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Lecture Notes, weeks 3, 4 and 5
Topology SS 2015 (Weiss)

2.1. Homotopy groups of pairs

A pair of spaces (X,A) means a space X with a distinguished subspace A . If
a base point in A has been selected, then we speak of a pair of based spaces.
The base point in A also serves as base point in X .

An important example of a pair of spaces is (Dn, Sn−1) . The preferred
base point for me is probably (−1, 0, 0, . . . ) .

A map of pairs from (X,A) to (Y, B) is a map f : X → Y such that f(A)
is contained in B . We write f : (X,A)→ (Y, B) in this situation. The map is
based if f of the base point is the base point (assuming that we are talking
about pairs with base point).

Two maps f : (X,A) → (Y, B) and g : (X,A) → (Y, B) are homotopic as
maps of pairs if there exists a map of pairs h : (X× [0, 1], A× [0, 1])→ (Y, B)
such that h0 = f and h1 = g , where ht(x) := h(x, t) for t ∈ [0, 1] . Such an
h is called a homotopy from f to g . If f and g are based maps, and each
ht is also a based map, then we call h a based homotopy (between based
maps of pairs). Homotopy (based homotopy) in this sense is an equivalence
relation on the set of (based) maps from (X,A) to (Y, B) .

Definition 2.1. For n > 0 , the n-th homotopy set πn(X,A, ?) of the pair
(X,A) with base point ? ∈ A is the set of based homotopy classes of based
maps from the pair (Dn, Sn−1) to (X,A) . For n = 0 we define π0(X,A, ?)
to be the quotient of π0(X, ?) by the image of π0(A, ?) .

It is already routine to verify that πn(X,A, ?) is an abelian group for
n ≥ 3 , and still a group for n = 2 . To define the group structure we use a
map of pairs

κ̄ : (Dn, Sn−1) −→ (Dn ∨Dn, Sn−1 ∨ Sn−1)

which extends the map κ : Sn−1 → Sn−1 ∨ Sn−1 which we used previously
to define the group structure in πn−1(A, ?) . In more detail: let I = [0, 1]
and ∂I = {0, 1} and use a homeomorphism of your choice to identify the pair
(Dn, Sn−1) with the pair (In/K, ∂In/K) , where

∂In consists of all points in In which have at least one of their n
coordinates in ∂I ;
K ⊂ ∂In consists of all points in In which have at least one of the
first (n − 1) coordinates in ∂I , or the n-th coordinate equal to 0 .
(In the case n = 2 this looks like t , the union of three edges of the
square � = ∂I2 .)
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Then define κ̄ by

(x1, . . . , xn) 7→ { (2x1, x2, . . . , xn) if 2x1 ≤ 1
(2x1 − 1, x2, . . . , xn) if 2x1 ≥ 1.

This description makes the proof of the following statement mechanical.

Proposition 2.2. There is a forgetful map ∂ : πn(X,A, ?) → πn−1(A, ?)
which is a homomorphism of groups for n ≥ 2.

Even more obvious: a based map of pairs f : (X,A) → (Y, B) induces
a map πn(X,A, ?) → πn(Y, B, ?) which is a homomorphism of groups for
n ≥ 2 . In particular the inclusion of (X, ?) in (X,A) induces a map from
πn(X, ?, ?) = πn(X, ?) to πn(X,A, ?) which is a homomorphism for n ≥ 2 .

For n ≤ 1 we can only say (in general) that πn(X,A, ?) is a set with a
distinguished base point: the class of the constant map with value ? from
(Dn, ∂Dn) to X .

Theorem 2.3. For a based pair of spaces (X,A), the sequence

· · · // πn(X, ?) // πn(X,A, ?)
∂ // πn−1(A, ?) // πn−1(X, ?) // · · ·

is exact.

While the proof is not very exciting, the interpretation of exactness for
low values of n is interesting. We agree that a sequence of based sets and
based maps · · · → · → · → · · · is exact if for each map in the sequence,
the preimage of the base point is equal to the image of the previous map. If
the based sets happen to be abelian groups (with the zero element as base
point) then this definition agrees with our standard concept of exactness.
Example: the exactness theorem above implies that the image of π2(X, ?) in
π2(X,A, ?) is a normal subgroup of π2(X,A, ?) . Example: the sequence in
the theorem is supposed to end with the term π0(X,A, ?) . Consequently it is
claimed that the map from π0(X, ?) to π0(X,A, ?) is onto and the preimage
of the base element under that map is the image of π0(A, ?) in π0(X, ?) ...
this is obviously correct by the very definition of π0(X,A, ?) .

Proof. Let’s prove exactness at πn(X,A, ?) , assuming n ≥ 1 . It is clear
that the composition of the two arrows (with that target/source) is zero.
Suppose that α : (Dn, Sn−1) −→ (X,A) is a based map of pairs representing
an element [α] ∈ πn(X,A, ?) . If ∂[α] = 0 ∈ πn−1(A, ?) , then we know
that the restriction of α to Sn−1 is based nullhomotopic as a based map
from Sn−1 to A . By the homotopy extension property for the inclusion
Sn−1 → Dn , once we choose such a homotopy h = (ht)t∈[0,1] we can also
extend it to a homotopy (h̄t) from α to another map β : Dn −→ X . Each
h̄t is automatically a based map of pairs from (Dn, Sn−1) to (X,A) , since h̄t
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agrees with ht on A . Therefore α is based homotopic as a map of pairs to
β = h̄1 . But since β(A) = ? we can say that [β] is in the image of the map
from πn(X, ?) to πn(X,A, ?) .
Next, let’s prove exactness at πn(X, ?) , assuming n ≥ 1 . The composition
of the two maps is the zero map because there is a commutative square

πn(A, ?)

