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Lecture Notes, weeks 6, 7 and 8
Topology SS 2015 (Weiss)

3.1. The E. H. Brown representation theorem

Let C be the category of based connected CW-spaces. (There is an under-
standing that the base point in a based CW-space is always a 0-cell.) Let
HoC be the corresponding homotopy category. We look for a characteriza-
tion of the representable contravariant functors from HoC to sets.

Definition 3.1. A contravariant functor F from HoC to sets is half-exact if
it satisfies the conditions below.

(i) If X in C is the union of two based CW-subspaces A and B such that
A,B and A ∩ B are again in C , then for any s ∈ F(A) and t ∈ F(B)
which determine the same element of F(A∩B) , there exists u ∈ F(X)
restricting to s ∈ F(A) and to t ∈ F(B) .

(ii) (Wedge axiom.) If X in C is a wedge, X =
∨
Xα , then the maps

F(X) → F(Xα) induced by the inclusions of Xα in X determine a
bijection

F(X) −→∏
α

F(Xα) .

In (ii), the case of an empty indexing set is allowed. In that case the condition
means that F(?) has exactly one element.

Remark 3.2. If F is half-exact, then for every X in C the set F(X) has
a distinguished “zero” element. This is g∗(z) ∈ F(X) for the unique map
g : X→ ? and the unique element z ∈ F(?) .

Remark 3.3. Let g : X→ Y be a based cellular map, where X and Y are in
C . Let cone(g) be the reduced mapping cone. (The reduced mapping cone is
the quotient space obtained from the standard mapping cone by collapsing
the copy of [0, 1] × ? in the standard mapping cone to a single point. The
reduced mapping cone of a based cellular map of CW-spaces is again a based
CW-space in a preferred way.) Then the sequence

F(cone(g))→ F(Y)
g∗−→ F(X)

(first arrow determined by the inclusion of Y in cone(g)) is exact, i.e., an
element of F(Y) comes from F(cone(g)) if and only if it maps to the zero
element of F(X) . (Exercise.)

Example 3.4. Let Y be a based connected CW-space and let FY be the
contravariant functor defined by FY(X) = [X, Y]? (set of based homotopy
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classes of based maps from X to Y ) for X in C or HoC . This FY is half-
exact. Property (ii) in definition 3.1 is obviously satisfied. For property (i),
the idea is as follows. Take X = A ∪ B etc.; replace X by X] which is the
quotient of

A t
(
[0, 1]× (A ∩ B)

)
t B

by the relations (0, x) ∼ x ∈ A and (1, x) ∼ x ∈ B for x ∈ A ∩ B , as well
as (t, ?) ∼ (0, ?) for all t (where ? is the base point in A ∩ B). There is a
projection map

X] −→ X

which forgets the extra coordinate in [0, 1] where applicable. It is an exercise
to show that this projection map is a homotopy equivalence. (Use the HEP,
homotopy extension property, for the inclusion of A∩B in A .) Now suppose
given a map f0 : A → Y and a map f1 : B → Y such that f0|A∩B ' f1|A∩B .
Choose a homotopy (ht)t∈[0,1] from f0|A∩B to f1|A∩B . Define g : X] → Y so
that g agrees with f0 on the copy of A in X] , agrees with f1 on the copy
of B in X] , and agrees with ht on the copy of {t} × (A ∩ B) in X] . Then
the homotopy class of g , viewed as an element of [X, Y]? = FY(X) , satisfies
[g]|A = [f0] and [g]|B = [f1] . This confirms property (i) for FY , but I must
apologize for changing labels: s; f0 , t; f1 , u; g .

More exotic examples will be given later.

Let F be half-exact and suppose that X in C is the monotone union of a
sequence of CW-subspaces Aj where j = 0, 1, 2, ... ; so

X =
⋃
j

Aj

and Aj ⊂ Aj+1 for all j . Let (vj ∈ F(Aj))j≥0 be a sequence such that the
map F(Aj+1)→ F(Aj) induced by Aj ↪→ Aj+1 takes vj+1 to vj , for all j ≥ 0 .

Lemma 3.5. Then there exists v∞ ∈ F(X) which is taken to vj under the
map F(X)→ F(Aj) induced by Aj ↪→ X, for all j ≥ 0.

Proof. Let’s use the notation cyl(Y → Z) for the mapping cylinder of a
map e : Y → Z . For the moment this is the unreduced mapping cylinder.
In the standard description of the mapping cylinder we have a projection
cyl(Y → Z) → [0, 1] which takes the standard copy of Z to 0 and the
standard copy of Y to 1 . Here we parameterize this differently so that there
is a projection cyl(Y → Z) → [0, 2] which takes Y to 0 and Z to 2 . More
precisely, let cyl(Y → Z) be (in this proof) the quotient of

(
[0, 2] × Y

)
∪ Z

obtained by making identifications (2, y) ∼ e(y) ∈ Z . If e is a based cellular
map of based CW-spaces, then cyl(e) = cyl(Y → Z) is a CW-space in a
preferred way, but here we use the CW-structure on [0, 2] with three 0-cells:
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the elements 0, 1, 2 of [0, 2] . The cylinder cyl(e) is not a based CW-space,
but for later use we not that there is a copy of [0, 2] = cyl(? → ?) inside
cyl(e) . This is clearly asking to be collapsed to a single point, but we have
to delay that. — The mapping telescope of the diagram

A0 ↪→ A1 ↪→ A2 ↪→ A3 ↪→ A4 ↪→ · · ·
is the union

cyl(A0 → A1) ∪A1
cyl(A1 → A2) ∪A2

cyl(A2 → A3) ∪A3
· · ·

in self-explanatory notation. It is again a CW-space in an obvious way. Let’s
write tel(Aj | j ≥ 0) for the telescope, just to have an abbreviation. There is
a projection map

tel(Aj | j ≥ 0) −→ X

which on the piece cyl(Aj → Aj+1) agrees with the cylinder projection to
Aj+1 , followed by the inclusion Aj+1 → X . Exercise: show that this map is
a homotopy equivalence.
There is a very useful continuous projection map

q : tel(Aj | j ≥ 0) −→ [0, 2] ∪ [2, 4] ∪ [4, 6] ∪ · · ·

which projects the piece cyl(Aj → Aj+1) to the interval [2j, 2j + 2] in the
obvious way. Now let T0 be the preimage under q of [0, 1]∪ [3, 5]∪ [7, 9]∪ . . .
and let T1 be the preimage under q of [1, 3] ∪ [5, 7] ∪ . . . . These are CW-
subspaces of the telescope tel(Aj | j ≥ 0) by construction. Then clearly

T0 ' A0 tA2 tA4 tA6 ∨ . . . , T1 ' A1 tA3 tA5 t . . .

whereas

T0 ∩ T1 ∼= A0 tA1 tA2 tA3 t · · · .
But at this point we need to see reduced versions of these constructions. Let

telρ(Aj | j ≥ 0) :=
tel(Aj | j ≥ 0)

tel(?→ ?→ ?→ · · · )
and let T ρ0 , T ρ1 be the images of T0 and T1 in telρ(Aj | j ≥ 0) . Then we have

T ρ0 ' A0 ∨A2 ∨A4 ∨A6 ∨ . . . , T ρ1 ' A1 ∨A3 ∨A5 ∨ . . .

whereas

T ρ0 ∩ T
ρ
1
∼= A0 ∨A1 ∨A2 ∨A3 ∨ · · · .

By the wedge axiom, (v0, v2, v4, . . . ) defines an element in F(T0) and similarly
(v1, v3, v5, . . . ) defines an element in F(T1) . By assumption on the sequence
(vj)j≥0 , these two elements determine the same element

(v0, v1, v2, . . . ) ∈ F(T ρ0 ∩ T
ρ
1 )
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under the restriction maps F(T ρ0 ) → F(T ρ0 ∩ T
ρ
1 ) and F(T ρ1 ) → F(T ρ0 ∩ T

ρ
1 ) .

