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Lecture Notes, weeks 1 and 2
Topology SS 2015 (Weiss)

1.1. Higher homotopy groups

Definition 1.1. Let X be a space with base point ? and let n be a non-
negative integer. Write πn(X, ?) for the set [Sn, X]∗ (based homotopy classes
of based maps from Sn to X). It is clear that πn is a covariant functor from
HoTop? (the homotopy category of based spaces) to sets.

The case n = 1 has already been looked at in detail and we saw that
π1(X, ?) is a group in a natural way.

The case n = 0 is also useful. Namely, π0(X, ?) is just the set of path
components of X . Indeed, a based map f : S0 → X must send the base point
−1 of S0 to the base point of X . So the only interesting feature it has is
the value f(1) ∈ X . And if we pass to homotopy classes, only the path
component of f(1) remains.
There is no point in trying to put a natural group structure on π0(X, ?) . We
must accept that it is in most cases just a set. (There are exceptions: if X
has the structure of a topological group, then π0(X) also has the structure
of a group in an obvious way, and that can be useful.)

Definition 1.2. For n ≥ 2, the set πn(X, ?) has the structure of an abelian
group in a natural way. In other words we can equip πn(X, ?) with a structure
of abelian group in such a way that, for every based map f : X → Y , the
induced map of sets

πn(X, ?)→ πn(Y, ?)

becomes a homomorphism of abelian groups. The neutral element of πn(X, ?)
is represented by the unique constant based map from Sn to X.

For the proof, we note first that

πn(X, ?)× πn(X, ?) = [Sn, X]? × [Sn, X]? ∼= [Sn ∨ Sn, X]?

(where ∼= is used for an obvious bijection). Therefore it is reasonable to try
to construct a multiplication map

µ : πn(X, ?)× πn(X, ?)→ πn(X, ?)

by writing this in the form µ : [Sn ∨ Sn, X]? −→ [Sn, X]? and defining it as
pre-composition with some fixed element κ ∈ [Sn, Sn ∨ Sn]∗ .

Elementary description of κ. Think of Sn as the quotient space of [0, 1]n

obtained by collapsing the subspace consisting of all points which have some
coordinate equal to 0 or 1 . Think of Sn ∨ Sn as the quotient space of
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[0, 2] × [0, 1]n−1 obtained by collapsing all points which have some coor-
dinate equal to 0 or 1, or first coordinate 2 . Then κ can be defined by
κ(x1, x2, . . . , xn) := (2x1, x2, . . . , xn) , where x1, x2, . . . , xn ∈ [0, 1] . It is easy
to verify the following directly: the compositions

Sn
κ // Sn ∨ Sn

id∨κ // Sn ∨ (Sn ∨ Sn)

and

Sn
κ // Sn ∨ Sn

κ∨id // (Sn ∨ Sn)∨ Sn

are based homotopic. This implies that our formula for the multiplication µ
on [Sn, X]? is associative. Next, it is easy to verify the following directly: the
composition

Sn
κ // Sn ∨ Sn

permute summands // Sn ∨ Sn

is based homotopic to κ . (Here we need n > 1 .) This implies that our
formula for the multiplication µ on [Sn, X]? is commutative. Furthermore, it
is easy to verify directly that the constant based map Sn → X is a two-sided
neutral element for the multiplication µ . (In cubical coordinates for Sn ,
multiplication with the constant map has the effect of replacing a based map

f :
[0, 1]n

∼
−→ X

by the based map g where g(x1, . . . , xn) = f(2x1, x2, . . . , xn) when 2x1 ≤ 1
and g(x1, . . . , xn) = ? ∈ X when 2x1 ≥ 1 . So the task is to show that f is
based homotopic to g ... and that is easy.) Next, it is easy to verify directly
that an element [f] ∈ [Sn, X]? has an inverse given by [f◦η] where η : Sn → Sn

is given in cubical coordinates by (x1, x2, . . . , xn) 7→ (1− x1, x2, . . . , xn) . (In
cubical coordinates for Sn , the product of [f] and [f ◦ η] is given by g
where g(x1, . . . , xn) = f(2x1, x2, . . . , xn) when 2x1 ≤ 1 and g(x1, . . . , xn) =
f(2− 2x1, x2, . . . , xn) when 2x1 ≥ 1 .)

