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5.1. Spectral Sequences: definition and some general facts

Spectral sequences were invented by Jean Leray (mid- to late 1940s), and
it is said that Jean-Pierre Serre made them prominent. They are not as bad
as you have been told. It is not clear that the notion of spectral sequence
comes with a genuine definition. But here is an attempt.

Definition 5.1. A spectral sequence is a sequence E1, E2, E3, . . . of chain
complexes (graded over Z) together with specified isomorphisms

vrj : Hj(E r) ∼= E r+1j

for all j ∈ Z and r ≥ 1 .

(Notation: E rj is the j-th chain group of the chain complex E r .) In words:
the homology of the chain complex E r is identified with the graded abelian
group obtained from the chain complex E r+1 by forgetting the differential.
We will see that this definition does not give a sufficiently detailed picture.
In most examples the chain complex E r is a direct sum (again indexed by
the integers) of chain subcomplexes and the isomorphisms vrj set up a com-
plicated relationship between the preferred splitting of E r and the preferred
splitting of E r+1 . But as a starting point, definition 5.1 is not all bad.

Spectral sequences usually arise in connection with a filtration of a space
by subspaces, or a filtration of a chain complex by chain subcomplexes. Let’s
focus on chain complexes (of abelian groups) to begin with. A filtration of a
chain complex C is an ascending sequence of chain subcomplexes

. . . C(−2) ⊂ C(−1) ⊂ C(0) ⊂ C(1) ⊂ C(2) ⊂ C(3) ⊂ . . .
with the properties⋃

s

C(s) = C , C(s) = 0 for some s

(usually C(s) is zero for s < 0). The task is, roughly speaking, to express the
homology groups of C in terms of the homology groups of the subquotients
C(s)/C(s− 1) . That is what spectral sequences are good for.

Notation 5.2. C(s, t) := C(s)/C(t) for t ≤ s .

More precisely, we are dealing with two families of abelian groups. The
first of these consists of the groups

E1s,t := Hs+tC(s, s− 1) s, t ∈ Z
and we pretend that we know it. The second family consists of the groups

E∞s,t := im
(
Hs+tC(s) → Hs+tC

)
im
(
Hs+tC(s− 1) → Hs+tC

)
1
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(where the arrows are induced by inclusion). These are subquotients of the
homology groups of C . We pretend that we want to know them. If we did,
we would know H∗C up to “extension problems”. To repeat—the task is

express all of the groups E∞s,t in terms of all of the groups E1s,t .
We introduce some notation for some subgroups of Hs+tC(s, s− 1) = E1s,t :

Zrs,t : = im
(
Hs+tC(s, s− r) → Hs+tC(s, s− 1)

)
,

Brs,t : = ker
(
Hs+tC(s, s− 1) → Hs+tC(s+ r− 1, s− 1)

)
= im

(
∂ : Hs+t+1C(s+ r− 1, s) → Hs+tC(s, s− 1)

)
for r > 0 (allow r = ∞ also). Important exercise: show that

· · · ⊂ Brs,t ⊂ Br+1s,t · · · ⊂ B∞
s,t ⊂ Z∞

s,t · · · ⊂ Zr+1s,t ⊂ Zrs,t ⊂ . . .

Lemma 5.3. There are preferred isomorphisms

u : Zrs,t/Z
r+1
s,t −→ Br+1s−r, t+r−1/B

r
s−r, t+r−1 .

Proof. The idea is that we represent an element x of Zrs,t/Z
r+1
s,t by an element

x1 of Zrs,t which in turn we represent by an element x̄1 of Hs+tC(s, s − r) ;
see the definition of Zrs,t . Then we apply the boundary operator

(5.4) ∂ : Hs+tC(s, s− r) −→ Hs+t−1C(s− r, s− r− 1)

associated with the short exact sequence of chain complexes

(5.5) C(s− r, s− r− 1) → C(s, s− r− 1) → C(s, s− r).

We get ∂x̄1 ∈ im(∂) . Now we note that this im(∂) is exactly Br+1s−r, t+r−1 . In
more detail, the source in (5.4) can also be written in the form

H(s−r)+(t+r−1)+1C((s− r) + r, s− r)

and the target can be written as H(s−r)+(t+r−1)C(s − r, s − r − 1) . Therefore

∂x̄1 in im(∂) = Br+1s−r, t+r−1 represents an element

u(x) := [∂x̄1] ∈ Br+1s−r, t+r−1/B
r
s−r, t+r−1.