Therefore by half-exactness, there exists

w ∈ F(telρ(Aj | j ≥ 0)) ∼= F(tel(Aj | j ≥ 0)) ∼= F(X)

which extends (v0, v2, v4, . . . ) ∈ F(T ρ0 ) and (v1, v3, v5, . . . ) ∈ F(T ρ1 ) . The
element w , viewed as an element of F(X) , is the answer to our prayers. �

Lemma 3.6. Let E be a half-exact functor, let X be an object of C and
let t ∈ F(X). There exist a based connected CW-space Y containing X as
a CW-subspace, and an element u ∈ E(Y) such that u|X = t and the map
πk(Y)→ E(Sk) taking [f : Sk → Y] to f∗(u) is bijective for all k > 0.

As a preparation for the proof we take a closer look at the sets E(Sk) for a
half-exact functor E and k ≥ 1 . It turns out that these sets have a preferred
group structure (abelian if k ≥ 2). The reason is that Sk comes with a
distinguished map κ : Sk → Sk ∨ Sk which we used previously to define the
group structure in homotopy groups πk . Here we can use it to define a map

E(Sk)× E(Sk) −→ E(Sk)

by writing E(Sk)× E(Sk) ∼= E(Sk ∨ Sk) , wedge axiom for E , and then using
κ∗ : E(Sk ∨ Sk) → E(Sk) . This map makes E(Sk) into a group (abelian if
k ≥ 2) because κ has the corresponding properties (which can be, should be
and have been expressed in the homotopy category of based spaces). By the
same reasoning, for X in C and t ∈ F(X) the maps πk(X) → E(Sk) taking
[f : Sk → X] to f∗(t) are group homomorphisms. (Here and in the following
we write πk(X) instead of πk(X) on the understanding that X has a preferred
base point.)

Proof of lemma 3.6. We construct X ∪ Yn by induction on n , together with
elements un ∈ E(X∪Yn) such that the restriction of un to X∪Yn−1 is un−1 .
(The notation is a little informal; there is an understanding that X ∩ Yn
is Xn .) For the induction beginning set u0 := t and X ∪ Y0 := X , that
is, Y0 = X0 . For the first induction step, from n = 0 to n = 1 , choose
generators µ for the entire group E(S1) . Define

X ∪ Y1 := X∨
∨
µ

S1 .

By the wedge axiom for E , we have

E(X ∪ Y1) = E(X)×
∏
µ

E(S1)

and we determine u1 ∈ E(X∪ Y1) in such a way that the coordinate in E(X)
is u0 = t , while the coordinate in the factor E(S1 corresponding to µ ∈ E(S1)
is exactly µ . By construction, the map π1(X ∪ Y1) → E(S1) taking [f] to
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f∗(u1) is surjective. — For the remaining induction steps, suppose that X∪Yn
and un ∈ E(X ∪ Yn) have already been constructed for a particular n ≥ 1 .
Suppose that the homomorphisms πk(X ∪ Yn)→ E(Sk) taking [f] to f∗(un)
are bijective for 1 ≤ k < n and surjective for k = n . (This is part of the
induction load.) Choose generators λ for the kernel of the homomorphism
πn(X∪Yn)→ E(Sn) , and for each λ , a based cellular map fλ : S

n → X∪Yn in
that homotopy class. Also choose generators µ for the entire group E(Sn+1) .
Define X ∪ Yn+1 to be

cone
(∨

λ

gλ :
∨
Sn −→ X ∪ Yn

)
∨

∨
µ

Sn+1.

By half-exactness of E (see also remark 3.3) there is an element un+1 of
E(X ∪ Yn+1) such that the restriction to X ∪ Yn is un and the restriction to
the wedge summand Sn+1 with label µ is precisely µ ∈ E(Sn+1) .
Now we have to show that the homomorphisms πk(X∪Yn+1)→ E(Sk) taking
[f] to f∗(un+1) are bijective for 1 ≤ k ≤ n and surjective for k = n + 1 .
Surjectivity for k = n + 1 is obvious from the construction. For the cases
k ≤ n we look at the composition

πk(X ∪ Yn)→ πk(X ∪ Yn+1)→ E(Sk)

where the first arrow is induced by the inclusion X ∪ Yn → X ∪ Yn+1 . The
first arrow is an isomorphism for k < n by cellular approximation and the
composition is an isomorphism for k < n by inductive assumption, so the
second arrow is also an isomorphism for k < n . For k = n the first arrow is
onto by cellular approximation, while the composite arrow is onto by induc-
tive assumption and its kernel is contained in the kernel of the first arrow
by construction. Therefore these two kernels must coincide as subgroups of
πk(X ∪ Yn) . It follows that the second arrow is again an isomorphism.
Now we have constructed X ∪ Yn and un for all n . Let Y be the union
(direct limit or colimit is a better expression) of the X ∪ Yn for all n . By
lemma 3.5, there exists u ∈ E(Y) such that u restricted to X ∪ Yn is un ,
for all n ≥ 0 . In particular, we have u|X = u0 = t . �

Theorem 3.7. (The Brown representation theorem.) Any half-exact functor
F from HoC to sets is representable, i.e., there exist Y and u ∈ F(Y) such
that the map from [X, Y]? to F(X) given by [f] 7→ f∗(u) is bijective for every
X in C.

Proof. By lemma 3.6 we can construct a based connected CW-space Y and
an element u ∈ E(Y) such that u|X = t and the map πk(Y)→ E(Sk) taking
[f] to f∗(u) is bijective for all k > 0 . We are going to show that the map

αX : [X, Y]? −→ F(X) ; [f] 7→ f∗(u) ∈ F(X)
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is bijective for every X in C .
The idea is to construct a natural inverse βX : F(X) → [X, Y]? for αX us-
ing lemma 3.6 and the JHC Whitehead theorem. For t ∈ F(X) we apply
lemma 3.6 to the element (t, u) ∈ F(X)× F(Y) ∼= F(X∨ Y) . The outcome is
that there is a CW-space Y ′ containing X∨Y as a CW-subspace and an ele-
ment u ′ ∈ F(Y ′) which extends (t, u) ∈ F(X∨ Y) and has the property that
the homomorphisms πk(Y

′)→ E(Sk) given by [f] 7→ f∗(u ′) are isomorphisms
for all k > 0 . Since the homomorphisms

πk(Y)→ E(Sk)

given by [f] 7→ f∗(u) are also isomorphisms for all k > 0 , it follows that the
inclusion Y → Y ′ induces an isomorphism πk(Y) → πk(Y

′) for all k > 0 .
Therefore the JHC Whitehead theorem tells us that Y → Y ′ is a homotopy
equivalence. We attempt to define βX(t) ∈ [X, Y]∗ as the homotopy class of
X ↪→ Y ′ followed by a based homotopy inverse for Y ↪→ Y ′ . Now it remains to
show (a) that βX is well defined, (b) that αXβX = id and (c) that βXαX = id.

