Lecture Notes, weeks 1 and 2 Topology SS 2015 (Weiss)

1.1. Higher homotopy groups

Definition 1.1. Let X be a space with base point \star and let n be a nonnegative integer. Write $\pi_{n}(X, \star)$ for the set $\left[S^{n}, X\right]_{*}$ (based homotopy classes of based maps from S^{n} to X). It is clear that π_{n} is a covariant functor from $\mathcal{H o} \mathcal{T}_{\text {op }}^{\star}$ (the homotopy category of based spaces) to sets.

The case $\mathfrak{n}=1$ has already been looked at in detail and we saw that $\pi_{1}(X, \star)$ is a group in a natural way.

The case $n=0$ is also useful. Namely, $\pi_{0}(X, \star)$ is just the set of path components of X. Indeed, a based map $f: S^{0} \rightarrow X$ must send the base point -1 of S^{0} to the base point of X. So the only interesting feature it has is the value $f(1) \in X$. And if we pass to homotopy classes, only the path component of $f(1)$ remains.
There is no point in trying to put a natural group structure on $\pi_{0}(X, \star)$. We must accept that it is in most cases just a set. (There are exceptions: if X has the structure of a topological group, then $\pi_{0}(X)$ also has the structure of a group in an obvious way, and that can be useful.)
Definition 1.2. For $\mathfrak{n} \geq 2$, the set $\pi_{\mathfrak{n}}(\mathrm{X}, \star)$ has the structure of an abelian group in a natural way. In other words we can equip $\pi_{n}(X, \star)$ with a structure of abelian group in such a way that, for every based map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, the induced map of sets

$$
\pi_{n}(X, \star) \rightarrow \pi_{n}(Y, \star)
$$

becomes a homomorphism of abelian groups. The neutral element of $\pi_{n}(X, \star)$ is represented by the unique constant based map from S^{n} to X .

For the proof, we note first that

$$
\pi_{n}(X, \star) \times \pi_{n}(X, \star)=\left[S^{n}, X\right]_{\star} \times\left[S^{n}, X\right]_{\star} \cong\left[S^{n} \vee S^{n}, X\right]_{\star}
$$

(where \cong is used for an obvious bijection). Therefore it is reasonable to try to construct a multiplication map

$$
\mu: \pi_{n}(X, \star) \times \pi_{n}(X, \star) \rightarrow \pi_{n}(X, \star)
$$

by writing this in the form $\mu:\left[S^{n} \vee S^{n}, X\right]_{\star} \longrightarrow\left[S^{n}, X\right]_{\star}$ and defining it as pre-composition with some fixed element $\mathrm{K} \in\left[\mathrm{S}^{n}, \mathrm{~S}^{n} \vee \mathrm{~S}^{n}\right]_{*}$.

Elementary description of k . Think of S^{n} as the quotient space of $[0,1]^{n}$ obtained by collapsing the subspace consisting of all points which have some coordinate equal to 0 or 1 . Think of $S^{n} \vee S^{n}$ as the quotient space of
$[0,2] \times[0,1]^{n-1}$ obtained by collapsing all points which have some coordinate equal to 0 or 1 , or first coordinate 2 . Then k can be defined by $\kappa\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\left(2 x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$. It is easy to verify the following directly: the compositions

$$
S^{n} \xrightarrow{k} S^{n} \vee S^{n} \xrightarrow{i d \vee k} S^{n} \vee\left(S^{n} \vee S^{n}\right)
$$

and

$$
S^{n} \xrightarrow{\kappa} S^{n} \vee S^{n} \xrightarrow{\kappa \vee i d}\left(S^{n} \vee S^{n}\right) \vee S^{n}
$$

are based homotopic. This implies that our formula for the multiplication μ on $\left[S^{n}, X\right]_{\star}$ is associative. Next, it is easy to verify the following directly: the composition

$$
S^{n} \xrightarrow{\kappa} S^{n} \vee S^{n} \xrightarrow{\text { permute summands }} S^{n} \vee S^{n}
$$

is based homotopic to κ. (Here we need $n>1$.) This implies that our formula for the multiplication μ on $\left[\mathrm{S}^{n}, \mathrm{X}\right]_{\star}$ is commutative. Furthermore, it is easy to verify directly that the constant based map $S^{n} \rightarrow X$ is a two-sided neutral element for the multiplication μ. (In cubical coordinates for S^{n}, multiplication with the constant map has the effect of replacing a based map

$$
\mathrm{f}: \frac{[0,1]^{n}}{\sim} \longrightarrow X
$$

by the based map g where $g\left(x_{1}, \ldots, x_{n}\right)=f\left(2 x_{1}, x_{2}, \ldots, x_{n}\right)$ when $2 x_{1} \leq 1$ and $g\left(x_{1}, \ldots, x_{n}\right)=\star \in X$ when $2 x_{1} \geq 1$. So the task is to show that f is based homotopic to $\mathrm{g} \ldots$ and that is easy.) Next, it is easy to verify directly that an element $[f] \in\left[S^{n}, X\right]_{\star}$ has an inverse given by $[f \circ \eta]$ where $\eta: S^{n} \rightarrow S^{n}$ is given in cubical coordinates by $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto\left(1-x_{1}, x_{2}, \ldots, x_{n}\right)$. (In cubical coordinates for S^{n}, the product of [f] and [$\mathrm{f} \circ \mathrm{\eta}$] is given by g where $g\left(x_{1}, \ldots, x_{n}\right)=f\left(2 x_{1}, x_{2}, \ldots, x_{n}\right)$ when $2 x_{1} \leq 1$ and $g\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(2-2 x_{1}, x_{2}, \ldots, x_{n}\right)$ when $2 x_{1} \geq 1$.)