Although the homotopy groups πn have a great deal of theoretical im-
portance, they are very hard to compute in general, especially for large n .
Recently I read in an article about homotopy theory: not a single compact
connected CW-space X is known for which we have a formula describing
πn(X) for all n > 0 , except for two types:

• the totally uninteresting case where X is contractible (so that πn(X)
is the trivial group for all n > 0);
• the more interesting case where π1(X) is nontrivial but the universal

covering of X is contractible (in which case we can say that πn(X) is
the trivial group for all n > 1). Examples of this type are X = S1 ,
or X = oriented surface of any positive genus.
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In particular nobody has a really convincing formula for πn(S
2) , for all n ≥ 1

(although there are some deep results which describe these abelian groups in
algebraic/combinatorial terms ... but not in such a way that we can easily
read off how many elements they have). But there are many partial results,
especially about πn(S

m) . For example, we know that πn(S
m) is always a

finitely generated abelian group (m,n > 1). It is known that πn(S
m) is

the trivial group if n < m and that πn(S
m) ∼= Z if n = m ; see theorem 1.3

below. It is known that πn(S
m) is infinite if and only if m is even and n = m

or n = 2m − 1 . An example of that is π3(S
2) ∼= Z . Recall that π3(S

2) is
not trivial according to example 2.5.3, lecture notes WS 2014-2015. (This
was conditional at the time; we needed to know that S2 is not contractible.
Later we did learn that S2 is not contractible since H2(S

2) ∼= Z .)

1.2. Homotopy groups of spheres: the easy cases

Theorem 1.3. For 0 < n < m, the group πn(S
m) is trivial. For all n > 0,

the group πn(S
n) is isomorphic to Z, with [id] as the generator.

Proof. The proof is fiddly, but it is an important result. The case n < m
is an easy consequence of cellular approximation. By remark 11.5.2 in the
lecture notes for WS 2014-2015, any based map from Sn to Sm is based
homotopic to a cellular map. But a cellular map from Sn to Sm must be
constant. (Use the CW structure on Sm which has one 0-cell and one m-
cell.)
For the case m = n , it suffices to show that πn(S

n) is generated by the
element [id] . Indeed, this gives us an upper bound on the size of πn(S

n) .
A lower bound comes from the map πn(S

n) → Hn(S
n) which takes the

homotopy class of a map f to the class of the mapping cycle f . It is an
exercise to show that this is a homomorphism.1 Since [id] ∈ πn(Sn) maps to
a generator of Hn(S

n) , this homomomorphism πn(S
n)→ Hn(S

n) is onto.
With that in mind, the most important tool is Sard’s theorem. (We used
this earlier in connection with approximation of maps by cellular maps).
This states that for a smooth map f : U→ Rm where U is open in Rn , the
set of critical values of f is a set of Lebesgue measure zero (in Rm ). An
element y ∈ Rm is a critical value of f if there exists x ∈ U such that
f(x) = y and the derivative f ′(x) , viewed as a linear map from Rn to Rm , is
not surjective. We can also assume n > 1 since π1(S

1, ?) is well understood.
We need a few observations.

(i) Any based map Sn → Sn can be written in the form of a map

f : Rn ∪ {∞} −→ Rn ∪ {∞},

1Hint: you need to say what κ : Sn ∨ Sn → Sn does in homology.
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and after a homotopy we can assume that f is smooth in a neighbor-
hood U of the compact set f−1(Dn) .

(ii) In the situation of (i), if f−1(0) contains exactly one element x ∈ Rn
and the derivative f ′(x) is an invertible linear map from Rn to Rn ,
then f is based homotopic either to the identity map or to the map

η : (x1, . . . , xn) 7→ (−x1, x2, . . . , xn)

from Rn ∪ {∞} to itself.
(iii) The inclusion of the wedge Sn∨Sn into the product Sn×Sn induces

an isomorphism from πn(S
n∨Sn) to πn(S

n×Sn) ∼= πn(S
n)×πn(Sn) .