(a) Suppose that we have selected Y ′ containing X ∨ Y and u ′ ∈ F(Y ′)
extending (t, u) ∈ F(X ∨ Y) ∼= F(X) × F(Y) . Suppose that we have also
selected Y ′′ containing X∨Y and u ′′ ∈ F(Y ′′) extending (t, u) ∈ F(X∨ Y) ∼=
F(X) × F(Y) . We are assuming that the homomorphisms πk(Y

′) → E(Sk)
and πk(Y

′′) → E(Sk) given by [f] 7→ f∗(u ′) and [f] 7→ f∗(u ′′) respectively
are isomorphisms. Then we can find a CW-space Y ′′′ containing the union
Y ′ ∪X∨Y Y ′′ (better described as a pushout) and an element u ′′′ ∈ F(Y ′′′)
such that the homomorphisms πk(Y

′′′) → E(Sk) given by [f] 7→ f∗(u ′′′) are
isomorphisms. Now we have three definitions of βX(t) , corresponding to the
selections Y ′ , Y ′′ and Y ′′′ . But it is clear that the first agrees with the third
and the second agrees with the third, since Y ′ ⊂ Y ′′′ and Y ′′ ⊂ Y ′′′ . So the
first must agree with the second, as was to be shown.

(b) Let t ∈ F(X) and suppose Y ′ containing X ∨ Y as well as u ′ ∈ F(Y ′)
extending (t, u) ∈ F(X ∨ Y) has been selected so that the composition
Y ↪→ X ∨ Y ↪→ Y ′ is a homotopy equivalence. Then βX(t) ∈ [X, Y]∗ is
the composition of X ↪→ X ∨ Y ↪→ Y ′ with a homotopy inverse for Y → Y ′ .
Since that homotopy inverse Y ′ → Y will take u ∈ F(Y) to u ′ ∈ F(Y ′) , it
follows that αX(βX(t)) is the restriction of u ′ ∈ F(Y ′) to X ⊂ Y ′ . But that
is t ∈ F(X) by construction of u ′ .

(c) Let [g] ∈ [X, Y]? , so that αX([g]) = g
∗(u) . To find out what βX(g

∗(u))
is we should construct Y ′ containing X∨ Y and u ′ ∈ F(Y ′) such that u ′|X is
g∗(u) . Then βX(g

∗(u)) is the composition X ↪→ X ∨ Y ↪→ Y ′ ' Y . But we
can take Y ′ = cyl(g : X → Y) . This contains a copy of X ∨ Y . The cylinder
projection Y ′ → Y is an explicit homotopy inverse for the inclusion Y → Y ′ .
For u ′ ∈ F(Y ′) we can (must) take the unique element which restricts to
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u ∈ F(Y) ; fortunately it is obvious that u ′|X = g∗(u) for this choice of u ′ .
Moreover the composition of X ↪→ X∨ Y ↪→ Y ′ with the cylinder projection
Y ′ → Y is exactly g . �

3.2. Eilenberg-MacLane spaces (draft)

Representing spaces for reduced cohomology Hn(−) , fixed n > 0 , can be
obtained as special cases of the Brown representation theorem.

Generalizations: use cohomology with abelian coefficient group G . Three
variants: (co-)homology based on mapping cycles, singular (co)chain com-
plexes, cellular cochain complexes. Universal coefficient theorem. For G = Z ,
the cohomology Hn(−;G) is the cohomology that we are used to.
Warning : In the mapping cycle setting, composition of mapping cycles only
survives the introduction of coefficient groups G if G has the additional struc-
ture of a (commutative?) ring. There are also (in all three settings) cup-like
products of the form Hm(X;G1)×Hn(Y;G2) −→ Hm+n(X× Y;G1 ⊗G2) . So
if G is the underlying abelian group of a (commutative) ring, then there are
cup products

Hm(X;G)×Hn(Y;G) −→ Hm+n(X× Y;G⊗G) −→ Hm+n(X× Y;G).

Then we get representing spaces for cohomology Hn(−;G) from the Brown
representation theorem. Observation: all these representing (based) spaces
have πk trivial except for one particular k , namely, k = n .

Definition 3.8. Let n be a positive integer and let G be a group (abelian if
n > 1). It is customary to write K(G,n) for a connected based CW-space X
which has πk(X) trivial for positive k 6= n and πn(X) equipped with a group
isomorphism to G . These spaces are also called Eilenberg-MacLane spaces.

This convention suggests that if two based CW-spaces are both entitled to
the name K(G,n) , then they are homotopy equivalent. Let’s state and prove
something more systematic. Let X and Y be based CW-spaces; suppose that
X is a K(G,m) and Y is a K(J, n) .

Proposition 3.9. If m > n, then [X, Y]? has only one element, the homo-
topy class of the constant map. If m = n, then the evaluation map

[X, Y]? −→ hom(πm(X), πm(Y)) = hom(G, J)

is bijective. (For m = n = 1 the right-hand side must be read as the set of
group homomorphisms from G to J ; for m = n > 1 it is the abelian group
of homomorphisms from G to J .)
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Note that this doesn’t say much about the case m < n . Indeed that case
is more difficult. There is some similarity with homotopy groups of spheres.
We have πm(S

n) trivial if m < n , isomorphic to Z if m = n ≥ 1 , and
difficult in the remaining cases. But note the difference: πm(S

n) trivial if
m < n , whereas [X, Y]? trivial if m > n .

Proof. We can assume that Xk = ? for k < m and Xm =
∨
λ∈Λm

Sm , and

Xk+1 for k ≥ m is the mapping cone of a based map

ak :
∨

λ∈Λk+1

Sk −→ Xk .

The more interesting case is m = n and we assume this to begin with.
Without being specific about m , we show first that if m ≥ n then the
restriction map

[X, Y]? −→ [Xm, Y]?
is injective and that its image consists of those [f] ∈ [Xm, Y]? with the prop-
erty that [fam] is the trivial element of [

∨
λ∈Λm+1

Sm, Y]∗ . To put it more
elegantly: there is an exact sequence of pointed sets

(z) [X, Y]∗
res. // [Xm, Y]∗

a∗m // [
∨
λ∈Λm+1

Sm, Y]∗

where the arrow on the left is injective. — To show this, suppose that f, g are
two based maps X→ Y whose restrictions to Xm are based homotopic. Let
(ht,m : Xm → Y)t∈[0,1] be such a based homotopy, so that h0,m is f restricted
to Xm and h1,m is g restricted to Xm . We try to extend the homotopy to a
homotopy

(ht,m+1 : X
m+1 → Y)t∈[0,1]

where h0,m+1 is f restricted to Xm+1 and h1,m+1 is g restricted to Xm+1 .
This boils down to constructing a map Bm → Y which is prescribed on Am ,
where Bm = cone(source(am))× [0, 1] and Am is the subspace

cone(source(am))× {0, 1}
⋃

source(am)× [0, 1] .

(Let em+1 be the standard map from cone(source(am)) to cone(am) =
Xm+1 ⊂ X . The prescribed map Am → Y is given by fem+1 on the sub-
space cone(source(am)) × {0} , by gem+1 on cone(source(am)) × {1} and by
htam on source(am) × {t} .) Since the pair (Bm, Am) can be written as a
union (indexed by λ ∈ Λm+1 ) of pairs

