S . It is an
abelian group by pointwise addition; that is, for f, g ∈ AS we define f + g ∈ AS by
(f+ g)(s) = f(s) + g(s) ∈ Z .

Notation. Elements of the free abelian group AS generated by S can also be thought of
as formal linear combinations, with integer coefficients, of elements of S . In other words,
we may write ∑

s∈S

as · s

where as ∈ Z for all s ∈ Z , and we mean the function f ∈ AS such that f(s) = as for
all s ∈ S . Now it is important to insist that the sum have only finitely many (nonzero)
summands, as 6= 0 for only finitely many s ∈ S .
My notation AS for the free abelian group generated by S is meant to be temporary. I
can’t think of any convincing standard notation for it.

An important property of the free abelian group generated by S . The group AS comes with
a distinguished map u : S → AS so that u(s) is the function from S to Z taking s to 1
and all other elements of S to 0 . Together, the abelian group AS and the map (of sets)
u : S → AS have the following property. Given any abelian group B and map v : S → B ,
there exists a unique homomorphism of abelian groups qv : AS → B such that qv ◦ u = v .
Diagrammatic statement:

S
u //

v
  

AS

qv

��
B

The proof is easy. Every element a of AS can be written uniquely in the form∑
s∈S

as · u(s)
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with as ∈ Z , with only finitely many nonzero as . Therefore

qv(a) = qv

(∑
s∈S

as · u(s)
)
=
∑
s∈S

qv
(
as · u(s)

)
=
∑
s∈S

as · qv(u(s)) =
∑
s∈S

as · v(s) .

(The following complaint can be made: Just a minute ago you said that we can write
elements a of AS in the form

∑
s∈S as · s , but now it is

∑
s∈S as · u(s) , or what? The

complaint is justified:
∑
s∈S as · s is a short and imprecise form of

∑
s∈S as · u(s) .)

3.5. Preview

If our main interest is in understanding notions like homotopy and classifying topological
spaces up to homotopy equivalence, why should we learn something about presheaves and
sheaves? In this section I try to give an answer, very much from the point of view of
category theory.

Summarizing the experience of the first few weeks in category language, we might agree
on the following. In the category Top of topological spaces (and continuous maps), we
introduced the homotopy relation ' on morphisms. This led to a new category HoTop
with the same objects as Top, where a morphism from X to Y is a homotopy class of
continuous maps from X to Y . We made some attempts to understand sets of homotopy
classes [X, Y] = morHoTop(X, Y) in some cases; for example we understood [S1, S1] and
we showed that [S3, S2] has more than one element. A vague impression of computability
may have taken hold, but nothing very systematic emerged.

Here is a very simple-minded attempt to make things easier by introducing some algebra
into topology. We can make a new category ZTop where the objects are still the topological
spaces and where the set of morphisms from X to Y is the free abelian group generated
by the set of continuous maps from X to Y . In other words, a morphism from X to Y in
ZTop is a formal linear combination (with integer coefficents) of continuous maps from X
to Y , such as 4f− 3g+ 7u+ 1v , where f, g, u, v : X→ Y are continuous maps. Note that
formal is formal ; we make no attempt to simplify such expressions, except by allowing
4f − 3g + 7u + 1v = 4f + 4u + 1v if we happen to know that g = u , and the like. How
do we compose morphisms in ZTop ? We use the composition of morphisms in Top and
enforce a distributive law, so we say for example that the composition of the morphism
4f− 3g+ 7u from X to Y with the morphism −2p+ 5q from Y to Z is

−8(p ◦ f) + 6(p ◦ g) − 14(p ◦ u) + 20(q ◦ f) − 15(q ◦ g) + 35(q ◦ u),

a morphism from X to Z . In many ways ZTop is a fine category, and perhaps better than
Top; the morphism sets are abelian groups and composition of morphisms

morZTop(Y, Z)×morZTop(X, Y) −→ morZTop(X,Z)

is bilinear. That is, post-composition with a fixed element of morZTop(Y, Z) gives a homo-
morphism of abelian groups, from morZTop(X, Y) to morZTop(X,Z) , and pre-composition
with a fixed element of morZTop(X, Y) gives a homomorphism of abelian groups from
morZTop(Y, Z) to morZTop(X,Z) . We can relate Top to ZTop by a functor

Top→ ZTop

which takes any object to the same object, and a continuous map f : X→ Y to the formal
linear combination 1f . And yet, it is hard to believe that any of this will give us new
insights into anything.
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But let us try to raise a well-formulated objection. We have lost something in replacing
Top by ZTop: the sheaf property. More precisely, we know that we can construct a
continuous map f : X → Y by specifying an open cover (Ui)i∈Λ of X , and for each i a
continuous map fi : U1 → Y , in such a way that

fi|Ui∩Uj = fj|Ui∩Uj

for all i, j ∈ Λ . (Then there is a unique continuous map f : X → Y such that f|Ui = fi
for all i ∈ Λ .) We could take the view that this is a property of Top which is important
to us, one that we don’t want to sacrifice when we experiment with modifications of Top.
But as we have seen, the sheaf property fails in so many ways in ZTop; see example 3.1.7
and the elaborate discussion of that example. I propose that we regard that as the one
great weakness of ZTop.

Fortunately, in sheaf theory there is a fundamental construction called sheafification by
which the sheaf property is enforced. In the following chapters we will apply that construc-
tion to ZTop to restore the sheaf property. When that is done, we can once again speak
of homotopies and homotopy classes, and it will turn out that we have a very manageable
situation.



CHAPTER 4

Sheafification

4.1. The stalks of a presheaf

Let F a presheaf on a topological space X . Fix z ∈ X . There are situations where we
want to understand the behavior of F near z , that is to say, in small neighborhoods of
z . Then it is a good idea to work with pairs (U, s) where U is an open neighborhood of
z and s is an element of F(U) . Two such pairs (U, s) and (V, t) are considered to be
germ-equivalent if there exists an open neighborhood W of z such that W ⊂ U ∩ V and
s|W = t|W in F(W) . It is easy to show that germ equivalence is indeed an equivalence
relation.

Definition 4.1.1. The set of equivalence classes is called the stalk of F at z and denoted
by Fz . The elements of Fz are often called germs (at z , of something ... depending on
the meaning of F ).

Example 4.1.2. Let X and Y be topological spaces. Let F be the sheaf on X where
F(U) , for open U ⊂ X , is the set of continuous maps from U to Y . For z ∈ X , an element
of the stalk Fz is called a germ of continuous maps from (X, z) to Y .

Example 4.1.3. Fix a continuous map p : Y → X . Let F be the sheaf on X where F(U)
is the set of continuous maps s : U → Y such that p ◦ s is the inclusion U → X . An
element of F(U) can be called a continuous section of p over U . For z ∈ X , an element
of Fz can be called a germ at z of continuous sections of p : X→ Y .

Example 4.1.4. Let X be the union of the two coordinate axes in R2 . For open U in X ,
let G(U) be the set of connected components of XrU . For open subsets U,V of X such
that U ⊂ V , define

resV,U : G(V)→ G(U)

by saying that resV,U(C) is the unique connected component of XrU which contains C
(where C can be any connected component of X r V ). These definitions make G into
a presheaf on X . For z ∈ X , what can we say about the stalk Gz ? If z is the origin,
z = (0, 0) , then Gz has four elements. In all other cases Gz has two elements. (Despite
that, for any z ∈ X and any open neighborhood V of z in X , there exists an open
neighborhood W of z in X such that W ⊂ V and G(W) has more than 1000 elements.)

Now let α : F → G be a map (morphism) of sheaves on X . Again fix z ∈ X . Then every
pair (U, s) , where U is an open neighborhood of z and s ∈ F(s) , determines another pair
(U,α(s)) where U is still an open neighborhood of z and α(s) ∈ G(U) . The assignment
(U, s) 7→ (U,α(s)) is compatible with germ equivalence. That is, if V is another open
neighborhood of z in X , and t ∈ F(V) , and (U, s) is germ equivalent to (V, t) , then
(U,α(s)) is germ equivalent to (V,α(t)) . In short, α determines a map of sets from Fz
to Gz which takes the equivalence class (the germ) of (U, s) to the equivalence class (the

33
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germ) of (U,α(s)) . In category jargon: the assignment

F 7→ Fz

is a functor from PreSh(X) , the category of presheaves on X , to Sets.

When a presheaf F on X is a sheaf, the stalks Fz carry a lot of information about F .
The following theorem illustrates that.

Theorem 4.1.5. Let β : F → G be a morphism of sheaves on X . Suppose that for every
element z of X , the map of stalks Fz → Gz determined by β is a bijection. Then β is an
isomorphism.

Proof. The claim that β is an isomorphism means, abstractly speaking, that there
exists a morphism γ : G→ F of sheaves such that β◦γ is the identity on G and γ◦β is the
identity on F . In more down-to-earth language it means simply that βU : F(U) → G(U)
is a bijection for every open U in X , so this is what we have to show. To ease notation,
we write β : F(U)→ G(U) .
We fix U , an open subset of X . First we want to show that β : F(U)→ F(G) is injective.
For that we set up a commutative square of sets and maps:∏

z∈U Fz
β //∏

z∈U Gz

F(U)

OO

β // G(U)

OO

The left-hand vertical arrow is obtained by noting that each s ∈ F(U) determines a pair
(U, s) representing an element of Fz , for each z ∈ U . The right-hand vertical arrow is
similar. We show that the left-hand vertical arrow is injective. Suppose that s, t ∈ F(U)
have the same image in

∏
z∈U Fz . It follows that every z ∈ U admits a neighborhood Wz

in U such that s|Wz = t|Wz . Selecting such a Wz for every z ∈ U , we have an open cover

(Wz)z∈U

of U . Since s|Wz = t|Wz for each of the open sets Wz in the cover, the sheaf property for
F implies that s = t . Hence the left-hand vertical arrow in our square is injective, and so
is the right-hand arrow by the same argument. But the top horizontal arrow is bijective
by our assumption. Therefore β : F(U)→ F(G) is injective.
Next we show that β : F(U) → F(G) is surjective. We can use the same commutative
square that we used to prove injectivity. An element s ∈ G(U) determines an element of∏
z∈U Gz (right-hand vertical arrow) which comes from an element of

∏
z∈U Fz because

the top horizontal arrow is bijective. So for each z ∈ U we can find an element of Fz which
under β is mapped to the germ of s at z (an element of Gz ). In terms of representatives
of germs, this means that for each z ∈ U we can find an open neighborhood Vz of z in
U and an element tz ∈ F(Vz) such that β(tz) = s|Vz ∈ G(Vz) . Selecting such a Vz for
every z ∈ U , we have an open cover

(Vz)z∈U

of U and we have tz ∈ F(Vz) . Can we use the sheaf property of F to produce t ∈ F(U)
such that t|Vz = tz for all z ∈ U ? We need to verify the matching condition,

tz|Vz∩Vy = ty|Vz∩Vy ∈ F(Vz ∩ Vy)
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whenever y, z ∈ U . By the injectivity of β : F(Vz ∩ Vy) → G(Vz ∩ Vy) , which we have
established, it is enough to show

β(tz)|Vz∩Vy = β(ty)|Vz∩Vy ∈ G(Vz ∩ Vy).

This clearly holds as β(tz) = s|Vz by construction, so that both sides of the equation
agree with s|Vz∩Vy . So we obtain t ∈ F(U) such that t|Vz = tz for all z ∈ U . Now it is
easy to show that β(t) = s . Indeed we have β(t)|Vz = s|Vz by construction, for all open
sets Vz in the covering (Vz)z∈U of U , so the sheaf property of F implies β(t) = s . Since
s ∈ G(U) was arbitrary, this means that β : F(U)→ G(U) is surjective. �

4.2. Sheafification of a presheaf

Proposition 4.2.1. Let F be a presheaf on a topological space X . There is a sheaf ΦF

on X and there is a morphism η : F → ΦF of presheaves such that, for every z ∈ X , the
map of stalks Fz → (ΦF)z determined by η is bijective.

Proof. Let U be an open subset of X . We are going to define (ΦF)(U) as a subset
of the product ∏

z∈U

Fz .

Think of an element of that product as a function s which for every z ∈ U selects an
element s(z) ∈ Fz . The function s qualifies as an element of (ΦF)(U) if and only if it
satisfies the following coherence condition. For every y ∈ U there is an open neighborhood
W of y in U and there is t ∈ F(W) such that the pair (W, t) simultaneously represents
the germs s(z) ∈ Fz for all z ∈W .
From the definition, it is clear that there are restriction maps

resV,U : (ΦF)(V)→ (ΦF)(U)

whenever U,V are open in X and U ⊂ V . Namely, a function s which selects an element
s(z) ∈ Fz for every z ∈ V determines by restriction a function s|U which selects an element
s(z) ∈ Fz for every z ∈ U . The coherence condition is satisfied by s|U if it is satisfied by
s . With these restriction maps, ΦF is a presheaf. Furthermore, it is straightforward to
see that ΦF satisfies the sheaf condition. Indeed, suppose that (Vi)i∈Λ is a collection of
open subsets of X , and suppose that elements si ∈ (ΦF)(Vi) have been selected, one for
each i ∈ Λ , such that the matching condition

si|Vi∩Vj = sj|Vi∩Vj

is satisfied for all i, j ∈ Λ . Then clearly we get a function s on V =
⋃
i Vi which for every

z ∈ V selects s(z) ∈ Fz by declaring, unambiguously,

s(z) := si(z)

for any i such that z ∈ Vi . The coherence condition is satisfied because it is satisfied by
each si .
The morphism of presheaves η : F → ΦF is defined in the following mechanical way. Given
t ∈ F(U) , we need to say what η(t) ∈ (ΦF)(U) should be. It is the function which to
z ∈ U assigns the element of Fz represented by the pair (U, t) , that is to say, the germ
of (U, t) at z .
Last not least, we need to show that for any z ∈ X the map Fz → (ΦF)z determined by
η is a bijection. We fix z . Injectivity : we consider elements a and b of Fz represented
by pairs (Ua, sa) and (Ub, sb) respectively, where Ua, Ub are neighborhoods of z and
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sa ∈ F(Ua) , sb ∈ F(Ub) . Suppose that a and b are taken to the same element t ∈ (ΦF)z
by η . Then in particular t(z) ∈ Fz is the germ at z of sa , and also the germ at z of
sb , so the germs of sa and sb (elements of Fz ) are equal. Surjectivity : let an element
of (ΦF)z be represented by a pair (U, t) where U is an open neighborhood of z in X
and t ∈ (ΦF)(U) . By the coherence condition, there exists an open neighborhood W
of z in U and there exists s ∈ F(W) such that t|W is the function which to y ∈ W
assigns the germ at y of (W, s) , an element of Fy . But this means that the map of
stalks Fz → (ΦF)z determined by the morphism η takes the element of Fz represented
by (W, s) to the element of (ΦF)z represented by (U, t) . �

Example 4.2.2. Let T be any set. Let F be the constant presheaf on X given by F(U) = T
for all open subsets U of X (and resV,U : F(V)→ F(U) is idT ). What does the sheaf ΦF

look like? This question has quite an interesting answer. Let’s keep a cool head and
approach it mechanically. For any z ∈ X , the stalk Fz can be identified with T . This is
easy. Let U be an open subset of X . The elements of (ΦF)(U) are functions s which for
every z ∈ U select an element s(z) ∈ Fz = T , subject to a coherence condition. So the
elements of (ΦF)(U) are maps s from U to T subject to a coherence condition. What
is the coherence condition? The condition is that s must be locally constant, i.e., every
z ∈ U admits an open neighborhood W in U such that s|W is constant. So the elements
of (ΦF)(U) are the locally constant maps s from U to T . A locally constant map s from
U to T is the same thing as a continuous map s from U to T , if we agree that T is
equipped with the discrete topology (every subset of T is declared to be open). Summing
up, (ΦF)(U) is the set of continuous functions from U to T . We can say that ΦF is the
sheaf of continuous functions (from open subsets of X) to T .
To appreciate the beauty of this answer, take a space X which is a little out of the ordinary;
for example, Q with the standard topology inherited from R , or the Cantor set (a subset
of R). For T , any set with more than one element is an interesting choice. (What happens
if T has exactly one element? What happens if T = ∅?)

There are a few things of a general nature to be said about proposition 4.2.1 — not
difficult, not surprising, but important. The construction Φ is a functor; we can view
it as a functor from the category PreSh(X) to itself. This means in particular that any
morphism of presheaves α : F → G on X determines a morphism

Φα : ΦF → ΦG .

Namely, for s ∈ ΦF(V) we define t = (Φα)(s) ∈ ΦG(V) in such a way that t(z) ∈ Gz is
the image of s(z) ∈ Fz under the map Fz → Gz induced by α . (It is easy to verify that
t satisfies the coherence condition.)
Furthermore η is a natural transformation from the identity functor id on PreSh(X) to
the functor Φ : PreSh(X) → PreSh(X) . This means that, for a morphism of presheaves
α : F → G on X as above, the diagram

F
α //

η

��

G

η

��
ΦF

Φα // ΦG

in PreSh(X) is commutative. That is also easily verified.
There is one more thing of a general nature which must be mentioned. Let F be any
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presheaf on X . What happens if we apply the functor Φ to the morphism ηF : F → ΦF ?
The result is obviously a morphism of sheaves

Φ(ηF) : ΦF → Φ(ΦF).

It is an isomorphism of sheaves. The verification is easy using theorem 4.1.5.

The sheaf ΦF is the sheafification (or the associated sheaf ) of the presheaf F ; also Φ
may be called the sheafification functor, or the associated sheaf functor.

Corollary 4.2.3. Let β : F → G be any morphism of presheaves on X . If G is a sheaf,
then β has a unique factorization β = β1 ◦ ηF where ηF : F → ΦF is the morphism of
proposition 4.2.1:

F
β //

ηF

��

G

ΦF

β1

88

Proof. Apply Φ and η to F , G and β to obtain a commutative diagram

F
β //

ηF

��

G

ηG

��
ΦF

Φβ // ΦG

By proposition 4.2.1, the vertical arrows determine bijections from Fz to (ΦF)z and from
Gz to (ΦG)z for every z ∈ X . Both G and ΦG are sheaves, so theorem 4.1.5 applies and
we may deduce that the right-hand vertical arrow is an isomorphism of sheaves on X . Let
λ : ΦG→ G be an inverse for that isomorphism. The factorization problem has a solution,
β1 = λ ◦Φβ .
To see that the solution is unique, apply Φ and η to the commutative diagram

F
β //

ηF

��

G

ΦF

88

in PreSh(X) . The result is a commutative diagram in PreSh(X) in the shape of a prism:

F

$$

β //

ηF

��

G

ηG

$$
ΦF

$$

::

ΦF
Φβ //

Φ(ηF)

��

ΦG

Φ(ΦF)

::

Here the arrow labeled Φ(ηF) is an isomorphism of sheaves, as noted above under things
of a general nature. This makes the lower dotted arrow unique. But the arrow labeled ηG
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is also an isomorphism by theorem 4.1.5 and the property of ηG stated in proposition 4.2.1.
This ensures that the upper dotted arrow is determined by the lower dotted arrow. �

4.3. Mapping cycles

Let X and Y be topological spaces. One of the first examples of a sheaf that we saw was
the sheaf F on X such that

F(U) = set of continuous maps from U to Y

etc., for open U in X . From that we constructed a presheaf G on X such that that

G(U) = free abelian group generated by F(U)

etc., for open U in X . In other words, G(U) is the set of formal linear combinations
(with coefficients in Z) of continuous functions from X to Y . It turned out that G is
never a sheaf, and for many reasons. The stalk Gz at z ∈ X can be described (after some
unraveling) as the set of formal linear combinations, with integer coefficients, of germs of
continuous maps from (X, z) to Y . (Recall that germ of continuous maps from (X, z) to
Y means an equivalence class of pairs (U, f) where U is an open neighborhood of z in
X and f : U → Y is continuous.) Of course, we ask what Gz is because it feeds into the
construction of ΦG , the sheafification of G . It is permitted and even exciting to evaluate
ΦG on X , since X is an open subset of X .

Definition 4.3.1. An element of (ΦG)(X) will be called a mapping cycle from X to Y .

So what is a mapping cycle from X to Y ?

First answer. A mapping cycle from X to Y is a function s which for every z ∈ X selects
s(z) , a formal linear combination with integer coefficients of germs1 of continuous maps
from (X, z) to Y . There is a coherence condition to be satisfied: it must be possible to
cover X by open sets Wi such that all values s(z) , where z ∈Wi , can be simultaneously
represented by one formal linear combination∑

j

bijfij

where fij : Wi → Y are continuous maps and the bij are integers.

Second answer. A mapping cycle from X to Y can be specified (described, constructed)
by choosing an open cover (Ui)i∈Λ of X and for every i ∈ Λ a formal linear combination
si with integer coefficients of continuous maps2 from Ui to Y . There is a matching
condition to be satisfied3: for any i, j ∈ Λ and any x ∈ Ui ∩ Uj , there should exist an
open neighborhood W of x in Ui ∩Uj such that si|W = sj|W .

(The second answer is in some ways less satisfactory than the first because it does not say
explicitly what a mapping cycle is, only how we can construct mapping cycles. But it can
indeed be useful when we need to construct mapping cycles.)

Some of the “counter”examples which we saw previously now serve as illustrations of the
concept of mapping cycle.

1Grown-up formulation: selects an element in the free abelian group generated by the set of germs ...
2Grown-up formulation: for every i ∈ Λ an element si in the free abelian group generated by the

set of continuous maps ...
3Did you expect to see the condition si|Ui∩Uj = sj|Ui∩Uj

? Sheaf theory dictates a weaker condition!
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Example 4.3.2. If S is a set with 6 elements and T is a set with 2 elements, both to be
viewed as topological spaces with the discrete topology, then the abelian group of mapping

cycles from S to T is isomorphic to Z12 ∼=
∏6
i=1(Z⊕ Z) . Do not confuse with Z/12 .

Example 4.3.3. Let X and Y be two topological spaces related by a covering map

p : Y → X

with finite fibers. In other words, p is a fiber bundle whose fibers are finite sets (viewed
as topological spaces with the discrete topology). For simplicity, suppose also that X is
connected. Choose an open covering (Wj)j∈Λ of X such that p admits a bundle chart
over Wj for each j :

hj : p
−1(Wj)→Wj × F

where F is a finite set (with the discrete topology). For j ∈ Λ and z ∈ F there is a
continuous map σj,z : Wj → Y given by σj,z(x) = h

−1
j (x, z) for x ∈Wj . Define

sj =
∑
z∈F

σj,z .

This is a formal linear combination of continuous maps from Wj to Y . Clearly

si|Wi∩Wj = sj|Wi∩Wj

(yes, this is more than we require). Therefore, by “second answer”, we have specified a
mapping cycle from X to Y (which agrees with sj on Wj ).

Example 4.3.4. Let X and Y be topological spaces. Suppose that X = V1 ∪ V2 where
V1 and V2 are open subsets of X . Let continuous maps f, g : V1 → Y be given such that

f|V1∩V2 = g|V1∩V2 .

Then it makes (some) sense to view the formal linear combination f− g = 1 · f+ (−1) · g
as a mapping cycle from X to Y . How? We have the open cover of X consisting of V1
and V2 , and we specify s1 = f − g (a mapping cycle from V1 to Y ), and s2 = 0 (a
mapping cycle from V2 to Y ). Then s1|V1∩V2 = 0 = s2|V1∩V2 . So the matching condition
is satisfied, and so by “second answer” we have specified a mapping cycle from X to Y .

Mapping cycles are complicated entities, but I hope that readers having survived the
excursion into sheaf theory remain sufficiently intoxicated to find the definition obvious
and unavoidable. With that, the excursion into sheaf theory is over (for now). Next we
shall try to develop a comfortable relationship with mapping cycles. Here is a list of some
of their good uses and properties.

(1) Every continuous map from X to Y determines a mapping cycle from X to Y .
(2) The mapping cycles from X to Y form an abelian group.
(3) A mapping cycle from X to Y can be composed with a (continuous) map from

Y to Z to give a mapping cycle from X to Z . A mapping cycle from Y to Z can
be composed with a (continuous) map from X to Y to give a mapping cycle from
X to Z . But more remarkably, a mapping cycle from X to Y can be composed
with a mapping cycle from Y to Z to give a mapping cycle from X to Z .

(4) Composition of mapping cycles is bilinear.
(5) Mapping cycles satisfy a sheaf property: if (Ui)i∈Λ is an open covering of X and

si : Ui → Y is a mapping cycle, for each i ∈ Λ , such that

si|Ui∩Uj = sj|Ui∩Uj
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for all i, j ∈ Λ , then there is a unique mapping cycle s from X to Y such that
s|Ui = si for all i ∈ Λ .

(6) There is exactly one mapping cycle from X to ∅ . And there is exactly one
mapping cycle from ∅ to Y , for any space Y .

(7) Mapping cycles from a topological disjoint union X1
∐
X2 to Y are in bijection

with pairs (s1, s2) where si is a mapping cycle from Xi to Y for i = 1, 2 .
Mapping cycles from X to a topological disjoint union Y1

∐
Y2 are in bijection

with pairs (s1, s2) where si is a mapping cycle from X to Yi for i = 1, 2 .

Some comments on that.
(1) A continuous map f : X → Y determines a mapping cycle s = sf where s(z) is the
germ of f at z . Interesting observation: the map f 7→ sf from the set of continuous maps
from X to Y to the set of mapping cycles from X to Y is injective.
(2) Obvious.
(3) Given a mapping cycle s from X to Y and a continuous map g : Y → Z we get a
mapping cycle g ◦ s from X to Z by x 7→ ∑bj(g ◦ fj) when x ∈ X and s(x) =

∑
bjfj .

Given a mapping cycle s from Y to Z and a continuous map g : X→ Y we get a mapping
cycle s ◦ g from X to Z by x 7→ ∑bj(fj ◦ g) when x ∈ X and s(x) =

∑
bjfj . Given a

mapping cycle s from X to Y and a mapping cycle t from Y to Z we get a mapping cycle
t ◦ s from X to Z by the formula

x 7→∑(bjcij)(fij ◦ gj)

when x ∈ X and s(x) =
∑
j bjgj and t(gj(x)) =

∑
i cijfij . (The notation is not fantas-

tically precise or logical; in any case bj , cij etc. are meant to be integers while fij , gj
etc. are meant to be germs of continuous functions. Note that fij in the displayed formula
is a germ at gj(x) , while gj is a germ at x .)
(4) Should be clear from the last formula in the comment on (3).
(5) By construction.
(6) Mapping cycles from ∅ to Y : there is exactly one by construction. A mapping cycle
s from X to ∅ is a function which for each x ∈ X selects a formal linear combination
of germs of continuous maps from (X, x) to ∅ , etc.; since there no such germs, the only
possible formal linear combination is the zero linear combination. This does satisfy the
coherence condition.
(7) By construction and by inspection.

In category language, we can say that there is a category ATop whose objects are the
topological spaces and where a morphism from space X to space Y is a mapping cycle
from X to Y . There is an “inclusion” functor

Top→ ATop

taking every object X to the same object X , and taking a morphism f : X→ Y (continuous
map) to the corresponding mapping cycle as explained in (1). For each X and Y , the
set morATop(X, Y) is equipped with the structure of an abelian group. Composition of
morphisms is bilinear. There is a zero object X in ATop, i.e., an object with the property
that morATop(X, Y) has exactly one element and morATop(Y, X) has exactly one element
for arbitrary Y . Indeed, X = ∅ is a zero object in ATop. The property expressed in
(7) can also be formulated in category language, but we must postpone it because the
vocabulary for that has not been introduced so far. In all, we can say that ATop is an
additive category.
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Finally, let me mention a good property of continuous maps which does not carry over to
mapping cycles. Let X and Y are topological spaces. Suppose that we have a covering of
X by finitely many closed subsets A1, A2, . . . , Ar , and continuous maps fi : Ai → Y for
i = 1, 2, . . . , r such that fi agrees with fj on Ai∩Aj , for all i, j ∈ {1, 2, . . . , r} . Then there
exists a unique continuous f : X→ Y which agrees with fi on Ai for each i ∈ {0, 1, . . . , r} .
This principle, which we often use subconsciously to construct continuous maps, is unsafe
(to say the least) when used with mapping cycles.



CHAPTER 5

Homotopies in ATop

5.1. The homotopy relation

Definition 5.1.1. Let X and Y be topological spaces. We call two mapping cycles f and
g from X to Y homotopic if there exists a mapping cycle h from X× [0, 1] to Y such that
f = h ◦ ι0 and g = h ◦ ι0 . Here ι0, ι1 : X → X × [0, 1] are defined by ι0(x) = (x, 0) and
ι1(x) = (x, 1) as usual. Such a mapping cycle h is a homotopy from f to g .

Remark. In that definition, X× [0, 1] still means the product of X and [0, 1] in Top. We
saw some evidence suggesting that in ATop this does not have the properties that we
might expect from a product (in a category sense).

Lemma 5.1.2. “Homotopic” is an equivalence relation on the set of mapping cycles from
X to Y . The set of equivalence classes will be denoted by [[X, Y]] and the equivalence class
of a mapping cycle f will be denoted by [[f]] .

Proof. Reflexivity and symmetry are fairly obvious. Transitivity is more interesting.
(I am indebted to S. Mahanta for the following pretty argument.) Let h be a homotopy
from e to f and k a homotopy from f to g , where e, f and g are mapping cycles from
X to Y . We can agree that it suffices to produce a mapping cycle ` from X× [0, 2] to Y
such that ` restricted to X× {0} agrees with e and ` restricted to X× {1} agrees with g .
Let

u : X× [0, 2] −→ X× [0, 1], v : X× [0, 2] −→ X× [0, 1], p : X× [0, 2]→ X

be the continuous maps given by u(x, t) 7→ (x,min{t, 1}) , v(x, t) = (x,max{t, 1}) and
p(x, t) = x . Put

` := u∗h+ v∗k− p∗f .

For that we can also write ` = (h ◦ u) + (k ◦ v) − (f ◦ p) . �

Proposition 5.1.3. The set [[X, Y]] is an abelian group.

Proof. This amounts to observing that the homotopy relation is compatible with
addition of mapping cycles. In other words, if f is homotopic to g and u is homotopic
to v , where f, g, u, v are mapping cycles from X to Y , then f+ u is homotopic to g+ v .
Indeed, if h is a homotopy from f to g and k is a homotopy from u to v , then h+ k is
a homotopy from f+ u to g+ v . �

Lemma 5.1.4. A composition map [[Y, Z]]×[[X, Y]]→ [[X,Z]] can be defined by ([[f]], [[g]]) 7→
[[f ◦ g]] . Composition is bilinear, i.e., for fixed [[g]] the map [[f]] 7→ [[f ◦ g]] is a homo-
morphism of abelian groups and for fixed [[f]] the map [[g]] 7→ [[f ◦g]] is a homomorphism
of abelian groups. �

As a result there is a homotopy category HoATop whose objects are (still) the topological
spaces, while the set of morphisms from X to Y is [[X, Y]] .

42
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5.2. First calculations

Write ? for a singleton, alias one-point space.

Proposition 5.2.1. For any space X the abelian group [[X, ?]] is isomorphic to the set of
continuous (=locally constant) functions from X to Z , where Z has the discrete topology.

Proof. We learned in example 4.2.2 that the set of mapping cycles from X to ?
is identified with the set of continuous functions from X to Z . (It is (ΦG)(X) where
ΦG is the sheaf associated to the constant presheaf G which has G(U) = Z for all open
U ⊂ X .) Similarly, the set of mapping cycles from X× [0, 1] to ? is identified with the set
of continuous functions from X× [0, 1] to Z . But a continuous function h from X× [0, 1]
to Z is constant on {x} × [0, 1] for each x ∈ X , and so will have the form h(x, t) = g(x)
for a unique continuous g : X → Z . It follows that the homotopy relation on the set of
mapping cycles from X to ? is trivial, i.e., two mapping cycles from X to ∗ are homotopic
only if they are equal. �

Example 5.2.2. Take X = Q , a subspace of R with the standard topology. The group
[[Q, ?]] is uncountable because the set of continuous maps from Q to Z is uncountable.

Lemma 5.2.3. For a path-connected (non-empty) space Y the abelian group [[?, Y]] is
isomorphic to Z .

Proof. Fix some point z ∈ Y . A mapping cycle from ? to Y is the same thing as a
formal linear combination of points in Y , say

∑
j bjyj where bj ∈ Z and yj ∈ Y . In the

abelian group [[?, Y]] we have

[[Σjbjyj]] = Σjbj[[yj]] = (Σjbj)[[z]].

(Here [[yj]] for example denotes the homotopy class of the mapping cycle determined by
the continuous map ?→ Y which has image {yj} . As that continuous map is homotopic to
the map ?→ Y which has image {z} , we obtain [[yj]] = [[z]] .) Therefore [[?, Y]] is cyclic,
generated by the element [[z]] . To see that it is infinite cyclic we use the homomorphism

[[?, Y]]→ [[?, ?]]

given by composition with the continuous map Y → ? . Now [[?, ?]] is infinite cyclic
by proposition 5.2.1. It is also clear that the homomorphism just above takes [[z]] to
the generator of [[?, ?]] , the class of the identity mapping cycle. Hence it must be an
isomorphism and so [[?, Y]] is infinite cyclic. �

Corollary 5.2.4. For any space Y the abelian group [[?, Y]] is isomorphic to the free
abelian group generated by the set of path components of Y .

Proof. The abelian group of mapping cycles from ? to Y is simply the free abelian
group A generated by the underlying set of Y . Write this as a direct sum

⊕
λ∈ΛAλ where

Λ is an indexing set for the path components Yλ of Y and Aλ is the free abelian group
generated by the underlying set of Yλ . Now fix some λ . Claim: If f ∈ A is homotopic to
g ∈ A , by a mapping cycle h : [0, 1]→ Y , then the coordinate of f in Aλ is homotopic to
the coordinate of g in Aλ , by a mapping cycle [0, 1]→ Yλ . To see this, cover the interval
[0, 1] by finitely many open subsets Ui such that h|Ui can be represented by a formal
linear combination of continuous maps from Ui to Y . This is possible by the coherence
condition on h . Choose a subdivision

0 = t0 < t1 < · · · tN−1 < tN = 1
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of [0, 1] such that for each of the the subintervals [tr, tr+1] , where r = 0, 1, . . . , N − 1 ,
there exists Ui containing it. Let htr ∈ A be obtained by restricting h to tr . Then
ht0 = f and htN = g , so it suffices to show that the λ-coordinate of htr is homotopic to
the λ -coordinate of htr+1 , for r = 0, 1, . . . , N− 1 . But [tr, tr+1] is contained in some Ui
and so there is a formal linear combination∑

j

bjuj

where bj ∈ Z and the uj are continuous maps from [tr, tr+1] to Y , and
∑
j bjuj restricts

to htr on tr and to htr+1 on tr+1 . Each uj maps to only one path component of Y ; in
the formal linear combination

∑
j bjuj , select the terms bjuj where uj is a map to Yλ

and discard the others. Then the selected linear sub-combination is a homotopy from the
λ -component of htr to the λ -component of htr+1 . This proves the claim.
Therefore [[?, Y]] is the direct sum of the [[?, Yλ]] . By the lemma above, each [[?, Yλ]] is
isomorphic to Z . �

Proposition 5.2.5. For topological spaces X and Y where X is a topological disjoint
union X1 q X2 , there is an isomorphism

[[X, Y]] −→ [[X1, Y]]× [[X2, Y]] ; [[f]] 7→ ([[f|X1 ]], [[f|X2 ]]) .

For topological spaces X and Y where Y is a topological disjoint union Y1 q Y2 , there is
an isomorphism

[[X, Y1]]⊕ [[X, Y2]] −→ [[X, Y]] ; [[f]]⊕ [[g]] 7→ [[j1 ◦ f+ j2 ◦ g]]
where j1 : Y1 → Y and j2 : Y2 → Y are the inclusions.

Proof. First statement: the set morATop(X, Y) of mapping cycles breaks up as a
product morATop(X1, Y)×morATop(X2, Y) by restriction to X1 and X2 , and a similar state-
ment holds for the set morATop(X× [0, 1], Y) . Second statement: the set morATop(X, Y) of
mapping cycles breaks up as a direct sum morATop(X, Y1)×morATop(X, Y2) , and a similar
statement holds for morATop(X× [0, 1], Y) . �

Proposition 5.2.6. For any topological space X we have

[[∅, X]] = 0 = [[X, ∅]] .

Proof. The abelian group of mapping cycles from X to ∅ is a trivial group and the
abelian group of mapping cycles from ∅ to X is a trivial group. �

5.3. Homology and cohomology: the definitions

Definition 5.3.1. For n ≥ 0 , the n -th homology group of a topological space X is the
abelian group

Hn(X) := [[Sn, X]]/[[?, X]] .

The n -th cohomology group of X is the abelian group

Hn(X) := [[X, Sn]]/[[X, ?]].

Comments. There is an understanding here that [[?, X]] is a subgroup of [[Sn, X]] . How?
By pre-composing mapping cycles from ? to X with the unique continuous map from
Sn to ? , we obtain a (well defined) homomorphism [[?, X]] → [[Sn, X]] . Conversely, by
pre-composing mapping cycles from Sn to X with a selected continuous map from ? to
Sn , inclusion of the base point, we obtain a homomorphism [[Sn, X]]→ [[?, X]] . The com-
position [[?, X]]→ [[Sn, X]]→ [[?, X]] is the identity on [[?, X]] . So we can say that [[?, X]]
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is a direct summand of [[Sn, X]] . We remove it, suppress it etc., when we form Hn(X) .
Similarly, by post-composing mapping cycles from X to Sn with the unique continuous
map Sn → ? , we obtain a homomorphism [[X, Sn]] → [[X, ?]] . Conversely, by post-
composing mapping cycles from X to ? with a selected continuous map ? → Sn , inclu-
sion of the base point, we obtain a homomorphism [[X, ?]] → [[X, Sn]] . The composition
[[X, ?]] → [[X, Sn]] → [[X, ?]] is the identity on [[X, ?]] . Therefore [[X, ?]] is a direct sum-
mand of [[X, Sn]] . We remove it, suppress it etc., when we form Hn(X) .

You will be unsurprised to hear that Hn is a functor from Top to the category of abelian
groups. We can also say that it is a functor from ATop to abelian groups. Both statements
are obvious from the definition. Equally clear from the definition, but important to keep
in mind: if f, g : X → Y are homotopic maps, then the induced homomorphisms f∗ and
g∗ from Hn(X) to Hn(Y) are the same. (Therefore we might say that Hn is a functor
from HoTop to the category of abelian groups. Indeed it is a functor from HoATop to
abelian groups ...)
Similarly Hn is a contravariant functor from Top (or from ATop, or from HoTop, or
from HoATop) to the category of abelian groups.

So far we have few tools available for computing Hn(X) and Hn(X) in general. But in
the cases n = 0 , arbitrary X , we are ready for it, and in the case where n is arbitrary
and X = ? we are also ready for it.

Example 5.3.2. Take n = 0 and X arbitrary. Then H0(X) = [[S0, X]]/[[?, X]] . For
S0 we can write ? q ? (disjoint union of two copies of ?), and using the first part of
proposition 5.2.5, we get [[S0, X]] ∼= [[?, X]] × [[?, X]] . Therefore H0(X) ∼= [[?, X]] . Using
corollary 5.2.4, it follows that H0(X) is identified with the free abelian group generated
by the set of path components of X . For example, if X is path connected, then H0(X) is
isomorphic to Z .
By a very similar calculation, H0(X) is isomorphic to [[X, ?]] . Using proposition 5.2.1, we
then obtain that H0(X) is isomorphic to the abelian group of continuous maps from X to
Z . For example, if X is connected, then H0(X) is isomorphic to Z .

Example 5.3.3. Take n arbitrary and X = ? . Now Hn(?) = [[Sn, ?]]/[[?, ?]] . Using
proposition 5.2.1, we find [[Sn, ?]] ∼= Z when n > 0 and [[S0, ?]] ∼= Z⊕Z ; also [[?, ?]] = Z .
By an easy calculation, the quotient [[Sn, ?]]/[[?, ?]] is therefore 0 when n > 0 , and
isomorphic to Z when n = 0 . So we have:

Hn(?) ∼=

{
Z if n = 0
0 if n > 0

Similarly, Hn(?) = [[?, Sn]]/[[?, ?]] . Using corollary 5.2.4 this time, we find that [[?, Sn]] ∼=
Z when n > 0 and [[?, S0]] ∼= Z⊕ Z . By an easy calculation, the quotient [[?, Sn]]/[[?, ?]]
is therefore 0 when n > 0 , and isomorphic to Z when n = 0 . Therefore:

Hn(?) ∼=

{
Z if n = 0
0 if n > 0

Remark 5.3.4. For inductive arguments, it is often convenient to identify the sphere Sn

in the definition of Hn(X) or Hn(X) with the one-point compactification Rn∪ {∞} of Rn .
For me the preferred identification is a homeomorphism from Rn ∪ {∞} to Sn given by
a form of stereographic projection which takes the origin (0, 0, . . . , 0) to (1, 0, . . . , 0) and
which takes ∞ to (−1, 0, . . . , 0) . In somewhat more detail, this takes (x1, . . . , xn) ∈ Rn
to the (other) point of Sn where the unique straight line through (−1, 0, . . . , 0) ∈ Rn+1
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and (1, x1, . . . , xn) ∈ Rn+1 meets Sn ⊂ Rn+1 . In Rn ∪ {∞} , the preferred choice of base
point is the point ∞ . Amazing corollary : our preferred choice of base point in Sn is
(−1, 0, 0, . . . , 0) .
Some important special cases: R0 ∪ {∞} = {0,∞} is identified with S0 = {−1, 1} by 0 7→ 1
and ∞ 7→ −1 . And R1 ∪ {∞} is identified with S1 by

x 7→ (4− x2
4+ x2

,
4x

4+ x2
)

for x ∈ R1 . Note that this last identification is differentiable on R1 and respects the
standard orientations.



CHAPTER 6

The homotopy decomposition theorem and the
Mayer-Vietoris sequence

6.1. The homotopy decomposition theorem

Notation for the following theorem and the corollary: X and Y are topological spaces, V
and W are open subsets of Y such that V ∪W = Y , and C is a closed subset of X . We
assume that X is paracompact.

Theorem 6.1.1. Let γ : X × [0, 1] → Y be a mapping cycle which restricts to zero on an
open neighborhood of X× {0} . Then there exists a decomposition

γ = γV + γW ,

where γV : X × [0, 1] → V and γW : X × [0, 1] → W are mapping cycles, both zero on an
open neighborhood of X× {0} . If γ is zero on some neighborhood of C× [0, 1] , then it can
be arranged that γV and γW are zero on a neighborhood of C× [0, 1] .

The proof of this is hard. We postpone it.

Corollary 6.1.2. Let a ∈ [[X,V]] and b ∈ [[X,W]] be such that the images of a and
b in [[X, Y]] agree. Then there exists c ∈ [[X,V ∩W]] whose image in [[X,V]] is a and
whose image in [[X,W]] is b .

Proof. Let α be a mapping cycle which represents a and let β be a mapping cycle
which represents b . Choose a mapping cycle γ : X× [0, 1]→ Y which is a homotopy from
0 to β − α . It is easy to arrange this in such a way that γ is zero on a neighborhood of
X × {0} . Use the theorem to obtain a decomposition γ = γV + γW . Let γV1 and γW1 be
the restrictions of γV and γW to X× {1} . Then α and α+γV1 are homotopic as mapping
cycles X → V , by the homotopy α ◦ p + γV , where p is the projection X × [0, 1] → X .
Similarly β = α+γV1 +γ

W
1 and α+γV1 are homotopic as mapping cycles X→W . Finally,

α+ γV1 = β− γW1 lands in V ∩W by construction. So c = [[α+ γV1 ]] is a solution. �

Remark 6.1.3. The corollary is in a formal way very reminiscent of proposition 2.5.5.
However the assumptions there were somewhat different. Instead of a union-intersection
square of spaces serving as targets, we had a pullback square and a fibration condition. We
can ask whether that was necessary or appropriate. Does corollary 6.1.2 have a more direct
analogue in HoTop ? In other words, given spaces X and Y = V ∪W as in corollary 6.1.2,
and elements a ∈ [X,V] and b ∈ [X,W] such that the images of a and b in [X, Y] agree,
does there exist c ∈ [X,V ∩W] whose image in [X,V] is a and whose image in [X,W]
is b ? Interestingly the answer is no in general. A relatively easy counterexample (easier
for you if you know the concept fundamental group) can be constructed as follows. Let
p, q ∈ R2 , p = (0, 1) and q = (0,−1) . Let Y = R2 r {q} , V = R2 r {p, q} and W the
open upper half-plane. Then V ∩W = W r {p} . For X take S1 . It is rather easy to
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invent a ∈ [X,V] which maps to the zero element in [X, Y] , but which does not come from
[X,V ∩W] . Therefore if we take b ∈ [X,W] to be the class of the constant map, we have
a “situation”. Picture of a map in the homotopy class a :

There are also deeper counterexamples where X = Sn for some n > 1 . For those we need
to work harder.