Although the homotopy groups π_{n} have a great deal of theoretical importance, they are very hard to compute in general, especially for large n. Recently I read in an article about homotopy theory: not a single compact connected CW-space X is known for which we have a formula describing $\pi_{n}(\mathrm{X})$ for all $n>0$, except for two types:

- the totally uninteresting case where X is contractible (so that $\pi_{n}(\mathrm{X})$ is the trivial group for all $n>0$);
- the more interesting case where $\pi_{1}(X)$ is nontrivial but the universal covering of X is contractible (in which case we can say that $\pi_{n}(X)$ is the trivial group for all $n>1$). Examples of this type are $X=S^{1}$, or $X=$ oriented surface of any positive genus.

In particular nobody has a really convincing formula for $\pi_{n}\left(S^{2}\right)$, for all $n \geq 1$ (although there are some deep results which describe these abelian groups in algebraic/combinatorial terms ... but not in such a way that we can easily read off how many elements they have). But there are many partial results, especially about $\pi_{n}\left(S^{m}\right)$. For example, we know that $\pi_{n}\left(S^{m}\right)$ is always a finitely generated abelian group ($m, n>1$). It is known that $\pi_{n}\left(S^{m}\right)$ is the trivial group if $n<m$ and that $\pi_{n}\left(S^{m}\right) \cong \mathbb{Z}$ if $n=m$; see theorem 1.3 below. It is known that $\pi_{n}\left(S^{m}\right)$ is infinite if and only if m is even and $n=m$ or $n=2 m-1$. An example of that is $\pi_{3}\left(S^{2}\right) \cong \mathbb{Z}$. Recall that $\pi_{3}\left(S^{2}\right)$ is not trivial according to example 2.5.3, lecture notes WS 2014-2015. (This was conditional at the time; we needed to know that S^{2} is not contractible. Later we did learn that S^{2} is not contractible since $\mathrm{H}_{2}\left(\mathrm{~S}^{2}\right) \cong \mathbb{Z}$.)

1.2. Homotopy groups of spheres: the easy cases

Theorem 1.3. For $0<\mathfrak{n}<m$, the group $\pi_{n}\left(S^{\mathfrak{m}}\right)$ is trivial. For all $n>0$, the group $\pi_{n}\left(\mathrm{~S}^{\mathfrak{n}}\right)$ is isomorphic to \mathbb{Z}, with [id] as the generator.

Proof. The proof is fiddly, but it is an important result. The case $n<m$ is an easy consequence of cellular approximation. By remark 11.5.2 in the lecture notes for WS 2014-2015, any based map from S^{n} to S^{m} is based homotopic to a cellular map. But a cellular map from S^{n} to S^{m} must be constant. (Use the CW structure on $\mathrm{S}^{\mathfrak{m}}$ which has one 0 -cell and one m cell.)
For the case $m=n$, it suffices to show that $\pi_{n}\left(S^{n}\right)$ is generated by the element [id]. Indeed, this gives us an upper bound on the size of $\pi_{n}\left(S^{n}\right)$. A lower bound comes from the map $\pi_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ which takes the homotopy class of a map f to the class of the mapping cycle f. It is an exercise to show that this is a homomorphism. ${ }^{1}$ Since [id] $\in \pi_{n}\left(\mathrm{~S}^{n}\right)$ maps to a generator of $H_{n}\left(S^{n}\right)$, this homomomorphism $\pi_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is onto.
With that in mind, the most important tool is Sard's theorem. (We used this earlier in connection with approximation of maps by cellular maps). This states that for a smooth map $\mathrm{f}: \mathrm{U} \rightarrow \mathbb{R}^{m}$ where U is open in \mathbb{R}^{n}, the set of critical values of f is a set of Lebesgue measure zero (in \mathbb{R}^{m}). An element $y \in \mathbb{R}^{m}$ is a critical value of f if there exists $x \in U$ such that $f(x)=y$ and the derivative $f^{\prime}(x)$, viewed as a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}, is not surjective. We can also assume $n>1$ since $\pi_{1}\left(S^{1}, \star\right)$ is well understood. We need a few observations.
(i) Any based map $S^{n} \rightarrow S^{n}$ can be written in the form of a map