(Dm+1 × [0, 1] , Dm+1 × {0, 1} ∪ Sm × [0, 1] )

and since the latter pairs are each homeomorphic to (Dm+2, Sm+1) , and since
πm+1(Y) is trivial by assumption, it is easy to see that the required extension
exists. A similar argument shows that we can also extend the homotopy
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(ht,m+1 : X
m+1 → Y)t∈[0,1]) to a homotopy (ht,m+2 : X

m+2 → Y)t∈[0,1]) from f

restricted to Xm+2 to g restricted to Xm+2 etc.; in short we can extend all the
way to a homotopy from f to g . This proves the injectivity of the restriction
map [X, Y]? → [Xm, Y]? .
Next, if fm : Xm → Y is a based map such that [fm] ∈ [Xm, Y]? is in the image
of the restriction map [X, Y]? → [Xm, Y]? , then it is also in the image of the
restriction map [Xm+1, Y]? → [Xm, Y]? and so fmam must be based nullhomo-
topic (since Xm+1 = cone(am)). Conversely, if fmam is based nullhomotopic
then fm extends to a based map fm+1 : X

m+1 → Y . Furthermore fm+1 ex-
tends to a based map fm+2 : X

m+2 → Y since fm+1am+1 is nullhomotopic (no
conditions). And so on; it follows that fm extends all the way to a based
map X → Y , as was to be shown. Therefore the claims about (z) are now
established.
It is easy to make the terms in (z) explicit. Suppose first that m =
n = 1 . Then the terms in the middle and on the right have the form
hom(Q,π1(Y)) and hom(P, π1(Y)) where P and Q are certain free groups.
The map hom(Q,π1(Y))→ hom(P, π1(Y)) in (z) is induced by a homomor-
phism P → Q . This identifies the term on the left of (z) with hom(R, π1(Y)) ,
where R is the quotient of Q by the smallest normal subgroup of Q contain-
ing the image of P → Q . But R is π1(X) = G and π1(Y) is J ; so we have iden-
tified the term on the left with hom(G, J) , which is essentially what we had
to do. — Suppose next that m = n > 1 . Then the terms in the middle and
on the right have the form hom(Q,π1(Y)) and hom(P, π1(Y)) where P and
Q are certain free abelian groups. The map hom(Q,π1(Y))→ hom(P, π1(Y))
in (z) is induced by a homomorphism P → Q . This identifies the term on
the left of (z) with hom(R, π1(Y)) , where R is the quotient of Q by the the
image of P → Q . But R is Hm(X) ∼= πm(X) = G and πm(Y) is J ; so we have
identified the term on the left with hom(G, J) , which is essentially what we
had to do. Therefore we have now taken care of the cases m = n > 0 .
The reasoning in the cases m > n > 0 is much easier. Let f : X→ Y be any
based map. Construct a nullhomotopy for f restricted to Xk by induction
on k , starting with k = m . The details are omitted. �

Corollary 3.10. Up to homotopy equivalence, there is a unique Eilenberg-
MacLane space K(G,n). It is a representing space for cohomology Hn(−;G).

Proof. If X and Y both satisfy the conditions for being called K(G,n) , then
by the above proposition there is a based map X → Y inducing an isomor-
phism πn(X) → πn(Y) . That map is a homotopy equivalence by the JHC
Whitehead theorem. Therefore X is homotopy equivalent to Y . This proves
the first statement. The other statement is then clear since we know that
there is a representing space for cohomology Hn(−;G) . �
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3.3. Postnikov tower and Postnikov-Moore factorization

Let Y be a based connected CW-space. The Postnikov tower of Y is a
diagram of spaces

...

��
β3Y

��
β2Y

��
β1Y

��
Y //

33

66

::

β0Y

where the map Y → βkY has the following property: isomorphism on πm for
all m ≤ k , whereas πm(βkY) is trivial for m > k . We also say that βkY is
obtained from Y by killing homotopy groups in dimensions > k . From the
point of view of the Brown representation theorem, the spaces βkY have a
very pleasant definition. (A weakness of this point of view: it only constructs
βkY in the homotopy category and it only constructs the Postnikov tower as
a diagram in the homotopy category.)

Definition 3.11. (in the style of Brown’s representation theorem.) The
space βkY is a representing space for the half-exact functor

X 7→ im
[
[Xk+1, Y]?

res // [Xk, Y]?
]
.

This definition is rather terse. You can read it as follows: a homotopy
class of based maps from X (variable) to βkY is the same as a homotopy
class of based maps Xk → Y which can be extended to (a homotopy class
of) based maps Xk+1 −→ Y . (The extension Xk+1 → Y is not specified; it is
only required to exist.)

The biggest puzzle with definition 3.11 is that it does not obviously describe
a (contravariant) functor on HoC . We need to show that a homotopy class
of based maps g : W → X determines a a map

im
[
[Xk+1, Y]?

res−→ [Xk, Y]?
]

��

im
[
[Wk+1, Y]?

res−→ [Wk, Y]?
]
.
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If g : W → X is cellular, then it is clear how we can use it to define the
dotted arrow: by precomposition with g , restricted to appropriate skeletons.
But suppose that f, g : W → X are two cellular maps in the same homotopy
class. Choose a cellular homotopy. The cellular homotopy restricts to a map
from Wk × [0, 1] to Xk+1 . Using that observation, it is easy to see that it
does not matter whether we define the dotted arrow using precomposition
with g , or precomposition with f .

We should also verify that the functor described in definition 3.11 is half-
exact as claimed. But the verification is unexciting. It is obvious that the
functor satisfies the strong wedge axiom. Suppose now that X = A∪B , where
A and B are based connected CW-subspaces of the based CW-space X , and
A∩B is also connected. We can replace X by X] as in example 3.4. Suppose
given based maps f : Ak → Y and g : Bk → Y such that the restrictions of f
and g to Ak ∩ Bk are homotopic by a homotopy (ht)t∈[0,1] , and such that f
extends to a map f̄ : Ak+1 → Y while g extends to a map ḡ : Bk+1 → Y . Then
we have a map from the (k+ 1)-skeleton of X] to Y given by f̄ on the copy
of Ak+1 , by ḡ on the copy of Bk+1 , and by ht on the copy of (Ak∩Bk)× {t} .
This map and its restriction to the k-skeleton of X] constitute the solution
to our problem.

Definition 3.12. (in the style of Postnikov and Moore). The CW-space βkY
contains Y as a CW-subspace and is obtained from Y by attaching cells of
dimension > k+ 1 to kill the homotopy groups in dimensions > k .

This calls for some explanations, too. There is the following more system-
atic definition, followed by an existence statement and a uniqueness state-
ment.

Definition 3.13. Let f : X → Y be a based map of based connected CW-
spaces. A Postnikov-Moore k-factorization of f consists of a connected CW-
space X ′ containing X as a CW-subspace and a based map fk : X

′ → Y which
extends f and has the following properties. The inclusion X→ X ′ induces an
isomorphism in πj for j ≤ k and a surjection for j = k+1 , while fk induces an
injection in πj for j = k+1 and an isomorphism in πj for all j > k+1 . (The
homotopy groups of X ′ are then determined as follows: πj(X

′) is isomorphic
to πj(X) when j ≤ k , isomorphic to the image of f? : πj(X) → πj(Y) when
j = k+ 1 and isomorphic to πj(Y) when j ≥ k+ 2 .)

I like to write βf,kX for X ′ , in view of existence and uniqueness statements
below, but this is probably not standard notation.

Proposition 3.14. Let f : X → Y be a based map of based connected CW-
spaces. A Postnikov-Moore k-factorization of f exists.
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Proof. We construct inductively βf,k,`X , a CW-space containing X , and a
map

fk,` : βf,k,`X→ Y

extending f , such that the inclusion X→ βf,k,`X induces an isomorphism in
πj for j ≤ k and a surjection for j = k + 1 , while fk,` induces an injection
in πj for j = k + 1 , an isomorphism in πj for all j such that k + 2 ≤ j < `
and a surjection for j = ` . These conditions just start to make sense when
` = k+2 and so the work begins with the construction of fk,k+2 and βf,k,k+2X .
To construct βf,k,k+2X from X we choose a based map

u :
∨
λ∈Λ

Sk+1 −→ X

such that the image of the homomorphism in πk+1 determined by u is the
kernel of the homomorphism in πk+1 determined by f . Choose also an ex-
tension of fu to a map

v :
∨
λ∈Λ

Dk+2 −→ Y

(such an extension exists by the construction of u). Choose also a based
map

w :
∨
τ

Sk+2 −→ Y

which induces a surjection in πk+2 . Let

βf,k,k+2X := cone(u)∨
∨
τ

Sk+2

and define fk,k+2 so that it agrees with w on the wedge of (k + 2)-spheres,
with f on the copy of X and with v when composed with the standard map
from cone(source(u)) to cone(u) . Note that the inclusion of X in the cone
of u induces a surjection in πk+1 (by cellular approximation) whose kernel
contains the kernel of f∗ : πk+1(X)→ πk+1(Y) by construction, but cannot be
bigger (say why), so that cone(u) already has the correct πk+1 . By taking the
wedge with many Sk+2 -spheres we can make πk+2 bigger without changing
πj for j ≤ k + 1 . We do this in order to end up with a surjection from
πk+2(βf,k,k+2X) to πk+2(Y) , as required.
The subsequent induction steps are like the first one. More precisely, if

fk,` : βf,k,`X −→ Y

has already been constructed, then we can declare βf,k,`X to be the new X and
fk,` to be the new f and `−1 to be the new k , and repeat the procedure above.
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The outcome is βf,k,`+1X containing βf,k,`X and fk,`+1 extending fk,` . (Let me
explain this in more detail. Following the instructions we get isomorphisms