��

// πn(X, ?)

��
πn(A,A, ?) // πn(X,A, ?)

where the term πn(A,A, ?) is trivial (a based set with only one element).
If α is a based map from Sn ∼= In/∂In to X such that the class of α in
πn(X,A, ?) is zero, then α is based nullhomotopic as a map of pairs from
(In/K, ∂In/K) to (X,A) . Let h be such a homotopy. So h is a map from
In+1 to X which takes 2n of the 2n+ 2 faces of that cube to the base point.
The exceptional faces are In × 0 , where h agrees with α , and In−1 × 1 × I
which is mapped to A . They intersect in In−1 × 1 × 0 which is mapped to
? ∈ A ⊂ X . Parametrizing this somewhat differently (details left to you,
gentle reader) we see that h is a homotopy from the restriction of h to one
of the two exceptional faces to the restriction of h to the other exceptional
face. One of these restricted maps, viewed as a based map from In/∂In to
X , is just α . The other restricted map can be viewed as a based map from
In/∂In to A .
Exactness at πn(A, ?) is straightforward and left to the reader. �

2.2. Homotopy groups and homotopy equivalences

Theorem 2.4. (J.H.C. Whitehead) Let f : X→ Y be a map between nonempty
CW-spaces such that, for all x0 ∈ X and all n ≥ 0, the map

f∗ : πn(X, x0)→ πn(Y, f(x0))

is an isomorphism (bijection for n = 0). Then f is a homotopy equivalence.

As a preparation for the proof we make a few observations.

It is not a serious restriction to assume that f is cellular. In any case
we know that f is homotopic to a cellular map (call it g for now), and if
f∗ : πn(X, x0) → πn(Y, f(x0)) is an isomorphism for all x0 ∈ X and n ≥ 0 ,
then g∗ : πn(X, x0)→ πn(Y, g(x0)) will also be an isomorphism for all x0 and
n ≥ 0 . (Here we need to remind ourselves how higher homotopy groups
depend on base points. A homotopy from f to g determines a path γ
from f(x0) to g(x0) and that path determines an isomorphism (bijection) ιγ
from πn(Y, f(x0)) to πn(Y, g(x0)) . It is easy to see from the definition of ιγ
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that g∗ : πn(X, x0)→ πn(Y, g(x0)) is the composition of f∗ from πn(X, x0) to
πn(Y, f(x0)) with ιγ .)

Next, if we assume that f is cellular then we can easily reduce to the
case where it is the inclusion of a CW-subspace. For that reduction step we
replace Y by the mapping cylinder cyl(f) . This is defined as

Y t [0, 1]× X
∼

where ∼ means that we identify (0, x) with f(x) ∈ Y , for all x ∈ X . (Note
that cyl(f) contains a copy of X ∼= {1}×X , and more obviously a copy of Y ,
and we have cyl(f)/X = cone(f) .) There is a commutative diagram

X
inclusion // cone(f)

'
��

X
f // Y

Moreover cyl(f) has a preferred CW structure. (The k-skeleton of that is
the union of Yk and the image of the k-skeleton of [0, 1] × X .) With that
preferred CW-structure, the inclusion of X ∼= {1}×X in cyl(f) is the inclusion
of a CW-subspace. If f has the property that

f∗ : πn(X, x0)→ πn(Y, f(x0))

is a bijection for all x0 and n ≥ 0 , then it follows easily that the inclusion
X → cyl(f) has the analogous property. (Use the commutative square just
above.)

Next, suppose that f : X→ Y is the inclusion of a CW-subspace and that
f∗ : πn(X, x0)→ πn(Y, f(x0)) is a bijection for all x0 and n ≥ 0 . Then we can
use the exact sequence of theorem 2.3 to deduce that πn(Y, X, x0) is trivial
for all x0 and n ≥ 0 .

Lemma 2.5. Let (Y, X) be a pair of nonempty spaces and let n ≥ 0 be an
integer such that πn(Y, X, x0) is trivial for all x0 ∈ X. Then for every map

g : (Dn, Sn−1)→ (Y, X)

there exists a homotopy (ht : D
n → Y)t∈[0,1] such that h0 = g and h1(D

n) is
contained in X, and h is stationary on Sn−1 (meaning ht(z) = g(z) for all
z ∈ Sn−1 and all t).

Proof. In the important case n = 0 , the claim is that every point in Y can
be connected by a path in Y to a point in the subspace X . Once we select a
base point x0 ∈ X , this is equivalent to saying that the map from π0(X, x0)
to π0(Y, x0) induced by the inclusion X→ Y is onto. And that is equivalent
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to saying that π0(Y, X, x0) is trivial, by our definition of π0(Y, X, x0) . —
Now assume n > 0 . For a map g as in the statement, let x0 = g(?) where
? ∈ Sn−1 ⊂ Dn is the base point. Since πn(Y, X, x0) is trivial and g represents
an element in it, we know that there exists a map of pairs

G : (Dn × [0, 1], Sn × [0, 1]) −→ (Y, X)

such that G(z, 0) = g(z) and G(z, 1) = x0 for all z ∈ Dn . Let L be the
union of Sn × [0, 1] and Dn × {1} in Dn × [0, 1] . Then G(L) is contained in
the subspace X of Y . Now it is easy to construct a homotopy

(kt : D
n → Dn × [0, 1])t∈[0,1]

such that k0(z) = (z, 0) and k1(z) ∈ L for all z ∈ D , and kt is stationary on
Sn−1 , so that kt(z) = k0(z) for all z ∈ Sn−1 and t ∈ [0, 1] . Define ht := G◦kt
for t ∈ [0, 1] . This gives the required homotopy. �

Proof of theorem 2.4. In view of the above observations it suffices to show the
following. Suppose that Y is a CW-space with a CW-subspace X . Suppose
that for every n ≥ 0 and every map of pairs

g : (Dn, Sn−1)→ (Y, X)

there exists a homotopy (ht : D
n → Y)t∈[0,1] such that h0 = g and h1(D

n) is
contained in X , and the homotopy is stationary on Sn−1 . Then the inclusion
X→ Y is a homotopy equivalence.
Indeed we are going to construct a homotopy (Ft : Y → Y)t∈[0,∞] such that
F0 = idY and (Ft) is stationary on X and F∞(Y) ⊂ X . This is clearly enough.1

It turns out to be convenient for induction purposes to parameterize the
homotopy by a compact interval of the form [0,∞] ; think of this as the one-
point compactification of {x ∈ R | x ≥ 0} . (We have used this idea before to
establish the HEP for inclusions of CW-subspaces; lecture notes WS 2014-
2015.)
The idea is to construct (Ft) in steps corresponding to conditions t ∈ [k, k+1]
where k runs through the non-negative integers. This will be done in such
a way that Fk+1 takes the k-skeleton Yk of Y to X and Ft(y) = Fk+1(y)
whenever y ∈ Yk and t ≥ k + 1 . In words, the homotopy (Ft) is stationary
on the k-skeleton of Y for t ≥ k+ 1 .
Suppose then that Ft has already been constructed for t ∈ [0, k] where k is
a positive integer, and that Fk(Y

k−1) ⊂ X . Let

ϕ : (Dk, Sk−1)→ (Yk, Yk−1)

1Such a homotopy is called a strong deformation retraction of Y onto X . We can say
that X is a strong deformation retract of Y .
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be a characteristic map for a k-cell E of Y . Then Fk ◦ ϕ is a map of pairs
from (Dk, Sk−1) to (Y, X) . By our assumption on the pair (Y, X) there exists a
homotopy (ht : D

k → Y)t∈[0,1] which is stationary on Sk−1 and has h0 = Fk◦ϕ
and h1(D

k) ⊂ X . We want to define Ft for t ∈ [k, k+ 1] in such a way that
Ft ◦ ϕ = ht−k . This seems to define Ft only on Yk−1 ∪ E . (Note that Ft for
t ∈ [k, k+1] is already defined on Yk−1 because it is supposed to agree there
with Fk .) But we can proceed in the same way to define Ft for t ∈ [k, k+ 1]
on all other k-cells of Y , so that it is defined on all of Yk . By the definition
of a CW-space, specialized here to Y , there is no problem with that in regard
to continuity. Then we use the homotopy extension theorem for the inclusion
Yk → Y to extend to a homotopy, parameterized by a time interval [k, k+1] ,
of maps from Y to Y , beginning with Fk : Y → Y which is already given.
This induction process has a trivial beginning, F0 = idY , but it has a slightly
nontrivial end. We decree F∞(y) = Fk+1(y) if y ∈ Yk . Since every y ∈ Y is
contained in Yk for some k , this takes care of all y ∈ Y . By construction of
Ft for t <∞ , this definition of F∞(y) is unambiguous. By the definition of
a CW-space, there is no problem whatsoever in regard to continuity. �

2.3. Homotopy and homology

We have already seen the Hurewicz homomorphism. It is a map

πn(X, ?) −→ Hn(X)

defined by [α] 7→ α∗(1) . Here α : Sn → X is a based map and 1 ∈ Hn(Sn) ∼=
Z is informal notation for the standard generator (also known as the standard
fundamental class of the sphere as an oriented manifold). I am assuming
n ≥ 1 . The Hurewicz homomorphism is indeed a homomorphism of groups.
In the case n = 1 , when X is path connected, it is surjective and its kernel
is the commutator subgroup (the smallest normal subgroup of πn(X, ?) with
a commutative quotient). See lecture notes WS 2014-2015, chapter about
fundamental groups. This section is about similar statements for higher n
under strong conditions on X .

Theorem 2.6. (Hurewicz.) Let X be a based CW-space such that πk(X, ?)
is trivial for k = 0, 1, 2, . . . , n − 1, where n ≥ 2. Then the Hurewicz homo-
morphism πn(X, ?)→ Hn(X) is an isomorphism.

The theorem is an easy consequence of what we already know about ho-
mology of CW-spaces, modulo the following lemma.

Lemma 2.7. If X is a based connected CW-space such that πk(X, ?) is trivial
for k = 1, 2, . . . , n − 1, where n ≥ 1, then X is based homotopy equivalent
to a CW-space Y such that Yn−1 is a single point, which is the base point.

We postpone the proof of lemma 2.7.
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Proof of theorem modulo lemma. We can assume that X in the theorem has
Xn−1 equal to a single point, the base point. Choose characteristic maps for
all cells of X . We know already that the homomorphism

πn(X
n, ?)→ πn(X, ?)

is onto. Moreover Xn is a wedge of (possibly many) n-spheres, say Xn =∨
λ∈Λ S

n where n ≥ 2 . We know (see remark 2.8 below) that the inclusion
of these wedge summands in Xn induces an isomorphism from⊕

λ

Z ∼=
⊕
λ

πn(S
n, ?)

to πn(X
n) . Now let ψ : Sn → Xn be an attaching map for an (n+ 1)-cell of

X . Then
[ψ] ∈ [Sn, Xn] ∼= [Sn, Xn]∗ = πn(X

n, ?) ∼=
⊕
λ

Z

goes to zero in

[Sn, Xn+1] = [Sn, X] = [Sn, X]∗ = πn(X, ?)

because ψ extends to a map from Dn+1 to Xn (the characteristic map for that
n-cell). Therefore the element of

⊕
λ Z determined by [ψ] is in the kernel

of the surjective map from
⊕

λ Z ∼= πn(X
n, ?) to πn(X, ?) . This reasoning,

carried out for all (n + 1)-cells of X , gives us a lower bound on that kernel
(a subgroup contained in the kernel). We do not need more because of the
following commutative diagram:⊕

λ Z ∼= πn(X
n, ?) //

∼=Hurew.
��

πn(X
n+1, ?) ∼= πn(X, ?)