$$
f: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}
$$

[^0]and after a homotopy we can assume that f is smooth in a neighborhood U of the compact set $f^{-1}\left(D^{n}\right)$.
(ii) In the situation of (i), if $f^{-1}(0)$ contains exactly one element $x \in \mathbb{R}^{n}$ and the derivative $f^{\prime}(x)$ is an invertible linear map from \mathbb{R}^{n} to \mathbb{R}^{n}, then f is based homotopic either to the identity map or to the map
$$
\eta:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(-x_{1}, x_{2}, \ldots, x_{n}\right)
$$
from $\mathbb{R}^{n} \cup\{\infty\}$ to itself.
(iii) The inclusion of the wedge $S^{n} \vee S^{n}$ into the product $S^{n} \times S^{n}$ induces an isomorphism from $\pi_{n}\left(S^{n} \vee S^{n}\right)$ to $\pi_{n}\left(S^{n} \times S^{n}\right) \cong \pi_{n}\left(S^{n}\right) \times \pi_{n}\left(S^{n}\right)$.
(iv) Let $\alpha: S^{n} \rightarrow S^{n} \vee S^{n}$ be any based map. Let $\varphi: S^{n} \vee S^{n} \rightarrow S^{n}$ be the fold map (which is the identity on the first summand S^{n} and also on the second summand S^{n}). Then we have
$$
[\varphi \alpha]=\left[\varphi q_{1} \alpha\right]+\left[\varphi q_{2} \alpha\right] \in \pi_{n}\left(S^{n}\right)
$$
writing + for the multiplication in $\pi_{n}\left(S^{n}\right)$ and $q_{i}: S^{n} \vee S^{n} \rightarrow S^{n} \vee S^{n}$ for the map which is the identity on summand i and takes the other summand to the base point.
Observation (iii) is a good exercise in cellular approximation; $\boldsymbol{n}>1$ is important. Observation (iv) follows from observation (iii). Namely, (iii) shows that α is homotopic to a based map obtained by composing κ : $S^{n} \rightarrow S^{n} \vee S^{n}$ with a map $S^{n} \vee S^{n} \rightarrow S^{n} \vee S^{n}$ which agrees with $q_{1} \alpha$ on the first wedge summand S^{n} and with $q_{2} \alpha$ on the second.
We had observation (ii) as an exercise (sheet 5 of WS14-15) but it did not find many friends. It is easy to reduce to the situation ${ }^{2}$ where $x=0 \in \mathbb{R}^{n}$. Then $f^{-1}(0)=\{0\}$ and $f^{\prime}(0)$ is an invertible linear map. The next idea is to show that f is based homotopic to the map $g: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}$ where g is the linear map $f^{\prime}(0)$ (except for $g(\infty)=\infty$). A based homotopy is given by
$$
\left(h_{t}: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}\right)
$$
where $h_{t}(v)=t^{-1} f(t v)$ for $v \in \mathbb{R}^{n}$ and t runs from 1 to 0 . To be more precise, h_{1} is of course f and h_{0} is of course not really defined by our formula for h_{t}, but if you (re)define $h_{0}=g$ then it ought to make a good homotopy, by definition of differentiability. The next idea is to note that the space of linear isomorphisms from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, also known as $\mathrm{GL}_{n}(\mathbb{R})$, is a space with exactly two path components. One of these path components contains the identity matrix and the other one contains the diagonal matrix with -1 in row one, column one and +1 in the other diagonal positions. Therefore our (linear) map
$$
g: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}
$$

[^1]is based homotopic (by a homotopy through invertible linear maps) to either id: $\mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}$ or to the map η from $\mathbb{R}^{n} \cup\{\infty\}$ to itself. This proves observation (ii).
Now let's turn to the proof of this theorem, properly speaking. We start with f as in (i). We want to show that $[f] \in \pi_{n}\left(S^{n}\right)$ is in the subgroup generated by [id]. By Sard, we know that f has a regular value arbitrarily close to 0 and it is easy to reduce to the case where 0 itself is regular value (by composing with a translation of \mathbb{R}^{n}). The preimage $f^{-1}(0)$ is compact and discrete with the subspace topology (since $f^{\prime}(x)$ is invertible for any $x \in f^{-1}(0) \ldots$ use the inverse function theorem). Therefore $f^{-1}(0)$ is a finite set. Assume that it has k distinct elements $\chi^{(1)}, \ldots, \chi^{(k)}$. We want to argue by induction on k. The case $k=1$ has already been settled in observation (ii). We can therefore assume $k>1$.

Choose a small open ball B_{ε} of radius ε about the origin $0 \in \mathbb{R}^{n}$ such that $\mathrm{f}^{-1}\left(\mathrm{~B}_{\varepsilon}\right)$ is a disjoint union of k open sets $\mathrm{U}_{1}, \ldots, \mathrm{U}_{k}$ (so that $x^{(i)} \in \mathrm{U}_{\mathrm{i}}$) in such a way that f restricts to a diffeomorphism from U_{i} to B_{ε}. (This is possible by the inverse function theorem.) Choose a map

$$
e: \mathbb{R}^{n} \cup\{\infty\} \longrightarrow \mathbb{R}^{n} \cup\{\infty\}
$$

which maps B_{ε} diffeomorphically to all of \mathbb{R}^{n} and maps the complement of B_{ε} to ∞ and has $e^{\prime}(0)$ equal to the identity (matrix). Then we know that $e \simeq i d$ and so $e f \simeq f$. But ef can also be written as a composition

$$
\mathrm{S}^{n} \xrightarrow{\gamma} \mathrm{~S}^{n} \vee \mathrm{~S}^{n} \xrightarrow{\varphi} \mathrm{~S}^{n}
$$

where $S^{n}=\mathbb{R}^{n} \cup\{\infty\}$, the first map takes U_{1} to the first wedge summand S^{n} by ef and takes $\bigcup_{i>1} U_{i}$ to the second wedge summand by ef, and takes all remaining points to the base point ∞ of the wedge. Then by (iv) we have

$$
[\mathrm{f}]=[\mathrm{ef}]=[\varphi \gamma]=\left[\varphi \mathrm{q}_{1} \gamma\right]+\left[\varphi \mathrm{q}_{2} \gamma\right]
$$

where $\varphi q_{1} \gamma$ and $\varphi q_{2} \gamma$ are maps as in (i) for which $0 \in \mathbb{R}^{n} \cup\{\infty\}$ is a regular value with fewer than k preimage points. By inductive assumption, $\left[\varphi q_{1} \gamma\right]$ and $\left[\varphi q_{2} \gamma\right]$ are in the subgroup of $\pi_{n}\left(S^{n}\right)$ generated by [id] and therefore [f] is also in that subgroup.

1.2. Change of base point

Proposition 1.4. Let X be a space, $\mathrm{x}_{0}, \mathrm{x}_{1} \in \mathrm{X}$ and $\mathrm{n} \geq 2$. If $\mathrm{x}_{0}, \mathrm{x}_{1}$ are in the same path component of X , then $\pi_{n}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ and $\pi_{\mathrm{n}}\left(\mathrm{X}, \mathrm{x}_{1}\right)$ are isomorphic as abelian groups.
More precisely, any path γ in X from x_{0} to x_{1} determines a group isomorphism \mathfrak{l}_{γ} from $\pi_{n}\left(X, x_{0}\right)$ to $\pi_{n}\left(X, x_{1}\right)$. The isomorphism \mathfrak{l}_{γ} depends only on the homotopy class of γ with start- and endpoints fixed.