(iv) Let α : Sn → Sn ∨ Sn be any based map. Let ϕ : Sn ∨ Sn → Sn be
the fold map (which is the identity on the first summand Sn and also
on the second summand Sn ). Then we have

[ϕα] = [ϕq1α] + [ϕq2α] ∈ πn(Sn),
writing + for the multiplication in πn(S

n) and qi : S
n∨Sn → Sn∨Sn

for the map which is the identity on summand i and takes the other
summand to the base point.

Observation (iii) is a good exercise in cellular approximation; n > 1 is im-
portant. Observation (iv) follows from observation (iii). Namely, (iii) shows
that α is homotopic to a based map obtained by composing κ : Sn → Sn∨Sn

with a map Sn ∨ Sn → Sn ∨ Sn which agrees with q1α on the first wedge
summand Sn and with q2α on the second.
We had observation (ii) as an exercise (sheet 5 of WS14-15) but it did not
find many friends. It is easy to reduce to the situation2 where x = 0 ∈ Rn .
Then f−1(0) = {0} and f ′(0) is an invertible linear map. The next idea is
to show that f is based homotopic to the map g : Rn ∪ {∞} −→ Rn ∪ {∞}

where g is the linear map f ′(0) (except for g(∞) =∞). A based homotopy
is given by

(ht : Rn ∪ {∞} −→ Rn ∪ {∞})

where ht(v) = t−1f(tv) for v ∈ Rn and t runs from 1 to 0 . To be more
precise, h1 is of course f and h0 is of course not really defined by our formula
for ht , but if you (re)define h0 = g then it ought to make a good homotopy,
by definition of differentiability. The next idea is to note that the space of
linear isomorphisms from Rn → Rn , also known as GLn(R) , is a space with
exactly two path components. One of these path components contains the
identity matrix and the other one contains the diagonal matrix with −1 in
row one, column one and +1 in the other diagonal positions. Therefore our
(linear) map

g : Rn ∪ {∞} −→ Rn ∪ {∞}

2In the lecture on 10.04. I forgot this step ...
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is based homotopic (by a homotopy through invertible linear maps) to either
id : Rn ∪ {∞} −→ Rn ∪ {∞} or to the map η from Rn ∪ {∞} to itself. This
proves observation (ii).
Now let’s turn to the proof of this theorem, properly speaking. We start
with f as in (i). We want to show that [f] ∈ πn(Sn) is in the subgroup
generated by [id] . By Sard, we know that f has a regular value arbitrarily
close to 0 and it is easy to reduce to the case where 0 itself is regular value
(by composing with a translation of Rn ). The preimage f−1(0) is compact
and discrete with the subspace topology (since f ′(x) is invertible for any
x ∈ f−1(0) ... use the inverse function theorem). Therefore f−1(0) is a finite
set. Assume that it has k distinct elements x(1), . . . , x(k) . We want to argue
by induction on k . The case k = 1 has already been settled in observation
(ii). We can therefore assume k > 1 .
Choose a small open ball Bε of radius ε about the origin 0 ∈ Rn such that
f−1(Bε) is a disjoint union of k open sets U1, . . . , Uk (so that x(i) ∈ Ui ) in
such a way that f restricts to a diffeomorphism from Ui to Bε . (This is
possible by the inverse function theorem.) Choose a map

e : Rn ∪ {∞} −→ Rn ∪ {∞}

which maps Bε diffeomorphically to all of Rn and maps the complement of
Bε to ∞ and has e ′(0) equal to the identity (matrix). Then we know that
e ' id and so ef ' f . But ef can also be written as a composition