Hurew.
��⊕

λ Z ∼= Hn(X
n) // Hn(X

n+1) ∼= Hn(X)

We know the kernel of the lower horizontal arrow and we therefore get an
upper bound on the kernel of the upper horizontal arrow (a subgroup con-
taining that kernel) using the commutativity of the diagram. But we already
had a lower bound for it, and the upper bound agrees with the lower bound.
Therefore, since the horizontal arrows are both surjective, the right-hand
vertical arrow must be an isomorphism. �

Remark 2.8. For a wedge of spheres
∨
λ∈Λ S

n , where n ≥ 2 is fixed, the
inclusions of the wedge summands induce an isomorphism⊕

λ∈Λ

πn(S
n, ?)→ πn(

∨
λ∈Λ

Sn, ?) .

This was already mentioned in example 1.8 (lecture notes weeks 1 and 2).
There are two steps to the proof. Firstly, it is clear that every element of
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πn(
∨
λ∈Λ S

n, ?) comes from πn(
∨
λ∈Λ ′ Sn, ?) for some finite subset Λ ′ ∈ Λ .

Moreover πn(
∨
λ∈Λ ′ Sn, ?) injects into πn(

∨
λ∈Λ S

n, ?) as a direct summand
(since

∨
λ∈Λ ′ Sn is a retract of

∨
λ∈Λ S

n ). Secondly, as we saw in lecture notes
weeks 1 and 2, the inclusion ∨

λ∈Λ ′

Sn −→ ∏
λ∈Λ ′

Sn

induces an isomorphism

πn(
∨
λ∈Λ ′

Sn, ?) −→ πn(
∏
λ∈Λ ′

Sn, ?) ∼=
∏
λ∈Λ ′

πn(S
n, ?) =

⊕
λ∈Λ ′

πn(S
n, ?).

Corollary 2.9. Let X be a path connected CW-space X with base point such
that π1(X, ?) is trivial and the homology groups Hn(X) are trivial for n ≥ 1.
Then X is contractible.

Proof. Suppose for a contradiction that X is not contractible. Then by the
JHC Whitehead theorem 2.4, there is n ≥ 1 such that πn(X, ?) is nontrivial.
Find the minimal such n . It is > 1 by assumption. Then πn(X, ?) ∼=
Hn(X) for this n , by the Hurewicz theorem 2.6. So Hn(X) is also nontrivial.
Contradiction. �

2.4. Homotopy of pairs and homology

Theorem 2.10. (Hurewicz.) Let (Y, X) be a pair of based connected CW-
spaces such that the fundamental group π1(X, ?) is trivial and πk(Y, X, ?) is
trivial for k = 0, 1, 2, . . . , n− 1, where n ≥ 2. Then the composition

πn(Y, X, ?)
ind. by quot. map // πn(Y/X, ?)

Hurewicz homom. // Hn(Y/X)

is an isomorphism.

For the proof we need a lemma similar to lemma 2.7 but slightly more
general. (And once again we postpone the proof.)

Lemma 2.11. Let (Z,X) be a pair of based connected CW-spaces such that
πk(Z,X, ?) is trivial for k = 0, 1, 2, . . . , n − 1, where n ≥ 1. Then there
exists a CW-space Y containing X as a CW-subspace, and a map Y → Z
which is the identity on X, such that

• the map Y → Z is a homotopy equivalence
• Yn−1 = Xn−1 (i.e., all cells in Y r X have dimension ≥ n).

Remark 2.12. Let (Y, X) be a pair of based spaces where X is path con-
nected, and let x0, x1 ∈ X . Then for n ≥ 2 the groups πn(Y, X, x0) and
πn(Y, X, x1) are isomorphic; in fact a choice of path in X from x0 to x1 de-
termines an isomorphism ιγ between the two. This can also be used to define
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an action (by group automorphisms) of π1(X, x0) on πn(Y, X, x0) . The for-
getful map from πn(Y, X, x0) to the set of homotopy classes of unbased maps
from (Dn, Sn−1) to (Y, X) is always surjective; two elements of πn(Y, X, x0)
determine the same unbased homotopy class if and only if they are in the
same orbit of the action of π1(X, x0) . (The proof of these statements is an
exercise.)

We need one more lemma. Assuming lemma 2.11, we can restate the
assumptions of the Hurewicz theorem 2.10 as saying that we have a pair of
CW-spaces (Y, X) where X is based, connected and has trivial fundamental
group, and Yn−1 = Xn−1 , where n ≥ 2 is fixed. Choose characteristic maps

ϕj : (D
n, Sn−1) −→ (Yn, Yn−1) = (Yn, Xn−1)

for the n-cells of Y not contained in X . These maps need not take base
point to base point, but for each j we can choose a path γj in Xn from ϕj
of the base point (of Sn−1 ) to ? , the base point of Xn . Together the ϕj and
the γj define a based map of pairs

f :
(
(
∐

jD
n)//J , (

∐
j S
n−1)//J

)
// (Yn, Xn).

Here // stands for the mapping cone construction and J is the collection of
the base points (one in each copy of Sn−1 ⊂ Dn ). The cone point c serves
as the base point in (

∐
j S
n−1)//J . Here is a budding artist’s impression of

(
∐

jD
n)//J and (

∐
j S
n−1)//J .