πj(βf,k,`X) −→ πj(βf,k,`+1X)

induced by inclusion for j ≤ `− 1 , a surjection

(∗) π`(βf,k,`X) −→ π`(βf,k,`X),

induced by inclusion, an injection

(∗∗) π`(βf,k,`+1X) −→ π`(Y)

induced by fk,`+1 and a surjection

π`+1(βf,k,k+3X) −→ π`+1(Y)

induced by fk,`+1 . But since the composition of (∗∗) and (∗) is surjective by
construction (of fk,` ), it follows that (∗∗) is an isomorphism, which is what
we want for fk,`+1 . ) — When the induction is finished we define

βf,kX :=

∞⋃
`=k

βf,k,`X

and we define fk so that it agrees with fk,` on βf,k,` . �

Remark 3.15. The Postnikov-Moore k-factorization of a based map

f : X→ Y

of based CW-spaces has a uniqueness property. Suppose that

X ↪→ X ′ → Y , X ↪→ X ′′ → Y

are two Postnikov-Moore k-factorizations of f . That is, both compositions
are equal to f , and we suppose that the inclusions X → X ′ and X → X ′′

induce isomorphisms in πj for j ≤ k and a surjection in πk+1 , and that the
maps X ′ → Y and X ′′ → Y induce an injection in πk+1 and an isomorphism
in πj for j ≥ k+ 2 . Form

X ′′′ := X ′ tX X ′′,
the union of X ′ and X ′′ along their common CW-subspace X (strictly speak-
ing: the pushout or colimit of the diagram X ′ ←↩ X ↪→ X ′′ ). The maps
X ′ → Y and X ′′ → Y that we started with agree on X and so define a map
X ′′′ → Y . Make a Moore-Postnikov k-factorization for that:

X ′′′ ↪→ X ′′′′ → Y .

Exercise: Show that X ↪→ X ′′′′ → Y is also a Postnikov-Moore k-factorization
of f . (This can be said to contain the other two that we started with. It
follows that the inclusions X ′ ↪→ X ′′′′ and X ′′ ↪→ X ′′′′ are homotopy equiva-
lences.)
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Remark 3.16. Taking Y = ? , we have a unique f : X → Y . We can define
βkX to be the X ′ in a Postnikov-Moore k-factorization X ↪→ X ′ → Y of this
f , to make the connection with definition 3.11 at last.

Remark 3.17. Taking X = ? is also a good idea! Let ? ↪→ X ′ → Y be a
Moore-Postnikov k-factorization of f : ? → Y . In this case πj(X

′) is trivial
for j ≤ k+1 and and fk : X

′ → Y induces an isomorphism in πj for j ≥ k+2 .
In particular when k = 0 the map fk has the homotopical properties of the
universal covering of Y . More to the point, the diagram

? ↪→ Ỹ → Y

(where Ỹ → Y is the universal covering) is an instance of a Postnikov-Moore
0-factorization.

Remark 3.18. Let f : X→ Y be a based map of based connected CW-spaces,
let

X
e // X ′

fk // Y

be a Postnikov-Moore k-factorization for f and let

X
d // X ′′

e` // X ′

be a Postnikov-Moore `-factorization for e : X→ X ′ , where ` > k . Then

X
d // X ′′

fke` // Y

is a Postnikov-Moore `-factorization for f . (Exercise.)

Definition 3.19. Let f : X → Y be a based map of based connected CW-
spaces. The Postnikov-Moore tower (or decomposition) of f is a commutative
diagram

...

��
βf,2X

p2��
βf,1X

p1��
βf,0X

p0��
X

f
//

33

66

::

Y

where the lowest triangle is obtained by choosing a Postnikov-Moore 0-
factorization of f , the triangle above that is obtained by choosing a Postnikov-
Moore 1-factorization for X→ βf,0X , the triangle above that is obtained by
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choosing a Postnikov-Moore 2-factorization for X → βf,1X , and so on. The
naming of terms in the right-hand column is justified by remark 3.18; in
particular

βf,kX

p0p1···pk

��
X

f
//

55

Y

is a Postnikov-Moore k-factorization of f .

Remark 3.20. In the case where Y is a point we obtain the Postnikov tower
of X . In that case it does not hurt to delete Y from the diagram and to write
βkX instead of βf,kX .

We continue with f : X → Y as in definition 3.19. Recall that the rela-
tive homotopy groups of f are defined as the homotopy groups of the pair
(cyl(f), X) where cyl(f) is the reduced mapping cylinder of f . Since cyl(f) '
Y , we can write the long exact sequence of homotopy groups of that pair in
the form

. . .
∂ // πm(X)

f∗ // πm(Y) // πm(f)
∂ // πm−1(X) // . . .

The Postnikov-Moore factorization

X // βf,kX
fk=p0p1···pk // Y

of f leads to a map of pairs (cyl(f), X) → (cyl(fk), X) . That map of pairs
leads to a commutative diagram

. . .
∂ // πm(X)

��

f∗ // πm(Y) // πm(f)

��

∂ // πm−1(X)

��

// . . .

. . .
∂ // πm(βf,kX)

(fk)∗ // πm(Y) // πm(fk)
∂ // πm−1(βf,kX) // . . .

¿From that we can deduce:

Lemma 3.21. The arrow πm(f)→ πm(fk) is an isomorphism for m ≤ k+1
while πm(fk) is trivial for m > k+ 1. �

In the case where Y = ? we have, rather obviously, πm(f) ∼= πm−1(X) and
πm(fk) ∼= πm−1(βkX) . So the lemma reduces in that case to something we
already know: πm−1(βkX) ∼= πm−1(X) for m−1 ≤ k and πm−1(βkX) is trivial
for m− 1 > k .
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Corollary 3.22. For the map pk : βf,kX→ βf,k−1X we have

πk+1(pk) ∼= πk+1(fk) ∼= πk+1(f)

and πm(pk) is trivial for all m 6= k+ 1.

Proof. If we take m = k+ 1 in the commutative diagram

. . .
∂ // πm(βf,kX)

(pk)∗ // πm(βf,k−1X)

��

// πm(pk)

a

��

∂ // πm−1(βf,kX) // . . .

. . .
∂ // πm(βf,kX)

(fk)∗ // πm(Y) // πm(fk)
∂ // πm−1(βf,kX) // . . .

then the five lemma tells us that the arrow labeled a is an isomorphism.
(More precisely the two vertical arrows to the left of a are bijective, the
one to the right of a is obviously bijective and the next one to the right is
injective. There is enough group structure to go around, though perhaps not
as much as we assume in the standard formulation of the five lemma; we can
assume k ≥ 1 and therefore m ≥ 2 .) If m < k + 1 then (pk)∗ is surjective
in degree m , bijective in degree m−1 , so that πm(pk) is trivial by exactness
of the top row. If m > k+ 1 then (pk)∗ is bijective in degree m , injective in
degree m−1 , so that πm(pk) is again trivial by exactness of the top row. �

3.4. One-step obstruction theory

This section is mostly about the problem indicated in the following diagram.