Sn
γ // Sn ∨ Sn

ϕ // Sn

where Sn = Rn∪ {∞} , the first map takes U1 to the first wedge summand Sn

by ef and takes
⋃
i>1Ui to the second wedge summand by ef , and takes all

remaining points to the base point ∞ of the wedge. Then by (iv) we have

[f] = [ef] = [ϕγ] = [ϕq1γ] + [ϕq2γ]

where ϕq1γ and ϕq2γ are maps as in (i) for which 0 ∈ Rn∪ {∞} is a regular
value with fewer than k preimage points. By inductive assumption, [ϕq1γ]
and [ϕq2γ] are in the subgroup of πn(S

n) generated by [id] and therefore
[f] is also in that subgroup. �

1.2. Change of base point

Proposition 1.4. Let X be a space, x0, x1 ∈ X and n ≥ 2. If x0, x1 are in
the same path component of X, then πn(X, x0) and πn(X, x1) are isomorphic
as abelian groups.
More precisely, any path γ in X from x0 to x1 determines a group isomor-
phism ιγ from πn(X, x0) to πn(X, x1). The isomorphism ιγ depends only on
the homotopy class of γ with start- and endpoints fixed.
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Proof. The definition of ιγ : πn(X, x0) −→ πn(X, x1) is as follows. Suppose
that γ : [0, 1]→ X has γ(0) = x0 and γ(1) = x1 . Let α : Sn → X be a map
such that α(?) = x0 where ? ∈ Sn is the base point. Choose a homotopy(

ht : S
n → X

)
t∈[0,1]

such that h0 = α and ht(?) = γ(t) . This is possible because the inclusion
? → Sn is a cofibration. Let ιγ[α] ∈ πn(X, x1) be the based homotopy class
of h1 (a map from Sn to X taking ? to x1 ).
We need to show that ιγ is well defined. Suppose that α ′ : Sn → X is another
map such that α ′(?) = x0 and [α] = [α ′] ∈ πn(X, x0) . Suppose that(

h ′t : S
n → X

)
t∈[0,1]

is a homotopy such that h ′0 = α ′ and h ′t(?) = γ(t) . We need to show that
[h1] = [h ′1] ∈ πn(X, x1) . Choose a based homotopy (gt)t∈[0,1] from α to α ′ .
Since the inclusion of Sn× {0, 1} union ?× [0, 1] in Sn× [0, 1] is a cofibration,
we can construct a homotopy(

Ht : S
n × [0, 1]→ X

)
t∈[0,1]

in such a way that H0(x, s) = gs(x) for all x ∈ Sn and

Ht(x, 0) = ht(x), Ht(x, 1) = h
′
t(x)

for all x ∈ Sn and t ∈ [0, 1] , and Ht(?, s) = γ(t) for all s, t ∈ [0, 1] . Then
H1 is the required homotopy showing that [h1] = [h ′1] ∈ πn(X, x1) .
Next we need to ask whether ιγ is a homomorphism. In fact this is true
by inspection. In slightly more detail, if we have α,β : Sn → X such that
α(?) = x0 = β(?) and homotopies(

hαt : S
n → X

)
t∈[0,1] ,

(
hβt : S

n → X
)
t∈[0,1]

as above, satisfying hα0 = α and hβ0 = β and hαt (?) = γ(t) = hβt (?) , then
the homotopy (

(hαt ∨ h
β
t ) ◦ κ

)
t∈[0,1]

demonstrates that ιγ(α+β) = ιγ(α)+ιγ(β) , where we use “+” for the group
operation in πn . (Recall that κ is a based map from Sn to Sn ∨ Sn which
we have used to define the group structure in πn .)
Next we need to show that ιγ is bijective. From the definition of ιγ , it is
clear that an inverse is given by ιγ̄ where γ̄(t) = γ(1− t) as usual.
Next we need to show that ιγ depends only on the homotopy class (start-
and endpoints fixed) of γ . So let Γ : [0, 1] × [0, 1] → X be a map such that
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Γ(s, 0) = x0 for all s and Γ(s, 1) = x1 for all s . Let α : Sn → X be a map
such that α(?) = x0 . We need to show that