Now let us show that u(x) := [∂x̄1] is well defined. By linearity of the
construction, it is enough to show that if

x1 ∈ Zr+1s,t ⊂ Zrs,t
then

∂x̄1 ∈ Brs−r, t+r−1 ⊂ Br+1s−r, t+r−1

as long as we follow the instructions for choosing x̄1 . Indeed, x1 ∈ Zr+1s,t

implies that
x̄1 = y+ z ∈ Hs+tC(s, s− r)

where y comes from Hs+tC(s, s−r−1) and z maps to zero in Hs+tC(s, s−1) ,
and therefore comes from Hs+tC(s−1, s−r) . The homomorphism (5.4) takes
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y to zero, by exactness of the long exact sequence associated with (5.5). The
homomorphism (5.4) takes z to an element of

im
(
∂ : Hs+tC(s− 1, s− r) −→ Hs+t−1C(s− r, s− r− 1)

)
= Brs−r, t+r−1 .

This convinces us that u is well defined! Injectivity of u : if ∂x̄1 belongs to
Brs−r, t+r−1 , then it is in the image of

∂ : Hs+tC(s− 1, s− r) −→ Hs+t−1C(s− r, s− r− 1)

and so x̄1 = y+ z ∈ Hs+tC(s, s− r) where z comes from Hs+tC(s− 1, s− r)
and y comes from Hs+tC(s, s − r − 1) . Passing from x̄1 to x1 ∈ Zrs,t , we
see that the contribution of z is zero and the contribution of y lands in the
subgroup Zr+1s,t . Therefore when we pass from x1 to x , the element y also
contributes zero. This establishes the injectivity of u . Surjectivity is an
exercise. �

Definition 5.6. Put E rs,t = Zrs,t/Brs,t . The differential d = dr on E r has the
form E rs,t −→ E rs−r,t+r−1 and is defined as a composition

Zrs,t/B
r
s,t

proj // Zrs,t/Z
r+1
s,t

u∼= ��

Br+1s−r, t+r−1/B
r
s−r, t+r−1

incl. // Zrs−r, t+r−1/B
r
s−r, t+r−1

Note that the first arrow in this composition of three is surjective and the
other two are injective, so that the kernel of the composition is the kernel of
the first arrow:

ker
(
d : Zrs,t/B

r
s,t −→ Zrs−r, t+r−1/B

r
s−r, t+r−1

)
= Zr+1s,t /B

r
s,t.

Similarly, the last arrow in the composition of three is injective and the other
two are surjective, so that the image of the composition is the image of the
last arrow:

im
(
d : Zrs,t/B

r
s,t −→ Zrs−r, t+r−1/B

r
s−r, t+r−1

)
= Br+1s−r, t+r−1/B

r
s−r, t+r−1.

On the basis of these little observations it is easy to verify that drdr = 0 ,
that is, the composition of

(5.7) E rs+r,t−r+1
d // E rs,t

d // E rs−r,t+r−1

is zero (because the image of the first arrow in this composition of two is
contained in the kernel of the second arrow). Moreover, we can see immedi-
ately that kernel of the second arrow modulo image of the first arrow in (5.7)
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becomes

(5.8)
Zr+1s,t /B

r
s,t

Br+1s,t /B
r
s,t

∼= Zr+1s,t /B
r+1
s,t .

This makes good on the promise expressed in definition 5.1 that the homology
of E r (with differential d = dr ) should be identified with E r+1 (without
differential).

Note also that we now have two definitions of E∞s,t , one given in the first
sentence of 5.6 and one given earlier, right after 5.2. They are however
isomorphic (exercise). This will be very important in the coming paragraph.

Finally, it is clear from the definitions that E r+1s,t is a subquotient (quotient
of subgroup) of E rs,t , but what is the exact relationship between E rs,t and
E∞s,t ? From the definitions, Zrs,t becomes independent of r for large r , in
which case E r+1s,t is simply a quotient of E rs,t . Furthermore B∞

r,t is the union of
the increasing sequence of abelian groups Brs,t . It follows that we can think
of E∞s,t as the direct limit (in the sense of category theory) of a sequence of
surjective homomorphisms of abelian groups

E rs,t → E r+1s,t → E r+2s,t → · · ·
where r should be taken big enough so that C(s − r) = 0 . This is enough
justification for saying that the spectral sequence converges to the homology
C . A standard (but informal) way of writing this would be

E1s,t = Hs+tC(s, s− 1) ⇒ Hs+tC .