Lemma 2.13. The map πn((
∐

jD
n)//J , (

∐
j S
n−1)//J , c) → πn(Y

n, Xn, ?)
induced by f is surjective.

Proof. By remark 2.12, when we represent elements of πn(Y
n, Xn, ?) by maps

of pairs there is no need to pay attention to base points. In addition we like
a rectangular representation in this proof, so we begin with

g : (In, ∂In)→ (Yn, Xn)

where I = [0, 1] . The goal is to show that g is unbased homotopic, as a map
of pairs, to a map in the form of a composition

(Dn, Sn−1) //
(
(
∐

jD
n)//J , (

∐
j S
n−1)//J

) f // (Yn, Xn).

(It is not important whether the broken arrow is a based map or not — it
will automatically be homotopic to a based map since (

∐
j S
n−1)//J is path

connected.) — By smooth approximation and Sard’s theorem, we can assume
that the sets Sj := g−1(ϕj(0)) are finite and that for each z ∈ Sj there is a
small cube Kz inside In , centered at z , such that ϕ−1

j g maps a neighborhood

of Kz smoothly and diffeomorphically to a neighborhood of 0 in Dn r Sn−1 .
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The cubes Kz for z ∈
⋃
j Sj are pairwise disjoint and we can also suppose

that their images under the first projection p1 : I
n → I are pairwise disjoint.

(If not, pre-compose g with a suitable perturbation, alias diffeomorphism
In → In which is the identity in a neighborhood of the boundary.) This
gives us a way to number the z ∈

⋃
Sj consecutively by comparing their

first coordinates; so we write z(1), z(2), . . . , z(r) . Now draw a straight line
segment L(1) from the right-hand face (maximal first coordinate) of Kz(1) to
the left-hand face of Kz(2) ; next a straight line segment L(2) from the right-
hand face of Kz(2) to the left-hand face of Kz(3) , etc. Let Q be the union
of the little cubes Kz(1) , Kz(2) , Kz(3) , ..., Kz(r) and the segments Lz(1) , Lz(2) ,
Lz(3) , ... Lz(r−1) . Claim:

∂Q := ∂Kz(1) ∪ L(1) ∪ ∂Kz(2) ∪ L(2) ∪ · · · ∪ L(q− 1) ∪ Kz(q)
is a strong deformation retract of

In r int(Q) = In r int
(
Kz(1) ∪ Kz(2) ∪ · · · ∪ Kz(q)

)
.

Meaning: there exists a homotopy (hs : I
nrint(Q)→ Inrint(Q))s∈[0,1] which

is stationary on ∂Q and such that h0 = id whereas h1(I
n r int(Q)) ⊂ ∂Q .

The proof of the claim is left to the gentle reader, but the budding artist
is back trying to help us visualize the inclusion of ∂Q into In r int(Q) :
Let het : I

n → In be defined like ht on In r Q and like the identity on Q .
The homotopy (ghet)t∈[0,1] can be viewed as an unbased homotopy of maps
with source (In, ∂In) and target (Yn, Yn r U) where U is a tiny standard
neighborhood of the collection of points ϕj(0) , the center points in each n-
cell of Yn r Xn . The inclusion of (Yn, Xn) in (Yn, Yn r U) is a homotopy
equivalence of pairs, so we can in fact replace (Yn, Xn) by (Yn, Yn r U)
without loss of essential information. The homotopy (ghet)t∈[0,1] begins with
ghe0 = g and ends with ghe1 . But ghe1 is the composition of he1 from (In, ∂In)
to (Q,∂Q) with

g|Q : (Q,∂Q) −→ (Yn, Yn rU).
Therefore it only remains to show that g|Q : (Q,∂Q) → (Yn, Yn r U) is
homotopic to a composition

(Q,∂Q) //
(
(
∐

jD
n)//J , (

∐
j S
n−1)//J

) f // (Yn, Yn rU).

Here it is convenient to replace Sn−1 by Dn r V , the complement in Dn

of an open ball of small radius about 0 . (It should be done in such a
way that f−1(U) =

∐
j V ⊂

∐
jD

n .) So now we are hoping to show that
g|Q : (Q,∂Q)→ (Yn, Yn rU) is homotopic to a composition

(Q,∂Q)
ḡ //
(
(
∐

jD
n)//J , (

∐
jD

n r V)//J
) f // (Yn, Yn rU).
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But this is easy. Define ḡ on Kz ⊂ Q so that it agrees with ϕ−1
j g , where

g(z) = ϕj(0) . Then ḡ(∂Kz) is contained in (
∐

jD
n r V)//J because V is

small enough. Now try to extend the definition of ḡ to the segments L(i) .
Beware that they have to be mapped to (

∐
jD

n r V)//J . This extension
problem has a solution because (

∐
jD

n r V)//J is path connected. In this
way ḡ can be defined on all of Q . On the little cubes Kz we have agreement
of fḡ with g . Therefore it suffices to show that fḡ restricted to a segment
L(i) is homotopic to g restricted to the segment L(i) , by a homotopy (of
maps to YnrU) which is stationary on the boundary points of the segment.
This is clear since the fundamental group of Yn rU ' Xn is trivial. �

Proof of theorem 2.10 modulo lemma 2.11. We can assume that Yn−1 = Xn−1 .
By analogy with the proof of theorem 2.6 we start with a commutative dia-
gram

πn(Y
n, Xn) //

��

πn(Y, X)

��⊕
j Z ∼= Hn(Y

n/Xn) // Hn(Y/X)

where j runs through a set of labels for the n-cells of Y r X . (Base points
have been suppressed.) The horizontal arrows are induced by the inclusion
of the n-skeleton, Yn → Y , and are known to be surjective (the upper hori-
zontal arrow by cellular approximation). By lemma 2.13, there is a surjective
homomorphism

f∗ : πn((
∐

jD
n)//J , (

∐
j S
n−1)//J) // πn(Y

n, Xn).