ιΓ0 = ιΓ1

where Γ0(t) := Γ(0, t) and Γ1(t) := Γ(1, t) . Since the inclusion of ? × [0, 1]
in Sn × [0, 1] is a cofibration, we can construct a homotopy(

Ht : S
n × [0, 1]→ X

)
t∈[0,1]

in such a way that H0(x, s) = α(x) for all x ∈ Sn and Ht(?, s) = Γ(s, t) for
all s, t ∈ [0, 1] . Then H1 is the required homotopy showing that ιΓ0 and ιΓ1
take the same value on [α] . �

Remark 1.5. Suppose that β, γ : [0, 1] → X are paths such that β(1) =
γ(0) . Then the concatenated path γ ◦ β is defined. (It is parameterized by
the interval [0, 2] ; you can re-parameterize if you wish.) We have

ιγ◦β = ιγ ◦ ιβ

where both sides of the equation describe isomorphisms from πn(X,β(0)) to
πn(X, γ(1)) . This should be clear from the construction.

Corollary 1.6. For a space X with base point x0 and n ≥ 2, the abelian
group πn(X, x0) is a module over the fundamental group π1(X, x0); that is
to say, the group π1(X, x0) acts on πn(X, x0) by group automorphisms.3

Proof. A formula for the action is [γ] · [α] = ιγ[α] , where [γ] ∈ π1(X, x0) and
[α] ∈ πn(X, x0) . Note that since γ(0) = γ(1) = x0 , the isomorphism ιγ is
an automorphism of πn(X, x0) . �

In many cases this action of π1 on πn also has another neat description
using universal covering spaces. To set this up we start with a proposition
about higher homotopy groups of covering spaces.
Let q : E → X be a covering space, alias fiber bundle with discrete fibers.
Suppose also E and X are based spaces, with base points ?E and ?X = q(?E) ,
so that q is a based map.

Proposition 1.7. Then q∗ : πn(E, ?E) → πn(X, ?X) is an isomorphism for
all n ≥ 2.

3For a group G , a G-module is understood to be an abelian group A with a homomor-
phism from G to the group of automorphisms of the abelian group A . This terminology is
not completely absurd because the group G determines a group ring Z[G] whose elements
are finite formal linear combinations Σg∈Gng ·g where the coefficients ng are integers. It
is easy to see that a G -module A is the same thing as a module over the ring Z[G] .
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Proof. This is a consequence of the lifting lemma, section A.10 in the cu-
mulative lecture notes WS2013-14, WS2014-15. According to that, for any
based map f : Sn → X , there exists a unique based map g : Sn → E such that
f = qg (assuming n ≥ 2 to ensure that π1(S

n, ?) is trivial). This argument
applies also with Sn × [0, 1] instead of Sn , so that q induces a bijection
[Sn, E]∗ → [Sn, X]∗ . �

Now suppose that X is path connected and locally path connected, with
base point ? , and that it has a universal covering space

q : X̃ −→ X .

In other words, the action of π1(X, ?) on the set q−1(?) (given by path lifting)
is free and transitive. We can make this q unique up to unique isomorphism
(of covering spaces of X) by specifying a base point ?1 ∈ q−1(?) for X̃ .
(That is to say, if two universal coverings of X are given, both with a base
point in the fiber over ? ∈ X , then there exists a unique based homeomor-
phism between them which respects the maps to X .) Now we make a few
observations.

• Proposition 1.7 is applicable to this covering space q (set E := X̃).

• Since X̃ is path connected and π1(X̃, ?1) is trivial, proposition 1.4 tells

us that πn(X̃, y) is totally independent of the choice of base point y ,

and we can therefore write πn(X̃) . Little exercise: the forgetful map

from πn(X̃, y) to [Sn, X] is a bijection ... where [Sn, X] is the set of
unbased homotopy classes of maps from Sn to X .
• The translation action of π1(X, ?) on X̃ therefore induces an action

of π1(X, ?) on πn(X̃) .