Proof. The definition of $\iota_{\gamma}: \pi_{n}\left(X, x_{0}\right) \longrightarrow \pi_{n}\left(X, x_{1}\right)$ is as follows. Suppose that $\gamma:[0,1] \rightarrow X$ has $\gamma(0)=x_{0}$ and $\gamma(1)=x_{1}$. Let $\alpha: S^{n} \rightarrow X$ be a map such that $\alpha(\star)=x_{0}$ where $\star \in S^{n}$ is the base point. Choose a homotopy

$$
\left(h_{t}: S^{n} \rightarrow X\right)_{t \in[0,1]}
$$

such that $h_{0}=\alpha$ and $h_{t}(\star)=\gamma(t)$. This is possible because the inclusion $\star \rightarrow S^{n}$ is a cofibration. Let $\iota_{\gamma}[\alpha] \in \pi_{n}\left(X, x_{1}\right)$ be the based homotopy class of h_{1} (a map from S^{n} to X taking \star to x_{1}).
We need to show that ι_{γ} is well defined. Suppose that $\alpha^{\prime}: S^{n} \rightarrow X$ is another map such that $\alpha^{\prime}(\star)=x_{0}$ and $[\alpha]=\left[\alpha^{\prime}\right] \in \pi_{n}\left(X, x_{0}\right)$. Suppose that

$$
\left(h_{t}^{\prime}: S^{n} \rightarrow X\right)_{t \in[0,1]}
$$

is a homotopy such that $h_{0}^{\prime}=\alpha^{\prime}$ and $h_{t}^{\prime}(\star)=\gamma(t)$. We need to show that $\left[h_{1}\right]=\left[h_{1}^{\prime}\right] \in \pi_{n}\left(X, x_{1}\right)$. Choose a based homotopy $\left(g_{t}\right)_{t \in[0,1]}$ from α to α^{\prime}. Since the inclusion of $S^{n} \times\{0,1\}$ union $\star \times[0,1]$ in $S^{n} \times[0,1]$ is a cofibration, we can construct a homotopy

$$
\left(H_{t}: S^{n} \times[0,1] \rightarrow X\right)_{t \in[0,1]}
$$

in such a way that $H_{0}(x, s)=g_{s}(x)$ for all $x \in S^{n}$ and

$$
H_{t}(x, 0)=h_{t}(x), \quad H_{t}(x, 1)=h_{t}^{\prime}(x)
$$

for all $x \in S^{n}$ and $t \in[0,1]$, and $H_{t}(*, s)=\gamma(t)$ for all $s, t \in[0,1]$. Then H_{1} is the required homotopy showing that $\left[\mathrm{h}_{1}\right]=\left[\mathrm{h}_{1}^{\prime}\right] \in \pi_{\mathrm{n}}\left(\mathrm{X}, \mathrm{x}_{1}\right)$.
Next we need to ask whether ζ_{γ} is a homomorphism. In fact this is true by inspection. In slightly more detail, if we have $\alpha, \beta: S^{n} \rightarrow X$ such that $\alpha(\star)=x_{0}=\beta(\star)$ and homotopies

$$
\left(h_{t}^{\alpha}: S^{n} \rightarrow X\right)_{t \in[0,1]}, \quad\left(h_{t}^{\beta}: S^{n} \rightarrow X\right)_{t \in[0,1]}
$$

as above, satisfying $h_{0}^{\alpha}=\alpha$ and $h_{0}^{\beta}=\beta$ and $h_{t}^{\alpha}(\star)=\gamma(t)=h_{t}^{\beta}(\star)$, then the homotopy

$$
\left(\left(h_{t}^{\alpha} \vee h_{t}^{\beta}\right) \circ k\right)_{t \in[0,1]}
$$

demonstrates that $\iota_{\gamma}(\alpha+\beta)=\iota_{\gamma}(\alpha)+\iota_{\gamma}(\beta)$, where we use " + " for the group operation in π_{n}. (Recall that k is a based map from S^{n} to $S^{n} \vee S^{n}$ which we have used to define the group structure in π_{n}.)
Next we need to show that l_{γ} is bijective. From the definition of \boldsymbol{q}_{γ}, it is clear that an inverse is given by $\varsigma_{\bar{\gamma}}$ where $\bar{\gamma}(\mathrm{t})=\gamma(1-\mathrm{t})$ as usual.
Next we need to show that ζ_{γ} depends only on the homotopy class (startand endpoints fixed) of γ. So let $\Gamma:[0,1] \times[0,1] \rightarrow X$ be a map such that
$\Gamma(s, 0)=x_{0}$ for all s and $\Gamma(s, 1)=x_{1}$ for all s. Let $\alpha: S^{n} \rightarrow X$ be a map such that $\alpha(\star)=x_{0}$. We need to show that

$$
t_{\Gamma_{0}}=t_{\Gamma_{1}}
$$

where $\Gamma_{0}(\mathrm{t}):=\Gamma(0, \mathrm{t})$ and $\Gamma_{1}(\mathrm{t}):=\Gamma(1, \mathrm{t})$. Since the inclusion of $\star \times[0,1]$ in $S^{n} \times[0,1]$ is a cofibration, we can construct a homotopy

$$
\left(\mathrm{H}_{\mathrm{t}}: \mathrm{S}^{\mathrm{n}} \times[0,1] \rightarrow \mathrm{X}\right)_{\mathrm{t} \in[0,1]}
$$

in such a way that $H_{0}(x, s)=\alpha(x)$ for all $x \in S^{n}$ and $H_{t}(\star, s)=\Gamma(s, t)$ for all $s, t \in[0,1]$. Then H_{1} is the required homotopy showing that $t_{\Gamma_{0}}$ and $t_{\Gamma_{1}}$ take the same value on $[\alpha]$.