If n ≥ 3 , source and target of this homomorphism are abelian and the source
group is isomorphic to

⊕
j Z , from the long exact sequence of homotopy

groups of the pair (
∐

jD
n)//J , (

∐
j S
n−1)//J) . If n = 2 , the target group

is abelian, from the long exact sequence of homotopy groups of the pair
(Yn, Xn) . The source group is a free group with generators corresponding
to the labels j ; this follows again from the long exact sequence of homotopy
groups of the pair (

∐
jD

n)//J , (
∐

j S
n−1)//J) . Therefore, in all cases, we have

a surjection from
⊕

j Z to the abelian group πn(Y
n, Xn) . Using this, it follows

that the left-hand vertical arrow in the little square above is an isomorphism
(of abelian groups). Therefore, as in the proof of theorem 2.6, it suffices to
show that the kernel of the upper horizontal arrow “contains” the kernel of
the lower horizontal arrow. (Quotation marks apply because the two kernels
are subgroups of two different abelian groups, which are however related by
a preferred isomorphism.) This is easy to establish by looking at the element
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of πn(Y
n, Xn) defined by the attaching map α : Sn → Yn for an (n+1)-cell of

Y not in X . That element is in the kernel of the upper horizontal arrow. �

2.5. Trading cells

Definition 2.14. A map of spaces f : X → Y is 0-connected if it induces
a surjection of path components, f∗ : π0(X) → π0(Y) . (The sets π0(X) and
π0(Y) do not really depend on base points, so none has been specified.)
A map of spaces f : X → Y is n-connected, where n is a positive integer, if
it is 0-connected and for every x0 ∈ X the map

f∗ : πk(X, x0)→ πk(Y, f(x0))

is bijective for k = 0, 1, 2, . . . , n− 1 and surjective for k = n .
A map of spaces f : X→ Y which is n-connected for all n ≥ 0 is also called
a weak equivalence.

Example 2.15. (i) Let X be a CW-space. We have seen that the inclusion
Xn → X is n-connected.
(ii) Let (Y, X) be a pair of nonempty spaces. The long exact sequence of
homotopy groups (homotopy sets) of the pair (Y, X) implies that the inclusion
X → Y is n-connected if and only if πk(Y, X, x0) is trivial (has just one
element) for k = 0, 1, . . . , n .
(iii) If f : X → Y is n-connected, where n > 0 , then it is also (n − 1)-
connected.
(iv) If f : X→ Y is a map of CW-spaces which is a weak equivalence, then it
is a homotopy equivalence according to JHC Whitehead’s theorem.

Proof of lemma 2.7. Given a CW-space X with the stated properties, we
construct a CW-space Y such that Yn−1 = ? and a map g : Y → X which is
a weak equivalence (and therefore a homotopy equivalence). The plan is to
construct Yk and a map gk : Yk → X simultaneously, by induction on k , so
that gk is k-connected and gk agrees with g(k+1) on Yk ⊂ Yk+1 . The induc-
tion begins with Yn−1 = ? and gn−1 : Yn−1 → X equal to the inclusion of the
base point. By our assumptions on X , this is indeed an (n − 1)-connected
map. Now assume that gk : Yk → X has already been constructed and is
k-connected, where k ≥ n− 1 is fixed. We distinguish two cases.
(i) If n = 1 and k = n − 1 = 0 , then Y0 = ? . The map from π0(Y

0, ?)
to π0(X, ?) determined by g0 is a bijection, but the map from π1(Y

0, ?)
to π1(X, ?) determined by g0 need not be surjective. Choose based maps
γi : S

1 → X such that the classes [γi] ∈ π1(X, ?) form a generating set for
that group. Define Y1 to be the wedge

∨
i S
1 of as many circles and define g1

so that it agrees with γi on the circle (wedge summand) with label i . Then
g1 : Y1 → X is 1-connected.
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(ii) Otherwise start by observing that the map πk(Y
k, ?) → πk(X, ?) deter-

mined by gk is a surjective homomorphism of groups. Choose based maps
αi : S

k → X such that the classes [αi] generate the kernel of that homomor-
phism, and for each i choose a map βi : D

k+1 → X which extends gk ◦ αi .
Choose based maps γj : S

k+1 → X such that the classes [γj] generate the
group πk+1(X, ?) . Define Yk+1 to be(

Yk ∪∨αi

∨
i

Dk+1

)
∨
∨
j

Sk+1.

In words: Yk+1 is the (k + 1)-dimensional CW-space obtained from the k-
dimensional CW-space Yk by first using the maps αi as attaching maps for
so many (k+1)-cells, and then taking the wedge with so many spheres Sk+1 .
Define gk+1 so that the composition∨

iD
k+1 // Yk+1

gk+1

// X

agrees with
∨
i βi and so that the composition∨

j S
k+1 // Yk+1

gk+1

// X

agrees with
∨
i γi . — Finally let Y =

⋃
Yk and define g on Y so that it

agrees with gk on Yk . �

Proof of lemma 2.11. This is very similar to the proof of lemma 2.7. Given
a CW-pair (Z,X) with the stated properties, we construct a CW-space Y
containing X as a CW-subspace such that Yn−1 = Xn−1 and a map g : Y → Z
which is a weak equivalence (and therefore a homotopy equivalence). The
plan is to construct Yk and a map gk : Yk → Z simultaneously, by induction
on k , so that gk is k-connected and gk agrees with g(k+1) on Yk ⊂ Yk+1 .
The induction begins with Yn−1 = Xn−1 and gn−1 : Yn−1 → Z equal to the
inclusion of Xn−1 in Z . By our assumptions on the pair (Z,X) , this is indeed
an (n− 1)-connected map. Now assume that gk : Yk → Z has already been
constructed and is k-connected, where k ≥ n − 1 is fixed. We distinguish
two cases.
(i) If n = 1 and k = n − 1 = 0 , then Y0 = X0 . Choose based maps
γj : S

1 → Z such that the classes [γj] generate the group π1(Z, ?) . Let

Y1 := X1 ∨
∨
j

S1.