(This translation action on X̃ is a confusing theme. Let G = π1(X, ?) . We
know already that an automorphism of the covering space q is determined
by the induced permutation of the set q−1(?) . This permutation is a G-map
and as such it can be any G-map we like. We constructed q in such a way
that q−1(?) is a free G-orbit G ·?1 . What are the automorphisms of G ·?1 as
a G-set? They are given by multiplication with elements of G on the right ;
i.e., for fixed h ∈ G the map ρh : G · ?1 → G · ?1 given by g?1 7→ gh?1 is a
G-map. Indeed ρh(fg?1) = fgh?1 = fρh(g?1) for f, g ∈ G . Unfortunately
h 7→ ρh is not a homomorphism, but an antihomomorphism:

ρh1h2 = ρh2ρh1 .

Therefore the translation action mentioned above is best defined as follows:
an element h ∈ G determines a G-set automorphism ρh−1 = (ρh)

−1 ... which
extends uniquely to an automorphism of the covering space q .)
Showing that the two descriptions of the action of π1(X, ?) on πn(X, ?) agree:
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let h ∈ π1(X, ?) be represented by a path γ : [0, 1]→ X from ? to ? . Let

β : [0, 1]→ X̃

be a path in X̃ which covers γ , begins at h−1?1 and so ends at ?1 .

πn(X, ?) // πn(X, ?)

πn(X̃, ?1)

q∗ ∼=

OO

(action of h−1 on X̃)∗ // πn(X̃, h
−1 · ?1)

ιβ // πn(X̃, ?1)

q∗ ∼=

OO

In the lower row, if we identify πn(X̃, ?1) and πn(X̃, h
−1 · ?1) forgetfully with

[Sn, X̃] , then the left-hand arrow is the interesting one; the other one, labeled
ιβ , is the identity! To make the diagram commutative, the dotted arrow has
to be ιγ .

Example 1.8. Let’s look at π2(X, ?) where X is S2 ∨ S1 with the standard

base point. The following picture gives two ways of drawing X̃ :

From the picture or otherwise, we get that

X̃ '
∨
k∈Z

S2 ,

a wedge of spheres S2 indexed by the integers. In this description the action
of ` ∈ Z ∼= π1(X, ?) takes the summand S2 with label k to the summand S2

with label k − ` in the obvious way. An argument like observation (iii) in
the proof of theorem 1.3 then shows that

π2(X, ?) ∼= π2(X̃, ?1) ∼=
⊕
k∈Z

Z .

The action of ` ∈ Z ∼= π1(X, ?) takes the summand Z ⊂ π2(X, ?) with label
k to the summand Z with label k − ` in the obvious way. As an abelian
group, π2(X, ?) is obviously not finitely generated. But as a module over
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the group ring Z[π1(X, ?)] = Z[Z] it is free on one generator, and therefore
certainly finitely generated.
This raises the question: if X is a compact CW-space with base point ? , and
n ≥ 2 , is πn(X, ?) always finitely generated as a module over Z[π1(X, ?)] ?
See exercises.

1.3. Cup product in cohomology and homotopy groups

Let X be a based path connected space and f : Sn → X a based map, where
n ≥ 1 . We form Y = cone(f) , the mapping cone of f . Often by taking a
hard look at Y , we can show that [f] is not the trivial element of πn(X, ?) .
This is based on the following observation.

Lemma 1.9. Let u, v : A → B be any maps. If u is homotopic to v, then
cone(u) is homotopy equivalent to cone(v).

Proof. Exercise. (As an exercise in WS2014-15, this did not find many
friends, but the formulation was more complicated at the time. I hope that
it will find more friends this time.) But we can make a stronger statement.
There exists a homotopy commutative diagram of the shape

B
incl. //

=

��

cone(u)

'
��

// ΣA = cone(u)/B

=

��
B

incl. // cone(v) // ΣA = cone(v)/B

where the horizontal maps are the usual ones. �

Now let’s return to the based map f : Sn → X and Y = cone(f) and the
quotient map from Y to Y/X = Sn+1 .