E

p

��
X

g

77

f
// Y

Here X, Y, E are based connected CW-spaces (until declared otherwise) and
f, p are based maps, all given in advance. The problem is to find g . The
diagram is meant to be commutative up to a specified homotopy h = (ht)
from pg to f . It is convenient to formulate the problem in this generality, but
we will get the most significant results when p satisfies a strong condition:
there is an integer ` ≥ 1 such that πk(p) is trivial whenever k 6= `.

Let’s begin with technical considerations. In the problem just formulated,
the data f and p are given and by a solution of the problem we mean a pair
(g, h) consisting of g : X→ E and a based homotopy h from pg to f . The
homotopy h = (ht)t∈[0,1] is a map from X × I to Y , where I := [0, 1] . It
seems clear that we need to organize these pairs (g, h) into a space. More
precisely we should first define map?(X, E) , the space of based maps from X
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to E , and also map?(X, Y) , the space of based maps from X to Y . Then the
space of solutions for our problem is

L(f;p) := {(g, h) ∈ map?(X, E)×map?(Xn I, Y) | h0 = pg, h1 = f},
where Xn I is improvised notation for the quotient of X× I by the subspace
?× I . It is a subspace of map?(X, E)×map?(Xn I, Y) . The letter L is used
to suggest lift ; the solutions (g, h) are considered to be lifts of f (up to a
specified homotopy).

Definition 3.23. Let V be a CW-space and let W be any space. Let
map(V,W) be the set of all continuous maps from V to W . We use the
compact-open topology to regard map(V,W) as a space. That is to say, a
subset Q of map(V,W) is considered to be open if for every e ∈ map(V,W)
there exists a non-negative integer ` , compact subsets K1, . . . , K` ⊂ V and
open subsets U1, . . . , U` ⊂W such that

• e(Kj) ⊂ Uj for j = 1, . . . , ` ;
• all e ′ ∈ map(V,W) which satisfy e ′(Kj) ⊂ Uj for j = 1, . . . , ` also

belong to Q .

Remark 3.24. Let P be a compact CW-space. There is a map (of sets)

map(P × V,W) −→ map(P,map(V,W))

given by adjunction. I hope it is an exercise to show that the map is a
homeomorphism. This is good enough for many purposes. We are very
interested in the cases where P = Sn or P = Sn × I for some n .
The condition that P be compact can be dropped at a price: we must re-
define the topology on P × V in such a way that a subset C of P × V is
closed if and only if C∩ (P ′×V ′) is closed for every choice of compact CW-
subspaces P ′ ⊂ P and V ′ ⊂ V . We might write P ×CW V for this modified
product and call it the CW-product, etc. It does have the universal property
of a product in the category of CW-spaces and continuous maps.

Remark 3.25. It is known that if V and W are CW-spaces, then map(V,W)
is homotopy equivalent to a CW-space. This is shown in an old paper by
John Milnor, On spaces having the homotopy type of a CW-complex. Beau-
tifully written and highly recommended reading. But I will try not to use
this fact.
In that connection, let’s also keep the following in mind. If Z is any space,
then there exists a CW-space Z\ and a map Z\ → Z which is a weak equiv-
alence. This is an easy consequence of the Brown representation theorem.
(For any choice of base point in Z we have a half-exact functor [−, Z]? . The
different path components of Z should be treated separately, and a base point
should be selected in each of them.) We say that Z\ is a CW-replacement
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for Z . This notion is of course applicable with Z = map(V,W) , even if we
don’t know or don’t want to know that map(V,W) is homotopy equivalent
to a CW-space.

Example 3.26. Serre construction: every map f : X→ Y has a factorization

X]

f]

��
X

j

'

AA

f
// Y

where f] is a fibration, j is “often” a cofibration and, more importantly, j is
always a homotopy equivalence. Definition of X] : it is the space of all pairs
(x,ω) where x ∈ X and ω : I → Y is a path such that ω(0) = f(x) . It
is a subspace of X × map(I, Y) . Definition of f] : let f](x,ω) = ω(1) ∈ Y .
Definition of j : let j(x) := (x,ω) where ω is the constant path in Y at f(x) .

Showing that f] : X] → Y is a fibration. Let’s first solve the path lifting
problem. For a path γ : I → Y and a choice of element (x,ω) ∈ X] such
that f](x,ω) = γ(0) , define γ̄ : I → X] as follows. The first coordinate of
γ̄(t) is x . The second coordinate is the path in Y obtained by concatenating
ω with γ|[0,t] and reparameterizing, s 7→ (1 + t)s . This works because
ω(1) = f](x,ω) = γ(0) . Now γ̄ satisfies f] ◦ γ̄ = γ and γ̄(0) = (x,ω) . So
γ̄ is a solution for this particular path lifting problem. — Since this solution
depends very nicely (continuously) on the problem, we can use it to solve the
homotopy lifting problem in general. Let P be any space, let

(gt : P → Y)t∈[0,1]

be a homotopy and let G : P → X] be a map such that f]G = g0 . Then for
each p ∈ P we obtain a path γ = γp in Y by γp(t) = gt(p) , and an element
G(p) in X] such that f](G(p)) = γp(0) . This path lifting problem has a
solution γ̄p , constructed exactly as above. Then the map (p, t) 7→ γ̄p(t)
from P × I to X] is continuous, and it solves the homotopy lifting problem
consisting of (gt) and G .

Showing that j is a homotopy equivalence. We start with the observation
that j(X) ⊂ X] consists of all (x,ω) ∈ X] where the path ω is constant.
There is a projection X] → X given by (x,ω) 7→ x . Restricting this to j(X) ,
we see that j is a homeomorphism onto its image, j(X) , and that j(X) is
closed in X] . That’s a good start. Now, for t ∈ I , let µt : I→ I be the map
s 7→ st . A homotopy (ht : X

] → X])t∈[0,1] is defined by ht(x,ω) := (x,ω◦µt) .
This homotopy is a deformation retraction to j(X) ; that is, h0 = id, the
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image of h1 is j(X) , and ht restricted to j(X) is the identity, for all t . (End
of proof showing that j is a homotopy equivalence.)

For z ∈ Y , the fiber of f] over z is called the homotopy fiber of f over
z ; if Y has a preferred base point and z is that base point, then simply the
homotopy fiber of f . Notation: hofiberz(f : X→ Y) or hofiber(f : X→ Y) .

If f : X → Y is the inclusion of a subspace (and the subspace X has a
base point ?), then there is a canonical bijection (isomorphism of groups for
k ≥ 1)

πm−1(hofiber?(f)) −→ πm(Y, X, ?) = πm(Y, X).

This can be seen by writing the pair (Dm, Sm−1) , which we use in the defini-
tion of m-th homotopy group of pairs, as (cone(Sm−1, Sm−1) , where cone(...)
is the reduced cone. A map of pairs from (cone(Sm−1, Sm−1) to (Y, X) is “the
same” (by a form of adjunction) as a map from Sm−1 to hofiber?(X ↪→ Y) .
In this way, we understand at last that the long exact sequence

. . .
∂ // πm(X)

f∗ // πm(Y) // πm(Y, X)
∂ // πm−1(X) // . . .

of the pair (Y, X) is (isomorphic to) the long exact sequence of homotopy
groups associated with the fibration f] : X] → Y . More generally, if f : X→ Y
is any map of based spaces, then the standard projection cyl(f)→ Y induces
a map

hofiber?(X ↪→ cyl(f)) −→ hofiber?(f : X→ Y).

