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Lecture Notes, week 10
Topology SS 2015 (Weiss)

4.1. Blakers-Massey homotopy excision theorem (special form)

Situation: based CW-space X , two distinct cells attached (of dimensions m
and n , respectively) to give CW-spaces Y1, Y2 ⊃ X :

X

��

// Y1

��
Y2 // Y1 ∪ Y2

Therefore we have an inclusion (Y1, X) → (Y1 ∪ Y2, Y2) of pairs. We want to
look at the induced map

(4.1) πk(Y1, X) −→ πk(Y1 ∪ Y2, Y2)

(where k > 0) and we ask whether it is surjective, injective etc.

The plan here is to use general position arguments to answer this. There
are three integer variables m,n, k in the question and the answer should
be formulated in terms of them. Let E1 = Y1 r X be that m-cell and let
E2 ⊂ Y2 r X be that n-cell, so E1 open in Y1 and E2 open in Y2 . Choose
z1 ∈ E1 and z2 ∈ E2 . (These choices can be reconsidered in the following.)
Let’s try to show surjectivity in (4.1) first. Therefore we begin with

(4.2) f : (Dk, Sk−1) → (Y1 ∪ Y2, Y2).

Think of Dk as unit disk in Rk with (1, 0, . . . , 0) as center, so that (0, ..., 0)
can take the role of the base point.

We can assume that f is smooth in the open subset f−1(U1) and f−1(U2)
of Dk , where U1 and U2 are open neighborhoods of z1 and z2 in E1 and
E2 , respectively. Then we can also assume that z1 is a regular value for f
(as in Sard’s theorem, and by Sard’s theorem). It follows that A1 := f

−1(z1)
is a smooth compact submanifold of Dk r Sk−1 , without boundary. Let
A2 = f−1(z2) . It is important that A1 ∩ A2 = ∅ . It is important that
dim(Ai) = k −m . Neither A1 nor A2 contain the base point (0, ..., 0) of
Dk . In particular, since A2 is compact, we can choose ε > 0 so that the
small disk εDk has empty intersection with A2 .

Now we try to move A1 into the small disk εDk without disturbing A2 .
As a first attempt we try the homotopy (isotopy is a better word here)(

ϕt : A1 → Dk
)
t∈[ε,1]
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given by ϕt(x) := (1+ ε− t)x ∈ Dk . Isotopy means that ϕt : A1 → Dk is a
smooth embedding for every t ∈ [ε, 1] . We have ϕε = inclusion and ϕ1(A1)
is contained in εDk minus boundary. We can also think of (ϕt) as a single
smooth map

ϕ : A1 × [ε, 1] −→ Dk .

Since the plan was not to disturb A2 , we ask whether im(ϕ) intersects
A2 . Better way to ask the question: whether z2 is in the image of fϕ .
We can assume that z2 is a regular value for the smooth map fϕ . Since
dim(A1 × [ε, 1]) = k −m + 1 and the dimension of the target of fϕ , as far
as it is of interest here, is n , it follows that z2 is not in the image of fϕ if

k−m+ 1 < n .

This condition turns out to be the decisive one for surjectivity in (4.1).

Lemma 4.3. (Special case of Thom’s isotopy extension theorem.) There
exists a diffeotopy (

Φt : D
k → Dk)t∈[ε,1]

)
which extends the isotopy (ϕt). More precisely: each Φt : D

k → Dk is a
diffeomorphism and Φt agrees with the identity map on a neighborhood of
Sk−1 ∪A2 , whereas Φt agrees with ϕt on A1 . (This is the precise meaning
of: moving A1 into εDk without disturbing A2 .)

We postpone the proof of the lemma, but we use it right away to finish
the proof of surjectivity in (4.1). First we note that our map f in (4.2) is
homotopic, as a map of pairs, to g := fΦ−1

1 . The map g has the following
convenient properties: g−1(z1) ⊂ εDk whereas g−1(z2) ∩ εDk = ∅ . We now
try the homotopy

gt : D
k → Y1 ∪ Y2

where t ∈ [ε, 1] and gt(z) = g((1 + ε − t)z) . It is not guaranteed that
gt(S

k−1) ⊂ Y2 but it is guaranteed that gt(S
k−1) ⊂ Y1 ∪ Y2r {z1} , and this is

good enough for us since the inclusion

Y2 −→ Y1 ∪ Y2 r {z1}

is a homotopy equivalence. Similarly, although it is not guaranteed that
g1(D

k) ⊂ Y1 , it is guaranteed that g1(D
k) ⊂ Y1 ∪ Y2 r {z2} , and this

is again good enough for us. Therefore we can conclude that g = gε is
homotopic, as a map of pairs from (Dk, Sk−1) to (Y1 ∪ Y2, Y2) , to a map
from (Dk, Sk−1) to (Y1, X) . This establishes surjectivity in (4.1) under the
condition k+ 1 < m+ n .

Next, we think about injectivity in (4.1). Therefore we should start by
expressing the following situation: we have two elements in πk(Y1, X) which
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determine the same element of πk(Y1 ∪ Y2, Y2) . Note that this formulation
does not assume group structures in πk , with a view to the possibility that
k ≤ 2 . A very straightforward way to express the situation is then to say
that we have a map

F : Dk × [0, 1] → Y1 ∪ Y2
such that F(Dk × 0) ∪ F(Dk × 1) ⊂ Y1 and F(Sk−1 × [0, 1]) ⊂ Y2 . This takes
(0, ..., 0)× [0, 1] to the base point of Y1 ∪ Y2 . We now reason with this F as
we reasoned with f in (4.2) before.

We can assume that F is smooth in F−1(U1) and F−1(U2) and that z1 is a
regular value for F . Then we have a new A1 := F

−1(z1) , smooth submanifold
of Dk× [0, 1] . This has empty intersection with Sk−1× [0, 1] but it can have
nonempty intersection with Dk × ∂[0, 1] . More precisely, A1 is a smooth
submanifold with boundary of Dk× [0, 1] avoiding Sk−1× [0, 1] , of dimension
k + 1 −m , and the boundary ∂A1 is the transverse intersection of A1 and
Dk × ∂[0, 1] . We put A2 := F−1(z2) . We choose ε > 0 in such a way that
εDk × [0, 1] has empty intersection with A2 . Define a smooth isotopy(

ϕt : A1 → Dk × [0, 1]
)
t∈[ε,1]

by ϕt(x, s) := ((1+ ε− t)x, s) ∈ Dk × [0, 1] . If

k+ 1−m+ 1 < n

then by Sard’s theorem (general position) we may assume or arrange that
z2 is a regular value of Fϕ (where ϕ : A1 × [ε, 1] → Dk × [0, 1] is (ϕt)t∈[ε,1]
reorganized). Then the image of each ϕt has empty intersection with A2 .

Lemma 4.4. There exists a diffeotopy(
Φt : D

k × [0, 1] → Dk × [0, 1])t∈[ε,1]
)

which extends the isotopy (ϕt). More precisely: each

Φt : D
k × [0, 1] → Dk × [0, 1]

is a diffeomorphism and Φt agrees with the identity map on a neighborhood
of Sk−1 × [0, 1] ∪ A2 , whereas Φt agrees with ϕt on A1 . (Moreover Φt

takes Dk× {0} to itself and takes Dk× {1} to itself ... but this is automatic).

Again we postpone the proof (it is much like the postponed proof of
lemma 4.3) and use the lemma to finish the proof of injectivity in (4.1).
First we can replace F = FΦ0 by G := FΦ−1

1 , since (FΦ−1
t )t∈[ε,1] is a homo-

topy from F to G respecting all the essential features. After that, we try the
homotopy

Gt : D
k × [0, 1] → Y1 ∪ Y2

where t ∈ [ε, 1] and Gt(z, s) = G((1 + ε − t)z, s) . The details are as in the
proof of surjectivity. Therefore we have shown:
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Proposition 4.5. The map (4.1) is surjective if k < m+n−1 and bijective
if k < m+ n− 2 (in addition to k > 0).

Let’s remark that surjectivity of (4.1) was already known to us in case
k < n (by cellular approximation) and also in case k < m (because then both
groups/sets are trivial, again by cellular approximation). So the interesting
cases of the proposition, as far as surjectivity is concerned, are the cases
where max{m,n} ≤ k < m+n−1 . Similarly injectivity of (4.1) was already
known to us in case k + 1 < n and in case k < m . So the interesting cases
of the proposition, as far as injectivity is concerned, are the cases where
max{m,n+ 1} ≤ k < m+ n− 2 .

Proof of lemma 4.3. Under construction ... with regrets about wrong ideas I
may have given in the Friday lecture. �

4.2. The Freudenthal theorem

This is a special case of proposition 4.5. We take X = Sm−1 and Y1 equal
to the (closed) upper hemisphere Sm+ of Sm , while Y2 is equal to the closed
lower hemisphere Sm− of Sm .