Corollary 1.10. If f is nullhomotopic, then there exists a graded ring ho-
momorphism H∗(Y)→ H∗(Sn+1) such that the composition

H∗(Sn+1)
induced by quot. map // H∗(Y) // H∗(Sn+1)

is the identity.

Proof. If f is nullhomotopic, then we can assume (by the lemma) that it
is the map which sends every point of Sn to the base point of X . Then
Y is X ∨ Sn+1 . The inclusion Sn+1 → Y of the wedge summand induces a
homomorphism in cohomology which has the stated property. �

Example 1.11. Let f : S3 → S2 be the Hopf map. (Write S2 = CP1 =
S3/ ∼ where S3 ⊂ C2 ; the equivalence relation is (z1, z2) ∼ (uz1, uz2) for
u ∈ S1 ⊂ C and z1, z2 ∈ C with |z1|

2+ |z2|
2 = 1 . Let f be the quotient map.)

Here X = S2 and Y can be identified with CP2 . (To put it differently: CP2
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has a well-known CW structure with one 0-cell, one 2-cell and one 4-cell;
the attaching map for the 4-cell happens to be the Hopf map S3 → S2 .)
The cohomology ring H∗(Y) = H∗(CP2) is well known: it is the graded
ring Z[x]/(x3) where x lives in degree 2 . It follows that a graded ring
homomorphism from H∗(CP2) to H∗(S4) can never be surjective (because it
must take x to 0). Therefore f is not nullhomotopic. (We have already seen
other proofs of this fact.)
More generally, let f : S2n−1 → CPn−1 be the usual quotient map (where
S2n−1 is viewed as the unit sphere in Cn ). Then X = CPn−1 and Y can
be identified with CPn . The cohomology ring H∗(Y) = H∗(CPn) is well
known:4 it is the graded ring Z[x]/(xn+1) where x lives in degree 2 . It
follows that a graded ring homomorphism from H∗(CPn) to H∗(S2n) can
never be surjective. Therefore f is not nullhomotopic.

Definition 1.12. The Hopf invariant of a based map f : S4n−1 → S2n , where
n ≥ 1 , is defined as follows. Form Y = cone(f) , a CW-space with three cells:
a 0-cell, a 2n-cell and a 4n-cell. (The 0-cell and the 2n-cell together make
up S2n .) The cohomology H∗(Y) as a graded group is then given by

Hr(Y) =

{
Z if r = 0, 2n, 4n
0 otherwise.

Let x2n ∈ H2n(Y) and x4n ∈ H4n(Y) be the preferred generators of these
infinite cyclic groups. We have

(x2n)
2 = a · x4n

for some a ∈ Z , inevitably. This integer a determines the ring structure in
H∗(Y) . It is the Hopf invariant of f . (By corollary 1.10, if the Hopf invariant
of f is 6= 0 , then f is not nullhomotopic.)

Example 1.13. The Hopf invariant of the Hopf map S3 → S2 is 1 , as we
have seen. There are similar maps S7 → S4 (constructed using the Hamilton
Quaternions instead of C) and S15 → S8 (constructed using the Cayley
Octonions). These, too, have Hopf invariant 1. It is a theorem (J.F. Adams
1961) that there is no map S4n−1 → S2n of odd Hopf invariant except in
the cases n = 1, 2, 4 . The original proof by Adams was very difficult, but
an easier proof using K-theory (a generalized form of cohomology) became
available a few years later. — But there are maps S4n−1 → S2n of Hopf
invariant 2 for any n ≥ 1 . We shall return to this in a little while.

Example 1.14. To see more applications of corollary 1.10 it is a good idea to
work backwards, i.e., to begin with Y . So take Y = Sm×Sn where m,n ≥ 1 .