It is unfortunately an exercise to show that this is a weak equivalence. There-
fore πm(f) = πm(cyl(f), X) is isomorphic to πm−1(hofiber?(f)) .

Showing that j : X→ X] is a cofibration when Y is a CW-space. (Not very
important and not very reliable.) I believe that every closed subset in a CW-
space is the intersection of a countable decreasing sequence of open subsets.
Suggested proof: induction on skeleta. Apply this to the diagonal ∆Y as
a subspace of the CW-space Y ×CW Y . It follows (a variant of the Tietze-
Urysohn extension lemma, applicable since Y ×CW Y is a normal space) that
there exists a continuous function q : Y ×CW Y → I such that q−1(0) = ∆Y .
Define a function q̄ : X] to I by q̄(x,ω) := max{q(ω(0),ω(t)) | t ∈ I} . I
hope that this is continuous. The preimage of 0 under q̄ is exactly the closed
subset j(X) of X] . Make a map r from X] × I to itself by

r((x,ω), t) := ((x, γ), s)

where

• if t ≥ q̄(x,ω) , then γ is constant with value ω(0) , and s is the
difference t− q̄(x,ω) ;
• if t = (1 − u) · q̄(x,ω) where u ∈ I , then γ is ω ◦ µu where µu is

multiplication by u , and s is 0 .
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Now I hope that rr = r and that the image of r is exactly the union of
X] × {0} and j(X)× I . By a well-known criterion, this would prove that j is
a cofibration.

Example 3.27. Our definition of the space of lifts L(f;p) for a diagram

E

p
��

X
f // Y

can be reformulated as follows:

L(f;p) = hofiberf(map?(X, E)
p ◦−→ map?(X, Y)).

And here we define map?(X, Y) etc. as a subspace of map(X, Y) .

Definition 3.28. The homotopy pullback of a diagram

B

g

��
C

v // D

is the space { (x,ω, y) ∈ B × map(I,D) × C | ω(0) = g(x), ω(1) = v(x) } .
A commutative square

A
u //

f
��

B

g

��
C

v // D

is a weak homotopy pullback square if the map from A to the homotopy pull-
back of g and v defined by a 7→ (u(a), const.path, f(b)) is a weak homotopy
equivalence.

Remark 3.29. The homotopy pullback of g and v (notation as above) can
also be defined as follows: replace g by a fibration g] : B] → D using the
Serre construction. Then form the ordinary pullback of v and g] .

Exercise. Show that a commutative square of spaces

A
u //

f
��

B

g

��
C

v // D

is a weak homotopy pullback square if and only if, for every c ∈ C , the map
hofiberc(f) → hofiberv(c)(g) induced by the horizontal arrows u and v is a
weak homotopy equivalence.
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Exercise. Let u : Y → Z be a map of spaces. Let X be a CW-space. If u is
a weak equivalence, then the map u◦ : map(X, Y) → map(X,Z) is again a
weak equivalence.

Proposition 3.30. Let

A
u //

f
��

B

g

��
C

v // D

be a weak homotopy pullback square of spaces. Let X be a CW-space. Then

map(X,A)
u◦ //

f◦
��

map(X,B)

g◦
��

map(X,C)
v◦ // map(X,D)

is again a weak homotopy pullback square.

Proof. Let P be the homotopy pullback of C → D ← B and let Q be the
homotopy pullback of map(X,C) → map(X,D) ← map(X,B) . We need to
show that the comparison map from map(X,A) to Q is a weak equivalence.
But Q can easily be identified with map(X, P) . With that identification, the
comparison map from map(X,A) to Q becomes the map from map(X,A)
to map(X, P) induced by the comparison map A→ P . It is therefore a weak
equivalence by one of the two exercises just above, since the comparison map
A→ P is a weak equivalence by assumption. �

Proposition 3.31. Suppose that, in a commutative diagram

E0

p0
��

// E1

p1
��

X
f // Y0

v // Y1

of based spaces and based maps, the right-hand square is a weak homotopy
pullback square, and X is a connected CW-space. Then the map

L(f;p0) −→ L(vf;p1)

determined by the horizontal arrows in the square is a weak equivalence.

Proof. Follows from proposition 3.30 and the second of the two exercises. �

Lemma 3.32. Let
E

p

��
Y
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be a map of based connected CW-spaces. Suppose that Y is 1-connected.
Suppose that there exists ` ≥ 2 such that πk(p) is trivial for all k 6= `; if
` = 2, assume in addition that π`(p) is abelian. Then p is part of a weak
homotopy pullback square of based connected CW-spaces

E

p

��

// E1

p1
��

Y // Y1

where E1 is contractible.

Proof. We begin with the commutative square

E

p

��

// cone(E)

q

��
Y // cone(p)

(3.33)

where q is the inclusion cone(E) → Y t cone(E) followed by the quotient
map from Y t cone(E) to cone(p) . This square is a first approximation
to the solution; the upper right-hand term is already good (because it is
contractible), but the lower right-hand term is not. Now compose with the
Postnikov approximation

u : cone(p) ↪→ β`cone(p).

(Recall that β`cone(p) is obtained from cone(p) by attaching cells of dimen-
sion > `+ 1 to kill the homotopy groups of cone(p) in degrees > ` .) In this
way we get

E

p

��

// cone(E)

q

��
Y // cone(p)

u // β`cone(p)

and now deleting cone(p) gives a commutative square

E

p

��

// cone(E)

uq

��
Y // β`cone(p).

(3.34)

It turns out that this is the solution. In other words, we will now show
that (3.34) is a weak homotopy pullback square. Briefly: The Hurewicz
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theorem (relative case) implies that in the square (3.33), the Hurewicz ho-
momorphism is an isomorphism

πm(p)→ Hm(p)

for m ≤ ` ; only the case m = ` is really interesting. (Note, if it wasn’t
clear, that the homology of a map is by definition the reduced homology of
its mapping cone.) Similarly the Hurewicz homomorphism

πm(q)→ Hm(q)

is an isomorphism for m ≤ ` . The map cone(p) → cone(q) induced by the
horizontal arrows in square (3.33) is a homotopy equivalence (easy exercise)
and so the horizontal arrows induce an isomorphism H`(p)→ H`(q) . Com-
bining this with what we already know about the Hurewicz homomorphisms,
we conclude that the horizontal arrows induce an isomorphism

πm(p) −→ πm(q) ∼= πm(cone(p))

when m ≤ ` . For m > ` , we know that πm(p) = 0 and we don’t know
much about about πm(cone(p)) . But this gets much better if we look at
square (3.34) instead. For m ≤ ` there is no need to distinguish between
πm(q) ∼= πm(cone(p)) and πm(uq) ∼= πm(β`cone(p)) . Therefore the homo-
morphism πm(p) → πm(uq) is still an isomorphism for m ≤ ` . But for
m > ` , the homotopy group πm(uq) ∼= πm(β`cone(p)) is zero by definition
or construction. Therefore the horizontal arrows in the square (3.34) induce
an isomorphism

πm(p) −→ πm(uq)

for all m (in particular, for m > ` because any homomorphism between two
groups which are zero is an isomorphism). It follows (by one of the exercises)
that square (3.34) is a weak homotopy pullback square. �

Remark 3.35. The space Y1 in lemma 3.32 is an Eilenberg-MacLane space,
with only one possibly nontrivial homotopy group in degree ` . That is so
because

πm(Y1) ∼= πm(p1)

since E1 is contractible, and

πm(p1) ∼= πm(p)

since the square in the lemma is meant to be a homotopy pullback square,
and πm(p) is trivial except possibly for m = ` .
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Let’s return to our obstruction theory problem

E

p

��
X

g

77

f
// Y

stated at beginning of section, πm(p) nontrivial only for m = ` , where `
is fixed. If Y happens to be 1-connected and ` ≥ 3 or ` = 2 and π2(p) is
abelian, then proposition 3.31 and lemma 3.32 reduce this to the special sit-
uation where E is contractible and Y is consequently an Eilenberg-MacLane
space. We now assume all that and write out the solution.

