Nicht-Euklidische Geometrie (Weiss) WS 2015-16 Vorlesungsnotizen, Woche 4

4.1. Die hyperbolische Ebene als metrischer Raum

Definition 4.1.1. Die hyperbolische Ebene ist

$$\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^2 \mid \mathbf{x}_2 > 0 \}$$

mit der Metrik d^{Φ} bestimmt (wie in Vorl.notizen Woche 3) durch die Kostenoder Gewichtsfunktion Φ , wobei $\Phi(x) = 1/x_2$ für $x \in \mathbb{H}$. Also ist für Elemente x und y von \mathbb{H} der Abstand $d^{\Phi}(x,y)$ das Infimum der Zahlen $L^{\Phi}(\gamma)$, genommen über alle stückweise glatten Kurven $\gamma: [a,b] \to \mathbb{H}$ mit $\gamma(a) = x$ und $\gamma(b) = y$. Zur Erinnerung: im Fall von glatter Kurve γ ist

$$L^{\Phi}(\gamma) = \int_{0}^{b} \Phi(\gamma(t)) \cdot \|\gamma'(t)\| dt = \int_{0}^{b} \frac{\|\gamma'(t)\|}{\gamma_{2}(t)} dt$$

bei dieser Kostenfunktion, $\Phi(x) = 1/x_2$. (Dabei bezeichnet $\gamma_2(t)$ die zweite Koordinate von $\gamma(t)$.) Wenn γ stückweise glatt ist, muss man eine etwas kompliziertere Formel mit Summenzeichen hinschreiben.

Diese Definition ist sehr langwierig, und wir haben schon gesehen, dass die explizite Bestimmung der Abstände $\mathbf{d}^{\Phi}(\mathbf{x},\mathbf{y})$ manchmal schwierig ist. Wir werden aber auch noch sehen, dass diese langwierige Definition einen Vorteil hat: sie macht es uns leicht, viele Isometrien von \mathbb{H} nach \mathbb{H} zu konstruieren. Damit können wir die Berechnung von Abständen $\mathbf{d}^{\Phi}(\mathbf{x},\mathbf{y})$ für beliebige \mathbf{x} und \mathbf{y} auf einfache Spezialfälle zurückführen. Diese Spezialfälle kommen jetzt dran.

Lemma 4.1.2. Für x und y aus \mathbb{H} mit $x_1 = y_1$ ist

$$d^{\Phi}(x,y) = |\ln y_2 - \ln x_2|$$
.

Beweis. OBdA ist $y_2 \ge x_2$. Sei β : $[a,b] \to \mathbb{H}$ irgendeine stückweise glatte Kurve von x nach y. Wir sollten erstmal zeigen, dass $L^{\phi}(\beta) \ge \ln y_2 - \ln x_2$. Ich tue das unter der Annahme, dass β glatt ist; der allgemeine Fall ist ähnlich. Dann haben wir

$$\begin{split} L^{\Phi}(\beta) &= \int_{a}^{b} \frac{\|\beta'(t)\|}{\beta_{2}(t)} \ dt \geq \int_{a}^{b} \frac{\|\beta'_{2}(t)\|}{\beta_{2}(t)} \ dt \geq \int_{a}^{b} \frac{\beta'_{2}(t)}{\beta_{2}(t)} \ dt \\ &= \ln(\beta_{2}(t)) \Big|_{t=a}^{t=b} = \ \ln y_{2} - \ln x_{2} \,. \end{split}$$

Gut. Wenn jetzt $\beta'_1(t)$ immer Null ist und $\beta'_2(t)$ immer ≥ 0 , dann werden die Zeichen \geq in diesen Abschätzungen zu Gleichheitszeichen, und wir sehen $L^{\Phi}(\beta) = \ln y_2 - \ln x_2$. (Wir können zB definieren $\beta \colon [0,1] \to \mathbb{H}$ mit $\beta(t) = (x_1, x_2 + t(y_2 - x_2))$, um all das zu erreichen.)

Korollar 4.1.3. Für festes $a \in \mathbb{R}$ ist die Abbildung $f: \mathbb{R} \to \mathbb{H}$ definiert durch $f(t) = (a, \exp(t))$ abstandserhaltend (mit der Standardmetrik auf \mathbb{R}). Also ist ihr Bild

$$\{x \in \mathbb{H} \mid x_1 = a\}$$

eine Gerade in \mathbb{H} (gemäss Definition von Gerade in metrischem Raum gegeben in Vorl. notizen Woche 2).

Beweis.
$$d^{\Phi}(f(t), f(s)) = |\ln(\exp(t)) - \ln(\exp(s))| = |t - s|$$
.

Bemerkung 4.1.4. Der Beweis von Lemma 4.1.2 beweist noch etwas mehr, als behauptet wurde. Wir haben gesehen: es gibt (unter den Voraussetzungen des Lemmas) eine glatte Kurve β von x nach y in \mathbb{H} , für die $L^{\Phi}(\beta) = d^{\Phi}(x,y)$ gilt. (Das heisst, obwohl wir $d^{\Phi}(x,y)$ als Infimum von gewissen gewichteten Kurvenlängen definiert hatten, wissen wir jetzt: das Infimum ist ein Minimum.) Ausserdem: wenn β eine glatte Kurve von x nach y ist, bei der β_1 nicht konstant ist, die also nicht $\beta'_1(t) = 0$ erfüllt für alle t, dann ist $L^{\Phi}(\beta) > d^{\Phi}(x,y)$ (strikte Ungleichung). Denn dann ist eine der Ungleichungen in unseren Abschätzungen strikt:

$$\int_{0}^{b} \frac{\|\beta'(t)\|}{\beta_{2}(t)} dt > \int_{0}^{b} \frac{\|\beta'_{2}(t)\|}{\beta_{2}(t)} dt.$$

Diese Bemerkung, $L^{\Phi}(\beta) > d^{\Phi}(x,y)$ falls β_1 nicht konstant, gilt auch wieder im stückweise glatten Fall.

4.2. Selbst-Isometrien der hyperbolischen Ebene

Um einige interessante Isometrien von \mathbb{H} nach \mathbb{H} zu beschreiben, benutzen wir komplexe Zahlen. Insbesondere werden dabei die Elemente (x_1, x_2) von \mathbb{H} als komplexe Zahlen $z = x_1 + x_2 i$ mit positivem Imaginärteil x_2 aufgefasst. Die Abbildungen f von \mathbb{H} nach \mathbb{H} , die wir betrachten wollen, haben die Gestalt

$$f(z) = \frac{az + b}{cz + d}$$

für $z \in \mathbb{H}$, wobei a, b, c, d feste reelle Zahlen sind mit ad - bc = 1. Die Division muss in \mathbb{C} ausgeführt werden! Zur Erinnerung oder Belehrung, falls nötig:

- Eine komplexe Zahl $w = k + \ell i$ hat einen Realteil $k = \text{Re } w \in \mathbb{R}$ und einen Imaginärteil $\ell = \text{Im } w \in \mathbb{R}$. Warnung: Der Imaginärteil von $w = k + \ell i$ ist eine reelle Zahl, nämlich ℓ .

- Der Betrag von w ist $|w| = \sqrt{k^2 + \ell^2} \in \mathbb{R}$.
- Addition von komplexen Zahlen wird koordinatenweise durchgeführt. Beispiel: $(3+5\mathfrak{i})+(2-7\mathfrak{i})=5-2\mathfrak{i}$. Analog dazu: Subtraktion koordinatenweise.
- Bei der Multiplikation von komplexen Zahlen benutzen Sie bitte das Distributivgesetz und denken Sie daran, dass $i^2 = -1$ sein soll, genauer gesagt, $(0 + 1i)^2 = -1 + 0i$. Beispiel: $(3 + 5i)(2 + 7i) = 6 + 35i^2 + 10i + 21i = -29 + 31i$.
- Der Betrag von einem Produkt ist das Produkt der Beträge; also $|uv| = |u| \cdot |v|$. Beweis: Nachrechnen.
- Die Konjugierte von $w = k + \ell i$ ist $\bar{w} = k \ell i$. Die Konjugierte von einem Produkt ist das Produkt der Konjugierten; die Konjugierte von einer Summe ist die Summe der Konjugierten.
- Wenn eine komplexe Zahl w nicht Null ist, dann erhebt sich die Frage, wie man w^{-1} bestimmt. Man findet w^{-1} meist am leichtesten in der Form

$$w^{-1} = \frac{1}{w} = \frac{\bar{w}}{w\bar{w}} = \frac{\bar{w}}{|w|^2}.$$

Und Teilen durch w ist dasselbe wie Multiplizieren mit 1/w.

- Wie schon angedeutet: statt k + 0i schreiben wir gerne k. Auf diese Weise wird \mathbb{R} mit einer Teilmenge von \mathbb{C} gleichgesetzt (d.h. eine reelle Zahl ist eine komplexe Zahl w mit Im w = 0). Statt 0 + li schreiben wir gerne li. Statt 0 + 1i schreiben wir gerne i. Undsoweiter.

Beispiel 4.2.5.

$$\frac{1+5i}{3-2i} = \frac{(1+5i)(3+2i)}{(3-2i)(3+2i)} = \frac{(3-10)+(15+2)i}{9+4} = \frac{7}{13} + \frac{17}{13}i.$$

Beispiel 4.2.6. a, b, c, d = 1, -2, 3, -5 und z = 2 + i = 2 + 1i. Dann ist

$$\frac{az+b}{cz+d} = \frac{1(2+i)-2}{3(2+i)-5} = \frac{i}{1+3i} = \frac{i(1-3i)}{10} = \frac{3}{10} + \frac{1}{10}i.$$

Bemerkung 4.2.7. Für eine Matrix mit reellen Einträgen

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

mit det(M) = 1 und ein $z \in \mathbb{H}$ definieren wir versuchsweise

$$f_{\mathsf{M}}(z) := \frac{az + b}{cz + d}.$$

Dann stellt sich heraus:

(i) f_{M} ist eine wohldefinierte und stetige Abbildung von \mathbb{H} nach \mathbb{H} ;

- (ii) $f_M \circ f_N = f_{MN}$, wobei MN das Matrixprodukt bezeichnet;
- (iii) $f_{I_2} = id$ für die Identitätsmatrix I_2 .

Aus (ii) folgt, dass jedes f_M eine invertierbare stetige Abbildung von $\mathbb H$ nach $\mathbb H$ definiert; als Inverse bietet sich nämlich f_N an, wobei $N=M^{-1}$.

Erklärung von (i). (Jetzt vereinfacht im Vgl zur Vorlesung.) Sei $z \in \mathbb{H}$ und $w = f_M(z)$. Wir bemerken erstmal, dass $cz + d \neq 0$, denn sonst $0 = \operatorname{Im}(cz + d) = c \cdot \operatorname{Im} z$, damit c = 0, und dann d = 0. Weiter: Die Konjugierte von cz + d ist $c\bar{z} + d$, daher

$$w = \frac{az + b}{cz + d} = \frac{(az + b)(c\bar{z} + d)}{|cz + d|^2} = \frac{ac|z|^2 + adz + bc\bar{z} + bd}{|cz + d|^2},$$

so dass

Im
$$w = \frac{(ad - bc)\text{Im } z}{|cz + d|^2} = \frac{\text{Im } (z)}{|cz + d|^2}.$$

Also ist Im w > 0, weil Im z > 0.

Die Aussagen (ii) und (iii) können durch Nachrechnen bestätigt werden.

Theorem 4.2.8. Jedes f_M wie in Bemerkung 4.2.7 ist eine Isometrie von \mathbb{H} nach \mathbb{H} , wobei \mathbb{H} mit der Metrik d^{Φ} ausgestattet ist wie in Definition 4.1.1.

Beweis. Wegen Bemerkung 4.2.7 ist f_M eine Bijektion von \mathbb{H} nach \mathbb{H} , denn eine inverse Abbildung dazu ist f_N mit $N = M^{-1}$.

Die erste Ableitung von f_M ist

$$f'_{M}(z) = \frac{a(cz+d) - (az+b)c}{(cz+d)^{2}} = \frac{ad-bc}{(cz+d)^{2}} = \frac{1}{(cz+d)^{2}}$$

nach der Quotientenregel. Man darf die Quotientenregel hier etwa so benutzen, wie man sie aus der reellen Analysis kennt, weil die Abbildungen $z \mapsto az + b$ und $z \mapsto cz + d$ komplex differenzierbar sind¹. Andererseits haben wir schon herausgefunden (in Bemerkung 4.2.7):

$$\operatorname{Im} (f_{\mathsf{M}}(z)) = \frac{\operatorname{Im} z}{|cz + \mathbf{d}|^2}.$$

$$\begin{bmatrix} k & -\ell \\ \ell & k \end{bmatrix}.$$

¹Dabei sollte $f_M'(z)$ als lineare Abbildung von \mathbb{R}^2 nach \mathbb{R}^2 aufgefasst werden, oder, wenn eine weniger gesunde Sichtweise vorgezogen wird, als 2 × 2-Matrix mit reellen Einträgen — die Matrix der ersten partiellen Ableitungen, auch Jacobi-Matrix genannt. Die rechte Seite $(cz+d)^{-2}$ muss demnach auch als lineare Abbildung von \mathbb{R}^2 nach \mathbb{R}^2 aufgefasst werden, und das geht. Denn Multiplikation mit einer komplexen Zahl $k+\ell i$ ist tatsächlich eine lineare Abbildung von \mathbb{R}^2 nach \mathbb{R}^2 . Ihre Matrix ist

(Diese beiden Formeln, für $f'_M(z)$ und für Im $(f_M(z))$, sind ungeheuer nützlich.) Sei jetzt $\gamma \colon [p,q] \to \mathbb{H}$ eine glatte Kurve. Dann ist auch $f_M \circ \gamma$ eine glatte Kurve. Die Kettenregel ergibt

$$(f_M\circ\gamma)'(t)=f_M'(\gamma(t))\cdot\gamma'(t)$$

wobei die rechte Seite als Produkt von komplexen Zahlen gelesen werden darf und auch muss. Mit den Rechnungen oben erhalten wir für die gewichteten Geschwindigkeiten

$$\begin{split} \frac{|(f_M \circ \gamma)'(t)|}{\operatorname{Im}\ (f_M(\gamma(t)))} &= \frac{|f_M'(\gamma(t))| \cdot |\gamma'(t)|}{\operatorname{Im}\ (f_M(\gamma(t)))} \\ &= \frac{|c\gamma(t) + d|^2 |f_M'(\gamma(t))| \cdot |\gamma'(t)|}{\operatorname{Im}\ (\gamma(t))} \\ &= \frac{|\gamma'(t)|}{\operatorname{Im}\ (\gamma(t))}. \end{split}$$

(Es ist ganz lustig, dass ich hier |...| statt ||...| schreiben durfte. Der Betrag tut für Elemente von \mathbb{C} dasselbe wie die Norm ||...| für Elemente von \mathbb{R}^2 .) Wenn wir \int_p^q davorschreiben und dt dahinter, ergibt sich für die gewichteten Kurvenlängen

$$\mathsf{L}^{\Phi}(\mathsf{f}_{\mathsf{M}}\circ\gamma)=\mathsf{L}^{\Phi}(\gamma).$$

Dieselbe Beziehung ergibt sich für stückweise glatte Kurven γ (mit mehr Schreibarbeit wegen Summenzeichen). Da Zusammensetzung mit f_M eine Bijektion von der Menge der stückweise glatten Kurven γ in $\mathbb H$ von $\mathfrak u$ nach $\mathfrak w$ in die Menge der stückweise glatten Kurven in $\mathbb H$ von $\mathfrak f_M(\mathfrak u)$ nach $\mathfrak f_M(\mathfrak v)$ ergibt, dürfen wir schliessen

$$d^{\Phi}(f_{M}(u), f_{M}(w)) = d^{\Phi}(u, w).$$

4.3. Bestimmung von Abständen in der hyperbolischen Ebene

Lemma 4.3.9. Sei $z, u \in \mathbb{H}$ (komplexe Bezeichnungen, $\mathbb{H} \subset \mathbb{C}$) und

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

eine Matrix mit reellen Einträgen, $\det(M)=1$ wie in Bemerkung 4.2.7. Dann ist

$$\frac{|z-u|}{(\mathrm{Im}\ z)^{1/2}(\mathrm{Im}\ u)^{1/2}} = \frac{|f_M(z)-f_M(u)|}{(\mathrm{Im}\ f_M(z))^{1/2}(\mathrm{Im}\ f_M(u))^{1/2}}.$$

Beweis. Übungsaufgabe.

Lemma 4.3.10. Für beliebige $z, u \in \mathbb{H}$ existiert eine Matrix M wie in Bemerkung 4.2.7 derart, dass Re $(f_M(z)) = 0$ und Re $(f_M(u)) = 0$ (für diese speziellen z und u).

Beweis. Wieder Übungsaufgabe. Diese Aufgabe lässt sich allerdings in folgende Schritte zerlegen (unter Benutzung der Formel $f_{XY} = f_X \circ f_Y$ in Bemerkung 4.2.7.)

1. Finde Matrix P derart, dass Re $(f_P(z)) = 0$ für das gegebene z. Das ist leicht, denn wir können P von der Form

$$P = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

nehmen. Dann ist $f_P(y) = y + b$ für alle $y \in \mathbb{H}$. Wenn wir also b = -Re z wählen (für unser spezielles z), dann ist $\text{Re } (f_P(z)) = 0$.

2. Schreibe $f_P(z) = ri$ für ein positives reelles r. Konstruiere Matrix Q derart, dass $f_Q(i) = ri$. Dann ist

$$f_{Q^{-1}P}(z) = (f_Q)^{-1}(f_P(z)) = f_{Q^{-1}}(ri) = i.$$

3. Setze $w=f_{Q^{-1}P}(\mathfrak{u})$. Finde Matrix N derart, dass $f_N(\mathfrak{i})=\mathfrak{i}$ und Re $(f_N(w))=0$. Dann ist

$$\begin{split} f_{NQ^{-1}P}(z) &= f_N(\mathfrak{i}) = \mathfrak{i}\,,\\ \operatorname{Re}\, (f_{NQ^{-1}P}(\mathfrak{u})) &= \operatorname{Re}\, (f_N(f_{Q^{-1}P}(\mathfrak{u})) = \operatorname{Re}\, (f_N(w)) = 0\,.\\ \operatorname{Also ist}\, M &= NQ^{-1}P \text{ eine L\"osung.} \end{split}$$

Korollar 4.3.11. Für den Abstand $d^{\Phi}(\mathfrak{u}, z)$ von $\mathfrak{u}, z \in \mathbb{H}$ gilt:

$$\cosh\left(d^{\Phi}(u,z)\right) = 1 + \frac{|z-u|^2}{2(\operatorname{Im} z)(\operatorname{Im} u)}.$$

Beweis. Erstmal in Erinnerung rufen, dass $\cosh(t) = (\exp(t) + \exp(-t))/2$ für $t \in \mathbb{R}$. Die cosh-Funktion (Cosinus Hyperbolicus) ist injektiv nach Einschränkung auf die nicht-negativen reellen Zahlen. — Wir suchen uns dann eine Matrix M wie in Lemma 4.3.10, so dass $\operatorname{Re} (f_M(\mathfrak{u})) = 0 = \operatorname{Re} (f_M(z))$. Weil f_M eine Isometrie ist, Theorem 4.2.8, haben wir

$$d^{\Phi}(f_{M}(u), f_{M}(z)) = d^{\Phi}(u, z).$$

Aber wegen Lemma 4.3.9 gilt auch

$$1 + \frac{|f_M(z) - f_M(u)|^2}{2(\mathrm{Im}\ f_M(z))(\mathrm{Im}\ f_M(u))} = 1 + \frac{|z - u|^2}{2(\mathrm{Im}\ z)(\mathrm{Im}\ u)}.$$

Das heisst, es genügt uns jetzt, zu zeigen, dass

$$\cosh\left(d^{\Phi}(f_{\mathsf{M}}(z),f_{\mathsf{M}}(\mathfrak{u}))\right)=1+\frac{|f_{\mathsf{M}}(z)-f_{\mathsf{M}}(\mathfrak{u})|^{2}}{2(\mathrm{Im}\ f_{\mathsf{M}}(z))(\mathrm{Im}\ f_{\mathsf{M}}(\mathfrak{u}))}.$$

Sieht so aus wie vorher, nur mit $f_M(\mathfrak{u})$ und $f_M(z)$ anstelle von \mathfrak{u} und z. Wir können jetzt sagen: $f_M(z)$ ist "das neue" z und $f_M(\mathfrak{u})$ ist "das neue" \mathfrak{u} . Fortschritt: wir haben damit auf den Spezialfall reduziert, dass (die neuen) z und \mathfrak{u} Realteil gleich Null haben.

Unter dieser zusätzlichen Voraussetzung, also Re $\mathfrak{u}=0=\mathrm{Re}\ z$, haben wir aber schon eine ausgezeichnete Formel für $d^\Phi(\mathfrak{u},z)$. Angenommen $\mathfrak{u}=\mathfrak{p}\mathfrak{i}$ und $z=\mathfrak{q}\mathfrak{i}$ für gewisse positive reelle $\mathfrak{p},\mathfrak{q}$, und oBdA ist $\mathfrak{p}\geq\mathfrak{q}$. Die Formel ist dann $d^\Phi(\mathfrak{u},z)=\ln\mathfrak{p}-\ln\mathfrak{q}=\ln(\mathfrak{p}/\mathfrak{q})$. Das ist (ein Spezialfall von) Lemma 4.1.2 in komplexer Schreibweise. Jetzt muss also nur noch gezeigt werden

$$\cosh\left(\ln(p/q)\right) = 1 + \frac{(p-q)^2}{2pq}.$$

Aber das ist leicht.

Beispiel 4.3.12. Wir hatten den Fall u=i=0+1i und z=1000+i betrachtet. Eine erste grobe Abschätzung ergab $d^{\Phi}(u,z) \leq 1000$ und eine zweite weniger grobe Abschätzung ergab

$$d^{\Phi}(u, z) \leq 500 + 2(\ln 2).$$

Wir hatten dazu Kurven γ von \mathfrak{u} nach z konstruiert und ihre gewichtete Kurvenlänge $\mathsf{L}^\Phi(\gamma)$ bestimmt, wussten aber nicht recht, ob wir damit dem Infimum solcher gewichteten Kurvenlängen einigermassen nahegekommen waren. (Man hätte es bestimmt besser machen können mit derselben Strategie.) Jetzt stellt sich jedenfalls heraus: dieses Infimum, genannt $\mathfrak{d}^\Phi(\mathfrak{u},z)$, erfüllt

$$\cosh(\mathbf{d}^{\Phi}(\mathbf{u}, z)) = 1 + \frac{|z - \mathbf{u}|^2}{2(\operatorname{Im} z)(\operatorname{Im} \mathbf{u})} = 1 + \frac{10^6}{2} = 500\,001.$$

Mein Rechner sagt dazu, dass

$$\mathbf{d}^{\Phi}(\mathbf{u},z)\approx 13,815512557961274110774597894823.$$