6.2. The Mayer-Vietoris sequence in homology

A sequence of abelian groups (An)n∈Z together with homomorphisms

fn : An → An−1

for all n ∈ Z is called an exact sequence of abelian groups if the kernel of fn is equal to the
image of fn+1 , for all n ∈ Z . More generally, we sometimes have to deal with diagrams
of abelian groups and homomorphisms in the shape of a string

An → An−1 → An−2 → · · ·→ An−k .

Such a diagram is exact if the kernel of each homomorphism in the string is equal to the
image of the preceding one, if there is a preceding one.

Definition 6.2.1. (Alternative definition of homology.) For a space Y , and n ≥ 0 , re-
define Hn(Y) as the abelian group of homotopy classes of mapping cycles Rn → Y with
compact support (i.e., mapping cycles which are zero on the complement of a compact
subset of Rn ).

Comment. Quite generally, the support of a mapping cycle f : X→ Y is a closed subset of
X , the complement of the largest subset U of X such that f|U is zero. — In the above
definition, we regard two mapping cycles Rn → Y with compact support as homotopic if
they are related by a homotopy Rn × [0, 1]→ Y which has compact support.
To relate the old definition of Hn(Y) to the new one, we make a few observations. Given a
mapping cycle α : Rn → Y which has compact support we immediately obtain a mapping
cycle (of the same name) from Rn∪ {∞} to Y by extending trivially to ∞ . To view this as
a mapping cycle Sn → Y , we need to use our preferred identification of Sn with Rn∪ {∞} .
See remark 5.3.4. Conversely, given a mapping cycle β : Sn → Y representing an element
of Hn(Y) according to the old definition, we may subtract a suitable constant to arrange
that β is zero when restricted to the base point of Sn . We can also assume that β is zero
on a neighborhood of the base point; if not, compose with a continuous map Sn → Sn

which is homotopic to the identity and takes a neighborhood of the base point to the base
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point. Using the standard identification Sn ∼= Rn ∪ {∞} , we can view β ◦u as a mapping
cycle Rn ∪ {∞}→ Y and also as a mapping cycle Rn → Y with compact support.

Definition 6.2.2. Suppose that Y comes with two open subspaces V and W such that
V ∪W = Y . The boundary homomorphism

∂ : Hn(Y)→ Hn−1(V ∩W)

is defined as follows, using the alternative definition of Hn . Let x ∈ Hn(Y) be represented
by a mapping cycle γ : Rn → Y with compact support. Without loss of generality (see
remark 6.2.3), the support of γ is contained in ]0, 1[×Rn . Then we can think of γ as
a homotopy with compact support, γ : [0, 1] × Rn → Y . (Here I want the [0, 1] factor
on the left for bureaucratic reasons; for now let’s regard this as unimportant.) Choose
a decomposition γ = γV + γW as in theorem 6.1.1. The theorem guarantees that γV

and γW can be arranged to have compact support as well. Let ∂(x) be the class of the
mapping cycle

γV1 : Rn−1 → V ∩W ,

composition of γV with the map (z1, . . . , zn−1) 7→ (1, z1, . . . , zn−1) . Note that γV1 has
again compact support.

We must show that this is well defined. There were two choices involved: the choice of
representative γ , with compact support in ]0, 1[×Rn , and the choice of decomposition
γ = γV + γW . For the moment, keep γ fixed, and let us see what happens if we try
another decomposition of γ . Any other decomposition will have the form

(γV + η) + (γW − η)

where η : [0, 1] × Rn−1 −→ V ∩W is a mapping cycle with compact support, and the
support has empty intersection with {0} × Rn−1 . We need to show that γV1 + η1 is
homotopic (with compact support) to γV1 . But this is clear since η1 is homotopic to zero
by the homotopy η .
Next we worry about the choice of representative γ . Let ϕ be another representative of
the same class x , also with compact support in ]0, 1[×Rn . Let λ : Rn × [0, 1] → Y be
a homotopy from ϕ to γ with compact support. (Writing the factor [0, 1] on the right
might help us to avoid confusion.) Without loss of generality the support of λ is contained
in ]0, 1[×Rn × [0, 1] . We can therefore think of λ as a homotopy in a different way:

[0, 1]×
(
Rn × [0, 1]

)
−→ Y .

Then we can apply the homotopy decomposition theorem and choose a decomposition
λ = λV + λW where λV and λW have compact support. We then find that λV1 is a
mapping cycle from Rn−1 × [0, 1] to V ∩W which we may regard as a homotopy (now
with parameters written on the right). The homotopy is between γV1 and ϕV1 , provided
the decompositions γ = γV +γW and ϕ = ϕV +ϕW are the ones obtained by restricting
the decomposition λ = λV + λW . �

Remark 6.2.3. Let K be a compact subset of Rn . Then it is easy to construct a homotopy

(ht : Rn → Rn)t∈[0,1]
such that h0 = id and h−11 (K) is contained in ]0, 1[×Rn−1 , and ht(z) = z for all
t ∈ [0, 1] and all z outside a compact subset of Rn . So if K is the support of a mapping
cycle γ : Rn → Y , then γ ◦ h1 has compact support contained in ]0, 1[×Rn . Moreover
there is a homotopy with compact support relating γ to γ ◦ h1 .
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The boundary homomorphisms ∂ can be used to make a sequence of abelian groups and
homomorphisms

· · · // Hn+1(Y)

∂

��
Hn(V ∩W) // Hn(V)⊕Hn(W) // Hn(Y)

∂

��
Hn−1(V ∩W) // · · ·

where n ∈ Z . (Set Hn(X) = 0 for n < 0 and any space X . The unlabelled homomor-
phisms in the sequence are as follows: Hn(V)⊕Hn(W)→ Hn(Y) is jV∗ + jW∗ , the sum
of the two maps given by composition with the inclusions jV : V → Y and jW : W → Y ,
and Hn(V ∩W) → Hn(V) ⊕ Hn(W) is (eV∗ ,−eW∗) , where eV∗ and eW∗ are given by
composition with the inclusions eV : V ∩W → V and eW : V ∩W →W .) The sequence is
called the homology Mayer-Vietoris sequence of Y and V,W .

Theorem 6.2.4. The homology Mayer-Vietoris sequence of Y and V,W is exact.1

Terminology for the proof. Write I = [0, 1] . Let X and Q be topological spaces and
let h : I × X → Q be a map or mapping cycle (which we think of as a homotopy). Let
p : I×X→ X be the projection and let ι0, ι1 : X→ I×X be the maps given by x 7→ (0, x)
and x 7→ (1, x) , respectively. We say that h is stationary near {0, 1} × X if there exist
open neighborhoods U0 and U1 of {0}× X and {1}× X , respectively, in I× X such that
h agrees with h ◦ ι0 ◦ p on U0 and with h ◦ ι1 ◦ p on U1 .

Proof. (i) Exactness of the pieces Hn(V ∩W)→ Hn(V)⊕Hn(W)→ Hn(Y) follows
from corollary 6.1.2, for all n ∈ Z . (It is more convenient to use the standard definition
of Hn at this point.) More precisely, we have exactness of

[[Sn, V ∩W]]→ [[Sn, V]]⊕ [[Sn,W]]→ [[Sn, Y]]

by corollary 6.1.2, and we have exactness of

[[?, V ∩W]]→ [[?, V]]⊕ [[?,W]]→ [[?, Y]]

by corollary 6.1.2. Note also that [[?, V]]⊕ [[?,W]]→ [[?, Y]] is surjective. Then it follows
easily that

[[Sn, V ∩W]]

[[?, V ∩W]]
→ [[Sn, V]]⊕ [[Sn,W]]

[[?, V]]⊕ [[?,W]]
→ [[Sn, Y]]

[[?, Y]]

is exact.
(ii) Next we look at pieces of the form

Hn(V)⊕Hn(W) −−−−→ Hn(Y)
∂−−−−→ Hn−1(V ∩W) .

The cases n < 0 are trivial. In the case n = 0 , the claim is that the homomorphism
H0(V)⊕H0(W)→ H0(Y) is surjective. This is a pleasant exercise. Now assume n > 0 . It
is clear from the definition of ∂ that the composition of the two homomorphisms is zero.
Suppose then that [[γ]] ∈ Hn(Y) is in the kernel of ∂ . Here γ : Rn → Y is a mapping cycle

1If you wish, view this as a sequence of abelian groups and homomorphisms indexed by the integers,
by setting for example A3n = Hn(Y) for n ≥ 0 , A3n+1 = Hn(V)⊕Hn(W) for n ≥ 0 , A3n+2 = Hn(V∩W)

for n ≥ 0 , and Am = 0 for all m ≤ 0 .
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with compact support contained in ]0, 1[×Rn−1 . We must show that [[γ]] is in the image
of Hn(V) ⊕ Hn(W) → Hn(Y) . As above, we think of γ as a homotopy, I × Rn−1 → Y ,
which we decompose, γ = γV +γW as in theorem 6.1.1, where γV and γW have compact
support. The assumption ∂[[γ]] = 0 then means that the zero map

Rn−1 → V ∩W

is homotopic to γV1 by a homotopy λ : I×Rn−1 → V ∩W with compact support. We can
arrange that λ is stationary near {0, 1}× Rn−1 . Then γV + λ and γW − λ are mapping
cycles from I × Rn−1 to V and W , respectively. Both vanish outside a compact subset
of ]0, 1[×Rn−1 and so can be viewed as mapping cycles with compact support defined on
all of Rn . Hence they represent elements in Hn(V) and Hn(W) whose images in Hn(Y)
add up to [[γ]] .
(iii) We show that the composition

Hn+1(Y)
∂−−−−→ Hn(V ∩W) −−−−→ Hn(V)⊕Hn(W) .

is zero. We can assume n ≥ 0 . Represent an element in Hn+1(Y) by a mapping cycle
γ : Rn+1 → Y with compact support contained in ]0, 1[×Rn . Decompose as usual, and
obtain ∂[[γ]] = [γV1 ] . Now γV1 = −γW1 viewed as a mapping cycle Rn → V with compact
support is homotopic to zero by the homotopy γV . Therefore ∂[γ] maps to zero in Hn(V) .
A similar calculation shows that it maps to zero in Hn(W) .
(iv) Finally let ϕ : Rn → V∩W be a mapping cycle with compact support and suppose that
[[ϕ]] ∈ Hn(V ∩W) is in the kernel of the homomorphism Hn(V ∩W)→ Hn(V)⊕Hn(W) .
Choose a homotopy γV : I × Rn → V from zero to ϕ , and choose another homotopy
γW : I×Rn →W from zero to −ϕ , both with compact support and both stationary near
{0, 1}×Rn . Then γ := γV +γW has compact support contained in ]0, 1[×Rn and so can
be viewed as a mapping cycle with compact support defined on all of Rn+1 . As such it
represents a class [[γ]] ∈ Hn+1(Y) . It is clear that ∂[[γ]] = [[ϕ]] . �

Remark 6.2.5. The Mayer-Vietoris sequence has a naturality property. The statement is
complicated. Suppose that Y and Y ′ are topological spaces, g : Y → Y ′ is a continuous
map, Y = V ∪W where V and W are open subsets, Y ′ = V ′ ∪W ′ where V " and W ′ are
open subsets, g(V) ⊂ V ′ and g(W) ⊂W ′ . Then the Mayer-Vietoris sequences for Y, V,W
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and Y ′, V ′,W ′ can be arranged in a ladder-shaped diagram

...

��

...

��
Hn+1(Y)

∂

��

g∗ // Hn+1(Y ′)

∂

��
Hn(V ∩W)

��

g∗ // Hn(V ′ ∩W ′)

��
Hn(V)⊕Hn(W)

��

g∗ // Hn(V ′)⊕Hn(W ′)

��
Hn(Y)

g∗ //

∂

��

Hn(Y
′)

∂

��
Hn−1(V ∩W)

g∗ //

��

Hn−1(V
′ ∩W ′)

��
...

...

This diagram is commutative; that is the naturality statement. The proof is not compli-
cated (it is by inspection).
Often this can be usefully combined with the following observation: if, in the Mayer-
Vietoris sequence for Y and V,W we interchange the roles (order) of V and W , then the
homomorphisms ∂ and Hn(V ∩W)→ Hn(V)⊕Hn(W) change sign. To be more precise,
we set up a diagram

Hn+1(Y)

∂

��

= // Hn+1(Y)

∂

��
Hn(V ∩W)

��

= // Hn(W ∩ V)

��
Hn(V)⊕Hn(W)

∼= // Hn(W)⊕Hn(V)

where the columns are bits from the Mayer-Vietoris sequence of Y, V,W and Y,W,V ,
respectively. The diagram is not (always) commutative; instead each of the small squares
in it commutes up to a factor (−1) . The proof is by inspection.



CHAPTER 7

Homology of spheres and applications

7.1. Homology of spheres

Proposition 7.1.1. The homology groups of S1 are H0(S
1) ∼= Z , H1(S

1) ∼= Z and
Hk(S

1) = 0 for all k 6= 0, 1 .

Proof. Choose two distinct points p and q in S1 . Let V ⊂ S1 be the complement
of p and let W ⊂ S1 be the complement of q . Then V ∪W = S1 . Clearly V is homotopy
equivalent to a point, W is homotopy equivalent to a point and V ∩ W is homotopy
equivalent to a discrete space with two points. Therefore Hk(V) ∼= Hk(W) ∼= Z for k = 0
and Hk(V) ∼= Hk(W) = 0 for all k 6= 0 . Similarly Hk(V ∩W) ∼= Z ⊕ Z for k = 0 and
Hk(V ∩W) = 0 for all k 6= 0 . The exactness of the Mayer-Vietoris sequence associated
with the open covering of S1 by V and W implies immediately that Hk(S

1) = 0 for
k 6= 0, 1 . The part of the Mayer-Vietoris sequence which remains interesting after this
observation is

0 // H1(S1)
∂ // Z⊕ Z // Z⊕ Z // H0(S1) // 0

Since S1 is path-connected, the group H0(S
1) is isomorphic to Z . The homomorphism

from Z ⊕ Z to H0(S
1) is onto by exactness, so its kernel is isomorphic to Z . Hence the

image of the homomorphism Z ⊕ Z → Z ⊕ Z is isomorphic to Z , so its kernel is again
isomorphic to Z . Now exactness at H1(S

1) leads to the conclusion that H1(S
1) ∼= Z . �

Theorem 7.1.2. The homology groups of Sn (for n > 0) are

Hk(S
n) ∼=

 Z if k = n
Z if k = 0
0 otherwise.

Proof. We proceed by induction on n . The induction beginning is the case n = 1
which we have already dealt with separately in proposition 7.1.1. For the induction step,
suppose that n > 1 . We use the Mayer-Vietoris sequence for Sn and the open covering
{V,W} with V = Sn r {p} and W = Sn r {q} where p, q ∈ Sn are the north and south
pole, respectively. We will also use the homotopy invariance of homology. This gives us

Hk(V) ∼= Hk(W) ∼=

{
Z if k = 0
0 otherwise

because V and W are homotopy equivalent to a point. Also we get

Hk(V ∩W) ∼=

 Z if k = n− 1
Z if k = 0
0 otherwise.

by the induction hypothesis, since V ∩W is homotopy equivalent to Sn−1 . Furthermore
it is clear what the inclusion maps V ∩W → V and V ∩W → W induce in homology:
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an isomorphism in H0 and (necessarily) the zero map in Hk for all k 6= 0 . Thus the
homomorphism

Hk(V ∩W) −→ Hk(V)⊕Hk(W)

from the Mayer-Vietoris sequence takes the form

Z −−−−→ Z⊕ Z
when k = 0 , and

Z −−−−→ 0

when k = n − 1 . In all other cases, its source and target are both zero. Therefore the
exactness of the Mayer-Vietoris sequence implies that H0(S

n) and Hn(S
n) are isomorphic

to Z , while Hk(S
n) = 0 for all other k ∈ Z . �

Theorem 7.1.3. Let f : Sn → Sn be the antipodal map. The induced homomorphism
f∗ : Hn(S

n)→ Hn(S
n) is multiplication by (−1)n+1 .

Proof. We proceed by induction again. For the induction beginning, we take n = 1 .
The antipodal map f : S1 → S1 is homotopic to the identity, so that f∗ : H1(S

1)→ H1(S
1)

has to be the identity, too. For the induction step, we use the setup and notation from the
previous proof. Exactness of the Mayer-Vietoris sequence for Sn and the open covering
{V,W} shows that

∂ : Hn(S
n) −→ Hn−1(V ∩W)

is an isomorphism. The diagram

Hn(S
n)

∂−−−−→ Hn−1(V ∩W)

f∗

y f∗

y
Hn(S

n)
∂−−−−→ Hn−1(W ∩ V)

is meaningful because f takes V ∩ W to V ∩ W = W ∩ V . But the diagram is not
commutative (i.e., it is not true that f∗◦∂ equals ∂◦f∗ ). The reason is that f interchanges
V and W , and it does matter in the Mayer-Vietoris sequence which of the two comes first.
Therefore we have instead

f∗ ◦ ∂ = −∂ ◦ f∗
in the above square. By the inductive hypothesis, the f∗ in the left-hand column of the
square is multiplication by (−1)n , and therefore the f∗ in the right-hand column of the
square must be multiplication by (−1)n+1 . �

7.2. The usual applications

Theorem 7.2.1. (Brouwer’s fixed point theorem). Let f : Dn → Dn be a continuous map,
where n ≥ 1 . Then f has a fixed point, i.e., there exists y ∈ Dn such that f(y) = y .

Proof. Suppose for a contradiction that f does not have a fixed point. For x ∈ Dn ,
let g(x) be the point where the ray (half-line) from f(x) to x intersects the boundary
Sn−1 of the disk Dn . Then g is a continuous map from Dn to Sn−1 , and we have
g|Sn−1 = idSn−1 . Summarizing, we have

Sn−1
j−−−−→ Dn

g−−−−→ Sn−1

where j is the inclusion, g ◦ j = id. Therefore we get

Hn−1(S
n−1)

j∗−−−−→ Hn−1(D
n)

g∗−−−−→ Hn−1(S
n−1)
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where g∗j∗ = id. Thus the abelian group Hn−1(S
n−1) is isomorphic to a direct summand

of Hn−1(D
n) . But from our calculations above, we know that this is not true. If n > 1 we

have Hn−1(D
n) = 0 while Hn−1(S

n−1) is not trivial. If n = 1 we have Hn−1(D
n) ∼= Z

while Hn−1(S
n−1) ∼= Z⊕ Z . �

Let f : Sn → Sn be any continuous map, n > 0 . The induced homomorphism f∗ from
Hn(S

n) to Hn(S
n) is multiplication by some number nf ∈ Z , since Hn(S

n) is isomorphic
to Z .

Definition 7.2.2. The number nf is the degree of f .

Remark. The degree nf of f : Sn → Sn is clearly an invariant of the homotopy class of f .

Remark. In the case n = 1 , the definition of degree as given just above agrees with the
definition of degree given in section 1. See exercises.

Example 7.2.3. According to theorem 7.1.3, the degree of the antipodal map Sn → Sn

is (−1)n+1 .

Proposition 7.2.4. Let f : Sn → Sn be a continuous map. If f(x) 6= x for all x ∈ Sn ,
then f is homotopic to the antipodal map, and so has degree (−1)n+1 . If f(x) 6= −x for
all x ∈ Sn , then f is homotopic to the identity map, and so has degree 1 .

Proof. Let g : Sn → Sn be the antipodal map, g(x) = −x for all x . Assuming that
f(x) 6= x for all x , we show that f is homotopic to g . We think of Sn as the unit sphere in
Rn+1 , with the usual notion of distance. We can make a homotopy (ht : S

n → Sn)t∈[0,1]
from f to g by “sliding” along the unique minimal geodesic arc from f(x) to g(x) , for
every x ∈ Sn . In other words, ht(x) ∈ Sn is situated t · 100 percent of the way from f(x)
to g(x) along the minimal geodesic arc from f(x) to g(x) . (The important thing here is
that f(x) and g(x) are not antipodes of each other, by our assumptions. Therefore that
minimal geodesic arc is unique.)
Next, assume f(x) 6= −x for all x ∈ Sn . Then, for every x , there is a unique minimal
geodesic from x to f(x) , and we can use that to make a homotopy from the identity map
to f . �

Corollary 7.2.5. (Hairy ball theorem). Let ξ be a tangent vector field (explanations
follow) on Sn . If ξ(z) 6= 0 for every z ∈ Sn , then n is odd.

Comments. A tangent vector field on Sn ⊂ Rn+1 can be defined as a continuous map ξ
from Sn to the vector space Rn+1 such that ξ(x) is perpendicular to (the position vector
of) x , for every x ∈ Sn . We say that vectors in Rn+1 which are perpendicular to x ∈ Sn
are tangent to Sn at x because they are the velocity vectors of smooth curves in Sn ⊂ Rn
as they pass through x .

Proof. Define f : Sn → Sn by f(x) = ξ(x)/‖ξ(x)‖ . Then f(x) 6= x and f(x) 6= −x
for all x ∈ Sn , since f(x) is always perpendicular to x . Therefore f is homotopic to the
antipodal map, and also homotopic to the identity. It follows that the antipodal map is
homotopic to the identity. Therefore n is odd by theorem 7.1.3. �

Remark 7.2.6. Theorem 7.1.3 has an easy generalization which says that the degree of
the map f : Sn → Sn given by

(x1, x2, . . . , xn+1) 7→ (x1, . . . , xk,−xk+1, . . . ,−xn+1)
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is (−1)n+1−k . Here we assume n ≥ 1 as usual. The proof can be given by induction
on n + 1 − k . The induction step is now routine, but the induction beginning must
cover all cases where n = 1 . This leaves the three possibilities k = 0, 1, 2 . One of these
gives the identity map S1 → S1 , and another gives the antipodal map S1 → S1 which
is homotopic to the identity. The interesting case which remains is the map f : S1 → S1

given by f(x1, x2) = (x1,−x2) . We need to show that it has degree −1 , in the sense of
definition 7.2.2. One way to do this is to use the following diagram

H1(S
1)

∂

��

f∗ // H1(S1)

∂

��
H0(V ∩W)

f∗ // H0(W ∩ V)

where V = S1r {(0, 1)} and W = S1r {(0,−1)} . We know from the previous chapter that
it commutes up to a factor (−1) . In the lower row, we have the identity homomorphism

Z⊕ Z→ Z⊕ Z .
The vertical arrows are injective (seen earlier in the proof of proposition 7.1.1). Therefore
the upper horizontal arrow is multiplication by −1 .
To state this result in a more satisfying manner, let us note that the orthogonal group
O(n + 1) (the group of orthogonal (n + 1) × (n + 1) -matrices with real entries) is a
topological group which has two path components. The two path components are the
preimages of +1 and −1 under the homomorphism

det : O(n+ 1)→ {−1,+1}.

Let f : Sn → Sn be given by f(z) = Az for some A ∈ O(n+ 1) . Because deg(f) depends
only on the homotopy class of f , it follows that deg(f) depends only on the path component
of A in O(n+1) , and hence only on det(A) . What we have just shown means that deg(f)
is equal to det(A) .

Remark 7.2.7. In our definition of the degree of a map from Sn to Sn , where n > 0 ,
we did not use a specific isomorphism from Hn(S

n) to Z and we did not have to use one.
It was enough to know that Hn(S

n) is isomorphic to Z . But it is possible to specify a
preferred isomorphism from Hn(S

n) to Z by saying that the continuous map id : Sn → Sn

viewed as a mapping cycle Sn → Sn and then as an element

[[id]] ∈ [[Sn, Sn]]

[[?, Sn]]
= Hn(S

n)

shall correspond to 1 ∈ Z . There is something to prove, though: we must show that [[id]]
is a generator of the abelian group Hn(S

n) ∼= Z . Proof : we observe that Hn(S
n) is a ring

R . (Represent elements by mapping cycles Sn → Sn ; addition of mapping cycles defines
the addition in R and composition defines the multiplication. It takes a little work to
show that composition is well defined.) Clearly [[id]] is the multiplicative unit of the ring
R . If a ring R has underlying additive group isomorphic to Z , then its unit element must
be a generator of the underlying additive group.
It follows easily that the degree of a map f : Sn → Sn is equal to

[[f]] ∈ [[Sn, Sn]]

[[?, Sn]]
= Hn(S

n) = Z ,

and here it is obviously important that we have selected an isomorphism Hn(S
n)→ Z . �



CHAPTER 8

Proving the homotopy decomposition theorem

8.1. Reductions

Here we reduce the proof of the homotopy decomposition theorem to the following lemmas.

Lemma 8.1.1. Let Z be a paracompact topological space, Y any topological space. Let
β : Z × [0, 1] → Y be a mapping cycle. Write ι0, ι1 : Z → Z × [0, 1] for the maps given by
ι0(z) = (z, 0) and ι1(z) = (z, 1) . If there exists a decomposition

β ◦ ι0 = βV0 + βW0

where βV0 and βW0 are mapping cycles from Z to V and W , respectively, then there exists
a decomposition β ◦ ι1 = βV1 + βW1 .

Lemma 8.1.2. In the situation of lemma 8.1.1, every element of Z has an open neighbor-
hood U such that the restriction βU×[0,1] of β to U× [0, 1] admits a decomposition

βU×[0,1] = β
V
U×[0,1] + β

W
U×[0,1]

where βVU×[0,1] and βWU×[0,1] are mapping cycles from U×[0, 1] to V and W , respectively.

Showing that lemma 8.1.2 implies lemma 8.1.1. In the situation of lemma 8.1.1,
choose an open cover (Uk)k∈Λ such that the restriction β[k] of β to Uk × [0, 1] admits
a decomposition

β[k] = β
V
[k] + β

W
[k] .

Such an open cover exists by lemma 8.1.2. Since Z is paracompact, there is no loss
of generality in assuming that the open cover is locally finite. Moreover, there exists a
partition of unity (ϕk)k∈Λ subordinate to the cover (Uk)k∈Λ . Choose a total ordering
of Λ . If Λ is finite, we can proceed as follows. We may assume that Λ is {1, 2, 3, . . . ,m}

for some m , with the standard ordering. For k ∈ {0, 1, . . . ,m} let

fk : Z→ Z× [0, 1]

be the function z 7→ (z,
∑k
`=1ϕ`) . Then f0 = ι0 and fm = ι1 in the notation of

lemma 8.1.1. By induction on k we define a decomposition

β ◦ fk = (β ◦ fk)V + (β ◦ fk)W .

For k = 0 this decomposition (of β ◦ f0 = β ◦ ι0 ) is already given to us. If we have
constructed the decomposition for β ◦ fk−1 , where 0 < k ≤ m , we define it for β ◦ fk in
such a way that

(β ◦ fk)V = (β ◦ fk−1)V + βV[k] ◦ fk − β
V
[k] ◦ fk−1

on Uk ⊂ Z and (β ◦ fk)V = (β ◦ fk−1)V outside the support of ϕk . Similarly, define

(β ◦ fk)W = (β ◦ fk−1)W + βW[k] ◦ fk − β
W
[k] ◦ fk−1
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on Uk and (β ◦ fk)W = (β ◦ fk−1)W outside the support of ϕk . Then on Uk we have

(β ◦ fk)V + (β ◦ fk)W = β ◦ fk−1 + β ◦ fk − β ◦ fk−1 = β ◦ fk
and outside the support of ϕk we have

(β ◦ fk)V + (β ◦ fk)W = (β ◦ fk−1)V + (β ◦ fk−1)W = β ◦ fk−1 = β ◦ fk .
Therefore (β◦fk)V+(β◦fk)W = β◦fk as required. The case k = m is the decomposition
of β ◦ ι1 = β ◦ fm that we are after.
If Λ is not finite, we can proceed as follows. Choose z ∈ Z and an open neighborhood Q
of z in Z such that the set

J = {k ∈ Λ | Q ∩Uk 6= ∅ }
is finite. Now J is a finite set with a total ordering, and the ϕj where j ∈ J constitute a
partition of unity for Q , subordinate to the open cover (Uk ∩ Q)k∈J of Q . Use this as
above to find a decomposition of β◦ι1 , restricted to Q , into summands which are mapping
cycles from Q to V and W , respectively. Do this for every z and open neighborhood Q .
The decompositions obtained match on overlaps, and so define a decomposition of β ◦ ι1
of the required sort. �

Showing that lemma 8.1.1 implies the homotopy decomposition theorem.
Given X, Y and a mapping cycle γ : X × [0, 1] → Y , we look for a decomposition γ =
γV +γW where γV and γW are mapping cycles from X× [0, 1] to V and W , respectively.
There is an additional condition to be satisfied. Namely, γ is zero on an open neighbor-
hood U of (X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] , and we want γV , γW to be zero on some
(perhaps smaller) open neighborhood U ′ of (X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] .
Put Z = X× [0, 1] . Since X was assumed to be paracompact, Z is also paracompact; it is
a general topology fact that the product of a paracompact space with a compact Hausdorff
space is paracompact. We have a map

h : Z× [0, 1]→ Z

defined by h((x, s), t)) = (x, st) for (x, t) ∈ X× [0, 1] = Z and t ∈ [0, 1] . Now β := γ ◦ h
is a mapping cycle from Z× [0, 1] to Y . In the notation of lemma 8.1.1, we have

β ◦ ι1 = γ, β ◦ ι0 ≡ 0 .
There exists a decomposition β0 = β

V
0 + βW0 because we can take βV0 ≡ 0 and βW0 ≡ 0 .

Therefore, by lemma 8.1.1, there exists a decomposition β ◦ ι1 = βV1 + βW1 , and we can
write that in the form

γ = βV1 + βW1 .

This is a decomposition of the kind that we are looking for. Unfortunately there is no
reason to expect that βV1 , β

W
1 are zero on (X× {0}) ∪ (C× [0, 1] ) , or on a neighborhood

of that in X× [0, 1] .
But it is easy to construct a continuous map ψ : X×[0, 1]→ X×[0, 1] such that ψ(X×[0, 1] )
is contained in the open set U specified above, and such that ψ agrees with the identity
on some open neighborhood U ′ of (X× {0}) ∪ (C× [0, 1] ) in X× [0, 1] . Then obviously
U ′ ⊂ U . Now let

γV = βV1 − (βV1 ◦ψ), γW = βW1 − (βW1 ◦ψ).
Then γV + γW = (βV1 + βW1 ) − (βV1 + βW1 ) ◦ ψ = γ − γ ◦ ψ . Furthermore γ ◦ ψ is zero
because γ is zero on U and the image of ψ is contained in U . So γV + γW = γ . Also
γV and γW are zero on U ′ by construction, since ψ agrees with the identity on U ′ . �
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8.2. Local homotopy decomposition

Proof of lemma 8.1.2. Call an open subset P of Z × [0, 1] good if the mapping
cycle β|P from P to Y can be written as the sum of a mapping cycle from P to V and
a mapping cycle from P to W . The goal is to show that every z ∈ Z has an open
neighborhood U such that U× [0, 1] is good.
The proof is based on two observations.

• Every element of Z× [0, 1] admits a good open neighborhood.
• If U is open in Z and A,B are open subsets of [0, 1] which are also intervals,

and if U×A and U× B are both good, then U× (A ∪ B) is good.

To prove the first observation, fix (z, t) ∈ Z× [0, 1] and choose an open neighborhood Q
of that in Z × [0, 1] such that β|Q can be written as a formal linear combination, with
coefficients in Z , of continuous maps from Q to Y . Such a Q exists by the definition of
mapping cycle. Making Q smaller if necessary, we can arrange that each of the (finitely
many) continuous maps which appear in that formal linear combination is either a map
from Q to V or a map from Q to W . It follows immediately that Q is good.
In proving the second observation, we can easily reduce to a situation where A∩B contains
an element t0 , where 0 < t0 < 1 , and A ∪ B is the union of A ∩ [0, t0] and B ∩ [t0, 1] .
Choose a continuous map ψ : B→ B ∩A such that ψ(s) = s for all s ∈ B ∩ [0, t0] . Since
P := U×A is good by assumption, we can write

β|P = βV,P + βW,P

where the summands in the right-hand side are mapping cycles from P to V and from P
to W , respectively. Similarly, letting Q := U× B we can write

β|Q = βV,Q + βW,Q .

Let ϕ : Q→ P ∩Q be given by ϕ(z, t) = (z,ψ(t)) . Define βV,P∪Q , a mapping cycle from
P ∪Q to V , as follows:

βV,P∪Q =

{
βV,P on P ∩ (U× [0, t0[ )
βV,Q − (βV,Q ◦ϕ) + (βV,P ◦ϕ) on Q .

This is well defined because the two formulas agree on the intersection of Q and U×[0, t0[ ,
where ϕ agrees with the identity. Similarly, define βW,P∪Q , a mapping cycle from P ∪Q
to W , as follows:

βW,P∪Q =

{
βW,P on P ∩ (U× [0, t0[ )
βW,Q − (βW,Q ◦ϕ) + (βW,P ◦ϕ) on Q .

An easy calculation shows that βV,P∪Q+βW,P∪Q = β|P∪Q . Therefore P∪Q = U×(A∪B)
is good. The second observation is established.
Now fix z0 ∈ Z . By the first of the observations, it is possible to choose for each t ∈ [0, 1]
a good open neighborhood Qt of (z0, t) in Z× [0, 1] . By a little exercise, there exists an
open neighborhood U of z0 in Z and a small number δ = 1/n (where n is a positive
integer) such that each of the open sets

U× [0, 2δ[ , U×]1δ, 3δ[ , U×]2δ, 4δ[ , . . . ,

U×]1− 3δ, 1− 1δ[ , U×]1− 2δ, 1]
in Z× [0, 1] is contained in Qt for some t ∈ [0, 1] . Therefore these open sets

U× [0, 2δ[ , U×]1δ, 3δ[ , . . .
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are also good. By the second of the two observations, applied (n− 2) times, their union,
which is U× [0, 1] , is also good. �

8.3. Relationship with fiber bundles

The proof of the homotopy decomposition theorem as given above has many surprising
similarities with proofs in section 3 related to fiber bundles (theorem 3.4, corollaries 3.7
and 3.8., and improvements in section 3.4). I cannot resist the temptation to indicate
where these similarities come from.

Let E and B be topological spaces and let p : E→ B be a fiber bundle. We need to be a
little more precise by requiring that p : E → B be a fiber bundle with fiber F , for a fixed
topological space F . This is supposed to mean that every fiber of p is homeomorphic to
F in some way. (We learned in section 2 that every fiber bundle over a path connected
space is a fiber bundle with fiber F , for some F .) With this situation we can associate two
presheaves T and HF on B .

- For an open set U in B , let HF(U) be the group of homeomorphisms h from
U× F to U× F respecting the projection to U .

- For an open set U in B let T(U) be the set of trivializations of the fiber bundle
E|U → U , that is, the set of all homeomorphisms p−1 → U × F respecting the
projections to U .

- An inclusion of open sets U0 ↪→ U1 in B induces maps

HF(U1)→ HF(U0), T(U1)→ sT(U0)

by restriction of homeomorphisms.

In fact it is clear that T and HF are sheaves. Clearly HF is a sheaf of groups, that is, each
set HF(U) comes with a group structure and the restriction maps HF(U1)→ HF(U0) are
group homomorphisms. By contrast T is not a sheaf of groups in any obvious way. But
there is an action of the group HF(U) on the set T(U) given by

(h, g) 7→ h ◦ g

(composition of homeomorphisms, where h ∈ HF(U) and g ∈ T(U)). This is compatible
with restriction maps (reader, make this precise). Moreover:

(1) for any g ∈ T(U) , the map HF(U)→ T(U) given by h 7→ h ◦ g is a bijection;
(2) every z ∈ B has an open neighborhood U such that T(U) 6= ∅ .

(Of course, despite (1), it can happen that T(U) is empty for some open subsets U of
B , for example, U = B .) The proof of (1) is easy and by inspection; (2) holds by the
definition of fiber bundle. There are words and expressions to describe this situation: we
can say that HF is a sheaf of groups on B and T is an HF -torsor.
This reasoning shows that a fiber bundle on B with fiber F determines an HF -torsor on
B . It is also true (and useful, and not very hard to prove, though it will not be explained
here) that the process can be reversed: every HF -torsor on B determines a fiber bundle
with fiber F on B .

Now try to forget fiber bundles for a while. We return to the homotopy decomposition
theorem. Assume that Y = V ∪W as in the homotopy decomposition theorem. Let Z
be any topological space and fix α , a mapping cycle from Z to Y . We introduce two
presheaves F and G on Z .
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- For an open set U in Z , let G(U) be the abelian group of mapping cycles from
U to V ∩W .

- For open U in Z let F(U) be the set of mapping cycles β from U to V such
that α|U−β is a mapping cycle from U to W . To put it differently: an element
β of F(U) is, or amounts to, a sum decomposition

α|U = β+ (α|U − β)

where the two summands β and α|U − β are mapping cycles from U to V and
from U to W , respectively.

- An inclusion of open sets U0 ↪→ U1 in Z induces maps

G(U1)→ G(U0), F(U1)→ sF(U0)

by restriction of mapping cycles.

It is easy to see that F and G are sheaves, and G is even a sheaf of abelian groups on Z .
By contrast F is not in an obvious way a sheaf of abelian groups. But there is an action
of the group G(U) on the set F(U) given by

(λ, β) 7→ λ+ β .

(In this formula, λ ∈ G(U) and β ∈ F(U) ; then λ + β can be viewed as a mapping cycle
from U to V and it turns out to be an element of F(U) .) Moreover:

(1) for any β ∈ F(U) , the map G(U)→ F(U) given by λ 7→ λ+ β is a bijection;
(2) every z ∈ Z has an open neighborhood U such that F(U) 6= ∅ .

(Of course it is quite possible, despite (1), that F(U) is empty for some open subsets U of
Z , for example, U = Z .) The proof of (1) is easy and by inspection; the proof of (2) was
given in a special case earlier, but it can be repeated. Choose a neighborhood U of z such
that α|U can be represented by a formal linear combination, with integer coefficients, of
continuous maps from U to Y . Making U smaller if necessary, we can assume that each
of the (finitely many) continuous maps which appear in that formal linear combination is
either a map from U to V or a map from U to W . Then it is clear that α|U can be
written as a sum of two mapping cycles, one from U to V and the other from U to W .
So F(U) is nonempty.
So we see that G is a sheaf of abelian groups on Z and F is a G -torsor. Again we are
interested in questions like this one: is F(Z) nonempty? This is equivalent to asking
whether our fixed mapping cycle α from Z to Y can be written as a sum of two mapping
cycles, one from Z to V and one from Z to W .



CHAPTER 9

Combinatorial description of some spaces

9.1. Vertex schemes and simplicial complexes

Definition 9.1.1. A vertex scheme consists of a set V and a subset S of the power set
P(V) , subject to the following conditions: every T ∈ S is finite and nonempty, every subset
of V which has exactly one element belongs to S , and if T ′ is a nonempty subset of some
T ∈ S , then T ′ ∈ S .
The elements of V are called vertices (singular: vertex ) of the vertex scheme. The elements
of S are called distinguished subsets of V .

Example 9.1.2. The following are examples of vertex schemes:

(i) Let V = {1, 2, 3, . . . , 10} . Define S ⊂ P(V) so that the elements of S are the
following subsets of V : all the singletons, that is to say {1}, {2}, . . . , {10} , and
{1, 2} , {2, 3} , . . . , {9, 10} as well as {10, 1} .

(ii) Let V = {1, 2, 3, 4} and define S ⊂ P(V) so that the elements of S are exactly
the subsets of V which are nonempty and not equal to V .

(iii) Let V be any set and define S so that the elements of S are exactly the nonempty
finite subsets of V .

(iv) Take a regular icosahedron. Let V be the set of its vertices (which has 12 ele-
ments). Define S ⊂ P(V) in such a way that the elements of S are all singletons,
all doubletons which are connected by an edge, and all tripletons which make up
a triangular face of the icosahedron. (There are twenty such tripletons, which is
supposed to explain the name icosahedron.)

The simplicial complex determined by a vertex scheme (V, S) is a topological space X =
|V |S . We describe it first as a set. An element of X is a function f : V → [0, 1] such that∑

v∈V

f(v) = 1

and the set {v ∈ V | f(v) > 0} is an element of S .
It should be clear that X is the union of certain subsets ∆(T) , where T ∈ S . Namely, ∆(T)
consists of all the functions f : V → [0, 1] for which

∑
v∈V f(v) = 1 and f(v) = 0 if v /∈ T .

The subsets ∆(T) of X are not always disjoint. Instead we have ∆(T)∩∆(T ′) = ∆(T ∩ T ′)
if T ∩ T ′ is nonempty; also, if T ⊂ T ′ then ∆(T) ⊂ ∆(T ′) .
The subsets ∆(T) of X , for T ∈ S , come equipped with a preferred topology. Namely,
∆(T) is (identified with) a subset of a finite dimensional real vector space, the vector space
of all functions from T to R , and as such gets a subspace topology. (For example, ∆(T)
is a single point if T has one element; it is homeomorphic to an edge or closed interval if
T has two elements; it looks like a compact triangle if T has three elements; etc. We say
that ∆(T) is a simplex of dimension m if T has cardinality m+ 1 .) These topologies are
compatible in the following sense: if T ⊂ T ′ , then the inclusion ∆(T) → ∆(T ′) makes a
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homeomorphism of ∆(T) with a subspace of ∆(T ′) .
We decree that a subset W of X shall be open if and only if W ∩ ∆(T) is open in ∆(T) ,
for every T in S . Equivalently, and perhaps more usefully: a map g from X to another
topological space Y is continuous if and only if the restriction of g to ∆(T) is a continuous
from ∆(T) to Y , for every T ∈ S .

Example 9.1.3. The simplicial complex associated to the vertex scheme (i) in exam-
ple 9.1.2 is homeomorphic to S1 . In (ii) and (iv) of example 9.1.2, the associated simplicial
complex is homeomorphic to S2 .

Example 9.1.4. The simplicial complex associated to the vertex scheme (V, S) where
V = {1, 2, 3, 4, 5, 6, 7, 8} and

S =

{
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {1, 3}, {2, 3}, {3, 4},
{3, 5}, {3, 6}, {4, 5}, {5, 6}, {5, 7}, {7, 8}, {3, 4, 5}, {3, 5, 6}

}
looks like this:

Lemma 9.1.5. The simplicial complex X = |V |S associated with a vertex scheme (V, S) is
a Hausdorff space.

Proof. Let f and g be distinct elements of X . Keep in mind that f and g are
functions from V to [0, 1] . Choose v0 ∈ V such that f(v0) 6= g(v0) . Let ε = |f(v0)−g(v0)| .
Let Uf be the set of all h ∈ X such that |h(v0) − f(v0)| < ε/2 . Let Ug be the set of
all h ∈ X such that |h(v0) − g(v0)| < ε/2 . From the definition of the topology on
X , the sets Uf and Ug are open. They are also disjoint, for if h ∈ Uf ∩ Ug then
|f(v0) − g(v0)| ≤ |f(v0) − h(v0)| + |h(v0) − g(v0)| < ε , contradiction. Therefore f and g
have disjoint neighborhoods in X . �

Lemma 9.1.6. Let (V, S) be a vertex scheme and (W,T) a vertex sub-scheme, that is,
W ⊂ V and T ⊂ S ∩ P(W) . Then the evident map ι : |W|T → |V |S is a closed, continuous
and injective map and therefore a homeomorphism onto its image.