A first step is to reduce one more little step to the case where p : E→ Y is
the inclusion of the base point. (Justify this by applying proposition 3.31.)
The map f then corresponds to a cohomology class

κf ∈ H`(X;G)
where G = π`(Y) . The space L(f;p) is nonempty if and only if f is nullho-
motopic, if and only if κf = 0 ∈ H`(X;G) .

If L(f;p) is nonempty and we select an element z = (g, h) in it, then g is
uninteresting and h is a nullhomotopy for f . It is not difficult at all to use
the nullhomotopy h to make a homotopy equivalence from L(f;p) to L(e;p)
where e : X→ Y is the zero map.

Now L(e;p) simplifies to Ω(map?(X, Y)) . Here ΩZ := map?(S
1, Z) , for

a based space Z . (Name: loop space of Z .) In this way, since Y is still an
Eilenberg-MacLane space,

πm(L(e;p)) = [Sm,Ω(map?(X, Y)]?
∼= [S1 ∧ Sm,map?(X, Y)]?

∼= [Sm+1 ∧ X, Y]? ∼= H̃`(Sm+1 ∧ X;G) ∼= H̃`−m−1(X;G).

In all, we have a fairly good understanding of L(f;p) .

Remark 3.36. The combined isomorphism

πm(L(f;p)) ∼= πm(L(e;p)) ∼= H̃`−m−1(X;G)

which we have constructed depends on a choice of based homotopy h from f
to the constant map e . Let’s call it Jh therefore. If k is another homotopy
from f to the constant based map, then the concatenation of h and the
reverse of k is a based map from S1 ∧ X to Y , where S1 appears as a
quotient of an interval such as [0, 2] . This corresponds to an element δ(h, k)
of H`(S1 ∧ X;G) ∼= H`−1(X;G) . By inspection, the bijective map

H̃`−m−1(X;G)
J−1
h // πm(L(f;p))

Jk // H̃`−m−1(X;G)

is the identity when m > 0 and is given by addition of δ(h, k) when m = 0 .
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Many-step obstruction theory

This section consists only of a few words on how you are supposed to com-
bine the science of the Postnikov tower (or the Postnikov-Moore factoriza-
tion) with one-step obstruction theory to obtain something more generally
applicable.

Example 3.37. Suppose that X and Z are based connected CW-spaces.
(The letter Z is used to avoid confusion with Y in the previous subsection,
but it is not supposed to remind you of the set of integers.) Suppose that
Z is simply connected, that is, π1(Z) is trivial. Suppose that X is finite-
dimensional, X = Xm . We ask: what does the set [X,Z]? look like. It is a
good moment to remember the Postnikov tower of Z :

...

��
β3Z

��
β2Z

��
β1Z

��

' ?

Z //

33

77

;;

β0Z ' ?

This determines a diagram of sets (with base point)

[X,Z]

[X,βmZ]?
��

[X,βm−1Z]?
��

[X,βm−2Z]?
��
...

��
[X,β3Z]?

��
[X,β2Z]?

��
[X,β1Z]?

?
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At the top of this diagram, we have [X,Z]? = [X,βmZ]? by the description
of βmZ in definition 3.11. The obstruction to climbing from [X,βk−1Z]? to
[X,βkZ]? is described by an exact sequence

[X,βkZ]? −→ [X,βk−1Z]? −→ Hk+1(X;πkZ)

so that an element in [X,βk−1Z]? comes from [X,βkZ]? if and only if it goes
to zero in Hk+1(X;πkZ) . Also, if g : X → βkZ is any based map, then we
have a surjection

Hk(X;πkZ) −→ preimage of [pkg] under [X,βkZ]? → [X,βk−1Z]? .

We get this from the previous (sub)section by substituting pk : βkZ→ βk−1Z
for what was called p : E→ Y there. It is allowed because pk : βkZ→ βk−1Z
has a single nonzero homotopy group, by the construction of the Postnikov
tower. It sits in dimension k+ 1 and is isomorphic to πk(Z) . The surjection
above comes from writing f := pkg . Then we have a bijection π0(L(f;pk)) ∼=
Hk(X;πkZ) as in the previous subsection. It should be clear that there is a
forgetful map π0(L(f;pk)) → [X,βkZ] whose image is exactly the preimage
of the element [pkg] under the map [X,βkZ]? → [X,βk−1Z]? . Unfortunately
this surjective forgetful map is not always bijective.

Example 3.38. Here is a long story to show that ... this surjective map is
not always bijective. Maybe I am writing this mainly for my own education.
It is a little over the top, to use a good English phrase.

Take X = CP2 and Z = S3 . This is a situation where [X,Z]? can be de-
termined without obstruction theory, although some knowledge of homotopy
groups of spheres is required. It helps to know that π4(S

3) ∼= Z/2 and it helps
to know that the suspension homomorphism π3(S

2) → π4(S
3) is surjective.

We will learn some of that in the next section.
Use the standard CW-structure on X = CP2 where X0 = X1 is a point,

X2 = X3 = CP1 and X4 = CP2 . Use the standard structure on Z = S3 , too,
where Z0 = Z1 = Z2 is a point and Z3 = S3 . Any based map from X to Z
is homotopic to a cellular one, and a cellular map must have the form of a
composition X → X/X2 → Z , where X → X/X2 is the quotient map. Since
X/X2 ∼= S4 , and since [S4, S3]? = π4(S

3) has only two elements, this means
that [X,Z]? has at most two elements. We get the two candidates by using
representatives S4 → S3 for the two elements of π4(S

3) , and pre-composing
with the quotient map X → X/X2 = S4 . But it turns out that the result is
in both cases nullhomotopic as a based map X→ Z . (Idea for that: there is
an exact sequence of pointed sets

[S1 ∧ X2, Z]? // [X/X2, Z]? // [X,Z]?
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where the map on the right is the one we have seen, induced by the quotient
map X → X/X2 . The other map is determined by the inclusion of X/X2

in cone(X → X/X2) and uses the observation cone(X → X/X2) ' S1 ∧ X2 ,
a special case of a general fact. With the identifications X/X2 ∼= S4 and
S1 ∧ X2 ∼= S3 that map X/X2 → S1 ∧ X2 becomes the suspension of the
attaching map S3 → S2 = X2 for the unique 4-cell of X ; again a special case
of a general fact. That attaching map is the Hopf map and its suspension is
therefore the nontrivial element in π4(S

3) . It follows that the left-hand arrow
in the above “exact sequence” is onto and the other one is therefore trivial by
exactness. The exact sequence is of course also a special case of a more general
construction, called the Barratt-Puppe sequence.) Summarizing, [X,Z]? has
only one element, represented by the constant based map X→ Z .
But now let us try to compute [X,Z]? using obstruction theory. We can begin
with [X,β3Z]? . The space β3Z is an Eilenberg-MacLane space K(Z, 3) , so
[X,β3Z]? must be in bijection with H3(X;Z) which is however = 0 as a
group. So [X,β3Z]? has only one element. So the preimage P of that one
element under the standard map

[X,β4Z]? −→ [X,β3Z]?

is all of [X,β4Z]? , and that means, it is all of [X,Z]? since X is 4-dimensional.
So that preimage P has only one element by the above calculation of [X,Z]? .
BUT obstruction theory gives us a surjection from H4(X;π4(Z)) to P , and
now H4(X;π4(Z)) = H

4(X;Z/2) ∼= Z/2 has two elements. So that surjective
map is not bijective.