In our main example, Zrs,t is independent of r if r > s and Brs,t is also
independent of r as soon as r > t + 1 . In this situation we can say briefly
that E rs,t = Zrs,t/Brs,t is the same as E∞s,t for r > max{s, t+ 1} . That is a much
easier kind of convergence.

Time for some pictures:

E1∗∗ : • •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo
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• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo

• •oo •oo •oo •oo •oo •oo •oo •oo •oo
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The following problem is important because it shows that what we have
seen so far in this section is an enhanced version of the long exact homology
sequence of a pair of chain complexes.

Exercise 5.9. Suppose that the filtration of C has only two stages; i.e.,
suppose C(−1) = 0 and C(s) = C(1) for all s ≥ 1 . Then all we have
is a chain complex C(1) and a chain subcomplex C(0) ⊂ C(1) . What is
E1∗∗ , what is E∞∗∗ , what is the differential on E1∗∗ , what is E2∗∗ , what is the
differential on E2∗∗ , etc. ?

Unfortunately I just found out that the above discussion (spectral sequence
of a filtered chain complex) is not abstract enough to be really useful for us,
and so I have to generalize it slightly. A more general way to obtain a spectral
sequence is to start with an exact couple. This is a very clever definition due
to W. Massey. It’s going to get a slightly sketchy treatment here, but it
deserves better!

Definition 5.10. An exact couple is a diagram of abelian groups

A
i // A

j��
E

k

__

(not intended to be particularly commutative) which is exact at each vertex.

Example 5.11. The standard example that one should have in mind is one
that we know very well, as follows. For a filtered chain complex C = C(∞)
with chain subcomplexes C(s) , as above, we set

As,t := Hs+tC(s), Es,t := E1s,t = Hs+tC(s, s− 1).

Let A =
⊕

s,tAs,t and E :=
⊕

s,t Es,t . Let i : A → A be given on the
summand As,t by the inclusion-induced map

As,t = Hs+tC(s) → Hs+tC(s+ 1) = As+1,t−1 ↪→ A ,

let j : A→ E be the map induced by the projections C(s) → C(s, s− 1) and
let k be the map induced by the boundary operators

∂ : H∗C(s, s− 1) → H∗−1C(s− 1).

Returning to definition 5.10, we make the following observations. Firstly,
there is a homomorphism E → E given by jk . This is a differential in the
sense of (jk)(jk) = 0 . Therefore E becomes a differental abelian group (like
a chain complex without the grading). Next, an exact couple has a derived
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exact couple

Aδ
iδ // Aδ

jδ~~
Eδ

kδ
``

where Eδ is the homology of E with differential jk , that is, ker(jk)/im(jk) ,
and Aδ = im(i : A→ A) . The new arrow kδ is fairly obviously determined by
the old k , but beware, the new jδ is less obviously defined so that jδ(i(a)) =
j(a) (check that this is well defined). Showing that this is again a derived
exact couple is an exercise. Therefore we can repeat this process as many
times as we like. Writing E1 instead of E , then E2 instead of Eδ , then E3
instead of (Eδ)δ etc., we get a sequence E1 , E2 , E3 of differential abelian
groups such that E r+1 is (exactly) the homology of E r . This is therefore a
spectral sequence as in definition 5.1, except for the absence of a grading.
(But we can add gradings as needed.)

If you take the exact couple of example 5.11, then you have a bi-grading
on A and E and the spectral sequence that you get from the exact cou-
ple turns out to be identical with the spectral sequence that we constructed
previously, more by hand. There are many little exercises concealed in this
claim! In particular, we are led to the following definitions by comparing the
exact couple construction of a spectral sequence with the earlier pedestrian
construction for a filtered chain complex. Given an exact couple as in defini-
tion 5.10, let Zr be the subgroup of E which is the pre-image under k of the
image of the (r− 1)-fold iteration of i (so that, for example, Z1 = E). And
let Br be the subgroup of E which is the image under j of the kernel of the
(r − 1)-fold iteration of i (so that, for example, B1 = 0). These definitions
should be in agreement with our earlier definitions of Zrs,t and Brs,t ... and in
particular it should be true, in the general setting of exact couples, that

E r ∼= Zr/Br .