Proof. The map ι is obtained by viewing functions from W to [0, 1] as functions
from V to [0, 1] by defining the values on elements of V rW to be 0 . A subset A of |V |S
is closed if and only if A ∩ ∆(T) is closed for the standard topology on ∆(T) , for every
T ∈ S . Therefore, if A is a closed subset of |V |S , then ι−1(A) is a closed subset of |W|T ;
and if C is a closed subset of |W|S , then ι(C) is closed in |V |S . �

Remark 9.1.7. The notion of a simplicial complex is old. Related vocabulary comes in
many dialects. I have taken the expression vertex scheme from Dold’s book Lectures on
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algebraic topology with only a small change (for me, ∅ /∈ S). It is in my opinion a good
choice of words, but the traditional expression for that appears to be abstract simplicial
complex. Most authors agree that a simplicial complex (non-abstract) is a topological
space with additional data. For me, a simplicial complex is a space of the form |V |S for
some vertex scheme (V, S) ; other authors prefer to write, in so many formulations, that
a simplicial complex is a topological space X together with a homeomorphism |V |S → X ,
for some vertex scheme (V, S) .

9.2. Semi-simplicial sets and their geometric realizations

Semi-simplicial sets are closely related to vertex schemes. A semi-simplicial set has a
geometric realization, which is a topological space; this is similar to the way in which a
vertex scheme determines a simplicial complex.

Definition 9.2.1. A semi-simplicial set Y consists of a sequence of sets

(Y0, Y1, Y2, Y3, ...)

(each Yk is a set) and, for each injective order-preserving map

f : {0, 1, 2, . . . , k} −→ {0, 1, 2, . . . , `}

where k, ` ≥ 0 , a map f∗ : Y` → Yk . The maps f∗ are called face operators and they are
subject to conditions:

• if f is the identity map from {0, 1, 2, . . . , k} to {0, 1, 2, . . . , k} then f∗ is the
identity map from Yk to Yk .
• (g ◦ f)∗ = f∗ ◦ g∗ when g ◦ f is defined (so f : {0, 1, . . . , k} → {0, 1, . . . , `} and
g : {0, 1, . . . , `}→ {0, 1, . . . ,m}).

Elements of Yk are often called k-simplices of Y . If x ∈ Yk has the form f∗(y) for some
y ∈ Y` , then we may say that x is a face of y corresponding to face operator f∗ .

Remark 9.2.2. The definition of a semi-simplicial set can be reformulated in category
language as follows. There is a category C whose objects are the sets [n] = {0, 1, . . . , n} ,
where n can be any non-negative integer. A morphism in C from [m] to [n] is an order-
preserving injective map from the set [m] to the set [n] . Composition of morphisms is,
by definition, composition of such order-preserving injective maps.
A semi-simplicial set is a contravariant functor Y from C to the category of sets. We like
to write Yn when we ought to write Y([n]) . We like to write f∗ : Yn → Ym when we ought
to write Y(f) : Y([n])→ Y([m]) , for a morphism f : [m]→ [n] in C .
Nota bene: if you wish to define (invent) a semi-simplicial set Y , you need to invent
sets Y0, Y1, Y2, . . . (one set Yn for each integer n ≥ 0) and you need to invent maps
f∗ : Yn → Ym , one for each order-preserving injective map f : [m] → [n] . Then you need
to convince yourself that (g ◦ f)∗ = f∗ ◦ g∗ whenever f : [k] → [`] and g : [`] → [m] are
order-preserving injective maps.

Example 9.2.3. Let (V, S) be a vertex scheme as in the preceding (sub)section. Choose
a total ordering of V . From these data we can make a semi-simplicial set Y as follows.

• Yn is the set of all order-preserving injective maps β from {0, 1, . . . , n} to V
such that im(β) ∈ S . Note that for each T ∈ S of cardinality n + 1 , there is
exactly one such β .

• For an order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , n} and β ∈ Yn ,
define f∗(β) = β ◦ f ∈ Ym .
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In order to warm up for geometric realization, we introduce a (covariant) functor from the
category C in remark 9.2.2 to the category of topological spaces. On objects, the functor
is given by

{0, 1, 2, . . . ,m} 7→ ∆m

where ∆m is the space of functions u from {0, 1, . . . ,m} to R which satisfy the condition∑m
j=0 u(j) = 1 . (As usual we view this as a subspace of the finite-dimensional real vector

space of all functions from {0, 1, . . . , n} to R . It is often convenient to think of u ∈ ∆n as
a vector, (u0, u1, . . . , um) , where all coordinates are ≥ 0 and their sum is 1 .) Here is a
picture of ∆2 as a subspace of R3 (with basis vectors e0, e1, e2 ):

For a morphism f , meaning an order-preserving injective map

f : {0, 1, 2, . . . ,m} −→ {0, 1, 2, . . . , n},

we want to see an induced map

f∗ : ∆
m → ∆n.

This is easy: for u = (u0, u1, . . . , um) ∈ ∆m we define

f∗(u) = v = (v0, v1, . . . , vn) ∈ ∆n

where vj = ui if j = f(i) and vj = 0 if j /∈ im(f) .
(Keep the following conventions in mind. For a covariant functor G from a category
A to a category B , and a morphism f : x → y in A , we often write f∗ : G(x) → G(y)
instead of G(f) : G(x) → G(y) . For a contravariant functor G from a category A to a
category B , and a morphism f : x → y in A , we often write f∗ : G(y) → G(x) instead of
G(f) : G(y)→ G(x) .)

The geometric realization |Y| of a semi-simplicial set Y is a topological space defined as
follows. Our goal is to have, for each n ≥ 0 and y ∈ Yn , a preferred continuous map

cy : ∆
n → |Y|

(the characteristic map associated with the simplex y ∈ Yn ). These maps should match
in the sense that whenever we have an injective order-preserving

f : {0, 1, . . . ,m}→ {0, 1, . . . , n}
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and y ∈ Yn , so that f∗y ∈ Ym , then the diagram

∆n
cy // |Y|

∆m

f∗

OO

cf∗y // |Y|

=

OO

is commutative. There is a “most efficient” way to achieve this. As a set, let |Y| be the set
of all symbols c̄y(u) where y ∈ Yn for some n ≥ 0 and u ∈ ∆n , modulo the relations1

c̄y(f∗(u)) ∼ c̄f∗y(u)

(notation and assumptions as in that diagram). This ensures that we have maps cy from
∆n to |Y| , for each y ∈ Yn , given in the best tautological manner by

cy(u) := equivalence class of c̄y(u) .

Also, those little squares which we wanted to be commutative are now commutative be-
cause we enforced it. Finally, we say that a subset U of |Y| shall be open (definition
coming) if and only if c−1y (U) is open in ∆n for each characteristic map cy : ∆

n → |Y| .

A slightly different way (shorter but possibly less intelligible) to say the same thing is as
follows:

|Y| :=

∐
n≥0

Yn × ∆n
/ ∼

where ∼ is a certain equivalence relation on
∐
n Yn×∆n . It is the smallest equivalence re-

lation which has (y, f∗(u)) equivalent to (f∗y, u) whenever f : {0, 1, . . . ,m}→ {0, 1, . . . , n}
is injective order-preserving and y ∈ Yn , u ∈ ∆m . Note that, where it says Yn × ∆n ,
the set Yn is regarded as a topological space with the discrete topology, so that Yn ×∆n
has meaning; we could also have written

∐
y∈Yn ∆

n instead of Yn × ∆n .

This new formula for |Y| emphasizes the fact that |Y| is a quotient space of a topological
disjoint union of many standard simplices ∆n (one simplex for every pair (n, y) where
y ∈ Yn ). Go ye forth and look up quotient space or identification topology in your favorite
book on point set topology.— To match the second description of |Y| with the first one, let
the element of |Y| represented by (y, u) ∈ Yn × ∆n in the second description correspond
to the element which we called cy(u) in the first description of |Y| .

Example 9.2.4. Fix an integer n ≥ 0 . We might like to invent a semi-simplicial set

Y = ∆n

such that |Y| is homeomorphic to ∆n . The easiest way to achieve that is as follows. Define
Yk to be the set of all order-preserving injective maps from {0, 1, . . . , k} to {0, 1, . . . , n} . So

Yk has
(
n+1
k+1

)
elements (which implies Yk = ∅ if k > n). For an injective order-preserving

map

g : {0, 1, . . . , k}→ {0, 1, . . . , `},

define the face operator g∗ : Y` → Yk by g∗(f) = f ◦ g . This makes sense because f ∈ Y`
is an order-preserving injective map from {0, 1, . . . , `} to {0, 1, . . . , n} . There is a unique

1Modulo the relations is short for the following process: form the smallest equivalence relation on
the set of all those symbols c̄y(u) which contains the stated relation. Then pass to the set of equivalence

classes for that equivalence relation. That set of equivalence classes is |Y| .
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element y ∈ Yn , corresponding to the identity map of {0, 1, . . . , n} . It is an exercise to
verify that the characteristic map cy : ∆

n → |Y| is a homeomorphism.

Example 9.2.5. Up to relabeling there is a unique semi-simplicial set Y such that Y0
has exactly one element, Y1 has exactly one element, and Yn = ∅ for n > 1 . Then
|Y| is homeomorphic to S1 . More precisely, let z ∈ Y1 be the unique element; then the
characteristic map

cz : ∆
1 −→ |Y|

is an identification map. (Translation: it is surjective and a subset of the target is open in
the target if and only if its preimage is open in the source.) The only identification taking
place is cz(a) = cz(b) , where a and b are the two boundary points of ∆1 .

9.3. Technical remarks concerning the geometric realization

Let Y be a semi-simplicial set. We reformulate the definition of the geometric realization
|Y| once again.
From the semi-simplicial set Y , we make a category CY as follows. An object is a pair
(n, z) where n is a non-negative integer and z ∈ Yn . A morphism from (m,y) to (n, z) is,
by definition, an order-preserving injective map g : {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} which
has the property g∗(z) = y (where g∗ : Yn → Ym is the face operator determined by g).
We define a covariant functor FY from CY to the category of topological spaces as follows.
The definition of FY on objects is simply

FY(n, z) = ∆
n

where ∆n is the standard n -simplex. (Recall that this is the space of all functions u from
{0, 1, . . . , n} to [0, 1] which satisfy

∑
j u(j) = 1 , viewed as a subspace of the real vector

space of all functions from {), 1, . . . , n} to R .) If we have a morphism from (m,y) to
(n, z) given by an an order-preserving injective map g : {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} ,
then we define

FY(f) = g∗ : ∆
m → ∆n,

that is to say, FY(f)(u1, . . . , um) = (v1, . . . , vn) where vi = uj if i = g(j) and vi = 0 if i
is not of the form g(j) . Note that I have written ui instead of u(i) etc. ; strictly speaking
u(i) is correct because we said that u is a function from {0, 1, . . . ,m} to [0, 1] .
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Now the definition of |Y| can be recast as follows:

|Y| =

∐
(n,z)

FY(n, z)

/ ∼

where ∼ is the equivalence relation generated by

FY(m,y) 3 (u1, . . . , um) ∼ FY(g)(u1, . . . , um) ∈ FY(n, z)
whenever g is a morphism from (m,y) to (n, z) ; in other words g is an order-preserving
injective map from {0, 1, 2, . . . ,m} to {0, 1, 2, . . . , n} which has g∗(z) = y . It may look
as if the formula defines |Y| only as a set, but we want to view it as a formula defining
a topology on |Y| as well, namely, the quotient topology. Therefore, a subset of |Y| is
considered to be open (definition) if and only if its preimage in

∐
(n,z) FY(n, z) is open.

Warning: do not read these 21
2

lines unless you are somewhat familiar with category
theory. You will notice that |Y| has been defined to be the direct limit (also called colimit)
of the functor FY .

Example 9.3.1. Let (V, S) be a vertex scheme, choose a total ordering on V , and let Y
be the associated semi-simplicial set, as in example 9.2.3. We are going to show that the
geometric realization |Y| is homeomorphic to the simplicial complex |V |S .
An element of Yn is an order-preserving injective map from {0, 1, . . . , n} to V . This is
determined by its image T , a distinguished subset of V (where distinguished means that
T ∈ S). So we can pretend that Yn is simply the set of all distinguished subsets of V that
have exactly n + 1 elements. Furthermore, if T ′ ∈ Ym and T ∈ Yn , then there exists
at most one morphism from T ′ to T in the category CY . It exists if and only if T ′ ⊂ T .
Therefore we may say that CY is the category whose objects are the distinguished subsets
T, T ′, . . . of V , with exactly one morphism from T ′ to T if T ′ ⊂ T , and no morphism from
T ′ to T otherwise. In this description, the functor FY is given on objects by

FY(T) = ∆(T)

where ∆(T) replaces ∆n (assuming that T has exactly n + 1 elements) and means: the
space of functions u from T to [0, 1] that satisfy

∑
j∈T u(j) = 1 . For T ′ ⊂ T we have

exactly one morphism from T ′ to T , and the induced map FY(T
′) = ∆(T ′)→ ∆(T) = FY(T)

is given by u 7→ v where v(t) = u(t) if t ∈ T ′ and v(t) = 0 if t ∈ T r T ′ . Therefore

|Y| =
(∐
T∈S

∆(T)
)/

∼

where the equivalence relation is generated by u ∈ ∆(T ′) ∼ v ∈ ∆(T) if T ′ ⊂ T and
v(t) = u(t) for t ∈ T ′ , v(t) = 0 for t ∈ T r T ′ .
There is a map of sets ∐

T∈S

∆(T) −→ |V |S

which is equal to the inclusion ∆(T)→ |V |S on each ∆(T) . That map clearly determines
a bijective map

|Y| =
(∐
T∈S

∆(T)
)/

∼ −→ |V |S .

By our definition of the topology on |V |S , a subset of |V |S is open if and only if its preimage
in
∐
T∈S ∆(S) is open; and by our definition of the topology in |Y| , that happens if and only

if its preimage in |Y| is open. So that bijective map from |Y| to |V |S is a homeomorphism.
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Lemma 9.3.2. Let Y be any semi-simplicial set. For every element a of |Y| there exist
unique m ≥ 0 and (z,w) ∈ Ym × ∆m such that a = cz(w) and w is in the “interior” of
∆m , that is, the coordinates w0, w1, . . . , wm are all strictly positive.
Furthermore, if a = cx(u) for some (x, u) ∈ Yk × ∆k , then there is a unique order-
preserving injective f : {0, 1, . . . ,m} → {0, 1, 2, . . . , k} such that f∗(x) = z and f∗(w) = u ,
for the above-mentioned (z,w) ∈ Ym × ∆m with w0, w1, . . . , wm > 0 .

Proof. Let us call such a pair (z,w) with a = cz(w) a reduced presentation of a ;
the condition is that all coordinates of w must be positive. More generally we say that
(x, u) is a presentation of a if (x, u) ∈ Yk × ∆k for some k ≥ 0 and a = cx(u) . First we
show that a admits a reduced presentation and then we show uniqueness.
We know that a = cx(u) for some (x, u) ∈ Yk × ∆k . Some of the coordinates u0, . . . , uk
can be zero (not all, since their sum is 1). Suppose that m + 1 of them are nonzero.
Let f : {0, 1, . . . ,m}→ {0, 1, . . . , k} be the unique order-preserving map such that uf(j) 6= 0
for j = 0, 1, 2, . . . ,m . Then a = cz(w) where z = f∗(x) and w ∈ ∆m with coordinates
wj = uf(j) . (Note that f∗(w) = u .) So (z,w) is a reduced presentation of a .
We have also shown that any presentation (x, u) of a (whether reduced or not) determines
a reduced presentation. Namely, there exist unique m , f and w ∈ ∆m such that v = f∗(w)
for some w ∈ ∆m with all wi > 0 ; then (f∗(x), w) is a reduced presentation of a .
It remains to show that if a has two presentations, say (x, u) ∈ Yk × ∆k and (y, v) ∈
Y`×∆` , then they determine the same reduced representation of a . If indeed a = cx(u) =
cy(v) then c̄x(u) and c̄y(v) are equivalent, and so (recalling how that equivalence relation
was defined) we find that there is no loss of generality in assuming that x = g∗(y) and v =
g∗(u) for some order-preserving injective g : {0, 1, . . . , k} → {0, 1, . . . , `} . Now determine
the unique m and order-preserving injective f : {0, 1, . . . ,m} → {0, 1, . . . , k} such that
u = f∗(w) where w ∈ ∆m and all wi > 0 . Then we also have v = g∗(u) = g∗(f∗(w)) =
(g ◦ f)∗(w) and it follows that we get the same reduced presentation, (f∗(x), w) = ((g ◦
f)∗(y), w) , in both cases. �

Corollary 9.3.3. The space |Y| is a Hausdorff space.

Proof. For a ∈ Y with reduced presentation (z,w) ∈ Ym × ∆m and ε > 0 , define
N(a, ε) ⊂ |Y| as follows. It consists of all b ∈ |Y| with reduced presentation (x, u) ∈ Yk×∆k
such that there exists an order-preserving injective f : {0, 1, . . . ,m}→ {0, 1, . . . , k} for which
f∗(x) = z and f∗(w) is ε -close to u , that is, the maximum of the numbers |wf(j) − uj| is
< ε . From the definitions, N(a, ε) is open in |Y| ; so it is a neighborhood of a .
Let a ′ ∈ |Y| be another element, with reduced presentation (y, v) ∈ Yn×∆n . We assume
a 6= a ′ and proceed to show that N(a ′, ε) ∩ N(a, ε) = ∅ if ε is small enough. More
precisely, we take ε to be less than half the minimum of the coordinates of v and w ;
and if it should happen that m = n and y = z , then we know v,w ∈ ∆m but v 6= w ,
and we take ε to be less than half the maximum of the |vj − wj| as well. Now suppose
for a contradiction that b ∈ N(a, ε) ∩ N(a ′, ε) and that b has reduced presentation
(x, u) ∈ Yk×∆k . Then there exist order-preserving injective f : {0, 1, . . . ,m}→ {0, 1, . . . , k}
and g : {0, 1, . . . , n} → {0, 1, . . . , k} such that f∗(x) = z , g∗(x) = y and f∗(w), g∗(v) are
both ε -close to u in ∆k . Then f∗(w) is 2ε-close to g∗(v) in ∆k , and now we can deduce
that m = n and f = g . (Otherwise there is some j ∈ {0, 1, . . . , k} which is in the image of
g but not in the image of f , or vice versa, and then the j -th coordinate of g∗(w) differs
by more than 2ε from the j -th coordinate of f∗(v) .) Therefore z = f∗(x) = g∗(x) = y
and so a has reduced presentation (z,w) while a ′ has reduced presentation (z, v) , with
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v,w ∈ ∆m and the same z ∈ Ym . It follows that v and w are already 2ε-close in ∆m .
This contradicts our choice of ε . �

Remark 9.3.4. In the proof above, and in a similar proof in the previous section, argu-
ments involving distances make an appearance, suggesting that we have a metrizable situ-
ation. To explain what is going on let me return to the situation of a vertex scheme (V, S)
with simplicial complex |V |S , which is easier to understand. A metric on the set |V |S can
be introduced for example by d(f, g) = (

∑
v(f(v)−g(v))

2)1/2 or d(f, g) =
∑
v |f(v)−g(v)| .

Here we insist/remember that elements of |V |S are functions f, g, . . . : V → [0, 1] subject
to some conditions. The sums in the formulas for d(f, g) are finite, even though V might
not be a finite set. It is not hard to show that the two formulas for d(f, g) , although differ-
ent as metrics, determine the same topology. However the topology on |V |S that we have
previously decreed (let me call it the weak topology) is not in all cases the same as that
metric topology. Every subset of |V |S which is open in the metric topology is also open in
the weak topology. But the weak topology can have more open sets. (We reasoned that
the weak topology is Hausdorff because it has all the open sets that the metric topology
has, and perhaps a few more, and the metric topology is certainly Hausdorff.) In the case
where V is finite, weak topology and metric topology on |V |S coincide. (Exercise.)

9.4. A shorter but less conceptual definition of semi-simplicial set

Every injective order-preserving map from [k] = {0, 1, . . . , k} to [`] = {0, 1, . . . , `} is a
composition of `− k injective order preserving maps

[m− 1] −→ [m]

where k < m ≤ ` . It is easy to list the injective order-preserving maps from [m − 1] to
[m] ; there is one such map fi for every i ∈ [m] , characterized by the property that the
image of fi is

[m]r {i} .

(This fi really depends on two parameters, m and i . Perhaps we ought to write fm,i ,
but it is often practical to suppress the m subscript.) We have the important relations

(9.4.1) fifj = fjfi−1 if j < i

(You are allowed to read this from left to right or from right to left! It is therefore a formal
consequence that fifj = fj+1fi when j ≥ i .) These generators and relations suffice to
describe the category C (lecture notes week 11) whose objects are the sets [k] = {0, 1, . . . , k}
for k ≥ 0 and whose morphisms are the order-preserving injective maps between those
sets. In other words, the structure of C as a category is pinned down if we say that it
has objects [k] for k ≥ 0 and that, for every k > 0 and i ∈ {0, 1, . . . , k} , there are certain
morphisms fi : [k − 1] → [k] which, under composition when it is applicable, satisfy the
relations (9.4.1). Prove it!
Consequently a semi-simplicial set Y , which is a contravariant functor from C to spaces,
can also be described as a sequence of sets Y0, Y1, Y2, . . . and maps

di : Yk → Yk−1

which are subject to the relations

(9.4.2) djdi = di−1dj if j < i
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Here di : Yk → Yk−1 denotes the map induced by fi : [k − 1] → [k] , whenever 0 ≤ i ≤ k .
Because of contravariance, we have had to reverse the order of composition in translating
relations (9.4.1) to obtain relations (9.4.2).



CHAPTER 10

CW-spaces

10.1. CW-Spaces: definition and examples

CW-spaces are generalizations of simplicial complexes and geometric realizations of semi-
simplicial sets (see Lecture notes WS13-14). To be more precise: a simplicial complex is a
topological space |V |S which has been obtained from a vertex scheme (V, S) , and a semi-
simplicial set X has a geometric realization |X| which is a topological space. Both |V |S
and |X| have the additional structure that they need in order to qualify as CW-spaces.
In describing a CW-space, we do not begin with combinatorial data in order to make
a space out of them. We begin with a space and we put additional structure on it by
specifying an increasing sequence of subspaces. The definition is a great achievement due
to J.H.C. Whitehead (probably 1949).

Definition 10.1.1. A CW-space is a space X together with an increasing sequence of
subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ . . .
subject to the following conditions.

(1) X =
⋃
n≥−1 X

n and a subset A of X is closed if and only if A ∩ Xn is closed in
Xn for all n .

(2) For every n ≥ 0 there exists a pushout square of spaces (see remark 10.1.2)∐
λ∈Λn

Sn−1

��

incl. //
∐
λ∈Λn

Dn

��
Xn−1

incl. // Xn

where Λn is a set (and Dn , Sn−1 are unit disk and unit sphere in Rn , respec-
tively).

Let us unravel this and derive some of the easier consequences.

– Condition (2) implies that Xn−1 is a closed subspace of Xn .
– Using that, we can deduce from condition (1) that Xn is a closed subspace of X ,

for each n .
– X is a normal space (disjoint closed sets have disjoint open neighborhoods) and

therefore also Hausdorff. Sketch proof: let A1 and A2 be disjoint closed subsets
of X . Inductively, construct disjoint open neighborhoods U1,n and U2,n in Xn

of A1 ∩ Xn and A2 ∩ Xn , respectively. Do this in such a way that U1,n−1 =
U1,n ∩Xn−1 and U2,n−1 = U2,n ∩Xn−1 . Then by condition (1), the sets U1 :=⋃
nU1,n and U2 :=

⋃
nU1,n are open in X and they are disjoint neighborhoods

of A1 and A2 , respectively.

72
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– A subset Y of X is closed in X if and only if its intersection with every compact
subset C of X is closed in C . (This property has a name: compactly generated.)
Proof: one direction is trivial. Suppose that Y ∩ C is closed in C for every
compact subset C of X . It suffices to show that Y∩Xn is closed in Xn , for every
n . We proceed by induction on n . For the induction step, assume that Y∩Xn−1
is closed in Xn−1 . Choose a pushout square as in condition (2). The intersection
of Y with the image of each copy of Dn under the right-hand vertical arrow is
closed in that image, by assumption. Therefore the preimage of Y ∩Xn is closed
in Λn × Dn . Therefore Y ∩ Xn is closed in Xn by the definition of pushout
square.

– Condition (2) implies that Xn r Xn−1 , which is open in Xn , is homeomorphic
(with the subspace topology) to Λn× (DnrSn−1) , or equivalently to Λn×Rn .
In other words XnrXn−1 is homeomorphic to a disjoint union of copies of Rn .
These copies of Rn are well-defined subspaces of X because they are also the
connected components of Xn r Xn−1 . They are called the n-cells of X . Thus
the n-cells of X are homeomorphic to Rn . No specific homeomorphism with Rn
is provided. The vertical arrows in the square of (2) are not given as part of the
structure of a CW-space, they only exist.

– Let S be a subset of X such that the intersection of S with every cell of X is a
finite set. Then S is a closed subset of X . Sketch proof: It is enough to show
that S∩Xn is closed in Xn for all n . We proceed by induction on n ; so assume
for the induction step that S∩Xn−1 is closed in Xn−1 . Now S∩Xn is the union
of S∩Xn−1 , which is closed in Xn−1 and therefore closed in Xn , and a subset T
of Xn r Xn−1 which has finite intersection with every n-cell. By condition (2),
the set T is closed in Xn .

– Let S be a subset of X such that the intersection of S with every cell of X is a
finite set. Then S is discrete with the subspace topology. Proof: Every subset
of S is closed in X (by the same reasoning that we applied to S) and therefore
closed in S .

– Let C be a compact subspace of X . Then C is contained in a union of finitely
many cells of X . Proof: Suppose not. Then there is an infinite subset S of C
such that S has at most one point in common with each cell. We know already
that S is closed in X and discrete. Therefore S is closed in C and discrete.
Therefore S is compact, discrete and infinite, contradiction.

– The closure in X of every cell of X is contained in a finite union of cells. Proof:
condition (2) implies that the closure of every n -cell is compact in Xn , being
equal to the image of a continuous map from Dn to the Hausdorff space Xn .
Therefore it is compact in X and so (by the previous results) it is contained in a
finite union of cells.

– Every compact subspace of X (and in particular the closure of any cell in X)
is contained in a compact subspace of X which is a finite union of cells. Proof:
by the previous it suffices to show that any n -cell E of X is contained in a
compact subspace of X which is a finite union of cells. The closure Ē of E in X
is compact and therefore contained in a finite union of cells. These cells might be
called E = E0 , E1, E2, . . . , Ek (where the indexing has nothing to do with their
dimension). But we know that Ē r E is contained in Xn−1 by condition (2).
Therefore cells E1, E2, . . . , Ek have dimension < n . By inductive assumption
(yes, we are doing an induction on n) each Ei where i = 1, 2, . . . , k is contained
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in a compact subspace Ck of X which is a finite union of cells of X . Take
the union K of C1 ∪ C2 ∪ . . . Ck and Ē , which is the same as the union of
C1 ∪ C2 ∪ . . . Ck and E . Therefore K is compact and it is a finite union of cells
of X .

According to Whitehead himself, the letters C and W in CW-space are for weak topology,
expressed in condition (1), and closure finiteness, as in: the closure of every cell is contained
in a finite union of cells. But perhaps he meant a selection of initials from his full name
John Henry Constantine Whitehead. (Against that theory, I believe his preferred first
name was Henry, not Constantine.)

In a CW-space X , the subspace Xn is called the n-skeleton of X . If Z ⊂ X is an n -cell,
that is to say, a connected component of XnrXn−1 , then by condition (2) above we know
that there exists a continuous map

ϕ : Dn → X

which restricts to a homeomorphism from Dn r Sn−1 to Z . Such a ϕ is called a charac-
teristic map for the cell.

Remark 10.1.2. A commutative square of spaces and maps

A

g

��

f // B

u

��
C

v // D

is a pushout square if the resulting map(
B t C

)/
∼ −→ D

determined by u on B and v on C is a homeomorphism. Here “∼” denotes the equivalence
relation on the disjoint union B t C generated by f(x) ∼ g(x) for all x ∈ A . (Intuitively,
f(x) ∈ B ⊂ B t C is glued to g(x) ∈ C ⊂ B t C .) In such a square, the space D and the
maps u and v are in some sense completely determined by A,B,C and f, g , because D
is
(
BtC

)/
∼ up to renaming of elements, and u, v are the standard maps from B and C

to that. — Note that in this situation a subset E of D is open in D if and only if u−1(E)
is open in B and v−1(E) is open in C .
Also note that if f : A → B happens to be injective, then v : C → D is injective and
Br f(A) is homeomorphic to Dr v(C) .

Example 10.1.3. Let (V, S) be a vertex scheme. (So V is a set and S is a collection
of nonempty finite subsets of V , and if T , S are nonempty finite subset of V such that
T ⊂ S and S ∈ S , then T ∈ sS .) Recall that |V |S is the set of functions f : V → [0, 1]
with the property that V r f−1(0) is an element of S and

∑
v∈V f(v) = 1 . We defined a

topology on that (perhaps not the one you think; see lecture notes WS13). Let X = |V |S
with that topology and let Xn consist of all the f ∈ X such that V r f−1(0) has at most
n + 1 elements. Then X with these subspaces Xn is a CW-space. There is not much to
prove here; it is almost true by the definition of |V |S . This CW-space has one n-cell for
every element of S which has cardinality n+ 1 (as a subset of V ).

Example 10.1.4. Let Y be a semi-simplicial set. Let Y(n) be the semi-simplicial subset
of Y generated by the elements y ∈ Yk where k ≤ n . Then the geometric realization
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|Y| is a CW-space with the subspace |Y(n)| as its n -skeleton. Again there is not much to
prove here. This CW-space has one n -cell for every z ∈ Yn .

Example 10.1.5. The sphere Sk has a structure of CW-space X where Xn is a single
point for n < k and Xn = Sk when n ≥ k . This CW-space has exactly two cells,
one of dimension 0 and one of dimension k . (This example is also a special case of
example 10.1.4.)

Example 10.1.6. From the sequence of inclusions R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rk and the
corresponding sequence of inclusions

∅ = S−1 ⊂ S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk−1 ⊂ Sk

we obtain another CW-structure on X = Sk where Xn = Sn if n ≤ k and Xn = Sk if
n ≥ k . (This example is not a special case of example 10.1.4 if k > 1 .)

Example 10.1.7. The CW-structure on X = Sk in the previous example is invariant
under the antipodal involution on Sk ; that is to say, the antipodal map X → X takes
each skeleton Xn to itself. Therefore or (preferably) by inspection, Y = RPk has a CW-
structure where Yn is RPn for n ≤ k and Yn = RPk if n ≥ k .

Example 10.1.8. A more difficult and more interesting example of a CW-space is the
Grassmannian Gp,q of p-dimensional linear subspaces in Rp+q with the CW-structure
due to Schubert. (I believe Schubert found this in the 19th century, long before CW-
spaces were invented.) The Grassmannian is probably well known to you from courses
on differential topology or differential geometry as a fine example of a smooth manifold.
Here we are not so interested in the manifold aspect, but we need to know that Gp,q
is a topological space. Write n = p + q . A p -dimensional linear subspace V of Rn
determines a linear map Rn → Rn , orthogonal projection to V . It has the following
properties: self-adjoint, idempotent, rank p . In this way, Gp,q can be identified with
the set of n × n-matrices which are symmetric, idempotent and of rank p . So Gp,q is
“contained” in the finite dimensional real vector space of real n× n -matrices, which has
a standard topology ... and we can give it the subspace topology.
Let E(k) be the linear span of the first k standard basis vectors in Rn . So we have an
increasing sequence of real vector spaces

0 = E(0) ⊂ E(1) ⊂ E(2) ⊂ · · · ⊂ E(n− 1) ⊂ E(n) = Rn.
Now let V ∈ Gp,q , that is to say, V is a p-dimensional linear subspace of Rn = E(n) .
Let fV(k) = dim(V ∩ E(k)) for k = 0, 1, 2, . . . , n . So V determines a function fV from
{0, 1, 2, . . . , n} to {0, 1, . . . , p} . The function is a nondecreasing and surjective and satisfies
fV(0) = 0 and fV(n) = p . Schubert’s idea was to say: we put two elements V,W of Gp,q
in the same equivalence class if fV = fW . Let us see whether these equivalence classes
are cells and if so, what their dimensions are. So fix a nondecreasing surjective f from
{0, 1, . . . , n} to {0, 1, . . . , p} which satisfies f(0) = 0 , f(n) = p , and let us be interested in
the set of V ∈ Gp,q having fV = f . Let

f! : {1, . . . , p}→ {1, . . . , n}

be the injective monotone function such that f!(j) is the minimal element among the i
having f(i) = j . Form the set Af of real n× p-matrices

(Mij)

where Mij = 0 if i > f!(j) , Mij = 1 if i = f!(j) , and Mij = 0 if i = f!(k) for some k < j .
The columns are linearly independent. So we can make a map from Af to Gp,q by taking
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(Mij) to its column span. Etc. etc. ; this gives a homeomorphism from Af to the set of
V ∈ Gp,q having fV = f . Now clearly Af is an affine subspace of Rp×q (translate of a
linear subspace) and its dimension is

p∑
k=1

(f!(k) − 1) − (k− 1) =

p∑
k=1

f!(k) − k .

Therefore we are allowed to say that the set of V ∈ Gp,q having fV = f is a cell. It
will be left as an exercise to show that Schubert’s partition of Gp,q into cells is in fact a
structure of CW-space (where the n-skeleton, obviously, has to be the union of all cells
whose dimension is at most n). There are

(
n
p

)
cells in the structure; the maximum of

their dimensions is

n+ (n− 1) + · · ·+ (n− p+ 1) − (1+ 2+ · · ·+ p) = p(n− p) = pq

and there is exactly one cell which has the maximal dimension. It corresponds to the
f : {0, 1, 2, . . . , n}→ {0, 1, 2, . . . , p} which has f(x) = x−(n−p) for x > n−p and f(x) = 0
otherwise.

10.2. CW-subspaces and CW quotient spaces

Proposition 10.2.1. Let X be a CW-space and A ⊂ X a closed subspace such that A
is a union of cells of X . Then A becomes a CW-space in its own right if we define
An := Xn ∩A .

In this situation we call A a CW-subspace of X .

Sketch proof. There is not much to prove here. Let Z ⊂ X be an n-cell which is
contained in A . Let ϕZ : D

n → X be a characteristic map for Z , so that ϕZ restricts to
a homeomorphism from Dn r Sn−1 to Z . The image of ϕZ is contained in A because it
is the closure Z̄ of Z in X , and Z̄ ⊂ A because Z ⊂ A and A is closed in X . Therefore
we can write ϕZ : D

n → Z without lying very hard. Now choose characteristic maps for
all the n -cells of X , giving a pushout square∐

λ∈Λn

Sn−1

��

incl. //
∐
λ∈Λn

Dn

��
Xn−1

incl. // Xn

as in definition 10.1.1. Here Λn is in a (chosen) bijection with the set of n -cells of X . Let
Λ ′n ⊂ Λn be the subset corresponding to the n-cells which are contained in A . Then by
what we have just seen there is a commutative square∐

λ∈Λ ′n

Sn−1

��

incl. //
∐
λ∈Λ ′n

Dn

��
Xn−1 ∩A incl. // Xn ∩A

which is obtained from the previous square by appropriate restrictions. It is easy to show
that this is again a pushout square. This verifies condition (2) in definition 10.1.1 for the
space A . �
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Proposition 10.2.2. Under assumptions as in proposition 10.2.1, the quotient space X/A
is also a CW-space with the definition

(X/A)n := Xn/An = Xn/(Xn ∩A).

Remark. It is wise to define the quotient space X/A as the pushout of X ← A → ?
where, as usual, ? denotes a singleton space and the left-hand arrow is the inclusion. This
removes an ambiguity which would otherwise arise if A is empty. Namely, if A is empty,
then X/A is homeomorphic to X t ? . (Consequently it is not quite correct to say that
X/A is the quotient space of X by the equivalence relation which is generated by x ∼ y
if x, y ∈ A . That statement is only correct when A is nonempty.) It follows that X/A is
always a based space, i.e., it has a distinguished element or singleton subspace which we
can again denote by ? without lying too hard.

Proof of proposition 10.2.2. In the notation of the proof of proposition 10.2.1: a
choice of characteristic maps for the n -cells of X gives us a pushout square∐

λ∈Λn

Sn−1

��

incl. //
∐
λ∈Λn

Dn

��
Xn−1

incl. // Xn

and if n > 0 this determines a pushout square∐
λ∈ΛnrΛ ′n

Sn−1

��

incl. //
∐

λ∈ΛnrΛ ′n

Dn

��
Xn−1/An−1

incl. // Xn/An

Here the vertical maps are obtained by using the chosen characteristic maps for the n-cells
of X and composing with the quotient map Xn → Xn/An , or Xn−1 → Xn−1/An−1 where
appropriate. The case n = 0 is different: we have (X/A)0 = X0/A0 ∼= Λ0/Λ

′
0 which is not

identifiable with Λ0 rΛ ′0 because it has one extra element. That extra element accounts
for the base point of X/A , which is a 0-cell in X/A . �

Example 10.2.3. In the notation of example 10.1.7, the quotient space RPk/RPn where
0 < n < k is a CW-space which has one 0-cell (base point), then one cell exactly in each
of the dimensions n+1, n+2, . . . , k , and no cells in other dimensions. These based spaces
are called stunted projective spaces.



CHAPTER 11

Cellular maps and cellular homotopies

11.1. The homotopy extension property

Lemma 11.1.1. Let X be a CW-space and let A be a CW-subspace of X . Let Y be any
space, f : X→ Y a continuous map and (ht : A→ Y)t∈[0,1] a homotopy such that h0 = f|A .
Then there exists a homotopy

(h̄t : X→ Y)t∈[0,1]

such that h̄t∣∣A = ht for all t ∈ [0, 1] and h̄0 = f .

Remark. In the language of homotopy theory, this can be stated by saying that the
inclusion A→ X has the HEP, homotopy extension property. Equivalently, the inclusion
A→ X is a cofibration.

Proof. We construct homotopies

(h̄t,n : X
n → Y)t∈[0,1]

by induction on n . These will be compatible, in the sense that h̄t,n−1 is the restriction
of h̄t,n to Xn−1× [0, 1] . Then we can define h̄t so that it agree with h̄t,n on Xn× [0, 1] .
Because of condition (1) in the definition of CW-space, there is no continuity problem.
Therefore, for the induction step, assume that the homotopy

(h̄t,n−1 : X
n−1 → Y)t∈[0,1]

has already been constructed, and that it agrees with the prescribed (ht)t∈[0,1] on An−1×
[0, 1] , and also that h̄0,n−1 agrees with f on Xn−1 . We wish to construct

(h̄t,n−1 : X
n → Y)t∈[0,1]

which, to be honest, is a map Xn × [0, 1] → Y . This map is already defined for us on
Xn−1 × [0, 1] and on An × [0, 1] . What this means is that it is not defined on the n-cells
of X which are not contained in A . Choose characteristic maps for these to get a pushout
square ∐

ΛnrΛ ′n

Sn−1 //

��

∐
ΛnrΛ ′n

Dn

ϕ
��

Xn−1 ∪An // Xn

whre Λn is an indexing set for the n -cells of X , and Λ ′n ⊂ Λn corresponds to the n -cells
which are in A . By the good properties of pushouts, it is now enough to define a homotopy

(gt :
∐

Dn → Y)t∈[0,1]

78
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which agrees with h̄t,n−1 ◦ ϕ on
∐
Sn−1 and, for t = 0 , with f ◦ ϕ on

∐
Dn . The

coproducts are indexed by ΛnrΛ ′n . By the good properties of coproducts, it is then also
enough to define for each λ ∈ Λn rΛn−1 a homotopy

(gt,λ : D
n → Y)t∈[0,1]

which agrees with h̄t,n−1 ◦ϕ on that copy of Sn−1 and, for t = 0 , with f◦ϕ on that copy
of Dn (where that copy refers to the copy corresponding to λ). Of course, the homotopy
(gt,λ)t∈[0,1] is really a map

Dn × [0, 1]→ Y

to be constructed which is already defined for us on (Dn× {0})∪ (Sn−1× [0, 1]) . Therefore
it suffices to show: every continuous map

u : (Dn × {0}) ∪ (Sn−1 × [0, 1]) −→ Y

admits an extension to a continuous map v : Dn×[0, 1]→ Y . A solution to that is v = u◦r
where

r : Dn × [0, 1] −→ (Dn × {0}) ∪ (Sn−1 × [0, 1])

is a map which agrees with the identity on (Dn× {0})∪ (Sn−1× [0, 1]) . Such a map r can
be obtained as follows. View Dn× [0, 1] as a subspace of Rn×R in the most obvious way.
Let z be the point (0, 0, 0, . . . , 0, 2) in Rn × R . Define r in such a way that r(x) is the
unique point where the line through x and z intersects (Dn × {0}) ∪ (Sn−1 × [0, 1]) . �

11.2. Cellular maps

Definition 11.2.1. Let f : X→ Y be a continuous map, where X and Y are CW-spaces.
The map f is called cellular if f(Xn) ⊂ Yn for all n ≥ 0 .

Example 11.2.2. View S1 as the unit circle in C . For n ∈ Z , the map f : S1 → S1 defined
by f(z) = zn is a cellular map if we use the CW-structure on S1 which has 0-skeleton
equal to {1} and 1-skeleton equal to all of S1 . If instead we use the CW-structure on S1

with 0-skeleton S0 and 1-skeleton equal to all of S1 , then f is also a cellular map.

Example 11.2.3. The antipodal map g : Sn → Sn is not a cellular map if we use a
CW-structure on Sn with exactly one 0-cell and exactly one n-cell and no other cells.

11.3. Approximation of maps by cellular maps

Lemma 11.3.1. Let U be an open subset of Rn and f : U→ Rn+k a continuous map such
that f−1(0) is compact, where k > 0 . Then for any ε > 0 there exists a map g : U→ Rn+k
such that ‖g− f‖ ≤ ε , the support of g− f is compact and g−1(0) = ∅ .

Proof. There are two well-known methods for this. One is to use Sard’s theorem.
Choose open sets V1 and V2 in Rn such that V1 ∪ V2 = U , where V1 has compact
closure in U and contains f−1(0) . Choose a smooth function ϕ : U→ [0, 1] with compact
support such that supp(1 − ϕ) ∩ f−1(0) = ∅ . Without loss of generality, ε is less than
the minimum of ‖f‖ on the compact set supp(ϕ) ∩ supp(1 − ϕ) . It is easy to construct
a smooth map g1 from U to Rn+k such that ‖f(x) − g1(x)‖ < ε/2 for all x ∈ U . As
a special case of Sard’s theorem, the image of g1 is a set of Lebesgue measure zero in
Rn+k . Hence there exists y ∈ Rn+k , not in the image of g1 , such that ‖y‖ < ε/2 . Let
g2 = g1 − y , so that 0 is not in the image of g2 . By construction, ‖f(x) − g2(x)‖ < ε for
all x ∈ U . Let g = ϕ · f+ (1−ϕ) · g2 . This g has all the properties that we require.
The other method would be to use piecewise linear approximation. This is more elementary
but also much more tedious. ... Under construction. �
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Corollary 11.3.2. Let U be an open subset of Rn and f : U → Rn+k a continuous
map such that f−1(0) is compact, k > 0 . Then there exist a map g : U → Rn+k such
that g−1(0) = ∅ and a homotopy (ht : U → Rn+k)t∈[0,1] such that h0 = f , h1 = g and

(ht)t∈[0,1] is stationary1 outside a compact subset K of U .

Proof. Take g as in lemma 11.3.1. Put ht(x) := (1− t)f(x) + tg(x) . �

Lemma 11.3.3. Let f : Dn → X be a continuous map, where X is a CW-space. Suppose
that f(Sn−1) ⊂ Xn−1 . Then there exists a homotopy

(ht : D
n → X)t∈[0,1]

which is stationary on Sn−1 and such that h0 = f while h1(D
n) ⊂ Xn .