4Although well known, this is not easy. We came very close to it in WS 2014/15 with
problems 3,4,5 on exercise sheet 11.
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This has a standard CW-structure with 4 cells: a 0-cell, an m-cell, an n-
cell and an (m + n)-cell. We allow m = n . The graded cohomology ring
H∗(Y) can be described as Z[x, y]/(x2, y2) where x is in degree m and y is
in degree n . (This notation indicates that xy is in degree m+ n , not zero,
and Hm+n(Y) is the infinite cyclic group generated by xy . There is also an
understanding that xy = (−1)mnyx .) In any case we see that any graded
ring homomorphism H∗(Y)→ H∗(Sm+n) must take xy to zero because it will
take x and y to zero. So there cannot be a surjective ring homomorphism
from H∗(Y) to H∗(Sm+n) . Therefore, if we take X = Sm ∨ Sn to be the
(m+ n− 1)-skeleton of Y , then the attaching map for the unique (m+ n)-
cell of Y is a map w : Sm+n−1 → Sm ∨ Sn and it is not nullhomotopic. This
is called the Whitehead map (in honor of JHC Whitehead again).
For an explicit description of w it is best to think of Sm+n−1 as the boundary
of Dm ×Dn :

Sm+n−1 ∼= {(y, z) ∈ Dm ×Dn | ‖y‖ = 1 or ‖z‖ = 1}.
The right-hand expression can be written as K∪L where K = Dm×Sn−1 and
L = Sm−1×Dn , so that K∩ L = Sm−1× Sn−1 . In these coordinates, w is the
map which takes (y, z) ∈ K to the class of y ∈ Dm/Sm−1 ∼= Sm ⊂ Sm∨Sn and
which takes (y, z) ∈ L to the class of z ∈ Dn/Sn−1 ∼= Sn ⊂ Sm∨Sn . Note that
this takes K∩L to the base point. We want to think of w as a based map, so
it is probably best to choose the base point of Sm+n−1 as (y, z) in the above
coordinates, where y = (−1, 0, 0, . . . ) ∈ Dm and z = (−1, 0, 0, . . . ) ∈ Dn .

Definition 1.15. Let X be a based space and a ∈ πm(X, ?) , b ∈ πn(X, ?) ,
where m,n ≥ 2 . The Whitehead product da, be of a and b is the element
of πm+n−1(X, ?) obtained as follows. Choose representatives α : Sm → X and
β : Sn → X for a and b and let da, be be the based homotopy class of the
composition of α∨ β with the Whitehead map w :

Sm+n−1 w // Sm ∨ Sn
α∨β // X

(Official notation for the Whitehead product of a and b is [a, b] , but since
we use the square brackets in so many ways for homotopy classes and sets of
homotopy classes, I prefer to write da, be instead.)

Example 1.16. Let ι = [id] ∈ π2m(S2m, ?) , where m ≥ 1 . Then the White-
head product dι, ιe ∈ π4m−1(S

2m, ?) is 6= 0 . In fact it is an element of Hopf
invariant 2 . — To see this let X = S2m × S2m and A = S2m ∨ S2m and let Y
be the pushout of

X A
incl.oo ϕ // S2m

where ϕ is the fold map. In other words Y is obtained from X by gluing
together the two cells of dimension 2m in X using the fold map. The ring
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H∗(X) is isomorphic to Z[s, t]/(s2, t2) where s and t are in degree 2m . We
view X and Y as CW-spaces with 4 and 3 cells, respectively. The quotient
map X → Y is cellular. Comparing cellular chain complexes, it is therefore
easy to see that the graded ring homomorphism H∗(Y)→ H∗(X) determined
by the quotient map X→ Y is injective and its image is the graded subring
of H∗(X) generated by u = s + t and v = st . Since u2 = s2 + 2st + t2 =
2st = 2v in H∗(X) , we have H∗(Y) ∼= Z[u, v]/(u2 − 2v, uv, v2) , where u is
in degree 2m and v is in degree 4m . This proves that the attaching map
S4m−1 → S2m = Y2m for the 4m-dimensional cell of Y has Hopf invariant 2.
But that attaching map can also be written as the attaching map

w : S4m−1 → S2m ∨ S2m = X2m

for the 4m-dimensional cell of X , followed by the fold map

ϕ : S2m ∨ S2m −→ S2m .

Its homotopy class is therefore dι, ιe by the definition of the Whitehead
product in terms of the Whitehead map w .