5.2. The spectral sequence associated with a fibration

We now come to the first serious example (and for this course, also the last)
of a spectral sequence: the Serre spectral sequence of a fibration. There are
actually two variants, one for homology and one for cohomology, but we begin
with the homology variant. So let p : X→ B be a fibration, and assume that
B is a simply connected based CW -space. We make no special assumptions
on the fibers. If you know something about singular homology: let C be the
singular chain complex of the total space X , and let C(s) be the singular
chain complex of p−1(Bs) , where Bs is the s-skeleton of the CW -space B .
So you have a filtered chain complex, and you can put this into the machine
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which makes a spectral sequence out of a filtered chain complex. If you have
another definition of homology in your head, not based on chain complexes,
then you can proceed as follows: set up an exact couple (with bigrading)
where As,t is Hs+t(p

−1(Bs)) and Es,t is

H̃s+t(p
−1(Bs)//p−1(Bs−1)).

(Remember that // is our notation for the mapping cone of an inclusion.)

Let’s find out what the E1∗∗ term of this spectral sequence is. This amounts
to calculating the homology of p−1(Bs)//p−1(Bs−1) for all s . Let F = p−1(?) .
Fix s and choose characteristic maps

ϕλ : (D
s, ∂Ds) −→ (Bs, Bs−1)

for the s-cells of B . Let zλ = ϕλ(0) and Fz = p−1(z) . Any choice of path
γ : [0, 1] → B from zλ to the base point determines an invertible element
of [Fz, F] . Indeed the homotopy lifting property guarantees that there is a
homotopy (gt : Fz → X)t∈[0,1] such that g0 is the inclusion and pgt is constant
with value γ(t) , for all t ∈ [0, 1] . Therefore g1 is essentially a map from
Fz to F . (Exercise: show that this is well defined, i.e., depends only on γ
but not on the lift (gt) .) Then, since B is simply connected, the element
of [Fz, F] so constructed does not depend on the path γ either. In the same
way, we can use the HLP for the fibration ϕ∗λX→ Ds (with contractible base
space Ds ) to show that the pair

(ϕ∗λX,ϕ
∗
λX|∂Ds)

is homotopy equivalent to (Ds× F, ∂Ds× F) . By excision for mapping cones,
we have

p−1(Bs)//p−1(Bs−1) '
∨
λ

ϕ∗λX//ϕ
∗
λX|∂Ds '

∨
λ

(Ds×F)//(∂Ds×F) '
∨
λ

Ss × F
?× F

.

Therefore the term E1s,t is identified with

H̃s+t

(∨
λ

Ss × F
?× F

)
∼=
⊕
λ

H̃s+t

(
Ss × F
?× F

)
∼=
⊕
λ

Ht(F) .

This proves the following:

Lemma 5.12. In the Serre spectral sequence for the fibration p : X→ B, the
term E1s,t is identified with C(B)s ⊗Ht(F), where C(B) is the cellular chain
complex of B.

This leads to a guess for the differential d1 .
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Lemma 5.13. In the Serre spectral sequence for the fibration p : X→ B, the
differential

d1 : E1s,t −→ E1s−1,t

agrees with the standard differential C(B)s ⊗Ht(F) → C(B)s−1 ⊗Ht(F), i.e.,
the differential in the cellular chain complex of B tensored with Ht(F).

Sketch proof. Choose a q-cell in B and a characteristic map

ϕ : (Dq, ∂Dq) → (Bq, Bq−1)

for that cell. Then we have a commutative diagram

· · · //

��

∅ //

��

ϕ∗X|∂Dq //

��

ϕ∗X
= //

��

ϕ∗E

��

= //

· · · // p−1(Bq−2) // p−1(Bq−1) // p−1(Bq) // p−1(Bq+1) // · · ·

In the lower row we see the filtration of X which we used to make the Serre
spectral sequence for p : X→ B . In the upper row we see a filtration of ϕ∗X
which can also use to make a spectral sequence; let’s write

(Dr
s,t)r,s,t

for that. Here we clearly have D1
s,t = 0 except when s = q or s = q − 1 ;

and we have

D1
q,t

∼= Ht(F), D1
q−1,t

∼= Hq−1+t(S
q−1 × F) ∼= Ht(F)⊕Hq−1+t(F) .

It is not hard to see that the d1 differential

D1
q,t −→ D1

q−1,t

is given by the inclusion of Ht(F) in the sum Ht(F)
⊕
Hq−1+t(F) . By natu-

rality, the diagram above induces a morphism of spectral sequences

(Dr
s,t)r,s,t −→ (E rs,t)r,s,t .