Proof. The image of f is compact, therefore contained in a compact CW-subspace Y
of X (which must have finitely many cells only, as it is compact). We choose Y as small as
possible. Suppose that the maximal dimension of the cells in Y is n+k , where k > 0 . The
(n+k) -cells in Y all have nonempty intersection with the image of f , otherwise the choice
of Y was not minimal. Choose one of them, say E ⊂ Y , and let U = f−1(E) ⊂ DnrSn−1 ,
an open set. The restriction of f to U can be viewed as a map from U to E ∼= Rn+k .
This is (after some more reparameterization) the situation of corollary 11.3.2. Therefore
we can make a homotopy (αt)t∈[0,1] from f to a map f1 : D

n → X as in that corollary.
(The homotopy is stationary outside a compact subset K of U , that is to say, it associates
a constant path t 7→ αt(z) in X to every element z of Dn r K .) The advantage of f1
compared with f is that it avoids the point p in E ⊂ Y which corresponds to the origin
of Rn+k in our parametrization of E . But the image of f1 is still contained in Y . Now it
is easy to make a homotopy

(βt : Y r {p}→ Y)t∈[0,1]

where β0 is the inclusion and β1 lands in the CW-subspace Y r E , and (βt)t∈[0,1] is
stationary on YrE . Composing this homotopy with f1 , where we view f1 as a map from
Dn to Y r {p} we get a homotopy

(βt ◦ f1)t∈[0,1]
from f1 to a map f2 = β1 ◦ f1 which avoids the cell E entirely. The combined homotopy
from f to f2 is stationary on Sn−1 by construction. We have made progress in the
sense that the image of f2 is contained in Y r E , a compact CW-subspace of X with
fewer (n + k) -dimensional cells than Y . Carry on like this, treating f2 as we treated f
before. �

Corollary 11.3.4. Every map f : X → Y between CW-spaces X and Y is homotopic to
a cellular map.

Proof. Let a(n) = 1 − 2−n−1 for n = −1, 0, 1, 2, 3, . . . . We write f = f−1 and
we construct maps fn : X → Y such that fn is cellular on Xn , and for each n ≥ 0 a
homotopy

(ht : X→ Y)t∈[a(n−1),a(n)]

which is stationary on Xn−1 and such that ha(n−1) = fn−1 and ha(n) = fn .
Suppose that fn−1 and ht for 0 ≤ t ≤ a(n − 1) have already been constructed. By

1A homotopy (γt : A → B)t∈[0,1] is stationary on a subspace C of A if the path t 7→ γt(x) is

constant for every x ∈ C .
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condition (2) in the definition of a CW-space and by lemma 11.3.3, we can define a
homotopy

(gt : X
n → Y)t∈[a(n−1),a(n)]

which is stationary on Xn−1 and such that ga(n)(X
n) ⊂ Yn , and ga(n−1) agrees with

fn−1 on Xn−1 . By the homotopy extension property, lemma 11.1.1, that homotopy can
be extended to a homotopy (ht : X → Y)t∈[a(n−1),a(n)] , where ha(n−1) = fn−1 . This
completes the induction step. Now observe that the maps ht so far constructed define a
homotopy

(ht : X→ Y)t∈[0,1]
from f = f−1 to another map h1 = f∞ , if we define h1 so that it agrees with ht on Xn

for all t ∈ [a(n), 1[ . The map f∞ is cellular. �

11.4. Products of CW-spaces

This is quite an educational topic. Why are we interested in it here? Because we want say
something about cellular approximation of homotopies. In connection with that we need
to know that for a CW-space Y , the product Y × [0, 1] is also a CW-space in a preferred
way.

Lemma 11.4.1. (Kuratowski)Let Y by any space and K a compact2 space. Then the
projection p : Y×K→ Y is a closed map, i.e., for any closed subset A of Y×K the image
p(A) is closed in Y .

Proof. Choose closed A ⊂ Y × K . Choose z ∈ Y r p(A) . Then {z} × K has empty
intersection with the closed set A in Y × K . So by definition of the topology on Y × K ,
there exist open sets Uλ ⊂ Y and Vλ ⊂ K (depending on an index λ ∈ Λ) such that

{z}× K ⊂
⋃
λ∈Λ

(
Uλ × Vλ

)
⊂ (Y × K)rA .

By the compactness of K , we can assume that Λ is a finite set. We can also assume z ∈ Uλ
for all λ ∈ Λ . Then

⋂
λUλ is an open neighborhood of z which has empty intersection

with p(A) . �

Proposition 11.4.2. (J.H.C. Whitehead) Let g : Y → Z be a continuous map of spaces
which is a quotient map3. Let K be a locally compact space. Then the map Y×K→ Z×K
defined by (y, k) 7→ (g(y), k) is also a quotient map.

Proof. ... Later ... the proof will probably use lemma 11.4.1. �

Corollary 11.4.3. Let X be a CW-space and let Y be a locally compact CW-space. Then
the product X× Y , with the product topology, becomes a CW-space if we define

(X× Y)n :=
⋃

p+q=n

Xp × Yq .

Proof. Let Λ be the set of cells of X and Θ the set of cells of Y . Choose characteristic
maps

ϕλ : D
n(λ) → X , ψθ : D

n(θ) → Y

for the cells of X and Y . Then we have (in sloppy notation) maps

ϕλ ×ψθ : Dn(λ) ×Dn(θ) −→ X× Y

2Not necessarily Hausdorff.
3Means: a subset W of Z is open if and only if g−1(W) is open in Y .
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for each pair (λ, θ) . We need to show mainly that the resulting map∐
(λ,θ)∈Λ×Θ

Dn(λ) ×Dn(θ) −→ X× Y

is a quotient map. (Everything else that we might want to know follows easily from that.
Note in particular that Dn(λ)×Dn(θ) is homeomorphic to Dn(λ)+n(θ) , so we can use the
maps ϕλ×ψθ as characteristic maps for cells in X× Y .) To show this we write that map
as a composition of two: ∐

(λ,θ)∈Λ×Θ

Dn(λ) ×Dn(θ) −→ ∐
λ∈Λ

Dn(λ) × Y

and ∐
λ∈Λ

Dn(λ) × Y −→ X× Y .

It is easy to see that the first of these maps is a quotient map, because for each fixed
λ the map from

∐
θD

n(λ) × Dn(θ) to Dn(λ) × Y is a quotient map. (Here we don’t
need Whitehead’s proposition because it is a standard case of a surjective map from one
compact Hausdorff space to another.) The second of these maps is a quotient map by
Whitehead’s proposition 11.4.2. �

11.5. Cellular approximation of homotopies

The goal is to prove:

Theorem 11.5.1. Let X and Y be CW-spaces and let f, g : X → Y be cellular maps.
Suppose that f is homotopic to g . Then there exists a cellular homotopy from f to g , that
is to say, a cellular map H : X× [0, 1] −→ Y such that H(x, 0) = f(x) and H(x, 1) = g(x)
for all x ∈ X .

Here we are using the standard CW-structure on [0, 1] with two 0-cells {0} and {1} and
one 1-cell, and we are using the product CW-structure on X × [0, 1] . This is the reason
why we had to discuss products of CW-spaces in the previous (sub)section.

The proof is a special case of a slight refinement of corollary 11.3.4. The refinement is
formulated in the following remark.

Remark 11.5.2. Let f : X → Y be a map between CW-spaces and let A ⊂ X be a CW-
subspace such that f|A is already cellular. Then there exists a homotopy h from f to
a map g : X → Y such that g is cellular, and the homotopy is stationary on A . The
homotopy can be constructed exactly as in the proof of corollary 11.3.4; in step number
n , worry only about the n-cells of X which are not in A .

Proof of theorem 11.5.1. It is a direct application of remark 11.5.2: but for
X,A, f in the remark substitute X× [0, 1], X× {0, 1}, H as in the statement of the theorem,
respectively. �



CHAPTER 12

Homology of CW-spaces

12.1. Chain complexes

Definition 12.1.1. A chain complex, graded over Z , is a family of abelian groups (Cn)n∈Z
together with homomorphisms dn : Cn → Cn−1 satisfying the condition dn−1◦dn = 0 for
all n ∈ Z . (The homomorphisms dn are sometimes called boundary operators, sometimes
differentials.)

· · · Cn−1
dn−1oo Cn

dnoo Cn+1
dn+1oo · · ·

dn+2oo

Example 12.1.2. Examples of chain complexes were seen in the last sections of last year’s
lecture notes, in connection with the homology of simplicial complexes and (geometric
realizations of) semi-simplicial sets. We will see such examples again in connection with
CW-spaces and their homology, soon. Here I want to give an indication of how we can
associate a chain complex to a CW-space in an elementary way without knowing a great
deal about homology. (A certain willingness to cheat is assumed.) So let X be a CW-space
and let Λn be the set of n -cells of X (probably I mean: an indexing set for the n -cells
of X). We want to build a chain complex

· · · C(X)n−1
dn−1oo C(X)n

dnoo C(X)n+1
dn+1oo · · ·

dn+2oo

called the cellular chain complex of X , and for that purpose we define provisionally

C(X)n :=
⊕
λ∈Λn

Z

(a direct sum of copies of Z , one for each n-cell of X). That is the definition for n ≥ 0 ,
and for n < 0 we take C(X)n := 0 .
Therefore, although dn has not been defined so far, we know already that it comes as a
matrix with entries aσ,τ ∈ Z , one entry for each σ ∈ Λn−1 and τ ∈ Λn . (Each column of
the matrix, corresponding to a fixed τ ∈ Λn , can only have finitely many nonzero entries.)
To describe aσ,τ we choose characteristic maps Dn → Xn and Dn−1 → Xn−1 for the
n-cell corresponding to τ and the (n − 1) -cell corresponding to σ . Restrict the first of
these to get

Sn−1 → Xn−1,

the attaching map for the cell corresponding to τ . The other one should be composed
with the quotient map from Xn−1 to Xn−1/Xn−1¬σ where Xn−1¬σ is the CW-subspace of
Xn−1 obtained by deleting the cell corresponding to σ from Xn−1 . Because we have
chosen a characteristic map for the cell of σ , that quotient space is now identified with
Dn−1/Sn−2 ∼= Sn−1 and so that quotient map takes the form

Xn−1 → Sn−1.

83
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I call it the collapse map for the cell corresponding to σ . It is clear what to do next:
we compose the attaching map for the cell corresponding to τ with the collapse map for
the cell corresponding to σ and we obtain a map Sn−1 → Sn−1 . That map has a degree
which is by definition

aσ,τ ∈ Z .
A number of questions can be raised:

• Is aσ,τ well defined? (It turns out that it is well defined up to sign only, and we
need to do something about the sign problem later.)

• Is it really true that each column of the matrix dn = (aσ,τ) has only finitely
many nonzero entries? (Good exercise for you.)

• Is it really true that dn−1 ◦ dn = 0 for all n? (If we choose characteristic maps
for all cells of X , once and for all, then dn and dn−1 are defined and it turns
out that dn−1 ◦dn is indeed 0 , but I am not aware of a very short argument for
that.)

• Is there an elementary definition of the degree of a map from Sn to Sn ? (Good
question. John Milnor wrote a little book Topology from the differentiable view-
point where he defines the degree of such a map using approximation by a smooth
map and then Sard’s theorem, and the concept of regular value. That’s not soooo
elementary but it is probably more elementary than using homology to define the
degree.)

Definition 12.1.3. Let C = (Cn, dn)n∈Z and D = (Dn, d
′
n) be chain complexes. A chain

map f : C→ D is a family of homomorphisms fn : Cn → Dn satisfying d ′n◦fn = fn−1◦dn
for all n .

Example 12.1.4. A cellular map f : X → Y between CW-spaces determines a chain map
C(f) : C(X)→ C(Y) between their cellular chain complexes. ...

If f : C → D is a chain map and g : D → E is a chain map, then g ◦ f can be defined by
means of (g ◦ f)n = gn ◦ fn and it is then a chain map from C to E . (Therefore chain
complexes and chain maps from a category. The category is an additive category. In other
words the set of chain maps from C → D is always an abelian group and composition is
bilinear — more correctly, bi-additive.)

Definition 12.1.5. Let C = (Cn, dn)n∈Z and D = (Dn, d
′
n)n∈Z be chain complexes. A

chain homotopy from a chain map f : C → D to a chain map g : C → D is a family of
homomorphisms hn : Cn → Dn+1 satisfying

d ′n+1 ◦ hn + hn−1 ◦ dn = gn − fn

for all n . If such a chain homotopy exists, then f and g are said to be chain homotopic.

It is fairly clear from the definition that chain homotopy is an equivalence relation on the
abelian group of chain maps from C to D , and in fact a congruence relation, so that the
set of equivalence classes is again an abelian group. This can be denoted by [C,D] where
necessary.

Example 12.1.6. A cellular homotopy h between cellular maps f, g : X → Y (between
CW-spaces) determines a chain homotopy C(h) connecting the chain maps C(f) and
C(g) from C(X) to C(Y) . ...

It is again fairly easy to show that the relation of chain homotopy is compatible with
composition. That is, if e : B → C and f, g : C → D are chain maps and f, g are chain
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homotopic, then f ◦ e is chain homotopic to g ◦ e . Also if f, g : C → D are chain maps
which are chain homotopic, and k : D → E is another chain map, then k ◦ g is chain
homotopic to k ◦ f . Therefore we have a well defined composition

[D,E]× [C,D] −→ [C, E]

which takes a pair represented by chain maps u : E → D and v : C → D to u ◦ v .
(Therefore chain complexes and chain maps up to chain homotopy form a category. It is
still an additive category.)

Definition 12.1.7. The direct sum of two chain complexes C and D is ... (exactly what
you think it is).

Example 12.1.8. Let X and Y be CW-spaces. Then the cellular chain complex C(Xt Y)
is isomorphic to the direct sum C(X)⊕ C(Y) .

Definition 12.1.9. The tensor product C⊗D of two chain complexes C and D is defined
as follows:

(C⊗D)n =
⊕

p+q=n

Cp ⊗Dq

and the differential (C⊗D)n → (C⊗D)n−1 is determined by

x⊗ y 7→ (
d(x)⊗ y

)
+ (−1)p

(
x⊗ d(y)

)
for x ∈ Cp and y ∈ Dq , assuming p + q = n . (A “generic” d has been used for the
differentials in C and D .)

Remark 12.1.10. Write d ′′ for the differential in C⊗D . With notation as above we have

d ′′(d ′′(x⊗ y)) = d ′′
(
d(x)⊗ y

)
+ (−1)p

(
x⊗ d(y)

)
= d(d(x))⊗ y+ (−1)p−1d(x)⊗ d ′(y) + (−1)p(d(x)⊗ d(y)) + x⊗ d(d(y))
= 0.

Obviously the sign (−1)p is important to ensure that d ′′d ′′ = 0 . There is a rule of thumb
for this: if, in a product-like expression you move a term of degree u past a term of
degree v , then you should probably introduce a sign (−1)pq . For example d ′′(x ⊗ y) =
d(x) ⊗ y + (−1)px ⊗ d(y) because it feels like moving the d , which has degree −1 , past
the x which was assumed to have degree p . Another application of this useful rule: C⊗D
is isomorphic to D⊗ C by the isomorphism taking x⊗ y to (−1)pqy⊗ x , where x ∈ Cp
and y ∈ Dq .

Example 12.1.11. Let X and Y be CW-spaces. Assume for simplicity that Y is locally
compact (equivalently, every point in Y has a neighborhood which meets only finitely many
cells). Then we know that X×Y is a again a CW-space where (X×Y)n :=

⋃
p+q=n X

p×Yq .
For the cellular chain complexes we might reasonably expect to get

C(X× Y) ∼= C(X)⊗ C(Y) .
This is strictly true with our provisional definition of C(X) etc. if we choose characteristic
maps ϕλ : D

p → X and ϕσ : D
q → Y for all cells of X and Y and use these to choose

characteristic maps for the cells of X× Y :

Dp ×Dq −→ X× Y ; (w, z) 7→ (ϕλ(w), ϕσ(z)) .

It would probably require a proof, but we can easily see that

Cn(X× Y) ∼=
⊕

p+q=n

Cp(X)⊗ Cq(Y)
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because the left-hand side is a free abelian group with one generator for each cell of
X× Y , while the right-hand side is the free abelian group with one generator for each pair
consisting of a cell in x and a cell in Y .

Example 12.1.12. Let C be the chain complex which has C0 = Z ⊕ Z and C1 = Z , all
other chain groups equal to 0 , and differential d : C1 → C0 given by d(c) = −a⊕b where
a, b, c are the preferred generators. Think of this as the cellular chain complex of [0, 1] .
Let D and E be some other chain complexes. A chain map α from C⊗D to E is exactly
the same thing as a triple consisting of two chain maps f, g : D → E and a homotopy h
from f to g . Namely, given α define

f(x) = α(a⊗ x), g(x) = α(b⊗ x), h(x) = α(c⊗ x) .
Then

dE(h(x)) = dE(α(c⊗ x)) = α(dC⊗D(c⊗ x)) = α(d(c)⊗ x− c⊗ d(x))
= α(−a⊗ x+ b⊗ x− c⊗ d(x))
= −f(x) + g(x) − h(dD(x))

and therefore dE ◦ h+ h ◦ dD = −f+ g as claimed.
This means that chain homotopy is a concept analogous to homotopy in the setting of
spaces, because a homotopy between maps from X to Y is the same thing as a map from
[0, 1] × X to Y . (And the product × of spaces corresponds to the tensor product ⊗ of
chain complexes, and the unit interval [0, 1] corresponds to the chain complex that we
have called C .)

Definition 12.1.13. Let C be a chain complex with differential d . The homology group
Hn(C) is the (group-theoretic) quotient

ker[d : Cn → Cn−1]

im[d : Cn+1 → Cn]
.

(Elements of ker[d : Cn → Cn−1] are also called n-cycles, and elements of im[d : Cn+1 →
Cn] are called n-dimensional boundaries. The equation dd = 0 ensures that the subgroup
of n -dimensional boundaries in Cn is contained in the subgroup of n-dimensional cycles;
the quotient n-cycles modulo n-boundaries is the n -th homology group of C .)

Proposition 12.1.14. The homology group Hn is a functor (from the category of chain
complexes and chain maps to the category of abelian groups). More precisely, a chain map
f : C → D determines a homomorphism of abelian groups f∗ : Hn(C) → Hn(D) and the
conditions for a functor are satisfied.

The definition of f∗ is: f∗[x] := [f(x)] where x is an n -cycle in Cn , representing an
element [x] of Hn(C) . The main point is to show that this is well defined: if [x] = [y]
then y = x+ d(z) for some z ∈ Cn+1 , and so

f(y) = f(x+ d(z)) = f(x) + f(d(z)) = f(x) + d(f(z))

which tells us that [f(y)] = [f(x)] ∈ Hn(D) .

Proposition 12.1.15. If f, g : C→ D are homotopic chain maps, then

f∗ = g∗ : Hn(C)→ Hn(D).

Proof. Let [x] ∈ Hn(C) and let h be a chain homotopy from f to g . Then f∗[x] =
[f(x)] whereas g∗[x] = [g(x)] . But g(x) = f(x) + h(d(x)) + d(h(x)) = f(x) + d(h(x)) ,
where we have used d(x) = 0 . So [g(x)] = [f(x)] . �
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Here are some definitions related to the word exact. A diagram of abelian groups and
homomorphisms

A
f // B

g // C

is called exact if ker(f) = im(g) . This implies g ◦ f = 0 , but it is a stronger condition. We
also say that a longer string of morphisms such as

· · · Cn−1
en−1oo Cn

enoo · · ·
en+1oo

is exact if ker(en−1) = im(en) for all n . An exact diagram of the form

0→ A→ B→ C→ 0

is also called short exact. This means the the homomorphism A → B in the diagram is
injective (because its kernel is zero, because the image of the previous arrow is zero) and
the homomorphism B → C in the diagram is surjective (because its image is everything,
because the kernel of the next arrow is everything) and the kernel of B→ C is the image
of A → B . In this situation of a short exact sequence, it is not far from the truth to
say that A is a subgroup of B and C is the quotient group B/A . (Remember that these
groups are abelian.)

We can also speak of a short exact sequence of chain complexes:

0→ A→ B→ C→ 0 .

The correct interpretation of this is that A,B,C are chain complexes and that we have
a chain map A → B and a chain map B → C such that, for every n ∈ Z , the given
homomorphisms An → Bn and Bn → Cn make up a short exact sequence

0→ An → Bn → Cn → 0 .

Lemma 12.1.16. A short exact sequence of chain complexes

0 // A
j // B

p // C // 0

determines homomorphisms ∂ : Hn(C)→ Hn−1(A) for all n ∈ Z by the formula

∂([x]) := [dB(y)]

for x ∈ Cn with dC(x) = 0 , where y ∈ Cn satisfies p(y) = x .

Proof. This lemma is also meant as a definition, but we still need to verify that the
definition makes sense and is unambiguous. We may pretend that A is a subcomplex of B
and that C = B/A , but it is still useful to have the name p for the projection B→ B/A .
First of all, [x] ∈ Hn(C) is represented by x ∈ Cn with dC(x) = 0 . What is y ? It is an
element of Bn which is mapped to x by p . We know that y exists because p is surjective.
But we do not know that dB(y) = 0 and this is exactly where the idea of this definition
comes from. We do know that dB(y) ∈ Bn−1 and that p(dB(y)) = dC(p(y)) = dC(x) = 0 .
It follows by the supposed exactness that dB(y) is in the subgroup An−1 ⊂ Bn−1 . Also
it is clear that dAdB(y) = dBdB(y) = 0 since A is a subcomplex of B . Therefore dB(y)
represents an element [dB(y)] of Hn−1(A) .
Is this well defined? Instead of y , we could have selected another element z ∈ Bn such that
p(z) = x . Then p(z− y) = 0 , so z− y ∈ An by exactness. Therefore [dB(z)] − [dB(y)] =
[dA(z− y)] . And [dA(z− y)] is zero in Hn−1(A) by the definition of Hn−1(A) . �
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Theorem 12.1.17. (The long exact sequence of homology groups of a short exact sequence
of chain complexes.) In the situation of lemma 12.1.16, the sequence of homomorphisms

· · · p∗ // Hn+1(C)
∂ // Hn(A)

j∗ // Hn(B)
p∗ // Hn(C)

∂ // Hn−1(A)
j∗ // · · ·

is exact.

Proof. This is awfully routine. As before we can pretend that A ⊂ B and C = B/A .
There are six sub-statements to prove.

• Showing p∗j∗ = 0 : because p∗j∗ = (pj)∗ = 0 .
• Showing ∂p∗ = 0 : for y ∈ Cn with dC(y) = 0 , we have p∗([y]) = [p(y)] . So
∂(p∗([y])) = ∂([p(y)]) = [dB(y)] = 0 by definition of ∂ .

• Showing j∗∂ = 0 : for [x] ∈ Hn(C) and y ∈ Bn with p(y) = x we have ∂[x] =
[dB(y)] ∈ Hn−1(A) . So j∗∂[x] = [dB(y)] ∈ Hn−1(B) which is zero since dB(y)
is obviously in the image of dB : Bn → Bn−1 .

• im ⊃ ker at Hn(B) : if [y] ∈ Hn(B) and p∗[y] = [p(y)] = 0 ∈ Hn(C) , then
∃x ∈ Cn+1 satisfying dC(x) = p(y) . Then ∃z ∈ Bn+1 satisfying p(z) = x . So
[y] = [y ′] where y ′ = y− dB(z) , but now p(y ′) = 0 . So y ′ ∈ An by exactness.
Now [y ′] ∈ Hn(A) satisfies j∗[y

′] = [y] .
• im ⊃ ker at Hn(C) : if [x] ∈ Hn(C) and ∂([x]) = 0 and x = p(y) for some
y ∈ Bn , then [dB(y)] = 0 ∈ Hn−1(A) . So ∃w ∈ An satisfying dA(w) = dB(y) ,
and so dB(y − w) = 0 , and so [y − w] ∈ Hn(B) is defined. Then p∗[y − w] =
[p(y) − p(w)] = [p(y)] = [x] .

• im ⊃ ker at Hn(A) : if [w] ∈ Hn(A) and [w] = 0 ∈ Hn(B) , then ∃v ∈ Bn+1
satisfying dB(v) = w . Then dC(p(v)) = p(w) = 0 , so [p(v)] ∈ Hn+1(C) is
defined, and ∂[p(v)] = [dB(v)] = [w] . �

The following lemma is often useful in connection or conjunction with theorem 12.1.17.

Lemma 12.1.18. (The Five lemma) Suppose given a commutative diagram of abelian groups

A //

f
��

B
u //

g

��

C
v //

h
��

D //

j

��

E

k
��

A ′ // B ′
u ′ // C ′

v ′ // D ′ // E ′

with exact rows. If f, g, j and k are isomorphisms, then h is also an isomorphism.

Proof. It is a good idea to reduce as quickly as possible to the situation where
A,A ′, D and D ′ are zero (so that the rows are short exact). To achieve this we replace
the above diagram by

0 //

��

coker(A→ B) //

g1

��

C //

h

��

ker(D→ E) //

j1

��

0

��
0 // coker(A ′ → B ′) // C ′ // ker(D ′ → E ′) // 0

where coker(A→ B) means B/im(A→ B) . The homomorphism j1 is obtained from j by
restriction and g1 is obtained from g by passing to quotients. In this new diagram, g1
and j1 are still isomorphisms, if f, g, j, k were isomorphisms in the old one. So we have
achieved the reduction.
We return to the notation and to the diagram of the lemma. We may now assume A =
A ′ = D = D ′ = 0 and as before we assume that g and j are isomorphisms. Given y ∈ C ′
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there is x ∈ C such that j(v(x)) = v ′(y) . Then v ′(y − h(x)) = 0 , so y − h(x) = u ′(z) =
h(u((g−1(z))) for some z ∈ B . So y−h(x) is in the image of h , and so y is in the image
of h . So h is surjective. For x ∈ C with h(x) = 0 we know j(v(x)) = 0 , so v(x) = 0
and so x = u(z) for some z ∈ B and we must have g(z) = 0 and so z = 0 and so x = 0 .
Therefore h is injective. (The method of proof is called diagram chasing and we should
probably not be proud of it. There ought to be a better way.) �

12.2. Mapping cones

Definition 12.2.1. Let f : X → Y be a map of spaces. The mapping cone of f is the
quotient space

Y t [0, 1]× X t {1}

∼

where “∼” is the smallest equivalence relation such that (0, x) ∼ f(x) ∈ Y for all x ∈ X
and (1, x) ∼ 1 ∈ {1} for all x ∈ X . Notation: cone(f) .

The mapping cone has a distinguished base point 1 ; this is sometimes important.1

Suppose that X is a closed subset of Y and f : X→ Y is the inclusion map. Then there is
a comparison map

p : cone(f) −→ Y/X

where Y/X is understood to be {∞} t Y modulo the smallest equivalence relation which
has y ∼ ∞ for all y ∈ X . (Note that Y/X also has a distinguished base point ∞ by
construction.2) The formula for the comparison map is: equivalence class of (t, x) maps
to the base point ∞ for all (t, x) ∈ [0, 1]×X ; equivalence class of y ∈ Y maps to equivalence
class of y .

1Question for the gentle reader: what does cone(f) look like when X is empty ?
2What does Y/X look like when X is empty ?
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Proposition 12.2.2. If the inclusion f : X→ Y is a cofibration (has the homotopy exten-
sion property), then the comparison map p : cone(f)→ Y/X is a homotopy equivalence.

Proof. Let j : Y → cone(f) be the obvious inclusion. The composition

jf : X→ cone(f)

has a nullhomotopy (ht : X→ cone(f))t∈[0,1] given by

ht(x) = equivalence class of (t, x) in cone(f) ,

so that h0 = jf and h1 is constant (with value 1). Since f has the homotopy extension
property, there exists a homotopy (Ht : Y → cone(f))t∈[0,1] such that H0 = j and Htf = ht
for all t ∈ [0, 1] . Then H1 is a map from Y to cone(f) which maps all of X to the base
point 1 . So H1 can be viewed as a map q from Y/X to cone(f) . We will show that
pq ∼ idY/X and qp ∼ idcone(f) . First claim: pq is homotopic to idY/X by the homotopy
(pH1−t)t∈[0,1] . Strictly speaking pH1−t is a map from Y to Y/X , but it maps all of X to
the base point. Second claim: qp is homotopic to idcone(f) by the homotopy which agrees
with (H1−t)t∈[0,1] on Y ⊂ cone(f) and which agrees with ((s, x) 7→ (1 − t + ts, x))t∈[0,1]
on points of the form (s, x) in cone(f) , where x ∈ X and s ∈ [0, 1] . �

Let’s note that all the maps (and homotopies) in this proof were base-point preserving. So
it can be said that p : cone(f)→ Y/X is a pointed homotopy equivalence, in the situation
of the proposition.

12.3. Homology of the mapping cone

Definition 12.3.1. The reduced homology of a space X with base point ? is

H̃n(X) := Hn(X)/Hn(?)

by which is meant the cokernel of the inclusion-induced (injective) map from Hn(?) to
Hn(X) .

Clearly Hn(X) = H̃n(X) for n 6= 0 , since Hn(?) is nonzero only for n = 0 . The tilde
notation is therefore mostly welcome when we are tired of making exceptions for n = 0 .
(It is also customary to define the reduced n -th homology of a nonempty space X with
no specified base point as the kernel of the homomorphism Hn(X) → Hn(?) induced by
the unique map X → ? . This is clearly isomorphic to the above definition of reduced
homology when X has a chosen base point.)

Proposition 12.3.2. For a map f : X → Y , there is a long exact sequence of homology
groups

· · · // Hn(X)
f∗ // Hn(Y)

j∗ // H̃n(cone(f)) // Hn−1(X)
f∗ // Hn−1(Y)

j∗ // · · ·

Proof. This is essentially the Mayer-Vietoris sequence of the open covering of cone(f)
by open subsets V = cone(f) r ? and W = cone(f) r Y , where ? is the base point (also
known as 1). So let us look at this MV sequence:

· · · // Hn(V ∩W) // Hn(V)⊕Hn(W) // Hn(cone(f)) // Hn−1(V ∩W) // · · ·

It should be clear that W is contractible; the picture of cone(f) above illustrates that
well. Also, it is not hard to see that the inclusion Y → V is a homotopy equivalence; the
picture of cone(f) above illustrates that well, too! Last not least, V ∩W is the same as
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X times open interval, so homotopy equivalent to X . Taking all that into account, we can
write the MV sequence in the form

· · · // Hn(X) // Hn(Y)⊕Hn(?) // Hn(cone(f)) // Hn−1(X) // · · ·

Now we observe that exactness is not affected if we put a tilde over each Hn(?) and over
each Hn(cone(f)) . Indeed, it means that we are taking out two copies of Z in adjacent
locations of the long exact sequence (only where n = 0) and the homomorphism relating
them maps one of these copies of Z isomorphically to the other. Then we have a long
exact sequence

· · · // Hn(X) // Hn(Y)⊕ H̃n(?) // H̃n(cone(f)) // Hn−1(X) // · · ·

And now we conclude by observing that H̃n(?) is always zero. So it can be deleted without
loss. �

Corollary 12.3.3. Let X be a closed subspace of Y such that the inclusion X → Y is a
cofibration. Then there is a long exact sequence of homology groups

· · · // Hn(X)
f∗ // Hn(Y)

p∗ // H̃n(Y/X) // Hn−1(X)
f∗ // Hn−1(Y)

p∗ // · · ·

�

Example 12.3.4. This example is also a remark on an issue of normalization. Take
Y = Dm and X = Sm−1 in corollary 12.3.3. Suppose that m > 1 to begin with. Since
Hn(D

m) = 0 for n 6= 0 , the map

H̃m(Dm/Sm−1) −→ Hm−1(S
m−1)

from the long exact sequence is an isomorphism. Both of these groups are identified with
Z in a preferred way.

- For Hm−1(S
m−1) this was explained in remark 7.2.7.

- For Dm/Sm−1 we have the preferred homeomorphism from Sm to Rm ∪ {∞}

of remark 5.3.4 and a map from Rm ∪ {∞} to Dm/Sm−1 given by z 7→ z for
‖z‖ ≤ 1 and z 7→ ? for ‖z‖ ≥ 1 . The composite map u : Sm → Dm/Sm−1 is a
homotopy equivalence (easy). We specify an isomorphism

H̃m(Dm/Sm−1) −→ Z
by saying that the class of [[u]] must go to 1 ∈ Z .

Therefore the above-mentioned isomorphism H̃m(Dm/Sm−1) −→ Hm−1(S
m−1) becomes

an isomorphism Z → Z . I believe that it is the identity; I have made a special effort to
ensure that it is the identity. (For example in the construction of the long exact sequence
of proposition 12.3.2 there was a choice: which of the two open sets cone(f) r {?} and
cone(f) r Y is going to take the role of V and which the role of W ? If roles had been
assigned differently, that would have caused some unhelpful sign changes.)
In the case m = 1 , the long exact sequence reduces to a short exact sequence

0→ H̃1(D
1/S0)→ H0(S

0)→ H0(D
0) −→ 0 .

There are preferred isomorphisms H0(S
0) ∼= map(S0,Z) and H0(D

1) ∼= Z from exam-

ple 5.3.2, and also H̃1(D
1/S0) ∼= Z as above for H̃m(Dm/Sm−1) . Therefore that short

exact sequence simplifies to

0 // Z // map(S0,Z)
f7→∑

f(x) // Z // 0 .
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I believe that 1 ∈ Z on the left is taken to the element e ∈ map(S0,Z) which has
e(1) = 1 ∈ Z and e(−1) = −1 ∈ Z .

12.4. The cellular chain complex of a CW-space

Corollary 12.4.1. Let Y be a CW-space and let X ⊂ Y be a CW-subspace of Y . Then
there is a long exact sequence

· · · // Hn(X)
f∗ // Hn(Y)

p∗ // H̃n(Y/X) // Hn−1(X)
f∗ // Hn−1(Y)

p∗ // · · ·

Proof. The inclusion X→ Y is a cofibration by lemma 11.1.1. �

Let m be a fixed non-negative integer and let Q be a CW-space with a distinguished
0-cell ? (base point). We want to assume that all cells of Q have dimension m , with the
possible exception of the distinguished 0-cell. (We allow m = 0 .)

Lemma 12.4.2. Then H̃m(Q) is a direct sum of infinite cyclic groups, one summand for

each m-cell, excluding the base point cell if m = 0 . Moreover H̃n(Q) = 0 for n 6= m .

Proof. The case m = 0 is easy, so we assume m > 0 . Let Λ be an indexing set for
the m -cells of Z . For each m -cell Eλ ⊂ Q let Kλ be the closure of Eλ . By the axioms
for a CW-space, Kλ = Eλ ∪ ? . Therefore Kλ is homeomorphic to a sphere Sm and has
a distinguished base point. (But we did not choose a homeomorphism of Kλ with Sm .)
Now let Y =

∐
λ∈Λ Kλ and X =

∐
λ∈Λ ? . Then we can identify Q with Y/X . This leads

to a long exact sequence in homology

· · · // Hn(X) // Hn(Y) // H̃n(Q) // Hn−1(X) // Hn−1(Y) // · · ·

The maps Hn(X)→ Hn(Y) are injective because the inclusion X→ Y admits a left inverse
Y → X . Therefore the long exact sequence breaks up into short exact sequences

0→ Hn(X)→ Hn(Y)→ H̃n(Q)→ 0 .

In other words, Hn(Q) is isomorphic to Hn(Y) if n > 0 , and zero if n = 0 . Also
Hn(Y) =

⊕
λ∈ΛHn(Kλ) . Because Kλ is homeomorphic to Sm , the group Hn(Kλ) is zero

if n > 0 , n 6= m and infinite cyclic if n = m . �

Now in order to describe the homology of a CW-space X , we are going to proceed induc-
tively by trying to understand the homology of the skeleton Xn for each n . There is a long
exact sequence in homology relating the homology groups of Xn−1 , Xn and Xn/Xn−1 .
Lemma 12.4.2 tells us what the homology of Xn/Xn−1 is.

Definition 12.4.3. The cellular chain complex C(X) of a CW-space X has C(X)m =

H̃m(Xm/Xm−1) and differential d : C(X)m → C(X)m−1 equal to the composition

H̃m(Xm/Xm−1)
12.4.1 // Hm−1(X

m−1)
projection∗ // H̃m−1(X

m−1/Xm−2).

For m = 0 , it is often more illuminating to write C(X)0 = H0(X
0) . This is justified because

the composition H0(X
0) → H0(X

0/X−1) → H̃0(X
0/X−1) is an isomorphism. From this

point of view, d : C(X)1 → C(X)0 is the homomorphism H̃1(X
1/X0)→ H0(X

0) of 12.4.1.

Remark: We should verify that dd = 0 . According to the definition d : C(X)m → C(X)m−1

is a composition of two homomorphisms; let’s write it as pm−1δm . Therefore dd =
pm−2δm−1pm−1δm . This is zero because δm−1pm−1 is the composition of two consecu-
tive homomorphisms in the long exact sequence of corollary 12.4.1.
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By lemma 12.4.2, the abelian group C(X)m is a direct sum of infinite cyclic groups,
one summand for each m -cell. If we choose characteristic maps ϕλ : D

m → X for the
m -cells, then we can identify Xm/Xm−1 with a wedge

∨
λ S
m of m -spheres (using a

standard homeomorphism from Dm/Sm−1 to Sm ) and so C(X)m gets identified with⊕
λ Z . If we also choose characteristic maps for the (m − 1) -cells, then the differential

d : C(X)m → C(X)m−1 is a homomorphism between two free abelian groups with preferred
bases, so d has to be expressible as a matrix (aσ,τ) with entries in Z , indexed by pairs
(σ, τ) where σ is a label for an (m − 1) -cell and τ is a label for an m -cell. The integer
aσ,τ is sometimes called an incidence number. We will return to it in proposition 12.4.9
below. (A preview was given in example 3.2.)

Theorem 12.4.4. For a CW-space X and integer m ≥ 0 there is a natural isomorphism

Hm(X)→ Hm(C(X)).

Here Hm(X) is the m -th homology group of the space X (which was difficult to define)
and Hm(C(X)) is the m -th homology group of the chain complex C(X) (which was very
easy to define). Therefore, in some sense, the theorem gives a rather good way to calculate
the homology of X . Determining the chain groups C(X)m is typically not hard (you need
to know how many m -cells X has), but determining d : C(X)m → C(X)m−1 can be a little
harder.

The word natural in theorem 12.4.4 obviously has to be there, but what does it mean? It
has meaning only for cellular maps f : X → Y between CW-spaces. Such a cellular map
induces base-point preserving maps Xm/Xm−1 → Ym/Ym−1 for every m ≥ 0 , therefore
homomorphisms f∗ : C(X)m → C(Y)m for every m ≥ 0 . These homomorphisms constitute
a chain map, i.e., the diagrams

C(X)m
d //

f∗

��

C(X)m−1

f∗

��
Y(X)m

d // Y(X)m−1

commute. (The reason for that can be traced all the way back to naturality in proposi-
tion 12.3.2.)

The proof of theorem 12.4.4 is a combination of several lemmas. The first of these is basic,
not specific to CW-spaces.

Lemma 12.4.5. Let K and X be spaces, K compact Hausdorff. For any mapping cycle α
from K to X , there exists a compact subspace X ′ ⊂ X such that α factors through X ′ .

Proof. Choose a finite open cover (Ui)i=1,2,...,k of K such that α restricted to any
Ui can be written as a formal linear combination, with integer coefficients, of (finitely
many) continuous maps:

∑
j aijfij where aij ∈ Z and the fij : Ui → X are continuous

maps. Choose another finite open cover (Vi)i=1,2,...,k of K such that the closure V̄i of Vi
in K is contained in Ui . (This is possible because K is compact Hausdorff.) Let X ′ ⊂ X
be the union of the finitely many compact sets fij(V̄i) . �

We now work with a fixed CW-space X as in theorem 12.4.4.

Lemma 12.4.6. For every z ∈ Hk(X) there exists m ≥ 0 such that z is in the image of
the homomorphism Hk(X

m)→ Hk(X) induced by the inclusion Xm → X . If two elements
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of Hk(X
m) have the same image in Hk(X) , then there is n ≥ m such that they already

have the same image in Hk(X
n) .

Proof. Apply lemma 12.4.5 with K = Sk to obtain the first statement, and with
K = Sk × [0, 1] for the second statement. Also, keep in mind that any compact subset X ′

of X must be contained in some skeleton Xm . �

Lemma 12.4.7. Hn(X
m) = 0 for n > m .

Proof. By induction on m . The cases m = −1 and/or m = 0 are obvious. For the
induction step we have the long exact sequence

· · · // Hn(Xm−1) // Hn(Xm) // H̃n(Xm/Xm−1) // Hn−1(Xm−1) // · · ·

which is a special case of corollary 12.4.1. In addition we have the computation of
lemma 12.4.2. �

Lemma 12.4.8. The inclusion Xm−1 → Xm induces a homomorphism from Hk(X
m−1) to

Hk(X
m) which is an isomorphism if k < m− 1 . There is an exact sequence

0 // Hm(Xm)
pm // C(X)m

δm // Hm−1(X
m−1) // Hm−1(X

m) // 0 .

Proof. Use lemma 12.4.7, and use the same long exact sequence as in the proof of
that lemma. �

Proof of theorem 12.4.4. We use the notation of lemma 12.4.8. By lemma 12.4.6
and lemma 12.4.8 we know that the inclusion Xm+1 → X induces an isomorphism

Hm(Xm+1) ∼= Hm(X) .

Then we compute Hm(Xm+1) using the exact sequence(s) of lemma 12.4.8:

Hm(Xm+1) ∼=
Hm(Xm)

im(δm+1)
∼=

im(pm)

im(pmδm+1)
=

ker(δm)

im(pmδm+1)
=

ker(pm−1δm)

im(pmδm+1)
. �

To conclude, we need to look at the homomorphisms d : C(X)m → C(X)m−1 . Choose a
characteristic map ϕτ : D

m → Xm for an m -cell Eτ ⊂ X and a characteristic map ϕσ for
an (m− 1) -cell Eσ ⊂ X . Then we have the following commutative diagram

Sm−1

ψτ
��

// Dm

ϕτ

��
Xm−1 // Xm

where the horizontal arrows are inclusion maps. (So ψτ is obtained from ϕτ by restric-
tion.) Apply corollary 12.3.3 to the rows of this diagram and use naturality to obtain top
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and middle row, both exact, of a commutative diagram

· · · // Hm(Sm−1) //

��

Hm(Dm) //

��

H̃m(Dm/Sm−1)
em //

(ϕτ/ψτ)∗
��

Hm−1(S
m−1) //

(ψτ)∗

��

· · ·

· · · // Hm(Xm−1) // Hm(Xm) // H̃m(Xm/Xm−1)

d ((

δm // Hm−1(X
m−1)

pm−1

��

// · · ·

H̃m−1(X
m−1/Xm−2)

(cσ)∗

��
H̃m−1(D

m−1/Sm−2)

Here cσ is the collapse map Xm−1/Xm−2 → Xm−1/Xm−1
¬σ followed by the identification

of Xm−1/Xm−1
¬σ with Dm−1/Sm−2 (which uses ϕσ ). The entry aσ,τ ∈ Z of the “matrix”

d : C(X)m → C(X)m−1 is the homomorphism (cσ)∗ ◦d ◦ (ϕτ/ψτ)∗ , which we can view as
a homomorphism from Z to Z using the preferred isomorphisms of example 12.3.4. By
the commutativity of the diagram, it is also (cσ)∗ ◦ pm−1 ◦ (ψτ)∗ ◦ em . Since we have
decided in example 12.3.4 that em is the identity map Z→ Z when m > 1 , we see that
(cσ)∗ ◦ pm−1 ◦ (ψτ)∗ ◦ em as a map from Z to Z is multiplication with the degree of

Sm−1 ψτ // Xm−1 // Xm−1/Xm−1
¬σ

inv. of quot. of ϕσ

∼=
// Dm−1/Sm−2 ∼= Sm−1

when m > 1 . For m = 1 we get the same result using example 12.3.4, on the understand-
ing that the degree of a map S0 → S0 is 1 if it is the identity map, −1 if it is bijective
but not the identity map, and 0 in all other cases. We formulate this in a proposition.

Proposition 12.4.9. A choice of characteristic maps ϕλ for all cells Eλ of X determines
isomorphisms

C(X)m ∼=
⊕

m -cells Eλ

Z

so that d : C(X)m → C(X)m−1 becomes a matrix with integer entries aσ,τ , one entry for
each (m− 1)-cell σ and m-cell τ . The number aσ,τ is the degree of the map

Sm−1 res. of ϕλ // Xm−1 // Xm−1/Xm−1
¬σ

inv. of quot. of ϕσ

∼=
// Dm−1/Sm−2 ∼= Sm−1

where Xm−1
¬σ is Xm−1rEσ . In the case m = 1 , the degree of a map g : S0 → S0 is defined

to be 1 if g is the identity, −1 if g is bijective but g 6= id , and 0 in all other cases.