Remark 1.5. Suppose that $\beta, \gamma:[0,1] \rightarrow X$ are paths such that $\beta(1)=$ $\gamma(0)$. Then the concatenated path $\gamma \circ \beta$ is defined. (It is parameterized by the interval $[0,2]$; you can re-parameterize if you wish.) We have

$$
\iota_{\gamma} \circ \beta=l_{\gamma} \circ \mathfrak{l}_{\beta}
$$

where both sides of the equation describe isomorphisms from $\pi_{n}(X, \beta(0))$ to $\pi_{n}(\mathrm{X}, \gamma(1))$. This should be clear from the construction.

Corollary 1.6. For a space X with base point x_{0} and $\mathrm{n} \geq 2$, the abelian group $\pi_{n}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ is a module over the fundamental group $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$; that is to say, the group $\pi_{1}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ acts on $\pi_{\mathrm{n}}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ by group automorphisms. ${ }^{3}$

Proof. A formula for the action is $[\gamma] \cdot[\alpha]=\iota_{\gamma}[\alpha]$, where $[\gamma] \in \pi_{1}\left(X, x_{0}\right)$ and $[\alpha] \in \pi_{n}\left(X, x_{0}\right)$. Note that since $\gamma(0)=\gamma(1)=x_{0}$, the isomorphism ζ_{γ} is an automorphism of $\pi_{n}\left(X, x_{0}\right)$.

In many cases this action of π_{1} on π_{n} also has another neat description using universal covering spaces. To set this up we start with a proposition about higher homotopy groups of covering spaces.
Let $q: E \rightarrow X$ be a covering space, alias fiber bundle with discrete fibers. Suppose also E and X are based spaces, with base points \star_{E} and $\star_{X}=q\left(\star_{E}\right)$, so that q is a based map.

Proposition 1.7. Then $\mathrm{q}_{*}: \pi_{\mathrm{n}}\left(\mathrm{E}, \star_{\mathrm{E}}\right) \rightarrow \pi_{\mathrm{n}}\left(\mathrm{X}, \star_{\mathrm{x}}\right)$ is an isomorphism for all $\mathrm{n} \geq 2$.

[^2]Proof. This is a consequence of the lifting lemma, section A. 10 in the cumulative lecture notes WS2013-14, WS2014-15. According to that, for any based map $f: S^{n} \rightarrow X$, there exists a unique based map $g: S^{n} \rightarrow E$ such that $f=q g$ (assuming $n \geq 2$ to ensure that $\pi_{1}\left(S^{n}, \star\right)$ is trivial). This argument applies also with $S^{n} \times[0,1]$ instead of S^{n}, so that q induces a bijection $\left[S^{n}, E\right]_{*} \rightarrow\left[S^{n}, X\right]_{*}$.

Now suppose that X is path connected and locally path connected, with base point \star, and that it has a universal covering space

$$
\mathrm{q}: \tilde{\mathrm{X}} \longrightarrow \mathrm{X}
$$

In other words, the action of $\pi_{1}(X, \star)$ on the set $q^{-1}(\star)$ (given by path lifting) is free and transitive. We can make this q unique up to unique isomorphism (of covering spaces of X) by specifying a base point $\star_{1} \in q^{-1}(\star)$ for \tilde{X}. (That is to say, if two universal coverings of X are given, both with a base point in the fiber over $\star \in X$, then there exists a unique based homeomorphism between them which respects the maps to X.) Now we make a few observations.

- Proposition 1.7 is applicable to this covering space $q($ set $\mathrm{E}:=\tilde{X})$.
- Since \tilde{X} is path connected and $\pi_{1}\left(\tilde{X}, \star_{1}\right)$ is trivial, proposition 1.4 tells us that $\pi_{n}(\tilde{X}, y)$ is totally independent of the choice of base point y, and we can therefore write $\pi_{n}(\tilde{X})$. Little exercise: the forgetful map from $\pi_{n}(\tilde{X}, y)$ to $\left[S^{n}, X\right]$ is a bijection ... where $\left[S^{n}, X\right]$ is the set of unbased homotopy classes of maps from S^{n} to X.
- The translation action of $\pi_{1}(X, \star)$ on \tilde{X} therefore induces an action of $\pi_{1}(X, \star)$ on $\pi_{n}(\tilde{X})$.
(This translation action on \tilde{X} is a confusing theme. Let $G=\pi_{1}(X, \star)$. We know already that an automorphism of the covering space q is determined by the induced permutation of the set $\mathrm{q}^{-1}(\star)$. This permutation is a G-map and as such it can be any G-map we like. We constructed q in such a way that $q^{-1}(\star)$ is a free G-orbit $G \cdot \star_{1}$. What are the automorphisms of $G \cdot \star_{1}$ as a G-set? They are given by multiplication with elements of G on the right; i.e., for fixed $h \in G$ the map $\rho_{h}: G \cdot \star_{1} \rightarrow G \cdot \star_{1}$ given by $g \star_{1} \mapsto g \star_{\star_{1}}$ is a G-map. Indeed $\rho_{h}\left(f g \star_{1}\right)=f g h \star_{1}=f \rho_{h}\left(g \star_{1}\right)$ for $f, g \in G$. Unfortunately $h \mapsto \rho_{\mathrm{h}}$ is not a homomorphism, but an antihomomorphism:

$$
\rho_{\mathrm{h}_{1} h_{2}}=\rho_{\mathrm{h}_{2}} \rho_{\mathrm{h}_{1}} .
$$

Therefore the translation action mentioned above is best defined as follows: an element $h \in G$ determines a G-set automorphism $\rho_{h^{-1}}=\left(\rho_{h}\right)^{-1} \ldots$ which extends uniquely to an automorphism of the covering space q.)
Showing that the two descriptions of the action of $\pi_{1}(X, \star)$ on $\pi_{n}(X, \star)$ agree:
let $h \in \pi_{1}(X, \star)$ be represented by a path $\gamma:[0,1] \rightarrow X$ from \star to \star. Let

$$
\beta:[0,1] \rightarrow \tilde{X}
$$

be a path in \tilde{X} which covers γ, begins at $h^{-1} \star_{1}$ and so ends at \star_{1}.

In the lower row, if we identify $\pi_{n}\left(\tilde{X}, \star_{1}\right)$ and $\pi_{n}\left(\tilde{X}, h^{-1} \cdot \star_{1}\right)$ forgetfully with $\left[S^{n}, \tilde{X}\right]$, then the left-hand arrow is the interesting one; the other one, labeled ι_{β}, is the identity! To make the diagram commutative, the dotted arrow has to be l_{γ}.

Example 1.8. Let's look at $\pi_{2}(X, \star)$ where X is $S^{2} \vee S^{1}$ with the standard base point. The following picture gives two ways of drawing \tilde{X} :

From the picture or otherwise, we get that

$$
\tilde{X} \simeq \bigvee_{k \in \mathbb{Z}} S^{2}
$$

a wedge of spheres S^{2} indexed by the integers. In this description the action of $\ell \in \mathbb{Z} \cong \pi_{1}(X, \star)$ takes the summand S^{2} with label k to the summand S^{2} with label $k-\ell$ in the obvious way. An argument like observation (iii) in the proof of theorem 1.3 then shows that

$$
\pi_{2}(X, \star) \cong \pi_{2}\left(\tilde{X}, \star_{1}\right) \cong \bigoplus_{k \in \mathbb{Z}} \mathbb{Z}
$$

The action of $\ell \in \mathbb{Z} \cong \pi_{1}(X, \star)$ takes the summand $\mathbb{Z} \subset \pi_{2}(X, \star)$ with label k to the summand \mathbb{Z} with label $k-\ell$ in the obvious way. As an abelian group, $\pi_{2}(\mathrm{X}, \star)$ is obviously not finitely generated. But as a module over
the group ring $\mathbb{Z}\left[\pi_{1}(X, \star)\right]=\mathbb{Z}[\mathbb{Z}]$ it is free on one generator, and therefore certainly finitely generated.
This raises the question: if X is a compact CW-space with base point \star, and $n \geq 2$, is $\pi_{n}(X, \star)$ always finitely generated as a module over $\mathbb{Z}\left[\pi_{1}(X, \star)\right]$? See exercises.

1.3. Cup product in cohomology and homotopy groups

Let X be a based path connected space and $f: S^{n} \rightarrow X$ a based map, where $n \geq 1$. We form $Y=\operatorname{cone}(f)$, the mapping cone of f. Often by taking a hard look at Y , we can show that $[\mathrm{f}]$ is not the trivial element of $\pi_{n}(\mathrm{X}, \star)$. This is based on the following observation.

Lemma 1.9. Let $\mathbf{u}, v: \mathrm{A} \rightarrow \mathrm{B}$ be any maps. If \boldsymbol{u} is homotopic to v, then cone (u) is homotopy equivalent to cone(v).

Proof. Exercise. (As an exercise in WS2014-15, this did not find many friends, but the formulation was more complicated at the time. I hope that it will find more friends this time.) But we can make a stronger statement. There exists a homotopy commutative diagram of the shape

where the horizontal maps are the usual ones.
Now let's return to the based map $f: S^{n} \rightarrow X$ and $Y=\operatorname{cone}(f)$ and the quotient map from Y to $\mathrm{Y} / \mathrm{X}=\mathrm{S}^{\mathrm{n}+1}$.
Corollary 1.10. If f is nullhomotopic, then there exists a graded ring homomorphism $\mathrm{H}^{*}(\mathrm{Y}) \rightarrow \mathrm{H}^{*}\left(\mathrm{~S}^{\mathrm{n}+1}\right)$ such that the composition

$$
\mathrm{H}^{*}\left(\mathrm{~S}^{\mathfrak{n + 1}}\right) \xrightarrow{\text { induced by quot. map }} \mathrm{H}^{*}(\mathrm{Y}) \longrightarrow \mathrm{H}^{*}\left(\mathrm{~S}^{\mathrm{n}+1}\right)
$$