Define g1 : Y1 → Z so that it agrees with the inclusion X1 → Z on X1 and
with

∨
j γj on

∨
j S
1 .



14

(ii) Otherwise start by observing that the map πk(Y
k, ?) → πk(Z, ?) de-

termined by gk is a surjective homomorphism of groups. Choose based
maps αi : S

k → X such that the classes [αi] generate the kernel of that
homomorphism, and for each i choose a map βi : D

k+1 → X which extends
gk ◦ αi . Choose based maps γj : S

k+1 → X such that the classes [γj] gener-
ate the group πk+1(X, ?) . Define Yk+1 to be ... (continue as in the proof of
lemma 2.7). �

2.6. Homotopy equivalences and homology

Theorem 2.16. (G. Whitehead) Let f : X→ Y be a map between path con-
nected CW-spaces which induces an isomorphism Hk(X)→ Hk(Y) for all k.
Suppose also that π1(X, x0) and π1(Y, y0) are trivial (for some or all x0 ∈ X,
y0 ∈ Y ). Then f is a homotopy equivalence.

Proof. Without loss of generality, f is the inclusion X ↪→ Y of a CW-
subspace. The long exact sequence of homology groups implies that H̃k(Y/X)
is zero for all k . From our assumptions we also get that π1(Y, X, ?) is triv-
ial for any choice of base point ? ∈ X . The second Hurewicz theorem 2.10
then implies that πk(Y, X, ?) is trivial for every choice of ? ∈ X and k ≥ 2 .
(If not, choose minimal k ≥ 2 for which πk(Y, X, ?) is nontrivial; note that
this πk(Y, X, ?) is isomorphic to Hk(Y/X) which is zero, contradiction.) Since
πk(Y, X, ?) is trivial for all k ≥ 1 , it follows that the inclusion X → Y is a
weak equivalence and therefore a homotopy equivalence by JHC Whitehead’s
theorem 2.4. �

2.7. Related thoughts

Remark 2.17. Under the assumptions of the second Hurewicz theorem 2.10,
the space Y/X is path connected and has trivial fundamental group. This
follows from lemma 2.11. By that lemma we can pretend that Yn−1 = Xn−1 ,
in which case Y/X has no cells in dimension < n other than the base point.
(And n is at least 2.) Therefore by the first Hurewicz theorem 2.6, the
Hurewicz homomorphism πn(Y/X, ?)→ Hn(Y/X) is an isomorphism. There-
fore the second Hurewicz theorem is equivalent to the statement that

πn(Y, X, ?)→ πn(Y/X, ?)

(induced by the quotient map ...) is an isomorphism of groups, under such
and such assumptions.
One may ask whether this homomorphism πn(Y, X, ?)→ πn(Y/X, ?) is an iso-
morphism in more general circumstances. That is what the Blakers-Massey
theorem is about. We will probably get to know it later.

Remark 2.18. The G. Whitehead theorem 2.16 becomes false if the condi-
tion that π1(X, ?) be trivial is dropped. Specifically, there exist connected
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based CW-spaces X with nontrivial π1(X, ?) such that the unique map from
X to a point induces isomorphisms in homology (that is, X has the homol-
ogy of a point, H0(X) ∼= Z and Hk(X) = 0 for k > 0). Note that this
map from X to a point is not a homotopy equivalence because it does not
induce an isomorphism of fundamental groups. — See the exercises for more
(counter)examples.

Remark 2.19. There are more complicated variants of the second Hurewicz
theorem 2.10 in which X is allowed to have a nontrivial fundamental group.
I recommend to work around them as follows.

(i) Case n ≥ 3. Let (Y, X) be a pair of based connected CW-spaces with
the property that πk(Y, X, ?) is trivial for k = 0, 1, 2, . . . , n−1 , where n ≥ 3 .
Then the inclusion-induced homomorphism from π1(X, ?) to π1(Y, ?) is an
isomorphism. We can pass to the pair of universal covers

(Ỹ, X̃).

We have πn(Y, X, ?) ∼= πn(Ỹ, X̃, ?) for very general reasons (as in Prop. 1.7,

lecture notes for weeks 1 and 2). But the pair (Ỹ, X̃) satisfies the assumptions
of theorem 2.10 and so we get

πn(Y, X, ?) ∼= πn(Ỹ, X̃, ?) ∼= Hn(Ỹ/X̃) .

This is quite satisfactory in my opinion. But if you still wish to make a
connection with Hn(Y/X) , then you are asking how Hn(Ỹ/X̃) is related to
Hn(Y/X) . This can be answered by comparing the corresponding cellular
chain complexes. The result should be that

Hn(Y/X) ∼= Z⊗Z[π1(X,?)] Hn(Ỹ/X̃) .