Remark 12.4.10. On the ONF (outward normal first) convention for orienting the bound-
ary of a smooth oriented manifold with boundary ... under construction.

Example 12.4.11. About the cellular chain complex of |Y| , where Y is a semi-simplicial
set ... under construction.



CHAPTER 13

Suspension and the Mayer-Vietoris sequence in
cohomology

13.1. Suspension

Definition 13.1.1. The suspension ΣY of a space Y is the pushout of

[0, 1]× Y {0, 1}× Y⊃oo proj. // {0, 1}.

Equivalently, ΣY is the mapping cone of the unique map Y → {0} . Explicit description:
Take the disjoint union of [0, 1]× Y and {0, 1} and make identifications (0, y) ∼ 0 as well
as (1, y) ∼ 1 for all y ∈ Y . (When Y is nonempty, ΣY is a quotient space of [0, 1]× Y in
an obvious way.)
Suspension is a functor: a map f : X→ Y determines a map Σf : ΣX→ ΣY given (mostly)
by (t, x) 7→ (t, f(x)) for x ∈ X and t ∈ [0, 1] .

Lemma 13.1.2. Let X be a paracompact space, A a closed subspace. Then X/A is also
paracompact.

Proof. We can assume that X is nonempty; then there is the standard quotient map
q : X → X/A . Let (Uλ)λ∈Λ be an open covering of X/A . We need to construct a locally
finite refinement of (Uλ)λ . Choose λ0 in Λ such that Uλ0 contains the base point of
X/A , which is the class of all elements in A . Since X is normal, there exists an open
neighborhood W of A in X such that W̄ ⊂ q−1(Uλ0) , where W̄ denotes the closure of
W in X . Choose a locally finite open covering (Vκ)κ of X which refines the open covering
(q−1(Uλ))λ of X . Now the open sets Vκ r W̄ together with Uλ0 form a locally finite
open covering of X/A . �

Corollary 13.1.3. If Y is paracompact, then ΣY is paracompact.

Proof. ΣY can be obtained from [0, 1] × Y , which is paracompact, by dividing out
first {0}× Y and then {1}× Y . �

As we have seen, a map f : X→ Y determines a map Σf : ΣX→ ΣY by Σf(t, x) = (t, f(x)) .
This procedure also respects homotopies. Therefore suspension of maps determines a map

[X, Y] −→ [ΣX,ΣY]

where the square brackets indicate sets of homotopy classes. One might think that a map
from [[X, Y]] to [[ΣX,ΣY]] can be constructed in exactly the same way. But there are a
few problems with that due to the fact that mapping cycles must be described germ-wise
rather than pointwise. (It is not clear what the germ of Σf at 0 ∈ ΣX should look like
when f is a mapping cycle from X to Y , for example.) Therefore we take some precautions.
Firstly, we choose a continuous map ψ : [0, 1] → [0, 1] such that ψ(t) = 0 for all t in
a neighborhood of 0 and ψ(t) = 1 for all t in a neighborhod of 1 . A map f : X → Y

96
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determines a map Σψf : ΣX → ΣY by (x, t) 7→ (f(x), ψ(t)) . Note that Σψf is constant
in a neighborhood of 0 ∈ ΣX , and constant in a neighborhood of 1 ∈ ΣX . Also, rather
obviously, Σψf is homotopic to Σf .
Secondly, before applying Σψ to a mapping cycle f : X → Y , let us demand that the
composition of f with the unique continuous map Y → ? be the zero mapping cycle
X → ? . A mapping cycle with this property will be called traceless. In such a case Σψf
has meaning as a mapping cycle from ΣX to ΣY . It agrees with the zero mapping cycle1

on a neighborhood of {0, 1} ⊂ ΣX . Moreover Σψf is a again traceless.

Proposition 13.1.4. For spaces X and Y , where Y comes with a base point y0 , suspen-
sion of traceless mapping cycles defines a homomorphism

[[X, Y]]

[[X, ?]]
−→ [[ΣX,ΣY]]

[[ΣX, ?]]
.

Here ΣY has base point (1, y0) and the (injective) homomorphism [[X, ?]] → [[X, Y]] is
defined by composing mapping cycles X→ ? with the map ?→ Y that has image {y0} .

Proof. We almost proved it before stating the proposition. But for clarification let’s
recall that a mapping cycle from X to ? is the same as a continuous map from X to
Z and that two mapping cycles from X to ? which are homotopic are necessarily equal.
(See proposition 5.2.1.) If f : X → Y is any mapping cycle, we can make it traceless by
subtracting qf , where q : Y → Y is given by y 7→ y0 . In this way

[[X, Y]]

[[X, ?]]

can be understood as the abelian group of homotopy classes of traceless mapping cycles
f : X→ Y . Then [[f]] 7→ [[Σψf]] is defined (as explained above), and it is well defined, and
Σψf is again traceless. �

Theorem 13.1.5. Let X and Y be spaces, both nonempty, X paracompact, Y equipped
with a base point. The homomorphism

[[X, Y]]

[[X, ?]] + [[?, Y]]
−→ [[ΣX,ΣY]]

[[ΣX, ?]] + [[?, ΣY]]

determined by suspension of traceless mapping cycles, as in proposition 13.1.4, is an iso-
morphism.

Comment. The notation suggests that [[?, Y]] is a subgroup of the abelian group [[X, Y]] ,
for example. More precisely there is a homomorphism from [[?, Y]] to [[X, Y]] given by
composing mapping cycles ? → Y with the unique continuous map from X to ? . It is
injective because we can choose a continuous map e : ?→ X to construct a homomorphism
[[X, Y]] → [[?, Y]] in a similar manner, by composition with e . That homomorphism is a
left inverse for the other one.

Remark 13.1.6. Suppose that X = Sn . Then the theorem specializes to the statement

H̃n(Y) ∼= H̃n+1(ΣY)

1Zero mapping cycle means: zero element of the abelian group of mapping cycles ... no close rela-
tionship with 0 ∈ ΣY .



98 13. SUSPENSION AND THE MAYER-VIETORIS SEQUENCE IN COHOMOLOGY

for nonempty Y . Here we define H̃n(Y) as the cokernel of the homomorphism from Hn(?)
to Hn(Y) induced by the map ? 7→ y0 . Similarly, in the case Y = Sn the theorem states
that

H̃n(X) ∼= H̃n+1(ΣX)

for nonempty X . In this case we have to use a definition of Hn(X) as the cokernel of the
homomorphism Hn(?)→ Hn(X) determined by the map X→ ? .

Proof of theorem 13.1.5. We use the homotopy decomposition theorem 6.1.1 to
construct a homomorphism in the other direction. It is also convenient to make a choice
of x0 ∈ X . The abelian group

[[ΣX,ΣY]]

[[ΣX, ?]] + [[?, ΣY]]

can be thought of in the following way. It is the group of homotopy classes of traceless
mapping cycles g : ΣX→ ΣY such that ge is zero2, where e is the injective map [0, 1]→ ΣX
defined by t 7→ (t, x0) . (If g : ΣX→ ΣY is a traceless mapping that does not satisfy ge = 0 ,
then replace g by g− gu where u : ΣX→ ΣX is defined by u(t, x) = (t, x0) . It is easy to
see that [[gu]] is in the subgroup [[?, ΣY]] of [[ΣX,ΣY]] .)
We may also assume without loss of generality that g restricted to an open neighborhood
of 0 ∈ ΣX is the zero mapping cycle. (If ge is zero, but g is not zero on any neighborhood
of 0 ∈ ΣX , then replace g by its composition with a map ΣX→ ΣX of the form (t, x) 7→
(ψ(t), x) , in the notation of the preliminaries to proposition 13.1.4.)
Once we have a mapping cycle g : ΣX→ ΣY satisfying all these good conditions, we obtain
another mapping cycle

γ : [0, 1]× X −→ ΣY

by composing with the quotient map [0, 1] × X → ΣX . Then γ is zero (zero element in
an abelian group of mapping cycles) on an open neighborhood of {0}× X and on {1}× X .
Now apply the homotopy decomposition theorem with V = ΣY r {1} and W = ΣY r {0} ,
two open subsets of ΣY whose union is ΣY . What we get is

γ = γV + γW

where γV : [0, 1] × X → V and γW : [0, 1] × X → W are mapping cycles, both zero on an
open neighborhood of {0}× X . Restricting to X× {1} ⊂ X× [0, 1] we have

γ1 = γ
V
1 + γW1

which we view as an equation relating mapping cycles from X ∼= {1} × X to ΣY , V and
W . But γ1 = 0 by construction. It follows that γV1 is a mapping cycle from X to V ∩W ,
being equal to −γW1 . Also V∩W is homotopy equivalent to Y , by means of the projection
V ∩W = ]0, 1[×Y −→ Y . Therefore [[γV1 ]] can be regarded as an element of [[X, Y]] . Two
things remain to be verified.

(1) The element [[γV1 ]] ∈ [[X, Y]] depends only on [[g]] and x0 ∈ X , on the under-
standing that γV1 is constructed from a representative g in the manner described
above. Furthermore, replacing the choice x0 ∈ X by another element of X has
no effect if we calculate modulo the subgroup [[?, Y]] of [[X, Y]] .

2Again this “zero” is the zero element of an abelian group (of mapping cycles), not to be confused
with a certain element of ΣY .
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(2) The formula [[g]] 7→ [[γV1 ]] gives a homomorphism which is inverse to the homo-
morphism

[[X, Y]]

[[X, ?]] + [[?, Y]]
−→ [[ΣX,ΣY]]

[[ΣX, ?]] + [[?, ΣY]]

given by [[f]] 7→ [[Σψf]] .

Proof of (1). By linearity properties of the construction, it is enough to show that [[γV1 ]]
is zero if [[g]] = 0 . Let us first assume that the mapping cycle g itself is strictly zero.
Keep x0 fixed. Then γV is a mapping cycle from [0, 1] × X to V ∩W and as such it is
a homotopy from zero to γV1 . Next, suppose that g is merely nullhomotopic. Choose a
nullhomotopy

ḡ : ΣX× [0, 1]→ ΣY .

Now we do to ḡ what we did previously to g . Beware though: there is a small difference
between ΣX× [0, 1] and Σ(X× [0, 1]) . Keep x0 fixed. The mapping cycle ḡ is automat-
ically traceless. Without loss of generality, ḡ is zero on Σ{x0} × [0, 1] and on an open
neighborhood of {0}× [0, 1] in ΣX× [0, 1] . From ḡ we get a mapping cycle

γ̄ : [0, 1]× (X× [0, 1])→ ΣY

as before. The homotopy decomposition theorem can be applied and then γ̄V1 from X ×
[0, 1] to V ∩W is a homotopy relating γV1 to another mapping cycle which we already
know represents zero in [[X, Y]] , by part (1). Finally, replacing x0 by another element of
X has the effect of replacing γ by γ − αq where α is a mapping cycle from [0, 1] to ΣY
and q : ΣX → [0, 1] is the projection. Then γV1 gets replaced by γV1 minus a constant
mapping cycle from X to V ∩W . (Here constant means that it is obtained by composing
the map X→ ? with a mapping cycle from ? to V ∩W .)
Proof of (2). First let us show that if γV1 has been constructed from g as above and
g = Σψf , where f : X → Y is a traceless mapping cycle, then [[γV1 ]] = [[f]] . We also
assume that f restricted to {x0} is zero. The mapping cycle

γ : X× [0, 1] −→ ΣY

is the composition of g = Σψf with the quotient map [0, 1]×X→ ΣX . Now we can make
our own choice of γV and γW such that γ = γV + γW . Let θ(t) = min(ψ(t), 1/2) for
t ∈ [0, 1] . Let γV be the composition of γ with the map (t, x) 7→ (θ(t), x) from [0, 1]×X
to [0, 1]×X . Put γW = γ−γV . The conditions are satisfied and clearly γV1 as a mapping
cycle from X to V ∩W = ]0, 1[×Y is f followed by the map y 7→ (y, 1/2) . Therefore
[[γV1 ]] = [[f]] . — It remains to show that our formula [[g]] 7→ [[γV1 ]] defines an injective
homomorphism. So suppose that [[γV1 ]] is the zero element of

[[X, Y]]/([[?, Y]] + [[X, ?]]).

Then it is already zero in [[X, Y]]/[[?, Y]] because it is traceless. This means that γV1
is homotopic to a constant mapping cycle from X to V ∩W ' Y , meaning one that is
obtained by composing a mapping cycle ? → V ∩W with the unique map from X to ? .
In this situation it is easy to modify γV in such a way that γV is actually constant on an
open neighborhood of X× {1} in X× [0, 1] . Then it follows that γV and γW are mapping
cycles from X × [0, 1] to V and W respectively which can be written as compositions of
the quotient map

[0, 1]× X→ ΣX
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with mapping cycles gV and gW from ΣX to V and W , respectively. In other words we
get g = gV + gW . The mapping cycles gV and gW are still traceless. Now it is enough
to show that

[[gV ]] = 0 ∈ [[X,V]]/[[X, ?]]

[[gW ]] = 0 ∈ [[X,W]]/[[X, ?]].

But that is obvious. Indeed we have

[[X,V]]/[[X, ?]] = 0 = [[X,W]]/[[X, ?]]

because V and W are contractible. Therefore [[g]] = 0 in [[ΣX,ΣY]]/[[?, ΣY]] , as was to
be shown. �

13.2. Mayer-Vietoris sequence in cohomology

Theorem 13.2.1. Let X be a space, V and W open subsets of X such that V ∪W = X ,
and suppose that X,V,W are paracompact. Then there is a natural long exact sequence

· · · Hn+1(X)oo

Hn(V ∩W)

δ

OO

Hn(V)⊕Hn(W)
e∗V⊕−e∗Woo Hn(X)

(j∗V ,j
∗
W)oo

Hn−1(V ∩W)

δ

OO

· · ·oo

where eV : V∩W → V , eW : V∩W →W , jV : V → X and jW : W → X are the inclusions.

We start by defining the as-yet-undefined homomorphism δ . Let Xe be the following
substitute for X . As a set,

Xe =
{
(t, x) ∈ [0, 1]× X

∣∣ t = 0 if x /∈W, t = 1 if x /∈ V
}

=
(
{0}× V

)
∪
(
[0, 1]× (V ∩W)

)
∪
(
{1}×W

)
.

But the topology is defined in such a way that the (obvious) surjection from the topological
disjoint union V t

(
[0, 1]× (V ∩W)

)
t W to Xe is an identification map; i.e., a subset

of Xe is open if and only if its intersection with [0, 1]× (V ∩W) , with {0}× V and with
{1} ×W is open. The projection map q : Xe → X given by q(t, x) = x is a homotopy
equivalence. To see this, choose a partition of unity (ψV , ψW) subordinate to the covering
of X by V and W ; so ψV : X→ [0, 1] has support in V and ψW : X→ [0, 1] has support
in W and ψV +ψW ≡ 1 . Define s : X→ Xe by s(z) = (ψW(z), z) . Clearly qs = idX and
sq is homotopic to the identity on Xe .
There is a continuous map p : Xe → Σ(V ∩W) given by (t, x) 7→ (t, x) if t ∈ [0, 1] and
x ∈ V ∩W , and (0, x) 7→ 0 for x ∈ V , (1, x) 7→ 1 for x ∈W . (It is continuous because we
defined the topology on Xe as we did.) We define

δ : Hn(V ∩W) −→ Hn+1(X)

as the composition

Hn(V ∩W)
Σ // Hn+1(Σ(V ∩W))

p∗ // Hn+1(Xe)
q∗

∼= Hn+1(X).
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Proof of theorem 13.2.1. Recall that a mapping cycle f : A → B traceless if the
composition of f with the constant map B → ? is zero. Example: elements of Hn(A)
can be represented by traceless mapping cycles from A to B = Sn . Another example: we
have seen that a traceless mapping cycle f from A to B can be suspended without great
difficulty to give a traceless mapping cycle ΣA→ ΣB .
Here is an important principle which we shall use several times in the proof. Let A,B,C
be spaces, let f : A → B be a map and let g : B → C be a map. If gf is homotopic to a
constant map, then f can be extended to a map from cone(f) to C . Variant: let f : A→ B
be a map and let g : B→ C be a traceless mapping cycle. If gf is homotopic to the zero
mapping cycle, then gf can be extended to a traceless mapping cycle from cone(f) to C .
Showing ker ⊃ im at Hn(V)⊕Hn(W) . This is clear.
Showing ker ⊂ im at Hn(V) ⊕ Hn(W) . Suppose given classes in Hn(V) and Hn(W)
represented by traceless mapping cycles f : V → Sn and g : W → Sn . If [[f]]⊕ [[g]] maps
to zero under e∗V ⊕ −e∗W , then there exists a mapping cycle

h : (V ∩W)× [0, 1]→ Sn

(a homotopy) such that h0 = f and h1 = g . Without loss of generality the homotopy
is stationary near t = 0 and t = 1 . Then the union of f, g and h defines a traceless
mapping cycle from Xe to Sn . The class of that in Hn(Xe) ∼= Hn(X) is the answer to our
prayers.
Showing ker ⊃ im at Hn(X) . We think of Hn(X) as Hn(Xe) . For a class [[f]] in
Hn−1(V ∩W) , where f : V ∩W → Sn−1 is traceless, the image of that class under j∗Vδ
is [[Σψf ◦ p|V ]] , where Σψf ◦ p|V is a constant mapping cycle since p is constant on V .
Since we can assume n > 0 , it follows that j∗Vδ([[f]]) = 0 .
Showing ker ⊂ im at Hn(X) . The case n = 0 is interesting but we leave it as an exercise.
(Remember that H0(X) has been identified with the set of continuous maps from X to
Z .) Now we assume n > 0 . Let g : Xe → Sn be a traceless mapping cycle such that
[[g]] ∈ Hn(Xe) ∼= Hn(X) is taken to zero by j∗V and j∗W . Then g extends to a traceless
mapping cycle G from

cone(V) ∪ Xe ∪ cone(W)

to Sn . Here cone(V) := cone(idV) and cone(W) := cone(idW) . (There should be a
picture here ... under construction.) Since the inclusion V tW → Xe is a cofibration, the
projection

cone(V) ∪ Xe ∪ cone(W) −→ (Xe/V)/W = (Xe/W)/V = Σ(V ∩W)

is a homotopy equivalence. Therefore we can write

[[G]] ∈ Hn(cone(V) ∪ Xe ∪ cone(W)) ∼= Hn(Σ(V ∩W)).

Since n > 0 we have Hn(Σ(V ∩W)) = H̃n(Σ(V ∩W)) and by the suspension theorem,

lecture notes week 5, that is isomorphic to H̃n−1(V ∩W) , which we can interpret as a
quotient of Hn−1(V ∩ W) . So [[G]] determines a class in Hn−1(V ∩ W) up to some
ambiguity (if n− 1 = 0), and that class is taken to [[g]] by the homomorphism δ .
Showing ker ⊃ im at Hn(V ∩W) . It suffices to show that the composition δj∗V is zero.
By naturality, we can assume that W = X . Then V ∩W is V . It is easy to show that
p : Xe → Σ(V ∩ W) = ΣV is homotopic to a constant map. Therefore δ is the zero
homomorphism in this very special Mayer-Vietoris sequence.
Showing ker ⊂ im at Hn(V∩W) . We are no longer assuming W = X . It will be necessary
to understand the mapping cone of p : Xe → Σ(V ∩W) . That mapping cone contains the
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mapping cone of the map p] : V tW → {0, 1} which takes all of V to 0 and all of W to
1 . (Remember that {0, 1} ⊂ Σ(V ∩W) .) It is an exercise to show that the inclusion

cone(p]) −→ cone(p)

is a homotopy equivalence. Moreover cone(p]) is ΣV ∨ ΣW , the quotient space of the
topological disjoint union ΣV t ΣW obtained by identifying 1 ∈ ΣV with 1 ∈ ΣW . The
composition

Σ(V ∩W)
⊂ // cone(p) ' cone(p]) = ΣV ∨ ΣW

collapse ΣW // ΣV

is homotopic to the inclusion Σ(V ∩W) → ΣV followed by the map (t, x) 7→ (1 − t, x)
from ΣV to itself and the composition

Σ(V ∩W)
⊂ // cone(p) ' cone(p]) = ΣV ∨ ΣW

collapse ΣV // ΣW

is homotopic to the inclusion Σ(V∩W)→ ΣV . Now suppose that a class in Hn(V∩W) is
represented by a traceless mapping cycle g from V∩W to Sn , and δ([[g]]) = 0 ∈ Hn+1(X) .
Then p∗[[Σg]] is zero in Hn+1(Xe) , where p : Xe → Σ(V ∩W) is the usual map and Σg ,
or more precisely Σψg : Σ(V ∩W) → Σ(Sn) = Sn+1 , is the suspension of g . This means
that Σψg ◦ p is nullhomotopic, and so g can be extended to a traceless mapping cycle
G : cone(p)→ Sn+1 . Then

[[G]] ∈ Hn+1(cone(p))
∼=−→ Hn+1(cone(p]))
∼=−→ Hn+1(ΣV)⊕Hn+1(ΣW)
∼=←− H̃n(V)⊕ H̃n(W)

where we assume n + 1 > 0 . So [[G]] determines a class in Hn(V)⊕Hn(W) up to some
small ambiguity (when n = 0), and that class is taken to −[[g]] by e∗V ⊕ −e∗W . �

13.3. Cohomology of mapping cones and quotients

Proposition 13.3.1. For a map f : X → Y , there is a natural long exact sequence of
cohomology groups

· · ·Hn(X) //Hn(Y)
f∗ //H̃n(cone(f))

j∗ //Hn−1(X) //Hn−1(Y)
f∗ //· · · j∗ //

If f : X → Y is the inclusion of a closed subset and a cofibration, then the projection
cone(f) → Y/X is a homotopy equivalence and consequently there is another long exact
sequence

· · ·Hn(X) //Hn(Y)
f∗ //H̃n(Y/X) //Hn−1(X) //Hn−1(Y)

f∗ //· · · //

Proof. This can be proved like proposition 12.3.2, using the Mayer-Vietoris sequence
in cohomology instead of the Mayer-Vietoris sequence in homology. �

13.4. Cohomology of CW-spaces

Definition 13.4.1. Let X be a CW-space. The cohomological variant of the cellular chain
complex of X is the following chain complex. In degree −n it has the abelian group

H̃n(Xn/Xn−1)
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and the differential d : H̃n(Xn/Xn−1) −→ Hn+1(Xn+1/Xn) is the composition of the ho-

momorphism H̃n(Xn/Xn−1)→ Hn(Xn) determined by the projection3 and the boundary
operator Hn(Xn) −→ Hn+1(Xn+1/Xn) from the second long exact sequence in proposi-
tion 13.3.1.

For this cohomological variant of the cellular chain complex, we have a theory which is
quite analogous to that of the cellular chain complex. Here are the most important facts.

Proposition 13.4.2. For a CW-space X , the cohomology group Hn(X) is isomorphic to
the (−n)-th homology group of the cohomological variant of the cellular chain complex of
X .

Proposition 13.4.3. For a CW-space X , the cohomological variant of the cellular chain
complex of X is isomorphic to hom(C(X),Z) , where C(X) is the cellular chain complex of
X .

Corollary 13.4.4. For a CW-space X , the cohomology group Hn(X) is isomorphic to
H−n(hom(C(X),Z) . �

The proof of proposition 13.4.2 is very similar to that of theorem 12.4.4. But there is one
little aspect which is different, and that is in the shape of the groups H̃n(Xn/Xn−1) . For
this reason I think it is worthwhile to formulate the cohomological version of lemma 12.4.2
and a consequence. So let m be a fixed non-negative integer and let Q be a CW-space
with a distinguished 0 -cell ? (base point). We want to assume that all cells of Q have
dimension m , with the possible exception of the distinguished 0 cell.

Lemma 13.4.5. Then H̃m(Q) is a product of infinite cyclic groups, one summand for each

m-cell, excluding the base point cell if m = 0 . Moreover H̃n(Q) = 0 for n 6= m .

Proof. The case m = 0 is easy, so we assume m > 0 . Let Λ be an indexing set for
the m -cells of Z . For each m -cell Eλ ⊂ Q let Kλ be the closure of Eλ . By the axioms
for a CW-space, Kλ = Eλ ∪ ? . Therefore Kλ is homeomorphic to a sphere Sm and has
a distinguished base point. (But we did not choose a homeomorphism of Kλ with Sm .)
Now let Y =

∐
λ∈Λ Kλ and X =

∐
λ∈Λ ? . Then we can identify Q with Y/X . This leads

to a long exact sequence in cohomology

· · · Hn(X)oo oo Hn(Y) H̃n(Q)oo Hn−1(X)oo Hn−1(Y)oo · · ·oo

The maps Hn(Y) → Hn(X) are surjective because the inclusion X → Y admits a left
inverse Y → X . Therefore the long exact sequence breaks up into short exact sequences

0← Hn(X)← Hn(Y)← H̃n(Q)→ 0 .

In other words, Hn(Q) is isomorphic to Hn(Y) if n > 0 , and zero if n = 0 . Also
Hn(Y) =

∏
λ∈ΛH

n(Kλ) . Because Kλ is homeomorphic to Sm , the group Hn(Kλ) is zero
if n > 0 , n 6= m and infinite cyclic if n = m . (Here you may object that we never took
the time to calculate the cohomology of spheres. But it works like the calculation of the
homology of spheres.) �

Corollary 13.4.6. For CW-spaces X , there is a natural isomorphism from H̃m(Xm/Xm−1)

to hom(H̃m(Xm/Xm−1),Z) .

3Think of H̃n(Xn/Xn−1) as the kernel of the map Hn(Xn/Xn−1) → Hn(?) induced by the inclusion
of the base point.
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Proof. First of all, naturality refers to situations where we have a cellular map
X → Y . — The case m = 0 is easy and covered by earlier discussions of H0 and H0 .
For m > 0 , by lemma 13.4.5 and a comparison with lemma 4.7, it is enough to handle
the case where X has only one m -cell and one 0-cell and no other cells. Then X is
homeomorphic to Sm . In particular H̃m(X) ∼= Z and H̃m(X) ∼= Z , so an isomorphism

from H̃m(Xm/Xm−1) = H̃m(X) to hom(H̃m(Xm/Xm−1),Z) = hom(H̃m(Xm),Z) certainly
exists. But the problem is that we have a choice of two. It is not easy to make the
choice. Let’s return to the definitions. Let a ∈ Hm(X) be represented by a mapping cycle
α : Sm → X and let b ∈ Hm(X) be represented by a mapping cycle β : X → Sm . Then
β ◦ α is a mapping cycle Sm → Sm and so represents an element

〈b, a〉 ∈ [[Sn, Sn]]/[[?, Sn]] = Hm(Sm) ∼= Z.
(The isomorphism [[Sn, Sn]]/[[?, Sn]]→ Z is completely determined if we let id : Sm → Sm

correspond to 1 ∈ Z . See remark 7.2.7.) The map a, b 7→ 〈b, a〉 is a bilinear map from
Hm(X)×Hm(X) to Z and it is easy to check that the corresponding map from Hm(X) to
hom(Hm(X),Z) is an isomorphism. For this check, it does not hurt to assume that X is
Sm . �

A few words need to be said about the proof of proposition 13.4.3. It is not a problem
to formulate and prove a cohomology analogue of proposition 12.4.9. It follows then from
proposition 12.4.9 and its cohomology analogue that the diagram

H̃m(Xm/Xm−1)

��

// hom(H̃m(Xm/Xm−1),Z)

��
H̃m(Xm+1/Xm) // hom(H̃m+1(X

m+1/Xm),Z)

commutes (horizontal arrows as in corollary 13.4.6, left-hand vertical arrow from the co-
homological variant of the cellular chain complex, right-hand vertical arrow determined
by differential in C(X) , the cellular chain complex itself). Of course, before we can use
proposition 12.4.9 and its cohomology analogue, we should choose characteristic maps for
all the cells of X .



CHAPTER 14

External products and the cup product

14.1. Products in homology and cohomology

Definition 14.1.1. Given mapping cycles f : X1 → Y1 and g : X2 → Y2 we define f ⊗
g : X1×X2 → Y1× Y2 . Idea: if the germ of f at x1 ∈ X1 is

∑
ajϕj and the germ of g at

x2 ∈ X2 is
∑
bkγk , then the germ of f× g at (x1, x2) shall be∑

(ajbk) · (ϕj × γk)

where (ϕj × γk)(u, v) = (ϕj(u), γk(v)) ∈ Y1 × Y2 . Pass to homotopy classes:

[[f]]⊗ [[g]] := [[f⊗ g]] ∈ [[X1 × X2, Y1 × Y2]].

(Yes, it is well defined.)

Definition 14.1.2. External products in homology: given [[f]] ∈ Hm(X) and [[g]] ∈
Hn(Y) we think

f : Rm ∪ {∞}→ X, g : Rn ∪ {∞}→ Y

where Rm ∪ {∞} is the one-point compactification, etc. But we can also assume that f is
zero in a neighborhood of ∞ , and similarly for g . In other words we can write

f : Rm → X, g : Rn → Y

where f and g have compact support. Then

f⊗ g : Rm × Rn → X× Y

has compact support and represents an element in Hm+n(X× Y) . We call it [[f]]× [[g]] .
Indeed it depends only on [[f]] ∈ Hm(X) and [[g]] ∈ Hn(Y) .

Example 14.1.3. Under construction: the suspension isomorphism of theorem 13.1.5 has
an alternative description in which it is given by external product z1× , where z1 ∈ H1(S1)
is the standard generator.

Definition 14.1.4. External products in cohomology: given [[f]] ∈ Hm(X1) and [[g]] ∈
Hn(X2) we think f : X1 → Rm∪ {∞} and g : X2 → Rn∪ {∞} and we form the composition

X1 × X2
f⊗g // (Rm ∪ {∞})× (Rn ∪ {∞})

µm,n // Rm+n ∪ {∞}

where µm,n is the obvious quotient map. This represents an element

[[f]]× [[g]] ∈ Hm+n(X1 × X2).

As the notation suggests, it depends only on [[f]] ∈ Hm(X) and [[g]] ∈ Hn(Y) .
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Definition 14.1.5. Internal products in cohomology: given [[f]] ∈ Hm(X) and [[g]] ∈
Hn(X) , form [[f]]× [[g]] ∈ Hm+n(X×X) and apply the diagonal map diag : X→ X×X to
get

[[f]] ^ [[g]] := diag∗([[f]]× [[g]]) ∈ Hm+n(X).

This is the cup product.

Proposition 14.1.6. The external products in homology and cohomology and the cup
product are associative and graded commutative. The cup product on H∗(X) has a neutral
element 1 ∈ H0(X) . The external products also have neutral elements in H0(?) , H0(?) .

Sketch proof. In the case of external products in cohomology, the meaning of
graded commutative is as follows: the image of [[f]]× [[g]] under the isomorphism

Hm+n(X1 × X2) −→ Hn+m(X2 × X1)
is (−1)mn[[g]]× [[f]] . The sign comes in as the degree of the self-map of Rm+n ∪∞ given
by (x1, . . . , xm, xm+1, . . . , xm+n) 7→ (xm+1, . . . , xm+n, x1, . . . , xm) . The proof should be
clear. The case of the external product in homology is similar. The neutral element
1 ∈ H0(X) for the cup product is given by the constant map from X to S0 which takes all
of X to the element of S0 which is not the base point ? , on the understanding that H0(X)
is [[X, S0]]/[[X, ?]] . (I’m currently a little undecided as to which element of S0 ought to
be the base point ... this is related to the notorious sign problems.) Alternatively, if we
use the calculation according to which H0(X) is the set of continuous maps from X to Z ,
then the element 1 ∈ H0(X) is given by the constant map from X to Z with value 1 . �

14.2. A defensive rant on mapping cycles

In the last section we saw that the definition of products in homology and cohomology
based on mapping cycles is simple. This is in stark contrast to the cumbersome definition
of products in singular homology and cohomology. See section B.3. But in some respects
the products in singular homology and cohomology have better or more predictable formal
properties than the products in homology and cohomology based on mapping cycles. Quite
generally, singular homology and cohomology is (to me) more obscure in the definitions
than mapping cycle homology and cohomology, but its formal properties seem to be more
predictable. One explanation for that could be that the formal properties of singular
homology and cohomology have had more time to be understood. Whatever the reason
may be, the consequence is that in typical modern expositions of singular homology and
cohomology, the formal properties are often emphasized while the user is encouraged to
forget the definitions. I have tried until now to follow a similarly sterilized approach in
setting up homology and cohomology with mapping cycles, but perhaps that was not a
good idea. Every now and then we need to return to the definitions. It is important to
get used to the idea that mapping cycles behave in many ways like continuous maps.
The difficulty here is that, in so many ways, mapping cycles do not seem to behave like
continuous maps. Their definition is not as pointwise as the definition of continuous maps.
Even if we think of the value of a mapping cycle f : X → Y at a point x0 ∈ X as a finite
formal linear combination ∑

i

aifi

where the ai are integers and the fi are germs of continuous maps from (X, x0) to Y ,
then it is disturbing that the finitely many elements fi(x0) in Y can be distinct. We
cannot say where approximately in Y that value is located. (Another important difference
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between continuous maps and mapping cycles was mentioned at the end of section 4.3.)
Nevertheless, let me mention some aspects of continuous maps which generalize well to
mapping cycles.

(i) If f : X→ Sm is a continuous map, and x0 ∈ X , then there is an open neighbor-
hood U of x0 such that f restricted to U is homotopic to a constant map.

(ii) Suppose that X is a normal space. Let f : X → Y be a continuous map, U ⊂ X
an open subset and A ⊂ X a closed subset such that A ⊂ U . If f|U is homotopic
to a constant map, then f is homotopic to a composition

X
quotient map // X/A // Y .

(iii) Let X and Y be spaces with base points x0 and y0 . Let f : X → Sm and
g : Y → Sn be base-point preserving continuous maps. (Think Sm = Rm ∪ {∞}

and Sn = Rn ∪ {∞} , using ∞ as the base point in both cases.) Then there is an
induced map of smash products (see definition 14.4.1 just below)

f∧ g : X∧ Y −→ Sm ∧ Sn = Sm+n .

We have already seen that property (i) does not generalize well to singular cohomology
H0 . The homomorphism H0(X) → H0(U) can be highly nontrivial for arbitrarily small
neighborhoods U of x0 . Our example was X = {0} ∪ {2−i | i = 0, 1, 2, . . . } , a subspace of
R . Similar examples of spaces could be given to illustrate the bad behavior of singular
cohomology Hn when n > 0 . A good example for n = 1 is the Hawaiian earring: the
union of the circles of radius 2−i and center (2−i, 0) in the plane R2 , where i = 0, 1, 2, . . . .
It is a subspace of R2 . In this case x0 = (0, 0) is the interesting choice of base point. —
Property (ii) does generalize to singular cohomology. I have nevertheless added it to the
list because it combines well with property (i) in situations where property (i) holds. — I
suspect that property (iii) as stated does not generalize well to singular cohomology. More
precisely, I do not think that the external product a× b of elements

a ∈ H̃m(X) = ker[Hm(X)→ Hm({x0}) ]

and

b ∈ H̃n(Y) = ker[Hm(Y)→ Hm({y0}) ]

can always be promoted to an element of H̃m+n(X∧ Y) . An example that I would try is
X = Y = Hawaiian earring, m = n = 1 and x0 = y0 = (0, 0) . It is not easy but I think it
has been well investigated by others.

Proof of (i). Choose a small open neighborhood V of f(x0) which is contractible
in Sm . Then U = f−1(V) has the required property. �

Proof of (ii). Let (ht : U → Sm)t∈[0,1] be a homotopy so that h0 ≡ f on U and
h1 is constant. Choose a continuous function ψ : X → [0, 1] such that ψ ≡ 1 on A and
supp(ψ) ⊂ U . Define f] : X → Y by f](x) = f(x) for x /∈ U and f](x) = hψ(x)(x) for

x ∈ U . Then f] is homotopic to f (easy) and since it is constant on A , it can be written
as a composition X→ X/A→ Y . �
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14.3. Good news about mapping cycles

Lemma 14.3.1. Let X be a normal space, U ⊂ X an open subset and A ⊂ X a closed
subset such that A ⊂ U . Let v ∈ Hm(X) be a class such that the image of v in Hm(U)
is zero. Then v is in the image of the homomorphism

H̃m(X/A)→ Hm(X)

induced by the projection X→ X/A .

Proof. Write X//U for the mapping cone of the inclusion U → X . Represent the
class v by a mapping cycle f : X → Sm . We can assume that it is traceless. Choose a
homotopy

h : [0, 1]×U −→ Sm

such that h0 = f|U and h1 ≡ 0 . We can assume that this is stationary near {0, 1} × U .
Together, f and h then define a mapping cycle f̄ : X//U −→ Sm which agrees with f
on X ⊂ X//U . Now choose a continuous function ψ : X → [0, 1] such that ψ ≡ 1 in a
neighborhood of A and supp(ψ) ⊂ U . (This exists because X is normal.) We use this to
make a continuous map e : X −→ X//U by e(x) = x ∈ X ⊂ X//U for x /∈ U and e(x) =
element represented by (ψ(x), x) in [0, 1] × U for x ∈ U . (In particular e(x) is the cone
point if ψ(x) = 1 .) Clearly e is homotopic to the inclusion of X in X//U . Therefore the
mapping cycle f̄e : X→ Sm is homotopic to f̄|X = f . But f̄e is ≡ 0 on a neighborhood of
A by construction, and so can be viewed as a mapping cycle X/A→ Sm . �

Let X be a space with a base point x0 . We use the standard description of H̃n(X) as the
kernel of Hn(X)→ Hn({x0}) .

Lemma 14.3.2. For any v ∈ H̃n(X) = ker[Hn(X) → Hn({x0}) ] there exists an open
neighborhood U of x0 such that v is in the kernel of the homomorphism Hn(X)→ Hn(U)
determined by U ↪→ X .

Proof. It is instructive to begin with the case n = 0 . In this case v corresponds to
a continuous map from X to Z which takes the value 0 at x0 . (Here we use an earlier
description of H0 ; see ... .) Because a continuous map X → Z is locally constant, there
must be a neighborhood U of x0 in X such that the map is ≡ 0 on U .
In the case n > 0 , choose a mapping cycle f : X→ Sn representing v . We can assume that
f is traceless, i.e., the composition of f : X → Sm with the map Sm → ? is ≡ 0 . Choose
an open neighborhood U of x0 such that f is given by a finite formal linear combination∑

i

aifi

where ai ∈ Z and fi is a continuous map from U to Sn , and
∑
i ai = 0 . Making U

smaller if necessary, we can assume that fi(U) is contained in a contractible subset of Sn ,
for example, a metric open ball of radius ε about fi(x0) in the standard metric of Sn .
Then the image of v = [[f]] in Hn(U) is

∑
i ai[[fi|U]] . This is zero since each fi|U is

homotopic to a constant map. �

In the proof of proposition 14.3.3 below the following method will be used. Suppose that
g : X × Y → Sn is a mapping cycle and that X comes with a base point x0 . Also, for
simplicity, suppose that Y is compact. We want to find an open neighborhood U of {x0}
in X such that g|U×Y is homotopic to the composition gq|U×Y where q : X× Y → X× Y
is defined by q(x, y) = (x0, y) . To do this we choose an open neighborhood U of x0
in X and a covering of Y by open sets V1, . . . , Vr such that on each U × Vj , where
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j = 1, 2, . . . , r , the mapping cycle g can be written as a formal linear combination with
integer coefficients of continuous functions gij ,

g|U×Vj =
∑
i

aijgij .

Making U and the Vj sufficiently small, we can assume that gij(U× Vj) is contained in
a metric open ball in Sn of radius < ε , where ε > 0 is fixed and small. Let

Gij : U× Vj × [0, 1]→ Sn

be defined so that Gij(x, y, t) is the point on the geodesic segment from gij(x, y) to
gij(x0, y) which divides the segment in the ratio t : (1 − t) . In particular Gij(x, y, 0) =
gij(x, y) and Gij(x, y, 1) = gij(x0, y) . Then we can define a mapping cycle

G : U× Y × [0, 1]→ Sn

in such a way that G agrees with
∑
i aijGij on U × Vj × [0, 1] . This G is a homotopy

from g|U×Y to gq|U×Y , as required. Homotopies obtained by this construction will be
called short geodesic homotopies. The cases where Y = ? and Y = [0, 1] are important.

Proposition 14.3.3. Suppose that X is a normal space with base point x0 . Then any
class in H̃n(X) can be represented by a mapping cycle X → Sn which is ≡ 0 in an open
neighborhood of x0 .
If two mapping cycles f, g : X → Sn with that property represent the same element of
H̃n(X) , then there exists a homotopy h : X× [0, 1]→ Sn with the following properties.

(i) h0 = f and h1 = g + ι ◦ k , where k : X → ? is a mapping cycle and ι : ? → Sn

is the inclusion of the base point.
(ii) h is ≡ 0 in an open neighborhood of {x0}× [0, 1] .

Proof. The case n = 0 is an exercise. We now assume n > 0 . Let v ∈ H̃n(X)
be represented by a traceless mapping cycle f : X → Sn . Without loss of generality f
restricted to x0 is ≡ 0 , otherwise we can subtract a constant mapping cycle (without
changing the class v). Using the method of short geodesic homotopies, we find an open
neighborhood U of x0 and a homotopy Φ : U × [0, 1] → Sn from f|U to 0 . Now choose
a closed subset A of X which is contained in U and which is a neighborhood of x0 in X .
By lemma 14.3.1, the class v can be represented by a mapping cycle which is zero on A .
Now for the second part: we can start with a homotopy h ′ : X × [0, 1] → Sn which
satisfies property (i), with h ′ instead of h . We get this directly from the assumptions.
We can also arrange that h ′ restricted to {x0} × [0, 1] is zero. By the method of short
sectional homotopies, we can find an open neighborhood U of x0 in X and a homotopy
Φ ′ :

(
U × [0, 1]

)
× [0, 1] → Sn from h ′|U×[0,1] to zero. In addition we may assume that

f|U ≡ 0 and g|U ≡ 0 . Then Φ ′ will be zero on U × {0, 1} × [0, 1] . Reparameterizing, we
can improve Φ ′ to a homotopy Φ which is stationary near t = 0 and t = 1 , so that h ′

and Φ together define a mapping cycle

h ′ ∪Φ : (X//U)× [0, 1]→ Sn

where X//U is the mapping cone of U → X . As in the proof of lemma 14.3.1, there is a
map e : X→ X//U which is homotopic to the inclusion, and which is equal to the inclusion
on XrU , but which takes all of A to the cone point. The composition

X× [0, 1]
(x,t) 7→(e(x),t) // (X//U)× [0, 1]

h ′∪Φ // Sn

is the homotopy h that we require. �
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14.4. More on cup product and external product in cohomology

Definition 14.4.1. For spaces X and Y with base points x0 and y0 , the smash product
X∧ Y is the quotient space

X× Y
X× {y0} ∪ {x0}× Y

.

(Important example: if X is a sphere, X = Rm∪ {∞} with x0 =∞ and Y is also a sphere,
Y = Rn ∪∞ with y0 = ∞ , then X∧ Y is clearly identified with (Rm ∪ Rn) ∪∞ and so
is again a sphere.)

Corollary 14.4.2. Given a ∈ H̃m(X) and b ∈ H̃n(Y) , the external product of a and b

has a well-defined refinement to an element of H̃m+n(X∧ Y) .

Proof. Use proposition 14.3.3 to represent a by a mapping cycle f : X→ Sm which
is zero in an open neighborhood U of the base point x0 and to represent b by a mapping
cycle g : Y → Sn which is zero in an open neighborhood V of the base point y0 . Then
the composition

X× Y f⊗g // (Rm ∪ {∞})× (Rn ∪ {∞})
µm,n // Rm+n ∪ {∞},

which is supposed to represent a × b , is ≡ 0 on X × V and on U × Y , and so can be
viewed as a mapping cycle X ∧ Y → Sm+n . Its class in H̃m+n(X ∧ Y) is independent of
choices by the second part of proposition 14.3.3. �

Corollary 14.4.3. Let A and B be closed subsets of X . Given a ∈ H̃m(X/A) and

b ∈ H̃n(X/B) , we can write

a^ b ∈ H̃m+n(X/(A ∪ B)) .