is the identity.
Proof. If f is nullhomotopic, then we can assume (by the lemma) that it is the map which sends every point of S^{n} to the base point of X. Then Y is $\mathrm{X} \vee \mathrm{S}^{\mathrm{n}+1}$. The inclusion $S^{\mathrm{n}+1} \rightarrow \mathrm{Y}$ of the wedge summand induces a homomorphism in cohomology which has the stated property.
Example 1.11. Let $\mathrm{f}: \mathrm{S}^{3} \rightarrow S^{2}$ be the Hopf map. (Write $S^{2}=\mathbb{C} P^{1}=$ S^{3} / \sim where $S^{3} \subset \mathbb{C}^{2}$; the equivalence relation is $\left(z_{1}, z_{2}\right) \sim\left(u z_{1}, u z_{2}\right)$ for $u \in S^{1} \subset \mathbb{C}$ and $z_{1}, z_{2} \in \mathbb{C}$ with $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$. Let f be the quotient map.) Here $\mathrm{X}=\mathrm{S}^{2}$ and Y can be identified with $\mathbb{C} P^{2}$. (To put it differently: $\mathbb{C} \mathrm{P}^{2}$
has a well-known CW structure with one 0-cell, one 2-cell and one 4-cell; the attaching map for the 4 -cell happens to be the Hopf map $S^{3} \rightarrow S^{2}$.) The cohomology ring $\mathrm{H}^{*}(\mathrm{Y})=\mathrm{H}^{*}\left(\mathbb{C P}^{2}\right)$ is well known: it is the graded ring $\mathbb{Z}[x] /\left(x^{3}\right)$ where x lives in degree 2. It follows that a graded ring homomorphism from $\mathrm{H}^{*}\left(\mathbb{C} P^{2}\right)$ to $\mathrm{H}^{*}\left(\mathrm{~S}^{4}\right)$ can never be surjective (because it must take x to 0). Therefore f is not nullhomotopic. (We have already seen other proofs of this fact.)
More generally, let $\mathrm{f}: \mathrm{S}^{2 \mathrm{n}-1} \rightarrow \mathbb{C} \mathrm{P}^{\mathrm{n}-1}$ be the usual quotient map (where $S^{2 n-1}$ is viewed as the unit sphere in $\left.\mathbb{C}^{n}\right)$. Then $X=\mathbb{C} P^{n-1}$ and Y can be identified with $\mathbb{C} P^{n}$. The cohomology ring $\mathrm{H}^{*}(\mathrm{Y})=\mathrm{H}^{*}\left(\mathbb{C} P^{n}\right)$ is well known: ${ }^{4}$ it is the graded ring $\mathbb{Z}[x] /\left(x^{n+1}\right)$ where x lives in degree 2 . It follows that a graded ring homomorphism from $\mathrm{H}^{*}\left(\mathbb{C} \mathrm{P}^{\mathrm{n}}\right)$ to $\mathrm{H}^{*}\left(\mathrm{~S}^{2 n}\right)$ can never be surjective. Therefore f is not nullhomotopic.
Definition 1.12. The Hopf invariant of a based map f: $S^{4 n-1} \rightarrow S^{2 n}$, where $n \geq 1$, is defined as follows. Form $Y=$ cone(f), a CW-space with three cells: a 0 -cell, a $2 n$-cell and a $4 n$-cell. (The 0 -cell and the $2 n$-cell together make up $S^{2 n}$.) The cohomology $\mathrm{H}^{*}(\mathrm{Y})$ as a graded group is then given by

$$
H^{r}(Y)=\left\{\begin{aligned}
\mathbb{Z} & \text { if } r=0,2 n, 4 n \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Let $x_{2 n} \in H^{2 n}(Y)$ and $x_{4 n} \in H^{4 n}(Y)$ be the preferred generators of these infinite cyclic groups. We have

$$
\left(x_{2 n}\right)^{2}=a \cdot x_{4 n}
$$

for some $a \in \mathbb{Z}$, inevitably. This integer a determines the ring structure in $H^{*}(Y)$. It is the Hopf invariant of f. (By corollary 1.10, if the Hopf invariant of f is $\neq 0$, then f is not nullhomotopic.)

Example 1.13. The Hopf invariant of the Hopf map $S^{3} \rightarrow S^{2}$ is 1 , as we have seen. There are similar maps $S^{7} \rightarrow S^{4}$ (constructed using the Hamilton Quaternions instead of \mathbb{C}) and $S^{15} \rightarrow S^{8}$ (constructed using the Cayley Octonions). These, too, have Hopf invariant 1. It is a theorem (J.F. Adams 1961) that there is no map $\mathrm{S}^{4 n-1} \rightarrow \mathrm{~S}^{2 n}$ of odd Hopf invariant except in the cases $n=1,2,4$. The original proof by Adams was very difficult, but an easier proof using K-theory (a generalized form of cohomology) became available a few years later. - But there are maps $S^{4 n-1} \rightarrow S^{2 n}$ of Hopf invariant 2 for any $n \geq 1$. We shall return to this in a little while.

Example 1.14. To see more applications of corollary 1.10 it is a good idea to work backwards, i.e., to begin with Y. So take $Y=S^{m} \times S^{n}$ where $m, n \geq 1$.

[^3]This has a standard CW-structure with 4 cells: a 0 -cell, an m-cell, an n cell and an $(\mathfrak{m}+\mathfrak{n})$-cell. We allow $\mathfrak{m}=\mathfrak{n}$. The graded cohomology ring $H^{*}(Y)$ can be described as $\mathbb{Z}[x, y] /\left(x^{2}, y^{2}\right)$ where x is in degree m and y is in degree n. (This notation indicates that $x y$ is in degree $m+n$, not zero, and $H^{m+n}(Y)$ is the infinite cyclic group generated by $x y$. There is also an understanding that $x y=(-1)^{m n} y x$.) In any case we see that any graded ring homomorphism $\mathrm{H}^{*}(\mathrm{Y}) \rightarrow \mathrm{H}^{*}\left(\mathrm{~S}^{\mathfrak{m}+\mathfrak{n}}\right)$ must take $x y$ to zero because it will take x and y to zero. So there cannot be a surjective ring homomorphism from $H^{*}(Y)$ to $H^{*}\left(S^{m+n}\right)$. Therefore, if we take $X=S^{m} \vee S^{n}$ to be the $(m+n-1)$-skeleton of Y, then the attaching map for the unique $(m+n)$ cell of Y is a map $w: S^{m+n-1} \rightarrow S^{m} \vee S^{n}$ and it is not nullhomotopic. This is called the Whitehead map (in honor of JHC Whitehead again).
For an explicit description of w it is best to think of S^{m+n-1} as the boundary of $D^{m} \times D^{n}$:

$$
S^{\mathfrak{m}+n-1} \cong\left\{(y, z) \in D^{m} \times D^{n} \mid\|y\|=1 \text { or }\|z\|=1\right\}
$$

The right-hand expression can be written as $K \cup L$ where $K=D^{m} \times S^{n-1}$ and $\mathrm{L}=\mathrm{S}^{\mathrm{m}-1} \times \mathrm{D}^{\mathrm{n}}$, so that $\mathrm{K} \cap \mathrm{L}=\mathrm{S}^{\mathrm{m}-1} \times \mathrm{S}^{\mathrm{n}-1}$. In these coordinates, w is the map which takes $(y, z) \in K$ to the class of $y \in D^{m} / S^{m-1} \cong S^{m} \subset S^{m} \vee S^{n}$ and which takes $(y, z) \in L$ to the class of $z \in D^{n} / S^{n-1} \cong S^{n} \subset S^{m} \vee S^{n}$. Note that this takes $\mathrm{K} \cap \mathrm{L}$ to the base point. We want to think of w as a based map, so it is probably best to choose the base point of S^{m+n-1} as (y, z) in the above coordinates, where $y=(-1,0,0, \ldots) \in D^{m}$ and $z=(-1,0,0, \ldots) \in D^{n}$.
Definition 1.15. Let X be a based space and $a \in \pi_{m}(X, \star), b \in \pi_{n}(X, \star)$, where $m, n \geq 2$. The Whitehead product $\lceil a, b\rceil$ of a and b is the element of $\pi_{m+n-1}(X, \star)$ obtained as follows. Choose representatives $\alpha: S^{m} \rightarrow X$ and $\beta: S^{n} \rightarrow X$ for a and b and let $\lceil a, b\rceil$ be the based homotopy class of the composition of $\alpha \vee \beta$ with the Whitehead map w :

$$
S^{m+n-1} \xrightarrow{w} S^{m} \vee S^{n} \xrightarrow{\alpha \vee \beta} X
$$

(Official notation for the Whitehead product of a and b is $[a, b]$, but since we use the square brackets in so many ways for homotopy classes and sets of homotopy classes, I prefer to write $\lceil\mathrm{a}, \mathrm{b}\rceil$ instead.)

Example 1.16. Let $\iota=[\mathrm{id}] \in \pi_{2 m}\left(S^{2 m}, \star\right)$, where $m \geq 1$. Then the Whitehead product $\lceil\iota, \iota\rceil \in \pi_{4 m-1}\left(S^{2 m}, \star\right)$ is $\neq 0$. In fact it is an element of Hopf invariant 2. - To see this let $X=S^{2 m} \times S^{2 m}$ and $A=S^{2 m} \vee S^{2 m}$ and let Y be the pushout of

$$
X \stackrel{\text { incl. }}{ } A \xrightarrow{\varphi} S^{2 m}
$$

where φ is the fold map. In other words Y is obtained from X by gluing together the two cells of dimension 2 m in X using the fold map. The ring
$H^{*}(X)$ is isomorphic to $\mathbb{Z}[s, t] /\left(s^{2}, t^{2}\right)$ where s and t are in degree $2 m$. We view X and Y as CW-spaces with 4 and 3 cells, respectively. The quotient map $X \rightarrow Y$ is cellular. Comparing cellular chain complexes, it is therefore easy to see that the graded ring homomorphism $\mathrm{H}^{*}(\mathrm{Y}) \rightarrow \mathrm{H}^{*}(\mathrm{X})$ determined by the quotient map $X \rightarrow Y$ is injective and its image is the graded subring of $H^{*}(X)$ generated by $u=s+t$ and $v=s t$. Since $u^{2}=s^{2}+2 s t+t^{2}=$ $2 s t=2 v$ in $\mathrm{H}^{*}(\mathrm{X})$, we have $\mathrm{H}^{*}(\mathrm{Y}) \cong \mathbb{Z}[u, v] /\left(u^{2}-2 v, u v, v^{2}\right)$, where u is in degree 2 m and v is in degree 4 m . This proves that the attaching map $S^{4 m-1} \rightarrow S^{2 m}=Y^{2 m}$ for the $4 m$-dimensional cell of Y has Hopf invariant 2. But that attaching map can also be written as the attaching map

$$
w: S^{4 m-1} \rightarrow S^{2 m} \vee S^{2 m}=X^{2 m}
$$

for the 4 m -dimensional cell of X, followed by the fold map

$$
\varphi: S^{2 m} \vee S^{2 m} \longrightarrow S^{2 m}
$$

Its homotopy class is therefore $\lceil\iota, \iota\rceil$ by the definition of the Whitehead product in terms of the Whitehead map w.

[^0]: ${ }^{1}$ Hint: you need to say what $\mathrm{k}: S^{n} \vee S^{n} \rightarrow S^{n}$ does in homology.

[^1]: ${ }^{2}$ In the lecture on 10.04. I forgot this step ...

[^2]: ${ }^{3}$ For a group G, a G-module is understood to be an abelian group A with a homomorphism from G to the group of automorphisms of the abelian group A. This terminology is not completely absurd because the group G determines a group ring $\mathbb{Z}[G]$ whose elements are finite formal linear combinations $\Sigma_{g \in G} n_{g} \cdot g$ where the coefficients n_{g} are integers. It is easy to see that a G-module A is the same thing as a module over the ring $\mathbb{Z}[G]$.

[^3]: ${ }^{4}$ Although well known, this is not easy. We came very close to it in WS 2014/15 with problems $3,4,5$ on exercise sheet 11 .