This takes D1
q,t

∼= Ht(F) isomorphically to the summand of

E1q,t ∼= C(B)q ⊗Ht(F)

which corresponds to the cell λ . Therefore we can read off what the differ-
ential d1 on E1q,t does on that summand. �

Corollary 5.14. In the Serre spectral sequence for a fibration p : X → B,
the E2 -term is given by

E2s,t ∼= Hs(B;Ht(F)).
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Example 5.15. (See also Fuks-Fomenko-Gutenmacher, Homotopic Topol-
ogy.) For n > 0 , let’s try to calculate the homology of SU(n) (the topolog-
ical group of unitary complex n× n-matrices with determinant 1). For this
we observe that the evaluation map

pn : SU(n) −→ S2n−1 ; p(A) = Ae1 ∈ S2n−1 ⊂ Cn

(where e1 is the well-known standard basis vector) is a fiber bundle with
fibers homeomorphic to SU(n − 1) . (Proving this is an exercise. But it is
clear that the fibers are as claimed: for v ∈ S2n−1 , the fiber p−1(v) consists
of all unitary n × n matrices of determinant 1 sending e1 to v .) We now
try to use our spectral sequence and induction. The fibers of the fibration
p2 are homeomorphic to SU(1) , which is a point, so

SU(2) ∼= S3

which in particular calculates the homology. Next we have

p3 : SU(3) −→ S5

with fibers homeomorphic to SU(2) ∼= S3 . This means that the E2∗∗ term of
the Leray-Serre spectral sequence for this fibration looks like this:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

with the nonzero terms in positions (0, 0) , (0, 3) , (5, 0) , (5, 3) . It follows
immediately that the differentials on E2∗∗ as well as those on E3∗∗ , E4∗∗ etc. are
zero, so that

E2∗∗ ∼= E∞∗∗
(the spectral sequence collapses). We conclude that

H∗(SU(3)) ∼= H∗(S
3 × S5)

(but it is not claimed that SU(3) ' S3 × S5 ). Next we have

p4 : SU(4) −→ S7
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with fibers homeomorphic to SU(3) . This means that the E2∗∗ term of the
Leray-Serre spectral sequence for this fibration looks like this:

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 Z 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

with the nonzero terms in positions (0, 0) , (0, 3) , (0, 5) , (0, 8) , (7, 0) , (7, 3) ,
(7, 5) , (7, 8) . Again you can easily convince yourself that none of the differ-
entials on E2∗∗ , E3∗∗ , E4∗∗ etc. has a chance to be nonzero. Therefore

H∗(SU(4)) ∼= H∗(SU(3)× S7) ∼= H∗(S
3 × S5 × S7) .

One might hope that this will go on forever. Let’s try one more time: The
E2∗∗ term of the spectral sequence for p5 looks like

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Z 0 0 0 0 0 0 0 0 Z 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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and we have a problem. Namely, there are two differentials in the spectral
sequence which could be nonzero: they would be in the E9∗∗ term, from
position (9, 0) to position (0, 8) and from position (9, 7) to position (0, 15) .
So our argument breaks down. All we know is that

H∗(U(n) ∼= H∗(S
1 × S3 × · · · × S2n−1) for n ≤ 4 .

For the cases n > 4 , we need better equipment.

5.3. Some remarks on filtered spaces

As a preparation for the cohomology version of the Serre spectral sequence,
we need to develop the elementary theory of filtered spaces. (I leave out
some proofs for lack of time.) Generally speaking, if we have a definition of
homology/cohomology (also generalized forms) in mind which does not rely
very much on chain complexes, then it is no longer appropriate to pretend
that spectral sequences arise mainly in connection with filtered chain com-
plexes. Instead we can take the view that spectral sequences arise mainly in
connection with filtered spaces and homology or cohomology theories.

Definition 5.16. A filtered space is a space X with a sequence of subspaces
X(s) , where s ∈ Z , such that X(s) ⊂ X(s+ 1) for all s .
Let us say that a filtered space X (with distinguished subspaces X(s) for
s ∈ Z) is well-filtered if the following conditions are satisfied:

• there is some s ∈ Z such that X(s) = ∅ ;
• the inclusion X(s) → X(s+ 1) is a cofibration, for all s ∈ Z ;
• X =

⋃
s X(s) and X has the direct limit topology with respect to the

subspaces X(s) , so that a subset V of X is open in X if and only if
V ∩ X(s) is open in X(s) for every s .

Example 5.17. If X and Y are filtered spaces, with distinguished subspaces
X(s) and Y(s) for s ∈ Z , then X × Y has a preferred structure of a filtered
space in the following way:

(X× Y)(s) :=
⋃

p+q≤s

X(p)× Y(q) .

Suppose now that X and Y are well-filtered. Does it follow that X× Y with
this preferred filtration structure is also well-filtered? That would be nice
but I don’t know.

Definition 5.18. Let X and Y be filtered spaces. A morphism (or filtered
map) from X to Y is a continuous map f from X to Y such that

f(X(s)) ⊂ Y(s)
for all s ∈ Z . Two filtered maps f, g : X → Y are filtered homotopic if there
exists a homotopy (ht : X→ Y)t∈[0,1] such that h0 = f , h1 = g and each ht
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is a filtered map from X to Y . A filtered map f : X→ Y is a filtered homotopy
equivalence if there exists a filtered map g : Y → X such that gf and fg are
filtered homotopic to idX and idY , respectively.

Example 5.19. Let p : X→ B be a fibration, where B is a CW-space. Let
BT be the telescope associated with B and the filtration by skeletons. This
is the space

[0, 1]× B0 ∪ [1, 2]× B1 ∪ [2, 3]× B2...
which is also a CW-space in an obvious way. There is a projection BT → B .
It is an exercise to show that this is a homotopy equivalence (for example by
showing first that it is a weak homotopy equivalence). But the situation is
a little better. Let qB from BT to [0,∞[ be the obvious projection. Then
BT is filtered by subspaces BT(s) , the preimage(s) of [0, s] under qB , where
s = 0, 1, 2, . . . . The map BT → B is then a filtered homotopy equivalence of
filtered spaces. Similarly, let XT be the telescope associated with X and the
filtration by subspaces X(s) . This is the space

[0, 1]× X(0) ∪ [1, 2]× X(1) ∪ [2, 3]× X(2)...
where a subset U is considered open if its intersection with [k, k+ 1]×X(k)
is open, for every k . Let qX from XT to [0,∞[ be the obvious projection.
Then XT is filtered by subspaces XT(s) , the preimage(s) of [0, s] under q−1

X .
Moreover XT is clearly a well-filtered space. I believe that the commutative
square

XT //

��

X

��
BT // B

is a pullback square in the category of topological spaces. Therefore, using
the homotopy lifting property, and the fact that the lower horizontal arrow
is a homotopy equivalence of filtered spaces, we can easily deduce that the
upper horizontal arrow is also a homotopy equivalence of filtered spaces.
Conclusion: although there is not much evidence that X , with the filtration
by subspaces X(s) = p−1(Bs) , is well-filtered, we can say that X is filtered
homotopy equivalent to XT , a well-filtered space.

5.4. Cohomology version of the Serre spectral sequence

Let us now look at the cohomology version of the Serre spectral sequence for
a fibration p : X → B . As in the homology case, we take the view that it is
about a space with a filtration to begin with, the space X with subspaces
X(s) = p−1(Bs) . Roughly as before, we set ourselves the task to compute
H∗(X) or something close to it, and we pretend that we know

H∗(X(s)//X(s− 1))
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for all s . More precisely, we are interested in the filtration subquotients of
the filtration of Hq(X) given by subgroups im(Hq(X//X(s − 1)) → Hq(X)) .
Still more precisely:

Es,t∞ =
im
(
Hs+t(X//X(s− 1)) → Hs+t(X)

)
im
(
Hs+t(X//X(s)) → Hs+t(X)

) =
ker
(
Hs+t(X) → Hs+t(X(s− 1))

)
ker
(
Hs+t(X) → Hs+t(X(s))

)
We can set up an exact couple

(5.20) A
i // A

j��
E

k

__

as follows. Let Es,t = Hs+t(X(s)//X(s − 1)) and put E =
⊕

s,t E
s,t . Let

As,t = Hs+t(X//X(s − 1)) and put A =
⊕
As,t . Note that this is a little

surprising; you might have expected that we take As,t to be Hs+t(X(s)) , but
no. The map i is the map

As+1,t−1 = Hs+t(X//X(s)) −→ Hs+t(X//X(s− 1)) = As,t

induced by the inclusion of mapping cones X//X(s − 1) → X//X(s) , and the
map j is given by restrictions

As,t = Hs+t(X//X(s− 1)) −→ Hs+t(X(s)//X(s− 1)) = Es,t.

The map k is a boundary map given by

∂ : Es,t = Hs+t(X(s)//X(s− 1)) −→ Hs+t+1(X//X(s)) = As+1,t

induced by X//X(s) → ?//X(s) ∼= S1∧X(s) ↪→ S1∧ (X(s)//X(s− 1)) . Beware
that the grading behavior is somewhat different from what we have seen
before.

Remark 5.21. If B is simply connected, then we have a preferred homotopy
class of homotopy equivalences from X(s)//X(s − 1) to

∨
λ(S

s × F)/(? × F) ,
as noted before. It is also very useful to note that

Hs+t(X//X(s− 1)) = 0 if t < 0 .

To show this replace the filtered space X by XT as in example 5.19. Given an
element in Hs+t(XT//XT(s−1)) ∼= Hs+t(XT/XT(s−1)) , represent by a mapping
cycle (for example) and try to construct a nullhomotopy for it. Construct
this on XT(s+k)/XT(s−1) , by induction on k . The obstruction in each step
is an element of

H̃s+t(XT(s+ k)/XT(s+ k− 1)) ∼= H̃s+t(
∨
λ

Ss × F
?× F

) ∼=
∏
λ

Ht(F) = 0,
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so that there is no obstruction. (Most important point here: when the in-
duction is completed, the partial nullhomotopies defined on XT(s+k) for all
k define a nullhomotopy on XT .)

Now we are in good shape for a discussion of convergence of the spectral
sequence. Let Zr = k−1(im(ir−1)) ⊂ E as before (except for the positioning
of the r in Zr ) and Br = j(ker(ir−1)) ⊂ E as before ... and write Er = Zr/Br .
Superscripts s, t can be added as needed. Since X(s) = ∅ for s < 0 , it follows
that Bs,tr is independent of r as soon as r > s , so that Es,tr+1 is a subgroup
of Es,tr for r > s . Since Hs+t(X(s)//X(s − 1)) = 0 for t < 0 , it follows that
Zs,tr = Es,t ∩ ker(k) for r > t + 1 , which is also independent of r . Therefore
we can say that Es,t∞ = Es,tr for r > max{r, t+ 1} .

Now there is an additional problem: we want products. Massey wrote
a paper on this (Annals of Mathematics, 1954), explaining what kind of
additional structure we need on an exact couple to get a spectral sequence
with products. His paper is about internal products, but I understand it
better with external products. So I have adapted his arguments just a little.
Let

A(ρ)
i // A(ρ)

j{{
E(ρ)

k
cc

be an exact couple, where ρ = 1, 2, 3 . The goal is to say what we mean by
an external multiplication from exact couple number 1 times exact couple
number 2 to exact couple number 3. To start with, the multiplication only
relates E(ρ) for ρ = 1, 2, 3 . This is enough to give us external products
relating the three associated spectral sequences. We assume a bi-grading in
each of the three exact couples as in our example (5.20). We assume bilinear
(bi-additive) maps

(5.22) E(1)p,q × E(2)s,t −→ E(3)p+s,q+t

for which we write (x, y) 7→ x·y where possible. Massey asks: what condition
should we impose on these products to ensure that these bilinear maps induce
similar maps on the derived exact couples? Here is his condition.

Definition 5.23. The product (5.22) satisfies condition µn if, for x ∈ E(1)p,q
and y ∈ E(2)s,t and a ∈ A(1)p+n+1,q−n and b ∈ A(2)s+n+1,t−n such that
k(x) = in(a) and k(y) = in(b) , there is c ∈ A(3)p+s+n+1,q+t−n such that

k(x · y) = in(c) and j(c) = j(a) · y+ (−1)p+qx · j(b).
(Note: in is the n-fold iteration of the map i in the exact couples.) The
product (5.22) is said to satisfy condition µ if it satisfies µn for all n ≥ 0 .
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The case n = 0 is special. For n = 0 the letters a, b, c are superfluous:
a = k(x) , b = k(y) and c = k(x · y) . So condition µ0 just means

(jk)(x · y) = (jk)(x) · y+ (−1)p+qx · (jk)(y).
In other words, condition µ0 means that the differential jk in E(3) behaves
like a derivation for the product.

If the product satisfies condition µ0 , then we can pass to homology,
ker(jk)/im(jk) , to get a similar product on the derived exact couples:

(5.24) E(1)p,q2 × E(2)
s,t
2 −→ E(3)p+s,q+t2 .

(This is in the curly notation so that E(ρ)r is the (r− 1)-fold derived exact
couple of E(ρ) = E(ρ)1 .) Under these circumstances, if I understand him
correctly, Massey claims that the product (5.22) satisfies µn if and only if the
product (5.24) satisfies µn−1 . And of course he claims that it is an exercise.
Let’s believe that. Therefore, if (5.22) satisfies µ , then (5.24) satisfies µ .

Example 5.25. Let X → B(1) and Y → B(2) be fibrations. Then we have
a fibration Z→ B(3) , where Z = X×Y and B(3) = B(1)×B(2) . We assume
that B(1) and B(2) are CW-spaces. For simplicity, assume that the number
of cells in B(1) and B(2) is finite or countable. Then B(3) with the product
topology is also a CW-space. (This was mentioned, but not proved in full
generality or detail, in the chapters on CW-spaces.) For each of the three
fibrations, we obtain a cohomology spectral sequence as in (5.20), with the
interpretation where for example X(s) ⊂ X is the preimage of the skeleton
B(1)s ⊂ B(1) . Therefore our external product needs have the form

H̃p+q(X(p)//X(p− 1))× H̃s+t(Y(s)//Y(s− 1))

��

H̃p+s+q+t(Z(p+ s)//Z(p+ s− 1)).

By example 5.19 there are homotopy equivalences

X(p)//X(p− 1) ' X(p)/X(p− 1),
and similarly for Y and Z . Then the external product that we need to invent
can be given the alternative form

H̃p+q
( X(p)

X(p− 1)

)
× H̃s+t

( Y(s)

Y(s− 1)

)
��

H̃p+s+q+t
( Z(p+ s)

Z(p+ s− 1)

)
.
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Now it emerges what it ought to be: the composition

H̃p+q
( X(p)

X(p− 1)

)
× H̃s+t

( Y(s)

Y(s− 1)

)
��

H̃p+s+q+t
( X(p)

X(p− 1)
∧

Y(s)

Y(s− 1)

)
��

H̃p+s+q+t
( Z(p+ s)

Z(p+ s− 1)

)
where the first arrow is a standard external product in cohomology1 and the
other is induced by an obvious quotient map from Z(p + s)/Z(p + s − 1)
to X(p)/X(p − 1) ∧ Y(s)/Y(s − 1) . — Now we should verify that these
external products satisfy Massey’s conditions µn for all n ≥ 0 . Here is a
sketch of an argument. Suppose that we have x ∈ E(1)p,q and y ∈ E(2)s,t
and a ∈ A(1)p+n+1,q−n and b ∈ A(2)s+n+1,t−n such that k(x) = in(a) and
k(y) = in(b) . What does it mean? It means

x ∈ H̃p+q
( X(p)

X(p− 1)

)
, y ∈ H̃s+t

( Y(s)

Y(s− 1)

)
and

a ∈ H̃p+q+1
( X

X(p+ n)

)
, b ∈ H̃s+t+1

( Y

Y(s+ n)

)
such that

a 7→ ∂x ∈ H̃p+q+1
( X

X(p)

)
, b 7→ ∂y ∈ Hs+t+1

( Y

Y(s)

)
.

Then there exist

x̄ ∈ H̃p+q
(X(p+ n)
X(p− 1)

)
, ȳ ∈ H̃s+t

(Y(s+ n)
Y(s− 1)

)
such that x̄ extends x and ∂(x̄) = a , and ȳ extends y and ∂(ȳ) = b .
(Proof: ... I would say, Mayer-Vietoris.) Then we can form

x̄ · ȳ ∈ H̃p+q+s+t
(X(p+ n)
X(p− 1)

∧
Y(s+ n)

Y(s− 1)

)
1Warning: here I am using the mapping cycle interpretation of cohomology. Read-

ers who prefer the singular homology interpretation should probably not work with the
filtered space X but instead with the singular chain complex C of X , filtered by chain
subcomplexes C(s) corresponding to X(s) , and with the chain complex hom(C,Z) etc. etc.
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and we can move from there to

H̃p+q+s+t
( (X× Y)(p+ s+ n)
(X× Y)(p+ s+ n− 1)

)
using a map

(X× Y)(p+ s+ n)
(X× Y)(p+ s+ n− 1)

��
X(p+ n)

X(p− 1)
∧
Y(s+ n)

Y(s− 1)

which I hope is obvious! Therefore I take the liberty to write

x̄ · ȳ ∈ H̃p+q+s+t
( (X× Y)(p+ s+ n)
(X× Y)(p+ s+ n− 1)

)
.

With that in mind we can write

c := ∂(x̄ · ȳ) ∈ Hp+q+s+t+1
( (X× Y)
(X× Y)(p+ s+ n)

)
.