In more detail: let us agree to view a and b as elements of Hm(X) and Hn(X) , re-
spectively, using the homomorphisms Hm(X/A) → Hm(X) and Hn(X/B) → Hn(X) de-
termined by the projections from X to X/A and X/B . If we form their cup product
a ^ b ∈ Hm+n(X) following standard instructions, then this is in the image of the
homomorphism

H̃m+n(X/(A ∪ B))→ Hm+n(X)

determined by the projection X → X/(A ∪ B) . Moreover there is a preferred choice

of element of H̃m+n(X/(A ∪ B)) which maps to the traditional cup product a ^ b ∈
Hm+n(X) .

Proof. The external product a× b lives in H̃m+n(X/A∧ X/B) by corollary 14.4.2.
The composition

X
diag // X× X // X/A∧ X/B

takes all of A ∪ B to the base point and can therefore be viewed as a map θ from
X/(A ∪ B) to X/A ∧ X/B . The re-defined a ^ b that we are looking for is θ∗(a × b) ∈
H̃m+n(X/(A ∪ B)) . �
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14.5. A glimpse of Lyusternik-Schnirelmann theory

Definition 14.5.1. A path-connected space X has Lyusternik-Schnirelmann (LS) invari-
ant ≤ r if there exists a covering of X by open subsets

U0, U1, U2, . . . , Ur

such that the inclusion Ui → X is homotopic to a constant map for each i = 0, 1, 2, . . . , r .
The same X is said to have LS invariant = r if it has LS invariant ≤ r but does not have
LS invariant ≤ r− 1 .

(Remarks: the official terminology is LS category, not LS invariant. But this clashes
with the use of the word category as in categories and functors. This is reminiscent of
the concept Baire category in general topology, which also clashes with category as in
categories and functors.
The above definition of LS invariant seems to be the standard in homotopy theory, but
the original old definition of LS invariant (and the one I used in the lecture on Tuesday,
and the one I found on Wikipedia!) differs from the above by 1 . That is, LS invariant r
as above would have been called LS invariant r+ 1 by the ancients.)

Example 14.5.2. A space X has LS invariant 0 if and only if it is contractible. The sphere
Sm for m > 0 has LS invariant 1 . The suspension ΣX of any nonempty space X has LS
invariant ≤ 1 because the two open sets given by ΣX minus north pole and ΣX minus
south pole make up an open covering of the type required. It is easy to show that the
torus S1 × S1 has LS invariant ≤ 3 . It is slightly harder to show that it has LS invariant
≤ 2 . It follows from proposition 14.5.3 below that it does not have LS invariant ≤ 1 ;
therefore the LS invariant of S1 × S1 is 2 . It is easy to show that complex projective
space CPn has LS invariant ≤ n . (There is a standard “atlas” for CPn as a differentiable
manifold, for example, which has n + 1 charts U1, . . . Un+1 , all contractible in their
own right. It follows that the inclusions Ui → CPn are nullhomotopic.) It follows from
proposition 14.5.3 below that CPn does not have LS invariant ≤ n − 1 ; therefore it has
LS invariant = n .

Proposition 14.5.3. Suppose that X is a path-connected normal space which has LS
invariant ≤ r− 1 . Then for any selection of elements a1, a2, . . . , ar in the cohomology of
X , where ai ∈ Hmi(X) and mi > 0 for i = 1, 2, . . . , r , we have

a1 ^ a2 ^ a3 ^ · · ·^ ar = 0 ∈ H
∑
imi(X) .

Proof. Choose a covering of X by open subsets U1, U2, . . . , Ur such that the inclu-
sion Ui → X is homotopic to a constant map for each i = 1, 2, . . . , r . Since X is normal,
it has a covering by closed subsets A1, A2, . . . , Ar such that Ai ⊂ Ui for i = 1, 2, . . . , r .
By lemma 14.3.1, the class ai is in the image of the homomorphism

Hmi(X/Ai)→ Hmi(X)

(even though we assume no special relationship between Ai and ai ). Therefore by corol-
lary 14.4.3 the cup product a1 ^ a2 ^ a3 ^ · · · ^ ar is in the image of the homomor-
phism

H
∑
mi(X/

⋃
iAi)

// H
∑
mi(X)

determined by the projection X −→ X/
⋃
iAi . But X/

⋃
iAi is a one-point space. �
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Remark 14.5.4. The LS invariant is rightly so called because it is a homotopy invariant.
Let us prove this. Suppose that f : X → Y is a map between path connected spaces and
that f admits a homotopy inverse g : Y → X . Suppose that Y has LS invariant ≤ r ,
so Y admits a covering by open subsets V0, V1, . . . , Vr such that the inclusions Vi → Y
are nullhomotopic. We need to show that X has LS invariant ≤ r , too. The open sets
Ui = f−1(Vi) form an open covering of X . The inclusion ei : Ui → X is nullhomotopic
because it is homotopic to (gf)ei = g(fei) where fei is already nullhomotopic because it
lands in Vi ⊂ Y . �

14.6. Another glimpse of Lyusternik-Schnirelmann theory

Proposition 14.6.1. Let Y be a path-connected normal space with base point ? which has
LS invariant ≤ r− 1 . Then the diagonal map

Y −→ Y × Y × · · · × Y︸ ︷︷ ︸
r

is homotopic to a map with image contained in
⋃r
i=1 Y

i−1 × {?}× Yr−i .

Proof. Choose an open cover of Y with open sets U1, . . . , Ur such that the inclusion
Ui → Y is nullhomotopic for each i . For each i choose a nullhomotopy

(h
(i)
t : Ui → Y)t∈[0,1]

of the inclusion, so that h
(i)
0 (y) = y and h

(i)
1 (y) = ? for all y ∈ Ui . Let us extend the

parameter interval for these homotopies by setting

h
(i)
t = h

(i)
1 if t > 1.

Choose a partition of unity (ψ1, ψ2, . . . , ψr) subordinate to the open covering1 by U1, . . . , Ur ;
so ψi : Y → [0, 1] is continuous, supp(ψi) ⊂ Ui and

∑
iψi ≡ 1 . Put

gi,t(y) =

{
h
(i)
t·r·ψi(y)(y) if y ∈ Ui

y if y /∈ Ui

for t ∈ [0, 1] . (This is continuous because supp(ψi) is closed in Y by definition and
contained in Ui .) Define a homotopy(

ht : Y → Y × Y × · · · × Y
)
t∈[0,1]

by setting ht(y) = (g1,t(y), . . . , gr,t(y)) . Then h0(y) = (y, y, . . . , y) for all y ∈ Y . For
every y ∈ Y there is some i ∈ {1, 2, . . . , r} such that rψi(y) = 1 ; then gi,1(y) = ? for
that i , by construction. Therefore h1 is a map with image contained in

⋃r
i=1 Y

i−1× {?}×
Yr−i . �

Another proof of proposition 14.5.3. Write ai ∈ H̃mi(X) . Using corollary 14.4.2
we get for the external product

a1 × a2 × · · · × ar ∈ H̃
∑
imi(X∧ X∧ X · · ·∧ X).

1If Y is paracompact, then every open covering of Y has a subordinate partition of unity. But I think
that in the case of a finite open covering, it suffices to assume that Y is normal.
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The class a1 ^ a2 ^ a3 ^ · · ·^ ar ∈ H̃
∑
imi(X) is obtained from that by applying the

homomorphism in (reduced) cohomology determined by the composition

X
diag // X× X× · · · × X︸ ︷︷ ︸

r

// X∧ X∧ X · · ·∧ X︸ ︷︷ ︸
r

.

But that composition is nullhomotopic by proposition 14.6.1. �



CHAPTER 15

More on products ... and the cap product

15.1. Naturality of products

Proposition 15.1.1. The external products in homology and cohomology are natural. �

To spell this out, suppose that f : X1 → Y1 and g : X2 → Y2 are continuous maps. Let
f× g : X1 × X2 −→ Y1 × Y2 be given by (f× g)(x1, x2) = (f1(x1), f2(x2)) . The following
squares are claimed to be commutative.

Hm(X1)×Hn(X2)
(a,b) 7→a×b //

(a,b)7→(f∗(a),g∗(b))

��

Hm+n(X1 × X2)

(f×g)∗
��

Hm(Y1)×Hn(Y2)
(u,v) 7→u×v // Hm+n(Y1 × Y2)

Hm(X1)×Hn(X2)
(a,b)7→a×b // Hm+n(X1 × X2)

Hm(Y1)×Hn(Y2)

(a,b)7→(f∗(a),g∗(b))

OO

(u,v) 7→u×v // Hm+n(Y1 × Y2)

(f×g)∗
OO

Corollary 15.1.2. The cup product in cohomology is natural. �

To spell this out as well, suppose that f : X→ Y is continuous. For u in Hm(Y) and v in
Hn(Y) we have u ^ v in Hm+n(Y) and f∗(u) in Hm(X) as well as f∗(v) in Hn(X) . It
is claimed that

f∗(u^ v) = f∗(u) ^ g∗(v) ∈ Hm+n(X).

To unravel this some more we introduce the concept of a graded ring.

Definition 15.1.3. A graded ring is a family (Rn)n∈Z of abelian groups Rn together with
bi-additive maps Rm×Rn −→ Rm+n for all m,n ∈ Z (for which we write (a, b) 7→ a ·b)
such that the following conditions are satisfied.

• The associative law holds:

(a · b) · c = a · (b · c) ∈ Rm+n+p

for all a ∈ Rm , b ∈ Rn and c ∈ Rp .
• There is an element in R0 , denoted by 1 , such that 1 · a = a = a · 1 for every
m ∈ Z and a ∈ Rm . (This is automatically unique.)

The graded ring R = (Rm)m∈Z is graded commutative if for all m,n ∈ Z and a ∈ Rm ,
b ∈ Rn we have a · b = (−1)mnb · a .
A homomorphism h from one graded ring (Rn)n∈Z to another, (Sn)n∈Z , is a sequence
(hn : Rn → Sn)n∈Z of homomorphisms of abelian groups such that hm+n(a ·b) = hm(a) ·
hn(b) holds in Sm+n for every a ∈ Rm and b ∈ Rn .

114
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Example 15.1.4. A space X determines a graded ring (Rn)n∈Z where Rn is Hn(X) for
n ≥ 0 and Rn = 0 for n < 0 . The product Rm × Rn → Rm+n is the cup product,
a · b := a ^ b . This graded ring is graded commutative. Standard notation for this
graded ring is probably H∗(X) , which is admittedly not ideal.
The message of 15.1.2 is that for a continuous map f : X→ Y , the induced maps

f∗ : Hn(Y)→ Hn(X)

for all n ≥ 0 make up a homomorphism of graded rings from the graded ring H∗(Y) to
the graded ring H∗(X) .

Example 15.1.5. If you have heard about differential forms, then you will remember the
following example of a graded ring. Let V be a k-dimensional vector space over R . For
an integer n ≥ 0 let altn(V) be the vector space of alternating n -forms on V . (These
are the multilinear maps

ω : V × V × V × · · · × V︸ ︷︷ ︸
n

−→ R

which are insensitive to a permutation of the n variables except for a factor ±1 , the sign of
the permutation.) The shuffle product is a bilinear map altm(V)× altn(V)→ altm+n(V) .
For n < 0 put altn(V) := 0 . Then the collection of vector spaces (altn(V))n∈Z with the
shuffle product is a graded ring. It is also graded commutative.

15.2. Products and the Mayer-Vietoris sequence

Let Y be a space with open subsets V and W such that V ∪W = Y . Let Z be a another
space and choose a class b ∈ Hp(Z) . From the homology Mayer-Vietoris sequence of
Y, V,W we have a boundary homomorphism

∂ : Hm(Y) −→ Hm−1(V ∩W) .

From the homology Mayer-Vietoris sequence of Y × Z,V × Z,W × Z we have a boundary
homomorphism

∂ : Hm+p(Y × Z) −→ Hm+p−1((V ∩W)× Z) .

Proposition 15.2.1. The following square commutes:

Hm(Y)

×b
��

∂ // Hm−1(V ∩W)

×b
��

Hm+p(Y × Z)
∂ // Hm+p−1((V ∩W)× Z)

This is best done by going back to the definitions. Represent a and b by mapping cycles
with compact support:

α : Rm → Y, β : Rn → Z

so that a× b is rep by α⊗ β : Rm × Rn → Y × Z , which again has compact support.

Corollary 15.2.2. The following square commutes up to multiplication by (−1)p :

Hm(Y)

b×
��

∂ // Hm−1(V ∩W)

b×
��

Hm+p(Z× Y)
∂ // Hm+p−1(Z× (V ∩W))
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Proof. This could be done by inspection, too, but we can also deduce it from propo-
sition 15.2.1 in the following way. There is a commutative diagram

Hm(Y)

×b
��

∂ // Hm−1(V ∩W)

×b
��

Hm+p(Y × Z)

∼=

��

∂ // Hm+p−1((V ∩W)× Z)

∼=

��
Hm+p(Z× Y)

∂ // Hm+p−1(Z× (V ∩W))

where the top square commutes by the proposition and the bottom square commutes
by naturality of the Mayer-Vietoris sequence. Choose a ∈ Hm(Y) and chase it through
the diagram all the way to Hm+p−1(Z × (V ∩W)) . One way gives ∂((−1)mpb × a)) =
(−1)mp∂(b × a) and the other way gives (−1)(m−1)pb × ∂(a) . Therefore ∂(b × a) =
(−1)pb× ∂(a) . �

The cohomology versions are as follows. We can keep Y, V,W as above but we need to make
some assumptions. For simplicity suppose that Y, V,W and V ∩W are paracompact, and
also that Y×Z , V×Z , W×Z and (V∩W)×Z are paracompact. Choose b ∈ Hp(Z) . From
the cohomology Mayer-Vietoris sequence of Y, V,W we have a boundary homomorphism

δ : Hm(V ∩W) −→ Hm+1(Y) .

From the cohomology Mayer-Vietoris sequence of Y×Z,V×Z,W×Z we have a boundary
homomorphism

δ : Hm+p((V ∩W)× Z) −→ Hm+p+1(Y × Z) .
Proposition 15.2.3. The following square commutes:

Hm(V ∩W)
δ //

×b
��

Hm+1(Y)

×b
��

Hm+p((V ∩W)× Z) δ // Hm+p+1(Y × Z)

Corollary 15.2.4. The following square commutes up to multiplication by (−1)p :

Hm(V ∩W)
δ //

b×
��

Hm+1(Y)

b×
��

Hm+p(Z× (V ∩W))
δ // Hm+p+1(Z× Y)

There are variants of these statements for long exact sequences associated with a map
A → X and its mapping cone cone(A → X) . Just to give the idea, here is the homology
version.

Proposition 15.2.5. The following square commutes:

Hm(cone(A→ X))
∂ //

×b
��

Hm−1(A)

×b
��

Hm+p(cone(A× Z→ X× Z)) ∂ // Hm+p−1(A× Z)
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Note in passing that cone(A×Z→ X×Z) should not be confused with cone(A→ X)×Z .
But it is a quotient space of cone(A→ X)× Z in an obvious way, and this must be used
to make sense of the left-hand column in the square.

15.3. Products and cellular chain complexes

Let X and Y be CW-spaces, and for simplicity suppose that Y is compact (so Y has only
finitely many cells). Then X× Y is also a CW-space in such a way that

(X× Y)n =

n⋃
p=0

Xp × Yn−p.

It was mentioned/promised earlier that we have

C(X)⊗ C(Y) ∼= C(X× Y)

for the cellular chain complexes. Now is the time to clarify this using external products
in homology. We start by noting that there is an inclusion map

ep,q : (X
p/Xp−1)∧ (Yq/Yq−1) −→ (X× Y)p+q/(X× Y)p+q−1

which becomes clearer if we note

(Xp/Xp−1)∧ (Yq/Yq−1) =
Xp × Yq

(Xp × Yq−1) ∪ (Xp−1 × Yq)
.

Therefore we obtain a homomorphism

vp,q : C(X)p ⊗ C(Y)q −→ C(X⊗ Y)p+q
by composing as follows:

C(X)p ⊗ C(Y)q

H̃p(X
p/Xp−1)⊗ H̃q(Yq/Yq−1)

∼= external prod.

��
H̃p((X

p/Xp−1)∧ (Yq/Yq−1))

induced by ep,q

��
H̃p+q((X× Y)p+q/(X× Y)p+q−1)

C(X× Y)p+q

The arrow labeled external product is an isomorphism because Xp/Xp−1 is a wedge of
p-spheres and Yq/Yq−1 is a wedge of q -spheres, so that the smash product (Xp/Xp−1)∧
(Yq/Yq−1) is a wedge of (p+ q) -spheres.
Writing n = p+ q and q = n− p , we obtain a homomorphism

(v0,n, v1,n−1, . . . , vn,0) :

n⊕
p=0

C(X)p ⊗ C(Y)n−p −→ C(X× Y)n .
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This is an isomorphism. (The infinite cyclic summand in the target group corresponding
to an n -cell E of X × Y has a counterpart in the source group which can be found by
asking how that n-cell is a product of a p-cell E ′ of X and an (n−p) -cell E ′′ of Y . The
pair of cells (E ′, E ′′) contributes an infinite cyclic summand to the source group.) Instead
of
⊕n
p=0 C(X)p ⊗ C(Y)n−p we can also write (C(X) ⊗ C(Y))n using definition 12.1.9 of

the tensor product of chain complexes. At the same time we rename our map

un : (C(X)⊗ C(Y))n −→ C(X× Y)n .
Proposition 15.3.1. The isomorphisms un :

(
C(X) ⊗ C(Y)

)
n
−→ C(X × Y)n taken to-

gether for all n are compatible with the differentials. So they define an isomorphism of
chain complexes from the tensor product C(X) ⊗ C(Y) of the cellular chain complexes of
X and Y to C(X× Y) , the cellular chain complex of the product X× Y .

Proof. (A more grown-up proof would probably rely on proposition 15.2.5, but I
could not face this.) Choose a p-cell E in X and a q -cell F in Y , where p+ q = n . Let
KE ⊂ C(X)p and KF ⊂ C(Y)q be the corresponding infinite cyclic summands. It is enough
to verify that the equation dun = un−1d holds on the infinite cyclic summand

KF ⊗ KE ⊂
(
C(X)⊗ C(Y)

)
n

since E and F were arbitrary. Now we use the following observation (which is going to
be explained below). Let A = Dp and B = Dq , viewed as CW-spaces with the standard
structure. (For example A has three cells except when p = 0 .)

(z) There exists a cellular map A→ X such that the induced map of cellular chain
complexes takes C(A)p isomorphically to the summand KE ⊂ C(X)p . There
exists a cellular map B→ Y such that the induced map of ... isomorphically to
the summand KF ⊂ C(Y)q .

If we believe this for the moment, then the proof is reduced to showing that the diagram

(zz) (C(A)⊗ C(B))n
un //

��

C(A⊗ B)n

��
(C(A)⊗ C(B))n−1

un−1 // C(A⊗ B)n−1
commutes, where the left-hand vertical arrow is the differential in the tensor product of
C(A) and C(B) , while the right-hand vertical arrow is the differential in C(A× B) . One
might say that this is true by inspection. But here are some details.1 I am going to assume
p, q > 1 . (The case where p = 0 or q = 0 is not interesting. The cases where neither
is zero but p = 1 or q = 1 should be looked at separately; they are easier than the
cases where p, q > 1 but still interesting.) Write A = Dp and B = Dq . The p-cell of
A has a preferred orientation as a smooth manifold and we orient the (p − 1) -cell (as
a smooth manifold) according to the ONF convention, outward normal first. If we now
choose characteristic maps for the p-cell and for the (p−1) -cell to be locally diffeomorphic
away from the boundaries of the source disks and, in that sense, orientation preserving,
then the differential

Z = C(A)p → C(A)p−1 = Z
is the identity. See remark 7.2.7. Proceed in the same way to choose characteristic maps
for B . Now the cells of A × B of dimension n = p + q and n − 1 are already equipped

1They are still very sketchy, but I hope they illustrate what incidence numbers are and how they can
sometimes be determined.
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with characteristic maps, which have the form Dk × D` → A × B where (k, `) = (p, q)
or (p, q − 1) or (p − 1, q) . (Use the characteristic maps which we selected for A and
B .) These characteristic maps for the cells of A × B have some smoothness properties
and so provide orientations for the cells as smooth manifolds. The incidence number for
the unique n-cell and the (n − 1) cell which is contained in Sp−1 × Dq is 1 . This is
another way of saying that the orientations of these cells are compatible in the sense of the
ONF convention, which is easy to check (in a neighborhood in A×B of any point in that
(n − 1) -cell). Similarly, the incidence number for the unique n -cell and the (n − 1) -cell
which is contained in Dp×Sq−1 is (−1)p . (The sign has something to do with an outward
normal which comes as number p + 1 in a list of p + q vectors instead of coming first.)
This determination of incidence numbers establishes the commutativity of (zz) in the
cases p, q > 1 .
It remains to give an argument for (z) . We start by choosing a characteristic map
f : Dp → X for the cell E . There is no guarantee that this is cellular; for p > 1 , the 0-cell
of Dp might not be taken to a 0-cell of X . But it does take p-skeleton to p-skeleton,
and (p− 1) -skeleton to (p− 1) -skeleton, and so induces a map

Z = C(Dp)p −→ C(X)p

which gives an isomorphism of Z with the summand KE ⊂ C(X)p . Next, choose a ho-
motopy from f|Sp−1 to a cellular map, in Xp−1 . Use the homotopy extension property
to extend this to a homotopy (ht)t∈[0,1] from f = h0 to some other map h1 , in Xp .

So each ht is a map from Dp to Xp and takes Sp−1 to Xp−1 . Moreover h1 is cellular
by construction. Each ht induces a map Dp/Sp−1 → Xp/Xp−1 . Therefore h0 and h1
induce the same homomorphism from Z = C(Dp)p to C(X)p . As we noted before in
the case of h0 = f , that homomorphism gives an isomorphism of Z with the summand
KE ⊂ C(X)p . �

Corollary 15.3.2. Let the classes a ∈ Hp(X) ∼= H−p(hom(C(X),Z) and b ∈ Hq(Y) ∼=
H−q(hom(C(Y),Z)) be represented by a ′ ∈ hom(C(X)p,Z) and b ′ ∈ hom(C(Y)q,Z) ,
respectively. Then a×b ∈ Hp+q(X×Y) is represented by a ′⊗b ′ , more precisely, by the
composition

C(X× Y)p+q
∼=

15.3.1
// (C(X)⊗ C(Y))p+q

proj // C(X)p ⊗ C(Y)q
a ′⊗b ′ // Z .

Proof. Let X ′ = X/Xp−1 and Y ′ = Y/Yq−1 , so that X ′ and Y ′ are CW-spaces with
a base point which is a 0-cell. The projection X → X ′ induces a homomorphism from
H̃p(X ′) to Hp(X) which is onto (as one can see by using the description of the cohomology
groups in terms of the cellular chain complexes). Similarly the projection Y → Y ′ induces

a homomorphism from H̃q(Y ′) to Hq(Y) which is onto. Next, let X ′′ = Xp/Xp−1 and
Y ′′ = Yq/Yq−1 . Then the inclusion X ′′ ∧ Y ′′ → X ′ ∧ Y ′ induces a homomorphism

H̃p+q(X ′ ∧ Y ′) −→ H̃p+q(X ′′ ∧ Y ′′)
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which is injective (as one can see by using the description of the cohomology groups in
terms of the cellular chain complexes). Now we have the following commutative diagram:

Hp(X)×Hq(Y)
ext. prod. // Hp+q(X× Y)

H̃p(X ′)× H̃q(Y ′)

OOOO

��

ext. prod. // H̃p+q(X ′ ∧ Y ′)

OO

��

��

H̃p(X ′′)× H̃q(Y ′′)
ext. prod. // H̃p+q(X ′′ ∧ Y ′′)

(where we use corollary 14.4.2). Therefore it is enough to prove the following. If X ′′ is a
wedge

∨
α S

p and Y ′′ is a wedge
∨
β S

q , so that X ′′∧Y ′′ =
∨
α,β S

p+q , then the external
product of a class

a = (aα) ∈ H̃p(X ′′) ∼=
∏
α

Z

and a class

b = (bβ) ∈ H̃q(Y ′′) ∼=
∏
β

Z

is (aα · bβ) ∈ H̃q(X ′′ ∧ Y ′′) ∼=
∏
α,β Z . By naturality we can further reduce this to the

case where X ′′ = Sp and Y ′′ = Sq and

a = 1 ∈ Z ∼= H̃p(Sp), b = 1 ∈ Z ∼= H̃q(Sq).

The task is then to show that a × b = 1 ∈ H̃p+q(Sp+q) ∼= Z) . In other words, if a is
represented by the mapping cycle id : Sp → Sp and b is represented by id : Sq → Sq , then
a× b is also represented by id : Sp+q → Sp+q . This should be straightforward. �

15.4. The cap product

Lemma 15.4.1. For q ≥ 0 , the external product with the standard generator zq ∈ H̃q(Sq)
determines natural isomorphisms

Hm(X) −→ H̃m+q

(Sq × X
?× X

)
, Hm(X) −→ H̃m+q

(X× Sq
X× ?

)
.

Proof. The inclusion ?→ Sq is certainly a cofibration. It follows that the inclusion
?×X→ Sq×X is also a cofibration (by the retraction criterion ... reference???). Therefore
we have a long exact sequence

· · ·→ Hk(?× X)→ Hk(S
q × X)→ H̃k

(Sq × X
?× X

)→ Hk−1(?× X)→ · · ·
Since the homomorphisms Hk(?×X)→ Hk(S

q×X) in this sequence are clearly injective,
the long exact sequence breaks up into short exact sequences and we can write informally

H̃k

(Sq × X
?× X

)
=
Hk(S

q × X)
Hk(?× X)

.

Now we write Sq = V ∪W where V is Sq minus the north pole and W is Sq minus the
south pole. Then there is a long exact Mayer-Vietoris sequence

· · ·→ Hk((V∩W)×X)→ Hk(V×X)⊕Hk(W×X)→ Hk(S
q×X) ∂−→ Hk−1((V∩W)×X)→ · · ·
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which we can also write in the form

· · ·→ Hk(S
q−1 × X)→ Hk(X)⊕Hk(X)→ Hk(S

q × X) ∂−→ Hk−1(S
q−1 × X)→ · · ·

because V,W ' ? and V ∩W ' Sq−1 . It follows easily that the arrow ∂ in the last long
exact sequence induces an isomorphism

Hk(S
q × X)

Hk(?× X)
−→ Hk−1(S

q−1 × X)
Hk−1(?× X)

.

If k = m + q and a ∈ Hm(X) , then ∂(zq × a) = ±zq−1 × a by proposition 15.2.1,
because in the Mayer-Vietoris sequence for Sq, V,W we have ∂(zq) = ±zq−1 . Therefore
the statement that we want to prove is true by induction on q . The induction beginning,
case q = 0 , is easy. �

Corollary 15.4.2. For q ≥ 0 , the external product with the standard generator zq in

H̃q(S
q) determines natural isomorphisms

Hm+p

(X× Sp
X× ?

)
−→ H̃m+p+q

(X× Sp+q
X× ?

)
.

Proof. There is a commutative triangle

Hm(X)

∼=

×zp

��
∼=

×zp+q

""

Hm+p

(X× Sp
X× ?

) ×zq // H̃m+p+q

(X× Sp+q
X× ?

)
.

If more clarification is needed, write

X× Sp

X× ?
= X+ ∧ Sp

where X+ means X t {∞} , viewed as a space with base point ∞ . Then

X× Sp+q

X× ?
= X+ ∧ Sp+q ∼= X+ ∧ Sp ∧ Sq .

�

Definition 15.4.3. Let [[g]] ∈ Hp(X) and [[f]] ∈ Hq(X) . The cap product

[[f]] _ [[g]] ∈ Hp−q(X)

is the class represented by the composition

Sp
g // X

diag // X× X id⊗f // X× Sq
quot // X× S

q

X× ?

where we use lemma 15.4.1: H̃p

(
X× Sq

X× ?

)
∼= Hp−q(X) .

Lemma 15.4.4. The cap product is associative: (a^ b) _ c = a_ (b_ c) .
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Proof. Let the degrees of a and b be p and q , respectively. Denote by Ka the
(grade-shifting) endomorphism of the homology of X given by cap product with a ; simi-
larly with b and a^ b instead of a . Write σp for external multiplication ×zp ; similarly
with q and p+ q . The challenge is to show

KaKb = Ka^b .

By lemma 15.4.1 and by the definition of the cap product, it is enough to show

σp+qKaKb = σp+qKa^b.

Choose mapping cycles α and β representing a and b respectively. We get a commutative
diagram of maps and mapping cycles

X

diag

��

diag // X× X× X

id⊗id⊗β

��

id⊗α⊗β

%%

X× X

id⊗β
��

X× Sq

quot.

��

diag⊗id // X× X× Sq

quot.

��

id⊗α⊗id // X× Sp × Sq

quot.

��

X× Sq

X× ?

diag⊗id // X× X× Sq

(u, v, ?) ∼ (u ′, v, ?)

id⊗α⊗id // X× S
p+q

X× ?

(The term in the middle of the lower row is a product of two factors, one of which is a
copy of X while the other is a copy (X × Sq)/(X × ?) . But to make the diagram work
we need to write it in this confusing way.) Going along the top from X to the bottom
right term gives the mapping cycle which induces σp+qKa^b . Going along the left-hand
column gives the mapping cycle which induces σqKb . Going along the bottom row we get
the mapping cycle which induces σq(σpKa)σ

−1
q . (Use corollary 15.4.2.) Therefore

σp+qKa^b = (σqσpKaσ
−1
q )(σqKb) = σp+qKaKb. �

The cap product leads us to the notion of graded module over a graded ring.

Definition 15.4.5. A graded module over a graded ring R = (Rn)n∈Z is a sequence W =
(Wm)m∈Z of abelian groups Wm , together with bi-additive maps Rn ×Wm −→ Wm+n

(for which we write (a, x) 7→ a · x) such that the following conditions are satisfied.

• The associative law holds: a·(b·x) = (a·b)·x for a ∈ Rp , b ∈ Rq and x ∈Wm ,
where p, q,m are arbitrary.

• For every m ∈ Z and x ∈ Wm we have 1 · x = x , where 1 ∈ R0 is the
multiplicative unit.

The obvious example is: R = H∗(X) and W = H∗(X) , using the cup product as the
multiplication in R and the cap product for the graded module structure on W . More
precisely, let Rn be H−n(X) and let Wm be Hm(X) and let the product R−n ×Wm →
Wm−n be the cap product,

Hn(X)×Hm(X)→ Hm−n(X).



15.4. THE CAP PRODUCT 123

(In an earlier edition of this chapter I gave a slightly different definition of graded module
which led me to define Rn = Hn(X) rather than Rn = H−n(X) . A more honest way to
resolve the matter would be to write H−n(X) consistently for what we have until now
called Hn(X) , but that would obviously cause a lot of confusion.)



CHAPTER 16

Orientations and fundamental classes of manifolds

16.1. Local homology groups and orientations of manifolds

Let X be a space and A a closed subspace. I will use the notation X//A for the mapping
cone of the inclusion A→ X .

Proposition 16.1.1. Taking X and A ⊂ X as above, suppose that X is a normal space.
Let L be a subset of A such that the closure of L in X is contained in the interior of A .
Then the inclusion

(Xr L)//(Ar L) −→ X//A

is a homotopy equivalence.

Proof. Exercise. �

Remark 16.1.2. The point of this proposition is that it allows us to import some concepts
from singular homology theory (definition B.1.2). Singular homology has the concept of
relative homology groups Hn(X,A) for a space X and subspace A . By construction they
fit into a long exact sequence

· · ·→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ Hn−1(X)→ · · ·
Moreover singular homology theory has the following theorem famously called excision: if
L ⊂ A ⊂ X are such that the closure of L in X is contained in the interior of A , then the
inclusion-induced homomorphism

Hn(Xr L,Ar L) −→ Hn(X,A)

is an isomorphism. The long exact sequence above and the excision theorem, and homotopy
invariance, are the standard tools used to calculate singular homology groups of spaces.
(They are more standard than the Mayer-Vietoris sequences which I have emphasized,
although the Mayer-Vietoris sequences exist, too, in singular homology.)

But it turns out that Hn(X,A) is always isomorphic to H̃n(X//A) , in singular homology
theory. The excision theorem can therefore be obtained as a corollary of proposition 16.1.1
if X happens to be a normal space.
Therefore we can survive rather well without homology of pairs Hn(X,A) (no matter
whether it is singular homology or homology based on mapping cycles) by using the reduced

homology of mapping cones H̃n(X//A) instead. Or we can define Hn(X,A) to mean

H̃n(X//A) . We have the long exact sequence of proposition 12.3.2. The same applies
mutatis mutandis in cohomology. (There is the long exact sequence of proposition 13.3.1.)
Because of proposition 16.1.1 we get isomorphisms

H̃n((Xr L)//(Ar L)) −→ H̃n(X//A),

H̃n((Xr L)//(Ar L))←− H̃n(X//A)
124
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in homology and cohomology based on mapping cycles, if X is normal. In the homology
case, the hypothesis that X be normal turns out to be unnecessary, but no proof of that
will be given here.

Definition 16.1.3. The local homology groups of a normal space X at a point x ∈ X are
the groups H̃n(X//(X r {x})) , for n ∈ Z . (I take the liberty to write H̃n(X//(X r x)) in
the following.)

By proposition 16.1.1, if U is any neighborhood of x in X , then the inclusion-induced
homomorphism

H̃n(U//(Ur x)) −→ H̃n(X//(Xr x))
is an isomorphism. This is the locality property of the local homology groups.

Example 16.1.4. Let M be an n-dimensional manifold, x ∈ M . Let U be an open
neighborhood of x which is homeomorphic to Rn . Then it is easy to see that U//(Ur x)
is homotopy equivalent to a sphere Sn . In this way we get a calculation of the local
homology groups of M at any point x ∈M :

H̃k(M//(Mr x)) ∼=

{
Z if k = n
0 otherwise.

Lemma 16.1.5. The local homology groups H̃n(M//(Mrx)) of an n-dimensional manifold
M form a fiber bundle Mω → M with fibers homeomorphic to Z . (Each fiber is also
equipped with a structure of abelian group, etc.).

Proof. (This lemma should perhaps be called a definition.) We can define the fiber
bundle using fiber bundle charts. Choose a covering of M by open subsets Uα satisfying
the following condition. For each α there exists an open set Vα in M which contains Uα
and a homeomorphism Vα → Rn which takes Uα homeomorphically to the open unit ball
in Rn . Then H̃n(M//(M r Uα)) is isomorphic to Z . We choose specific isomorphisms

from H̃n(M//(MrUα)) to Z . For x ∈ Uα we have isomorphisms

Z ∼= H̃n(M//(MrUα))→ H̃n(M//(Mr x))

induced by the inclusion of M r Uα in M r x . As x runs through Uα , this gives us a
bundle chart. In other words, it allows us to make a bijection ϕα from the disjoint union
of the local homology groups H̃n(M//(Mr x)) for x ∈ Uα to a product

Uα × Z .

We need to show that the changes-of-charts (ϕβ)
−1ϕα are continuous at every x ∈

Uα ∩ Uβ . For that, choose an open subset W ⊂ Uα ∩ Uβ containing x with the usual
good properties. (Namely, there exist another open subset W ′ of M and a homeomor-
phism W ′ → Rn which takes W homeomorphically to the open unit ball.) Then the
homomorphisms in the diagram

H̃n(M//(MrUα)) // H̃n(M//(MrW))

��

H̃n(M//(MrUβ))oo

H̃n(M//(Mr x))

are all isomorphisms, for x ∈W . It follows that the Z-coordinate of (ϕβ)
−1ϕα is constant

on W .
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Definition 16.1.6. An orientation of an n-dimensional manifold M at a point x ∈M is a
choice of generator of the local homology group H̃n(M//(Mrx)) (which is infinite cyclic).

An orientation of an n -dimensional manifold M is a choice of s(x) ∈ H̃n(M//(M r x)) ,

for every x ∈M , such that s(x) is a generator of H̃n(M//(Mrx)) and the map x 7→ s(x)
from M to Mω is continuous. (In that case s : M →Mω is a continuous section of the
fiber bundle Mω →M .)
The manifold M is said to be orientable if it admits an orientation.

Remark 16.1.7. An orientation s of M gives rise to a homeomorphism

M× Z→Mω

given by (x, z) 7→ z · s(x) ∈ H̃n(M//(Mrx)) . That amounts to a trivialization of the fiber
bundle Mω →M , respecting the abelian group structure. Conversely, etc.
Instead of focusing on the fiber bundle Mω → M we can also focus on the sub-bundle
M×ω →M which selects the two generators in each fiber (where the fiber is viewed as an
infinite cyclic group). This is then a fiber bundle on M where each fiber has exactly two
elements, in other words, a two-sheeted covering. An orientation of M can also be defined
as a section of

M×ω →M .

16.2. Fundamental classes

Definition 16.2.1. A fundamental class for an n-dimensional manifold M is an element
z ∈ Hn(M) such that, for each x ∈ M , the image of z under the inclusion-induced
homomorphism

Hn(M) −→ H̃n(M//(Mr x))

is a generator of the infinite cyclic group H̃n(M//(Mr x)) .

More generally, for an open subset U of M , an element z ∈ H̃n(M//U) will be called
a fundamental class relative to U if, for each x ∈ M r U , the image of z in each local
homology group H̃n(M//(Mr x)) is a generator of H̃n(M//(Mr x)) .

Remark 16.2.2. A fundamental class z for M defines an orientation s of M by s(x) =

image of z in H̃n(M//(M r x)) . Therefore a fundamental class can only exist of M is
orientable.
Suppose that M is not compact; then there is no fundamental class. Indeed, we know
that for any mapping cycle f : Sn → M representing a class in Hn(M) , there exists a
compact subset K ⊂ M such that f can be viewed as a mapping cycle from Sn to K .
Then, for x ∈ M r K , the image of the class of f in H̃n(M//(M r x)) is zero (therefore
not a generator) because K is contained in Mr x .
By a similar argument, if U is an open subset of M whose complement is noncompact,
then there cannot be a fundamental class relative to U .

Let U ⊂M be open with complement A . We write Mω|A → A for the restriction of the
fiber bundle Mω → M to A . Let Γ(Mω|A → A) be the set of continuous sections of
Mω|A → A (maps from A to Mω|A which are right inverse to the bundle projection). It
is an abelian group by pointwise addition. Briefly, Γ(Mω|A → A) is the set of functions
s which for every x ∈ A select continuously

s(x) ∈ H̃n(M//(Mr x)).
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A homomorphism ΦA of abelian groups from H̃n(M//U) to Γ(Mω|A → A) is defined by

z 7→ (
A 3 x 7→ image of z in H̃n(M//(Mr x))

)
.

Theorem 16.2.3. Suppose that A is compact. Then this homomorphism

ΦA : H̃n(M//U) −→ Γ(Mω|A → A)

is an isomorphism. Moreover H̃k(M//U) is zero for k > n .

Proof. We are going to prove this by a process reminiscent of induction. There are
two “induction beginnings” like this:

(i) Both statements hold for A if A is a point or if A = ∅ .
(ii) Both statements hold for A if there exist a neighborhood V of A in M and a

homeomorphism h : V → Rn taking A to the cube [0, 1]n .

There are two types of “induction steps” as follows.

(iii) If the two statements hold for A = A1 and A = A2 and A = A1 ∩ A2 , then
they hold for A = A1 ∪A2 .

(iv) Suppose that A0 ⊃ A1 ⊃ A2 ⊃ · · · is a descending sequence of compact subsets
of M . If the two statements hold for A = Ai , where i = 0, 1, 2, . . . , then they
hold for A =

⋂
iAi .

Proof of (i): clear. Proof of (ii): choose x ∈ A . In the commutative square

H̃n(M//(MrA))
(incl.)∗ //

ΦA

��

H̃n(M//(Mr x))

Φx

��
Γ(Mω|A → A)

restr. // Γ(Mω|x → x)

the upper horizontal arrow is an isomorphism by inspection. The lower horizontal arrow
is an isomorphism because A is contractible (which implies that any fiber bundle over
A is a trivial fiber bundle, here: isomorphic to the projection A × Z → A). The right-
hand vertical arrow is an isomorphism by (i). Therefore the left-hand vertical arrow is an
isomorphism. For k > n , we also have isomorphisms

H̃k(M//(MrA)) ∼= H̃k(M//(Mr x)) = 0.

Proof of (iii): Let X1 = M//(M r A1) and X2 = M//(M r A2) , so that X1 ∪ X2 =
M//(Mr (A1∩A2)) and X1∩X2 =M//(Mr (A1∪A2)) . It is not quite true that X1 and
X2 are open in X1 ∪ X2 , but nevertheless there is a long exact Mayer-Vietoris sequence

· · · // Hk(X1 ∩ X2) // Hk(X1)⊕Hk(X2) // Hk(X1 ∪ X2) // Hk−1(X1 ∩ X2) // · · ·

Reason: it is easy to find open neighborhoods Y1 and Y2 of X1 and X2 respectively in
X1 ∪ X2 such that the inclusions X1 → Y1 and X2 → Y2 and X1 ∪ X2 → Y1 ∪ Y2 are
homotopy equivalences. (Let Y1 be the union of X1 and a standard neighborhood of the
cone tip in X1 ∪ X2 , consisting of all points represented by pairs (t, x) where t > 1/2 ;
remember that the cone tip corresponds to t = 1 . See remark 16.2.5 for details.) Since
Hk(X1 , Hk(X2) and Hk(X1 ∪ X2) are zero by assumption if k > n , exactness of the
sequence implies that Hk(X1 ∩ X2) is zero for all k > n . For k = n we can extract an
exact subsequence

0 // Hn(X1 ∩ X2) // Hn(X1)⊕Hn(X2) // Hn(X1 ∪ X2)
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which easily implies an exact sequence

0 // H̃n(X1 ∩ X2) // H̃n(X1)⊕ H̃n(X2) // H̃n(X1 ∪ X2).

That exact sequence is part of a commutative diagram

0 // H̃n(X1 ∩ X2) //

��

H̃n(X1)⊕ H̃n(X2) //

��

H̃n(X1 ∪ X2)

��
0 // Γ(Mω|A1∪A2 → A1 ∪A2) // Γ(Mω|A1 → A1)

⊕Γ(Mω|A2 → A2)
// Γ(Mω|A1∩A2 → A1 ∩A2)

where the vertical arrows are given by ΦA1∪A2 , ΦA1 ⊕ ΦA2 and ΦA1∩A2 . The lower
row of this diagram is clearly also exact. (If continuous sections of Mω →M are specified
over A1 and A2 , and they agree over A1 ∩ A2 , then they glue uniquely to a continuous
section over A1 ∪ A2 .) Therefore, since the middle and right-hand vertical arrows are
isomorphisms by assumption, the left-hand vertical arrow is an isomorphism.
Proof of (iv). Let Xi = M//(M r Ai) and X∞ = M//(M r

⋂
iAi) =

⋃
i Xi . It is

unfortunate that the Xi are not open in X∞ , but as in the proof of (iii) it is easy to
construct open neighborhoods Yi of Xi in X∞ such that the inclusions Xi → Yi are
homotopy equivalences. We also require Yi ⊂ Yi+1 for all i . Now we can say that X∞
is the monotone union of the open subset Yi for i = 0, 1, 2, . . . . By lemma 12.4.5, the
inclusions Yi → X∞ induce an isomorphism

colimi≥0 H̃k(Yi) −→ H̃k(X∞) .

(This may look like undefined notation or vocabulary. The symbol colim means direct
limit, a notion from category theory. Here is a translation. It follows from 12.4.5. that
every element of H̃k(X∞) comes from H̃k(Yi) for some i , and that if two elements of

H̃k(Yi) have the same image in H̃k(X∞) , then there is j > i such that they already have

the same image in H̃k(Y`) . See also remark ?? for more details.) Therefore we can also
say that the inclusions Xi → X∞ induce an isomorphism

colimi≥0 H̃k(Xi) −→ H̃k(X∞) .