Exercise: make sense of that and prove it.
(ii) Case n = 2. Let (Y, X) be a pair of based connected CW-spaces

with the property that π1(Y, X, ?) is trivial. Then the inclusion-induced

homomorphism π1(X, ?) → π1(Y, ?) is onto. Let Ỹ → Y be the universal
covering of Y and let

Ỹ|X −→ X

be the connected covering space of X obtained by restricting that to X . Then
we have the following commutative diagram with exact rows:

π2(Ỹ) //

∼=
��

π2(Ỹ, Ỹ|X)

��

onto // π1(Ỹ|X)

understood
��

H2(Ỹ) // H2(Ỹ/(Ỹ|X))
onto // H1(Ỹ|X)

It follows that the vertical arrow in the middle is an abelianization like the
vertical arrow on the right; i.e., it is onto and the kernel is the smallest normal
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subgroup of the source with an abelian quotient. This is again satisfactory in
my opinion! But if you still wish to make a connection with H2(Y/X) , then

you are asking how H2(Ỹ/(Ỹ|X)) is related to H2(Y/X) . This can be answered
by comparing the corresponding cellular chain complexes. The result should
be that

H2(Y/X) ∼= Z⊗Z[π1(Y,?)] H2(Ỹ/Ỹ|X) .

Remark 2.20. The ideas in the proofs of lemma 2.7 and lemma 2.11 can
also be used to prove the following.

(i) For any space Z there exists a CW-space Y and a map g : Y → Z
which is a weak equivalence.

(ii) For any space Z and map f from a CW-space X to Z , there exists a
CW-space Y containing X as a CW-subspace and a map g : Y → Z
which is a weak equivalence and satisfies g|X = f .

Obviously (ii) implies (i); so here is a sketch proof of (ii). We proceed by
induction. Suppose that Yk has already been constructed and contains Xk ;
also gk : Yk → Z has been constructed and is k-connected, and agrees with
f on Xk . (The induction beginning is easy; so assume k ≥ 0 .) Then

(gk ∪ f) : Yk ∪ X −→ Z

is also k-connected. For every choice of ? ∈ Y0 and element in the kernel of

(gk ∪ f)∗ : πk(Yk ∪ X, ?)→ πk(Z, g
k(?)),

represent the element by a based cellular map αi : S
k → Yk and choose an

extension βi : D
k+1 → Z of gk ◦ αi . For every element of πk+1(Z, g

k(?)) ,
represent the element by a based map γj : S

k+1 → Z . Define Yk+1 to be(
(Yk ∪ Xk+1) ∪∨αi

∨
i

Dk+1

)
∨
∨
j

Sk+1.

Define gk+1 so that the composition∨
iD

k+1 // Yk+1
gk+1

// Z

agrees with
∨
i βi and so that the composition∨

j S
k+1 // Yk+1

gk+1

// Z

agrees with
∨
i γi .
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2.8. Homotopy groups and fibrations

Theorem 2.21. Let p : E → B be a fibration (w.r.t. the class of compact
spaces) which is also a based map of based spaces (base points ?s ∈ E and
?t ∈ B). Suppose that B is path connected. Let F be the fiber of p over ?t ,
F = p−1(?t). Then the map

πn(E, F, ?s)→ πn(B, ?t)

induced by p is a bijection for all n ≥ 0.

Corollary 2.22. In the circumstances of theorem 2.21 there is a long exact
sequence of homotopy groups/sets

· · · // πn(F, ?s) // πn(E, ?s) // πn(B, ?t) // πn−1(F, ?s) // πn−1(E, ?s) // · · ·

ending in · · · // π0(E, ?s) // π0(B, ?t) .

Proof. In the long exact sequence of the pair (E, F) , replace πn(E, F, ?s) by
πn(B, ?t) using the bijection of theorem 2.21. �

Proof of theorem 2.21. Case n = 0 : here the claim is that the inclusion of F
in E induces a surjection π0(F)→ π0(E) . Proof of this: given x ∈ E , choose
a path ω from p(x) to ?t in B . Use the path lifting property of p to lift
this to a path ω̃ in E from x itself to some point y ∈ E . The p(y) = ?t , so
y ∈ F .
Case n > 0 , surjectivity. Represent an element of πn(B, ?t) by a map
g : Dn → B such that g(z) = ?t for all z ∈ Sn−1 . View this as a homo-
topy (ht : S

n−1 → B)t∈[0,1] where

ht(z) = g(z+ (1− t)b)

for z ∈ Sn−1 ; here b ∈ Dn is the base point (−1, 0, 0, . . . , 0) . The homotopy
begins with h0 which is the constant map with value ?t and ends with h1
which is again the constant map with value ?t . By the HLP for the map p ,
there exists a homotopy (h̄t : S

n−1 → E)t∈[0,1] such that ph̄t = ht for all t
and h̄0 is the constant map with value ?s . The homotopy (h̄t) can also be
viewed as a single map

ḡ : (Dn, Sn−1)→ (E, F)

determined by ḡ(z+ (1− t)b) = h̄t(z) for z ∈ Sn−1 . Then p ◦ ḡ = g .
Case n > 0 , injectivity. Represent an element of πn(E, F, ?s) by a based map
f : (Dn, Sn−1)→ (E, F) . Suppose that p ◦ f is nullhomotopic as a based map
from Dn/Sn−1 to B . Let

(kt : D
n/Sn−1 −→ B)t∈[0,1]
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be a based nullhomotopy, so that k0 = p ◦ f and k1 is constant with value
?t . We can also write this in the form (kt : D

n −→ B)t∈[0,1] . Use the HLP
for p to find a homotopy

(k̄t : D
n → E)t∈[0,1]

such that k̄0 = f and p ◦ k̄t = kt for all t . Each k̄t is then a based map
of pairs from (Dn, Sn−1) to (E, F) , and k̄1 is a based map from (Dn, Sn−1)
to (F, F) . Therefore (k̄t) is not exactly a nullhomotopy for f = k̄0 , but it is
nevertheless the kind of homotopy that we require because we believe that
any based map from (Dn, Sn−1) to (F, F) is nullhomotopic as such. �


