Lecture Notes, week 10 Topology SS 2015 (Weiss)

4.1. Blakers-Massey homotopy excision theorem (special form)

Situation: based CW-space X, two distinct cells attached (of dimensions m and n, respectively) to give CW-spaces $Y_{1}, Y_{2} \supset X$:

Therefore we have an inclusion $\left(Y_{1}, X\right) \rightarrow\left(Y_{1} \cup Y_{2}, Y_{2}\right)$ of pairs. We want to look at the induced map

$$
\begin{equation*}
\pi_{\mathrm{k}}\left(\mathrm{Y}_{1}, \mathrm{X}\right) \longrightarrow \pi_{\mathrm{k}}\left(\mathrm{Y}_{1} \cup \mathrm{Y}_{2}, \mathrm{Y}_{2}\right) \tag{4.1}
\end{equation*}
$$

(where $k>0$) and we ask whether it is surjective, injective etc.
The plan here is to use general position arguments to answer this. There are three integer variables m, n, k in the question and the answer should be formulated in terms of them. Let $E_{1}=Y_{1} \backslash X$ be that m-cell and let $E_{2} \subset Y_{2} \backslash X$ be that n-cell, so E_{1} open in Y_{1} and E_{2} open in Y_{2}. Choose $z_{1} \in E_{1}$ and $z_{2} \in E_{2}$. (These choices can be reconsidered in the following.) Let's try to show surjectivity in (4.1) first. Therefore we begin with

$$
\begin{equation*}
f:\left(D^{k}, S^{k-1}\right) \rightarrow\left(Y_{1} \cup Y_{2}, Y_{2}\right) \tag{4.2}
\end{equation*}
$$

Think of D^{k} as unit disk in \mathbb{R}^{k} with $(1,0, \ldots, 0)$ as center, so that $(0, \ldots, 0)$ can take the role of the base point.

We can assume that f is smooth in the open subset $f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ of D^{k}, where U_{1} and U_{2} are open neighborhoods of z_{1} and z_{2} in E_{1} and E_{2}, respectively. Then we can also assume that z_{1} is a regular value for f (as in Sard's theorem, and by Sard's theorem). It follows that $A_{1}:=f^{-1}\left(z_{1}\right)$ is a smooth compact submanifold of $D^{k} \backslash S^{k-1}$, without boundary. Let $A_{2}=\mathrm{f}^{-1}\left(z_{2}\right)$. It is important that $A_{1} \cap A_{2}=\emptyset$. It is important that $\operatorname{dim}\left(A_{i}\right)=k-m$. Neither A_{1} nor A_{2} contain the base point $(0, \ldots, 0)$ of D^{k}. In particular, since A_{2} is compact, we can choose $\varepsilon>0$ so that the small disk εD^{k} has empty intersection with A_{2}.

Now we try to move A_{1} into the small disk εD^{k} without disturbing A_{2}. As a first attempt we try the homotopy (isotopy is a better word here)

$$
\left(\varphi_{\mathrm{t}}: A_{1} \rightarrow D^{\mathrm{k}}\right)_{\mathrm{t} \in[\varepsilon, 1]}
$$

given by $\varphi_{t}(x):=(1+\varepsilon-t) x \in D^{k}$. Isotopy means that $\varphi_{t}: A_{1} \rightarrow D^{k}$ is a smooth embedding for every $t \in[\varepsilon, 1]$. We have $\varphi_{\varepsilon}=$ inclusion and $\varphi_{1}\left(A_{1}\right)$ is contained in εD^{k} minus boundary. We can also think of $\left(\varphi_{t}\right)$ as a single smooth map

$$
\varphi: A_{1} \times[\varepsilon, 1] \longrightarrow D^{k}
$$

Since the plan was not to disturb A_{2}, we ask whether $\operatorname{im}(\varphi)$ intersects A_{2}. Better way to ask the question: whether z_{2} is in the image of $f \varphi$. We can assume that z_{2} is a regular value for the smooth map $\mathrm{f} \varphi$. Since $\operatorname{dim}\left(A_{1} \times[\varepsilon, 1]\right)=k-m+1$ and the dimension of the target of $f \varphi$, as far as it is of interest here, is n, it follows that z_{2} is not in the image of $f \varphi$ if

$$
\mathrm{k}-\mathrm{m}+1<\mathrm{n} \text {. }
$$

This condition turns out to be the decisive one for surjectivity in (4.1).
Lemma 4.3. (Special case of Thom's isotopy extension theorem.) There exists a diffeotopy

$$
\left.\left(\Phi_{\mathrm{t}}: \mathrm{D}^{\mathrm{k}} \rightarrow \mathrm{D}^{\mathrm{k}}\right)_{\mathrm{t} \in[\varepsilon, 1]}\right)
$$

which extends the isotopy $\left(\varphi_{\mathrm{t}}\right)$. More precisely: each $\Phi_{\mathrm{t}}: \mathrm{D}^{\mathrm{k}} \rightarrow \mathrm{D}^{\mathrm{k}}$ is a diffeomorphism and Φ_{t} agrees with the identity map on a neighborhood of $S^{k-1} \cup A_{2}$, whereas Φ_{t} agrees with φ_{t} on A_{1}. (This is the precise meaning of: moving A_{1} into εD^{k} without disturbing A_{2}.)

We postpone the proof of the lemma, but we use it right away to finish the proof of surjectivity in (4.1). First we note that our map f in (4.2) is homotopic, as a map of pairs, to $\mathrm{g}:=\mathrm{f} \Phi_{1}^{-1}$. The map g has the following convenient properties: $\mathrm{g}^{-1}\left(z_{1}\right) \subset \varepsilon \mathrm{D}^{k}$ whereas $\mathrm{g}^{-1}\left(z_{2}\right) \cap \varepsilon \mathrm{D}^{k}=\emptyset$. We now try the homotopy

$$
g_{\mathrm{t}}: D^{k} \rightarrow Y_{1} \cup Y_{2}
$$

where $\mathrm{t} \in[\varepsilon, 1]$ and $\mathrm{g}_{\mathrm{t}}(z)=\mathrm{g}((1+\varepsilon-\mathrm{t}) z)$. It is not guaranteed that $g_{\mathrm{t}}\left(S^{k-1}\right) \subset Y_{2}$ but it is guaranteed that $g_{\mathrm{t}}\left(S^{k-1}\right) \subset Y_{1} \cup Y_{2} \backslash\left\{z_{1}\right\}$, and this is good enough for us since the inclusion

$$
Y_{2} \longrightarrow Y_{1} \cup Y_{2} \backslash\left\{z_{1}\right\}
$$

is a homotopy equivalence. Similarly, although it is not guaranteed that $g_{1}\left(D^{k}\right) \subset Y_{1}$, it is guaranteed that $g_{1}\left(D^{k}\right) \subset Y_{1} \cup Y_{2} \backslash\left\{z_{2}\right\}$, and this is again good enough for us. Therefore we can conclude that $g=g_{\varepsilon}$ is homotopic, as a map of pairs from $\left(D^{k}, S^{k-1}\right)$ to $\left(Y_{1} \cup Y_{2}, Y_{2}\right)$, to a map from $\left(D^{k}, S^{k-1}\right)$ to $\left(Y_{1}, X\right)$. This establishes surjectivity in (4.1) under the condition $\mathrm{k}+1<\mathrm{m}+\mathrm{n}$.

Next, we think about injectivity in (4.1). Therefore we should start by expressing the following situation: we have two elements in $\pi_{k}\left(\mathrm{Y}_{1}, \mathrm{X}\right)$ which
determine the same element of $\pi_{k}\left(Y_{1} \cup Y_{2}, Y_{2}\right)$. Note that this formulation does not assume group structures in π_{k}, with a view to the possibility that $k \leq 2$. A very straightforward way to express the situation is then to say that we have a map

$$
F: D^{k} \times[0,1] \rightarrow Y_{1} \cup Y_{2}
$$

such that $F\left(D^{k} \times 0\right) \cup F\left(D^{k} \times 1\right) \subset Y_{1}$ and $F\left(S^{k-1} \times[0,1]\right) \subset Y_{2}$. This takes $(0, \ldots, 0) \times[0,1]$ to the base point of $Y_{1} \cup Y_{2}$. We now reason with this F as we reasoned with f in (4.2) before.

We can assume that F is smooth in $F^{-1}\left(U_{1}\right)$ and $F^{-1}\left(U_{2}\right)$ and that z_{1} is a regular value for F. Then we have a new $A_{1}:=F^{-1}\left(z_{1}\right)$, smooth submanifold of $D^{k} \times[0,1]$. This has empty intersection with $S^{k-1} \times[0,1]$ but it can have nonempty intersection with $D^{k} \times \partial[0,1]$. More precisely, A_{1} is a smooth submanifold with boundary of $\mathrm{D}^{k} \times[0,1]$ avoiding $S^{k-1} \times[0,1]$, of dimension $k+1-m$, and the boundary ∂A_{1} is the transverse intersection of A_{1} and $\mathrm{D}^{k} \times \partial[0,1]$. We put $A_{2}:=\mathrm{F}^{-1}\left(z_{2}\right)$. We choose $\varepsilon>0$ in such a way that $\varepsilon D^{k} \times[0,1]$ has empty intersection with A_{2}. Define a smooth isotopy

$$
\left(\varphi_{\mathrm{t}}: A_{1} \rightarrow \mathrm{D}^{\mathrm{k}} \times[0,1]\right)_{\mathrm{t} \in[\varepsilon, 1]}
$$

by $\varphi_{t}(x, s):=((1+\varepsilon-t) x, s) \in D^{k} \times[0,1]$. If

$$
\mathrm{k}+1-\mathrm{m}+1<\mathrm{n}
$$

then by Sard's theorem (general position) we may assume or arrange that z_{2} is a regular value of $\mathrm{F} \varphi$ (where $\varphi: A_{1} \times[\varepsilon, 1] \rightarrow \mathrm{D}^{k} \times[0,1]$ is $\left(\varphi_{t}\right)_{t \in[\varepsilon, 1]}$ reorganized). Then the image of each φ_{t} has empty intersection with \mathcal{A}_{2}.

Lemma 4.4. There exists a diffeotopy

$$
\left.\left(\Phi_{\mathrm{t}}: \mathrm{D}^{k} \times[0,1] \rightarrow \mathrm{D}^{\mathrm{k}} \times[0,1]\right)_{\mathrm{t} \in[\varepsilon, 1]}\right)
$$

which extends the isotopy $\left(\varphi_{\mathrm{t}}\right)$. More precisely: each

$$
\Phi_{\mathrm{t}}: \mathrm{D}^{\mathrm{k}} \times[0,1] \rightarrow \mathrm{D}^{\mathrm{k}} \times[0,1]
$$

is a diffeomorphism and Φ_{t} agrees with the identity map on a neighborhood of $S^{k-1} \times[0,1] \cup A_{2}$, whereas Φ_{t} agrees with φ_{t} on A_{1}. (Moreover Φ_{t} takes $D^{k} \times\{0\}$ to itself and takes $D^{k} \times\{1\}$ to itself ... but this is automatic).

Again we postpone the proof (it is much like the postponed proof of lemma 4.3) and use the lemma to finish the proof of injectivity in (4.1). First we can replace $F=F \Phi_{0}$ by $G:=F \Phi_{1}^{-1}$, since $\left(F \Phi_{t}^{-1}\right)_{t \in[\varepsilon, 1]}$ is a homotopy from F to G respecting all the essential features. After that, we try the homotopy

$$
G_{t}: D^{k} \times[0,1] \rightarrow Y_{1} \cup Y_{2}
$$

where $t \in[\varepsilon, 1]$ and $G_{t}(z, s)=G((1+\varepsilon-t) z, s)$. The details are as in the proof of surjectivity. Therefore we have shown:

Proposition 4.5. The map (4.1) is surjective if $\mathrm{k}<\mathrm{m}+\mathrm{n}-1$ and bijective if $\mathrm{k}<\mathrm{m}+\mathrm{n}-2$ (in addition to $\mathrm{k}>0$).

Let's remark that surjectivity of (4.1) was already known to us in case $\mathrm{k}<\mathrm{n}$ (by cellular approximation) and also in case $\mathrm{k}<\mathrm{m}$ (because then both groups/sets are trivial, again by cellular approximation). So the interesting cases of the proposition, as far as surjectivity is concerned, are the cases where $\max \{m, n\} \leq k<m+n-1$. Similarly injectivity of (4.1) was already known to us in case $k+1<n$ and in case $k<m$. So the interesting cases of the proposition, as far as injectivity is concerned, are the cases where $\max \{m, n+1\} \leq k<m+n-2$.

Proof of lemma 4.3. Under construction ... with regrets about wrong ideas I may have given in the Friday lecture.

4.2. The Freudenthal theorem

This is a special case of proposition 4.5. We take $X=S^{m-1}$ and Y_{1} equal to the (closed) upper hemisphere S_{+}^{m} of S^{m}, while Y_{2} is equal to the closed lower hemisphere S_{-}^{m} of S^{m}.