In the case where k > n , this implies that H̃k(X∞) = 0 because H̃k(Xi) = 0 for i =
0, 1, 2, . . . by assumption. In the case k = n we note that restriction of sections from Ai
to A∞ =

⋂
iAi leads to an isomorphism

colimi≥0 Γ(Mω|Ai → Ai) −→ Γ(Mω|A∞ → A∞).

(Translation: it is claimed that every section of Mω → M over A∞ can be extended to
a section over Ai for some i , and any two such extensions to Ai agree on Aj for some
j > i . See also remark rem-detfight for more details.) Therefore we can complete the
argument using the commutative diagram

colimi≥0 H̃n(Xi)
∼= //

∼=

��

H̃n(X∞)

��
colimi≥0 Γ(Mω|Ai → Ai)

∼= // Γ(Mω|A∞ → A∞).



16.2. FUNDAMENTAL CLASSES 129

Now all the tools are in place and we can get the induction machinery going. In case we
need this again, here is an abstract formulation. Suppose that K is a collection of compact
subsets of M which satisfies the following conditions.

(a) ∅ ∈ K .
(b) If A is a compact subset of M and there exist an open neighborhood V of A

and a homeomorphism V → Rn taking A to the cube [0, 1]n , then A ∈ K .
(c) If (Ai)i=0,1,... is a descending sequence of compact subsets of M such that

Ai ∈ K for all i , then
⋂
iAi ∈ K .

(d) If A1 ∈ K and A2 ∈ K and A1 ∩A2 ∈ K , then A1 ∪A2 ∈ K .

Then K is the collection of all compact subsets of M . I leave this as an exercise. �

Corollary 16.2.4. If M is a compact n-manifold (without boundary), then

(i) Hn(M) is isomorphic to the abelian group of sections of Mω →M ;
(ii) there is a bijection between the set of fundamental classes for M and the set of

orientations of M .

If M is also connected, then Hn(M) ∼= Z (in the orientable case), or Hn(M) = 0 (in the
non-orientable case).

Proof. Statements (i) and (ii) follow directly from the special case A = M of the-
orem 16.2.3. Now suppose that M is connected. If M is orientable, then the bun-
dle Mω → M is isomorphic to a trivial bundle M × Z → M . Therefore sections of
it correspond to (continuous) maps from M to Z . Such maps are constant. There-
fore Hn(M) ∼= Z by theorem 16.2.3. — For the converse, we note that every fiber of
Mω →M is an abelian group isomorphic to Z , and although we have a choice of two iso-
morphisms, the two differ only by a sign. So the absolute value of an element in any fiber
of Mω →M is a well-defined non-negative integer. If M is connected and Hn(M) 6= 0 ,
then by theorem 16.2.3, the fiber bundle Mω → M has a section σ : M → Mω such
that σ(x0) 6= 0 ∈ H̃n(M//(M r x0)) for some x0 ∈ M . Then |σ(x0)| > 0 and we have
|σ(x)| = |σ(x0)| > 0 for all x ∈M , by continuity. Divide σ by the number |σ(x0)| to ob-
tain a continuous section of the fiber bundle Mω →M which qualifies as an orientation.
Therefore M is orientable. �

Remark 16.2.5. In this remark, some (I hope all) of the missing details in the proof of
theorem 16.2.3 are supplied.
(a) Let U be an open subset of a space X . Then X//U = cone(U → X) is a subset of
X//X = cone(X) . It will hardly ever be open in X//X . But let W ⊂ X//X consist of all
points represented by pairs (t, x) where t > 1/2 . (The cone tip corresponds to t = 1 .)
Then (X//U) ∪W is open in X//X and the inclusion

e : X//U −→ (X//U) ∪W

is a homotopy equivalence. Therefore (X//U) ∪W is a good substitute for X//U in many
cases. Here is a proof of the claim that e is a homotopy equivalence. Choose a monotone
continuous function ψ : [0, 1] → [0, 1] which has ψ(0) = 0 and ψ(t) = 1 for t ≥ 1/2 .
Define g : X//X→ X//X by (t, x) 7→ (ψ(t), x) . The map g is homotopic to the identity by
the obvious homotopy hs(t, x) := (st+(1−t)ψ(x), x) where s ∈ [0, 1] . The map g restricts
to a map g0 : (X//U)∪W → X//U . The homotopy (hs)s∈[0,1] restricts to a homotopy from
g0e to the identity on X//U . Similarly, (h1−s)s∈[0,1] restricts to a homotopy from eg0 to
the identity.
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(b) For a diagram of abelian groups and homomorphisms

B0
f0 // B1

f1 // B2
f2 // B3

f3 // · · ·
the colimit of the diagram is an abelian group B∞ defined as follows. The elements of B∞
are equivalence classes of pairs (i, x) where i ∈ N and x ∈ Bi . Two such pairs (i, x) and
(j, y) are considered equivalent if for some k ≥ i, j the images of x ∈ Bi and y ∈ Bj in
Bk are equal. Addition of equivalence classes is defined as follows. Given representatives
(i, x) and (j, y) choose any k ≥ j, i and let x ′, y ′ be the images of x ∈ Bi and y ∈ Bj ,
respectively, in Bk . Define [(i, x)] + [(j, y)] = [(k, x ′ + y ′)] . This construction leads to a
commutative diagram of abelian groups and homorphisms

B0
f0 //

**

B1
f1 //

((

B2
f2 //

%%

B3
f3 //

��

· · ·

B∞
where the homomorphism from Bi to B∞ takes an element x of Bi to the equivalence
class of the pair (i, x) .
(c) Let p : E→ B be a fiber bundle with discrete fibers (also known as covering map). Let
A0 ⊃ A1 ⊃ A2 ⊃ A3 ⊃ . . . be a descending sequence of compact subsets of B and put
A∞ =

⋂
i≥0Ai . Write

pi : E|Ai → Ai

for the restricted fiber bundle (where we allow i ∈ N but also i =∞). We need to show:
any continuous section of p∞ can be extended to a continuous section of pi for some
i ∈ N ; and if two sections of pi determine the same section of p∞ by restriction, then
they determine the same section of pj for some j ≥ i , by restriction. Let us start with
a continuous section σ of p∞ . Because the fiber bundle is locally trivial and because
a continuous map from any space to a discrete space is locally constant, it is easy to
find (finitely many) open subsets U1, . . . Ur of B such that their union contains A∞ and
such that σ restricted to A∞ ∩Us extends to a continuous section τs on all of Us , for
s = 1, 2, . . . , k . By the same reasoning, the subset V of

⋃r
s=1Us consisting of all x where

τs(x) is independent of s if it is defined is open in B . Therefore we have found an open
neighborhood V of A∞ and an extension of σ to a section of pV : E|V → V . One of the
Ai must be contained in V , otherwise we have a strange open covering of the compact
set A0 by A0 ∩ V and the sets A0 rAi where i ≥ 1 . Therefore we have extended σ to
a section of pi . Next, if we have two extensions of σ to sections ρ1 and ρ2 of pi , then
the subset W of Ai where they agree is open in Ai (by the locally constant argument)
and contains A∞ . Therefore there exists j ≥ i such that Aj ⊂ W , and this implies that
ρ1 and ρ2 agree on Aj . �



CHAPTER 17

Poincaré duality

17.1. The duality statement

The goal of the chapter is to prove the following.

Theorem 17.1.1. Let M be an oriented compact n-dimensional manifold (without bound-
ary). Let ϕ ∈ Hn(M) be the fundamental class. Then for every k ∈ Z the cap product
with ϕ is an isomorphism

Hk(M) −→ Hn−k(M) ; a 7→ a_ ϕ .

This is called Poincaré duality. Comment: recall cor. 16.2.4 in cumulative lecture notes.
Short summary: in the previous section we introduced the fiber bundle Mω → M such
that the fiber over x ∈M is the local homology group H̃n(M//(Mr x)) . An orientation

of M is a continuous section s of that such that s(x) ∈ H̃n(M//(M r x)) is a generator
of that local homology group, for every x ∈ M . Then we showed that there is a unique
ϕ ∈ Hn(M) such that the image of ϕ in H̃n(M//(M r x)) agrees with s(x) , for every
x ∈M .

In order to prove this theorem by some kind of induction (similar to the induction seen in
the previous chapter) we need to formulate a stronger statement. In order to formulate a
stronger statement we need a stronger form of cap product. It is a good opportunity to
introduce some refinements of cap product and cup product.

17.2. Various refinements of cup product and cap product

Remark 17.2.1. Let X be a normal space with a closed subset A . For a ∈ H̃m(X/A)

and b ∈ Hn(XrA) , the product a^ b ∈ H̃m+n(X/A) is defined.
Idea/proof/definition: it is easy to reduce to the case where A is a point, denoted ? .
Represent a by a mapping cycle α : X→ Sm which is zero in an open neighborhood U of
? . This is possible by prop 14.3.3. cumulative lecture notes. Represent b by a mapping
cycle β : Xr ?→ Sn . The composition

Xr ?
diag // X× (Xr ?)

α⊗β // Sm × Sn µm,n // Sm+n

is a mapping cycle which is ≡ 0 on U r ? and which can therefore be extended to a
mapping cycle on all of X (which is zero on all of U). �

Remark 17.2.2. Let X be a normal space with a closed subset A . For a ∈ H̃q(X/A) and
b ∈ Hp(X) , the cap product a_ b ∈ Hp−q(XrA) is defined.
Idea/proof/definition: Let a be represented by a mapping cycle α from X/A to Sq and let
b be represented by a mapping cycle β from Sp to X . By proposition 14.3.3., cumulative

131
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lecture notes, we can assume that α ≡ 0 in an open neighborhood U of A . Now a _ b
as an element of Hp−q(X) was defined to be the class represented by the composition

Sp
β // X

diag // X× X id⊗α // X× Sq
quot // X× S

q

X× ?

where we use the isomorphism

H̃p

(
X× Sq

X× ?

)
∼= Hp−q(X)

given by external product with zq ∈ Hq(Sq) . In the above composition, the (sub)composition

X
diag // X× X id⊗α // X× Sq

is a mapping cycle which factors through (X r A) × Sq ⊂ X × Sq . (In case you don’t
believe it, here is an argument. Suppose that the germ of the mapping cycle α at some
x ∈ X is ∑

i

bi · αi,x

where bi ∈ Z and αi,x : (X, x)→ Sq is a continuous function germ. Then the composition
X→ X× X→ X× Sq above has the following germ at x :

λ =
∑
i

bi ·
(
y 7→ (y, αi,x(y)) ∈ X× Sq

)
where y is a variable in some small neighborhood of x ∈ X . If x ∈ U , then we know that
already

∑
i bi · αi,x ≡ 0 and we get λ = 0 . If x /∈ U , then we can assume y /∈ A since

XrA is a neighborhood of x , and so λ as a germ certainly lands in (XrA)× Sq .)

Remark 17.2.3. The refined cap/cup products in the previous remarks satisfy an associa-

tivity formula, as follows. Let X be a normal space with closed subset A . Let b ∈ H̃q(X/A)
and a ∈ Hr(X r A) and c ∈ Hp(X) , so that b _ c ∈ Hp−q(X r A) and a _ (b _ c) ∈
Hp−q−r(XrA) and a^ b ∈ Hq+r(X/A) and (a^ b) _ c ∈ Hp−q−r(XrA) . Then

a_ (b_ c) = (a^ b) _ c ∈ Hp−q−r(XrA).

Remark 17.2.4. The refined cap product in the previous remarks satisfies a complicated
naturality formula as follows. Let f : X → Y be a map, B ⊂ Y closed, A := f−1(B) . Let
a ∈ Hq(Y/B) and b ∈ Hp(X) , so that we have f∗(b) ∈ Hp(Y) and f∗(a) ∈ Hq(X/A) .
Then

a_ f∗(b) = f∗(f
∗(a) _ b) ∈ Hp−q(Y r B) .

Example 17.2.5. Let X be a normal space with two open subsets V and W such that
X = V ∪W . Then X r V and X rW are disjoint closed subsets of X and we can find a
continuous function ψ : X→ [0, 1] such that ψ ≡ 0 on XrW and ψ ≡ 1 on XrV . This
induces a map

fV,W : X/A→ [0, 1]/{0, 1} ∼= S1

where A = Xr (V ∩W) . In H̃1(S1) ∼= Z we choose the standard generator [[id]] and we
form

ηV,W = f∗V,W [[id]] ∈ H̃1(X/A).
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Now the refined cap product with ηV,W is a homomorphism from Hk(X) to Hk−1(XrA) =
Hk−1(V ∩W) . Similarly the refined cup product with ηV,W is a homomorphism from

Hk(XrA) = Hk(V ∩W) to H̃k+1(X/A) which we can compose with the homomorphism

H̃k+1(X/A)→ Hk+1(X)

induced by the quotient map X→ X/A . Claim: Up to sign ±1 , these two homomorphisms
(from Hk(X) to Hk−1(V ∩W) and from Hk(V ∩W) to Hk+1(X)) are the boundary oper-
ators from the Mayer-Vietoris sequences associated with X = V ∪W . (In the cohomology
case, we should assume that X,V,W and V ∩ W are paracompact in order to have a
Mayer-Vietoris sequence.) Proof still under construction.

17.3. A stronger duality statement

Theorem 17.3.1. Let M be an oriented compact n-dimensional manifold (without bound-
ary) and let ϕ ∈ Hn(M) be the fundamental class. Then for every closed subset A of M
and every k ∈ Z the cap product with ϕ is an isomorphism

H̃k(M/A) −→ Hn−k(MrA) ; a 7→ a_ ϕ .

Note that the special case A = ∅ of theorem 17.3.1 is theorem 17.1.1. — Now it is easy
to imagine how we can prove this by some form of induction. Let K be the collection of
all closed subsets A of M such that the cap product with ϕ is an isomorphism

H̃k(M/A) −→ Hn−k(MrA)

for all k ∈ Z . We ought to show the following.

(a) M ∈ K .
(b) If A is a closed subset of M and MrA is homeomorphic to Rn , then A ∈ K .
(c) If (Ai)i=0,1,... is a descending sequence of closed subsets of M such that Ai ∈ K

for all i , then
⋂
iAi ∈ K .

(d) If A1 ∈ K and A2 ∈ K and A1 ∪A2 ∈ K , then A1 ∩A2 ∈ K .

Then it is an exercise (as usual) to show that K is the set of all closed subsets of M . Note
that the induction scheme is downwards: the easiest case is A =M and the case that we
want most is A = ∅ .

17.4. Yet another Mayer-Vietoris sequence

Proving (a),(b) and (c) does not require any special ideas or tools but (d) is interesting.
Let V1 =MrA1 and V2 =MrA2 . Then we have a long exact Mayer-Vietoris sequence
relating the homology groups of V1 , V2 , V1 ∪V2 and V1 ∩V2 . It seems therefore that we
also need a long exact Mayer-Vietoris sequence relating the reduced cohomology groups of
M/A1 , M/A2 , M/(A1 ∪A2) and M/(A1 ∩A2) .

Lemma 17.4.1. Let X be a compact metrizable space with closed subsets A1 and A2 .
There is a long exact Mayer-Vietoris sequence relating the reduced cohomology groups of
X/A1 , X/A2 , X/(A1 ∪A2) and X/(A1 ∩A2) .
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Proof. Choose a metric on X . Write A1 =
⋂∞
i=0 Vi where Vi ⊂ X consists of all

x ∈ X whose distance from A1 is < 2−i . Then we can make a commutative diagram

· · · H̃k(X//V4)

))

oo H̃k(X//V3)

$$

oo H̃k(X//V2)

��

oo H̃k(X//V1)oo

zz

H̃k(X//V0)

uu

oo

H̃k(X/A1)

using maps X/Ai → X//Vi as in proposition 14.3.3. More precisely, we choose a continuous
function ψi : X→ [0, 1] which is ≡ 1 on A1 and ≡ 0 outside Vi and obtain a continuous
map X → X//Vi which is given by x 7→ x ∈ X ⊂ X//Vi for x outside Vi and by x 7→
(ψi(x), x) ∈ Vi//Vi ⊂ X//Vi if x ∈ Vi . This continuous map takes A1 to the base point of
X//Vi and so can be thought of as a map from X/Ai to X//Vi . It is easy to show that for
each i , the diagram

X//Vi+1
incl. // X//Vi

X/A1

OO <<

commutes up to homotopy. Therefore we obtain a commutative diagram of reduced co-
homology groups as above. Referring to this diagram of reduced cohomology groups, we
can say that

H̃k(X/A1) ∼= colimi H̃
k(X//Vi).

In down-to earth language, this means the following. Every element of H̃k(X/A1) is the

image of some element in H̃k(X//Vi) under the homomorphism

H̃k(X//Vi) −→ H̃k(X/A1)

above, for some i ; and if two elements of H̃k(X//Vi) have the same image under that same
homomorphism, then then there exists j ≥ i such that they already have the same image
under

H̃k(X//Vi) −→ H̃k(X//Vj).

The argument for that was given in (the proof of) proposition 14.3.3. Note that it does
not matter much here whether we work with X and closed subset A1 and a neighborhood
of that, or with the based space X/A1 and the closed subset {?} and a neighborhood of
the base point.
Similarly we write A2 =

⋂∞
i=0Wi where Wi ⊂ X consists of all x ∈ X whose distance

from A2 is < 2−i . Then there are is an isomorphism

H̃k(X/A2) ∼= colimi H̃
k(X//V2)

and there are isomorphisms

H̃k(X/(A1 ∩A2)) ∼=colimi H̃
k(X//(Vi ∩Wi))

H̃k(X/(A1 ∪A2)) ∼=colimi H̃
k(X//(Vi ∪Wi) .

Therefore it suffices to show that for each fixed i the reduced cohomology groups of
Hk(X//Vi) , Hk(X//Wi) , Hk(X//(Vi ∩Wi)) and Hk(X//(Vi ∪Wi)) are related by a long
exact Mayer-Vietoris sequence (and that there is enough compatibility as i varies). This
would be immediately clear if we could say that X//Vi and X//Wi are open subsets of
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X//(Vi ∪Wi) with intersection X//(Vi ∩Wi) . The problem is that X//Vi and X//Wi are
not quite open in X//(Vi ∪Wi) because of a problem at the cone tip. But we know from
section 16 cumulative lecture notes (proof of thm 16.2.3.(iii)) how to solve this: X//Vi
has an open neighborhood Y1 and X//Wi has an open neighborhood Y2 such that the
inclusions

X//Vi → Y1 , X//Wi → Y2 , X//(V1 ∩ V2)→ Y1 ∩ Y2 , X//(V1 ∪ V2)→ Y1 ∪ Y2
are homotopy equivalences. �

17.5. The Mayer-Vietoris-plus-five-lemma argument

Here we do the most interesting type of induction step in the induction scheme: the one
with label (d). Recall that K is the set of all closed subsets of M such that the cap
product with ϕ is an isomorphism

H̃k(M/A) −→ Hn−k(MrA)

for all k ∈ Z .

Lemma 17.5.1. If A1 ∈ K and A2 ∈ K and A1 ∪A2 ∈ K , then A1 ∩A2 ∈ K .

Proof. Write V1 = M r A1 and V2 = M r A2 . We have a diagram where the
columns are long exact Mayer-Vietoris sequences:

...

��

...

��
H̃k(M/(A1 ∪A2))

��

// Hn−k(V1 ∩ V2)

��
H̃k(M/A1)⊕ H̃k(M/A2)

��

// Hn−k(V1)⊕Hn−k(V2)

��
H̃k(M/(A1 ∩A2))

? //

δ

��

Hn−k(V1 ∪ V2)

∂

��
H̃k+1(M/(A1 ∪A2)) //

��

Hn−k−1(V1 ∩ V2)

��
...

...

The horizontal arrows are given by cap product (in the refined sense) with ϕ . Therefore
two out of three are isomorphisms by our assumptions; those with a question mark label
are not yet known to be isomorphisms. If we can show that the diagram commutes, then
we can use the five lemma and conclude that the horizontal arrows with the question mark
label are also isomorphisms. (Commutativity up to a factor ±1 is also enough.) The only
place where commutativity is not obvious, up to a factor ±1 perhaps, is the square(s)
involving the boundary operators δ and ∂ . But we have the interpretation of δ and ∂ as
a cup product, respectively cap product, with a class in H1((V1∪V2)/(V1∪V2)r(V1∩V2)) .
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See example 17.2.5. And we have the associativity formula of remark 17.2.3. Together
they establish the commutativity of that square up to possibly a factor ±1 . �

17.6. Completion of proof

We continue with the less exciting parts of the proof of Poincaré duality: establishing
properties (a), (b) and (c).
Property (a) is trivial because the reduced cohomology of M/M is zero (in all dimensions)
and the homology of MrM = ∅ is also zero in all dimensions.
We turn to the proof of (b). The case where n = 0 reduces to the assertion that cap
product with the generator of H0(?) = Z is an isomorphism from H0(?) = Z to H0(?) = Z .
This is easily verified with mapping cycles. Now we assume n > 0 . Here the reduced
cohomology of M/A is zero in all dimensions except n , and the homology of M r A is
also zero in all dimensions except 0 . Therefore we can assume k = n , that is, we only
need to show that cap product with the fundamental class ϕ gives an isomorphism

H̃n(M/A) −→ H0(MrA).

Put M1 := M/A . Then M1 is homeomorphic to Sn since it is the one-point compact-
ification of M r A ∼= Rn . Let ϕ1 ∈ Hn(M1) be the image of the fundamental class
ϕ ∈ Hn(M) under the homomorphism induced by the quotient map M → M/A = M1 .
Almost by definition we have a commutative diagram

H̃n(M/A)
_ϕ // H0(MrA)

H̃n(M1)

∼=

��

_ϕ1 // H0(M1 r ?)

∼=

��
Hn(M1)

_ϕ1 // H0(M1)

Moreover, ϕ1 is a fundamental class for M1
∼= Sn . To show this, select x ∈MrA . The

commutative diagram

Hn(M)
induced by incl. //

��

Hn(M//(Mr x))

∼=

��
Hn(M1)

induced by incl. // Hn(M1//(M1 r x))

shows that φ1 ∈ Hn(M1) maps to a generator of Hn(M1//(M1rx)) , so it passes the test
for a fundamental class. (It is enough to test at one x ∈M1 because M1 is connected ...
because n > 0 .) Therefore we have reduced the proof to the following claim: cap product
with the/a fundamental class of Sn gives an isomorphism from Hn(Sn) to H0(S

n) . Again,
this is easy to verify with mapping cycles (since we know a good mapping cycle representing
the fundamental class of Sn ).
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For the proof of (c) we write A∞ =
⋂
iAi and Ui = M r Ai , U∞ = M r A∞ . The

naturality property of the cap product (remark 17.2.4) implies a commutative diagram

· · · Hk(M/Ai+1)oo

_ϕ

��

Hk(M/Ai)oo

_ϕ

��

Hk(M/Ai−1)oo

_ϕ

��

· · ·oo

· · · Hn−k(Ui+1)oo Hn−k(Ui)oo Hn−k(Ui−1)oo · · ·oo

The inclusions Ui → U∞ for all i determine a commutative square

colimiHn−k(Ui) //

_ϕ

��

Hn−k(U∞)

_ϕ

��
colimiH

k(M/Ai) // Hk(M/A∞).

In the first (ladder-shaped) diagram, all the vertical arrows are isomorphisms; therefore,
in the square, the left-hand vertical arrow is an isomorphism. We know that the horizontal
arrows in the square are also isomorphisms. Therefore the right-hand vertical arrow is an
isomorphism, too. �



APPENDIX A

The fundamental group

The next few (sub)sections contain a sketchy account of the fundamental group, often
from the point of view of category theory. To hammer this in right from the start, I
start by introducing (once again) the category Top∗ whose objects are spaces X with a
selected (base) point, often denoted ? ∈ X . A morphism is then a continuous map from
one space with base point to another space with base point, taking base point to base
point. We often say based space or pointed space (for an object of Top∗ ) and based map
or pointed map (for a morphism in Top∗ ). In the category Top, we also have a concept
of based homotopy : two based maps f, g : X → Y are based homotopic if there exists a
homotopy (ht : X→ Y)t∈[0,1] where h0 = f , h1 = g and each ht is a based map. Based
homotopic is an equivalence relation on the set of based maps from X to Y . The set of
equivalence classes is usually denoted by [X, Y]∗ . As in the case of unbased homotopy, the
based homotopy relation is compatible with composition of maps, so that we can construct
a based homotopy category HoTop∗ . The objects of HoTop∗ are still the based spaces
X, Y, . . . , but the set of morphisms morHoTop∗(X, Y) is [X, Y]∗ .

A.1. The fundamental group as a functor

The fundamental group is a covariant functor π1 from Top to the category of groups.
We write π1(X) or π1(X, ?) for the value of that functor on a based space X . (It is a
group, and we call it the fundamental group of X . The functor π1 is also based homotopy
invariant. This can be expressed in one of three equivalent ways.

(i) If X and Y are based spaces, and f, g : X → Y are based maps which are based
homotopic, then the homomorphisms π1(f) and π1(g) , both from π1(X, ?) to
π1(Y, ?) , agree.

(ii) If f : X→ Y is a based homotopy equivalence of based spaces, then

π1(f) : π1(X, ?)→ π1(Y, ?)

is an isomorphism of groups.
(iii) The functor π1 can be written as a composition of functors

Top∗ → HoTop∗ → Groups

where the first functor from Top∗ to HoTop∗ is the obvious one (passing from
based maps to based homotopy classes).

This is somewhat reminiscent of the properties of homology and cohomology groups. But
there are a few important differences. First of all, these fundamental groups really can be
non-commutative groups. Secondly, the definition/construction of the fundamental group
is much, much more elementary than the definition of the homology and cohomology
groups. Thirdly, the determination of the fundamental group of a particular space X can
be hard, often harder than the determination of the homology groups and cohomology

138
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groups of X .
When I was young, even younger than today, the study of high-dimensional manifolds with
the method(s) of homology and cohomology etc. was all the rage. But already in the early
1980s interest shifted towards low-dimensional topology. In low-dimensional topology, the
fundamental group tends to be more important than homology and cohomology, so this
shift also meant a shift away from homology and cohomology and towards fundamental
groups. By the year 2000, the ratio of “number of pages of published research in low-
dimensional topology” versus “number of pages of published research in high-dimensional
topology” was approximately 10:1. (Today the balance is a little more even, I believe.)

Enough introductory chat for now ... let us see the definition. (There will be some more
chat after the definition.)

Definition A.1.1. As a set, the fundamental group π1(X, ?) of a based space X is the
set of based homotopy classes from S1 to X .

Here it is often convenient to think of S1 as a quotient space of the interval [0, 1] , obtained
by identifying the points 0 and 1 . Equivalently, we say t ∈ [0, 1] and we mean exp(2πit) ∈
S1 . Therefore every element a ∈ π1(X, ?) can be represented by a path α : [0, 1]→ X such
that α(0) = α(1) , and every path α satisfying α(0) = α(1) = ? represents an element
of π1(X, ?) . Two such paths α,β present the same element of π1(X, ?) if and only if
they are homotopic by a homotopy (ht : [0, 1] → X)t∈[0,1] which satisfies the condition
ht(0) = ? = ht(1) for all t ∈ [0, 1] . This brings us to the definition of the group structure
in π1(X, ?) .

Definition A.1.2. Let a, b ∈ π1(X, ?) be represented by paths

α : [0, 1]→ X, β : [0, 1]→ X,

respectively, so that α(0) = α(1) = β(0) = β(1) = ? ∈ X . The product a · b ∈ π1(X) is
represented by the path γ : [0, 1]→ X where γ(t) = β(2t) if t ≤ 1/2 and γ(t) = α(2t−1)
if t ≥ 1/2 .

This definition rather calls for at least one verification. Because we have defined a ·b using
representatives α and β , it is necessary to verify that the outcome does not depend on
the choice of representatives α and β , but only on a and b . (This is left to the reader.)

Now we would like to say: π1(X, ?) with the multiplication defined just above is actually
a group. This is not very hard, and it is again mostly left to the reader, but it is also a
good opportunity for me to introduce some more notation. It is convenient to say: every
path α : [0, c] → X where c ∈ R , c ≥ 0 , determines an element of π1(X, ?) provided
α(0) = α(c) . (If you want to convert such an α to the standard form, pre-compose it with
any continuous map u : [0, 1]→ [0, c] taking 0 to 0 and 1 to c . It does not matter which
u you choose.) If we have α : [0, c]→ X and β : [0, d]→ X such that α(0) = ? = α(c) and
β(0) = ? = β(d) , then we can define

α ◦ β : [0, c+ d]→ X

by t 7→ β(t) if t ≤ c and t 7→ β(t − c) if t ≥ c . This kind of composition is obviously
associative. You can use it as an alternative definition of the product in π1(X, ?) .
With this notation it is easy to verify that

- the neutral element of π1(X, ?) is represented by the unique map [0, 0] → X
taking 0 to ? ;
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- the inverse of an element of π1(X, ?) represented by a path

α : [0, c]→ X

with α(0) = ? = α(c) is the element represented by the path α−1 where
α−1 : [0, c]→ X is defined by α−1(t) = α(c− t) .

Example A.1.3. The fundamental group of S1 (with base point 1 ∈ S1 ⊂ C) is isomorphic
to Z , by the isomorphism taking b ∈ Z to the path [0, 1]→ S1 given by t 7→ exp(2πibt) .
(The bijection is already known to us from section 1.2; only the claim that it is a homo-
morphism should be verified.)

Who invented the fundamental group? Surprisingly, or unsurprisingly, it was again our
hero Henri Poincaré who is also responsible for homology and cohomology. He discovered
it after making an interesting mistake. I believe the mistake was the following. He thought
he could prove that a map f : X→ Y of spaces which induces an isomorphism

f∗ : Hk(X)→ Hk(Y)

for all k ∈ Z is a homotopy equivalence. (There were some mild conditions on X and Y ; in
modern language, he would have assumed that X and Y are CW-spaces.) Having published
his argument for that, he found a counterexample. It was the 3-dimensional manifold
SO(3)/J where SO(3) is the group of orthogonal real 3×3-matrices with determinant +1
(also known as the group of orientation-preserving linear isometries of R3 ) and J is the
subgroup of the orientation-preserving linear symmetries of the icosahedron (which has 60
elements and is isomorphic to the alternating group A5 ). Here SO(3)/J denotes the space
of left cosets of J in SO(3) , not the quotient space obtained by collapsing J to a single
point. More precisely, Poincaré was able show that there is a map SO(3)/J → S3 which
does induce isomorphisms in Hk for all k ∈ Z , but somehow he knew that it was not a
homotopy equivalence. In the process he developed the language enabling him to say why
not: SO(3)/J has a fundamental group which is finite of order 120 , while S3 has a trivial
fundamental group. Therefore the two are not homotopy equivalent (as pointed spaces or
otherwise).

A.2. The Seifert-VanKampen theorem

Theorem A.2.1. Let X be a space with base point ? . Suppose that X is the union of two
open subsets V and W , where V,W and V ∩W are path connected and ? ∈ V ∩W . Let
G be a group and let pV : π1(V)→ G and pW : π1(W)→ G be homomorphisms such that
the diagram

(z)

π1(V ∩W)
incl. induced //

incl. induced

��

π1(V)

pV

��
π1(W)

pW
// G
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of groups and homomorphisms commutes. Then there is a unique homomorphism z from
π1(X) to G making the following diagram commutative:

π1(V ∩W)
incl. induced //

incl. induced

��

π1(V)

incl. induced

��
pV

!!

π1(W)

pW

,,

incl. induced // π1(X)

z

((
G

Proof. The following notation will be used in this proof.

• For a path γ : [a, b]→ X where a ≤ b ∈ R , we denote by γ̄ the path [−b,−a]→
X given by t 7→ γ(−t) .

• We try not to make a great distinction between a path γ : [a, b] → X and the
path [0, b− a]→ X given by t 7→ γ(t+ a) .

• In particular, for two paths γ : [a, b]→ X and ζ : [c, d]→ X where γ(b) = ζ(c) ,
we denote by ζ ◦ γ the path [a, b − c + d] → X given by γ on [a, b] and by
t 7→ ζ(t− b+ c) on [b, b− c+ d] .

• For two paths β : [0, c] → X and γ : [0, d] → X satisfying β(0) = β(c) = ? and
γ(0) = γ(d) = ? , we write β '∗ γ if there exists a homotopy (ht : [0, 1] →
X)t∈[0,1] such that h0(s) = β(cs) and h1(s) = γ(ds) , where ht(0) = ? = ht(1)
for all t ∈ [0, 1] .

Now suppose that an element of π1(X) = π1(X, ?) is represented by a path γ : [0, 1] → X
where γ(0) = ? = γ(1) . Claim: there exist elements

0 = a(0) ≤ a(1) · · · ≤ a(r) = 1

such that each a(j) is mapped to V ∩W by γ and each interval [a(j), a(j+1)] is mapped
either to V or to W . The proof is easy.1 Since V ∩W is path connected, we can choose
paths ϕj : [0, 1]→ V ∩W such that ϕj(0) = ? and ϕj(1) = γ(a(j)) for j = 1, 2, . . . , r− 1 .
For j = 1, 2, . . . , r let γj be the restriction of γ to the interval [a(j− 1), a(j)] . (Warning:
these superscripts j are not to be read as exponents.)

1Lebesgue’s lemma: for any covering of [0, 1] by open sets, there exists ε > 0 such that every sub-

interval of [0, 1] of length < ε is contained in one of the open sets of the covering. Apply this to the

covering of [0, 1] by the open sets γ−1(V) and γ−1(W) . Get your ε ; without loss of generality ε = 1/n

for a positive integer n . Then you can choose the a(j) to have the form k/n for this n and a selection

of k ∈ {0, 1, 2, . . . , n} .
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Then

γ = γr ◦ γr−1 ◦ · · · ◦ γ1

'∗ γr ◦ϕr−1 ◦ ϕ̄r−1 ◦ γr−1 ◦ϕr−2 ◦ ϕ̄r−2 ◦ · · · ◦ γ2 ◦ϕ1 ◦ ϕ̄1 ◦ γ1

=
(
γr ◦ϕr−1

)
◦
(
ϕ̄r−1 ◦ γr−1 ◦ϕr−2

)
◦ · · · ◦

(
ϕ̄2 ◦ γ2 ◦ϕ1

)
◦
(
ϕ̄1 ◦ γ1

)
=: βr ◦ βr−1 ◦ βr−1 · · · · · ·β1 .

So γ '∗ βr ◦ βr−1 ◦ βr−1 · · · · · ·β1 where βr , βr−1 , . . . , β1 are paths, beginning and
ending at ? , which run either in V or in W . For each j = 1, 2, . . . , r choose V or W such
that βj runs in that open set, and write pj to mean pV or pW accordingly. Therefore
we must define

z([γ]) = pr([β
r]) · pr−1([βr−1]) · · ·p2([β2]) · p1([β1]) ∈ G

if we want to ensure that the above diagram with the dotted arrow z commutes. What
remains to be done? Mainly we have to show that the above formula for z([γ]) does not
depend on the many choices we made.
(i) Let’s begin with the very last choices that we made. For each j = 1, 2, . . . , r we selected
an element of V or W such that βj runs in that open set, and we defined pj to be pV
or pW accordingly. What if βj runs in V ∩W ? Then we have a choice ... but since (z)
commutes it does not matter for our proposed value of z([γ]) ∈ G which choice we make.
(ii) We could choose a different subdivision of the interval [0, 1] by points a(1), . . . , a(r)
and different paths ϕj . One way to show that it doesn’t matter is like this. Suppose
that we have selected a(1), . . . , a(r) and paths ϕj as above, for j = 1, 2, . . . , r − 1 . Let
somebody select an additional element b ∈ [0, 1] such that γ(b) ∈ V ∩W , and a path
ψ : [0, 1]→ V ∩W where ψ(0) = ? and ψ(1) = γ(b) , and k so that a(k− 1) ≤ b ≤ a(k) .
Repeat the whole process with this new subdivision

a(0), a(1), . . . , a(k− 1), b, a(k), . . . , a(r).

Choose the new pk and pk+1 so that they agree with the old pk . It is easy to see that
the proposed value of z([γ]) ∈ G does not change.
(iii) We need to show that the proposed value z([γ]) ∈ G is not sensitive to the choice
of a representative γ . Let us write informally z(γ) ∈ G for the proposed value; now
we know at least that it depends only on γ : [0, 1] → X with γ(0) = γ(1) = ? . Let
(γt : [0, 1] → X)t∈[0,1] be a homotopy where γt(0) = γt(1) = ? for all t ∈ [0, 1] . It
is enough to show that t 7→ z(γt) ∈ G is a locally constant function of the variable
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t ∈ [0, 1] . So choose s ∈ [0, 1] . Choose a subdvision a(0), a(1), . . . , a(r) of the interval
[0, 1] as above, using γs in place of γ , and choose paths ϕj as above, to get

γs '∗ βrs ◦ βr−1s ◦ · · · ◦ β1s
as above. (The subscripts s in the right-hand side will be useful for distinction in a mo-
ment.) For u ∈ [0, 1] sufficiently close to s , and u ≥ s , the subdivision a(0), a(1), . . . , a(r)
is still a suitable subdivision for γu and instead of ϕj we can use the path ζj ◦ϕj where
ζj is defined by t 7→ γt(a(j)) for t ∈ [s, u] . Similarly for u ∈ [0, 1] sufficiently close to
s , and u ≤ s , the subdivision a(0), a(1), . . . , a(r) is still a suitable subdivision for γu
and instead of ϕj we can use the path ζ̄j ◦ ϕj where ζj is defined by t 7→ γt(a(j)) for
t ∈ [u, s] . Then we get

γu '∗ βru ◦ βr−1u ◦ · · · ◦ β1u
with the same r . With these choices, it is easy to see that [βjs] = [βju] in π1(V) or
π1(W) , as appropriate. That implies z(γs) = z(γu) . Therefore t 7→ z(γt) is constant in
a neighborhood of s ∈ [0, 1] . �

The formulation of the Seifert-vanKampen theorem above is in category language. If we
wanted to use some more category language, we could also say that the commutative
square

π1(V ∩W)
incl. induced //

incl. induced

��

π1(V)

incl. induced

��
π1(W)

incl. induced // π1(X)

is a pushout square, or even better, that π1(X) is the direct limit of the diagram

(zz)

π1(V ∩W)
incl. induced //

incl. induced

��

π1(V)

π1(W)

Stating the theorem in this way makes it easier to prove. Turning the statement (as
above) into an explicit description of π1(X) in terms of the diagram is the business of
group theory! When this is done the outcome is as follows.

• Elements of π1(X) can be imagined as words xrxr−1 · · · x2x1 where each letter
is taken from π1(V) or from π1(W) ; strictly speaking the letters are elements
of the disjoint union π1(V) t π1(W) .

• Two such words xrxr−1 · · · x2x1 and ysys−1 · · ·y2y1 describe the same element
of π1(X) if and only if one can be transformed into the other by some simple
operations. These are as follows.

– Delete letter given by trivial element of π1(V) or π1(W) .
– If two adjacent letters in such a word are both in π1(V) , replace them by a

single letter which is their product in π1(V) .
– If two adjacent letters are both in π1(W) , replace them by a single letter

which is their product in π1(W) .
– If a letter is the image of some y ∈ π1(V ∩W) under the homomorphism
π1(V ∩W)→ π1(V) , replace by the image of the same y under the homo-
morphism π1(V ∩W)→ π1(W) .
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– Operations inverse to the above (for example: insert letter given by trivial
element of π1(V) or π1(W) , etc.).

Example A.2.2. It follows from Seifert-van Kampen that π1(S
n, ?) is trivial for n > 1 .

Proof: choose distinct points x, y ∈ Sn which are also distinct from the chosen base point
? . Write Sn = V ∪W where V is Sn minus x and W is Sn minus y . Since V and
W are contractible, π1(V, ?) and π1(W, ?) are both trivial, and so Seifert-van Kampen
implies that π1(S

n, ?) is trivial. Note in passing that Seifert-van Kampen is applicable;
in particular V ∩W is path connected since we assumed n > 1 .

A.3. Changing the base point and forgetting the base point

Proposition A.3.1. Let X be a space and x, y ∈ X . If x and y are in the same path
component of X , then π1(X, x) is isomorphic to π1(X, y) .

Proof. Choose a path α : [0, 1] → X such that α(0) = x and α(1) = 1 . (We write
ᾱ : [0, 1]→ X for the reverse path, ᾱ(t) = α(1− t) , as in the previous section.) The path
α can be used to define a homomorphism Φα from π1(X, x) to π1(X, y) . Namely, for an
element g of π1(X, x) represented by a path γ : [0, 1]→ X where γ(0) = x = γ(1) , we let

Φα(g) := [α ◦ γ ◦ ᾱ .]
In words: use ᾱ , the reverse of α , to travel from y to x , then run through γ , then use
α to travel back from x to y . It is easy to see that Φα is a homomorphism. Namely, if
f in π1(X, x) is represented by a path ϕ where ϕ(0) = x = ϕ(1) , then

[α ◦ϕ ◦ ᾱ] · [α ◦ γ ◦ ᾱ] = [α ◦ϕ ◦ ᾱ ◦ α ◦ γ ◦ ᾱ] = [α ◦ϕ ◦ γ ◦ ᾱ]
which means Φα(f) · Φα(f) = Φα(f · g) . Next, let’s note that Φᾱ is a homomorphism
from π1(X, y) to π1(X, x) . It is easy to see that Φᾱ ◦Φα is the identity homomorphism
on π1(X, s) , and similarly, Φα ◦Φᾱ is the identity homomorphism on π1(X, y) . Therefore
Φα is an isomorphism. �

Remark A.3.2. The isomorphism Φα in the proof above depends very much on α . This
is the reason why we need base points to define fundamental groups, despite proposi-
tion A.3.1. Indeed, let β : [0, 1] → X be another path such that β(0) = x and β(1) = y .
Let g ∈ π1(X, x) be represented by a path γ : [0, 1]→ X where γ(0) = x = γ(1) , as above.
Then

(Φβ)
−1(Φα(g)) = [β̄ ◦ α ◦ γ ◦ ᾱ ◦ β] = [β̄ ◦ α] · [γ] · [ᾱ ◦ β] = c−1 · g · c

where c ∈ π1(X, x) is represented by the path ᾱβ which begins and ends at x . Therefore,
if c is not in the center of π1(X) , then Φβ 6= Φα .

Example A.3.3. In the same spirit, we show that for a path connected space X with base
point, the set of homotopy classes of maps from S1 to X (not required to preserve base
points) is in bijection with the set of conjugacy classes of the group π1(X, ?) . As usual it is
convenient to view S1 as a quotient space of [0, 1] . So let γ : [0, 1]→ X be a map satisfying
γ(0) = γ(1) . We do not require γ(0) = ? , but since X is path connected, we can choose
a path α : [0, 1]→ X such that α(0) = ? and α(1) = γ(0) = γ(1) . Then [ᾱ ◦ γ ◦ α] is an
element of π1(X, ?) . As such it depends on our choice α , but the conjugacy class does
not depend on our choice of α . Furthermore, by a continuity argument, the conjugacy
class depends only on the homotopy class [γ] ∈ [S1, X] . In this way we have constructed
a map from [S1, X] to the set of conjugacy classes of π1(X) . In order to get a map in
the opposite direction we note first that there is a forgetful map from [S1, X]? = π1(X)
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to [S1, X] . We need to show that this takes elements in π1(X, ?) which are in the same
conjugacy class to the same element of [S1, X] . In other words, given α,β : [0, 1] → X
where α(0) = α(1) = β(0) = β(1) = ? , we need to show that the maps β̄ ◦ α ◦ β and α ,
viewed as maps S1 → X , are (unbased) homotopic. This is an easy exercise.

A.4. Fundamental group of a CW-space

Let X be a path connected space (not required to be a CW-space) with base point ? . Let
γ : Sn−1 → X be a map, where n > 1 , and let Y be the pushout of

Sn−1

incl.

��

γ // X

Dn

(so that Y = X tDn/ ∼ , where ∼ means that each z ∈ Sn−1 ⊂ Dn gets identified with
γ(z) ∈ X). Now we have an inclusion X → Y and we can use ? ∈ X as base point for Y ,
too. We are interested in a comparison of the fundamental groups of X and Y .

Proposition A.4.1. The inclusion X→ Y induces a homomorphism

π1(X, ?)→ π1(Y, ?)

which is an isomorphism when n > 2 and surjective when n = 2 . In the case n =
2 the kernel is the smallest normal subgroup of π1(X, ?) containing the conjugacy class
determined by γ : S1 → X according to example A.3.3.

Proof. Let y0 and z be two distinct points in YrX . Let V = Yr{z} and W = YrX .
Then V ∪W = Y . The inclusion X→ V is a homotopy equivalence (and also a homotopy
equivalence of based spaces, if we take ? as the base point). Therefore it is enough to
show that the inclusion V → Y induces a homomorphism

π1(V, ?)→ π1(Y, ?)

which is an isomorphism for n > 2 , and surjective for n = 2 with kernel equal to the
smallest normal subgroup of π1(X, ?) containing the conjugacy class determined by γ .
This formulation is not totally convenient for us because the base point ? is not contained
in W . Therefore we try y0 as an alternative base point. In view of proposition A.3.1, it
is enough to show that the inclusion V → Y induces a homomorphism

π1(V, y0)→ π1(Y, y0)

which is an isomorphism for n > 2 , and surjective for n = 2 with kernel equal to the
smallest normal subgroup of π1(X, ?) containing the conjugacy class determined by γ .
Now we can use the Seifert-van Kampen theorem to prove it. The result is that we have
a pushout square of groups

π1(V ∩W,y0) //

��

π1(V, y0)

��
π1(W,y0) // π1(Y, y0).

Since W is contractible, π1(W,y0) is a trivial group. The pushout square property then
means that the vertical arrow from π1(V, y0) to π1(Y, y0) is onto, with kernel equal to
the smallest normal subgroup containing the image of π1(V ∩W,y0)→ π1(V, y0) . But we
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have V ∩W ' Sn−1 . If n > 2 , this has trivial fundamental group, and so the arrow from
π1(V, y0) to π1(Y, y0) is an isomorphism. If n = 2 then V ∩W ' S1 has fundamental
group ∼= Z and it is easy to see that the image of

π1(V ∩W,y0)→ π1(V, y0)

is the cyclic subgroup generated by the element corresponding to a certain closed curve in
W which surrounds and at the same time avoids z0 . That curve is (unbased) homotopic
to γ . So the smallest normal subgroup of π1(V, y0) which contains the image of

π1(V ∩W,y0)→ π1(V, y0)

is the smallest normal subgroup of π1(V, y0) containing the conjugacy class determined
by γ . �

Lemma A.4.2. Let X be a CW-space with base point ? which is a 0-cell.

- Every element of π1(X, ?) is in the image of the inclusion-induced homomorphism
π1(K, ?)→ π1(X, ?) for some compact CW-subspace K of X which contains ? .

- If K is such a compact CW-subspace and two elements a, b of π1(K, ?) determine
the same element of π1(X, ?) , then there exists another compact CW-subspace
L ⊂ X such that K ⊂ L ⊂ X and a, b determine the same element of π1(L, ?) .

(Reformulation in category language: the inclusions Kα → X , for compact CW-subspaces
Kα of X which contain ? , induce an isomorphism of groups

colimα π1(Kα, ?) −→ π1(X, ?) .

Proof. This is an easy consequence of the important fact that every compact subset
of X is contained in a compact CW-subspace of X . �

Corollary A.4.3. Let X be a CW-space with a single 0-cell ? . Choose characteristic
maps ϕα : D

1 → X1 for the 1-cells Eα and ϕλ : D
2 → X2 for the 2-cells Eλ . The maps

ϕα can also be viewed as based maps ϕ ′α from D1/∂D1 ∼= S1 to X1 . Then

(i) the inclusion X1 → X2 induces a surjection π1(X
1, ?)→ π1(X

2, ?) ;
(ii) the inclusion X2 → X induces an isomorphism π1(X

2, ?)→ π1(X, ?) ;
(iii) the group π1(X

1, ?) is a free group with generators [ϕ ′α] corresponding to the
1-cells Eα ;

(iv) the kernel of the homomorphism π1(X
1, ?)→ π1(X

2, ?) induced by the inclusion
is the smallest normal subgroup containing the conjugacy classes determined by
the maps ϕλ|S1 : S

1 → X1 corresponding to the 2-cells Eλ .

Proof. It follows from lemma A.4.2 that if the statement holds for every nonempty
compact CW-subspace of X , then it holds for X itself. Therefore we may assume that
X is a compact CW-space. Suppose that X has k cells of dimension 1 and ` cells of
dimension 2 . Constructing X1 in k steps from the 0-cell, we obtain (iii) using the Seifert-
van Kampen theorem. Constructing X2 in ` steps from X1 , we obtain (i) and (iv) from
proposition A.4.1. Constructing X from X2 in finitely many steps, attaching cells of
dimension > 2 only, we obtain (ii) from proposition A.4.1. �

Remark A.4.4. A connected CW-space X which has more than one 0-cell can always
be replaced by a connected CW-space Y which has exactly one 0-cell and is homotopy
equivalent to X . The standard procedure is as follows. The skeleton X1 is a connected
1-dimensional CW-space, also known as a connected graph. It is an exercise or a result
in graph theory that the connected graph X1 contains a maximal tree: a CW-subspace
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Z which is contractible but not contained in a larger contractible CW-subspace. Further-
more, such a maximal tree must contain all the 0-cells of X1 . Now let Y be the quotient
X/Z . Then clearly Y has only one 0-cell. The quotient map p : X → Y = X/Z is a
homotopy equivalence for the following reason. We have a commutative diagram

X //

  

X//Z

'
��

X/Z

so that it suffices to show that the inclusion of X in the mapping cone X//Z is a homotopy
equivalence. The contractibility of Z means that there exists a homotopy (ht : Z//Z →
Z//Z)t∈[0,1] such that h0 = id, each ht agrees with the identity on Z ⊂ Z//Z , and h1 has
image equal to Z ⊂ Z//Z . (Exercise.) Now write X//Z = X ∪ (Z//Z) . It is easy to show
that the map X//Z→ X given by id on X and by h1 on Z//Z is a homotopy inverse for
the inclusion X→ X//Z .

Remark A.4.5. Let f : X → Y be a base-point preserving map of spaces with base point
which is an ordinary homotopy equivalence. Suppose that the base point inclusions ? ↪→ X
and ? ↪→ Y are cofibrations. Then f is a based homotopy equivalence, i.e., there exists a
based map g : Y → X and base-point preserving homotopies from gf to idX and from fg
to idY .
The proof is not easy, but not unpleasant either. Using the homotopy extension property
for ? → Y , we can easily find a base-point preserving g\ : Y → X such that g\f and fg\

are homotopic (by homotopies which may not be base-point preserving) to the respective
identity maps. Now we can think about g\f and fg\ instead of f . That is to say, we have
reduced the general case to the following problem. Given a based map e : X→ X which is
homotopic to idX in the unbased sense; then we want to know that f is a based homotopy
equivalence.
This brings us to the subset K ⊂ [X,X]∗ consisting of the based homotopy classes of based
maps X → X which are homotopic in the unbased sense to the identity. The subset K is
a sub-monoid, i.e., if [e1] ∈ K and [e2] ∈ K , then [e1] ◦ [e2] = [e1e2] ∈ K . We want to
show that as a monoid in its own right, it is a group, i.e., every element has an inverse.
To show it we introduce a map

v : π1(X, ?)→ K

as follows. Given an element of π1(X) represented by γ : [0, 1]→ X with γ(0) = ? = γ(1) ,
the homotopy extension property for ?→ X allows us to construct a homotopy

(ht : X→ X)t∈[0,1]

such that ht(?) = γ(t) and h0 = id. Then h1 : X→ X is a based map and it is homotopic
to idX in the unbased sense. We try v[γ] := [h1] . It is not obvious that this is well
defined, because it might seem to depend on our choice of a homotopy (ht) , but one can
use the homotopy extension property for ? × [0, 1] ↪→ X × [0, 1] to show that it is indeed
well defined.
Next we show that v is a homomorphism. Given paths γ : [0, 1] → X and λ : [0, 1] → X
such that γ(0) = γ(1) = λ(0) = λ(1) = ? , and a homotopy (ht : X → X)t∈[0,1] such that
ht(?) = γ(t) and h0 = id, and a homotopy (h ′t : X → X)t∈[0,1] such that h ′t(?) = λ(t)
and h ′0 = id, we get a homotopy (h ′′t : X → X)t∈[0,2] where h ′′t = ht for t ∈ [0, 1] and
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h ′′t = h ′t−1 ◦ h1 for t ∈ [1, 2] . This has the property that h ′′t (?) = γ(t) for t ∈ [0, 1] and
h ′′t = λ(t− 1) for t ∈ [1, 2] . Therefore

v([λ] · [γ]) = [h ′′2 ] = [h ′1 ◦ h1] = v[λ] ◦ v[γ] ∈ K.
Finally, we note that v is surjective. For if an element of K is represented by a based
map e : X → X such that there is a homotopy (ht)t∈[0,1] from idX to e , then we have
an element of π1(X, ?) represented by the path t 7→ ht(?) . Now, since v is a surjective
homomorphism, the monoid K must be a group. — One more observation: v is not
always injective. For example, when X = S1 it is the trivial homomorphism, therefore not
injective. The kernel of v is known as the Gottlieb subgroup of π1(X, ?) .

For another corollary, let X be a space with base point ? . There is an important map

u : π1(X, ?) −→ H1(X)

which can be described in two equivalent ways. An element of π1(X, ?) is a homotopy
class of based maps S1 → X and this can also be viewed as a homotopy class of mapping
cycles S1 → X , and so it determines an element of H1(X) . Alternative description: An
element of π1(X, ?) is a homotopy class of based maps γ : S1 → X and this induces a
homomorphism γ? : H1(S

1) → H1(X) which we evaluate on the element 1 ∈ Z ∼= H1(S
1)

to get an element in H1(X) .

Corollary A.4.6. The map u is a homomorphism. If X is a path-connected CW-space,
then u is surjective and the kernel of u is the commutator subgroup2 of π1(X, ?) .

Proof. Showing that the map is a homomorphism: this is the hardest bit. We try
the following special case first: X is S1 ∨ S1 with the standard base point (where the
two circles are wedged together) and we take two elements a, b of π1(X, ?) given by
the inclusion of the first wedge summand (for a) and the inclusion of the second wedge
summand (for b). Let p, q : X → S1 be the map given by collapse of the second wedge
summand (for p) and collapse of the first wedge summand (for q). Then it is easy to
verify directly that p∗(u(a · b)) = 1 ∈ H1(S1) = Z and q∗(u(a · b)) = 1 ∈ H1(S1, ?) .
It follows that u(a · b) = (1, 1) ∈ Z × Z = H1(S

1) × H1(S1) = H1(X) . This agrees with
(1, 0)+(0, 1) = u(a)+u(b) ∈ Z×Z = H1(S

1)×H1(S1) = H1(X) . The case of a general X
follows from this special case by naturality. Indeed if we have two elements a, b of π1(X, ?)
represented by based maps α,β : S1 → X , then we can make a map g : S1∨ S1 → X given
by α on the first wedge summand and by β on the second. Then there is a commutative
diagram

π1(S
1 ∨ S1, ?)

u

��

g∗ // π1(X, ?)

u

��
H1(S

1 ∨ S1)
g∗ // H1(X)

where the horizontal arrows are certainly homomorphisms. Since a and b are in the
image of g∗ , top horizontal arrow, this settles the matter.
Showing that u is surjective and ker(u) is the commutator subgroup if X is a path
connected CW-space: by remark A.4.4 and a naturality argument, we can reduce to the

2The commutator subgroup of a group G is the subgroup K of G generated by all expressions of

the form aba−1b−1 , where a, b ∈ G . It is a normal subgroup and the quotient group G/K is clearly an
abelian group. Every homomorphism from G to an abelian group A is trivial on K and can therefore be

written in a unique way as a composition G→ G/K→ A , where G→ G/K is the projection.
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case where X has only one 0-cell. Namely, if Z is a maximal tree in X1 , then we have a
commutative diagram

π1(X, ?)
∼= //

u

��

π1(X/Z, ?)

u

��
H1(X)

∼= // H1(X/Z).

(Perhaps I am using remark A.4.5 here to justify the claim that the top horizontal arrow is
an isomorphism.) Furthermore, the choice of base point in X does not matter, because if
we have one choice of base point ?1 and another ?2 , then there is a commutative diagram

π1(X, ?1)
∼= //

u

��

π1(X/Z, ?2)

u

��
H1(X)

∼= // H1(X/Z)

by proposition A.3.1. So we can assume that X has only one 0-cell and that the 0-cell is
the base point. Now we get the result about the kernel of u by comparing the description
of π1(X, ?) in corollary A.4.3 with the description of H1(X) in terms of the cellular chain
complex. (In the latter description, H1(X) is an abelian group with a presentation which
has one generator for every 1-cell and one relation for every two-cell.) �

Remark A.4.7. The assumption in corollary A.4.6 that X is a CW-space is not really
necessary, but the proof would be harder without it.

A.5. Covering spaces

A covering space is simply a fiber bundle p : E → X where the fibres p−1(x) for x ∈ X
are discrete spaces. In more detail: let p : E → X be continuous map of spaces. We say
that p is a covering space if for every x ∈ X there exist an open neighborhood U of x in
X and a set S and a homeomorphism h : p−1(U) → U × S such that h followed by the
projection to U agrees with p . You can also write

∐
s∈SU instead of U × S ; perhaps

this makes the topology clearer.

If X is path connected and p : E → X is a covering space, then the fibers p−1(x) and
p−1(y) over distinct elements x, y ∈ X have the same cardinality. This is a special case
of a statement for fiber bundles (prop. 2.1.3. in cumulative lecture notes).

Two very well known examples of fiber bundles are as follows: the map p : R→ S1 where
p(t) = exp(2πit) ; the quotient map q : Sn → RPn . In the first example, the fibers are
infinite sets; in the second example, they are evidently sets of cardinality 2.

Lemma A.5.1. Let G be a topological group and let H be a finite subgroup. Let G/H be
the set of left cosets, viewed as a space with the quotient topology. Then the projection
q : G→ G/H is a covering space.

Proof. It is part of the topological group assumption that G is Hausdorff. Therefore,
given x ∈ G , we can find an open neighborhood U of x in G such that the translates
U · h for h ∈ H are pairwise disjoint. This means that q|U is a homeomorphism from
U to q(U) . Also, q(U) is an open neighborhood of xH in G/H such that q−1(q(U)) =⋃
h∈HU · h ∼= U×H . �
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Fiber bundles have the homotopy lifting property (HLP) for maps from paracompact
spaces (sections 2.5. and 2.6. of cumulative lecture notes). That is, if p : E→ X is a fiber
bundle and (ht : A→ X)t∈[0,1] is a homotopy where A is paracompact, and f : A→ E is
a map such that pf = h0 , then there exists a homotopy

(h̄t : A→ E)t∈[0,1]

such that h̄0 = f and ph̄t = ht for all t ∈ [0, 1] .

Lemma A.5.2. If the fiber bundle is a covering space, then the UHLP holds, unique ho-
motopy lifting property: the homotopy (h̄t : A→ E)t∈[0,1] is uniquely determined by these
conditions.

Proof. It is enough to establish the case where A is a point. Indeed, a counterexam-
ple to uniqueness with some A implies a counterexample to uniqueness for some subspace
of A which has just one element. In the case where A is a point, we are looking at
the following assertion. Let two paths γ, λ : [0, 1] → E be given such that pγ = pλ and
γ(0) = λ(0) ∈ E . Then γ = λ . Proof of this: let K be the subset of [0, 1] consisting of all
t where γ(t) = λ(t) . Since K is nonempty and [0, 1] is connected, it is enough to show
that K is open and closed in [0, 1] . For that, choose an open covering of X by subsets Ui
such that p−1(Ui) → Ui is a trivial covering space, i.e., looks like the projection from a
product to a factor: Ui × Si → Ui . Let Vi be the preimage of Ui under pγ = pλ . Then
K ∩ Vi is open and closed in Vi (because it can be described as the set of points in Vi
where two continuous maps from Vi to the discrete space Si agree). Since the union of
the Vi is all of [0, 1] , it follows that K is open and closed in [0, 1] . �

A.6. Covering spaces and the fundamental group

Let X be a path connected space with base point. We write π1 for the fundamental group
π1(X, ?) in this section. Let p : E → X be a covering space and put F = p−1(?) . We use
these data to construct a (left) action of π1 on F .

Let y ∈ F be given and let g ∈ π1 represented by a path γ : [0, 1] → X where γ(0) =
γ(1) = ? . By the unique homotopy lifting property (proposition 2.5.2) there exists a
unique path

γ̃ : [0, 1]→ E

such that γ̃(0) = y and pγ̃ = γ . Then we have pγ̃(1) = γ(1) = ? . We want to define

g · y := γ̃(1) ∈ F .

It is necessary to show that this is well defined. Let (γt : [0, 1]→ X)t∈[0,1] be a homotopy
such that γt(0) = γt(1) = ? for all t ∈ [0, 1] . By the (unique) homotopy lifting property
there is a unique continuous map

(s, t) 7→ γ̃t(s)

from [0, 1]× [0, 1] to E such that γ̃t(0) = y for all t ∈ [0, 1] and pγ̃(t, s) = γt(s) for all
t, s ∈ [0, 1] . The continuity implies that

γ̃t(1) ∈ F

does not depend on t ∈ [0, 1] . That is what we needed to know. The standard properties
of an action (the associativity property g1 · (g2 ·y) = (g1g2) ·y and the property 1 ·y = 1
for the neutral element 1 of π1 ) are almost obvious.
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Now it is easy to decide what we are going to do next. The covering spaces of X are the
objects of a category. A morphism from p : E0 → X to q : E1 → X is a map f : E0 → E1
such that qf = p . The sets with an action of π1 are also the objects of a category. A
morphism F0 → F1 in that category is a map e (of sets) from F0 to F1 which intertwines
the actions of π1 , so that e(g · z) = g · e(z) for all z ∈ F0 and g ∈ π1 .

Proposition A.6.1. The above rule which to a covering space p : E→ X assigns the fiber
p−1(?) is a functor from the category of covering spaces of X to the category of sets with
an action of π1 .

Proof. Let p : E0 → X and q : E1 → X be covering spaces and let f : E0 → E1 be a
morphism, so that qf = p . By restricting f we obtain a map of sets

p−1(?) −→ q−1(?).

Since this is the map that we want to assign to the morphism f , we need to show that
it intertwines the actions of π1 defined above. So let y ∈ p−1(?) and let g ∈ π1 be
represented by γ : [0, 1]→ X . We have the unique path

γ̃ : [0, 1]→ E0

where pγ̃ = γ and γ̃(0) = y . Then fγ̃ is a lifted path for γ , too, but it is a lift to E1
rather than E0 . It follows that

g · f(y) = (fγ̃)(1) = f(γ̃(1)) = f(g · y)
which is what we had to show. �

A.7. Constructing maps between covering spaces

Theorem A.7.1. The functor of proposition A.6.1 is fully faithful. That is to say, for
any two covering spaces p : E0 → X and q : E1 → X , where X is path connected, it
gives a bijection from the set of maps f : E0 → E1 such that qf = p to the set of maps
p−1(?)→ q−1(?) respecting the actions of π1 .

Proof. We show injectivity first. Using notation as in the statement, suppose that u
and v are two maps from E0 to E1 which are both over X , so that qu = p and qv = p .
Suppose that u and v agree on the subset q−1(?) . We need to show that u = v . Let
y ∈ E . Choose a path α : [0, 1]→ X such that α(0) = p(y) and α(1) = ? . Lift to a path

α̃ : [0, 1]→ E0

such that α̃(0) = y and pα̃ = α . Now uα̃ and vα̃ are two paths in E1 which cover the
same path α in X . They also have the same endpoint,

uα̃(1) = vα̃(1)

by our assumption that u and v agree on p−1(?) . Therefore they must agree by the
UHLP, and so

u(y) = uα̃(0) = vα̃(0) = v(y).

Now we show surjectivity. So we begin with w from F0 = p−1(?) to F1 = q−1(?) . Here
it helps to begin with the following observation. Let α be a path in X from ? to x ∈ X .
Then α determines a bijection bα from p−1(?) to p−1(x) . This is obtained by looking
at the various lifts of α to E0 . Similarly, α determines a bijection cα from q−1(?) to
q−1(x) . Therefore we obtain a map

cα ◦w ◦ b−1α : p−1(x) −→ q−1(x).
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If we use this for every x ∈ X , then we have a map from E0o to E1 . But we must show
that something is well defined: cα ◦ w ◦ b−1α doe not depend on α . So suppose that
β is a path competing with α . Then we have β̄ ◦ α , representing an element g of π1 .
We find that bα = bβ ◦ µg where µg is multiplication on g (on the left), and similarly
cα = cβ ◦ µg . Therefore

cα ◦w ◦ b−1α = cβ ◦ µg ◦w ◦ µ−1g ◦ b−1β = cβ ◦w ◦ b−1β .

Therefore we have a well defined map p−1(x) → q−1(x) for every x ∈ X , determined by
w . If x = ? , this map is exactly w . Therefore we have constructed a map f : E0 → E1
which satisfies qf = p and which extends w . (Some more work should be done to show
that this is continuous ... but this is not hard.) �

A.8. Constructing covering spaces

Definition A.8.1. A space X is locally path connected if for every x ∈ X and neighbor-
hood V of x in X , there exists a neighborhood U of x in V such that any two points in
U can be connected by a path in V .

Theorem A.8.2. Let X be a based space which is path connected and locally path connected
and admits a covering by open subsets Ui such that for every i and every map S1 → Ui ,
the composition S1 → Ui → X is nullhomotopic. Then the functor of proposition A.6.1 is
an equivalence of categories.

Proof. Let F be a set equipped with an action of π1 = π1(X, ?) . We need to
construct a covering space p : E → X such that the set p−1(?) , as a set with action to
π1 , is isomorphic to F .
First we describe/construct E as a set and we construct p : E → X as a map of sets.
This does not use any special properties of X . An element of E is an equivalence class of
pairs (α, z) where α : [0, 1] → X is a path satisfying α(0) = ? and where z ∈ F . We say
(α, z0) ∼ (β, z1) if α(1) = β(1) and [β̄ ◦ α] · z0 = z1 holds in F . Here β̄ is the reverse
path of β (as usual) and consequently β̄ ◦ α represents an element [β̄ ◦ α] of π1 . Define

p : E→ X

by taking the equivalence class of (α, z) to α(1) ∈ X .
Now we need to define a topology on E making p into a covering projection. In general
this is hard or impossible. But with our assumptions on X we can do it. Choose a covering
of X by open subsets Ui such that for every i and every map S1 → Ui , the composition
S1 → Ui → X is nullhomotopic. For each Ui choose a covering of Ui by open subsets
Vij such that any two points in Vij can be connected by a path in Ui . Let Eij be the
preimage of Vij under p : E → X . So Eij consists of equivalence classes of pairs (α, z)
as above, where in addition α(1) ∈ Vij . Choose a point xij ∈ Vij . It turns out that for
y ∈ Vij we can make a preferred bijection

by : p
−1(xij) −→ p−1(y).

This works as follows. Choose a path γ : [0, 1] → Ui from xij to y . This exists by
assumption. It determines a bijection from p−1(xij) to p−1(y) which takes the equivalence
class of a pair (α, z) where α(1) = xij to the equivalence class of (γ◦α, z) where, obviously,
γ ◦α(1) = y . (Reparameterization of γ ◦α is understood.) A different choice of path, say
γ ′ : [0, 1] → Ui from xij to y , determines the same bijection from p−1(xij) to p−1(y)
due to the fact that there exists a homotopy (γt : [0, 1] → X)t∈[0,1] where γ0 = γ and
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γ1 = γ ′ . (This is true by our assumption on the inclusion Ui → X .) Therefore we get a
preferred bijection

hij : Eij → Vij × p−1(xij).
We use that to define a topology on Eij so that it is the product of Vij and the discrete
space or set p−1(xij) .
Now it is very important, but not completely obvious, that the topologies on Eij that we
have defined agree on the intersections Eij ∩Ek` . More precisely, Eij ∩Ek` can be viewed
as an open subspace of Eij and also as an open subspace of Ek` , and we need to know
that the identity map Eij ∩Ek` → Eij ∩Ek` is a homeomorphism for these two topologies.
What could be the problem? For a point y ∈ Vij ∩ Vk` and chosen paths γ from xij
to y in Uij as well as λ from xk` to y in Uk` , we obtain a path λ̄ ◦ γ from xij to
xk` , hence a bijection cy from p−1(xij) to p−1(xk`) by fiber transport. We understand
already that this bijection does not depend on the choice of γ and λ . But it could depend
on y ∈ Vij∩Vk` . Fortunately though, we can choose a neighborhood W of y in Vij∩Vk`
such that any two points in W can be connected by a path in Vij ∩ Vk` . The it is easy
to verify that cy = cz for all z ∈ W . This is good enough for us, i.e., it shows that the
topology on Eij ∩ Ek` is unambiguously defined, whether we view it as an open subspace
of Eij or as an open subspace of Ek` .
Therefore, at last, we can define a topology on E by saying that a subset of E is open
if and only if its intersection with each of the Eij is open in Eij . Then Eij is an open
subspace of E and as before homeomorphic to Vij × p−1(xij) by means of the map hij .
It follows that p : E→ X is a fiber bundle, and even a covering space, with bundle charts
hij .
It remains to be shown that p−1(?) is isomorphic, as a set with action of π1 , to F .
A map u from p−1(?) to F can be defined by taking the equivalence class of (α, z) to
[α] · z ∈ F . Here α : [0, 1]→ X is a path where α(0) = α(1) = ? . It is not hard to see that
u is a bijection. In order to show that u intertwines the actions of π1 , we show this: if
β : [0, 1]→ X is a path where β(0) = β(1) = ? , and if

β̃ : [0, 1] −→ E

is the unique path satisfying pβ̃ = β and β̃(0) = equivalence class of (α, z) , then β̃(1) is
the equivalence class of the pair (β ◦ α, z) . We show it by noting that we can define

β̃(t) = equivalence class of the pair (β|[0,t] ◦ α, z) .

This formula defines a continuous map because the map is continuous in each of the open
sets β−1(Vij) ⊂ [0, 1] . �

A.9. Path components and fundamental group of covering spaces

It is surprising that there is something left to do after theorems A.7.1 and A.8.2, but there
is. Let p : E→ X be a covering space, where X is a based path connected space with base
point ? . Put F = p−1(?) . As in proposition A.6.1 we regard F as a set with an action of
π1 = π1(X, ?) .

Proposition A.9.1. For y ∈ F ⊂ E , the homomorphism π1(E, y) → π1(X, ?) induced
by p : E → X is injective and its image is the stabilizer group3 of y ∈ F for the action of
π1(X, ?) on F .

3Also known as isotropy group.
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Proof. Let γ : [0, 1]→ E be a path such that γ(0) = γ(1) = y . Then pγ represents
p∗[γ] ∈ π1(X, ?) . Since γ is a lift of pγ satisfying γ(0) = y , we have [pγ] · y = γ(1) = y ,
which shows that p∗[γ] acts trivially on y ∈ F . Conversely, suppose given an element in
π1(X, ?) which is in the stabilizer subgroup for y ∈ F . Represent the element by a path
λ : [0, 1]→ X such that λ(0) = λ(1) = ? . Choose a lift

λ̃ : [0, 1]→ E

such that λ̃(0) = y . We have λ̃(1) = [λ] · y by definition of the right-hand side. Since we

are assuming [λ] · y = y this means that λ̃ is a path in E from y to y , and so represents
an element of π1(E, y) . So we have a homomorphism from the stabilizer group (for y ∈ F
and the action of π1(X, ?) on F) to π1(E, y) given by

[λ] 7→ [λ̃]

where λ̃ is the unique lift of λ satisfying λ̃(0) = y . It is fairly clear that this is well defined
and inverse to p∗ . �

Let π0(E) be the set of path components of E .

Proposition A.9.2. The map F→ π0(E) taking y ∈ F to its path component is surjective.
Two elements y, z ∈ F have the same image in π0(E) if and only if they are in the same
orbit for the action of π1(X, ?) on F .

Proof. Surjectivity: for an element w ∈ E , choose a path γ : [0, 1] → X from p(y ′)
to ? . This is possible because we are still assuming that X is path connected. There is a
unique

γ̃ : [0, 1]→ E

such that pγ̃ = γ and γ̃(0) = w . Then γ̃(1) ∈ F . This shows that the path component
of E containing w has nonempty intersection with F .
Now let y, z ∈ F . Then

y and z are in the same orbit⇔ ∃ path γ from ? to ? in X such that [γ] · y = z⇔ ∃ path γ̃ : [0, 1]→ E such that γ̃(0) = y and γ̃(1) = z⇔ y and z are in the same path component of E.

�

Example A.9.3. Suppose that X satisfies the conditions of theorem A.8.2. Then there
exists a covering space p : E→ X such that F = p−1(?) , with the action of π1 = π1(X, ?)
of proposition A.6.1, is a free transitive π1 -set. In other words, for y, z ∈ F there is exactly
one g ∈ π1 such that g · y = z . In this case the action of π1 on F has only one orbit, so
E must be path connected by proposition A.9.2. Moreover, for any y ∈ F the stabilizer
subgroup for y and the action of π1 on F is the trivial subgroup, so that π1(E, y) is
trivial (has only one element).
Such a covering space p : E → X is then called a universal covering space of X . By
proposition A.6.1, it is unique in the same way that sets with a free transitive action of
π1 = π1(X, ?) are unique. So if p : E0 → X and q : E1 → X are two universal covering
spaces of the same X , then there exists a homeomorphism u : E0 → E1 satisfying qu = p .
But such a homeomorphism u need not be unique. (It is a good exercise to say how and
why it can fail to be unique.)
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A.10. The lifting lemma

Imagine two path-connected spaces X and Y with base points ?X and ?Y , respectively.
Let q : E → Y be a covering space where E is also path-connected, with base point
?E ∈ q−1(?Y) . Note that q∗ : π1(E, ?E) → π1(Y, ?Y) is an injective homomorphism (see
previous section). Let f : X→ Y be a based map.

Lemma A.10.1. Suppose that the image of f∗ : π1(X, ?X) → π1(Y, ?Y) is contained in the
image of q∗ : π1(E, ?E) −→ π1(Y, ?Y) . Then there exists at most one based map u : X→ E
making the following diagram commutative:

E

q

��
X

u

??

f // Y

If X is locally path connected, then there exists exactly one such map u .

Proof. Select x0 ∈ X . Let us try to determine u(x0) . Choose a path α : [0, 1] → X
from ?X to x0 . By the unique path lifting property of q : E → X , there exists a unique
path α] : [0, 1] → E such that q ◦ α] = f ◦ α and α](0) = ?E . If u is continuous, which
we assume, then u ◦ α is a path which satisfies q ◦ (u ◦ α) = f ◦ α and u(α(0)) = ?E .
Therefore u ◦ α = α] and

u(x0) = α
](1) .

This looks like a determination of x0 , but we need to show that it is unambiguous. So
let β : [0, 1] → X be another path from ?X to x0 . Is it true that β](1) = α](1) ? The
answer is yes, because the concatenation

β̄ ◦ α
(α followed by reverse of β) is a closed path (loop) in X representing an element of
π1(X, ?X) . By assumption the loop f ◦ (β̄ ◦ α) in Y can be lifted to a loop in E based at
?E , and it is easy to see that this must be α] followed by the reverse of β] . Therefore
β](1) = α](1) .
Consequently we have an unambiguous definition of u . This proves the first part of the
lemma. But it is not clear that u is a continuous map. On the other hand, we constructed
u in such a way that u◦γ is continuous for every path γ in X , and we can exploit this. Fix
x0 ∈ X as before. Choose an open neighborhood W of f(x0) in Y such that q−1(W) ⊂ E
is homeomorphic to a product F×W for some set F (by a homeomorphism h from q−1(W)
to F×W such that h followed by projection to W agrees with q). Now h ◦ u is defined
on f−1(W) , and it suffices to show that it is continuous at x0 . For that it suffices to
show that hF ◦u is constant in a neighborhood of x0 , where hF : q

−1(W)→ F is the first
coordinate of h . If X is locally path connected then there exists a neighborhood V of x0
in f−1(W) ⊂ X such that every x1 ∈ V can be connected to x0 by a path γ in f−1(W) .
Since u◦γ is continuous, hF ◦u◦γ must be constant. So hF(u(x1)) = hF(u(x0)) , showing
that hF ◦ u is constant on V . �



APPENDIX B

An overview of singular homology and cohomology

B.1. The singular chain complex

This section is an attempt to outline the standard definitions of homology and cohomology
of topological spaces, and to state the most important theorems about them without
proofs. The technical names are singular homology and singular cohomology. Reason for
this attempt: (i) educational, (ii) facilitates communication, (iii) some readers of this may
be more familiar with singular homology/cohomology and may want to see a comparison.
It is not obvious from the definitions that the singular homology groups of a space X are
isomorphic to the homology groups that I have championed, based on mapping cycles. (I
believe they are, but I am not planning to prove it here.) Also, it is not obvious that
the singular cohomology groups of a space X are isomorphic to the cohomology groups
Hn(X) based on mapping cycles. Indeed this is not always the case, and it is easy to
give counterexamples. I suspect that the cohomology groups Hn(X) based on mapping
cycles are isomorphic to the Čech cohomology groups of X , a better known variant of
cohomology, at least when X is paracompact. The good news: for a CW-space X , or a
space X which is homotopy equivalent to a CW-space, the singular homology/cohomology
groups of X are certainly isomorphic to the homology/cohomology groups of X based
on mapping cycles. In view of that, I shall not introduce separate notation for singular
(co-)homology groups, except in cases where the distinction matters and it is not obvious
what is meant.

Let ∆n = { (t0, t1, . . . , tn) ∈ Rn+1 | ∀i : ti ≥ 0, Σiti = 1 } be the geometric n -simplex,
a subspace of Rn+1 with the subspace topology. This is incredibly important in singular
homology. (We met it previously in connection with semi-simplicial sets.) There are
continuous maps

ei : ∆
n−1 → ∆n

defined by inserting a zero in position i ; that is,

ei(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1).

Definition B.1.1. The singular chain complex Sg(X) of a space X is defined as follows.
The abelian group Sg(X)n is the free abelian group generated by the set of all continuous
maps σ : ∆n → X . The differential d from Sg(X)n to Sg(X)n−1 is defined (on the specified
generators) by

σ 7→ n∑
i=0

(−1)iσ ◦ ei .

Therefore an element in Sg(X)n can be described in the form Σσaσ · σ , a formal sum
indexed by all continuous maps σ : ∆n → X . The numbers aσ belong to Z , but only
finitely many of them are nonzero. (It is an exercise to show that dd = 0 in Sg(X) .) A
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continuous map ∆n → X is sometimes called a singular n-simplex of X , for complicated
historical reasons.1

Definition B.1.2. The singular homology group Hn(X) of a space X is defined to be
Hn(Sg(X)) , the n -th homology group of the chain complex Sg(X) .

Example B.1.3. Suppose that X is a point. Then there is exactly one continuous map
σ : ∆n → X , for every n ≥ 0 . Therefore Sg(X)n = Z for all n ≥ 0 , whereas Sg(X)n = 0
for n < 0 . The differential d : Sg(X)n → Sg(X)n−1 is multiplication with

∑n
i=0(−1)

i .
That number simplifies to 0 if n is odd and positive. It simplifies to 1 if n is even and
positive. From there, it is easy to deduce that H0(Sg(X)) ∼= Z and all other homology
groups are zero.

For a chain complex C with differentials d : Cn → Cn−1 we can define another chain com-
plex hom(C,Z) as follows. We set hom(C,Z)k = hom(C−k,Z) and define the differential
d∗ : hom(C,Z)k → hom(C,Z)k−1 by pre-composition with the differential d : C−k+1 →
C−k . Note that if Ck = 0 for k < 0 , which is often the case, then hom(C,Z)` = 0 for
` > 0 , which looks a little strange.2

Definition B.1.4. The singular cohomology group Hn(X) of a space X is defined to be
H−n(hom(Sg(X),Z)) .

These definitions may look very mysterious. To make them seem less so, let me suggest
that people who teach homology/cohomology in this way believe that there is an important
analogy going on between the category of topological spaces and the category of chain
complexes. They want to express this as quickly as possible. It is important to them that

X 7→ Sg(X)

is a covariant functor from the category of topological spaces to the category of chain
complexes. Indeed, a continuous map f : X → Y induces homomorphisms f∗ : Sg(X)n →
Sg(Y)n by Σσaσ · σ 7→ Σσaσ · (σ ◦ f) . Letting n vary, these define a chain map from
Sg(X) to Sg(Y) , still denoted by f∗ . It follows that singular homology is also a covariant
functor, X 7→ Hn(X) , and singular cohomology is a functor, X 7→ Hn(X) .

Theorem B.1.5. Suppose that f, g : X → Y are homotopic maps. Then the chain maps
f∗, g∗ : Sg(X)→ Sg(Y) are chain homotopic.

The proof is quite technical.

Corollary B.1.6. If f and g are homotopic maps from X to Y , then they induce the
same homomorphisms in singular homology,

f∗ = g∗ : Hn(X)→ Hn(Y).

They also induce the same homomorphisms in singular cohomology,

f∗ = g∗ : Hn(Y)→ Hn(X).

1In the case where X has the structure of a simplicial complex there are some distinguished injective
continuous maps ∆n → X , and these would probably have qualified as nonsingular n -simplices in the

language of the ancients.
2For this reason some people prefer another convention according to which hom(C,Z)k = hom(Ck,Z) .

These people must live with the consequence that d∗ is a homomorphism from hom(C,Z)k to
hom(C,Z)k+1 . As a sign of their acceptance they say that hom(C,Z) is a cochain complex, not a chain

complex.
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Another important topic is the Mayer-Vietoris sequence. In singular homology/cohomology
this can be handled as follows. Let X be a space with open subsets V and W such that
V ∪W = X . We introduce a chain subcomplex

SgV,W(X) ⊂ Sg(X)

as follows. An element Σσaσ ·σ of Sg(X)n belongs to the subcomplex if every σ : ∆n → X
which appears with a nonzero coefficient aσ ∈ Z in the sum lands in either V or W , or
both. To put it differently, SgV,W(X) is the free abelian group generated by the continuous
maps σ : ∆n → X for which σ(∆n) is contained in V or in W .

Theorem B.1.7. The inclusion SgV,W(X) ⊂ Sg(X) is a chain homotopy equivalence.

The proof of this is also quite technical.

Corollary B.1.8. In the circumstances of theorem B.1.7, there is a long exact sequence
of singular homology groups

· · · // Hn+1(X)

∂

��
Hn(V ∩W) // Hn(V)⊕Hn(W) // Hn(X)

∂

��
Hn−1(V ∩W) // · · ·

Proof. This is the long exact sequence of homology groups associated with a certain
short exact sequence of chain complexes

0 −→ Sg(V ∩W) −→ Sg(V)⊕ Sg(W) −→ SgV,W(X) −→ 0 .

Here the chain map Sg(V ∩W) −→ Sg(V) ⊕ Sg(W) is the formal difference of the two
inclusion maps Sg(V ∩ W) → Sg(V) and Sg(V ∩ W) → Sg(W) , and the chain map

Sg(V) ⊕ Sg(W) −→ SgV,W(X) is equal to the inclusion on each of the summands Sg(V)

and Sg(W) . We use theorem B.1.7 as a license for writing Hn(SgV,W(X)) ∼= Hn(Sg(X)) =
Hn(X) . �

Corollary B.1.9. In the circumstances of theorem B.1.7, there is a long exact sequence
of singular cohomology groups

· · · Hn+1(X)oo

Hn(V ∩W)

δ

OO

Hn(V)⊕Hn(W)oo Hn(X)oo

Hn−1(V ∩W)

δ

OO

· · ·oo

Proof. Apply hom(−,Z) to the short exact sequence of chain complexes in the proof
of the previous corollary. The result is another short exact sequence of chain complexes.
(Some small checks are required here.) The associated long exact sequence of homology
groups is the one we require. �
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Note that in the last corollary we didn’t need any special conditions, such as X must be
paracompact.

Example B.1.10. Let X be any space. It is relatively easy to show that the singular
homology group H0(X) is isomorphic to the free abelian group generated by the path
components of X . (This is in agreement with H0(X) defined in terms of mapping cycles.)
More specifically, given x ∈ X there is a unique continuous map ∆0 → X with image {x} ,
and this determines an element [x] of H0(Sg(X)) = H0(X) for obvious reasons. We have
[x] = [y] if and only if x and y are in the same path component of X . By choosing one
x in each path component of X , we obtain a set of free generators for H0(X) .
It is also relatively easy to show that the singular cohomology group H0(X) is isomorphic
to hom(H0(X),Z) . We can also say: elements of the singular cohomology group H0(X) are
functions from X to Z which are constant on each path component. This is in contrast
to H0(X) defined in terms of mapping cycles, where we had the following description:
elements of H0(X) are continuous functions from X to Z . (A continuous function from X
to Z is certainly also constant on path components of X , but there are cases when that is
not enough.) To be more specific, let us try

X = {0} ∪ {2−i | i = 0, 1, 2, 3, . . . },

a subspace of R . Then H0(X) defined with mapping cycles is a free abelian group with
countably many generators (exercise), and so it is countable as a set. But the singular
cohomology group H0(X) is a product of copies of Z , one copy for each x ∈ X , and so it
is uncountable as a set. Nota bene: this X is not a CW-space and it is not even homotopy
equivalent to a CW-space. So this example does not disprove the claim that singular
cohomology and mapping cycle cohomology agree for CW-spaces.

How did the singular chain complex of X come to prominence? I assume that Poincaré
in the late 19th century worked with simplicial complexes (see lecture notes WS13-14)
and knew how to associate a chain complex with such a thing. This was already close
to the definition of Sg(X) , but as indicated above it did not use all the continuous maps
∆n → X . Instead it used only one for each standard inclusion of a simplex in the simplicial
complex. Later, when the definition of topological spaces emerged, there was a need for a
definition of chain complex of X which did not depend on a simplicial complex structure
on X , especially in cases where X was not homeomorphic to a simplicial complex. Maybe
topologists then came to a gradual agreement to think big and to incorporate all the
continuous maps ∆n → X for all n ≥ 0 into the definition of Sg(X) .

There is another justification for Sg(X) which is probably not among the reasons why it
was created. I mentioned this in section 11.4 of lecture notes WS13-14. Perhaps it came too
early. Let HoTop be the homotopy category of topological spaces. Let HoTopCW be the
homotopy category of CW-spaces. (The objects are the CW-spaces, and the morphisms
from X to Y are homotopy classes of continuous maps X→ Y .)

Theorem B.1.11. The inclusion functor HoTopCW → HoTop has a right adjoint.

Apologies for the abstract formulation; the meaning is as follows. For any topological
space Y we can find a CW-space Y\ and a map u : Y\ → Y such that the map

[X, Y\] −→ [X, Y]

given by composition with u is a bijection whenever X is a CW-space. The square brackets
denote sets of homotopy classes of maps. It is not claimed that Y\ is uniquely determined
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by Y , but it is easy to see that it must be unique up to homotopy equivalence. In particular,
if Y is already a CW-space, then Y\ ' Y . The construction of such a space Y\ in general
takes a bit of thought. One solution is as follows. Starting with a space Y , form the semi-
simplicial set SY where SYn is the set of continuous maps from ∆n to Y . The face operator
f∗ : SYn → SYn corresponding to a monotone injective map f : {0, . . . ,m} → {0, . . . , n} is
given by composition with f∗ : ∆

m → ∆n , a so-called linear map; in coordinates, insert
zeros in the positions j where j /∈ im(f) . The geometric realization |SY| is then a CW-
space and it comes with a canonical continuous map |SY| → X . That map can be taken
as u : Y\ → Y .

Lemma B.1.12. The singular chain complex Sg(Y) is naturally isomorphic to the cellular
chain complex of the CW-space |SY| .

The proof is not meant to be difficult. Note that |SY| has one n-cell for each element
of SYn , that is, for each continuous map σ from ∆n to Y . This contributes a direct
summand Z to C(|SY|)n , the n-th chain group of the cellular chain complex of |SY| . The
same σ contributes a direct summand Z to the n-th chain group of the singular chain
complex Sg(Y)n . In this way it becomes clear what the isomorphism should look like.

B.2. Singular homology and cohomology of pairs

Under construction.

B.3. Products in singular homology and singular cohomology

Under construction.


